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ABSTRACT

DEVELOPMENT OF NEW ARRAY SIGNAL

PROCESSING TECHNIQUES USING SWARM

INTELLIGENCE

Mehmet Burak Güldoğan

Ph.D. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Orhan Arıkan

May 2010

In this thesis, novel array signal processing techniques are proposed for identifi-

cation of multipath communication channels based on cross ambiguity function

(CAF) calculation, swarm intelligence and compressed sensing (CS) theory. First

technique detects the presence of multipath components by integrating CAFs of

each antenna output in the array and iteratively estimates direction-of-arrivals

(DOAs), time delays and Doppler shifts of a known waveform. Second technique

called particle swarm optimization-cross ambiguity function (PSO-CAF) makes

use of the CAF calculation to transform the received antenna array outputs to

delay-Doppler domain for efficient exploitation of the delay-Doppler diversity of

the multipath components. Clusters of multipath components are identified by

using a simple amplitude thresholding in the delay-Doppler domain. PSO is

used to estimate parameters of the multipath components in each cluster. Third

proposed technique combines CS theory, swarm intelligence and CAF computa-

tion. Performance of standard CS formulations based on discretization of the

multipath channel parameter space degrade significantly when the actual chan-

nel parameters deviate from the assumed discrete set of values. To alleviate this
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“off-grid”problem, a novel technique by making use of the PSO, that can also be

used in applications other than the multipath channel identification is proposed.

Performances of the proposed techniques are verified both on sythetic and real

data.

Keywords: Parameter estimation, cross ambiguity function (CAF), particle

swarm optimization (PSO), compressed sensing (CS), sparse approximation
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ÖZET

SÜRÜ ZEKASI KULLANILARAK YENİ DİZİLİM SİNYAL

İŞLEME TEKNİKLERİNİN GELİŞTİRİLMESİ

Mehmet Burak Güldoğan

Elektrik ve Elektronik Mühendisliği Doktora

Tez Yöneticisi: Prof. Dr. Orhan Arıkan

Mayıs 2010

Bu tezde, çokyollu haberleşme kanallarını modellemek için çapraz belirsizlik

işlevi (CAF), sürü zekası ve sıkıştırılmış algılama (CS) teorisi tabanlı yeni dizi

sinyal işleme teknikleri önerilmektedir. Birinci teknik, dizideki herbir antenin

çıktısında hesaplanan CAF’ lerin entegrasyonunu kullanarak hem çokyollu kanal

birleşenlerinin varlıǧını tespit etmektedir hem de bilinen bir sinyale ait eko-

ların geliş yönlerini (DOAs), zaman gecikmelerini ve Doppler kaymalarını ke-

stirebilmektedir. Parçacık sürü optimizasyonu - çapraz belirsizlik işlevi (PSO-

CAF) adıyla önerilen ikinci teknik, çokyollu birleşenlerin gecikme-Doppler

çeşitliliklerini verimli bir şekilde ortaya çıkarmak için CAF hesaplamasını kul-

lanarak anten dizi çıktısını gecikme-Doppler düzlemine taşır. Gecikme-Doppler

düzlemi üzerinde yer alan çokyollu birleşen kümeleri, basit bir genlik eşiklemesi ile

tespit edilir. Herbir küme içerisindeki çokyollu birleşen parametrelerini kestirmek

için PSO kullanılmıştır. Üçüncü önerilen teknik sıkıştırılmş algılama (CS)

teorisini, sürü zekasını ve CAF hesaplamasını birleştirerek çokyollu kanal mod-

ellemesi yapmaktadır. Çokyollu kanal parametre uzayının ayrık örneklenmesine

dayalı çalışan standart CS formülizasyonları, gerçek kanal parametrelerinin

kabul edilmiş ayrık küme deǧerlerinden saptıǧı durumlarda performansları ciddi
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bir şekilde düşmektedir. “Kötü ızgara” olarak da adlandırılabilinecek ve

çokyollu kanal modellemesi dışında birçok başka uygulamada da karşılaşılaşılan

bu problemi çözmek için yeni bir teknik sunulmaktadır. Önerilen tekniklerin

başarımları sentetik ve gerçek sinyaller üzerinde doǧrulanmıştır.

Anahtar Kelimeler: Parametre kestirimi, çapraz belirsizlik işlevi (CAF), parçacık

sürü optimizasyonu (PSO), sıkıştırılmış algılama (CS), seyrek yaklaşma
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Chapter 1

INTRODUCTION

1.1 Objective and Contributions of this Work

Modern wireless communication systems are designed to operate in multipath

environments where the transmitted information arrives at the receiver after

reflecting off various obstacles that are present in the environment of the com-

munication. A superposition of multiple delayed, attenuated, frequency-phase

shifted copies of the original signal arrive at the receiver. This superposition of

multiple copies of the emitted signal are called the multipath signal components.

Although, at first, the presence of multipath arrivals seems to degrade the qual-

ity of the communication, a carefuly designed communication system can take

advantage of the diversity provided by the multipath environment. Diversity in

the multipath channels is a result of variation between the direction-of-arrivals

(DOA), delays and Doppler shifts of the individual channel components. To take

full advantage of this diversity, multipath communication channels should be

accurately modeled. For this purpose, communication systems utilize antenna

arrays and sophisticated signal processing techniques to produce estimates for

multipath channel parameters.
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Most of the time, since channel state information (CSI) is not available to

systems, communication channel should be periodically estimated at the receiver

to take advantage of the diversity provided by multipath propagation. There are

a multitude of array signal processing techniques proposed for reliable and ac-

curate estimation for these channel parameters. Multipath channel parameter

estimation techniques can be grouped into three categories as [4]: spectral-based

estimation, parametric subspace-based estimation and deterministic parametric

estimation. Conventional beamformer, Capon’s beamformer [5] and MUSIC [6]

can be stated within the first category. In contrast to beamforming techniques,

the multiple signal classification (MUSIC) algorithm provides statistically con-

sistent estimates and became a highly popular algorithm [7], [8]. The signal

subspace fitting (SSF) [9], weighted subspace fitting (WSF) [10], estimation of

signal parameter estimation via rotational invariance techniques (ESPRIT) [11]

and unitary ESPRIT [12] are computationally efficient techniques and belong to

the second category. In the last category, maximum likelihood (ML) techniques

should be stated [4], [13].

The ML criterion based channel identification is a commonly used framework

due to its superior asymptotic performance. Having determined a parametric

signal model, ML estimates are obtained by a search conducted in the param-

eter space to maximize the likelihood function. The major drawback of the

ML technique is its high computational complexity associated with the direct

maximization of multimodal and nonlinear likelihood function over a very large

dimensional parameter space. Alternative maximization methods are proposed

to obtain the ML estimates more efficiently. One of the most popular one to

facilitate simple implementation of likelihood function is the expectation maxi-

mization (EM) algorithm formulated by Dempster et al. [14]. Simpler maximiza-

tion steps in lower dimensional parameter spaces are used instead of the original

likelihood function. Various different forms of the EM algorithm have been de-

veloped to further improve the performance. The most popular one is the space
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alternating generalized EM (SAGE) algorithm, which was developed by Fessler

and Hero [15]. In SAGE, parameters are updated sequentially in contrast with

the EM where all the parameters are updated simultaneously. Main advantage of

the SAGE algorithm over the EM algorithm is its faster convergence resulting in

an increased efficiency. Applications of SAGE algorithm are extensively reported

in the literature [16], [17], [18], [19], [20], [21], [22].

In general, coded waveforms with the time-bandwidth products significantly

larger than one are employed in wideband communication channels. In these

systems, to have optimal extraction of the transmitted information, pulse com-

pression of the receiver output is necessary and important. Pulse compression

can be achieved by a simple matched filter that implements correlation of the

incoming signal with the transmitted waveform in delay only channels. Never-

theless, in the presence of Doppler shifts a single matched filter cannot provide

the optimal performance. Instead, a bank of matched filters each matched to

a specific Doppler shift should be employed [23], providing individual Doppler

slices of the CAF between the transmitted and received signals. As a result, in-

tegration of CAF calculation into the processing chain has both theoretical and

practical advantageous. In the first part, a novel technique called cross-ambiguity

function direction finding (CAF-DF), which reliably estimates the DOAs, time

delays, and Doppler shifts of a known waveform impinging onto an array of an-

tennas from several distinct paths [24], [25], [26], [27], [28], [29]. Unlike the other

alternatives, the proposed CAF-DF technique provides joint delay and Doppler

shift estimates on the cross ambiguity function surface. The CAF-DF technique

can resolve highly correlated signals with closely spaced signal parameters even

in poor SNR conditions.

Computational swarm intelligence based optimization techniques such as ge-

netic algorithm (GA) [30], ant colony optimization [31], differential evolution
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[32], honey bee colony [33], bacteria foraging [34] and particle swarm optimiza-

tion (PSO) [35] can be used to optimize the ML based formulation. GA is one

of the most popular and powerful search technique in the class of evolution-

ary algorithms used in many engineering problems [36], [37]. It borrows some

key concepts from evolutionary biology such as crossover, mutation, inheritance

and natural selection. Although, GA has a legitimate fame, it has some disad-

vantages: 1) burdensome implementation, 2) slow convergence, 3) tendency to

converge towards local optima if the fitness function is not defined properly.

Particle swarm optimization (PSO) is another evolutionary computation al-

gorithm which has been shown to be very effective in optimizing difficult multi-

dimensional, nonlinear and multimodal problems in a variety of fields [38], [39],

[40], [41], [42], [43], [44], [45], [46], [47]. PSO is first introduced by Eberhart and

Kennedy in 1995 [35]. It was inspired by the social behavior of animals, specifi-

cally the ability of groups of animals to work collectively in finding the desirable

positions in a given area. PSO utilizes a swarm of particles that fly through the

problem search space. Each particle in the swarm represents a candidate solu-

tion. A few crucial points about PSO can be itemized to clarify the advantages

of it over classical Newton-type techniques: 1) less sensitive to initialization, 2)

better chance to find global optimum and 3) provides more accurate estimates.

In the second part of this thesis, a new transform domain array signal process-

ing technique is proposed for identification of multipath communication chan-

nels [48], [49], [50]. The received array element outputs are transformed to

delay-Doppler domain by using CAF computation for efficient exploitation of

the delay-Doppler diversity of the multipath signals. In the transform domain,

a simple amplitude threshold determined by the noise standard deviation helps

to identify the clusters of multipath components. This way, the original chan-

nel identification problem is reduced to channel identification problems over the

identified path clusters in the delay-Doppler domain. Since, each cluster has
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fewer multipath components, there is a significant advantage of conducting the

required optimization for identification of channel parameters over the identified

clusters. Here, because of its robust performance, we choose to use the parti-

cle swarm optimization (PSO) to obtain globally optimal values of the channel

parameters in each cluster. Since the optimization problem is formulated in

the CAF domain of the transmitted signal and the received array outputs, the

developed technique is named as the PSO-CAF.

There have been many research efforts in developing training based meth-

ods for channel modeling [51], [52]. These efforts basically concentrate on two

phases, namely sensing and reconstruction. In sensing phase, training signals are

designed to probe the communication channel and in reconstruction phase, re-

ceiver output is processed to obtain channel state information. Designing proper

training signals and developing efficient reconstruction techniques are highly crit-

ical in order to accurately model the channel. The general assumption in most of

the important works in wireless communications is that there exists a rich multi-

path environment and linear reconstruction techniques are known to be optimal

in these channels. However, recent research show that wireless channels have

a sparse structure in time, frequency and space [53]. Moreover, it is presented

in [53], [54], that training based methods using linear reconstruction techniques

cannot fully exploit the sparse structure of the channel causing over utilization of

the resources. Recently, by embedding the key concepts from compressed sens-

ing, new training based techniques have been proposed for sparse channels that

have better performance than usual least-squared based approaches to model

the sparse wireless channel [53]. In [54], [55] authors use a virtual representation

of physical multipath channels to model the time frequency response of sparse

multipath channel. In [56], [57], matrix identification problem, where the matrix

has a sparse representation in some basis, is discussed. Herman and Strohmer

introduced the concept of compressed sensing radar, which provides better time

frequency resolution over classical radar by exploiting the sparse structure [57].
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Lastly, some other CS based techniques which found to be effective are presented

in the following references [58], [59], [60], [61].

General assumption used in all of these approaches is that the all multipath

components fall on the grid points, which is practically impossible as the multi-

path parameters are unknown. Hence the true grid, which is possibly irregular,

cannot be known beforehand. This so called off-grid problem, results in a mis-

match of the dictionary and severely degrades the performance of techniques

that exploit sparsity. Furthermore, such methods exhibit an unstable behavior

as previously shown in theoretical studies on dictionary errors. In several papers,

the problem is pointed out and very simple grid refinement approaches are stated

[62], [63].

In the third part of the thesis, a new algorithm is developed based on the

compressed sensing (CS) theory to accurately estimate the multipaths [64], [65].

Similar to the first technique, the receiver output is transformed to delay-Doppler

domain by using the CAF for efficient exploitation of the delay-Doppler diversity

of the multipath signals. In the transform domain, clusters of multipath compo-

nents are identified. Then, we make use of the PSO to perturb the location of

each grid point that reside in each cluster separately and conduct an orthogonal

matching pursuit (OMP) [66] to reconstruct sparse multipath sources.

1.2 Organization of the Thesis

The organization of the thesis is as follows. In Chapter 2, wireless communication

environment and its key components are given. Then physical and sparse channel

models are presented. Lastly, two channel estimation techniques are introduced.

In Chapter 3, a new array signal processing technique is presented to estimate

the DOAs, time delays and Doppler shifts of a known waveform impinging onto
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an array of antennas from several distinct paths. Performance of the proposed

technique is compared with other techniques in the literature. Moreover, the

performance of the CAF-DF technique is tested on recorded real ionospheric

data.

A novel transform domain array signal processing technique based on PSO

and CAF computation is presented in Chapter 4 for identification of multipath

communication channels. Detailed analysis and simulation results are provided.

In Chapter 5, CS and sparse approximation theory is reviewed. Then, off-grid

problem in sparse signal recovery is introduced. To alleviate this problem, a new

algorithm is developed based on the CS theory, PSO and CAF. The performance

of the developed technique is tested and analyzed based on extensive simulations.

Remarks and conclusions are provided in Chapter 6.

In the Appendix, important points and derivations of PSO, CAF and CRLB

are provided.
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Chapter 2

Wireless Communications

Wireless communications is one of the most important technology of our time

that has a profound impact on our society. Today, wireless technology support

not only voice telephony but also supports other services such as the transmis-

sion of images, text, data and video. The demand for new wireless capacity is

increasingly growing. There still exist technical problems that should be solved

in wireline communications. However, with the addition of new optical-fiber,

switch and router systems, the demand for extra wireline capacity can be ful-

filled. On the other side, there exist only two resources; transmitter power and

radio bandwidth that can be used to increase the wireless capacity. Both of these

resources are limited, unfortunately. Moreover, radio bandwidth is not growing

and transmitter power is not improving at rates close to additional demand to

wireless capacity.

Fortunately, microprocessor power is growing rapidly. According to Moore’s

law, microprocessor capability doubles every eight months. Over the past twenty

years, accuracy of the law is confirmed and it seems to continue for years. Con-

sidering these circumstances, there has been an enormous effort in the last few
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decades to increase the wireless communication capacity by adding more technol-

ogy and intelligence to the wireless signal processing algorithms [67]. Efforts in

this area can be grouped in two parts; developing new signal transmission tech-

niques and advanced receiver signal processing approaches in order to increase

capacity without demanding more power or bandwidth [67].

With a 1.5-trillion dollars market share, the telecommunications industry is

one of the largest industries. Mobile (cellular) telephony constitutes the largest

section of the telecommunications industry. However, there exists many other

wireless technologies that are being deployed worldwide. Some of the most pop-

ular examples include Bluetooth, personal area networks (e.g. IEEE 802.15),

wireless local area networks (e.g. IEEE 802.11), wireless metropolitan area net-

works (e.g. IEEE 802.16) and wireless local area networks. These technologies

are the key enablers of many different wireless applications, which are extensively

used in daily life [68], [69], [70]. To improve the performance of these technolo-

gies, there is a strong support for the research and development efforts in signal

processing for wireless communications.

Wide spread deployment of many important wireless systems have become

possible by the development of a number of transmission, channel assignment

and spatial techniques; time division multiple access (TDMA), code division

multiple access (CDMA), orthogonal frequency division multiplexing (OFDM),

other multi-carrier systems, beamforming and space time coding. Wireless radio

channels create severe challenges such as path loss, shadowing, multipath fading,

dispersion and interference as a medium for reliable high speed communication.

Stated techniques can be chosen to address these kind of physical properties of

wireless channels. As a result, advanced receiver signal processing techniques for

channel modeling are required in order to take advantage of these transmission

techniques, to reduce the deteriorations of the wireless channel by exploiting the

diversities of the wireless channel.
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In the following sections, we will briefly review the main characteristics of

mobile radio propagation and multipath wireless channels.

2.1 Mobile Wireless Propagation

Since most of the wireless systems operate in urban areas, typically there is no

direct line of sight (LOS) between the transmitter and the receiver. Transmitted

radio signals propagating through the channel arrives at the receiver along a

number of different paths. This phenomenon is called as multipath propagation.

As illustrated in Fig. 2.1, multipaths arise from reflection, scattering, refraction

and diffraction of radiated wave off the objects in the environment [1], [71]. The

received signal is much weaker than the transmitted one due to channel losses.

Propagation models can be considered in two categories: large-scale (or path loss)

propagation models and small-scale (or fading) propagation models. Models that

predict the mean signal strength between a transmitter-receiver separation are

called the large-scale. These kind of models characterize signal strength over

large transmitter-receiver separations. Differently, models that characterize the

rapid fluctuations of the received signal strength over short travel distances such

as a few wavelengths are called small-scale fading. To illustrate the effect of large

scale and small scale fading on the received power, a measurement obtained in

an indoor radio channel communication system is shown in Fig. 2.2. When the

mobile receiver moves, signal fluctuates rapidly (small-scale fading). However,

average signal changes gradually (large-scale fading) with distance. In this thesis,

we will focus on the issues related with the small-scale fading.

Small-scale fading is created by constructive and destructive interference of

the multiple signal paths between the transmitter and receiver. Signals arriving

from different multipaths are combined at the receiver. It has been observed that

the combined signals fluctuate in amplitude and phase. This phenomenon can
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Figure 2.1: Multipath environment. Reflected, scattered, diffracted and line of
sight multipath components.

Figure 2.2: Large-scale and small-scale fading for an indoor communication sys-
tem. Rapid signal fades are small-scale fading. Local average signal changes are
large-scale fading [1].
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Figure 2.3: Two echoes of a transmitted signal are constructively and destruc-
tively added.

be illustrated with two different scenarios. Consider a static multipath situation

where a narrowband signal is transmitted and several echoes impinge on the re-

ceiver from two different paths as in Fig. 2.3. Superposition of the components

can either be constructive (case-1) or destructive (case-2) depending on the rel-

ative phases between the signals arriving from different multipaths. Secondly, in

a dynamic multipath situation where relative motion between mobile and base

station results in random frequency modulation, spatial location of paths con-

tinuously change and therefore relative phase shifts change. As shown in Fig.

2.4, the received signal amplitude changes in the case of two paths whose phases

change with the position of the receiver.

Related with relative motion between the base station and mobile, the rate

of change of phase is apparent as Doppler shift. This very important physical

phenomenon can be summarized as follows. With a constant velocity v, a mobile

is moving along a path and receiving signal from the base station as illustrated

in Fig. 2.5. The phase change in the received signal due to the path length
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Figure 2.4: Envelope fading when two multipath components added with differ-
ent phases.

difference can be written as

∆ψ =
2πv∆t cosθ

λ
, (2.1)

and the corresponding Doppler shift in the frequency is

ν =
∆ψ

2π∆t
=
v cosθ

λ
. (2.2)

With this equation, we have related Doppler shift with the mobile velocity and

the angle between mobile direction and the arriving signal direction.

2.2 Characteristics of Mobile Multipath Com-

munication Channel parameters

Power delay profiles plays a crucial role in modeling mobile multipath channel.

These profiles are obtained to find the average small-scale power delay profile in a

local area by averaging instantaneous power delay profile measurements. In 450
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source

Figure 2.5: Doppler effect illustration. Far-field signal impinges on the antenna
of a moving car and reflects off.

MHz - 6 GHz range channel measurements, based on time resolution and type of

the channel, it is generally assumed that sampling at spatial separations of λ/4

and over mobile receiver movements smaller than 6 m for outdoor channels and

smaller than 2 m for indoor channels. Using such a dense sampling compensates

the bias, which is due to large-scale averaging, in the resulting statistics of small-

scale. Typical power delay profiles obtained from indoor and outdoor channels

are seen in Fig. 2.6, 2.7.

