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The company, ASML

ASML is the world’s leading provider of lithography systems for the semiconductor in-
dustry, manufacturing complex machines that are critical to the production of integrated
circuits (IC) or microchips. Headquartered in Veldhoven, the Netherlands, ASML de-
signs, develops, integrates, markets and services these advanced systems, which continue
to help their customers - the major chip makers - reduce the size and increase the func-
tionality of microchips, and consumer electronic equipment.

ASML’s TWINSCAN

Figure 1: ASML’s TWINSCAN

The TWINSCAN NXT:1950i Step-and-Scan system is a high productivity, dual stage
immersion lithography tool designed for volume production 300-mm wafers at the 32-nm
node and beyond.

Advanced in-situ metrology per wafer together with a comprehensive set of options to
seamlessly input off-line metrology data to the scanner enable maximum overlay, focus
and CDU performances on product wafers.
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Microchips are built using several layers of connected wires which have to fit precisely
on top of each other. To achieve this, one must very accurately determine the position
and dimension of the wires before one builds a new layer on top. If two pieces of a wire
connect perfectly (over a 100% of their intended contact area) the overlay is called perfect.
This thesis is concerned with part of the mathematics related to the determination of the
position and dimension of a wire piece.

(a)

Figure 2: ASML’s wafer stepper

(a)

Figure 3: Wafer, chip and grating respectively
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Chapter 1

Introduction

Gratings (i.e., optical device consisting of a surface with many parallel grooves on it;
disperses a beam of light into its wavelengths to produce its spectrum) are widely used
in lithography for various metrology tasks such as alignment, overlay metrology and
CD metrology. In general lithographic methods produce in general symmetric profiles
with sinusoidal, rectangular or trapezoidal grooves. However, for very high and very low
groove frequencies the real profiles have much more complicated forms. Moreover, in the
far-infrared of wavelength metal can be assumed with infinite conductivity, but in the
visible region and for shorter wavelengths the finite conductivity complicates the grating
response and requires different theoretical methods. An example of a non-trivial grating
can been seen in Figure (1.1) below. Diffraction gratings are categorized according to
several criteria: geometry, material, efficiency behavior, manufacturing method or usage.
The most well known gratings are reflection and transmission gratings:

• Transmission gratings can have various groove shapes: triangular, rectangular or
sinusoidal. The material is transparent and the back face needs an anti-reflection
coating to prevent light losses due to reflection or to prevent multiple scattering
effects inside the substrate. While most transmission gratings have a use limited to
the visible spectrum, it is possible to extend their performance into the ultraviolet
and infrared with choice of appropriate materials. These gratings are frequently
used as beam splitters.

• Reflection gratings are usually surface relief gratings, covered with some highly
reflecting material. Depending on the spectral region, reflectivity can vary signifi-
cantly, so that the choice of material is critical for grating performance. In partic-
ular, gratings that are reflective in one spectral region, can become transmittive in
other regions. Its advantage over a transmission grating is that it produces a spec-
trum extending from ultraviolet to infrared, since the light does not pass through
the grating material. Because of the wide spectral band coverage and minimal order
overlap, most of the reflection gratings are used in first order.

Angular-resolved optical scatterometry is a new promising technology for metrology in
near-future lithography. In so-called critical-dimension (CD) metrology, the character-
istics of a pattern written in the resist layer are determined, yielding a parametrized
shape of the resist lines, with parameters as width, height and slope of these lines. Typ-
ically, test-patterns with 1D periodic gratings are used. In an iterative reconstruction
loop, the parameterized shape is retrieved via a least-squares fitting procedure, hereby

4
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Figure 1.1: Cross-section of a complex layered grating.

fitting the experimental diffraction image to a simulated diffraction image that has been
computed for a given parameter set. For 1D periodic gratings, scatterometry is a well
developed technique reaching the high throughput demands of less than a second per tar-
get. In addition to the regular 1D gratings, current CD metrology needs also functionality
for characterization of ellipsoidal contact holes, and brickwall structures of rectangular
features in DRAM, arranged on a periodic 2D lattice. Unfortunately, the number of
harmonics which parameterize the electric filed increases from P for 1D to P 2 for 2D.
The ”widely” used Maxwell solver RCWA has a computational complexity that scales
asymptotically with the third power of P (and P 2). This leads to unacceptably large
computational times that are incompatible with the required high throughput.

To avoid the large execution time of RCWA for 2D problems, different discretization
of the Maxwell’s equations have been examined; the finite element method (FEM) by
Joseph Maubach, Pisarenco and Rook, and the volume integral method (VIM) by M. V.
Beurden. Both FEM and VIM lead to linear systems of equations such that the matrix
vector multiplication is optimally fast (O(N) orO(N logN) time, N the number of degrees
of freedom) and both methods use iterative solvers to determine the solution of the linear
systems.

The parameterized linear systems of equations are the result of a discretization of the
3D Maxwell equations applied for the solution of an optical diffraction problem for a
(double) periodic grating. The particular discretization of interest determines how the
linear systems depend on the parameters (geometry, material parameters, wave length,
and angles of incidence).

This thesis focuses on the VIM method. The VIM discretization leads to a dense complex
linear system for the electric field for a 2D-periodic grating which is solved in an iterative
way. This method is a factor of 20 faster for a typical 2D-periodic application on resist
than the RCWA method.

5
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This thesis is aimed at designing an optimized preconditioner for speeding-up the itera-
tive solution of the linear system obtained from VIM discretization. Ideally, the spectrum
of the total system of the preconditioner and the VIM coefficient matrix is concentrated
around one and should be independent of the physical parameters, such that the num-
ber of iterations is stable under parameter changes. Further, the construction of the
preconditioner should have low computational complexity.

The actual purpose of solving the linear systems is to reconstruct the specific parameter
values which led to a measured result. Whenever the nonlinear reconstruction algorithm
converges, several linear systems for almost identical parameter values have to be solved.

For given parameters c, the VIM discretization leads to a linear system A(c)x (c) = b(c),
where A(c) = C (c) − G(c) ·M (c), C (c),G(c),M (c) ∈ CN×N . Matrix A is full
(almost all the entries are non-zero), but a matrix vector multiplication x 7→ Ax can be
calculated in almost linear time (linear proportional to N logN).

The two main objectives of this thesis are:

1. To search for an iterative solution method and a preconditioner which minimizes
the number of iterations and the overall computational time, preferably for a wide
range of parameters c.

2. To determine (if possible) a better suitable initial guess than the zero vector for the
case that A(c+∆c)x (c+∆c) = b(c+∆c) has to be solved after A(c)x (c) = b(c)
has been solved;

This thesis describes several possible preconditioning techniques, links the construction
of an estimate for x (c + ∆c) to derivatives and presents a reconstruction algorithm with
an implementation.

The remainder of this thesis is organized as follows. Chapter (2) is devoted to the differ-
ential formulation of the Maxwell’s equations for the optical diffraction problem. Though
the actual discretization method in Chapter (4) uses the equivalent integral equation
formulation, we present the differential formulation because it is more accessible to un-
derstand, it serves its purpose to introduce all relevant physical parameters and it is
the basis for at least two competing discretization methods examined by the Scientific
computing group inside CASA: the rigorously coupled wave analysis (RCWA) and the
finite element method (FEM) . Sliced grating structure and Fourier representation of the
electric field are discussed in Chapter (3). The discretization method VIM uses layer-wise
decomposition of the domain and representation of the electric field. A brief description
of the VIM discretization, structure and properties of the coefficient matrix are presented
in Chapter (4). The applicability of the iterative solvers and related preconditioners for
the solution of the linear systems depends on the properties of the coefficient matrix of the
discretized system and those of the preconditioner. Chapter (5) and (6) present the range
of applicable preconditioners. Because the coefficient matrix under consideration does not
satisfy any desirable properties required for the construction of fast preconditioners such
as multi-grid ones we take our resort to preconditioners which do not require such prop-
erties. Chapter (5) introduces iterative methods and preconditioning techniques. The
first part of Chapter (6) is devoted to sparse approximate inverses based on Frobenius
norm minimization method while the rest of the chapter discusses preconditioners based
on incomplete LU factorizations combined with dropping strategy. Numerical results

6
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and their interpretations are given in detail in Chapter (7). Chapter (8) contains a brief
summary of the conclusions obtained from the numerical experiments, and also some rec-
ommendations are proposed. Chapter (9) presents the future work and further research
areas. In Appendix (A) the description of the non-linear reconstruction problem is given.
As an example, subsection (A.3.2) presents few simple boundary value problems. The
determination of a good initial guess for x (c + ∆c) is given in Appendix (B).

7



Chapter 2

The Physical Model

In section (2.1) a set of equations is given, including Maxwell’s equations, the continuity
equation and the constitutive relations. Under certain circumstances the Helmholtz equa-
tion can be derived for the electric and magnetic fields. In section (2.2) a one-dimensional
and two-dimensional periodic grating is defined. The one-dimensional periodic grating
gives rise to two diffraction cases that are explained separately: planar diffraction and
conical diffraction. The grating equations and grating boundary conditions are derived
in section (2.3) and (2.4) respectively.

2.1
Maxwell’s equations

In a medium with magnetic displacement B , electric displacement D , current density J
and charge density ρ, Maxwell’s equations for the electric field E and magnetic field H
can be formulated as:

∇×E = − ∂

∂t
B , ∇×H = J +

∂

∂t
D , ∇ ·D = ρ, ∇ ·B = 0. (2.1)

The continuity equation is given by

∇ · J = − ∂

∂t
ρ. (2.2)

The additional constraints needed to solve (2.1) and (2.2) are the constitutive relations.
These relations characterize materials on a macroscopic level and are described in terms
of three scalar quantities, the permittivity ε, the permeability µ and the conductivity σ.
Assuming that no primary or external sources are present and that the medium is linear,
isotropic (i.e., the physical properties of the medium at each point are independent of the
direction) and time-invariant, then:

D = εE , B = µH , J = σE . (2.3)

Note that the three scalar quantities are real if the medium is dispersion-free (i.e., if the
response of the medium is instantaneous). If on the other hand the medium is dispersive,

8
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the scalar quantities are complex. Looking at the electric field E and magnetic field H ,
Maxwell’s equations become:

∇×E = −µ ∂
∂t

H , (2.4)

∇×H = ε
∂

∂t
E + σE . (2.5)

From now on only time-harmonic field quantities are considered and in that case the
complex field notation E(x )ejωt and H (x )ejωt can be used for the electric and mag-
netic field. Combining the permittivity ε with the conductivity σ gives a new complex
permittivity ε̃ = ε− jσ/ω so that Maxwell’s equations become:

∇×E = −jωµH , (2.6)

∇×H = jωε̃E . (2.7)

From Maxwell’s equations (2.6) and (2.7) a relation can be derived for the electric field.
The curl of (2.6), combined with (2.7) and the identities

∇×∇×E = ∇(∇ ·E)−∇2E

and
∇× (µH ) = µ∇×H +∇µ×H

result in:

∇(∇ ·E)−∇2E = ω2µε̃E − jω∇µ×H . (2.8)

For a homogeneous medium the complex permittivity ε̃ and permeability µ are both
constant and ∇µ = 0. The divergence of (2.7) and the identity ∇· (∇×H ) = 0 show the
electric field is divergence free. In this case the electric field E based on (2.8) satisfies a
Helmholtz equation:

∇2E + ω2µε̃E = 0. (2.9)

In this situation, the magnetic field H also satisfies a Helmholtz equation:

∇2H + ω2µε̃H = 0. (2.10)

2.2
Grating definition

2.2.1 One-dimensional periodic gratings

In order to derive the boundary conditions, Maxwell’s equations need to be solved in
a domain. Therefore a one-dimensional periodic grating in R3 is considered in Figure
(2.1). In the x-direction the periodic grating continues infinitely and has period Λ. The
y-direction is parallel to the grating grooves which are again infinitely long. Above and
below the grating there are two infinite halfspaces in the z-direction. So the grating profile

