35 research outputs found

    Robust Dropping Criteria for F-norm Minimization Based Sparse Approximate Inverse Preconditioning

    Full text link
    Dropping tolerance criteria play a central role in Sparse Approximate Inverse preconditioning. Such criteria have received, however, little attention and have been treated heuristically in the following manner: If the size of an entry is below some empirically small positive quantity, then it is set to zero. The meaning of "small" is vague and has not been considered rigorously. It has not been clear how dropping tolerances affect the quality and effectiveness of a preconditioner MM. In this paper, we focus on the adaptive Power Sparse Approximate Inverse algorithm and establish a mathematical theory on robust selection criteria for dropping tolerances. Using the theory, we derive an adaptive dropping criterion that is used to drop entries of small magnitude dynamically during the setup process of MM. The proposed criterion enables us to make MM both as sparse as possible as well as to be of comparable quality to the potentially denser matrix which is obtained without dropping. As a byproduct, the theory applies to static F-norm minimization based preconditioning procedures, and a similar dropping criterion is given that can be used to sparsify a matrix after it has been computed by a static sparse approximate inverse procedure. In contrast to the adaptive procedure, dropping in the static procedure does not reduce the setup time of the matrix but makes the application of the sparser MM for Krylov iterations cheaper. Numerical experiments reported confirm the theory and illustrate the robustness and effectiveness of the dropping criteria.Comment: 27 pages, 2 figure

    Using spectral low rank preconditioners for large electromagnetic calculations

    Get PDF
    SUMMARY For solving large dense complex linear systems that arise in electromagnetic calculations, we perform experiments using a general purpose spectral low rank update preconditioner in the context of the GMRES method preconditioned by an approximate inverse preconditioner. The goal of the spectral preconditioner is to improve the convergence properties by shifting by one the smallest eigenvalues of the original preconditioned system. Numerical experiments on parallel distributed memory computers are presented to illustrate the efficiency of this technique on large and challenging real-life industrial problems

    Spectral two-level preconditioners for sequences of linear systems

    Get PDF
    De nombreuses simulations numériques nécessitent la résolution d'une série de systèmes linéaires impliquant une même matrice mais des second-membres différents. Des méthodes efficaces pour ce type de problèmes cherchent à tirer bénéfice des résolutions précédentes pour accélérer les résolutions restantes. Deux grandes classes se distinguent dans la façon de procéder: la première vise à réutiliser une partie du sous-espace de Krylov, la deuxième à construire une mise à jour du préconditionneur à partir de vecteurs approximant un espace invariant. Dans cette thèse, nous nous sommes intéressés à cette dernière approche en cherchant à améliorer le préconditionneur d'origine. Dans une première partie, une seule mise à jour du préconditionneur est considérée pour tous les systèmes. Cette mise à jour consiste en une correction spectrale de rang faible qui permet de translater de un la position des plus petites valeurs propres en module de la matrice du système préconditionné de départ. Des expérimentations numériques sont réalisées en utilisant la méthode GMRES couplée à un préconditionneur de type inverse approchée. L'information spectrale est obtenue par un solveur de valeurs propres lors d'une phase préliminaire au calcul. Dans une deuxième partie, on autorise une possible mise à jour entre chaque système. Une correction spectrale incrémentale est proposée. Des expérimentations numériques sont réalisées en utilisant la méthode GMRES-DR, d'une part parce qu'elle est efficace en tant que solveur linéaire, et d'autre part parce qu'elle permet une bonne approximation des petites valeurs propres au cours de la résolution linéaire. Des stratégies sont développées afin de sélectionner l'information spectrale la plus pertinente. Ces approches ont été validées sur des problèmes de grande taille issus de simulations industrielles en électromagnétisme. Dans ce but, elles ont été implantées dans un code parallèle développé par EADS-CCR. ABSTRACT : Many numerical simulations in scientific and engineering applications require the solution of a set of large linear systems involving the same coefficient matrix but different right-hand sides. Efficient methods for tackling this problem attempt to benefit from the previously solved right-hand sides for the solution of the next ones. This goal can be achieved either by recycling Krylov subspaces or by building preconditioner updates based on near invariant subspace information. In this thesis, we focus our attention on this last approach that attempts to improve a selected preconditioner. In the first part, we consider only one update of the preconditioner for all the systems. This update consists of a spectral low-rank correction that shifts by one the smallest eigenvalues in magnitude of the matrix of the original preconditioned system. We perform experiments in the context of the GMRES method preconditioned by an approximate inverse preconditioner. The spectral information is computed by an eigensolver in a preprocessing phase. In the second part, we consider an update of the preconditioner between each system. An incremental spectral correction of the preconditioner is proposed. We perform experiments using the GMRES-DR method, thanks to its efficiency as a linear solver and its ability to recover reliable approximations of the desired eigenpairs at run time. Suitable strategies are investigated for selecting reliable eigenpairs. The efficiency of the proposed approaches is in particular assessed for the solution of large and challenging problems in electromagnetic applications. For this purpose, they have been implemented in a parallel industrial code developed by EADS-CCR