2.2.1 The Delay Spread

In a multipath channel, multiple delayed and scaled echoes of the transmitted sig-

nal arrive at the receiver. Typically, a double negative exponential model, where

the delay separation between multipaths increases exponentially with path delay

and the multipath amplitudes decrease exponentially with delay, shows a rea-

sonable agreement with the observed data [72], [73], [74]. The delay spread is
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Figure 2.6: Multipath power delay profile recorded from a 900 MHz cellular
system. [2].

Figure 2.7: Multipath power delay profile recorded from a 4 GHz indoor envi-
ronment [3].
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defined as the range of delays of discernible multipath components. Power delay

profiles provide us information about time dispersive structure of the multipath

channels. The mean excess delay (τ̄) and rms delay spreads (στ ) are two impor-

tant multipath channel parameters that quantify the time dispersive properties

of wideband channels. The mean excess delay is defined as:

τ̄ =

∑
i P (τi)τi∑
i P (τi)

, (2.3)

and the rms delay spread is defined as

στ =

√∑
i P (τi)τ

2
i∑

i P (τi)
− (τ̄)2

=

√
τ̄ 2 − (τ̄)2 , (2.4)

where P is the relative power level and τi is the measured relative delay with

respect to initial time τ0 [1]. In outdoor multipath communication channels,

typical rms delay spread values are on the order of microseconds and in indoor

channels it is on the order of nanoseconds. Another multipath channel parameter

is the maximum excess delay (Q dB), which is the time delay during maximum

multipath energy falls Q dB. For example, in Fig. 2.8, after 84 ns, which is here

maximum excess delay (10 dB), maximum power level at 0 dB is decreased to−10

dB. The maximum excess delay is sometimes called as the excess delay spread

of a power delay profile and defines the time duration of the multipath which

is above a specific threshold. In Fig. 2.8, determination of reviewed multipath

channel parameters are presented for an indoor power delay profile.

2.2.2 The Coherence Bandwidth

Similar to the delay spread parameters, that are used to characterize the multi-

path channel in time, coherence bandwidth (BWcoh) is used to characterize the

multipath channel in the frequency domain. Coherence bandwidth can be de-

fined as the range of frequencies in which channel is flat. For example, assume
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Figure 2.8: Indoor power delay profile: rms delay spread, mean excess delay,
maximum excess delay (10dB) and threshold level is seen. [1].

that there exist two multipath components having frequency separation which is

greater than BWcoh. Then, these two components is expected to be affected very

differently by the channel. The coherence bandwidth and the rms delay spread

are inversely proportional to each other.

BWcoh ≈
1

στ
. (2.5)

This is a very rough approximation and exact relation between these two param-

eters is a function of the multipath channel structure and the transmitted signals.

Detailed analysis and extensive simulations are needed to understand the effect

of the time varying multipath channel on application specific transmitted signal.

Therefore, in order to have high data rate wireless communications with specific

modems, very accurate multipath channel models are required [75], [76].
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2.2.3 Doppler Spread

Time dispersive structure of the multipath channel is expressed with the pre-

viously described parameters delay spread and coherence bandwidth. In this

section we will describe Doppler spread (Bd) and coherence time (Tcoh) that are

used to express the time varying, which is caused by movement of scatters, re-

flectors and relative motion between the base station and mobile, structure of

the multipath channels. Doppler spread is defined as the spectral broadening

caused by the Doppler shift. Coherence time, which is inversely proportional

to maximum Doppler shift, is used to describe the time varying structure of

the frequency dispersion in the multipath channel. Relation between these two

parameters is:

Tcoh ≈
1

νmax
. (2.6)

In other words, the coherence time is the time duration over which the impulse

response of the channel is approximately the same. Therefore, it can be said

that two multipath components are affected differently by the channel if time

difference of arrivals are larger than Tcoh.

2.3 The Small Scale Fading Categories

In this section, we will summarize the types of small scale fading due to multi-

path delay spread and Doppler spread. Time dispersion causes flat or frequency

selective fading. Frequency dispersion causes fast or slow fading.
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2.3.1 Flat Fading

If the channel has a constant gain over a bandwidth (BWch) that is larger than

the trasmitted signal bandwidth (BWs), then the received signal encounter ap-

proximately the same amount of fading over the transmission bandwidth. This

type of fading is called as flat fading. Flat fading channels are also known as

the narrowband channels. In these channels, reciprocal of the transmitted signal

bandwidth is much larger than the rms delay spread,

1

BWs

≫ στ . (2.7)

This means that, all the multipath echoes fall into a single delay bin. These

channels may result in deep fades.

2.3.2 Frequency Selective Fading

If the channel has a constant gain over a bandwidth (BWch) that is smaller than

the transmitted signal bandwidth (BWs), then the received signal encounter fad-

ing that varies across frequency, called as frequency selective fading. Frequency

selective fading channels are also known as the wideband channels. In these

channels, reciprocal of the transmitted signal bandwidth is smaller than the rms

delay spread:

1

BWs

< στ . (2.8)

In frequency selective fading channels, channel can be considered as a linear filter

and each multipath component should be modeled. Therefore, modeling of these

channels are more challenging than the flat fading channels.
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2.3.3 The Fast Fading

If the channel impulse response is rapidly changing within a symbol duration Ts

(i.e. reciprocal of the BWs), then the received signal undergoes what is called

as the fast fading. With increasing Doppler spread relative to the transmitted

signal bandwidth, the distortion on the received signal increases. The fast fading

conditions are

BWs < BWν (2.9)

Ts > Tcoh . (2.10)

Fast fading is directly related with the rate of change of the multipath channel

due to relative motion.

2.3.4 The Slow Fading

When the channel response changes much slower than the baseband transmitted

signal, then this channel can be called as the slow fading channel. At that

time, the channel can be assumed as almost static over the duration of several

symbol durations. Doppler spread is much smaller than the transmitted signal

bandwidth. Slow fading conditions are

BWs ≫ BWν (2.11)

Ts ≪ Tcoh . (2.12)

To summarize, both the fast and the slow fading are only related with the

relationship between the time rate of change in the multipath channel and the

transmitted signal. These two terms do not depend on the various losses in the

channel.

20



2.4 Physical Multipath Channel Model

Multipath channels can be modeled as a time varying linear filter. Relative

motion of the transmitter and the receiver is the major reason for the time

variation. However, even if the transmitter and receiver are stationary, there is

a slow variation in the communication channel due to propagation environment.

The received signal in the absence of noise can be modeled as:

x(t) =

∫ τmax

0

h(t, τ)s(t− τ)dτ (2.13)

=

∫
H(t, f)S(f)ej2πftdf (2.14)

=

∫ τmax

0

∫ νmax

−νmax

C(τ, ν)s(t− τ)ej2πνtdνdτ , (2.15)

where x(t) and s(t) represent the received and transmitted signals respectively,

and S(f) is the Fourier transform of s(t). The multipath channel is character-

ized by the time-varying impulse response, h(t, τ), or the time-varying frequency

response, H(t, f):

H(t, f) =

∫
h(t, τ)e−j2πfτdτ (2.16)

=
d∑
i=1

ζie
−j2πfτiej2πνit , (2.17)

or the delay-Doppler spreading function, C(τ, ν) [77]. Delay-Doppler spreading

function can be written as

C(τ, ν) =
d∑
i=1

ζiδ(τ − τi)δ(ν − νi). (2.18)

where d is the number of multipath components, ζi ∈ C, νi ∈ [−νmax, νmax], and

τi ∈ [0, τmax] are the complex path gain, the delay and the Doppler shift asso-

ciated with the ith multipath component, respectively. Therefore, in a discrete

physical multipath channel model, the received signal is modeled as:

x(t) =
d∑
i=1

ζis(t− τi)e
j2πνit . (2.19)
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At this point, it is very informative to focus on the discretization of the

multipath channel in delay. Discrete delay intervals are called the excess delay

bins and can be denoted as ∆τ . For instance, the first multipath component has

a delay of τ1 = ∆τ and the ith multipath component has a delay of τi = i∆τ , for

i = 0, ..., N − 1, where N is the total number of possible excess delay bins. All

the multipath components that are received within the ith bin are considered to

have a single resolvable multipath component having delay τi.

There may be several multipath components arriving within an excess delay

bin and combining to yield the instantaneous amplitude and phase of a single

modeled multipath signal, depending on the channel delay properties and ∆τ

choice. This situation results in fading of the multipath amplitude within an

excess delay bin. On the other hand, if there is only one multipath component

arriving within an excess delay bin, then the amplitude for that particular time

delay will not fade significantly [1]. A receiver with bandwidth BWrx cannot

distinguish between echoes arriving in τi and τi + ∆τ , if ∆τ ≪ 1/BWrx. It

is sufficient to consider this condition with ∆τ = BWrx, which corresponds to

time-delay resolution, for many qualitative considerations [71]. Here, maximum

excess delay of the multipath channel is taken as N∆τ , which is larger than the

expected delay spread of the channel. In the following, we will further generalize

the presented channel model to include the effects of DOA of each multipath

component using multiple antennas at the receiver.

Antenna arrays consists of a set of antennas that are spatially distributed at

known positions with reference to a common reference point [78]. The propa-

gating signals are simultaneously sampled and collected by the receiver at each

antenna. The transmitted waveforms undergo some modifications, depending on

the path of propagation and the antenna characteristics.

Usually, the direction and the speed of the propagation are defined by a vector

α in (2.20) which is called the slowness vector. Using the reference coordinate
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Figure 2.9: Direction of the signal and reference coordinate system.

system in Fig. 2.9, the slowness vector is

α =
1

c
[cosϕ cos θ ; cosϕ sin θ ; sinϕ] , (2.20)

where θ is the azimuth angle, ϕ is the elevation angle and c is the speed of light.

In Fig. 2.10, a circular array geometry is shown. Position of each antenna can

be represented by a vector as:

rm = [xm ; ym ; zm] (2.21)

= [rm sin(θm) ; rm cos(θm) ; 0] , (2.22)

and the propagation direction of each impinging signal is represented by unit

vector

αi =
1

c
[xi ; yi ; zi] i = 1, ..., d . (2.23)

By using the antenna coordinate system and the propagation directions of each

multipath component, the relative phase of the mth sensor due to ith impinging

signal with respect to the origin of the sensor array can be written in cartesian
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Figure 2.10: d multipath components impinge onto an uniformly spaced circular
antenna array and multipath enviroment.

coordinates as:

ξm,i(θ, ϕ) = αi · rm

=
1

c


cos(θi) cos(ϕi)

sin(θi) cos(ϕi)

sin(ϕi)

 ·


rm cos(θm)

rm sin(θm)

0


=

1

c

[
rm cos(θi) cos(ϕi) cos(θm) + rm sin(θi) cos(ϕi) sin(θm)

]
. (2.24)

Without the carrier term exp(jwct), where wc = 2πfc, the output is modeled as:

xm(t) = s(t)e−jξm,i(θ,ϕ) (2.25)

= s(t)am(θi, ϕi) . (2.26)

By using this formulation, the time-varying frequency response given in (2.16)

can be expressed as:

H(t, f) =
d∑
i=1

ζia(θi, ϕi)e
−j2πfτiej2πνit . (2.27)
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By further combining the pure multipath model given in (2.19) and the spatial

aspects of the antenna array, we get the following antenna array output signal:

x(t) =
d∑
i=1

ζia(θi, ϕi)s(t− τi)e
j2πνit , (2.28)

where:

• x(t) = [x1(t), ..., xM(t)]T is the array output and [.]T is the transpose oper-

ator,

• d: number of multipaths,

• a(θ, ϕ) = [a1(θ, ϕ), ..., aM(θ, ϕ)]T is the M × 1 steering vector of the array

along the direction of (θ, ϕ),

• θi: azimuth angle of the ith path,

• ϕi: elevation angle of the ith path,

• ζi: complex scalar, containing the attenuation and phase terms of the ith

path,

• τi: time delay of the ith path,

• νi: Doppler shift of the i
th path.

Eq. (2.28) can be written in a more compact form by defining a matrix and a

vector of signal waveforms as:

x(t) = D(t,φ)ζ , (2.29)

where

D(t,φ) = [a(θi, ϕi)s(t− τi)e
j2πνit, ..., a(θd, ϕd)s(t− τd)e

j2πνdt] (2.30)

is an M × d matrix,

ζ = [ζi, ..., ζd]
T (2.31)
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is a d× 1 vector containing the attenuation and phase terms of individual paths

and channel parameters are collected in the vector φ = [φ1, ...,φd], and φi =

[τi, νi, θi, ϕi].

Moreover in the presence of noise we reach the well-known representation for

the array input-output relation as:

x(t) = D(t,φ)ζ + n(t) , (2.32)

where n(t) = [n1(t), ..., nM(t)]T is spatially and temporally white circularly sym-

metric Gaussian noise with variance σ2.

Lastly, in the end of this section we provide a performance criteria to be

evaluated by the parameter estimation techniques used and proposed throughout

the thesis. An important performance criterion in multipath channel parameter

estimation is the effect of the estimated channel parameters to the performance

of the communication receiver system where the estimated channel parameters

can be used to form the following decision signal [26]:

ρ̂ =

∫ T

0

s∗(t)

(
M∑
m=1

d∑
i=1

ζ̂∗i xm(t+ τ̂i)e
−j2πν̂itej2πνcξm,i(θ̂i,ϕ̂i)

)
dt . (2.33)

This decision signal is very similar to the decision signal generated by a rake

receiver [79]. Here we employed a raking strategy in both delay and Doppler

as well as between various DOAs of the multipath components. The estimated

SNR of the decision signal given below serves as a performance criterion between

alternative techniques:

ŜNR =
|ρ̂|2

EsMσ2
∑d

i=1 |ζ̂i|2
(2.34)

where Es is the transmitted signal energy.
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2.5 Sparse Multipath Channel Model

In this section, we will present a virtual channel model for doubly selective chan-

nels (BW τmax ≥ 1, T νmax ≥ 1) that exploits the relation between the multi-

path components and the signal space. Canonical model, or also known as virtual

channel model, formulize a lower dimensional approximation of the physical mul-

tipath channel by uniformly sampling of the delay-Doppler-spatial domain [54],

[80]. This alternative modeling exploits the relation between the clustering of

multipath components within delay-Doppler-spatial domain and sparsity of de-

grees of freedom in the multipath channel and prepares the underlying structure

to be able to make use of the benefits of the CS theory.

Recent multipath channel measurement results show that multipath compo-

nents are distributed in as clusters within a defined channel spread and impinge

onto a receiver in clusters [17],[81]. In a scattering environment, clusters of mul-

tipath components occur due to the large scale scatters such as buildings and

hills. Multipath components within a cluster occur due to small scale scatters

of the large scale scatters such as windows of buildings. Moreover, most of the

practical multipath channels such as ultra-wideband channels [82], high defini-

tion digital television channels [83], [84] underwater acoustic channels [85], [86]

and broadband wireless communication channels [87] exhibit a clustered sparse

structure. There exist various efforts in the literature to clarify the underlying

theory of clustered sparsity. Therefore, sparse nature of the multipath channels

should be exploited in order to accurately estimate the channel parameters [53].

First of all, for the sake of simplicity and to be able to introduce the main idea

clearly, we will provide formulation of the virtual channel model in delay-Doppler

domain. Extension to spatial domain is straightforward and can be found in the

references [88], [55]. However, we will shortly mention the spatial domain in

virtual channel model by the end of this section. Doubly selective multipath
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Figure 2.11: An illusration of clustering and virtual channel representation on
delay Doppler domain. There exists three clusters of multipath components.
Delay resolution is ∆τ . Doppler resolution is ∆ν

channels can be classified as either rich or sparse, depending on the separation

between different multipath component clusters. The separations are smaller

than ∆τ = 1/BW and ∆ν = 1/T in delay Doppler domain for rich multipath

component channels. However in sparse multipath component channels, The

separations are larger than ∆τ = 1/BW and ∆ν = 1/T . A virtual multipath

channel representation is presented in Fig. 2.11, [89]. In this figure, each small

circle corresponds to a multipath component. As can be seen, each delay Doppler

bin is of size ∆τ × ∆ν and very few of them has a multipath component and,

hence, multipath components are sparse in delay-Doppler domain.

Although, physical discrete channel model given in (2.19) is a realistic model,

analysis and estimation steps are difficult, due to the presence of large number

of parameters, ζi, τi, νi. In situations where we have finite signaling duration and

channel bandwidth, discrete multipath model can be approximated by a linear

one known as virtual channel model [54]. By uniformly sampling the physical

multipath environment in both delay with ∆τ = 1/BW and in Doppler with
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∆ν = 1/T , a lower dimensional approximation of the discrete multipath model

can be obtained. The corresponding discrete model is:

H(t, f) =
K−1∑
k=0

P∑
p=−P

H(k, p)ej2π
p
T
te−j2π

k
BW

f . (2.35)

The virtual channel coefficients can be related to the continuous channel model

as:

H(k, p) =
1

T BW

∫ T

0

∫ BW/2

−BW/2
H(t, f)ej2π

p
T
te−j2π

k
BW

fdt df . (2.36)

Number of resolvable delay and Doppler cells in each dimension are:

K =
⌈τmax
∆τ

⌉
+ 1 = ⌈BWτmax⌉+ 1 (2.37)

P =
⌈νmax
2∆ν

⌉
+ 1 = ⌈Tνmax/2⌉+ 1 . (2.38)

Hence, in the simplified model, the channel is characterized with the virtual

channel coefficients H(k, p), K and P only. Physical and virtual channel models

can be related with each other by substituting (2.16) into (2.36) as [90]:

H(k, p) =
d∑
i=1

ζie
−jπ(p−νiT )sinc(p− νiT )sinc(k − τiBW ) (2.39)

≈
∑

i∈Sτ,k
∩
Sν,p

ζi , (2.40)

where Sτ,k
∩
Sν,p is the set of all multipath components whose delays and

Doppler’s are inside of a delay-Doppler resolution cell of size ∆τ × ∆ν and

centered on the kth virtual delay ( k
BW

) and pth virtual Doppler shift ( p
T
). Set

Sτ,k
∩
Sν,p is defined as:

Sτ,k =

{
i :

∣∣∣∣τi − k

BW

∣∣∣∣ < 1

2BW

}
(2.41)

Sν,p =

{
i :

∣∣∣νi − p

T

∣∣∣ < 1

2T

}
. (2.42)
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By using the given sampled virtual channel representation, approximation of

(2.19) can be written as:

x(t) =
d∑
i=1

ζis(t− τi)e
j2πνit (2.43)

≈
K−1∑
k=0

P∑
p=−P

H(k, p)s

(
t− k

BW

)
ej2π

p
T
t. (2.44)

Therefore, we can say that the virtual model given above approximately repre-

sents the physical discrete doubly selective multipath channel in terms of an Nh

dimensional parameter vector containing the virtual channel coefficients H(k, p).

Nh is defined as:

Nh = K (2P + 1) (2.45)

= (2 ⌈Tνmax/2⌉+ 1)(⌈BWτmax⌉+ 1) (2.46)

≈ τmaxνmaxTBW (2.47)

≈ τmaxνmaxNb . (2.48)

Finally, if we introduce the spatial dimension to the model, the virtual mul-

tipath channel model approximation of (2.27) can be extended as:

H(t, f) ≈
Me∑
me=1

Ma∑
ma=1

K−1∑
k=0

P∑
p=−P

H(ma,me, k, p)a

(
me

Me

,
ma

Ma

)
· ej2π

p
T
te−j2π

k
BW

f (2.49)

H(ma,me, k, p) =
1

MeMaTBW

∫ T

0

∫ BW/2

−BW/2
a

(
me

Me

,
ma

Ma

)H
· H(t, f)ej2π

p
T
te−j2π

k
BW

fdt df . (2.50)

Virtual path partitioning is presented in Fig. 2.12. For the sake of clarity, we

will focus on only virtual model in delay-Doppler domain in Section 5.
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Figure 2.12: An illusration of clustering and virtual channel representation on
delay-Doppler and spatial domain. Delay resolution is ∆τ . Doppler resolution is
∆ν. Elevation and azimuth resolution are ∆ϕ and ∆θ, respectively.
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2.6 Maximum-Likelihood (ML) Based Multi-

path Channel Estimation

Maximum likelihood (ML) estimation is a commonly used approach to channel

parameter estimation. Assuming that the noise on each pulse transmission are

independent, the probability density function of the observations can be obtained

as:

P [x(t1) ... x(tN)] =
N∏
k=1

1

| πσ2I |
e−[∥e(tk)∥2/σ2] , (2.51)

where | · | represents the determinant, ∥ · ∥ represents the norm, and

e(tk) = x(tk)−
d∑
i=1

a(θi, ϕi)ζis(tk − τi)e
j2πνitk

= x(tk)−D(tk,φ)ζ . (2.52)

The ML estimates that maximize the likelihood function can be written as

the maximum of the log-likelihood function:

[
φ̂, ζ̂

]
= arg max

φ,ζ

{
−NMlogπσ2 − 1

σ2

N∑
k=1

∥e(tk)∥2
}
, (2.53)

or equivalently [
φ̂, ζ̂

]
= arg min

φ,ζ

{
N∑

k=1

∥e(tk)∥2
}
. (2.54)

Given the path parameters φ, path scaling parameters ζ can be obtained in

closed form as:

ζ̂ =
(
D(tk,φ)

HD(tk,φ)
)−1

D(tk,φ)
Hx(tk) , (2.55)

where (·)H denotes conjugate transpose. Therefore, by substituting (2.55) into

(2.52), the ML optimization can be reduced to the following optimization problem

over the path parameters, φ, only:

[φ̂] = arg min
φ

{
N∑

k=1

∥x(tk)−PD(tk,φ)x(tk)∥2
}
, (2.56)
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where PD(tk,φ) is the projection operator onto the space spanned by the columns

of D(tk,φ):

PD(tk,φ) = D(tk,φ)
(
D(tk,φ)

HD(tk,φ)
)−1

D(tk,φ)
H . (2.57)

A more compact form of (2.56) can be given as:

[φ̂] = arg max
φ

{
N∑

k=1

∥PD(tk,φ)x(tk)∥2
}
. (2.58)

Therefore, one needs to find the global maximum of this 4× d dimensional opti-

mization problem to identify all 4 parameters for each path. For large number of

multipaths that are common to urban and indoor communication, computational

complexity of direct maximization becomes prohibitively high.