9
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Figure 2.1: One-dimensional periodic grating in R3.

in R3 can be described by a function z = f(x) such that f(x + nΛ) = f(x) for x ∈ R
and n ∈ Z. If the grating profile cannot be described by a function, a parametrization
can be used. Since the periodic grating is infinitely long in the x-direction, the domain
of interest can be restricted to only one period with length Λ. Furthermore, the grating
is invariant in the y-direction. Above the grating lies the upper halfspace for z < 0 and
below the grating lies the lower halfspace for z > D. Under these circumstances the
original 3-dimensional grating can be reduced to a 2-dimensional subdomain of the xz-
plane where the grating profile is described by z = f(x) for −Λ

2
≤ x ≤ Λ

2
. In Figure (2.1)
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Figure 2.2: Reduced one-dimensional grating in [−Λ
2
, Λ

2
]× (−∞,∞).

the incident plane wave is also shown which is assumed to be linearly polarized. The plane
wave is incident on the grating at a polar angle θ and azimuthal angle φ. Furthermore,
ψ is the angle between the incident electric field E inc and the plane of incidence. In the
case of planar diffraction (φ = 0) the incident polarization can be decomposed into a
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transverse electric (TE) polarization part (ψ = π/2, electric field is oscillating normal to
the plane of incidence) and a transverse magnetic (TM) polarization part (ψ = 0, electric
field is oscillating in the plane of incidence) which are handled independently. Here all
the transmitted and reflected orders lie in the same plane (the plane of incidence, the
xz-plane). For the general three-dimensional problem or conical diffraction (φ 6= 0) two
uncoupled equations for the x-component of the electric and magnetic field are solved.
Here the transmitted and reflected orders lie on the surface of a cone. Note that in
the case of planar diffraction all electromagnetic field components are independent of
the y-coordinate while in a conical mount these field components still depend on the
y-coordinate.

Two-dimensional periodic gratings

In order to derive the boundary conditions, a domain is defined where Maxwell’s equations
are solved. Therefore a two-dimensional periodic grating in R3 is considered in Figure
(2.3). In both the x- and y- directions the periodic grating continues infinitely and
has period Λx and Λy respectively. Above and below the grating there are two infinite
halfspaces in the z-direction. So, the grating profile in R3 can be described by a function
z = f(x, y) such that f(x + nΛx, y + mΛy) = f(x, y) for x, y ∈ R and n,m ∈ Z. If the
grating profile cannot be described by a function, a parametrization can be used.

E i n c

x

z
y

L x

L y

m e d i u m  I

m e d i u m  I I

z  =  f ( x , y )
y

q

f

k

Figure 2.3: Two-dimensional periodic grating in R3.

Since the periodic grating is infinitely long in both the x- and y-direction, the domain
of interest can be restricted to only one period in each direction. Above the grating lies
the upper halfspace for z < 0 and below the grating lies the lower halfspace for z > D.
This means that the original 3-dimensional grating can be reduced to a 3-dimensional
subdomain of R3 where the grating profile is described by z = f(x, y) for −Λx

2
≤ x ≤ Λx

2

and −Λy
2
≤ y ≤ Λy

2
.
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In Figure (2.3) the incident plane wave is also shown which is assumed to be linearly
polarized. The plane wave is incident on the grating at a polar angle θ and azimuthal
angle φ. Furthermore, ψ is the angle between the incident electric field vector and the
plane of incidence. For two-dimensional periodic gratings the perpendicular and parallel
components of the electric and magnetic fields are always coupled and must be obtained
simultaneously. Note that for two-dimensional periodic gratings all the electromagnetic
field components depend on all the three coordinates.

2.3
Grating equations for 1D planar

diffraction
The previous section explained how the grating structure could be reduced to only one
period. This means that for one-dimensional periodic gratings in Maxwell’s equations
(2.6) and (2.7) the permeability is given by µ = µ(x, z) and the complex permittivity by
ε̃ = ε̃(x, z) for −Λ

2
≤ x ≤ Λ

2
and z ∈ R. Similarly, for two-dimensional periodic gratings

the permeability is given by µ = µ(x, y, z) and the complex permittivity by ε̃ = ε̃(x, y, z)
for −Λx

2
≤ x ≤ Λx

2
, −Λy

2
≤ y ≤ Λy

2
and z ∈ R.

There are three different cases of interest, Transverse Electric (TE) Polarization, Trans-
verse Magnetic (TM) Polarization and Conical diffraction. For the sake of brevity, only
the first case is described below (2.3.1).

2.3.1 Transverse electric (TE) polarization

For TE polarization the electric field has only a y component that depends on the x
and z coordinates, so E = Ey(x, z)ey for −Λ

2
≤ x ≤ Λ

2
and z ∈ R. Substituting this

12
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in Maxwell’s equations (2.6) and (2.7) results in the following set of equations for the
electric and magnetic field:

∂

∂z
Ey(x, z) = jωµ(x, z)Hx(x, z), (2.11a)

∂

∂x
Ey(x, z) = −jωµ(x, z)Hz(x, z), (2.11b)

∂

∂z
Hx(x, z) = jωε̃(x, z)Ey(x, z) +

∂

∂x
Hz(x, z). (2.11c)

The equations above can be rewritten into one second order differential equation for the
electric field component Ey(x, z). Substituting (2.11a) and (2.11b) into (2.11c) gives:

∂

∂z

(
1

µ(x, z)

∂

∂z
Ey(x, z)

)
= −ω2ε̃(x, z)Ey(x, z)−

∂

∂x

(
1

µ(x, z)

∂

∂x
Ey(x, z)

)
.(2.12)

2.4
Grating boundary conditions for 1D

periodic gratings
For one-dimensional periodic gratings the permittivity ε = ε(x, z) can be split up into
two parts so that in medium I the permittivity is given by εI = εI(x, z) for −Λ

2
≤ x ≤ Λ

2

and z < f(x) and in medium II by εII = εII(x, z) for −Λ
2
≤ x ≤ Λ

2
and z > f(x).

A similar expression holds for the permeability, conductivity, electric field and magnetic
field. Along the grating surface z = f(x) where the two different media I and II intersect,
the so called boundary jump conditions can be derived from equations (2.1). The normal
unit vector n is pointing from medium II towards medium I. If the grating surface
current density is denoted by J s and the grating surface charge density by ρs, then the
following relations hold for −Λ

2
≤ x ≤ Λ

2
and z = f(x):

n × (E I −E II) = 0, (2.13)

n × (H I −H II) = J s, (2.14)

n · (J I − J II) = −jωρs, (2.15)

n · (DI −DII) = ρs, (2.16)

n · (B I −B II) = 0. (2.17)

For materials with finite conductivity, no grating surface current density and grating
surface charge density exists, so J s = 0 and ρs = 0. Furthermore, for time-harmonic field
quantities the boundary conditions (2.16) and (2.17) do not provide any new information.
Since only the electric and magnetic fields are of interest and not the charge density which
follows from the continuity equation, only the first two boundary jump conditions remain.
So for −Λ

2
≤ x ≤ Λ

2
and z = f(x):

n × (E I −E II) = 0, n × (H I −H II) = 0. (2.18)

13
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Furthermore, the so-called pseudo-periodic boundary condition is applied to the electric
and magnetic fields which introduces a phase-correction originating from the incident
field. The wave number is defined by k0 = 2π/λ0 with λ0 the wavelength of the incident
light. Together with nI =

√
µI ε̃I/

√
µ0ε0, the relative refraction index of medium I, the

pseudo-periodic boundary condition becomes for z ∈ R:

E(Λ/2, z) = e−jk0nIΛ sin θ cosφE(−Λ/2, z), (2.19)

H (Λ/2, z) = e−jk0nIΛ sin θ cosφH (−Λ/2, z). (2.20)

Finally, in the upper halfspace the diffracted electric field (this is the difference between
the total electric field E I and the incident electric field E inc

I ) has to satisfy the radiation
condition for −Λ

2
≤ x ≤ Λ

2
and z < 0. This means that the diffracted field can be written

as a superposition of outgoing plane waves and is bounded. In the lower halfspace the
diffracted electric field (this is just the total electric field E II) also has to satisfy the
radiation condition for −Λ

2
≤ x ≤ Λ

2
and z > D.

For two-dimensional periodic gratings similar boundary conditions apply.
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Chapter 3

Reduced Grating Structure and
Fourier Representation

In the first three sections the medium is sliced into different layers where per layer all
material properties are regarded as ”constant”. The last part of this section discusses
Fourier representation of the electric field.

3.1
Reduced grating structure

3.1.1 One-dimensional periodic gratings

The first model reduction simplifies the two media I and II in Figure (2.2), they are
assumed to be homogeneous. In the entire domain the permeability is given by µ(x, z) =
µ0 for −Λ

2
≤ x ≤ Λ

2
and z ∈ R. However, the complex permittivity ε̃(x, z) is still a

function of both the x and z coordinates and is given by ε̃I(x, z) = ε̃I for −Λ
2
≤ x ≤ Λ

2

and z < f(x) and by ε̃II(x, z) = ε̃II for −Λ
2
≤ x ≤ Λ

2
and z > f(x). The second

model reduction deals with simplifying the grating structure. In general the exact form
is unknown and therefore the grating is approximated with a finite number of K layers
having variable layer-thicknesses di for i = 2, . . . , K + 1. Within each layer the complex
permittivity depends only on the x-coordinate and is independent of the z-coordinate.
The upper and lower halfspace in Figure (2.2) are denoted by the (semi-infinite) layers 1
and K+2 in Figure (3.1). Within these layers the permeability and complex permittivity
are both constant. The normal unit vector n on each layer is pointing in the negative
z-direction. From now on the subscript i is used in the complex permittivity and electric
field to indicate the layer where these variables are valid (i = 1 indicates the semi-infinite
layer 1 which is the upper halfspace, i = K+2 indicates the semi-infinite layer K+2 which
is the lower halfspace and i = 2, . . . , K + 1 indicates one of the layers that approximate
the grating). For example, in layer 2 the y-component of the electric field is given by
E2,y(x, z) and is valid only for −Λ

2
≤ x ≤ Λ

2
and D1 ≤ z ≤ D2. In the same way the

complex permittivity in layer 2 is given by ε̃2(x) which takes on the value ε̃I or ε̃II .
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Figure 3.1: Layered one-dimensional grating in [−Λ
2
, Λ

2
]× (−∞,∞).

3.1.2 Two-dimensional periodic gratings

The first model reduction simplifies the two media I and II in Figure (2.4), they are
assumed to be homogeneous. In the entire domain the permeability is given by µ(x, y, z) =
µ0 for −Λx

2
≤ x ≤ Λx

2
, −Λy

2
≤ y ≤ Λy

2
and z ∈ R. However, the complex permittivity

ε̃(x, y, z) is still a function of the x , y and z coordinates and is given by ε̃I(x, y, z) = ε̃I for
−Λx

2
≤ x ≤ Λx

2
, −Λy

2
≤ y ≤ Λy

2
and z < f(x, y) and by ε̃II(x, y, z) = ε̃II for−Λx

2
≤ x ≤ Λx

2
,

−Λy
2
≤ y ≤ Λy

2
and z > f(x, y). The second model reduction deals with simplifying

the grating structure. In general the exact form is unknown and therefore the grating
is approximated with a finite number of K layers having variable layer-thicknesses di for
i = 2, . . . , K + 1. Within each layer the complex permittivity depends only on the x and
y coordinates and is independent of the z coordinate. The upper and lower halfspace in
Figure (2.4) are denoted by the (semi-infinite) layers 1 and K+ 2 in Figure (3.2). Within
these layers the permeability and complex permittivity are both constant. Note that
the pictures in Figure (3.2) are cross-sections of the two-dimensional layered grating: the
picture on the left is a cross-section at y = 0 and the picture on the right is a cross-section
at x = Λx

2
. The normal unit vector n on each layer is pointing in the negative z-direction.

x
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Figure 3.2: Layered two-dimensional grating in [−Λx
2
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2
]× [−Λy
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]× (−∞,∞)
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Figure 3.3: Top view of layered two-dimensional grating in [−Λx
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].