    A two-level ILU preconditioner for electromagnetic applications

    Full text link
    [EN] Computational electromagnetics based on the solution of the integral form of Maxwell s equations with boundary element methods require the solution of large and dense linear systems. For large-scale problems the solution is obtained by using iterative Krylov-type methods provided that a fast method for performing matrix vector products is available. In addition, for ill-conditioned problems some kind of preconditioning technique must be applied to the linear system in order to accelerate the convergence of the iterative method and improve its performance. For many applications it has been reported that incomplete factorizations often suffer from numerical instability due to the indefiniteness of the coefficient matrix. In this context, approximate inverse preconditioners based on Frobenius-norm minimization have emerged as a robust and highly parallel alternative. In this work we propose a two-level ILU preconditioner for the preconditioned GMRES method. The computation and application of the preconditioner is based on graph partitioning techniques. Numerical experiments are presented for different problems and show that with this technique it is possible to obtain robust ILU preconditioners that perform competitively compared with Frobenius-norm minimization preconditioners.This work was supported by the Spanish Ministerio de Economía y Competitividad under grant MTM2014-58159-P and MTM2015-68805-REDT.Cerdán Soriano, JM.; Marín Mateos-Aparicio, J.; Mas Marí, J. (2017). A two-level ILU preconditioner for electromagnetic applications. Journal of Computational and Applied Mathematics. 309:371-382. https://doi.org/10.1016/j.cam.2016.03.012S37138230

    Approximate Inverse Preconditioners for Some Large Dense Random Electrostatic Interaction Matrices

    Full text link

    Iterative near-field preconditioner for the multilevel fast multipole algorithm

    Get PDF
    For iterative solutions of large and difficult integral-equation problems in computational electromagnetics using the multilevel fast multipole algorithm (MLFMA), preconditioners are usually built from the available sparse near-field matrix. The exact solution of the near-field system for the preconditioning operation is infeasible because the LU factors lose their sparsity during the factorization. To prevent this, incomplete factors or approximate inverses can be generated so that the sparsity is preserved, but at the expense of losing some information stored in the near-field matrix. As an alternative strategy, the entire near-field matrix can be used in an iterative solver for preconditioning purposes. This can be accomplished with low cost and complexity since Krylov subspace solvers merely require matrix-vector multiplications and the near-field matrix is sparse. Therefore, the preconditioning solution can be obtained by another iterative process, nested in the outer solver, provided that the outer Krylov subspace solver is flexible. With this strategy, we propose using the iterative solution of the near-field system as a preconditioner for the original system, which is also solved iteratively. Furthermore, we use a fixed preconditioner obtained from the near-field matrix as a preconditioner to the inner iterative solver. MLFMA solutions of several model problems establish the effectiveness of the proposed nested iterative near-field preconditioner, allowing us to report the efficient solution of electric-field and combined-field integral-equation problems involving difficult geometries and millions of unknowns. © 2010 Societ y for Industrial and Applied Mathematics

    A class of linear solvers based on multilevel and supernodal factorization

    Get PDF

    A class of linear solvers based on multilevel and supernodal factorization

    Get PDF
    De oplossing van grote en schaarse lineaire systemen is een kritieke component van moderne wetenschap en technische simulaties. Iteratieve methoden, namelijk de klasse van moderne Krylov-subruimtemethoden, worden vaak gebruikt om grootschalige lineaire systemen op te lossen. Om de robuustheid en de convergentiesnelheid van de iteratieve methoden te verbeteren, worden preconditioneringstechnieken vaak beschouwd als cruciale componenten van de lineaire systeemoplossing. In dit proefschrift wordt een klasse van algebraïsche multilevel oplossers gepresenteerd voor het conditioneren van algemene lineaire systeemvergelijkingen die voortkomen uit computationele wetenschap en technische toepassingen. Ze kunnen spaarzame patronen produceren en geheugenkosten besparen door recursieve combinatorische algoritmen toe te passen. Robuustheid wordt verbeterd door de factorisatie te combineren met recent ontwikkelde overlappende en compressiestrategieën en door efficiënte lokale oplossers te gebruiken. We hebben de goede prestaties van de voorgestelde strategieën aangetoond met numerieke experimenten op realistische matrixproblemen, ook in vergelijking met enkele van de meest populaire algebraïsche preconditioners die tegenwoordig worden gebruikt
    corecore