One of the most popular approach to obtain more efficient ML estimates is

the EM algorithm [14]. EM is an iterative method for solving the ML estimation

problem in situations where a part of the observations are missing. In estimation

of superimposed signals in white Gaussian noise, EM algorithm has been used

[91]. To further improve the speed of convergence of the EM approach, SAGE

algorithm has been proposed [15]. Each iteration of the algorithm contain EM

iteration phase where some of the parameters are fixed at the previous iteration

values, while other parameters are re-estimated. Instead of simultaneous param-

eter estimation, parameters are estimated sequentially. In order to reduce the

complexity of the algorithm, suboptimal but faster one dimensional optimization

procedures along each parameter are used. In Table 2.1, the basic form of the

SAGE algorithm is presented [19].

Formulization of the SAGE algorithm relies on two crucial points of unob-

servable (complete) and observable (incomplete) data. In Fig. 2.13, relation

between observable and unobservable data is seen. Considering the model given

in (2.32), complete data can be defined as follows:

zi(t) = ζia(θi, ϕi)s(t− τi)e
j2πνit + ni(t)

= ui(t) + ni(t) i = 1, .., i, ..., d . (2.59)
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Table 2.1: Basic SAGE algorithm

Initialize the algorithm.

for j = 1 ; j ≤ max. # iterations ; j = j + 1
for i = 1 ; i ≤ d ; i++
- Expectation step: estimate the complete (unobservable)
data of ith signal path.

- Maximization step: estimate each parameter of ith

signal path sequentially by maximizing a properly chosen
cost function.

- Create a copy of the ith signal path with estimated
parameters.

- Subtract the copy signal from each antenna output.
end

end

The received signal called as incomplete data and it is related to complete data

by

x(t) =
d∑
i=1

zi(t) . (2.60)

The SAGE algorithm can be divided into two parts namely; expectation and

maximization phases. In the expectation phase, complete data can be formed

as:

ẑi(t; η) = x(t)−
d∑

γ=1,γ ̸=i

û(t;φi(η)) (2.61)

where η is the algorithm iteration index. In the first iteration, η = 1, ẑi(t; η)

is initialized as ẑi(t; η) = x(t). Once the complete information is formed, the

maximization phase takes place to yield a new set of parameter estimates for

each multipath component by using the following equations:

τ̂i(η) = arg max
τ

{∣∣∣gi(τ, θ̂(η − 1), ϕ̂(η − 1), ν̂(η − 1); ẑi(t; η − 1))
∣∣∣}
(2.62)

θ̂i(η), ϕ̂i(η) = arg max
θ,ϕ

{|gi(τ̂(η), θ, ϕ, ν̂(η − 1); ẑi(t; η − 1))|} (2.63)

ν̂i(η) = arg max
ν

{∣∣∣gi(τ̂(η), θ̂(η), ϕ̂(η), ν; ẑi(t; η − 1))
∣∣∣} (2.64)

ζ̂i(η) =
gi(τ̂(η), θ̂(η), ϕ̂(η), ν̂(η); ẑi(t; η − 1))

s(t)s(t)H∥a(θ̂(η), ϕ̂(η))∥2
. (2.65)

34



path-1

path-i

path-d

+

+

+

+

Figure 2.13: Relation between observable and unobservable data.

In these equations, gi(τ, θ, ϕ, ν; zi(t)) is defined as:

gi(τ, θ, ϕ, ν; zi(t)) ,
M∑
m=1

∫ ∞

−∞
sH(t− τ)zm,i(t)e

−j2πνteξm(θ,ϕ)dt . (2.66)

There are various methods to initialize the algorithm. One can use MUSIC

algorithm to provide initial time-delay values and then for the remaining signal

parameters initialization iterations of the SAGE can be used. In this paper, a

different initialization procedure is preferred [19]. Since, initially, phase of the

complex amplitudes ζmi
are not known, time-delays and DOAs are estimated in-

coherently. For this purpose, in the initialization part, maximization procedures

used for time-delay and DOA estimations given in (2.62) and (2.63) are changed

with the equations below.

τ̂i(η) = arg max
τ

{
M∑
m=1

∣∣∣∣∫ ∞

−∞
sH(t− τ)ẑm,i(t, 0)dt

∣∣∣∣2
}

(2.67)

θ̂i(η), ϕ̂i(η) = arg max
θ,ϕ

{
M∑
m=1

∣∣∣∣∫ ∞

−∞
sH(t− τ)ẑm,i(t, 0)e

jξm,i(θ,ϕ)dt

∣∣∣∣2
}
(2.68)

As seen from the equations above, signal estimates for the multipaths with

initialized parameters are subtracted from the observed data x(t). Parameter

update procedure is continued until there is no considerable improvement in the

sense of rMSE between consecutive iterations.
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2.7 Multipath High Frequency (HF) Channel

Modeling Using Swarm Intelligence

In this section, a blind source estimation technique called multipath separation-

direction of arrival (MS-DOA) is combined with genetic algorithm to estimate

DOAs for signals incoming from various ionospheric multipaths [36]. The signals

at the output of the reference antenna can also be identified with high accu-

racy. In MS-DOA, both the array output vector and incoming signal vector are

expanded in terms of a basis vector set. A linear equation is formed using the

coefficients of the basis vector for the array output vector and the incoming sig-

nal vector and the array manifold. The DOAs in elevation and azimuth which

maximize the sum of the magnitude squares of the projection of the signal co-

efficients on the range space of the array manifold are the required separation

angles. Once the array manifold is estimated then the incoming signals can also

be determined using the basis vectors and signal coefficients. When there are

more than one mode impinging on the array or when the region of interest is

not restricted, the search for the maximizer of the projections with brute force

requires a time interval that inhibits the use of MS-DOA for online signal and

angle estimation. Therefore, in this study, we utilize GA as an alternative search

routine that can operate online for multiple direction of arrival estimation. In

the following, we will briefly present MS-DOA technique with GA and provide

some simulation results.

By omitting the delay and Doppler parameters, the model given in (2.28) can

also be written as:

X = BAT , (2.69)

where

X = [x1 . . .xm . . .xM ] , (2.70)
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B = [b1 . . . bi . . . bd] , (2.71)

and A is the array manifold:

A = [a(θ1, ϕ1) . . .a(θd, ϕd)] . (2.72)

Since xm’s are linear combinations of bi’s, the rank of X can be at most d.

This implies that d basis vectors are necessary and sufficient to represent the

measurement vector. In determining the basis that spans the column space,

singular value decomposition (SVD) can be used. The number of impinging waves

on the receiving array can be estimated as the number of significant singular

values in Σ of the following decomposition:

X = UΣV H , (2.73)

where the superscript H denotes the Hermitian operator throughout the text

and

U = [u1 . . .um . . .uM ] , (2.74)

and

V = [v1 . . .vm . . .vM ] , (2.75)

and Σ is the diagonal matrix containing singular values. An effective set of basis

vectors can be chosen corresponding to the significant singular values as

Ueff = [u1 . . .ui . . .ud] , (2.76)

and

Veff = [v1 . . .vi . . .vd] . (2.77)

Then X can be written as

X = [u1 . . .ui . . .ud][X1 . . .Xi . . .Xd]
T , (2.78)
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where

[X1 . . . Xi . . . Xd]
T =


σ1 0 · · · 0

0 σ2 · · · 0

...
...

. . .
...

0 0 · · · σd


︸ ︷︷ ︸

Σeff

Veff
H , (2.79)

and Σeff denotes the singular value matrix which holds the d most significant

singular values. By using above derivations the linear system of equations can

be rewritten as: 
A 0 · · · 0

0 A · · · 0

...
...

...
...

0 0 · · · A


︸ ︷︷ ︸

Ag


B1

B2

...

Bd


︸ ︷︷ ︸

bg

=


X1

X2

...

Xd


︸ ︷︷ ︸

xg

(2.80)

For the optimum solution of the above set of equations, the following least squares

cost function is defined as

J(a1; . . . ad;bg) = ||Agbg − xg||2 (2.81)

where ||.|| denotes the l2 norm [92]. By using (2.80), this cost function can be

rewritten as

J(a1; . . . ad;bg) =
d∑
i=1

||ABi −Xi||2 (2.82)

We investigate the values ai and bg which will minimize J . Because of the

orthogonality property of the least squares cost function, the individual Ji’s are

minimized when the projection of Xi’s onto the range space of A are maximized.

The projections are defined as

Pi(ai) = A(AHA)−1AHXi (2.83)

where 1 ≤ i ≤ d. Therefore, the optimal solution can be obtained as the maxi-

mizer of the following function M:

M(a1; . . . ; ad) =
d∑
i=1

||Pi||2. (2.84)
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Once the DOAs are estimated as the maximizer of M, then Bi’s can be obtained

as

Bi = (AH(ã1; . . . ; ãd)A(ã1; . . . ; ãd))
−1AH(ã1; . . . ; ãd)Xi . (2.85)

By using Bi’s, B can easily be obtained. Thus, with the MS-DOA algorithm, not

only the DOAs of the incoming signals are estimated but also the incoming signals

themselves at the output of the reference antennas are estimated. The search for

the maximizers can be performed either by brute force (optimum solution but

has higher computational time) or by a sub-optimum but fast nonlinear search

algorithm such as genetic search as discussed in the next section.

2.7.1 Simulation Results on Real Ionospheric Data

In this section, we will provide the performances of plain MUSIC and MS-DOA

with GA on real ionospheric data obtained from a high latitude path. The data

set is provided by Dr. E.M. Warrington from University of Leicester, UK. The

HF transmitter is located at Uppsala, Sweden and the receiver array is at Kiruna,

Sweden. The receiver array is formed of 6 antennas, distributed inhomogeneously

in a circular array. Out of this set of 6 antennas, only 5 antennas are calibrated

and used in the DF problem. The transmitted signals are Barker-13 coded BPSK

pulses modulated at 1667 baud with a repetition rate of 55 coded pulses per

second. Signal duration is 2 s. The carrier frequency is changed every 30 s. The

frequencies are repeated every 3 minutes. The details of the transmitted signal

are provided in [93] and the receiver array is given [94]. Due to the structure of

the HF link, only the signals at 4.63 MHz and 6.95 MHz proved to be useful in the

analysis. The antenna output signals are normalized with respect to their l2 norm

before they are introduced to the DF algorithms. The estimates of arrival angles

for the test cases for 4.636001 MHz between 23:03:19 and 23:24:19 are provided

in Table 2.2 on May 2, 2003. Here, the numbers denote the hour, the minute

and the seconds, respectively. On May 2, 2003, at 2300 UT, sunspot number was
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Table 2.2: The estimation of arrival angles for elevation and azimuth in degrees
for 4.636001 MHz on May 02, 2003 between 23:03:19 to 23:24:19.

MUSIC MS-DOA with GA
Path1 Path1 Path2

time elevation azimuth elevation azimuth elevation azimuth
23:03:19 25.7 194.8 29.5 196.5 35.9 195.7
23:06:19 20 117 28.9 194 34.7 193.6
23:09:19 25.1 195.6 27.9 196 33 194.7
23:12:19 32.9 196.3 26.3 196 32.4 195.6
23:15:19 42.9 197.4 26.5 196.8 34.8 195.2
23:18:19 27.5 195.3 27.5 196.1 33.6 195
23:21:19 30.2 194.8 28.7 195 34.7 194.8
23:24:19 29.3 195.7 28.8 194.8 33.5 194.7
mean 29.2 185.9 28 195.7 34.1 194.9
median 28.4 195.5 28.3 196 34.2 194.9

86, Kp index was 2+, Ap index was 9 and Dst index was -17. The approximate

distance between the Uppsala and Kiruna is 886 km and Uppsala is 1930 from

the local north of Kiruna in the azimuth. The elevation of multipath components

for both frequencies are expected to be between 200 and 400 according to the

results in [93].

The estimates of arrival angles for the test cases for 6.953 MHz between

23:00:49 and 23:24:49 are provided in Table 2.3. Here, the numbers denote the

hour, the minute and the seconds, respectively.

As it might be readily observed from Table 2.2 and Table 2.3, for both fre-

quencies, Plain MUSIC is able to detect only one path, yet for MS-DOA with GA,

two paths are estimated. The estimate of the MUSIC in one path corresponds

to the first path estimated with MS-DOA. The mean and median of the angles

during the estimation interval are also provided in the tables. With MS-DOA

estimates, both the mean and the median are close to each other for all paths

indicating a consistency and robustness in the estimates. When the two paths

estimates are compared, it is also observed that the two paths are very close to

each other in azimuth and they are separated with couple of degrees in elevation.

The mean estimates for the arrival angles are in very well accordance with the
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Table 2.3: The estimation of arrival angles for elevation and azimuth in degrees
for 6.953 MHz on May 02, 2003 between 23:00:49 to 23:24:49.

MUSIC MS-DOA with GA
Path1 Path1 Path2

time elevation azimuth elevation azimuth elevation azimuth
23:00:49 30.8 196 33.4 193.1 36.5 194.8
23:03:49 31.7 196.5 33 193.2 37.1 194.3
23:06:49 31.9 195.7 33.4 194 37.2 195.6
23:09:49 32.6 195.3 33.7 194.2 37.8 195.7
23:12:49 33 195.2 33.3 193.5 37.4 195.3
23:15:49 33.3 197.4 32.6 194.6 36.5 196
23:18:49 32.4 196.1 33.4 194.3 37.9 196.2
23:21:49 32.3 196.3 32.9 194.4 36.7 196.1
23:24:49 32.8 195.8 32.3 194.2 36.3 195.6
mean 32.3 196 33.1 193.9 37 195.5
median 32.4 196 33.3 194.2 37.1 195.6

expected azimuth and elevation angles. The angle spread is larger in MUSIC

than MS-DOA with GA for both frequencies. The estimates are also provided

in Fig. 2.14 for easier viewing. In Figure (2.14a) and (2.14b), the estimates for

the arrival angle in elevation and azimuth, respectively, are provided for the first

path and for the two frequencies. The first path is estimated by both MUSIC

and MS-DOA with GA. In Figure (2.14c) and (2.14d), the elevation and azimuth

estimates for the two frequencies are given for path 2. The second path is only

estimated by MS-DOA with GA. From the analysis of both simulated and ex-

perimental data, it can be observed that MS-DOA with GA provides a powerful

alternative in direction of arrival and multipath separation problems in HF links.
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Figure 2.14: Estimation of arrival angles for MS-DOA with GA and MUSIC for
two frequencies for path-1 a-) elevation b-) azimuth; for path-2 c-) elevation d-)
azimuth.
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Chapter 3

Multipath Channel Identification

in Ambiguity Function Domain

3.1 Introduction

The new generation radio communication systems are faced with the ever in-

creasing demand for higher communication rates. In order to meet this demand,

the communication systems should obtain an accurate model for the communi-

cation channel [95]. For fuller utilization of multipath communication channels,

communication systems utilize antenna arrays and sophisticated signal process-

ing techniques to produce estimates for multipath channel parameters including

direction of arrivals (DOA), time-delays, Doppler shifts and amplitudes.

In wideband communication channels with peak power limitations, typically

coded waveforms with the time-bandwidth products significantly larger than 1

are employed. In these systems pulse compression of the receiver is a necessity to

provide optimal extraction of the transmitted information. In delay only chan-

nels with bandlimited white noise, pulse compression can be achieved by a simple
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matched filter that implements correlation of the incoming signal with the trans-

mitted waveform. However, in the presence of Doppler shifts a single matched

filter cannot provide the optimal performance, rather a bank of matched filters

each matched to a specific Doppler shift should be employed [23], providing indi-

vidual Doppler slices of the CAF between the transmitted and received signals.

Therefore, it is of both theoretical and practical interest to develop array signal

processing techniques where CAF is an integrated component of the processing

chain.

In this chapter, we present a new array signal processing technique to estimate

the DOAs, time delays, Doppler shifts and amplitudes of a known waveform

impinging onto an array of antennas from several distinct paths. The proposed

technique detects the presence of multipath components by integrating CAF of

array outputs, hence, it is called as the cross-ambiguity function direction finding

(CAF-DF). The performance of the CAF-DF technique is compared with those

of space-alternating generalized expectation-maximization (SAGE) and multiple

signal classification (MUSIC) techniques as well as the Cramèr-Rao lower bound.

The CAF-DF technique is found to be superior in terms of root-mean-squared-

error (rMSE) to the SAGE and MUSIC techniques. Moreover, the performance

of the CAF-DF technique is tested on recorded real ionospheric data and is found

to be very effective in resolving multipaths [24], [25], [26], [27], [28], [29].

The outline of this chapter is as follows. Firstly, details and analysis of the

CAF-DF algorithm is presented in section 3.2. The simulation results concerning

the performances of the algorithms on synthetic signals are presented in section

3.3. Lastly, in section 3.4 performance of the proposed algorithm is tested on

real ionospheric data.
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3.2 Channel Modelling in Ambiguity Function

Domain

The cross-ambiguity function domain direction finding (CAF-DF) is an iterative

technique where at each iteration parameters of a single path are estimated.

In the rest of this section, we present the steps of the technique in detail. The

received signals are often modeled as delayed, Doppler-shifted and scaled versions

of the transmitted signal. As it used in radar signal processing, the CAF can

be used in order to estimate the time delay of a Doppler shifted signal for the

received signal xm(t) and the transmitted signal s(t) [23], [96]. Symmetrical

version of the CAF is:

χxm,s
(τ, ν) =

∫ ∞

−∞
xm

(
t+

τ

2

)
s∗
(
t− τ

2

)
e−j2πνt dt . (3.1)

Details and properties of AF is provided in appendix-B. Starting point of the

CAF-DF technique is to estimate the DOA information which is captured in

e−j2πνcξm,i(θi,ϕi). For this purpose, for each antenna output, its corresponding

CAF with the transmitted waveform is computed. Since the antennas in the

array are closely spaced, peak locations of the CAFs will be nearly the same for

each antenna. When the phase of each impinging signal on the array is unknown,

to detect the delay and Doppler coordinates of the path (highest peak point on

the CAF surface), absolute values of CAFs at the output of each antenna is

calculated and incoherently integrated as:

χtotal(τ, ν) =
∣∣χx1,s

(τ, ν)
∣∣+ . . .+

∣∣χxM ,s(τ, ν)
∣∣ . (3.2)

As a result of the incoherent integration, the SNR prior to the peak detection

phase is increased with improved detection of the delay and Doppler coordi-

nates (τ̂i, ν̂i) of the highest peak that exceeds the detection threshold. Note that

the resolution of delay and Doppler in the CAF domain are ∆τ = 1/BW and

∆ν = 1/T , respectively [23]. Here, BW corresponds to the bandwidth and T
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is the duration of s(t). Well known in radar literature [23], in the presence of

single path, the incoherent integration provides considerable improvement. The

incoherent integration based peak detection procedure is illustrated in Figs. 3.1,

3.2, 3.3 by using a fifteen-element circular antenna array output. Fig. 3.1(a)-(d)

are the sample CAF surfaces calculated for four antennas and Fig. 3.2(a), Fig.