From now on the subscript i is used in the complex permittivity and electric field to
indicate the layer where these variables are valid (i = 1 indicates the semi-infinite layer
1 which is the upper halfspace, i = K + 2 indicates the semi-infinite layer K + 2 which
is the lower halfspace and i = 2, . . . , K + 1 indicates one of the layers that approximate
the grating). For example, in layer 2 the y-component of the electric field is given by
E2,y(x, y, z) and is valid only for −Λx

2
≤ x ≤ Λx

2
, −Λy

2
≤ y ≤ Λy

2
and D1 ≤ z ≤ D2. In

the same way the complex permittivity in layer 2 is given by ε̃2(x, y) which takes on the
value ε̃I or ε̃II . In the picture below a top view of layer 2 is depicted of thickness d2.

3.2
Reduced grating equations for 1D

planar diffraction

3.2.1 TE polarization

Applying both model reductions to equation (2.12) and using k2
0 = ω2µ0ε0 gives the

following set of equations for i = 1, . . . , K + 2:

∂2

∂z2
Ei,y(x, z) = −k2

0

ε̃i(x)

ε0

Ei,y(x, z)−
∂2

∂x2
Ei,y(x, z). (3.1)

Note that for i = 1 and i = K+2 equation (3.1) is a Helmholtz equation since ε̃1(x) = ε̃I
and ε̃K+2(x) = ε̃II . This was already derived in equation (2.9) if the entire domain is
homogeneous (which is true for the semi-infinite homogeneous layers 1 and K + 2).
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3.3
Reduced grating boundary conditions

for 1D planar diffraction

3.3.1 TE polarization

The boundary jump conditions (2.18) are now applied to all K + 1 interfaces. Equation
(2.11a) is used to eliminate the x-component of the magnetic field. For i = 1, . . . , K + 1
and −Λ

2
≤ x ≤ Λ

2
and z = Di the boundary jump conditions become:

Ei,y(x, z) = Ei+1,y(x, z), (3.2a)

∂

∂z
Ei,y(x, z) =

∂

∂z
Ei+1,y(x, z). (3.2b)

The pseudo-periodic boundary condition (2.19) is applied to all K + 2 layers. So for
i = 1, . . . , K + 2 and z ∈ R:

Ei,y(Λ/2, z) = e−jk0nIΛ sin θEi,y(−Λ/2, z). (3.3)

In layer 1 the diffracted electric field still has to satisfy the radiation condition. This
means that the y-component of the electric field can be written as a superposition of
outgoing plane waves and is bounded for −Λ

2
≤ x ≤ Λ

2
and z < 0. A similar condition

holds for the diffracted electric field in layer K + 2 where z > D.

3.4
Fourier representation of the electric

field
In this section Fourier expansions are used for the electric field as well as for the complex
relative permittivity function.

3.4.1 1D planar diffraction : TE polarization

In the case of TE polarization the normalized incident electric field is perpendicular to
the plane of incidence. So the electric field has only a y-component and equation (3.1)
together with the boundary conditions (3.2), (3.3) and the radiation condition describe the
entire diffraction problem. The magnetic field components can be derived from equations
(2.11a) and (2.11b) once the electric field is known. The normalized incident electric field
is given by:

Einc
y (x, z) = e−jk0n1(x sin θ+z cos θ). (3.4)
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The electric field in the two semi-infinite homogeneous layers 1 and K + 2 is given by
the Rayleigh expansions and the Floquet condition

E1,y(x, z) =
∑
n

Rne
−j(kxnx−k1,znz) + Einc

y (x, z), (3.5)

EK+2,y(x, z) =
∑
n

Tne
−j(kxnx+kK+2,zn(z−D)), (3.6)

kxn = k0(n1 sin θ − n(λ0/Λ)), (3.7)

k1,zn = (k2
0n

2
1 − k2

xn)1/2, (3.8)

kK+2,zn = (k2
0n

2
K+2 − k2

xn)1/2. (3.9)

In the expansions the unknown constant field amplitudesRn and Tn stand for the reflected
and transmitted fields respectively.

The electric field in the K layers is expanded in a Fourier series with unknown field
components Si,n(z) that depend on the z-coordinate for i = 2, . . . , K+1. In the same way
as above a Fourier expansion is used for the complex relative permittivity ε̃ri (x) = ε̃i(x)/ε0

for i = 2, . . . , K + 1:

Ei,y(x, z) =
∑
n

Si,n(z)e−jkxnx, (3.10)

ε̃ri (x) =
∑
g

ε̃i,ge
j 2π

Λ
gx, ε̃i,g =

1

Λ

∫ Λ
2

−Λ
2

ε̃ri (x)e−j
2π
Λ
gxdx. (3.11)

Substituting the expansions above into equation (3.1) and using the relation kxn− 2π
Λ
g =

kx(n+g) gives for i = 2, . . . , K + 1:

∑
n

d2

dz2
Si,n(z)e−jkxnx = −k2

0

∑
g

∑
n

ε̃i,gSi,n(z)e−jkx(n+g)x +
∑
n

k2
xnSi,n(z)e−jkxnx

= −k2
0

∑
p

∑
n

ε̃i,p−nSi,n(z)e−jkxpx +
∑
n

k2
xnSi,n(z)e−jkxnx

= −k2
0

∑
n

∑
p

ε̃i,n−pSi,p(z)e−jkxnx +
∑
n

k2
xnSi,n(z)e−jkxnx.(3.12)

Since equation (3.12) holds for −Λ
2
≤ x ≤ Λ

2
, this means that after projection on the basis

functions for i = 2, . . . , K + 1 and n ∈ Z:

d2

dz2
Si,n(z) = −k2

0

∑
p

ε̃i,n−pSi,p(z) + k2
xnSi,n(z). (3.13)
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Summarizing in each layer i = 1, ..., K + 2, the electric field is approximated with the
use of a Fourier basis which in 1D case is:

Ei,y(x, z) =
∑
n

ci,n(z)e−jkxnx

=
∞∑

n=−∞

ci,n(z)e−jkxnx

.
=

Mx∑
nx=−Mx

ci,nnx (z)e−jkxnx, i = 1, ..., K + 2. (3.14)

In the 2D case each of the three electric field components are approximated with a Fourier
expression

Ei,y(x, y, z) =
Mx∑

nx=−Mx

My∑
ny=−My

ci,n(z)e−jkxnxe−jkyny, i = 1, ..., K + 2. (3.15)
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Chapter 4

The VIM Discretization

4.1
Introduction to the volume integral

method (VIM)
Before going into detail about the specific diffraction problem first the volume integral
method for a general electro-magnetic setting is given. Like with RCWA the starting
point are the time harmonic Maxwell equations in partial differential equation form (see
equations (2.6), (2.7) )

∇×H = jωε0εrE , (4.1a)

∇×E = −jωµ0H , (4.1b)

where ε0 and µ0 respectively are the permittivity and permeability of vacuum. Here
the standard constitutive equations were used for the electric field E and magnetic field
H assuming non-magnetic but otherwise general lossy or lossless media with relative
permittivity εr. Naturally the fields and relative permittivity depend on all three spatial
coordinates r = (x, y, z) which are left out for notational convenience. Eliminating
the magnetic field from these equations and introducing the wave number of vacuum
k0 = ω

√
ε0µ0 results in

∇×∇×E = k2
0εrE . (4.2)

From this point onwards VIM typically differs from RCWA and starts by rewriting (4.2)
into

∇×∇×E − k2
0ε
b
rE = k2

0

(
εr − εbr

)
E . (4.3)

Here essentially the relative permittivity is split up into two parts εr = εbr+
(
εr−εbr

)
where

εbr is called the background relative permittivity and the term within brackets is sometimes
referred to as the permittivity contrast term. The trick is to choose the background
relative permittivity in such a way that the homogeneous part of (4.3), putting the right-
hand side to zero, can be solved easily while trying to make the permittivity contrast
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term equal to zero in most of the physical domain. The next step is to use the linearity
of Maxwell’s equations and to split up the electric field into two parts

E = E inc + E scat, (4.4)

such that

∇×∇×E inc − k2
0ε
b
rE

inc = 0 , (4.5a)

∇×∇×E scat − k2
0ε
b
rE

scat = k2
0

(
εr − εbr

)
E . (4.5b)

Here E inc is called the incident electric field and is the solution of Maxwell’s equations in
absence of the contrast term and only with the background permittivity present. Moreover
E scat is then the scattered electric field and is the solution of Maxwell’s equations where
the contrast term is treated as a source term. Note that the scattered electric field has
to satisfy radiation conditions. As already mentioned the solution to (4.5a) should be
easy to find and is usually known in closed form. The solution to (4.5b) is found with

the help of the so-called Green’s tensor. The Green’s tensor G(r , r ′) is the solution of
the same equation as for the scattered field, except that the right-hand side is replaced
with a mathematical dipole, thus

∇×∇×G − k2
0ε
b
rG = δI , (4.6)

where δ = δ(r − r ′) the Dirac delta function and I simply the unit tensor. As was the
case for the scattered electric field also the Green’s tensor has to satisfy the radiation
condition. Having found the Green’s tensor the scattered electric field is then given by

E scat =

∫
V

G · k2
0

(
εr − εbr

)
E dr ′. (4.7)

To arrive at this equation first multiply (4.6) by the right-hand side of equation (4.5b)
but evaluated at r ′ instead of r . Then perform an integration in the variable r ′ over
R3. Since the contrast term is almost zero everywhere this boils down to an integration
over the subdomain V ⊂ R3 (i.e. the domain or volume where the contrast is non-zero).
Finally because the Maxwell operator is linear and acts on the position variable r it can
be taken out of the integral to arrive at (4.7). Using the decomposition in (4.4) one can
now derive an integral equation for the unknown total electric field

E = E inc +

∫
V

G · k2
0

(
εr − εbr

)
E dr ′. (4.8)

The fact that (4.8) is an integral equation and the integral is taken over a certain volume
V explains the name volume integral method. At this point we have arrived at equation
(1) of the Chang article [29].

The next step is to discretize (4.8) for the specific diffraction problem at hand. The
assumption of an infinitely double-periodic structure suggest the use of a (quasi-periodic)
Fourier series (i.e. Bloch-Floquet modes) in the xy-plane. Equation (4.6) then simply
reduces to finding the Green’s function along the vertical z-direction for all Fourier modes
separately. This can still be done analytically for a homogeneous layer stack. Semi-
discretizing (4.8) with Fourier series then actually results in a line-integral along the
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z-direction. The Fourier coefficients of the electric field which are still a function of z
can be discretized in many ways. One possible way is described at the beginning of
section 3 in [29] where a (uniform) mesh is chosen along the z-direction in combination
with piecewise constant or piecewise linear basis functions. The integrals that remain can
then still be evaluated analytically. A linear system can be derived in several ways. In
the Chang article [29] one typically uses test functions or moment matching techniques to
arrive at a linear system. With a bit of imagination it can be seen that the linear system
belonging to equation (4.8) must have the following form(

C −GM
)
x = b, (4.9)

where C is a matrix coming from discretizing the left-hand side of (4.8) (following [29]
and using piecewise linear expansion and test functions ([29], p641)), G is the matrix
containing the terms related to the Green’s function in the integral and M is the matrix
related to the contrast term in the integral. Moreover the vector b contains the expansion
coefficients of the incident electric field coming from discretizing the first term in the right-
hand side of (4.8). Finally the vector x simply contains the expansion coefficients of the
total electric field.