3.3(a) are the incoherent integration of fifteen CAF surfaces for path-1 and path-

2, respectively. It is seen from the resultant normalized CAF that the noise level

is suppressed relative to the peak when compared to the individual CAFs, and

paths can be localized. Once the largest peak exceeding the detection threshold

is identified, the following vector Pi is formed from the individual CAF values

at the detected peak location (τ̂i, ν̂i):

Pi =
[
χx1,s(τ̂i, ν̂i), . . . ,χxM ,s(τ̂i, ν̂i)

]T
. (3.3)

The DOA of the detected path can be estimated from the phases of the

elements of Pi. For this purpose the following criterion can be used:

(θ̂i, ϕ̂i) = argmax
θi,ϕi

|Pi
HW(θi, ϕi)|
∥Pi∥

, (3.4)

where W is defined as:

W(θi, ϕi) =
1√
M

[
ejξ1,i(θi,ϕi), . . . , ejξM,i(θi,ϕi)

]T
, (3.5)

which is the vector whose elements are the phases across the receiver antennas

due to a hypothesized path impinging onto the array from (θi, ϕi) direction. Note

that, if there were a single path in the detected delay-Doppler cell, this criterion

would have provided highly accurate estimates. Obtained (θ̂i, ϕ̂i) pair is then

used in the coherent integration process, that will further improve the accuracy

of the obtained delay and Doppler estimates. For the sake of simplicity output

of the mth antenna can be written as:

xm(t) =
d∑
i=1

ši(t)e
−j2πνcξm,i(θi,ϕi) + nm(t) . (3.6)
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Figure 3.1: Calculated CAF surfaces of two signal paths with parameters
τ/∆τ=[1.5,1.5] and ν/∆ν=[1.9,0.7]. (a,b,c,d): CAF surfaces of 4 antennas,
which are selected arbitrarily from 15-element antenna array.

The estimated θ̂i and ϕ̂i enables coherent combination of individual antenna

outputs to obtain xcoh(t) as:

xcoh(t) =
M∑
m=1

xm(t)e
j2πνcξm,i(θ̂i,ϕ̂i) , (3.7)

which can be decomposed into three terms as:

xcoh(t) = Mši(t)

+
M∑
m=1

d∑
i′ ̸=i

ši′ (t)e
−j2πνc(ξ

m,i
′ (θ

i
′ ,ϕ

i
′ )−ξm,i(θ̂i,ϕ̂i))

+
M∑
m=1

nm(t)e
j2πνcξm,i(θ̂i,ϕ̂i) . (3.8)

Here, the first term is the sum of phase corrected versions of the ith signal path at

each antenna, the second term includes the other signal paths in the environment,
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Figure 3.2: Calculated CAF surfaces of two signal paths with parameters
τ/∆τ=[1.5,1.5] and ν/∆ν=[1.9,0.7]. (a): Incoherently integrated CAF surface
of path-1. (b): Coherently integrated CAF surface of path-1.

and the third term is noise. SNR defined at a single antenna is

SNRm =
E[|š(t)|2]
E[|nm(t)|2]

=
Eš

σ2
. (3.9)

Therefore, when multipath components are separated from each other by a

few delay-Doppler resolution cells, the coherent integration, as given in (3.8), of
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Figure 3.3: Calculated CAF surfaces of two signal paths with parameters
τ/∆τ=[1.5,1.5] and ν/∆ν=[1.9,0.7]. (a): Incoherently integrated CAF surface
of path-2. (b): Coherently integrated CAF surface of path-2.

the antenna outputs results in an improvement in the SNR by a factor almost

equal to the number of array elements. The phase correction procedure, with

respect to the array origin, given in (3.7) is illustrated as in Fig. 3.4, where the

slow-time versions (sampled version of the pulse train with pulse repetition inter-

val) of the antenna outputs are seen. If phase shifting with respect to the array
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Figure 3.4: Coherent integration process in slow-time for 15-element antenna
array. Real part of the complex array output is plotted. (a): Slow-time output of
array before coherent integration. (b): Slow-time output of array after coherent
integration.

origin occurs with the correct DOA estimates, than output slow-time signals

overlap as in the Fig. 3.4.

As demonstrated in Fig. 3.2(b) and 3.3(b), the CAF between the transmit-

ted signal and the signal obtained by coherent integration, xcoh(t), yields more

50



−2 0 2

0.2

0.4

0.6

0.8

1

no
rm

al
ize

d 
am

pl
itu

de

ν / ∆ ν

(a)

−2 0 2

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

ν / ∆ ν

no
rm

al
ize

d 
am

pl
itu

de

(b)

Figure 3.5: Two signal paths with parameters τ/∆τ=[1.5,1.5] and
ν/∆ν=[1.9,0.7]. 1-D peak-delay slices of CAF surfaces of Fig. 3.2 - 3.3. Bold
and dashed lines are for coherent and incoherent integration, respectively. (a):
1-D peak-delay slice of CAF surface of path-1. (b): 1-D peak-delay slice of CAF
surface of path-2.

accurate detection of delay and Doppler of the detected path. In order to visu-

alize the effect of the coherent integration clearly, a 1-D delay slice of the peak

point on the incoherently integrated CAF and coherently integrated CAF sur-

faces, shown in Fig. 3.2 - 3.3, are presented in Fig. 3.5. Bold line represents the
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1-D slice across the coherently integrated surface and the dashed line represents

the 1-D slice across the incoherently integrated surface. Note that, interference

from other signal paths and the noise is less detrimental around the peak of the

coherently integrated CAF. Therefore, the delay-Doppler estimates for the de-

tected path become more accurate. Also note that, in Fig. 3.5(b), peak location

of the incoherently integrated CAF, which is the Doppler estimate of the path-2,

is shifted left from its true value. However, peak location of the coherently in-

tegrated CAF points the true Doppler value clearly. The obtained estimates for

azimuth, elevation, delay and Doppler parameters of one of the impinging paths

enables to generate a copy of the impinging signal at each antenna output as:

x̂m,i(t) = ζm,is(t− τ̂i)e
j2πν̂ite−j2πνcξm,i(θ̂i,ϕ̂i) , (3.10)

where i represents the ith detected signal path and ζm,i is a complex scalar, which

covers all the phase shifts and attenuation effects and modeled as an uniformly

distributed phase between 0 and 2π. Due to, calibration inaccuracies of the

antenna array, ζm,i may differ for each antenna. Under additive white Gaussian

noise model, conditional maximum likelihood estimate of the ζm,i for a given set

of estimated (τ̂i, ν̂i, θ̂i, ϕ̂i) parameters can be obtained as the minimizer of the

following cost function:

Jm(ζm,i) =

∫ Tcoh

0

∣∣xm(t)− x̂m,i(t)
∣∣2dt . (3.11)

The minimizer ζm,i of this quadratic cost function can be found by using the

orthogonality property yielding:

ζ̂m,i =

∫ Tcoh

0

s∗(t− τ̂i)e
−j2πν̂itej2πνcξm,i(θ̂i,ϕ̂i)xm(t)dt∫ Tcoh

0

s∗(t− τ̂i)s(t− τ̂i)dt

.

(3.12)

Note that, if there is negligible calibration issue between the antennas, ζm,i will

be approximately the same for each antenna and can be estimated optimally as:

ζ̂i =
1

M

M∑
m=1

ζ̂m,i . (3.13)
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Once the complex scaling parameter, ζ̂m,i is obtained, the identified path is fully

characterized. Hence, a copy of the first signal path at each antenna output can

be generated to eliminate it from the array outputs to recurse on the residual

for detection of the remaining paths. Although it is in the class of suboptimal

greedy optimization techniques, this iterative approach is highly efficient. Note

that, the elimination of a path from the array outputs eliminates both its main

and sidelobes from the CAF domain. Thus, weaker paths that are buried under

the sidelobes of the detected and eliminated path might become detectable as

well. An illustration of this fact is shown in Figs. 3.2, 3.3, where the CAF of the

residual array outputs reveals the presence of a weaker path that was partially

buried under the sidelobes of the eliminated path. This detection and elimination

process is repeated until there is no peak exceeding the detection threshold that

can be set to satisfy a constant false alarm rate. In Table 3.1, steps of the

CAF-DF algorithm is summarized.

Table 3.1: CAF-DF algorithm

while there exist peaks exceeding detection threshold
for i = 1 ; i ≤ d ; i++
- CAF computation at each antenna output with transmitted
known signal using (3.1).

- Incoherent integration of M CAFs using (3.2).
- Detect the peak point coordinates (τ̂i, ν̂i) of the

incoherently integrated CAFs.
- Collect M complex values on each CAF surface corres-
ponding to the coordinates (τ̂i, ν̂i) and create a
M dimensional vector by (3.3).

- Using (3.4) and (3.5) estimate DOAs (θ̂i, ϕ̂i).
- Correct the phases of each antenna output with respect
to the array origin with (θ̂i, ϕ̂i) and add them up by (3.7).

- Estimate τ̂i and ν̂i using (3.1).
- Estimate complex scalar using either (3.12) or (3.13).

- Create a copy of the ith signal path with estimated
parameters.

- Subtract the copy signal from each antenna output.
end

end
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3.3 Simulation Results on Synthetic Signals

In this section, performances of the CAF-DF, SAGE and MUSIC algorithms

are compared on synthetic signals at different SNR values by using Monte Carlo

simulations. The SAGE algorithm [15] is a well known technique with recognized

practical success. In chapter-2.6, details of the SAGE algorithm is presented [19].

The MUSIC-based algorithm is a classical technique, and widely used in many

applications [6], [97]. The joint rMSE, the basis of our comparisons, is defined

as:

rMSE =

√√√√ 1

dNr

Nr∑
µ=1

d∑
i=1

[φ̂µi −φ
µ
i ]

2 , (3.14)

where Nr is the number of Monte-Carlo simulations, φ̂µi is the parameter esti-

mates of the ith signal path found in the µth simulation and φµi is the true parame-

ter values of the ith path in the µth simulation. A circular receiver array ofM om-

nidirectional sensors at positions [rcos(m2π/M), rsin(m2π/M)], 1 ≤ . . . ≤ M ,

is synthesized. The radius of the array r = λ/4sin(π/M) is chosen such that the

distance between two neighboring sensors is λ/2, where λ is the carrier wave-

length. The transmitted training signal consists of 6 Barker-13 coded pulses

with a duration of 13∆τ where ∆τ is the chip duration. The pulse repetition

interval is 30∆τ resulting a total signal duration of qT = 167∆τ . The SNR is

defined at a single sensor relative to the noise variance. Both the CAF-DF and

the SAGE algorithms are iterated only 4 times, which is found to be sufficient

for convergence.

In the first experiment there exist two equal power paths having parameters

φ1 = [50o, 40o, 2∆τ, 1.7∆ν, ejψ1 ] and φ2 = [54o, 44o, 1.5∆τ, 0.8∆ν, ejψ2 ], where

ψ1 and ψ2 are uniformly distributed between [0, 2π]. A uniform circular array

of M = 15 sensors is used. Note that, the two paths are closely spaced in all

parameters. Time-delay and Doppler shift difference between the two paths are

0.5∆τ and 0.9∆ν respectively in CAF domain.
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Figure 3.6: Joint-rMSE obtained with the CAF-DF, the SAGE and the MU-
SIC for two signal paths with φ1 = [50o, 40o, 2∆τ, 1.7∆ν, ejψ1 ] and φ2 =
[54o, 44o, 1.5∆τ, 0.8∆ν, ejψ2 ] at different SNR values. (a): azimuth, (b): ele-
vation, (c): time-delay and (d): Doppler shift.
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Figure 3.7: Joint-rMSE obtained with the CAF-DF and the SAGE
for two signal paths with φ1 = [50o, 40o, 2∆τ, 1.7∆ν, ejψ1 ] and φ2 =
[54o, 44o, 1.5∆τ, 0.8∆ν, ejψ2 ] for different number of iterations. (a): azimuth, (b):
elevation, (c): time-delay and (d): Doppler shift.
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Two paths are 4o separated in spatial domain. Fig. 3.6 presents the rMSE

obtained from 500 Monte Carlo runs at each SNR. Time-delay and Doppler rM-

SEs are normalized by ∆τ and ∆ν, respectively. Obtained results show that

both the CAF-DF and the SAGE techniques provide significantly better param-

eter estimates than the MUSIC technique. Furthermore, the CAF-DF technique

outperforms the SAGE technique and provides more reliable estimates at all

simulated SNR values. Since in many applications low SNR performance is a

deciding factor, the superior performance of the CAF-DF at low SNRs is a sig-

nificant improvement. Using the same settings of the first experiment, Fig. 3.7

illustrates the convergence of rMSE for the CAF-DF and the SAGE techniques at

30 dB SNR. As expected, the rMSE of each parameter has a monotonic decrease

with iterations. Both algorithms converges in a few iterations.

In the second simulation study, there exist two equal power paths with pa-

rameters φ1 = [50o, 40o, 1.5∆τ, 1.6∆ν, ejψ1 ] and φ2 = [54o, 44o, 1.66∆τ, 0.8∆ν,

ejψ2 ]. A uniform circular array with M = 15 sensors is used. This time the

paths are even more closer. Time-delay and Doppler shift difference between the

two paths are 0.16∆τ and 0.8∆ν, respectively. Paths can now be separated only

by using the difference in their Doppler shift. The obtained results are tabu-

lated in Table 3.2. As in the first experiment, MUSIC is not able to separate

the paths. Performances of the CAF-DF and the SAGE are degraded slighltly,

as expected. In this scenario, except the Doppler estimates at high SNRs, the

CAF-DF consistently performs better than the SAGE.

In the third experiment, we investigated the identification of 10 paths with a

circular array of 8 sensors. The path parameters are given in the Table 3.3. The

delay-Doppler domain spread of these paths are shown in Fig. 3.8. Note that

the number of paths exceeds the number of sensors which would made it impos-

sible to resolve with narrowband systems. However, in wideband communication

systems, delay-Doppler domain diversity of the paths can be exploited to resolve
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Table 3.2: rMSE values of MUSIC(A1), SAGE(A2) and CAF-DF(A3) algorithms
for various SNR values. CRLB(A4). Time-delay and Doppler rMSEs are nor-
malized by ∆τ and ∆ν, respectively.

SNR(dB) rMSE(deg) rMSE(deg) rMSE / ∆τ rMSE / ∆ν

10 A1 15.58 15.79 11.84 1.56

A2 4.23 3.7 0.9 1.1

A3 1.73 2.45 0.07 0.46

A4 0.02 0.027 0.019 0.046

15 A1 14.48 14.24 11.62 1.42

A2 2.07 1.91 0.44 0.76

A3 0.83 0.84 0.01 0.051

A4 0.011 0.016 0.01 0.025

20 A1 12.32 14.06 11.48 1.3

A2 0.61 0.66 0.077 0.035

A3 0.41 0.49 0.0068 0.025

A4 0.006 0.0092 0.0061 0.014

25 A1 11.75 12.68 10.2 1.04

A2 0.22 0.25 0.019 0.013

A3 0.22 0.27 0.0037 0.016

A4 0.0036 0.0052 0.0034 0.008

30 A1 10.6 10.18 8.2 0.63

A2 0.12 0.12 0.011 0.006

A3 0.08 0.11 0.0024 0.012

A4 0.002 0.0026 0.0019 0.004

the paths as long as there are fewer paths than the number of array elements in

each resolvable delay-Doppler cell. The joint rMSE in the estimated path param-

eters by the proposed CAF-DF and the SAGE algorithms are shown in Fig. 3.9.

We observed that the CAF-DF technique provided significantly better estimates

at all SNR levels. The main reason for failure of the SAGE is that, when the

number of paths increases, the maximum likelihood based approach faces signif-

icant challenges in finding the global maximum of the likelihood function. This

is mainly because of the fact that likelihood maximization is performed in time

domain, where there is a considerable overlap between the signals received from

different paths. However, CAF-DF technique transforms the array signal out-

puts to the CAF domain where different multipath signals are localized to their
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Figure 3.8: Delay-Doppler spread of the 10 signal paths are represented with
black dots on the delay-Doppler domain.

respective delay and Doppler cell. Therefore, overlapping signals in time domain

are separated in delay Doppler domain resulting in the observed performance

improvement. Moreover, in Fig. 3.10, ŜNRCAF−DF/ŜNRSAGE ratio is plotted

for threshold and asymptotic regions of estimation performance at various SNR

values using equations (2.33) and (2.34). Parallel with the results shown in Fig.

3.6, at all SNR levels CAF-DF combines diversity better than the SAGE which

enable detector to accurately retrieve the transmitted information.

Table 3.3: 10 path parameters. Time-delay, Doppler and complex scaling factor
values are normalized by ∆τ , ∆ν and ejψi , respectively. ψi’s, i = 1, ..., d, are
uniformly distributed between [0, 2π].

path θ(deg) ϕ(deg) τ/∆τ ν/∆ν ζ/ejψi

1 45 30 1 1 1

2 50 35 1.66 1.5 0.9

3 55 40 1.16 2.5 0.8

4 60 45 1.83 3 0.7

5 65 50 2.5 2.7 0.6

6 70 55 3.16 3.4 0.8

7 75 38 4.16 1.6 0.8

8 57 47 4.83 1 1

9 63 43 4.66 2.8 1

10 68 33 5.5 2.1 0.7
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Figure 3.9: Joint-rMSE, obtained with the CAF-DF and the SAGE for 10 signal
paths at different SNR values. (a): azimuth, (b): elevation, (c): time-delay and
(d): Doppler shift.
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threshold and asymptotic regions of estimation performance using (2.33), (2.34).

3.4 Simulation Results on Real Ionospheric

Data

In this section, performance of the CAF-DF technique is tested on recorded iono-

spheric data set from a high latitude HF link. The data sets are provided by Dr.

E.M. Warrington and Dr. Alan Stocker from University of Leicester, Engineer-

ing Department, U.K. The signals were received on a six-element circular array.

Transmitted pulse train consists of Barker-13 coded BPSK pulses modulated at

1667 baud with a repetition rate of 55 coded pulses per second. The total length

of the sequence is 2 s. The transmitter and the receiver are located in Uppsala,

Sweden and Kiruna, Sweden respectively. Data set is recorded in 2002. We ana-

lyzed a 1 hour data recorded at between 23 : 00 : 49−23 : 48 : 49 at two different

frequencies 4.63 MHz and 6.95 MHz, respectively. The obtained results for the

CAF-DF technique are presented in figures 3.12, 3.13, and 3.14. As seen from the

figures, the CAF-DF technique separated three different multipath components

most of the observed time interval. Azimuth estimates are consistent with the
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relative orientations of the transmitter and receiver. There are no sharp changes

in the azimuth, elevation, delay and Doppler shift estimates of the strongest sig-

nal source for nearly one hour measurement period. For the second and third

signal sources we observe noisy elevation and delay estimates. We also investi-

gated the performance of the CAF-DF technique over a second set of data which

is recorded in April 13, 2007. This data set is recorded by using an eight-element

inhomogeneous circular array is used as given in Fig. 3.11. As in the first set,

Barker-13 coded BPSK pulses are used. In this data set, the baud rate is raised

to 2000. The HF transmitter is located at Uppsala, Sweden and the receiver is at

Bruntingthorpe, U.K. The distance between these two points is about 1417 km.

In Fig. 3.15, estimated azimuth, elevation, delay and Doppler of the recorded

data by CAF-DF at between 11 : 00 : 09−11 : 58 : 09 are presented. Also for this

data set, azimuth estimates are consistent with the relative orientations of the

tranmitter and receiver. It is seen that elevation estimates of the 6.95 MHz are

noisier than the other frequencies and consistent with the corresponding changes

in delay estimates. Maybe the response of ionosphere at 6.95 MHz during the

measurement period is not stable. Note that, the significant but orderly varia-

tion of the Doppler shifts observed within one hour duration indicate a physical

mechanism that should be of interest to ionospheric physicists.
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Figure 3.11: The spatial distribution of the eight-element circular antenna array
used in the HF channel sounding experiment conducted between Uppsala, Swe-
den and Bruntingthorpe, U.K. The receiver array is located in Bruntingthorpe.
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Figure 3.12: a)Azimuth, b)elevation, c)delay and d)Doppler shift estimates
of the first signal source by CAF-DF of the data recorded in May 02, 2002 at
between 23 : 00 : 49− 23 : 48 : 49 for two frequencies. Note that, in b) elevation
estimates differ between two frequencies.
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Figure 3.13: a)Azimuth, b)elevation, c)delay and d)Doppler shift estimates of
the second signal source by CAF-DF of the data recorded in May 02, 2002 at
between 23 : 00 : 49− 23 : 48 : 49 for two frequencies.
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Figure 3.14: a)Azimuth, b)elevation, c)delay and d)Doppler shift estimates of
the third signal source by CAF-DF of the data recorded in May 02, 2002 at
between 23 : 00 : 49− 23 : 48 : 49 for two frequencies.
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Figure 3.15: a)Azimuth, b)elevation, c)delay and d)Doppler estimates by CAF-
DF of the data recorded in April 13, 2007 at between 11 : 00 : 09− 11 : 58 : 09
for three different frequencies. Note that the significant but orderly variations of
the Doppler shifts in d) should be of interest.
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3.5 Conclusions

A new array signal processing technique, the CAF-DF, is proposed for the es-

timation of multipath channel parameters including the path amplitude, delay,

Doppler shift and DOAs. The proposed CAF-DF technique makes use of CAF

computation for joint and reliable estimation of path parameters of individual

multipath components. Extensive simulation results show that the CAF-DF

technique is superior in terms of the rMSE to the SAGE technique over a wide

range of SNR levels. Furthermore, the CAF-DF technique provides 2 to 3 dB im-

provement over the SAGE technique in the SNR of diversity combined detection

signal. This improvement provided over the practical operational SNR range

of receivers is a very significant advantage of the CAF-DF technique. Lastly,

performance of the CAF-DF is verified on real ionospheric data.
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Chapter 4

Multipath Channel Identification

by Using Global Optimization in

Ambiguity Function Domain

4.1 Introduction

Multipath is the most conspicuous feature of wireless channels that makes essen-

tial to model the communication channels due to the large number of propagating

signals. Multipath propagation has bad and good faces. It is a bad thing because

it leads to signal fading that effects reliable communication negatively. On the

other hand, it is a good thing because it is the source of diversity which increases

the rate and reliability of the communication. Multipath diversity shows up it-

self in several forms such as direction-of-arrival (DOA), time-delay and Doppler

shift. In order to use diversity and mitigate the affect of multipath fading, wire-

less channel should be accurately modeled and channel state information (CSI)

should be provided to the receiver.
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In this chapter, a new array signal processing technique called particle swarm

optimization - cross ambiguity function (PSO-CAF) is presented to estimate mul-

tipath channel parameters [48], [49], [50]. In order to exploit the delay Doppler

diversity of the multipath signals, by using cross ambiguity function (CAF),

the received array element outputs are transformed to delay-Doppler domain

where the multipath signal components are localized to their respective delay

and Doppler cell. Having identified the multipath clusters on the delay-Doppler

domain, PSO is used to obtain globally optimal values of the channel parameters

in each cluster.

In this chapter, algorithmic details of the PSO-CAF techniques is presented.

The performance of the PSO-CAF technique is compared with the SAGE tech-

nique and with a recently proposed PSO based technique at various SNR levels.

4.2 Solution to CAF Domain Formulation by

Using Particle Swarm Optimization

In a multipath environment, the receiver array output signals are delayed,

Doppler-shifted and scaled versions of the transmitted signal. As mentioned in

section 2.6, formulating a likelihood function for the channel estimation problem

is a very common way to extract the signal parameters. However, when the num-

ber of paths increase, the ML approach face significant challenges in finding the

global maximum of the likelihood function. This is mainly because of the fact

that, likelihood maximization is performed in time domain, where there is a con-

siderable overlap between the signals received from different paths. Therefore,

it is desirable to formulate an alternative optimization problem other than the

time domain where the multipath signal components are localized reducing the

significant overlapping of components in the time domain. Since typical commu-

nication signals are phase or frequency modulated, with large time-bandwidth
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Figure 4.1: Barker-13 coded 6 paths a-) in time domain, and b-) in delay-Doppler
domain localized in 3 clusters each of which has 2 paths.

products, as in radar detection their CAFs are highly localized in the delay-

Doppler domain. Therefore, the transformation of the array signal outputs to

the CAF domain localizes different multipath signals in clusters to their respec-

tive delay and Doppler cell. To detect the existing multipath signals, a constant

false alarm criterion rate (CFAR) based adaptive threshold can be set. Such a

strategy is commonly employed by radar target detection and will not be detailed

here [98].
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Figure 4.2: CAF between recorded multipath high-latitude ionosphere data and
the transmitted signal. One dominant reflection in cluster-1 at τ = 9.5 ms. Two
reflections in cluster-2 between τ = 11.5− 12.5 ms.

Following the detection phase, around each detected delay-Doppler cell, a

windowed set of data is extracted to be used for path identification. To illustrate

this procedure, consider a synthetic multipath channel with 6 distinct paths. As

shown in Fig. 4.1(a), the individual multipath signals overlap significantly in

time at the output of an array element. However, as shown in Fig. 4.1(b), the

CAF given in Eqn. (4.1) between the received signal and the transmitted signal

localizes the contribution of different path components in delay-Doppler domain

[96], [23]:

χx(t),s(t)(τ, ν) =

∫ ∞

−∞
x
(
t+

τ

2

)
s∗
(
t− τ

2

)
e−j2πνtdt . (4.1)

To illustrate the localization of multipath components in delay-Doppler domain,

the CAF surface of a real high-latitude ionospheric communication channel is

shown in Fig. 4.2. As seen from the result, two clusters can be reliably detected.

Further analysis on the data has revealed that one of the clusters has a single

component and the other has two multipath components [25],[24]. There is one

dominant reflection in cluster-1 at τ = 9.5 ms, and there are two reflections in
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cluster-2 between τ = 11.5 − 12.5 ms. This localization enables us to reformu-

late the channel identification problem as a set of loosely coupled optimization

problems in lower dimensional parameter spaces.

Signal flow diagram of the PSO-CAF algorithm is presented in Figs. 4.3 and

4.4. Note that, here we assume CAF peak detection has provided C clusters

of paths in delay-Doppler domain and the number of paths in cluster c is dc

for 1 ≤ c ≤ C. For example as shown in Fig. 4.1(b), 6 paths are localized

in C = 3 clusters and each cluster consists of 2 paths. Having identified the

location of each cluster, individual PSO searches are conducted for estimation

of parameters of multipaths in each cluster. Following PSO searches in each

cluster, effects of the estimated multipath components are eliminated for a better

estimation in the remaining clusters. Since, optimization in each cluster has to be

performed multiple times, PSO iterations in each cluster need not to be pursued

until convergence is established. Therefore, by cycling over the identified set of

clusters, the PSO-CAF technique iteratively provides estimates for each path in

each cluster. In the following, details of the CAF domain optimization for each

cluster is presented.

The optimization problem associated with the cth cluster makes use of the

following fitness function:

fc(φ(Sc, η), ζc(η)) =
M∑
m=1

∣∣∣∣∣∣Γc,m − vec
(
Wcχûm(t;φ(Sc,η)),s(t)

(τ, ν)
)∣∣∣∣∣∣2 , (4.2)

where Sc is the set containing indexes of dc path components in the cth cluster,

vec(.) is vector operator stacking the columns of a matrix into a single column

vector, Wc is the identifier mask for the cth cluster that selects the patch that

will be used in PSO, and

Γc = [Γc,1, ...,Γc,M ]T , (4.3)

is the matrix of the cth cluster CAF patch for M antennas with elements:

Γc,m = vec
(
Wcχŷc,m(t;η),s(t)(τ, ν)

)
. (4.4)
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Figure 4.3: Signal flow diagram of the PSO-CAF algorithm.
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Figure 4.4: Signal flow sub-block diagram of the parameter estimation in each
cluster using PSO block in Fig. 4.3 .

χŷc,m(t;η),s(t)(τ, ν) is the CAF between ŷc,m(t; η) and s(t),χûm(t;φ(Sc,η)),s(t)
(τ, ν)

is the CAF between ûm(t;φ(Sc, η)) and s(t), and

ŷc(t; η) = [ŷc,1(t; η), ..., ŷc,M(t; η)] , (4.5)

is the estimated array output at the ηth iteration corresponding to cth cluster:

ŷc(t; η) = x(t)−
C∑

γ=1,γ ̸=c

û(t;φ(Sγ, η)) , (4.6)

where

û(t;φ(Sc, η)) = [û1(t;φ(Sc, η)), .., ûM(t;φ(Sc, η))]
T , (4.7)

is the matrix generated with the cth cluster estimated multipath parameters for

M antennas with elements:

û(t;φ(Sc, η)) =
∑
i∈Sc

ζi(η)s(t− τi(η))e
j2πνi(η)ta(θi(η), ϕi(η)) . (4.8)
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In the first iteration, η = 1, for the first cluster, ŷc(t; η) is initialized as ŷc(t; η) =

x(t). Using (4.8), χûm(t;φ(Sc,η)),s(t)
(τ, ν) can be written as

χûm(t;φ(Sc,η)),s(t)
(τ, ν) =

∑
i∈Sc

ζi(η)Am(τ, ν;φi(η)) , (4.9)

where Am(τ, ν;φi(η)) is defined as:

Am(τ, ν;φi(η)) = am(θi(η), ϕi(η))

·
∫ ∞

−∞
s
(
t− τi(η) +

τ

2

)
s∗
(
t− τ

2

)
e−j2π(ν−νi(η))tdt .

(4.10)

By using (4.4) and (4.10), a more compact form for the fitness function in (4.2)

can be obtained as:

fc(φ(Sc), ζc) =
M∑
m=1

||Γc,m −Υc,mζc||
2 . (4.11)

Here, matrix Υc,m is defined as:

Υc,m =
[
vec(WcAm(τ, ν;φϱ1(η))), ...,vec(WcAm(τ, ν;φϱdc (η)))

]
, (4.12)

where ϱ1 is the first index element of the index set Sc and each column correspond

to a multipath component in the cth cluster. Straightforward minimization with

respect to the scale variables ζ yields:

ζ̂c(η) =
1

M

M∑
m=1

(
ΥH
c,mΥc,m

)−1
ΥH
c,mΓc,m , (4.13)

which, as in the ML approach culminating with (2.56), when substituted into

(4.11), reduces the fitness function for the cth cluster to:

fc(φ(Sc, η)) =
M∑
m=1

∣∣∣∣∣∣Γc,m −Υc,mζ̂c(η)
∣∣∣∣∣∣2 . (4.14)

Thus, the channel parameter estimates for the cth cluster at ηth iteration are

obtained by minimizing the following optimization problem:

φ̂(Sc, η) = argmin
φ

fc(φ(Sc, η)) . (4.15)
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Location of each particle, zl = [φϱ1 , ...,φϱi , ...,φϱdc ], i ∈ Sc, in the K = 4 × dc

dimensional search space is a solution candidate. The size of the target delay-

Doppler patch, Γc, determined by the identifier mask Wc, is chosen to be

1.5∆τ × 1.5∆ν around the detected peak for the cth cluster. Resolution of delay

and Doppler in the CAF domain are ∆τ = 1/BW and ∆ν = 1/T , respectively

[23]. Here, BW corresponds to the bandwidth and T is the duration of s(t).

Moreover, particle movements are confined in a window of size ∆τ ×∆ν around

the detected peak for the cth cluster. Equation (4.14) is evaluated using the loca-

tion values of each particle and the location that gives the best fitness chosen as

the globalBest . Having estimated the parameters of each multipath component

in the cth cluster, effects of these multipath components are eliminated as in (4.6)

from the array output for a better estimation in remaining clusters. Iterations,

η, continue until convergence is established or a preset number of iterations is

reached.

4.3 Simulation Results

In this section, we present results of simulated experiments conducted to compare

the performances of the PSO-CAF, SAGE and PSO-ML techniques on signals

at different SNR values. The CRLB for the joint estimation problem is also

included for comparison. In Table 2.1, the basic form of the SAGE algorithm,

which is widely used in channel identification, is presented. PSO-ML is a recently

proposed technique, which applies PSO to ML criterion to estimate the path

parameters [99]. Since, PSO-ML does not exploit the delay-Doppler localization

of the multipath components, it operates in a significantly higher dimensional

search space than the PSO-CAF.

In the experiments, received signals of a circular receiver array of M = 9

omnidirectional sensors at positions [rcos(m2π/M), rsin(m2π/M)], 1 ≤ . . . ≤
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M , is simulated. The radius of the array r = λ/4sin(π/M) is chosen such

that the distance between two neighboring sensors is λ/2, where λ is the carrier

wavelength. The transmitted training signal consists of 6 Barker-13 coded pulses

with a duration of 13∆τ where ∆τ is the chip duration. The pulse repetition

interval is 30∆τ resulting a total signal duration of qT = 167∆τ . The SNR is

defined at a single sensor relative to the noise variance as E[|xm(t)|2]/E[|nm(t)|2].

The joint rMSE defined in (3.14) is used for performance comparisons.

Moreover, for both of the experiments, the same PSO settings, such as swarm

size, update rules, swarm topology and swarm initialization, are chosen based on

recommendations in the literature and empirical simulations [100]. We observed

that fine tuning the parameters would not provide significant improvements.

Therefore, here standard PSO is used and results of different PSO variants are

not presented. Initial locations and velocities of the particles are randomly dis-

tributed throughout the search space. As stated previously, size of the delay-

Doppler swarm search space is taken as ∆τ × ∆ν around the detected peak of

each cluster. Number of particles in the swarm is chosen as 50. Necessary number

of PSO evaluations and SAGE iterations are conducted for PSO-ML, PSO-CAF

and SAGE techniques, respectively, to ensure the convergence.

In the first experiment, we considered a multipath scenario with 6 paths,

whose parameters are given in the top 6 rows of Table 4.1. Note that these 6

paths are clustered in 3 clusters each containing 2 paths. As stated previously

and presented in Fig. 4.1(a)-4.1(b), the key advantage of the PSO-CAF tech-

nique is the localization of different multipath signals to their respective delay

and Doppler cells by transforming the array signal outputs to the CAF domain.

By this way, we are able to use PSO in lower dimensional parameter search spaces

in each cluster to estimate the respective path parameters. The performance im-

provement due to clustering on delay-Doppler domain is presented in Fig. 4.5 and

Fig. 4.6 for the PSO-CAF technique. In the figures one snapshot coordinates
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Figure 4.5: One snapshot coordinates, obtained by using the PSO-CAF, of parti-
cles (z, ×), exact path parameter values (�) and globalBest (pg, ⋆) distributed
on the azimuth (θ)-elevation ((ϕ)) plane. a): No clustering, PSO is conducted in
24-dimensional space. b): 3 clusters, parallel PSO is conducted in each of them
in 8-dimensional spaces.

of particles (z, ×), exact path parameter values (�) and coordinate of glob-

alBest (pg, ⋆) are plotted during the PSO optimization. As can be seen, when

all the paths are tried to be identified without delay-Doppler domain clustering,

particles typically converge to local minima of the fitness function and rarely

reach the exact path parameter coordinates. However, if we conduct 3 separate

8 dimensional PSO path parameter searches on each cluster, particles converge
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Figure 4.6: One snapshot coordinates, obtained by using the PSO-CAF, of par-
ticles (z, ×), exact path parameter values (�) and globalBest (pg, ⋆) dis-
tributed on the delay-Doppler plane. a): No clustering, PSO is conducted in
24-dimensional space. b): 3 clusters, parallel PSO is conducted in each them in
8-dimensional spaces.

to the global minima in each cluster in a shorter time with increased frequency.

In Fig. 4.7(a), normalized fitness progress curves of PSO-ML and PSO-CAF

techniques are seen. As expected, PSO-CAF has better convergence properties.

Fig. 4.7(b) shows the normalized error progress of the array output estimates of

the SAGE algorithm. All simulations are conducted on an HP xw6400 Worksta-

tion with Intel Xeon 3Ghz processor. A single iteration for the PSO-CAF, the
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Figure 4.7: a) Normalized fitness progress curves of the PSO-ML and the PSO-
CAF. b) Normalized array output error progress curve of SAGE.

PSO-ML and the SAGE techniques take approximately as 2.5, 1.1, and 9.4 sec,

respectively. As shown in Fig. 4.7(a) and 4.7(b), the PSO-CAF, the PSO-ML

and the SAGE techniques establish their convergence at around 80, 200 and 10

iterations. Therefore, until convergence, the PSO-CAF, the PSO-ML and the

SAGE techniques require approximately 200, 220, and 94 sec, respectively. Since

the PSO based techniques can be implemented on a multicore processor envi-

ronment with significantly less interprocessor communication requirements, the

processing times can be reduced to the level of the SAGE technique. Therefore,
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Figure 4.8: Joint-rMSE, obtained with the PSO-CAF, the PSO-ML and the
SAGE, of (a): azimuth, (b): elevation, (c): time-delay and (d): Doppler shift of
6 signal paths. Dash-dot line represents the CRLB.

81



0 5 10 15
0

20

40

60

80

rMSE, dega)
0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

rMSE, degb)

0 5 10 15
0

20

40

60

80

100

rMSE, degc)
0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

rMSE, degd)

Figure 4.9: Histograms of joint rMSE values of a-b): azimuth, c-d): elevation
obtained with the PSO-ML and PSO-CAF techniques. b-d): PSO-CAF. a-c):
PSO-ML.

in the following we will base our comparison results to the accuracy of the es-

timated parameters. Fig. 4.8 shows the joint rMSE values obtained from the

SAGE, PSO-ML and PSO-CAF for various SNR values. Also to provide a lower

bound on the error, the CRLB is included. Obtained results shows the superior

performance of the PSO-CAF over the PSO-ML and the SAGE techniques for all

SNR values. The PSO-ML and the SAGE techniques have similar performances

at high SNR values, however at lower SNR values the PSO-ML outperforms the

SAGE technique. Moreover, histograms of joint rMSE of each technique are pre-

sented in Fig. 4.9 to provide an insight into the failure statistics. Consistent with

the previous results, most of the time, the PSO-ML and SAGE techniques fail to

convergence true parameter values. By using (2.33) and (2.34), in Fig. 4.11, esti-

mated ŜNRPSO−CAF/ŜNRPSO−ML ratio is plotted for threshold and asymptotic
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Figure 4.10: Histograms of joint rMSE values of e-f): delay, g-h): Doppler ob-
tained with the PSO-ML and PSO-CAF techniques. f-h): PSO-CAF. e-g): PSO-
ML.
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regions of estimation performance. The PSO-CAF combines diversity better

than the PSO-ML which enable detector to accurately retrieve the transmitted

information.
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Figure 4.12: CAF’s between received signal, consisting of 10 multipath compo-
nents, with the transmitted signal at a): 10 dB, b): 35 dB.
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Table 4.1: 10 path parameters. Time-delay, Doppler and complex scaling factor
values are normalized by ∆τ , ∆ν and ejψi , respectively. ψi’s, i = 1, ..., d, are
uniformly distributed between [0, 2π].

path θ(deg) ϕ(deg) τ/∆τ ν/∆ν ζ/ejψi

1 45 25 1.16 1.1 1

2 50 35 1.41 1.4 0.9

3 55 40 1.16 2.6 0.9

4 60 45 1.41 2.9 1

5 65 50 3.08 2.9 0.9

6 70 55 3.33 2.6 0.85

7 75 38 3.16 1.4 1

8 57 47 3.5 1.1 0.8

9 63 43 4.41 2.1 0.9

10 63 43 4.66 2.3 0.92

In the second experiment, we considered a multipath scenario where there

exist 5 clusters containing 2 paths each totaling 10 paths with parameters tabu-

lated in Table 4.1, distributed in 5 different clusters. In Fig. 4.12, to clarify the

detection process of delay-Doppler cells corresponding to each multipath cluster,

locations of 5 different clusters on the CAF surface are presented at different SNR

values. Even at the 10 dB SNR, all clusters are localized and can be identified on

the CAF detection surface. Note that the number of paths exceeds the number

of sensors which would made it impossible to resolve with narrowband systems.

However, if there exist fewer paths than the number of array elements in each re-

solvable delay-Doppler cell then delay-Doppler domain diversity of the paths can

be exploited to resolve the paths in wideband communication systems. Fig. 4.13,

illustrates the joint rMSE values obtained from SAGE, PSO-ML and PSO-CAF

for various SNR values. Similar to the results of the first experiment, PSO-CAF

is able to resolve multipath components even in this scenario successfully and

outperforms the PSO-ML and SAGE.
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Figure 4.13: Joint-rMSE, obtained with the CAF-DF and the SAGE, of (a):
azimuth, (b): elevation, (c): time-delay and (d): Doppler shift of 10 signal
paths. Dash-dot line represents the CRLB.
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4.4 Conclusions

A new multipath channel parameter estimation technique called the PSO-CAF,

is proposed. PSO-CAF transforms the received array outputs to delay-Doppler

domain by CAF calculation for efficient exploitation of the delay-Doppler diver-

sity of the multipath signal components. Clusters of multipath components are

identified in the delay-Doppler domain. Localization of multipath components to

their respective delay and Doppler cells enabled the reformulation of the channel

identification problem as a set of loosely coupled optimization problems in lower

dimensional parameter spaces. PSO is used to identify parameters of multipath

components in each cluster. Simulation results show that the PSO-CAF provides

significantly better parameter estimates than the SAGE and recently proposed

PSO-ML technique.
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Chapter 5

Multipath Channel Identification

Techniques by Using Com-

pressed Sensing Theory

5.1 Introduction

A general assumption in research for wireless multipath channel identification

is that there exist rich multipath environment, and the linear reconstruction

techniques are optimal in these channels. Nevertheless, recent studies revealed

the fact that the wireless channels have a sparse structure in time, frequency

and space. Additionally, it has been proven that the linear reconstruction tech-

niques cannot fully exploit the sparse structure of the channel and produce non-

sparse multipath structures. In order to better model sparse multipath channels,

new techniques that have better performance than usual least-squared based

approaches are proposed within the context of newly developed CS theory. How-

ever, the CS based approaches assume that the parameters of all multipath com-

ponents fall on a standard grid, which is practically impossible as the channel
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parameters can assume any value in a wide range. Performances of these tech-

niques based on discretization of the multipath channel parameter space degrade

significantly when the actual channel parameters deviate from the assumed dis-

crete set of values. This problem is called the off-grid problem and results in a

mismatch of the dictionary and severely degrades the performance.