4.2
VIM parameters

4.2.1 VIM parameters

The matrices C ,G and M depend on the discretization (choices) parameters as well as
on geometry and material parameters, i.e. on all parameters discussed in Chapter (2)
and section (3.4) (in a non-linear manner):

1. Discretization parameters:

• −Mx and +Mx: lower and upper index of modes along first reciprocal vector

• −My and +My: lower and upper index of modes along second reciprocal vector

• Nz: number of layers along grating

2. Incident field E inc parameters :

• θ: angle of incidence (angle with z axis) in degrees

• φ: angle of incidence (angle with x axis) in degrees

• E θ: incident field parallel to the plane of incidence (classical TM or p polar-
ization)

• Eφ: incident field perpendicular to the plane of incidence (classical TE or s
polarization)

• f : frequency of operation

3. Material parameters (ε, µ, in equation (2.3)):

• ε∞: relative permittivity of background
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• ε1: relative permittivity of layer (possibly complex): BARC

• ε−∞: relative permittivity of lower halfspace (possibly complex): Silicon

• ε2: relative permittivity of grating (possibly complex): Resist

4. Geometry parameters:

• dv1: x and y component of 1st lattice vector

This vector specifies the first part of the unit-cell. In the test cases it is always
chosen along the x-direction. So, dv1 = (a, 0) meaning that the period/pitch
of the grating along this direction is equal to norm(dv1) = a.

• dv2: x and y component of 2nd lattice vector

Similarly this vector specifies the second part of the unit-cell. In our examples
it is always chosen along the y - direction. So, dv2 = (0, b) meaning that the
period/pitch of the grating along this direction is equal to norm(dv2) = b.

• thickness: thickness of grating in z-direction

This is simply the total height of the grating.

• dslab: thickness of the layer

This is simply the height/thickness of the homogeneous layer below the grating.

• bottomcoordx/y(1): x- and y- coordinates of vertex at the bottom, relative
with respect to dv1 and dv2 (lower left corner)

• bottomcoordx/y(2): x- and y- coordinates of vertex at the bottom, relative
with respect to dv1 and dv2 (lower left corner)

The last two coordinates are used to specify the grating itself, assuming a
square block of resist one simply needs to specify two opposite corner points
of this square in the xy - plane. From these corner points the width of the
(resist or silicon) block in the x - and y - direction can be found.

5. Accuracy parameters:

• MFFT: fast Fourier transform (fft) size in transverse plane greater or equal to
max(2Mx + 1, 2My + 1), product of small primes

• NFFT: fft size in z direction greater or equal to 2Nz − 1, product of small
primes.

4.2.2 Degrees of freedom

The degrees of freedom x ∈ CN are the discretization degrees of freedom in the order
(i,m1,m2, nz) where the first index is the fast running index and the last one is the slow
running index:

• i = 1, 2, 3 the three components E1, E2, E3 of the electric field E
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• m1 = −Mx, ...,+Mx where Mx ∈ N, Fourier discretization in the x direction

• m2 = −My, ...,+My where My ∈ N, Fourier discretization in the y direction

• nz = 0, ..., Nz spatial discretization/sampling in the z direction.

This implies that the total amount of degrees of freedom is

N = 3(2Mx + 1)(2My + 1)(Nz + 1).

In general, the larger Mx,My and Nz are the more accurate the electric field E is ap-
proximated.

4.2.3 Parameter dependencies

1. C and M depend on Mx, Ny, ε∞, ε2, bottomcoordx/y(1), and bottomcoordx/y(2).

2. G depends on Mx, Ny, Nz, θ, φ, f, ε1, ε−∞, ε∞ dv1, dv2, dslab, and thickness.

4.3
The test cases, geometry

There are three test cases related to the different geometries. Test case 2 (T2) and 3 (T3)
are related to the geometry (material properties) in Figure (4.2) and test case 1 (T1) is
related to the geometry (material properties) in Figure (4.1). Section (4.4.3) explains the
choice for these specific test cases.

Case Mx My Nz MFFT NFFT Bytes Figure Difficulty

T1 3 3 8 16 16 25.2 MB (4.1) Easy
T2 5 5 8 32 16 146 MB (4.2) Medium
T3 7 7 24 64 64 >2GB (4.2) Hard

Table 4.1: Parameter values.

Making the size of the grating larger and (or) increasing the permittivity directly influence
the number of matrix vector multiplications (they can increase quite dramatically). These
are mainly the parameters ASML changed to distinguish between the easy and the
medium test cases; in addition to using different kinds of materials for some of the layers.
For the medium and hard cases a Silicon block floats on the air, where as for the easy case
we have a block of Resist (Res) lying on top of a layer of bottom anti reflection coating
(BARC) which sits on top of a Silicon substrate.
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unit-cell easy case

Pitch/period in x = 1

dv1=(1d0,0d0)

Pitch/period in y = 1

dv2=(0d0,1d0)

Block width 

in x = 0.15

Block width 

in y = 0.15

Si

BARC

Res

Air

Height = 0.18

Height = 0.436

Air, relative permittivity = 1

Res (Resist), relative permittivity = 2.32410025

BARC (Bottom Anti Reflection Coating), relative permittivity = 2.46985106091296

Si (Silicon), relative permittivity = 18.37919466326700-i*0.40307129895600

Angle of incidence (theta,phi) = (8.13010235deg, 45.0000000deg)

Incident polarization (Etheta,Ephi) = ((0+0*i),(1+0*i)) ~ TE (Transverse Electric) polarization

Incident frequency (freq) = 299792458 (~ incident wavelength = 1)

θ

φ

Figure 4.1: Geometry T1
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unit-cell medium/hard case

Block width 

in x = 0.3

Block width 

in y = 0.3

Air

Si

Air

Height = 0.436

Air, relative permittivity = 1

Si (Silicon), relative permittivity = 18.37919466326700-i*0.40307129895600

Angle of incidence (theta,phi) = (8.13010235deg, 45.0000000deg)

Incident polarization (Etheta,Ephi) = ((0+0*i),(1+0*i)) ~ TE (Transverse Electric) polarization

Incident frequency (freq) = 299792458 (~ incident wavelength = 1)

θ

φ

Pitch/period in x = 1

dv1=(1d0,0d0)

Pitch/period in y = 1

dv2=(0d0,1d0)

Figure 4.2: Geometry T2/T3
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4.4
Properties of A,C,G and M

In order to determine the best (fastest) method to solve Ax = b, we first examine the
structure of the non-zero entries of A and its spectrum. Its spectral properties help to
determine the best iterative solution method.

4.4.1 Matrix vector multiplication

The non-zero sparsity pattern of the matrix (parts which constitute) A is a direct conse-
quence of the VIM discretization and the choice of basis. The matrix A (canonical basis),
a combination of the sparse matrices C , M and G, is dense. But because x 7→ Cx ,
x 7→ Gx and x 7→Mx can be calculated in linear time in N , the amount of degrees of
freedom, so can a matrix-vector product x 7→ Ax . The VIM discretization is such that
the matrix vector product can be calculated even faster if one uses a Fast Fourier Trans-
formation, i.e., if one uses a different basis for the representation of the linear operator.

4.4.2 Sparsity pattern

The VIM discretization of (an integral-equation reformulation for (layer-wise) Maxwell’s
equations described in Chapter (2)) of the linear equation (2.9) with boundary conditions
(2.18) leads to a system A(c)x (c) = b(c), where A(c) ∈ CN×N , b(c) ∈ CN , and the
unknown vector x (c) ∈ CN which all depend on the parameters c described in section
(4.2).

The coefficient matrix A is given by the formula A(c) = C −G ·M and it is a dense
non-Hermitian (see (C) complex matrix. The matrices C , M and G are sparse and have
block structures as described below (see Figure (4.3) and (4.4)). The unknowns in the
system Ax = b are derived from a 4D array which is converted into one long vector
(hence the block structures below).

The block structures

1. C = Bx + By + I z where Bx is diagonal-block-toeplitz-block-diagonal-block-
diagonal, By is diagonal-block-diagonal-block-toeplitz-block-diagonal, and I z is
block diagonal. See Figure (4.3) (b).

2. M is diagonal-block-toeplitz-block-toeplitz-block-diagonal. See Figure (4.4) (a).

3. G is a sparse toeplitz matrix. See Figure (4.4) (b).
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(a) (b)

Figure 4.3: T1 (a) The coefficient matrix A and (b) the matrix C

(a) (b)

Figure 4.4: T1 (a) the matrix M and (b) the matrix G.
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(a) (b)

(c)

Figure 4.5: Block of (a) C (b) M and (c) G.

Figure (4.5) shows the structure of an individual (non-zero) block of C ,M and G.

(a). Each block of C has a Toeplitz structure containing 2My + 1 Toeplitz blocks at the
diagonal and 6 upper and lower ’diagonals’.

(b). Each block of M consists of 2My + 1 Toeplitz blocks in which each of them again
consists of blocks with Toeplitz structures.

(c). Each block in G is a 3(2Mx + 1)(2My + 1) block diagonal matrix of non-overlapping
3× 3 blocks.

Theorem 4.4.1. There exists a permutation matrix P such that PGP−1 is a block
diagonal matrix.

Proof. Inspection of the non-zero pattern yields that (MatLab notation)

P =
[
[1, 2, 3], [1, 2, 3] + 3∆, . . . , [1, 2, 3] + 3∆Nz;

[4, 5, 6], [4, 5, 6] + 3∆, . . . , [4, 5, 6] + 3∆Nz;

. . .

3∆− [2, 1, 0], 6∆− [2, 1, 0], . . . , 3∆(Nz + 1)− [2, 1, 0]
]

where ∆ = (2Mx + 1)(2My + 1).
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4.4.3 Analysis of the properties of A

All of our analysis are ”numerical” (i.e. experimental) since the formulae for (the entries)
the matrix blocks C ,G and M are not provided as an information (NoA). We can resort
to a numerical analysis since ASML provides a MatLab code which calculates

c → C (c), c → G(c), c →M (c)

which reads the parameter values c from files.

The first challenge is to find test cases of physical relevance which fit into memory of
the largest (RAM sense) available departmental computer (16GB RAM) which can run
a version of MatLab (64 bits) that can deal with big (multi GB) matrices C , G, M
and A. This challenge turns out to be non-trivial. Even small numbers of harmonics
(M = Mx = My) and number of layers (Nz) lead to a matrix A of several megabytes
large (see Table (4.1): T1, T2) and a physically interesting case is easily several gigabytes
large (Table (4.1):T3). Because for operations (such as the determination of singular
values) MatLab uses a factor of the GB size of A, T3 is the ”largest” test case for which
a numerical analysis is possible.

The reason to use the same geometry (Figure (4.2)) for a range of tests (T1, T2) is moti-
vated by the wish to get a bit of insight into the asymptotical behavior of the properties
of the matrix for the case Mx, My, Nz → ∞.

The reason to have test T1 (Figure (4.1)) next to T2, T3 is that the material for T1
(Resist, BARC) is ”easier” than that of T2, T3; which is Silicon. ”Easier” is related to
an observation made by ASML: using specific method (NoA) the amount of iterations
increases if

1. for constant material properties Mx = My, Nz → ∞ - a more accurate solution.

2. for Mx = My, Nz constant material properties εi → c (less contrast).

4.4.4 Hermitian

Definition 1: A complex matrix A ∈ Cm×n is said to be Hermitian (self-adjoint) if
AH = A. If A is Hermitian then its diagonal entries are real valued.

By using the MatLab command isequal(A,A’), one can check that all the coefficient
matrices in the three test cases are not Hermitian.

4.4.5 Diagonal dominance

Definition 2: A square matrix A = [aij]
n
i,j=1 is said to be (weakly) diagonally dominant

if

|aii| ≥
n∑
i=1
i 6=j

|aij| ∀ i, j. (4.10)
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By using the MatLab script in Appendix (C) it is checked that the coefficient matrix A
is not diagonally dominant for all the three test cases, see Table (4.2).