In this chapter, we present the details of a novel algorithm to overcome the so

called off-grid problem [64], [65]. In order to exploit the delay-Doppler diversity

of the multipath components, the proposed technique transform receiver output

to delay-Doppler domain by using cross ambiguity function calculation. After

that, multipath clusters are determined on the delay-Doppler domain by a simple

thresholding to formulize the original channel identification problem in reduced

channel identification problems. Having determined the locations of multipath

clusters, on-grid points that reside in each cluster are perturbed by using PSO and

multipath components are recovered by using the orthogonal matching pursuit

(OMP) algorithm.

5.2 Compressed Sensing Theory

The main purpose of sampling or sensing is to accurately capture the signifi-

cant information in a recorded signal of interest by taking as few samples as

possible. The question at this point is: in order to perfectly recover the origi-

nal signal, what is the required number of samples?. For bandlimited signals, the

Nyquist-Shannon sampling theorem, which is a fundamental tenet in information

theory and modern telecommunication, gives an answer to this crucial question:

”when converting an analog signal, which is bandlimited to BW Hz, to a dis-

crete signal, the sampling rate should be greater than BW samples per second

in order to be able to reconstruct the original signal perfectly from its samples”

[101],[102]. This fundamental theorem, gives a sufficient but not a necessary
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condition for perfect reconstruction. The relatively new theory of compressed

sensing (CS), provides a stricter sampling condition when the interested signal

has a sparse structure [103],[104],[105],[106]. Different from the Nyquist-Shannon

sampling theorem, in CS, signals are assumed to be sparse in different transform

domains, not necessarily the Fourier transform. CS theory, introduces new sam-

pling schemes that enable us to uniquely represent the original sparse signal with

low number of required samples. Contrary to traditional techniques that employ

oversampling and then apply compression, new techniques based on CS theory

have lower computational complexities by achieving compression at the same

time with sampling.

In order to motive the theoretical idea behind the CS, we begin with the

following model:

v = Υα , (5.1)

where v ∈ CN is the discrete signal in time domain which has to be under-

sampled, Υ ∈ CN×N is the transform domain matrix and α ∈ CN is the S-sparse

(∥α∥0 ≤ S) vector with suppot set ΛS = supp(α). In practical scenarios, in-

significant elements of α are set to zero and S most significant elements are taken

account. To illustrate this approach, let v be the pixels of an image and Υ be the

inverse discrete cosine transform matrix (IDCT). For images it is known that,

most of the DCT coefficients can be set to zero with no perceptible degradation

in image quality. Actually, this is the main idea behind the famous JPEG-2000

compression technique. This approach efficiently compresses v. However, at

first, to produce α , it requires all samples of v. In this situation, the CS theory

provides an alternative reconstruction technique [107].

Assume that, instead of directly using samples of v, takeM (M << N) linear

combinations of samples. These linear combinations can be represented with the
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matrix Φ ∈ CM×N and new model can be written as:

Φv = ΦΥα

x = Ψα , (5.2)

where x ∈ CM can be termed as the observation or measurement vector and

Ψ ∈ CM×N is the sensing matrix. Here we are looking for a matrix Ψ, which has

as few rows as possible and can guarantee recovery of a sparse input.

Our aim is to reliably recover α from knowledge of x and Ψ. However,

the dictionary matrix Ψ consists of more columns, called as atoms, than rows.

Therefore, in the absence of further prior information, α is unidentifiable from

x. This problem can be resolved by regularizing via sparsity constraints. That

is, we search for approximate solutions to linear systems in which the unknown

vector has few nonzero entries relative to its dimension:

Find sparse α s.t. x ≈ Ψα . (5.3)

In literature, this formulation is known as sparse approximation [108]. In a

nutshell, the CS theory, also referred to as sparse approximation theory, tries to

produce answers to the following questions to reliably recover α from knowledge

of x and Ψ:

• Which conditions should dictionary matrix Ψ satisfy?

• How can we design efficient algorithms for a given class of dictionaries that

provably recover a nearly optimal sparse representation of an arbitrary

input signal?

• What recovery guarantees can be provided for different algorithms under

different conditions?

These questions are successfully addressed in a number of work up to now and

extensive research is going on the theory and applications of CS [109],[110],[111],

[112],[63].
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5.2.1 Requirements on the Dictionary

In order to reliably recover α, we must have a guarantee notifying that different

values of α produce different values of x. One way of having such a guarantee

is determining all possible S-element sets of atoms called subdictionaries and

verifying that the subspaces spanned by these subdictionaries differ from each

other. There exists several methods that formulize the suitability of a dictionary

for sparse approximation. These methods can be itemized as follows:

• The mutual coherence [113]

• The cumulative coherence [114]

• The exact recovery coefficient (ERC) [114]

• The spark [115]

• The restricted isometry constants (RICs). [116]

Mutual and cumulative coherence measures provide close values and they are

easy to calculate but suboptimal when the RICs of Ψ are known. However, for

arbitrary dictionary Ψ, calculation of other three approaches is not efficient. In

the following we will shortly clarify what exactly means some of these measures

and their relations with each other.

The mutual coherence µ = µ(Ψ) is defined as:

µ , max
i̸=j

|ψT
i ψj| , (5.4)

where columns ψi of dictionary Ψ are atoms of the dictionary. Assuming that

each atom ∥ψi∥2 = 1, then the coherence is bounded by [117]:√
N −M

M(N − 1)
≤ µ(Ψ) ≤ 1 . (5.5)
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Two atoms are aligned when µ(Ψ) = 1 and we have the maximal coherence

which is the worst case scenario. When µ(Ψ) =
√

(N −M)/M(N − 1) we have

the maximal incoherence which is the best case scenario. In maximal incoherence

scenario, the atoms are spread out in CM . Although it is very efficient to calculate

directly using (5.4), the relation between µ and requirement, which saying the

subdictionaries must span different subspaces, is not clear. What we are really

interested is that the distinction between S-element dictionaries rather than just

the correlation between single atoms. RICs is such a measure that is related

to the subdictionaries of dictionary matrix Ψ. However, mutual coherence can

be used as an efficient bridge for accurate dictionary quality measures, such as

RICs, which are not computationally efficient.

In RICs measure, a dictionary is accepted as good, if it satisfies the restricted

isometry property (RIP) and restricted orthogonality property (ROP). We say

that the matrix Ψ satisfies the RIP of order S with constant δS if for every index

set Λ of size S we have:

(1− δS)∥b∥22 ≤ ∥ΨΛb∥22 ≤ (1 + δS)∥b∥22 , (5.6)

for all b ∈ RS . Here, if δS is small, the RIP ensures that any S-atom subdic-

tionary is nearly orthogonal. This also implies that any two disjoint (S/2)-atom

subdictionaries are well-separated. In a similar fashion, We say that the matrix

Ψ satisfies the ROP of order (S1,S2) with parameter ςS1,S2 if for every pair of

disjoint index sets Λ1 and Λ2 having cardinalities S1 and S2, respectively, we

have

|bT1ΨT
Λ1
ΨΛ2b2| ≤ ςS1,S2∥b1∥2∥b2∥2 , (5.7)

for all b1 ∈ RS1 and for all b2 ∈ RS2 . Shortly, ROP requires any two dis-

joint nearly orthogonal subdictionaries that are containing S1 and S2 elements

respectively.

It has been shown that, if the constant δS and ςS1,S2 sufficiently small, vari-

ous sparse approximation algorithms can reliably recover α from x [116], [118].
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These important results are valid, when the elements of dictionary Ψ are in-

dependent identically distributed Gaussian random variables or when in some

specific deterministic dictionary matrices. However, in most of the practical es-

timation scenarios, there is no chance to design the so called system matrix Ψ

according to the stated specific rules. Actually, if we are given a particular dic-

tionary matrix Ψ beforehand, then there exists no known efficient algorithm for

determining its RICs. RICs require searching over an exponential number of in-

dex sets to find the worst subdictionaries. On the other hand, although mutual

coherence µ given in (5.4) is less accurate in finding the accuracy of a dictionary,

it is a good tool that enable us to comment on RICs based only on µ. In the

following Lemma this point can be noticed [119].

Lemma 1: For any matrix Ψ, the RIP constant δS of (5.6) and the ROP

constant ςS1,S2 of (5.7) satisfy the bounds:

δS ≤ (S − 1)µ (5.8)

ςS1,S2 ≤ µ
√

S1S2 , (5.9)

where µ is the mutual coherence (5.4). In the following section we will concentrate

on some sparse estimation techniques that are very well known in the literature

and have well studied performance guarantees.

5.2.2 Sparse Estimation Techniques

The system model in (5.3) can be expressed as:

x = Ψα+ n , (5.10)

where n is the random noise. Based on this model, in the following list we will

provide short descriptions of some proposed estimation techniques. After that,

we will focus on the first two dominant approaches. There are five major classes

of sparse estimation techniques [120]:
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• Convex relaxation: Combinatorial problem is replaced with a convex

optimization problem. Nonconvex constraint ∥α∥0 = S is relaxed to a

constraint on the l1 norm of the estimated vector α [108].

• Greedy Pursuit: Iteratively optimize a sparse approximation by suc-

cessively identifying one or more components that produce the greatest

improvement in the approximation [121].

• Nonconvex optimization: Try to identify a stationary point by relaxing

the l0 problem to a related nonconvex problem [122].

• Brute-force: Search all the possible support sets [123].

• Bayesian techniques: Assume a prior distribution for the unknown coef-

ficients favoring sparsity. A maximum a posteriori estimator incorporating

the observation is developed. Then, determine a region of posterior mass

[124].

Convex relaxation based and greedy pursuit techniques are the preferred tech-

niques in the rapidly growing literature on CS theory.

The convex relaxation problem can be written as:

min
α

1

2
∥x−Ψα∥22 + γ∥α∥1 , (5.11)

where γ is a regularization parameter which effects the sparsity of the solution.

Typically large values produce sparser solutions. This optimization problem is

known as basis pursuit denoising (BPDN) [108],[125]. BPDN is also known as

follows in some contexts:

min
α

∥α∥1 s.t. ∥x−Ψα∥22 ≤ δ , (5.12)

where δ is a constant.

Another formulation based on the l1 relaxation is the Dantzig selector [116]:

min
α

∥α∥1 s.t. ∥ΨT(x−Ψα∥∞ ≤ β , (5.13)
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where β is an user-defined parameter. Similar to BPDN, Dantzig selector is a

convex relaxation method. However, different than the BPDN, which penalize

the l2 norm of residual x−Ψα, the Dantzig selector makes sure that the residual

x−Ψα is poorly correlated with all the atoms in the dictionary.

Greedy approaches estimate the support set Λ from the measurements x by

iteratively refining the current estimate for the vector α by updating one or

several coefficients that yield a considerable improvement in approximating the

signal. Having found a support set Λ, α can be estimated by using least-squares

(LS) as:

α̂ = Ψ†
Λx , (5.14)

and 0 elsewhere. Greedy techniques differ from each other in selecting the sup-

port set. Thresholding algorithm, which is the simplest one, computes correlation

of x with each atom in the dictionary and determines a support set Λ with in-

dices of the S atoms having the highest correlation. After that, (5.14) is used to

get the thresholding estimate of α.

Another very effective greedy algorithm is the orthogonal matching pursuit

(OMP) [66]. Table. 5.1, contains a mathematical flow of the OMP. Compu-

tationally most costly part of the OMP is the identification step [120] which

requires O(M ×N) number of multiplications for an unstructured dense matrix.

LS technique is used in the reconstruction step. For this purpose, QR factoriza-

tion of ΨΛk
, which has a cost of O(Mk) in the kth iteration, can be used. To

stop the algorithm, following listed criteria can be used:

• stop after a fixed number of iterations, k = S ,

• stop when the residual has a small enough magnitude, ∥rk∥2 ≤ ϵ .

Most important property of the OMP is that the algorithm never chooses the

same atom twice [115]. Therefore, stopping after S iterations guarantees the
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∥α̂∥0 = S. Many different greedy pursuit based algorithms have been proposed

in the literature [121],[126], [127], [128].

Table 5.1: Orthogonal Matching Pursuit (OMP)

- Input: x ∈ CM and Ψ ∈ CM×N

- Output: sparse vector α ∈ CN

1) Initialization: set Λ0 = ∅, the residual r0 = x and set counter k = 1

2) Determination: find a atom nk of Ψ, which is most strongly correlated

with the residual r as

nk = arg max
n

|⟨rk−1,ψn⟩|

Λk = Λk−1

∪
{nk}

3) Estimation: using the chosen atoms up to now, find the best

coefficients for approximating the signal.

αk = arg min
b

∥x−ΨΛk
b∥2

4) Iteration: update the residual:

rk = x−ΨΛk
αk

k = k + 1

repeat 2)− 4)

5) Output: return the vector α with components α(n) = αk(n)

for n ∈ Λk and α(n) = 0 otherwise.

Lastly, it would be very beneficial to mention so called oracle estimator that

is based on the known support set Λo and on the x. In this approach, Λo is

assumed to have been given by an oracle. Then the optimal estimate for α is

obtained by:

α̂o = Ψ†
Λo
x , (5.15)

and 0 on the complement of Λo. Here, Λo is the support set of oracle estimator

and ΨΛo is the subdictionary obtained from the columns of Ψ corresponding to

nonzero entries of α. Oracle estimator is the LS solution among all other vectors,

whose support coincides with the support of oracle. In practice, Λo is unknown,

therefore α̂o cannot be calculated. However, for the purpose of performance

comparison, one can use α̂o, whose mean-squared error (MSE) is [116]:

σ2Tr((ΨT
Λo
ΨΛo)

−1) . (5.16)
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In [129], it is presented that the MSE of oracle estimator equals that of the

CRLB.

5.2.3 Sensing Sparse Doubly Selective Multipath Chan-

nels

In this section, based on the virtual model presented in section (2.5), we will

model the sensing matrix or dictionary matrix. Firt of all, let’s write the discrete

time representation of the channel output given in 2.43 as:

xn =
K−1∑
k=0

P∑
p=−P

H(k, p)e
j2π p

Nb
n
sn−k n = 0, 1, . . . , Nb +K − 2 (5.17)

where Nb = TBW . Let’s define a Ňb = Nb +K − 1 length sequence of vectors

sn ∈ CK as:

sn = [sn sn−1 . . . sn−K+1]
T , n = 0, 1, . . . , Ňb − 1 (5.18)

where sγ = 0 for γ /∈ (0, 1, 2, . . . , Nb − 1). The K × 2(P + 1) channel matrix Ȟ,

each column of which represents the impulse response for a fixed Doppler shift,

is defined as

Ȟ =


H(0,−P ) . . . . . . H(0, P )

H(1,−P ) . . . . . . H(0, P )

... . . . . . .
...

H(K − 1,−P ) . . . . . . H(K − 1, P )


. (5.19)

Lastly, let ϱ ∈ C2P+1 be a Ňb-length sequence of phase vectors with elements

wNb
= ej2π/Nb :

ϱn =
[
wPnNb

w
(P−1)n
Nb

. . . w
−(P−1)n
Nb

w−Pn
Nb

]T
(5.20)
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where n = 0, 1, . . . , Ňb − 1. Channel output in (5.17) can be written as follows:

xn = sTnȞϱn (5.21)

= (ϱTn ⊗ sTn )h , n = 0, 1, . . . , Ňb − 1 (5.22)

where h = vec(Ȟ) ∈Nh is the channel coefficients vector. In a more compact

form, channel system of equations is

x = Ψh (5.23)

where Ψ is the Ňb ×Nh sensing matrix:

Ψ =


(ϱ0 ⊗ s0)

T

(ϱ1 ⊗ s1)
T

...

(ϱŇb−1 ⊗ sŇb−1)
T


. (5.24)

Sensing matrix Ψ can also be expressed as the concatenation of K blocks each

of which are Ňb × 2P + 1 dimensional matrices:

Ψ = [Ψ0 Ψ1 . . . ΨK−1] . (5.25)

If we have noise, Eq. (5.23) becomes:

x = Ψh+ n , (5.26)

where n is a zero-mean white Gaussian noise. In the following discussions, h is

treated as an unknown-deterministic vector.

Linear measurement model in (5.26) contains Nh unknowns and sensing ma-

trix Ψ is a full rank matrix. Therefore, without a prior sparsity assumption,

least squares solution of h is:

ĥ = (ΨHΨ)−1ΨHx . (5.27)

This solution is also the maximum likelihood estimate [130]. Clearly, we can

write the ĥ as [89], [119], [116]:

ĥ = h+ (ΨHΨ)−1ΨHn (5.28)
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and the mean squared error of the LS estimator is bounded by the following

equation.

E∥ĥ− h∥22 = E∥(ΨHΨ)−1ΨHn∥22 (5.29)

= σ2tr
(
(ΨHΨ)−1

)
(5.30)

≥ σ2Nh . (5.31)

If we have a prior sparsity information, oracle estimator solution of h is:

ĥ = (ΨH
Λo
ΨΛo)

−1ΨH
Λo
x . (5.32)

Similarly, the mean squared error of the oracle estimator is bounded by:

E∥ĥ− h∥22 = σ2tr
(
(ΨH

Λo
ΨΛo)

−1
)

(5.33)

≥ σ2S . (5.34)

If we compare the results presented in 5.31 and 5.34, conventional LS estimator

shows poor performance in the identification of sparse multipath channels.

As it is stated before, although constructing an oracle estimator is practi-

cally impossible, there exists efficient algorithms that provide much more better

estimates than the conventional LS estimator and have proven performance guar-

antees in sparse multipath channels. In the following, we will give two theorems

that quantify the MSE upper bounds for Dantzig selector and OMP techniques,

respectively.

Theorem 1 ([116], [119]): Assume that h is an unknown deterministic vector

with ∥α∥ = S and x = Ψh where n is a Gaussian random vector with mean 0

and covariance σ2I. Assume that

S < 1 +
1

µ(Ψ)(1 +
√
2)

(5.35)

and the user defined parameter of the Dantzig selector (5.13) is

β = σ
√
2(1 + ε)logNh (5.36)
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for some constant ε > 0. Then, with probability exceeding

1− 1

N ε
h

√
πlogNh

, (5.37)

the obtained solution ĥ satisfies

∥ĥ− h∥22 ≤ 2ρ2(1 + ε)Sσ2logNh , (5.38)

where ρ is given by:

ρ =
4

1− µ(Ψ)((1 +
√
2)S − 1)

. (5.39)

�

Although, the solution given by Dantzig selector cannot reach the oracle esti-

mator, with very high probability it gives MSE within 2ρ2(1+ε)logNh multiplied

by the MSE bound of oracle estimator given in (5.34).

Now, we provide error bounds for the greedy algorithm OMP.

Theorem 2 [119]: Assume that h is an unknown deterministic vector with

∥α∥ = S and x = Ψh where n is a Gaussian random vector with mean 0 and

covariance σ2I. Define

|hmin| = min
i∈Λo

|hi| , (5.40)

|hmax| = max
i∈Λo

|hi| . (5.41)

Assume that

2σ
√
2(1 + ε)logNh ≤ |hmin| − (2S − 1)µ(Ψ)|hmin| , (5.42)

for some constant ε > 0. Then with probability exceeding

1− 1

N ε
h

√
π(1 + ε)logNh

(5.43)

the obtained solution ĥ of the OMP satisfies

∥ĥ− h∥22 ≤
2(1 + ε)

(1− (S − 1)µ(Ψ))2
Sσ2logNh . (5.44)
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The MSE guarantee given in (5.44) is better than the one given in Theorem-

1. Analysis given in the literature suggest that the OMP can outperform l1-

based techniques when the entries of h are large compared with noise. However,

when the noise level increases, the performance of the OMP deteriorates [119].

Moreover, we provide another theorem which gives the relation between sparsity

level and coherency for guaranteed recovery.

Theorem 3 [131]: For a general dictionary Ψ, every S-sparse signal h with

S <
1

2

(
1

µ(Ψ)
+ 1

)
, (5.45)

is the unique sparsest representation and is guaranteed to be recovered by OMP

when observing

x = Ψh. (5.46)

As we noticed before, coherency of a dictionary is crucial in representing

known data. Atoms in the dictionary should not resemble each other. Namely,

the sequence which is used to construct the dictionary should have good inco-

herency properties and constructed dictionary should have a coherency value

close to the lower bound given in (5.5). In the last part of this section, we will

present a candidate channel probing sequence called Alltop sequences, which en-

able us to construct dictionaries with very good incoherence properties [132].

Alltop sequences have been used effectively in several different areas [133], [134].

For some prime number Ňb ≥ 5, Alltop sequence, sA = (sb)
Ňb−1
b=0 , has the following

elements

sb =
1√
Ňb

e2πjb
3/Ňb . (5.47)

Considering that the ∥sA∥2 = 1 and the dictionary structure in (5.25), within

the same block we have the following property:∥∥⟨ψk,i, ψk,i′ ⟩∥∥ = 0, if i ̸= i
′

(5.48)∥∥⟨ψk,i, ψk,i′ ⟩∥∥ = 1, if i = i
′

(5.49)
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For different blocks, k ̸= k
′
, we have the following property:

∥∥⟨ψk,i, ψk′ ,i′ ⟩∥∥ =
1√
Ňb

, (5.50)

for all i, i
′
= 0, . . . , K − 1. In order to emphasize this desirable feature of Alltop

sequences, assume that there exists the same number of delay and Doppler bins

as Ňb and the resulting dictionary is Ψ ∈ CŇb×Ň2
b . By using (5.5) we know that

the lower coherency bound is 1√
Ňb+1

. Therefore, using Alltop sequences and for

large values of Ňb, it is clearly seen that this bound can be practically achieved.