Table (4.2) shows the number of rows, i which satisfy

|aii| <
∑
i 6=j

|aij|. (4.11)

Case Number of rows satisfying (4.11)

T1 629
T2 3267
T3 16875

Table 4.2: The number of rows i which satisfy (4.11).

4.4.6 Spectrum, positive definiteness

Every iterative method requires the coefficient matrix to have certain properties. The
convergence of most iterative methods is highly dependent on the spectral properties of
the coefficient matrix. The singular values and the distribution of the eigenvalues play
important roles for speeding up Krylov space type methods. For the distribution of the
eigenvalues of the coefficient matrices of the three test cases, see Figure (4.6). This thesis
is devoted to finding preconditioners M that can make the spectrum of the preconditioned
matrix M −1A accumulate around one.

Definition 3: A matrix A ∈ Cn is called positive definite if

Re((Ax ,x )2) > 0 ∀x ∈ Cn,x 6= 0 .

One can show that A ∈ Cn×n is called positive definite if and only if its Hermitian part

A + AH

2

is positive definite.

Definition 4: A matrix A ∈ Cn×n is said to be normal if and only if AAH = AHA.

By definition the Hermitian (symmetric) part of a matrix A is normal whence its nu-
merical range {

Re((Ax ,x )2) : x ∈ Cn, ||x ||2 = 1
}

is the convex hull of its (real-valued) eigenvalues which implies that a complex valued
matrix is positive definite if and only if the eigenvalues of its Hermitian part are all
positive.
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By implementing the above definitions and the corresponding MatLab codes, we found
out that the coefficient matrix for the easy case is positive definite but not that of the
medium and hard cases. Moreover, it is checked that all the matrices are not normal.

(a) (b)

(c)

Figure 4.6: Spectra of the test cases (a) T1 (b) T2 and (c) T3

4.4.7 Spectral radius and singular values

Let σmin(A) and σmax(A) respectively be the minimum and maximum singular values of
A over σ(A). Then, since

κ2(A) = ||A||2||A−1||2 =
σmax(A)

σmin(A)
,

the extreme singular values (eigenvalues) (see Table (4.3)) strongly influence the amount
of iterations.

In the case when A is a normal matrix the condition number becomes

κ2(A) =
λmax(A)

λmin(A)
,

where λmax(A) and λmin(A) respectively are the maximum and minimum eigenvalues (in
modulus) of A.
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Case λmin(A) λmax(A) σmin(A) σmax(A) κ2(A)

T1 0.9469+0.1953i 2.3241+0.0000i 0.7083 2.4928 3.5193
T2 -0.0362+0.0453i 18.3792-0.4031i 0.0286 25.5369 927.7855

Table 4.3: Extreme singular and eigenvalues

Additionally, in all the three cases one can compute (approximate) κ1(A), κ2(A), and
κ∞(A) with the MatLab command cond (condest) (see Table (4.4)):

Case κ1(A) κ2(A) κ∞(A)

T1 11.9860 3.5193 36.6195
T2 6.9332e+003 927.7855 4.7050e+004
T3 7.0953e+004 484.3420 4.1939e+004

Table 4.4: Approximation of the condition numbers

Finally, to get a more precise insight of the spectrum Table (4.5) lists

{λ ∈ σ(A) : |λ| < 1} ,

i.e. all eigenvalues inside the unit disc.

Because A is a full (almost) matrix, we will try to solve Ax = b with an iterative method
in Chapter (5). A direct solver can be used only for A ∈ CN×N with N small, but even
in that case calculating a full Gaussian elimination costs O(N3) FLOPS, i.e, it is (too)
expensive. Note that A depends on parameters, i.e, A = A(c). Unfortunately, for some
limit parameter values (such as when distance between two adjacent markers goes down
to zero), κ2(A) 7→ inf. For such cases, we need to precondition the iterative solution
method.
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-0.7734 + 0.4128 i 0.4223 + 0.0326 i
-0.8922 + 0.1238 i 0.4883 + 0.0388 i
-0.6412 + 0.3709 i 0.5902 + 0.0104 i
-0.4397 + 0.0613 i 0.5918 + 0.0111 i
-0.2173 + 0.0673 i 0.6172 + 0.0108 i
-0.1923 + 0.1266 i 0.6216 + 0.0170 i
-0.0754 + 0.4361 i 0.6337 + 0.0162 i
-0.0438 + 0.0390 i 0.6923 + 0.0173 i
-0.0362 + 0.0452 i 0.7130 + 0.0088 i
0.0424 + 0.0444 i 0.7144 + 0.0079 i
0.0974 + 0.0868 i 0.7172 + 0.0214 i
0.2626 + 0.0280 i 0.7298 + 0.0292 i
0.3215 + 0.0203 i 0.7269 + 0.0092 i
0.3402 + 0.0268 i 0.7334 + 0.0143 i
0.3566 + 0.0204 i 0.7358 + 0.0071 i
0.3821 + 0.0466 i 0.7550 + 0.0068 i
0.3852 + 0.0250 i 0.7572 + 0.0073 i
0.4106 + 0.0163 i 0.7855 + 0.0065 i
0.4189 + 0.0284 i 0.8124 + 0.0047 i
0.8186 + 0.0042 i 0.8605 + 0.0032 i
0.8723 + 0.0032 i 0.8313 + 0.0040 i
0.8921 + 0.0053 i 0.8313 + 0.0041 i
0.8930 + 0.0049 i 0.8357 + 0.0212 i
0.8936 + 0.0051 i 0.8397 + 0.0193 i
0.8935 + 0.0022 i 0.8540 + 0.0048 i
0.8937 + 0.0023 i 0.8541 + 0.0041 i
0.8940 + 0.0038 i 0.8597 + 0.0039 i

Table 4.5: {λ ∈ σ(A) : |λ| < 1}, test case T2.
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Chapter 5

Iterative Methods and
Preconditioning Techniques

As mentioned in Chapter (4), we need to determine an (or the best) iterative method to
solve Ax = b, possibly preconditioned.

First we give an overview of the iterative methods examined and next we show their
performance on our test cases. We also attempt to investigate which eigenvalues of the
spectrum cause the large amount of iterations. Thereafter, we discuss preconditioning
and preconditioners.

5.1
Iterative methods

The term iterative method refers to a wide range of techniques that use successive ap-
proximations to obtain more accurate solutions to a linear system at each step. The
most effective iterative solvers currently available are multi-gird methods and the class of
the Krylov subspace methods [5]. We focus solely on Krylov subspace methods because
our discrete system is in integral form and to the best of our knowledge there exist no
multi-grid methods for this discretization method.

5.1.1 Stationary iterative methods

Iterative methods that can be expressed in the form

x k = Bx k−1 + c

are called stationary iterative methods. The most common stationary methods are: Ja-
cobi, Gauss-Seidel, successive over relaxation, and symmetric successive over relaxation,
[5]. These methods converge only for matrices which satisfy certain properties. For in-
stance, point Jacobi gives a better convergence rate for systems in which the coefficient
matrix A is strictly or irreducibly diagonally dominant.
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5.1.2 Non-stationary iterative methods

The main difference between the stationary and non-stationary methods lies in the fact
that in the latter case the computations involve information that changes at each iter-
ation. Typically, constants are computed by taking inner products of residuals or other
vectors arising from the iterative method [5]. The iteration matrices associated with the
stationary iterative methods are often used as preconditioners of the non-stationary ones.
Examples of non-stationary methods include CG, BiCGSTAB, QMR, GMRES and the
likes.

(a) GMRES and restarted GMRES (GMRES(m)) GMRES is designed to solve positive
definite nonsymmetric linear systems. It has the property of minimizing at every
step the norm of the residual vector over a Krylov subspace. The algorithm is
derived from the Arnoldi process for constructing an l2-orthoginal basis of Krylov
subspaces. It can be considered as a generalization of the MINRES algorithm
[22] and is theoretically equivalent to the Generalized Conjugate Residual (GCR)
method [23], [24] and to ORTHODIR [25]; but it presents several advantages over
GCR and ORTHODIR. [17]

The most popular form of GMRES is based on the modified Gram-Schmidt proce-
dure, and uses restarts to control storage requirements. If no restarts are used, it
will converge in no more than n steps, where n is the order of the matrix. Of course
this is of no practical value when n is large; moreover the storage and computational
requirements in the absence of restarts are prohibitive. The crucial element for the
successful application of GMRES(m) is the choice of m. [5]

(b) Bi-CGSTAB(l) For a number of linear systems of equations arising from realistic
problems, using Bi-CGSTAB algorithm [26] to solve these equations is very at-
tractive. Unfortunately a large class of equations, where, for instance, Bi-CG [27]
performs well, the convergence of Bi-CGSTAB stagnates. This was observed specif-
ically in case of discretized advection dominated PDE’s ( [4]). The stagnation is
due to the fact that for this type of equations the matrix has almost pure imagi-
nary eigen values. In our case, the coefficient matrices associated with all the test
cases seem to have such kind of eigenvalues. Even if Bi-CGSTAB2 [28] attempts
to avoid this stagnation it also has its own shortcomings. For that matter, we
prefer to use the Bi-CGSTAB(l) algorithm developed by Gerard L.G. Sleijpen and
Diederik R. Fokkema [4]. This algorithm generalizes the Bi-CGSTAB algorithm
further to handle also problems with negative (real part) eigenvalues and overcome
some shortcomings of Bi-CGSTAB2. In some sense, it combines GMRES(m) [17]
and Bi-CG and profits from both and seems to converge faster than any of those.
[4]

Methods such as GMRES and QMR converge for all real/complex valued matrices because
they build a Krylov space (the computational cost grows with each iteration) over which
they perform a minimization. However, in general it is not clear for which matrices the
restarted versions will converge.
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5.2
The amount of iterations

In Table (5.1) we list some iterative methods together with the number of iterations
these methods take to find a solution for the linear system in the medium case. Since
the medium and hard cases lead to an indefinite matrix A, the conditions on A of a
few iterative methods are not met and as a result these methods fail to converge. In all
cases the maximum number of iteration was set to 1000 and the stopping criteria was
||Ax k − b||2 < 10−7||b||2.

Iterative method Number of iterations computational time

CGS NO conv. -
QMR NO conv. -

TFQMR NO conv. -
GMRES NO conv. -

GMRESR 115 23.08s
GMRES(m=100) 99 1.915e+3s
BiCGSTAB(l = 2) 104 2.91s
BiCGSTAB(l = 4) 40 1.83s

Table 5.1: Iteration of iterative methods: test case T2

Furthermore, the amount of iterations for BiCGSTAB(l) is observed to increase consid-
erably from the easy case to the hard case.

Case Number of iterations

T1 3
T2 104
T3 173

Table 5.2: BiCGSTAB(l = 2) iterations

5.3
Spectrum shifting

Since so few methods converge for the test case under consideration, we next examine
the spectrum of A i.e., to figure out what might be the cause of this.

Let 0 < α ∈ R. Assume that σ(A+αI ) has more favorable properties than σ(A) whence
one wants to solve

(A + αI )y = b
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rather than Ax = b.

To this end assume that ARy = b. Then

AR = A + αI ⇔ R = I + αA−1

is the required preconditioner. Alternatively one can write

R
.
= I + α(LU )−1

where L and U are (approximate) factors of A such that A
.
= LU .

After the calculation of y , one can compute

x = Ry
.
= [I + α(LU )−1]y = y + α(LU )−1y .

In general one shifts the spectrum such that

a. The small eigenvalues (in modulus) become bigger.

b. The amount of eigenvalues with negative real parts decreases.

In other words, depending on the iterative method, the amount of iterations not only
(strongly) depends on κ2(A) but it may also depend on other spectral properties such as

1. Small eigenvalues (in modulus) λmin(A) of σ(A) and

2. The amount of eigenvalues in {λ ∈ σ(A) : Re(A) < 0}.

For the proper choice or construction of iterative methods and possible preconditioners
we here examine these properties.

In order to investigate whether the eigenvalues with negative real part cause the large
number of iterations in case of T2, we solved

(A + 8I )x = b, (5.1)

and observed that the amount of iterations goes down from 104 to 5, see Figure (5.1).

Figure (5.1) shows that the spectrum σ(A + 8I ) is situated in the right hand side of the
complex plane.

Of course the solution x of the shifted system no longer solves Ax = b. Moreover, the
large shift also shifts λmin away from zero.

We also solved the preconditioned system

(A + 8I )x = Mb,

where MA = A + 8I and M = I + 8A−1. This new system is equivalent to the original
system, but unfortunately the iterative method took 90 iterations to converge.

39



Iterative methods and preconditioning TU/e MSc thesis

Figure 5.1: Spectrum of A + 8I : test case T2.

Furthermore, to see whether the small eigenvalues λmin cause the problem (related to an
eigenvector which represents a localized wave (localized in space))between markers), in
the sense that hopefully

κ2(Ak)
.
=
|λmin(A)|
|λmin(A)|

increases, we solved

(A− (1− 1/2k)λmin(A)I )︸ ︷︷ ︸
=A1,k

x = b, k = 0, 1, 2, 3 (5.2)

( see Table (5.3)) and

(A− (1− 1/2k)Re(λmin(A))I )︸ ︷︷ ︸
=A2,k

x = b, k = 0, 1, 2, 3 (5.3)

(see Table (5.3)). Table (5.3) shows that as the value of k increases the number of

k iter. (5.2) iter. (5.3) cond(A1,k) cond(A2,k) λmin(A1,k) λmin(A2,k)

1 115 120 1.78e+003 1.15e+003 -0.018+0.23i -0.025 + 0.039i
5 170 100 1.96e+003 1.33e+003 -0.001+001i -0.008 + 0.039i
10 303 113 6.29e+005 1.34e+003 -3.53e-5+4.42e-5i -0.007 + 0.039i
20 515 111 6.45e+008 1.34e+003 -3.45e-8+4.32e-8i -0.007 + 0.039i

Table 5.3: Iterations for the shifted systems: test case T2
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iterations required to solve (5.2) increases linearly while the iteration of (5.3) seems to
decrease slowly (but with no clear pattern). In this table we can see that the real part of
λmin alone does not affect the linear system. So, by looking at the 2-nd column we can
conclude that the small eigenvalues are the ones to be blamed for the large number of
iterations.

Table (5.3) indicates that the small eigenvalues may be the ones causing problem. Be-
cause zero is not an accumulation point of the eigenvalues (M.V. Beurden) and because
there are iterative solver methods which can handle a few (up to 3) small eigenvalues effi-
ciently we next examine what happens if we ”leave out” some of the small singular values
(eigenvalues). The expectation is that ”leaving out” small singular values (eigenvalues)
will not improve the amount of iterations much because they are more or less linearly
distributed inside (0, 1].

5.4
The small singular values

In this section we estimate the amount of impact of specific eigenvalue(s) (or singular
values) on the amount of iterations. In many cases the smallest singular values(s) can
have a large impact. To establish the size of the impact, one might need to solve a similar
system of equations, but one without the k ≥ 1 smallest singular values (eigenvalues).
Let A ∈ Cn×n be non-singular, to be solved is Ax = b, b ∈ Cn.

1: Solve A∗x ∗ = b∗ with A∗ ∈ Cn×n.

Let A have a singular value decomposition A = UΣV H, with Σ = diag(σ1, ..., σn) and U
and V are unitary matrices; i.e., UU H = I and VV H = I . Assume that the singular
values are sorted as: σ1 ≥ σ2 ≥ ... ≥ σn. Let k ∈ N, for all x ∈ Rn define the splitting

x = VV Hx =
∑
i

(v i,x )2︸ ︷︷ ︸
(V Hx )i

v i =
n−k∑
i=1

(v i,x )2v i︸ ︷︷ ︸
x+

+
n∑

i=n−k+1

(v i,x )2v i︸ ︷︷ ︸
x−

.

Likewise, for matrix W ∈ Cn×n, let W + ∈ Cn×n−k denote the matrix which contains its
first n − k columns and let W − ∈ Cn×k denote the matrix which consists of its last k
columns:

W = [W +|W −].

Let D be a non-singular diagonal matrix given by

D = diag(1, ..., 1, σo
n−k+1,n−k+1, ..., σ

o
n,n) =

[
I k

Σo

]
∈ Cn×n.

Then
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DV Hx+ = DV H
n−k∑
i=1

(v i,x )2v i = D
n−k∑
i=1

(v i,x )2V
Hv i

=
n−k∑
i=1

(v i,x )2De i =
n−k∑
i=1

(v i,x )2e i

= V Hx+.

In addition

Ax = b ⇔
Ax+ = b −Ax− ⇔

UΣV Hx+ = b −Ax− ⇔
UΣDV Hx+ = b −Ax− ⇔

U

[
Σ+

Σ−Σo

]
V Hx+ = b −Ax− ⇔

U

[
Σ+

Σ∗

]
V H︸ ︷︷ ︸

A∗

x+︸︷︷︸
x∗

= b −Ax−︸ ︷︷ ︸
b∗

.

A∗x ∗ = b∗. (5.4)

For a normal matrix A and decomposition A = V ΣV H one also obtains the same result.

Now a reasonable choice for Σ0 is one such that Σ∗ = diag(σ∗, ..., σ∗) where σ∗ is one of
the first k singular values (already in Σ+). For this choice A∗’s singular values are all
of the singular values of A except the k smallest singular values. Similarly, all of A∗’s
right singular vectors are equal to right singular vectors of A. If the singular values have
an accumulation point (for a sequence of matrices {An}n) one might choose σ∗ to be an
accumulation point.

For the matrices under consideration, it turns out that 1 is an accumulation point of the
singular values, whence we choose σ∗ = 1. Numerical experiments for the medium case
have been done to solve (5.4), and 397 small singular values have been replaced by 1.
Moreover, these experiments show that BiCGSTAB(l = 2) took 43 steps to converge at
the cost of some computational time and the new condition number is 26.5369. Recall
that the original system for the medium case is solved after 104 iterations (steps) and the
condition number is 972.7855.

2: Solve A∗x ∗ = b∗ with A∗ ∈ Cn−k×n−k.

Note that the solution x+ of Ax+ = b∗ is a linear combination of the columns of V +.
Therefore, define V + to be the linear span of the columns of V + and observe:

0 = min
x∈Cn
{||Ax − b∗||2} = min

x∈V +
{||Ax − b∗||2}.
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Due to this, the minimizer x+ ∈ V + is a linear combination

x+ = V +c

where c ∈ Cn−k satisfies

(V +)HAV +︸ ︷︷ ︸
A0

c = (V +)Hb∗︸ ︷︷ ︸
b0

,

where b∗ = b −Ax−. This shows that to compute x+ one can use an iterative method
to solve

A0c = b0. (5.5)

Numerical experiments for the medium case show that in solving (5.5) BiCGSTAB(l =
2) took 29 steps to converge at the cost of some computational time, which is a little
more than a quarter of the total amount of iterations required for the original system.
Unfortunately, the condition number remained the same for this particular case.

The first numerical test shows that many small singular values (eigenvalues) have to be
eliminated to get the iteration count down by a factor of 2.41.

5.5
Preconditioning

The aim of preconditioning is to obtain the solution x to the linear system of equations
Ax = b with less arithmetical operations, i.e., faster and/or cheaper.

The word preconditioning contains the word condition which refers to the condition num-
ber

κ(A) = ||A||||A−1||

of a matrix A ∈ Cn×n. The condition number of a matrix is strongly related to

1. the amount of iterations (of iterative methods) for the solution of Ax = b.

2. the accuracy of the solution x (for all finite fixed-precision solution methods).

Generally for iterative solution methods, a larger condition number stands for more it-
erations and a less accurate (final iterand) solution x = x k which satisfies the relative
stoping criterion ||Ax k − b||/||b|| < ε ∈ R. For direct solution methods, the accuracy
is influenced in a different manner, not due to the stopping criterion but due to the
accumulation of round-off when fixed precision arithmetic is used1

1which is the case when the standard IEEE double precision or single precision fixed-precision cpu-
arithmetic is used. The use of flexible-precision arithmetic (interval-arithmetic) is possible but will lead
to longer-precision numbers which makes scalar addition and multiplication more expensive.
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Summarizing the main effect of the condition number: A larger condition number requires
more floating point operations (FLOPS) to attain the solution x with the same amount
of correct decimal places of precision.

With this effect of the condition number in mind, a linear system

Ax = b, b,x ∈ Rn

is called a preconditioned system if instead one solves a different system with the same
solution, for instance

M LAM R (M −1
R x )︸ ︷︷ ︸
y

= M Lb, M L,M R ∈ Cn×n.

Together the linear operators (matrices) M L,M R are called preconditioners, the idea is
that the coefficient matrix

M LAM R

has a (much) smaller condition number:

κ(M LAM R)� κ(A)

such that the solution x can be calculated with less FLOPS (i.e., cheaper/faster).

Unfortunately, section (5.4) showed that this classical definition preconditioning (via the
condition number) is not too useful, since in section (5.4) the condition number decreases
to a factor of 34.96 for the numerical test using (5.4) whereas the amount of iterations
decreases only to a factor of 2.41. On the other hand for the test which uses (5.5) the
condition number remained the same but the amount of iterations decreases to a factor
of 3.58.

5.6
Iterative methods and amount of

FLOPS
Let us determine the amount of FLOPS required for the iterative solution of Ax = b.

Assume one uses an iterative method (fixed point type) to determine the solution x :

x (0) ∈ Cn, x (k+1) = G(x (k)), k = 1, 2, ...,

with the stopping criterion k > kmax and/or

||x (k+1) − x (k)||2 < ε,

where kmax ∈ N and 0 < ε < 1 are predetermined numbers.
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A typical example of a simple iterative method is Richardson’s method

x 0 ∈ Cn×n, x (k+1) = x (k) − τ(Ax (k) − b) = G(x (k)), k = 1, 2, ...

which is a fixed point method for

G(x ) = (I − τA)x (k) + τb,

where τ must be determined in advance - for the sake of convenience assume that τ = 1.
The related stopping criterion

||x (k+1) − x (k)||2 = ||x (k) − τ(Ax k − b)− x (k)||2 = ||Ax (k) − b||2 < ε,

i.e., one stops if the k-th residual ||Ax (k) − b||2 is smaller than ε.

With this iterative method in mind, the total amount of FLOPS depends on:

1. The amount of FLOPS to construct A, construct (A) - once

2. The amount of FLOPS per iteration (i.e., the amount of FLOPS for x 7→ Ax and
vector operations);

3. The amount of iterations until ||Ax k − b||2 < ε.

For a preconditioned method, the extra costs are

1. The amount of FLOPS to construct M L,M R, construct (M L) + construct (M R) -
once;

2. The amount of FLOPS per iteration (i.e., the amount of FLOPS for x 7→ M Lx
and x 7→M Rx );

3. The amount of iterations until ||Ax k − b||2 < ε.

5.7
The calculation of x 7→MLAMRx

In the preconditioned case one has to calculate x 7→M LAM Rx . Because matrix-vector
and vector-vector operations on complex valued matrices and vectors are associative,
implementations

((M L(AM R))x ) (5.6)

and

(M L(A(M Rx ))) (5.7)

lead to identical results with exact arithmetic. On a computer these implementations
differ considerably:
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• Implementation (5.6) first calculates the entire product matrix M LAM R which
must fit into computer RAM memory before the multiplication x 7→ M LAM Rx
can take place. Even if A, M L, M R ∈ Cn×n are sparse the product M LAM R

can be a full matrix. i.e., x 7→M LAM Rx can cost O(n3) FLOPS and take a lot
of CPU-time.