5.3 Off-Grid Problem in Sparse Signal Recov-

ery

Using the theory of CS and sparse approximation theory, new training based

techniques have been proposed for sparse multipath channels. These techniques

exploit the sparse structure of the multipath channel and provide much better

performance than the least-squared based approaches [55], [57]. By using virtual

representation of physical multipath channels, the time frequency response of

sparse multipath communication channels are modeled and performance of some

sparse approximation techniques are discussed [55], [54]. In [56], [57], matrix

identification problem, where the matrix has a sparse representation in some

basis, is investigated. Compressed sensing radar providing much better time

frequency resolutions over classical radar by exploiting the sparse structure is

introduced in [57].

General assumption used in all of these sparse multipath/target detection

techniques is that all of the multipath components fall on the discrete grid points.

Dictionary matrix Ψ is typically constructed based on the assumption of all the

possible multipath components are on-grid points. In other words, each atom in

the dictionary corresponds to a signal created with a delay-Doppler pair, which
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Figure 5.1: On-grid and off-grid multipath components on delay-Doppler domain.

fall onto a discrete grid point. However, this situation is practically impossible

as the multipath parameters are unknown. In Fig. 5.1, multipath components

that fall on the discrete grid and off-grid points are illustrated. Therefore, the

true grid, which is possibly irregular, cannot be known beforehand. This so

called off-grid problem, results in a mismatch of the dictionary and severely

degrades the performance of techniques that exploit sparsity. If there exists off-

grid multipath components, then we won’t be able to represent the received signal

by using the dictionary Ψ which is created based on the on-grid assumption.

Furthermore, such methods exhibit an unstable behavior as previously shown in

theoretical studies on dictionary errors. Therefore, atoms of the dictionary Ψ

should be properly modified to sparsely represent the receiver output. In several

papers, the problem is pointed out and very simple grid refinement approaches

are presented [62], [63]. In the vicinity of the multipath components grid is

iteratively refined to match with the exact location of the off-grid component.

The major drawbacks of these approaches are that this grid refinement is a costly

procedure and secondly addition of new atoms to the dictionary adversely affects
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the recovery guarantees. Therefore, to the best of our knowledge, there exist no

viable solution to the off-grid problem in the existing literature up to now.

Negative effects of the off-grid problem can be verified on a four-path scenario.

In this scenario we used length 53 Alltop sequence and OMP as a recovery tech-

nique. In Fig. 5.2, all on-grid multipath components are recovered. However, as

in Fig. 5.3, if we perturb the delay-Doppler location of each multipath compo-

nent in the vicinity of the on-grid point, OMP fails to recover the two paths and

makes estimation error in recovery of other two paths. As we pointed out, this

result is due to the fact that there exist no atom in the dictionary correspond-

ing to the off-grid multipath components. Detailed simulation results on off-grid

problem will be provided in section 5.5.

In the next section, details of the proposed technique to alleviate the off-grid

problem by using particle swarm optimization and OMP will be presented.
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Figure 5.2: True on-grid and estimated position of each multipath component is
illustrated with red circles and black crosses, respectively.
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Figure 5.3: True off-grid and estimated position of each multipath component is
illustrated with red circles and black crosses, respectively.

5.4 Sparse Approximation on Cross Ambiguity

Function Surface

In this section, we will propose a novel technique to overcome the so called off-

grid problem in sparse multipath channel modeling. In a multipath environment,

as given in Eq. (2.43) the receiver output signal is the superposition of delayed,

Doppler-shifted and scaled versions of the transmitted signal. In time domain,

there exists a considerable overlap between the signals received from different

paths. Therefore, similar to the process discussed in Chapter-4 it is desirable to

have a preprocessing, transforming the receiver output signals, that enables lo-

calization the multipath signal components and reduction of the significant over-

lapping of components in the time domain. Since typical communication signals

are phase or frequency modulated, with large time-bandwidth products, as in

radar detection their CAFs are highly localized in the delay-Doppler domain.
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Therefore, the transformation of the signal outputs to the CAF domain localizes

different multipath signals in clusters to their respective delay and Doppler cell.

To detect the existing multipath signals, a constant false alarm criterion rate

(CFAR) based adaptive threshold can be set.

Having completed the detection, around each detected delay- Doppler cell,

a windowed set of contributing grid points are determined to be perturbed and

used for multipath identification. To illustrate this procedure, consider a syn-

thetic multipath channel with 6 distinct multipath components. As shown in

Fig. 5.4, the CAF between the received signal and the transmitted signal lo-

calizes the contribution of different path components in delay-Doppler domain.

This localization enables us to determine corresponding grid points that will be

perturbed to be able to detect multipath components that reside on possible

off-grid locations.

Signal flow diagram of the proposed approach is presented in Figs. 5.5, 5.6.

Note that, here we assume CAF peak detection has provided C clusters of paths

in delay-Doppler domain and the number of paths in cluster c is dc for 1 ≤ c ≤ C.

For example as shown in Fig. 5.4, 6 paths are localized in C = 2 clusters and

each cluster consists of 3 paths. Having identified the location of each cluster,

individual PSO searches are conducted to perturb the assumed discrete set of

values that are in the support of each cluster, separately.

Having obtained the optimized dictionary matrix, OMP is used as a sparse

reconstruction method to estimate delay-Doppler parameters of multipaths. Fol-

lowing PSO searches and multipath reconstruction in each cluster, effects of the

estimated multipath components are eliminated for a better estimation in the re-

maining clusters. Since, optimization in each cluster has to be performed multiple

times, PSO iterations in each cluster need not to be pursued until convergence
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Figure 5.4: 6 Alltop sequences in delay-Doppler domain localized in 2 clusters
each of which has 3 paths.
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Figure 5.5: Signal flow diagram of the algorithm.

is established. Therefore, by cycling over the identified set of clusters, the pro-

posed technique iteratively provides estimates for each path in each cluster. In

the following, details of the proposed technique for each cluster is presented.
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Figure 5.6: Signal flow sub-block diagram of the parameter estimation in each
cluster using PSO and OMP block in Fig. 5.5

The optimization problem associated with the cth cluster makes use of the

following fitness function:

fc(Ψc(φ(Gc), η),hη) = ||ŷc(t, η)−Ψc(φ(Gc), η)hc(η)||
2
2 , (5.51)

where η represents the iteration index, φ ∈ RN2
is the vector containing all

possible discrete delay-Doppler values:

φ = [φ11, ..., φ1N , φ21, ..., φNN ] , (5.52)

φ1N = [τ1, νN ], Gc is the set containing index of grid points (each grid point

corresponds to a delay-Doppler value pair) inside the cth cluster, ŷc(t, η) is the
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Figure 5.7: Equally spaced P + 1×K discrete on-grid points on delay-Doppler
domain. 2 clusters of on-grid points are selected.

estimated output signal and Ψc is the sub-dictionary created using the columns

of dictionary matrix Ψ that are in the set Λc which contains column index of

vectors of Ψ, that are in support of cluster c:

Ψc = (ψi : i ∈ Λc) (5.53)

In Fig. 5.7, two clusters of on-grid points are shown. For each cluster, during

PSO cycles, location of these grid points are changed to update the corresponding

atoms that belong to the cluster. With these definitions, φ(Gc) holds the delay-

Doppler pairs that will be perturbed and Ψc(φ(Gc), η) holds the vectors that are

created with these perturbed delay-Doppler pairs during the PSO cycles at ηth

iteration. Estimated output signal ŷη is found as:

ŷc(t; η) = x(t)−
C∑

γ=1,γ ̸=c

Ψ̂γ(φ(Gγ, η))ĥc(η) . (5.54)
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Figure 5.8: On-grid points that reside in a cluster are zoomed. Boundaries
around each on-grid point is marked with dash lines. Crosses represent particles.
In each boundary same amount of particles exist.

In the first iteration, η = 1, for the first cluster, ŷc(t; η) is initialized as

ŷc(t; η) = x(t). Thus, the channel parameter estimates and proper sub-dictionary

to represent off-grid multipaths for the cth cluster at ηth iteration are obtained

by minimizing the following optimization problem:

Ψ̂c(φ(Gc, η)), ĥc(η) = arg min
Ψc,hc

fc(Ψc(φ(Gc), η),hc(η)) (5.55)

Channel parameters and sub-dictionary corresponding to the cth cluster are es-

timated using swarm of particles in a |G|-dimensional search space. As shown in
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Figure 5.9: One snapshot coordinates of particles z, (×) and globalBest(pg, ⋆)
distributed on the delay-Doppler domain. Particles swarm to the globalBest
position.

Fig. 5.8, at the beginning of the PSO cycles, particle locations (each of which is

a solution candidate) are randomly initialized as follows:

zl = φ(Gc)+ U(−∆g/2,∆g/2) (5.56)

and updated according to Eq. (A.1) in each PSO cycle. Here, U represents

uniform random distribution and ∆g is the spacing between discrete grid points.

Location, zl ∈ R|G|, of each particle in the |G|-dimensional search space is a

candidate off-grid location solution. Fig. 5.9 illustrates the search of particles
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Figure 5.10: Position update of each grid point, that reside in a cluster, to the
estimated new off-grid position.

around each discrete grid point and the convergence of particles to a possible

solution. In each PSO cycle, following linear system of equation:

ŷc(t; η) ≈ Ψ̂c(φ(Gc, η)) hc(η) , (5.57)

is solved using the OMP in a greedy fashion and very efficiently by minimizing∥∥∥ŷc(t; η)− Ψ̂c(φ(Gc, η))hc(η)
∥∥∥2
2
, (5.58)

in order to compare the performance of each particle. Equation (5.55) is eval-

uated using the location values of each particle and the location that gives the

best fitness chosen as the globalBest. In Fig. 5.10, it is shown that, in the

end of PSO cycles, initial on-grid points are updated based on the minimization

results and new off-grid points are estimated to better support existing off-grid
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multipath components. Having estimated the parameters of each multipath com-

ponent in the cth cluster, effects of these multipath components are eliminated

as in (5.54) from the receiver output for a better estimation in remaining clus-

ters. Iterations, η, continue until convergence is established or a preset number

of iterations is reached.

5.5 Simulation Results

In this section, we will provide numerical results to clarify the performance gains

obtained by exploiting the clustered structure and handling the off-grid prob-

lem. In all simulations, length-53 Alltop sequences are used as a probing signal

and OMP is used as a sparse recovery technique. 500 Monte Carlo simulations

are conducted for each scenario. Number of multipath components, in another

words sparsity level S is changed in between 2−12. It is assumed that there exist

two multipath clusters exists on the delay-Doppler domain. Location of multi-

path components in two separate clusters on delay-Doppler domain are shown in

Fig. 5.11. In each Monte Carlo realization, cluster locations are preserved but

multipath component locations are randomly changed.

Firstly, let’s observe the effect of off-grid problem in terms of recovery

percentage for different sparsity S = 2, ..., 12 and perturbation levels κ =

0, 0.2, 0.3, 0.4, 0.5. On-grid delay Doppler location of each multipath components

is perturbed as follows:

τi = τi + U(−κ, κ)/∆τ (5.59)

νi = νi + U(−κ, κ)/∆ν . (5.60)

Results obtained by OMP are shown in the Fig. 5.12. Note that, for S ≤ 4

we have a recovery rate of %100 when all multipath components are on-grid as

suggested in Theorem 3. However, when we perturb the delay-Doppler location of
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Figure 5.11: Location of on-grid multipath components in two separate clusters
on delay-Doppler domain.

each multipath randomly within a limit κ, performance degrades severely. Since

we cover all probable delay-Doppler parameter pairs, most realistic scenario is

when κ = 0.5. Even for sparsity level smaller than 4, S ≤ 4, we have an

approximately %30 decrease in recovery percentage.

In the following experiments, we will provide results obtained by using pro-

posed technique for various different settings. In the first experiment, we will

look for how much we can improve recovery ability with minimum resources.

In other words, using minimum number of particles, PSO cycles and EM iter-

ations. Choose number of particles as 2, number of PSO cycles as 10, 30, 50,

and number of EM iterations η = 1 and κ = 0.5. All simulations are conducted

on an HP Desktop with Intel Core-2 2.13 GHz processor. Parameter estimation

time of standart OMP technique is recorded as 0.012 sec and PSO-OMP with
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Figure 5.12: Recovery percentage the OMP technique for various sparsity and
perturbation levels.

#particles = 2, η = 1, PSO cycles = 10 is recorded as 0.3 sec for this spec-

ified scenario. In Figs. 5.13 performance of PSO-OMP with #particles = 2

and η = 1 is compared with standart OMP and results are presented in terms

of recovery percentage(%), rMSE and rMSE of detected multipath components.

Perturbation limit κ is set to 0.5. 10, 30 and 50 PSO iterations are conducted.

Even for 10 PSO iterations, PSO-OMP outperform OMP and solves the off-grid

problem. For example, it seen that, for sparsity level 10, PSO-OMP with 10 PSO

iterations increase the recovery %20. Moreover it is obvious that performance is

increased with higher number of PSO iterations due to the increased chance of

converging the global solution. In the second set of results that are presented

in Figs. 5.14, we provide the performance improvements in recovery percentage,

rMSE and rMSE of detected multipaths when we have 2 EM iterations instead

of 1 EM iteration. As expected, since we better isolate the effect of multipath

clusters to each other with addition of second EM iteration, we obtained better

results. For sparsity level 6, recovery percentage is increased approximately %15,

with addition of 1 EM iteration.
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Figure 5.13: Recovery percentage, rMSE and rMSE of detected multipath com-
ponents of OMP and PSO-OMP(number of EM iterations is 1 and number of
particles is 2, ) for various sparsity levels and number of PSO iterations, respec-
tively. Perturbation limit, κ = 0.5.
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Figure 5.14: Recovery percentage, rMSE and rMSE of detected multipath compo-
nents of OMP, PSO-OMP(number of EM iterations is 1 and number of particles
is 2, ) and PSO-OMP(number of EM iterations is 2 and number of particles is 2,
) for various sparsity levels and number of PSO iterations, respectively. κ = 0.5.
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In the third set of results we tested the performance of the algorithm by

using more resources. Namely, number of particles is increased to 4 and number

of PSO iterations are increased to 80. It is seen in Figs. 5.15 that performace

is increased. For sparsity level 6, recovery percentage is increased approximately

%10.

We also analyzed the error progress curves of EM and PSO iterations. In

Fig. 5.16, the rMSE between measured and estimated receiver outputs obtained

with PSO-OMP, are shown for 20 EM iterations values and for different sparsity

levels. Number of PSO iterations and number of particles are chosen as 30, 2,

respectively. The rMSE is monotonically decreases and saturates around after

20 iterations. Sharp decreases occur in between 1th− 4th iterations. However, as

proofed in previously conducted experiments, even for 1 EM iteration, off-grid

problem is successfully handled. In Fig. 5.17, normalized error versus number

of PSO iterations curve obtained with PSO-OMP is shown. Number of EM

iterations and number of particles are chosen as 2, and 2, respectively. Similar

to the curve in Fig. 5.16, the rMSE is monotonically decreases and saturates

around after 100 iterations. Meaning that, particles converged to a point and

movement of particles does not change the estimation error anymore. Note from

the results shown in Fig. 5.13 that only 10 PSO iterations are enough to get

good results. Finally, similar to the results shown in Fig. 5.12, for various

perturbation limit values performance of the PSO-OMP is tested. Number of

EM iterations, number of particles and number of PSO iterations are chosen as

1, 2, 10, respectively. As expected, when we lower the perturbation limit we get

better results. This is due to the fact that, since particles firstly search for the

global optimum in the very vicinity of the on-grid point, they found the correct

off-grid point rapidly and inrush onto the point.
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Figure 5.15: Recovery percentage, rMSE and rMSE of detected multipath compo-
nents of OMP, PSO-OMP(number of EM iterations is 2 and number of particles
is 2, ) and PSO-OMP(number of EM iterations is 2 and number of particles is 4,
) for various sparsity levels and number of PSO iterations, respectively. κ = 0.5.
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Figure 5.16: rMSE values for various EM iteration values and for various sparsity
levels obtained with PSO-OMP. Number of particles is 2 and number of PSO
iterations is 30.
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Figure 5.17: Normalized error during PSO iterations obtained with PSO-OMP.
Number of particles is 2 and number of EM iterations is 2.
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Figure 5.18: Recovery percentage, rMSE and rMSE of detected multipath com-
ponents of PSO-OMP(number of EM iterations is 1 and number of particles is 2,
number of PSO iterations is 10 ) for various sparsity levels and κ values. κ = 0.5.
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5.6 Conclusions

Based on sparse approximation tools and compressed sensing theory, a new ap-

proach for identification of sparse multipath channels is presented. A general

assumption used in all of the sparse multipath channel estimation techniques

is that the all multipath components fall on the grid points, which is practi-

cally impossible as the target parameters are unknown. Performance of standard

compressed sensing formulations based on discretization of the multipath chan-

nel parameter space degrade significantly when the actual channel parameters

deviate from the assumed discrete set of values. To solve this so called ”off-grid”,

we proposed a novel algorithm that can also be used in applications other than

the multipath channel identification. The proposed algorithm, firstly makes use

of the cross ambiguity function calculation and transform the receiver output to

the delay-Doppler domain for efficient exploitation of the delay-Doppler diversity

of the multipath signals. Then by detecting the candidate multipath clusters,

the original channel identification problem is reduced to channel identification

problems over the identified clusters in the delay-Doppler domain. After that,

on-grid points that reside in each cluster are perturbed by using PSO and mul-

tipath components are recovered by using OMP in a greedy fashion. Superior

performance of the proposed algorithm verified on various test scenarios.
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Chapter 6

Conclusions and Future Work

In this thesis, new array signal processing techniques are developed for modeling

multipath communication channels based on CAF calculation, swarm intelligence

and CS theory. First proposed technique called as CAF-DF calculates CAF on

each antenna output to detect the presence of multipath signals and iteratively

estimates DOAs, time-delays and Doppler shifts of each impinging onto an an-

tenna array. The key success behind the CAF-DF technique is its ability to

separate multipath components on delay-Doppler domain and to suppress the

sidelobe interference effects between each multipath component. Superior per-

formance of the CAF-DF technique is verified on real ionospheric data.

Secondly developed technique named as particles swarm optimization cross

ambiguity function (PSO-CAF), transforms the receiver array outputs to delay-

Doppler domain by integrating CAF calculation. By this way, diverse structure of

the multipath environment is revealed for accurate and reliable channel modeling.

PSO is used to estimate parameters of each multipath component in each cluster

that is detected on the delay-Doppler surface by an amplitude thresholding.

In the third developed technique, key ideas from CS theory, swarm intelli-

gence and CAF computation are combined in the estimation process. Standard
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CS based sparse channel modelling techniques assume that the multipath channel

parameters reside on a predefined set of discrete values. However, in practice ac-

tual channel parameters deviate from the assumed discrete set of values and this

so called off-grid problem degrade the performance of the algorithms severely. To

overcome this problem, a new technique is presented by using PSO. Performances

of the developed techniques are tested successfully on various scenarios.

CS theory and sparse representations have attracted many researchers from

wide range of disciplines in last decade and changed the way information is rep-

resented. However, there still exists many open practical problems especially in

array signal processing and channel estimation waiting to be answered such as

the off-grid problem that we have proposed a candidate solution in this thesis.

For example, faster, adaptive and robust to noise techniques that can handle

off-grid scenarios can be developed and tested for various sparse recovery tools.

Secondly, new training signal variants can be generated based on the distribution

of multipath clusters on delay-Doppler domain and coherency of sensing dictio-

nary to further improve the performance of current recovery techniques in noisy

practical multipath scenarios. Lastly, different popular variants of standard PSO

and other swarm intelligence based approaches can be analyzed and compared

with each other in off-grid problem.
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APPENDIX A

Particle Swarm Optimization

(PSO)

Particle swarm optimization (PSO) is an evolutionary stochastic optimization

algorithm, developed by Kennedy and Eberhart in 1995 [35]. PSO has been

shown to be very effective in optimizing challenging multidimensional, nonlinear

and multimodal problems in a variety of fields such as signal processing [38],

communication networks [39], biomedical [40], [41], control [42], [43], robotics

[44], power systems [45], electromagnetics [46], image and video analysis [47]. It

was inspired by the social behavior of animals, specifically the ability of groups

of animals to work collectively in finding the desirable positions in a given area.

Fish schooling and bird flocking are two very good examples. PSO algorithm

operates on a set of solution candidates that are called as swarm of particles.