• Implementation (5.7) calculates three matrix - vector products which will cost O(n)
FLOPS if A,M L and M R are sparse.

Even if both implementations can be realized (enough RAM and CPU-time) both will
lead to a different answer M LAM Rx since the standard (employed) IEEE computer
arithmetic is finite precision. The finite precision scalar multiplication and additions are
both associative but still lead to a different answer because in both cases the aforemen-
tioned operations are performed with different numbers and in a different order, which
leads (in general) to different round-off.

5.8
A preconditioner overview

Most existing preconditioners can be categorized as implicit or explicit. A preconditioner
is implicit if its application, within each step of the chosen iterative method, requires the
solution of a linear system. An example of an implicit preconditioner M is M = (L̄Ū )−1

where L̄ and Ū are triangular matrices obtained by an incomplete LU factorization of
A. The application of x 7→ Mx requires solving triangular systems. For an explicit
preconditioner, x 7→ Mx can be calculated without solving systems (all entries of M
are explicitly available). Algorithms with explicit preconditioners are easier to parallelize
than algorithms with implicit preconditioners. Furthermore, the construction of some
types of approximate inverse preconditioners can be performed in parallel. For these
reasons, sparse approximate preconditioners are becoming popular as an alternative to
more traditional implicit techniques.

5.8.1 Implementation of preconditioners

Let A ∈ Rn×n be non-singular and assume that a matrix M ∈ Rn×n, also non-singular,
is close to A (‖A−M ‖ is small), then the transformed system

M −1Ax = M −1b,

has the same solution as the original system Ax = b, but the spectral properties of its
coefficient matrix M −1A could be more favorable. From a practical point of view, the
only requirement for M is that it is inexpensive to solve linear systems Mu = v . This
is because the preconditioned algorithms will all require a linear system solution with the
matrix M at each step.

Standard preconditioning of Ax = b with the use of M is :

1. Left preconditioning: M −1Ax = M −1b.
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2. Right preconditioning: AM −1y = b, with x = M −1y .

3. Two-sided (split) preconditioning: M is factored as M = M LM R. Then

M −1
L AM −1

R y = M −1
L b,

This form of preconditioning may be used for preconditioners that come in factored
form. It can be seen as a compromise between left- and right- preconditioning.[2]

5.8.2 Preconditioners from stationary iterative methods

Consider a matrix A given by

A =


a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n
...

...
. . .

...
an,1 an,2 . . . an,n

 ,

Then we can write A = D −E − F , where

D =

 a1,1

. . .

an,n

 , E = −


0 0 . . . 0
a2,1 0 . . . 0

...
...

. . .
...

an,1 an,2 . . . 0

 ,

F = −


0 a1,2 . . . a1,n

0 0 . . . a2,n
...

...
. . .

...
0 0 . . . 0


with −E and −F respectively being the strictly lower and strictly upper triangular parts
of A

1. Point Jacobi : M JA = D . This preconditioner is implicit if one stores D and
explicit if one stores D−1.

2. Block Jacobi

a. Non-overlapping block Jacobi ( see Figure (5.2) (a)).
Block versions of the Jacobi preconditioner can be derived by a partitioning
of the variables. If the index set S = {1, 2, ..., n} is partitioned as S =

⋃
i Si

with the sets Si mutually disjoint, then

mij =

{
aij if i and j are in the same index set
0 otherwise

the preconditioner, M = [mij], is now a non-overlapping block-diagonal ma-
trix.
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b. Overlapping block Jacobi ( see Figure (5.2) (b)) - in this case the overlapping
index sets are defined by

Si = {j | li ≤ j ≤ ri}

where l1 = 1, rp = n, li+1 < ri 1 ≤ i ≤ p − 1, and p is the number of blocks
[1]. Jacobi preconditioners need very little storage, even in the block case, and
they are easy to implement.

Figure 5.2: Block Jacobi preconditioners.

3. Gauss - Seidel : M GS = D −E .

4. Successive over relaxation - is derived from Gauss-Seidel by introducing an extrap-
olation (relaxation) parameter ω:

M SOR =
1

ω
(D − ωE).

The constant coefficient ω, the relaxation parameter uniformly scales the equations
of the preconditioned system.

5. Symmetric SOR (SSOR) - performs better than the SOR preconditioner when ap-
plied to non-stationary iterative methods.

M SSOR =
1

ω(2− ω)
(D − ωE)D−1(D − ωF ),

where −F is the strictly upper triangular part of A.

6. ROWNORM scaling : M = diag(1/ri(A)), where ri(A) stands for the norm of the
i-th row of A. This form of scaling is used to ensure that all the rows of the new
coefficient matrix have the same norm.

Block versions of GS, SOR and SSOR are obtained from a block partitioning of A. Let
A be partitioned in the form
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A =


A1,1 A1,2 . . . A1,n

A2,1 A2,2 . . . A2,n
...

...
. . .

...
An,1 An,2 . . . An,n

 ,

where each diagonal block Ai,i is square and non-singular. From this partitioning, one
can define the block matrices

D =

 A1,1

. . .

An,n

 , E = −


O O . . . O

A2,1 O . . . O
...

...
. . .

...
An,1 An,2 . . . O

 ,

F = −


O A1,2 . . . A1,n

O O . . . A2,n
...

...
. . .

...
O O . . . O


where the matrices −E and −F respectively are the strictly lower and strictly upper
triangular parts of A. Therefore, one can define the block versions of GS, SOR, and
SSOR in the same way as above.

For our matrix A, several block preconditioners are ”natural”: 3 × 3 blocks (the three
components of the electromagnetic field), Nz ×Nz blocks, etc.
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Chapter 6

Sparse Approximate Preconditioners

6.1
Sparse approximate inverses (SPAI)

using Frobenius
The purpose of this kind of preconditioning is to construct a sparse explicit preconditioner
M , such that AM is close to the identity matrix I as much as possible or mathematically
one can write AM

.
= I .

6.1.1 Frobenius norm minimization methods

Often Frobenius norm minimization is used to compute explicit preconditioners. Here we
simply need to find the sparse approximate inverse as the matrix M which minimizes
‖I-AM ‖F for right preconditioning, subject to some sparsity constraints. The main
reason behind choosing the Frobenius norm minimization method is because it allows
the decoupling of the constrained minimization problem into n independent linear least-
squares problems, where n stands for the order of the matrix A ([3], [9]). The n problems
are due to the fact that we need to give one least square problem for each column of
M (when preconditioning from the right) or row of M (when preconditioning from the
left). The minimization problem can then be decoupled into the sums of the squares of
the 2-norms of the individual columns of the residual matrix I-AM as

min
M
‖I-AM ‖2

F =
n∑
j=1

min
mj
‖ej −Am j‖2

2, j = 1, 2, ..., n (6.1)

where ej and m j are the jth column vectors of the matrices I and M , respectively. The
number of unknowns for each problem being equal to the number of nonzeros allowed
in each column (or row) of M . The resulting least squares problems can be solved
independently of each other; because the minimization problem (6.1) is equivalent to
minimizing the individual functions

min
mj
‖ej −Am j‖2, j = 1, 2, ..., n. (6.2)

In Frobenius norm minimization a good selection of the nonzero pattern of M plays
a great role in solving the least squares problems. One should keep in mind that M
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has to be reasonably sparse while containing the ”large” entries of the inverse, which are
expected to contribute the most to the quality of the preconditioner [21]. The simplest
criterion to select a nonzero pattern is to choose a threshold parameter ε ∈ (0, 1) and to
include the position (i, j) in the nonzero pattern of M if

|ai,j| > ε ·max
î
|aîj|. (6.3)

Defining a sparsity pattern a priori does not guarantee an actual reduction in the cost
for the construction of this type of preconditioners. Especially when compared to stan-
dard implicit techniques like ILU, preconditioners based on Frobenius norm minimization
always take more time [3].

6.1.2 Sparsity pattern and construction of a preconditioner

Let us define the nonzero pattern of M as a set B ⊆ {(i, j) : 1 ≤ i, j ≤ n} such that
mij = 0 if (i, j) /∈ B. Fix j and consider the set J = {i : (i, j) ∈ B}, which specifies the
nonzero pattern of m j. Let the nonzero entries of m j be denoted by m̂ j = m j(J). It is
easy to see that the columns of A that enter in the definition of m̂ j are those whose index
is in J . Let A(:, J) be the sub-matrix of A formed with such columns. Depending on the
sparsity of A the sub matrix A(:, J) is expected to have some zero rows; for that matter,
let T be the set of indices of nonzero rows of A(:, J). Then after removing the zero rows,
we can restrict our attention to the matrix Â = A(T, J), to the unknown vector m̂ j and
to the right-hand side êj = ej(T ). Therefore, the individual minimization problem (6.2)
is reduced to the following least squares problem [3]

min
m̂j

‖êj − Âm̂ j‖2, j = 1, 2, ..., n. (6.4)

There are a variety of methods available to solve (6.4). One approach is to use a
dense QR - factorization of A(T, J) (recommended for large matrices). It is obvious that
the complexity of the least squares solve will be reduced if A is replaced by a sparse
approximation of A. [9]

Algebraic strategies for sparsity pattern

In selecting a suitable sparsity pattern for M , the sparsity pattern of A is often suggested,
because it is not possible to determine the structure of A−1 (without computing it) [9] or
because A−1 is a full matrix. By numerical experiments we determined the location of
the large entries of A and A−1. From the experiments we concluded that for the easy test
case the large entries of A tend to be located in the positions corresponding to the large
entries of A−1, see Figure (6.1) (a). But for the medium test case there is less similarity,
see Figure (6.1) (b).
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(a)

(b)

Figure 6.1: Sparsified A,A−1 for the test cases (a) T1 (b) T2

Below we give the descriptions of some techniques that help us prescribe B , the sparsity
pattern of M .

1. For a fixed positive integer k, with k � n, find the k largest entries (in modulus)
in each column of A. Then B is the set of positions (i, j) of these entries.

2. B is the set of positions (i, j) such that aij satisfies equation (6.3).

3. The combination of 1 and 2;

Compared to other kinds of heuristics, the ones given above have obvious advantages
from the point of view of parallel implementation. The first heuristic has the additional
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advantage that the amount of nonzeros in the approximate inverse is controlled by the
user. A drawback common to all the heuristics is the need to find good values of the
parameters involved.

Sparsifying techniques

(a) a column-wise thresholding (dropping) strategy.

cij =

{
aij if |aij| > ε ·maxî |aîj| 1 ≤ î, j ≤ n
0 otherwise.

(6.5)

(b) pick the k largest (in modulus) elements from each column of A.

cij =

{
aij if |aij| >= Ak 1 ≤ i, j ≤ n
0 otherwise,

(6.6)

where Ak is the k-th largest element in column j.

(c) combination of the above two.

cij =

{
aij if |aij| > ε ·maxî |aîj|, i ∈ J and 1 ≤ î, j ≤ n
0 otherwise

(6.7)

where J indexes the k largest elements (in modulus) in column j of A. Thus in each
column we only take the k largest elements, provided they are above the threshold
given in (6.3).

Construction

We construct the preconditioner M as follows:

1. Compute G ≈ A using one of the above techniques.

2. Compute C ≈ A using the same heuristics as above either using the same param-
eters ε, k or different ones.

3. Compute sparse approximate inverse M of G using (6.4) where the sparsity pattern
of M is chosen to be the same as that of C .

6.2
Sparse approximate preconditioners

using ILUT(τ)
To construct a sparse approximate preconditioner we use the sparsifying techniques (6.5)
- (6.7).
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6.2.1 Construction and application

• sparsify A with some threshold parameter ε, and denote the new matrix by C .