The particles travel through a multidimensional search space, where the position

of each particle is adjusted based on a combination of its individual best position

and the best position of the whole particle set ever visited. A few key points

about PSO should be stated here to clarify the advantages of it over Newton-

type techniques: 1) less sensitive to initialization, 2) better chance to find global

optimum and 3) provides more accurate estimates. Moreover, compared to other
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global optimization techniques, such as genetic algorithm (GA) [30], some supe-

rior properties of PSO can be pointed out that: 1) faster in convergence; 2) easier

to implement, simpler in concept; 3) can be adapted to different application do-

mains and hybridized with other techniques; 4) interaction between particles

is defined in such a way that logic behind the ideal social communication in a

community is preserved and diversity of the swarm is maintained through the

solution search; 5) better memory management. The components of the PSO

setup can be itemized as follows:

• A set of parameters and their corresponding search intervals: For the mul-

tipath channel identification, the parameters are the delay, Doppler shift,

elevation and azimuth angle of arrivals of each path.

• A fitness function is used to compare the performance of each particle in

the swarm: For the multipath channel identification log-likelihood function

can be used for this purpose.

• An update strategy for reposition of particles in the swarm.

Although there are variants in the literature, the following stages describes the

general dynamics of the PSO.

1. Initialization: Each particle in the swarm starts searching for the optimal

position in the solution space at its own random location with a velocity

that is random both in its direction and magnitude. This first location is

recorded as their personalBest for each particle. globalBest is initialized

as the location of the particle that has the best fit.

2. Coordinate update: Each particle travels through the multidimensional

search space, where the position and velocity of each particle is ad-

justed according to certain update rules at each time step. Each parti-

cle l consists of three vectors: its location in K-dimensional search space
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zl = [zl1, zl2, ..., zlK ], its historicaly best position pl = [pl1, pl2, ..., plK ] and

its velocity υl = [υl1, υl2, ..., υlK ]. In each time step, using the positions of

the particle, a fitness function is evaluated. If this fitness value is greater

than the value corresponding to personalBest for that particle, or glob-

alBest for the swarm, then these locations are updated with the current

location. The velocity and the location of each particle is updated accord-

ing to the relative positions of personalBest (pl) and globalBest (pg)

by the following equation:

υlk = ϑ (υlk + c1ϵ1 (plk − zlk) + c2ϵ2 (pgk − zlk))

zlk = zlk + υlk , (A.1)

where c1 is so called the cognitive factor that adjusts how much the par-

ticle is influenced by the historical best position of his own, c2 is so called

the social factor that adjusts how much the particle is influenced by the

historical best of the swarm, ϵ1 and ϵ2 are two uniformly distributed ran-

dom numbers. ϑ is the constriction factor, that balances global and local

searches and defined as [100]:

ϑ =
2∣∣2− ς −
√
ς2 − 4ς

∣∣ , (A.2)

where ς = c1 + c2. Recommended values for these constants are c1 = c2 =

2.05 and ϑ = 0.72984.

3. Convergence check: The optimization process is repeated starting at step

2) until convergence is established or the maximum allowed number of

iterations are reached.
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Figure A.1: Flow chart of the particle swarm optimization.
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Figure A.2: Location update from location 1 to location 2 of a particle illus-
trated with ×. Particles (×) accelerated toward the location of the best solution
globalBest (⋆), and the location of their own personal best personalBest, in
a 2-D parameter space.
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APPENDIX B

Matched Filter and Ambiguity

Function

A matched filter can be defined as a type of filter matched to the known or

assumed characteristics of a target signal, designed to optimize the detection of

that signal in the presence of noise [23]. In the case of white additive noise, the

highest SNR at the detector is obtained when the received signal is correlated

with the replica of the transmitted signal. In this section, firstly complex en-

velopes of the narrow bandpass signals, which make the design of the matched

filter simple, will be described. After that, basics of the matched filter and how

we get to the ambiguity function will be discussed.

Narrowband bandpass signals can be represented in several ways. The sim-

plest one is

s(t) = g(t) cos[ωct+ Φ(t)] (B.1)

where Φ(t) is the instantaneous phase and g(t) is the envelope of s(t). Second

form is

s(t) = gc(t) cos(ωct)− gs(t) sin(ωct) (B.2)
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Figure B.1: IQ Detector.

where gc(t) and gs(t) are the in-phase and quadrature baseband components,

respectively, and represented as follows

gc(t) = g(t) cos(Φ(t)) (B.3)

gs(t) = g(t) sin(Φ(t)) . (B.4)

An I/Q detector, depicted in Fig. B.1 is used to eliminate the in-phase I and

the quadrature Q components using a low-pass filter which discards the high

frequency terms. A third form of a narrow bandpass signal is

s(t) = Re{ue(t) exp(jwct)} (B.5)

where ue(t) is called the complex envelope of the signal s(t) and is defined as

ue(t) = gc(t) + jgs(t) . (B.6)

The angular frequency wc is called as the carrier frequency and it is significantly

larger than the bandwidth of the baseband signal. The fourth and the most

general form of a narrow bandpass signal is

s(t) =
1

2
ue(t) exp(jwct) +

1

2
u∗e(t) exp(−jwct) . (B.7)

Now we can get into the motivation and derivation of the matched filter and the

ambiguity function.
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Matched filters can be designed for both baseband and bandpass real signals.

In the following derivations, a filter matched to the complex envelope of the

signal will be considered. In Fig. B.2, the input signal to the filter is the s(t)

in additive white gaussian noise with a two-sided power spectral density of N0/2

[23]. Impulse response of the filter is h(t) and the frequency response is H(w).

The objective here is to find a h(t), which yields the maximum output SNR at a

specific t0 when we decide on the presence or absence of s(t) in white noise. The

mathematics of this objective is maximizing(
S

N

)
out

=
|so(t0)|2

n2
o(t)

. (B.8)

Assuming S(w) is the Fourier transform of the s(t), one can write the output of

the matched filter at t0 as

so(t0) =
1

2π

∫ ∞

−∞
H(w)S(w)ejwt0dw (B.9)

The mean-squared value of the noise is

n2
o(t) =

N0

4π

∫ ∞

−∞
|H(w)|2dw (B.10)

If we substitute (B.9) and (B.10) into (B.8) output SNR becomes

(
S

N

)
out

=

∣∣∣ ∫ ∞

−∞
H(w)S(w) exp(jwt0)dw

∣∣∣2
πN0

∫ ∞

−∞
|H(w)|2dw

. (B.11)

Using the Schwarz inequality, (B.11) can be rewritten as(
S

N

)
out

≤ 1

πN0

∫ ∞

−∞
|S(w)|2dw =

2E

N0

(B.12)

where E is the energy of the signal:

E =

∫ ∞

−∞
s2(t)dt =

1

2π

∫ ∞

−∞
|S(w)|2dw (B.13)
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The equality in the above, Schwarz upper bound can be achieved by the following

filter response which is the matched filter:

H(w) = KS∗(w)e−jwt0 . (B.14)

Taking the inverse fourier transform, impulse response of the filter reveals as

h(t) = Ks∗(t0 − t) , (B.15)

meaning that delayed mirror image of the conjugate of the signal is impulse

response of the matched filter. Using this configuration, at t = t0, one can

obtain a maximum output SNR value of 2E/N0. This result is interesting in the

sense that, maximum SNR at the output of a matched filter is only a function

of the signal energy but not its shape.

Let’s now investigate a filter matched to a narrowband bandpass signal. If

we use the forth form of s(t), given in (B.7), in (B.9) we get the equation below:

so(t) =
K

4

∫ ∞

−∞

[
ue(τ)e

jwcτ + u∗e(τ)e
−jwcτ

]
.
{
u∗e(τ − t+ t0)e

−jwc(τ−t+t0) + ue(τ − t+ t0)e
jwc(τ−t+t0)

}
dτ . (B.16)

After straightforward simplifications, so(t) can be obtained as:

so = Re

([
1

2
Ke−jwct0

∫ ∞

−∞
ue(τ)u

∗
e(τ − t+ t0)dτ

]
ejwct

)
. (B.17)

From this long equation, we can separate out a new complex envelope:

uo(t) =
1

2
Ke−jwct0

∫ ∞

−∞
ue(τ)u

∗
e(τ − t+ t0)dτ , (B.18)

and in the end we obtain the output of the matched filter as

so(t) = Re
{
uo(t) exp(jwct)

}
. (B.19)

This equation tells us that the output of a filter matched to a narrowband band-

pass signal has a complex envelope uo(t) obtained by passing the complex en-

velope ue(t) of the narrowband bandpass signal through its own matched filter.
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Therefore, in applications where narrowband bandpass signals used, it is suffi-

cient to work with the complex envelope u(t) of the signal and its matched filter

output uo(t). Once uo(t) is obtained, so(t) could be found by (B.19).

The above derivation of the matched filter ignored the potential Doppler shift

on the received signals. However in wireless communication, when the receiver is

moving relative to the transmitter or the received waves bounced off from moving

objects, the received signal suffers a Doppler shift. When the Doppler shift is not

known, performance of the receiver that makes use of a matched filter matched

to the transmitted signal may significantly degrade. Now let’s modify the input

complex envelope with a Doppler shift as below:

ud(t) = ue(t) exp(j2πνt) . (B.20)

In order to find the output complex envelope we replace the first ue(t) in (B.18)

by ud(t) and choose t0 = 0, K = 1 yields a function carrying both doppler shift

and time information:

uo(t, ν) =

∫ ∞

−∞
u(τ) exp(j2πντ)u∗(τ − t)dτ . (B.21)

Another form of the equation above is the well-known ambiguity function and

given as

χue,ue
(τ, ν) =

∫ ∞

−∞
ue(t)u

∗
e(t− τ)ej2πνtdt . (B.22)

The ambiguity function (AF), characterizes the output of a matched filter

when the input signal is delayed by τ and Doppler shifted by ν. This function

was first introduced by Woodward in 1953 and found useful in wide variety of

applications. Moreover, symmetrical cross-ambiguity function can be written as:

χx,ue
(τ, ν) =

∫ ∞

−∞
x
(
t+

τ

2

)
u∗e

(
t− τ

2

)
e−j2πνtdt (B.23)

Let’s now mention some of the important properties of AF. If we assume that

the energy E of ue(t) is normalized to unity, maximum value of the ambiguity
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ν

τ

Figure B.3: Ideal ambiguity function;
∣∣χ(τ, ν)

∣∣2 = δ(τ, ν).

function occurs at the origin and equals to one. We can formalize it as∣∣χ(τ, ν)
∣∣ ≤ ∣∣χ(0, 0)

∣∣ = 1 . (B.24)

Total volume under the normalized ambiguity surface equals unity, independent

of the signal waveform:∫ ∞

−∞

∫ ∞

−∞

∣∣χ(τ, ν)
∣∣2dτdν = 1 . (B.25)

These two properties states that, if one try to squeeze the AF to a narrow peak

at the origin, that peak cannot exceed a value of one and the volume squeezed

out of that peak must reappear somewhere else [98]. Therefore, the behavior of

the ambiguity diagram indicates that there have to be trade-offs made among

the resolution, accuracy, and ambiguity. Thirdly, AF is symmetric with respect

to the origin; ∣∣χ(−τ,−ν)
∣∣ = ∣∣χ(τ, ν)

∣∣ (B.26)

which suggests that it is sufficient to study only two adjacent quadrant of the

AF.

Although it is not realistic, the “ideal” ambiguity diagram would consists

of a single infinitesimal thickness peak at the origin and be zero everywhere

else, as shown in Fig. 2.5. This figure tells us that we have no ambiguities in

range or doppler frequency. Time delay and/or frequency could be determined

simultaneously to as high a degree of accuracy as wanted.
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Figure B.4: 2D view of the ambiguity function for a single pulse of width τp.

Usually two dimensional plots of ambiguity diagrams are used to gather in-

formation. In Fig. B.4, two dimensional representation of the ambiguity diagram

for a single unmodulated pulse obtained by gating a sinusoid signal of width τp

is given. Black shaded regions indicate that
∣∣χ(τ, ν)

∣∣2 is large and gray regions

indicate that
∣∣χ(τ, ν)

∣∣2 is small. This figure says that if τp is large corresponding

to a long pulse, we have poor delay and good doppler accuracy. The opposite

occurs for a short pulse. The short pulse is doppler tolerant, meaning that the

output from a filter matched to a zero doppler shift will not change much when

there is a doppler shift. However, the long pulse is not doppler tolerant, and

produce reduced output for a doppler-frequency shift. Lastly for this unmod-

ulated pulse, the time bandwidth product (TBP) which is defined as the 3-dB

timewidth times the 3-dB bandwidth of the pulse is one. For modulated pulses

the TBP may significantly exceed one.

Each different waveform yields a new distribution of ambiguity. There are

several types of signals that are commonly used in practice. Two important

examples are the periodic continuous wave (CW) radar signal and a coherent

train of identical pulses. In Fig. B.5, ambiguity distribution of a uniform pulse

train is shown. If there are N pulses of duration τp in a pulse train where pulses
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are separated by T/N , the Doppler measurement accuracy becomes 1/T which

can be many time more accurate than the accuracy provided by a single pulse.

This fact is illustrated in Fig. B.5. To increase the delay accuracy, transmitted

pulses can be modulated either by using phase or frequency modulations. For

example, if the pulse of duration τp is divided into 13 subpulses where the phase

of each subpulse is chosen to be {11111− 1− 111− 11− 11}, which is known as

the Barker-13 sequence, the delay accuracy can be increased by 13 times. Note

that, the Ambiguity distribution of a Barker-13 sequence is plotted in Fig. B.6.

The TBP of this sequence is thirteen.

138



ν

τ

p
τ

...

T

NT /

T

pτ

T/1

NT /

NT /

Figure B.5: Ambiguity function distribution of an uniform pulse train.

time, ms

fr
e
q
u
e
n
c
y
, 

H
z

-50 -40 -30 -20 -10 0 10 20 30 40 50

-100

-80

-60

-40

-20

0

20

40

60

80

100
10

20

30

40

50

60

70

Figure B.6: Ambiguity function distribution of a Barker-13 sequence.
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APPENDIX C

Cramer-Rao Lower Bound

In this appendix derivation of the CRB for the joint estimation problem is pre-

sented. In our model, residual error vector e(tk) defined below has a circularly

symmetric i.i.d. Gaussian distribution:

e(tk) = x(tk)−
d∑
i=1

a(θi, ϕi)ζis(tk − τi)e
j2πνit . (C.1)

Assuming the variance of the distribution is σ2, the log likelihood function can

be written as

L = −NM logπσ2 − 1

σ2

N∑
k=1

∥e(tk)∥2 . (C.2)

Using straightforward differentiations we obtain the following partial differentials

that will be used to derive the entries of the Fisher Information Matrix (FIM):

∂L

∂τi
=

2

σ2

N∑
k=1

ℜe
[
ζHi aH(θi, ϕi)e

−j2πνitk ∂s
H(tk − τi)

∂t
e(tk)

]
(C.3)

∂L

∂θi
=

2

σ2

N∑
k=1

ℜe
[
ζHi s

H(tk − τi)e
−j2πνitk ∂a

H(θi, ϕi)

∂θi
e(tk)

]
(C.4)
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∂L

∂ϕi
=

2

σ2

N∑
k=1

ℜe
[
ζHi s

H(tk − τi)e
−j2πνitk ∂a

H(θi, ϕi)

∂ϕi
e(tk)

]
(C.5)

∂L

∂νi
=−4π

σ2

N∑
k=1

tkℑm
[
ζHi s

H(tk − τi)e
−j2πνitkaH(θi, ϕi)e(tk)

]
(C.6)

If we define ζi = ηi + jκi, we obtain

∂L

∂ηi
=

2

σ2

N∑
k=1

ℜe
[
sH(tk − τi)e

−j2πνitkaH(θi, ϕi)e(tk)

]
(C.7)

∂L

∂κi
=

2

σ2

N∑
k=1

ℑm
[
sH(tk − τi)e

−j2πνitkaH(θi, ϕi)e(tk)

]
(C.8)

The following identities [135], are useful to determine the elements of the FIM.

E
[
ei(tk)e

H
c (tj)

]
= δicδtktjσ

2 (C.9)

E
[
ei(tk)ez(tj)

]
= 0 (C.10)

E
[
eHc (tk)el(tj)en(ti)

]
= 0 (C.11)

E
[
e(tk)e

H(tk)e(tj)e
H(tj)

]
=M2σ4 + δtktjMσ4 , (C.12)

where ei(tk) is the i
th component of the e(tk) and δ represents Kronecker’s delta.

Moreover, to make equations shorter, following equalities are defined;

Ri,l
s′s(k) =

∂sH(tk − τi)

∂t
s(tk − τl) , (C.13)

γ(k) = e−j2π(νi−νl)tk , (C.14)
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Ψi,l
a′
θa

=
∂aH(θi, ϕi)

∂θi
a(θl, ϕl) . (C.15)

Using these identities elements of the FIM matrix can be obtained as follows:

E

[
∂L

∂τi

∂L

∂τl

]
=

2

σ2
ℜe

[
Ψi,l

aaζ
H
i ζl

N∑
k=1

Ri,l
s′s′(k)γ(k)

]
. (C.16)

Similarly, other FIM elements can be obtained as:

E

[
∂L

∂θi

∂L

∂θl

]
=

2

σ2
ℜe
[
ζHi ζlΨ

i,l
a′
θa

′
θ

N∑
k=1

Ri,l
ss(k)γ(k)

]
(C.17)

E

[
∂L

∂ϕi

∂L

∂ϕl

]
=

2

σ2
ℜe
[
ζHi ζlΨ

i,l
a′
ϕa

′
ϕ

N∑
k=1

Ri,l
ss(k)γ(k)

]
(C.18)

E

[
∂L

∂νi

∂L

∂νl

]
=

8π2

σ2
ℜe

[
Ψi,l

aaζ
H
i ζl

N∑
k=1

Ri,l
ss(k)γ(k)t

2
k

]
(C.19)

E

[
∂L

∂ηi

∂L

∂ηl

]
=

2

σ2
ℜe

[
Ψi,l

aa

N∑
k=1

Ri,l
ss(k)γ(k)

]
(C.20)

E

[
∂L

∂κi

∂L

∂κl

]
=

2

σ2
ℜe

[
Ψi,l

aa

N∑
k=1

Ri,l
ss(k)γ(k)

]
(C.21)

E

[
∂L

∂τi

∂L

∂θl

]
=

2

σ2
ℜe

[
Ψi,l

aa′
θ
ζHi ζl

N∑
k=1

Ri,l
s′s(k)γ(k)

]
(C.22)

E

[
∂L

∂τi

∂L

∂ϕl

]
=

2

σ2
ℜe

[
Ψi,l

aa′
ϕ
ζHi ζl

N∑
k=1

Ri,l
s′s(k)γ(k)

]
(C.23)

E

[
∂L

∂τi

∂L

∂νl

]
=
4π

σ2
ℑm

[
Ψi,l

aaζiζ
H
l

N∑
k=1

Ri,l
s′s(k)γ

H(k)tk

]
(C.24)
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E

[
∂L

∂τi

∂L

∂ηl

]
=

2

σ2
ℜe

[
Ψi,l

aaζ
H
i

N∑
k=1

Ri,l
s′s(k)γ(k)

]
(C.25)

E

[
∂L

∂τi

∂L

∂κl

]
=

−2

σ2
ℑm

[
Ψi,l

aaζi

N∑
k=1

Ri,l
s′s(k)γ

H(k)

]
(C.26)

E

[
∂L

∂θi

∂L

∂ϕl

]
=

2

σ2
ℜe

[
ζHi ζlΨ

i,l
a′
θa

′
ϕ

N∑
k=1

Ri,l
ss(k)γ(k)

]
(C.27)

E

[
∂L

∂θi

∂L

∂νl

]
=
4π

σ2
ℑm

[
Ψi,l

aa′
θ
ζiζ

H
l

N∑
k=1

Ri,l
ss(k)γ

H(k)tk

]
(C.28)

E

[
∂L

∂θi

∂L

∂ηl

]
=

2

σ2
ℜe

[
Ψi,l

a′
θa
ζHi

N∑
k=1

Ri,l
ss(k)γ(k)

]
(C.29)

E

[
∂L

∂θi

∂L

∂κl

]
=

−2

σ2
ℑm

[
Ψi,l

a′
θa
ζi

N∑
k=1

Ri,l
ss(k)γ

H(k)

]
(C.30)

E

[
∂L

∂νi

∂L

∂ηl

]
=

4π

σ2
ℑm

[
Ψi,l

aaζ
H
i

N∑
k=1

Ri,l
ss(k)γ(k)tk

]
(C.31)

E

[
∂L

∂νi

∂L

∂κl

]
=

−4π

σ2
ℜe

[
Ψi,l

aaζ
H
i

N∑
k=1

Ri,l
ss(k)γ(k)tk

]
(C.32)

E

[
∂L

∂ηi

∂L

∂κl

]
=

−2

σ2
ℑm

[
Ψi,l

aa

N∑
k=1

Ri,l
ss(k)γ

H(k)

]
. (C.33)
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