• factorize C using an incomplete LU factorization with a drop tolerance τ

• the product of the inverses of L and U can now be used as a left (right) precondi-
tioner.

• one can also use central preconditioning as L−1AU −1.
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Chapter 7

Numerical Results

The BiCGSTAB(l) iterative method is used to test different kinds of preconditioners
for the system Ax = b, where the coefficient matrix A and the right-hand-side vector,
b, are built by the VIM algorithm (note that VIM also uses BiCGSTAB(l)). Some of
the parameters have been set as follows; the suitable initial guess was assumed to be
the null (zero) vector, the stopping criteria (tolerance), ε = 1e − 7 is taken and the
maximum number of iterations is set to 1000 and also l = 2 has been used. In all cases
left preconditioning is chosen unless indicated otherwise.

The VIM algorithm requires 14 and 400 matrix-vector multiplications, respectively, for
the easy and medium test cases; therefore decisions on choosing the best preconditioner
are made based on these two results and the ones that are presented in the following
tables.

In the following tables aware of the following notations

1. iter. - number of iterations

2. relres - relative residual which is defined by ||b −Ax ||/||b||

3. tsolve - time needed to solve the system

4. tconst. - time needed to construct the corresponding preconditioner

5. tinv - time needed to invert the preconditioner

6. tinvsp - time needed to invert the sparsified coefficient matrix

7. tLU - time needed to compute an incomplete LU factorization of the sparsified matrix

8. M D - density of the preconditioner M where density is defined by the number of
non-zero entries divided by N2 (N order of the matrix)

9. sp. M −1
D - density of the sparsified inverse of M

10. sp. AD - density of the sparsified coefficient matrix A

11. LD - density of the matrix L

12. U D - density of the matrix U
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7.1
Numerical results for Jacobi, GS, SOR,

and SSOR
The main objective of this report, as explained before, is to find a preconditioner which
can drastically minimize the number of iterations and the amount of matrix-vector mul-
tiplications (MVs).

In the following two tables you find expressions like OV block Jacobi(n,m) which means
the preconditioner is an overlapping block Jacobi where each block is of order n, and
m is the order of the matrix where the Jacobi blocks intersect. In addition, NOV block
Jacobi(n) stands for a non-overlapping block diagonal matrix of order n.

As one can see from Table (7.1), almost all of the preconditioners ended up with three
iteration and 12 MVs, which is a little bit better than the VIM algorithm which took 14
MVs. But, for OV block Jacobi (400,50) and SSOR preconditioners the iterative method
took 2 iterations and 8 MVs which is good compared to the others. The former takes less
construction time but the latter guarantees a very small relative residual.

For the medium test case the VIM algorithm needs 400 MVs to converge. By looking
at the results given in Table (7.2) the non-overlapping block Jacobi with block size 2000
seems to perform better than the rest of them, since it took only 24 steps and 96 MVs,
this makes it a good preconditioner so far.

7.1.1 Easy case, test case T1

Preconditioner iter. MVs relres tsolve tconst. + tinv.

None 3 12 2.3104e-008 0.016s -
Point Jacobi 3 12 1.0015e-009 0.015s 0.06s

Overlapped(OV) block Jacobi(400,50) 2 8 2.3298e-008 0.156s 1.17s
Non-OV (NOV) block Jacobi(400) 3 12 1.6903e-010 0.234s 1.16s

Gauss - Seidel(GS) 3 12 1.0080e-009 0.219s 0.60s
SOR, ω = 0.97 3 12 1.0081e-009 0.235s 0.64s
SSOR, ω = 1 2 8 2.0367e-012 0.141s 4.07s

Rownorm scaling 4 16 5.348e-008 0.156s 0.07s

Table 7.1: Test case T1
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7.1.2 Medium case, test case T2

Preconditioner iter. MVs relres tsolve tconst. + tinv.

None 104 416 8.5172e-008 2.91s -
Point Jacobi - - - - 0.34s

NOV block Jacobi(700) 55 220 3.7093e-008 22.4s 12.75s
NOV block Jacobi(2000) 24 96 2.2380e-008 9.59s 12.93s
OV block Jacobi(2000,50) 40 160 6.4274e-008 16.3s 12.33s
OV block Jacobi(700,10) 67 268 9.6653e-008 27.1s 12.94s

Gauss Seidel(GS) 120 480 2.9936e-008 48.6s 5.37s
SOR, ω = 0.97 124 496 3.4109e-008 50.4s 5.39s
SSOR, ω = 1 57 228 6.0315e-008 23.2s 34.29s

Rownorm scaling 138 552 8.6739e-008 29.6s 0.39s

Table 7.2: Test case T2

Figure 7.1: Non-overlapping block Jacobi (2000).

In Tables (7.1) and (7.2) the numerical results corresponding to preconditioners obtained
from stationary iterative methods are presented. We want to give emphasis to the block
Jacobi preconditioners, from Table (7.2) we can see that, given the same size, the non-
overlapping blocks perform better than the overlapping ones. In spite of their popularity
for sparse systems, preconditioners like point Jacobi and SSOR seems to take more iter-
ations than the block Jacobi preconditioners.

We can also see in Table (7.2) that some preconditioners made the condition of the system
much worse which is implied by the number of iterations the iterative method needed to
converge. It is also presented that the iterative method failed to converge in the case of
point Jacobi.
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7.2
Numerical results for SPAI Frobenius

In the following tables you find the expression sp. AD = M D, it means the density of
the sparsified coefficient matrix A and that of the preconditioner M are equal.

Tables (7.3) - (7.8) show the amount of iterations for Frobenius based preconditioners
using BiCGSTAB(l = 2) and the sparsification techniques (6.5) - (6.7).

7.2.1 Easy case, test case T1

ε sp. AD = M D iter. MVs relres tsolve tconst.

7e-2 0.23 % 2 8 9.1831e-008 0.156s 0.98s
4e-4 34.10 % 1 4 8.2478e-008 0.062s 849.85s

Table 7.3: Frobenius SPAI, technique (6.5).

k sp. AD = M D iter. MVs relres tsolve tconst.

4 0.30 % 2 8 6.2687e-008 0.172s 1.33s
500 37.80 % 1 4 7.7450e-008 0.078s 836.24s

Table 7.4: Frobenius SPAI, technique (6.6).

k, ε sp. AD =M D iter. MVs relres tsolve tconst.

4, 2e-2 0.27 % 2 8 8.4408e-008 0.156s 1.49s
500, 3e-4 33.10 % 1 4 9.2428e-008 0.078s 755.38s

Table 7.5: Frobenius SPAI, technique (6.5).
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7.2.2 Medium case, test case T2

ε sp. AD = M D iter. MVs relres tsolve tconst.

5e-2 1.44% 67 268 7.8692e-008 27.2s 66.22s
1e-2 6.15% 55 220 6.7801e+008 22.1s 2.03e+003s

Table 7.6: Frobenius SPAI, technique (6.5).

k sp. AD = M D iter. MVs relres tsolve tconst.

100 3.07% 69 276 7.2182e-008 28.1s 112.23s
300 9.20% 57 228 6.6517e-008 23.2s 1.91e+003s

Table 7.7: Frobenius SPAI, technique (6.6).

k, ε sp. AD =M D iter. MVs relres tsolve tconst.

100, 1e-3 3.07% 69 276 7.2182e-008 28.1s 114.46s
200, 1e-2 3.10% 56 224 5.3995e-008 22.8s 201.09s

Table 7.8: Frobenius SPAI, technique (6.7).

7.2.3 Interpretation of the numerical results

From Table (7.3) one can see that the quality of the preconditioner increases as the
value of the threshold parameter ε decreases, where the quality of the preconditioner is
measured by the number of iterations and the time the iterative method took to find one
accurate solution.

By looking at Table (7.4) one can observe that the quality of the preconditioner increases
with the value of k, the number of largest entries from each column one wants to include
in the sparsity pattern.

Table (7.5) is where we used the combination of the two previous strategies. It is observed
that for large values of k and relatively small values of ε it is possible to obtain quality
preconditioners. Moreover, by fixing k one can play with the values of ε (and vise versa)
until a desired quality is achieved.
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7.3
Numerical results for ILUT(τ)

preconditioners
Tables (7.9) - (7.15) show the amount of iterations for ILUT(τ) based preconditioners
using BiCGSTAB(l = 2) and the sparsification techniques (6.5) - (6.7).

7.3.1 Easy case, test case T1

ε, τ sp. AD LD U D iter. MVs relres tsolve tLU

7e-2, 7e-2 0.23 0.15 % 0.15 % 2 8 6.3178e-008 0.015s 0.19s
8e-4, 2e-4 22.52 % 13.25% 14.66% 1 4 9.3505e-008 0.031s 2.77s

Table 7.9: ILUT(τ), technique (6.6).

k, τ sp. AD LD U D iter. MVs relres tsolve tLU

10, 1e-2 0.77 % 0.34% 0.33% 2 8 2.3291e-008 0s 0.31s
400, 1e-4 30.24 % 18.12% 20.85% 1 4 8.6090e-008 0.031s 3.86s

Table 7.10: ILUT(τ), technique (6.6).

k, ε, τ sp. AD LD U D iter. MVs relres tsolve tLU

10, 7e-2, 1e-2 0.23 % 0.34% 0.33 % 2 8 6.3178e-008 0.015s 0.50s
400, 3e-4, 1e-4 28.28 % 18.12% 20.85% 1 4 9.0312e-008 0.047s 4.02s

Table 7.11: ILUT(τ), technique (6.7).
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7.3.2 Medium case, test case T2

ε, τ sp. AD LD U D iter. MVs relres tsolve tLU

3e-3, 1e-3 13.08% 10.34% 13.52% 10 40 3.0612e-009 4.2s 27.84s
9e-4, 6e-4 24.07% 14.38% 18.85% 5 20 2.1076e-010 3.59s 44.16s
6e-5, 1e-5 52.11% 35.03% 44.98% 1 4 8.2678e-012 2.8s 118.79s

Table 7.12: ILUT(τ), technique (6.6).

Figure 7.2: L, U with ε = 6e− 5, τ = 1e− 5, spectrum of of (LU )−1A and MVs.
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k, τ sp. AD LD U D iter. MVs relres tsolve tLU

600, 1e-3 18.38% 11.01% 14.51% 10 40 3.1872e-009 4.64s 35.32s
900, 4e-4 27.56% 17.03% 22.63% 5 20 6.4734e-010 3.84s 55.48s
2100, 1e-5 64.29% 35.47% 45.28% 1 4 1.2751e-008 2.88s 118.74s

Table 7.13: ILUT(τ), technique (6.6).

Figure 7.3: L, U with =↪2100, τ = 1e− 5, spectrum of (LU )−1A and MVs.
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k, ε, τ sp. AD LD U D iter. MVs relres tsolve tLU

600, 3e-3, 1e-3 9.84% 10.00% 13.15% 12 48 6.4909e-008 5.25s 29.07s
900, 9e-4, 6e-4 19.20% 14.21% 18.66% 5 20 7.3717e-008 3.56s 45.92s
2100, 3e-5, 1e-5 55.73% 35.17% 45.12% 1 4 7.1476e-008 2.89s 121.35s

Table 7.14: ILUT(τ), technique (6.7).

Figure 7.4: L,U with k = 2100, ε = 3e− 5, τ = 1e− 5, spectrum of (LU )−1A and MVs.

7.3.3 Hard case, test case T3

When the sparsified matrix C = (cij) satisfies equation (6.5).

ε, τ sp. AD iter. MVs relres tsolve tLU

2e-3, 1e-3 5.82% 26 104 9.6896e-008 26.1s 788.14s
9e-4, 9e-4 9.81% 17 68 3.0132e-008 18s 1.0651+003s
4e-4, 4e-4 15.12% 8 32 2.0790e-009 16.3s 2.1647+003s
1e-4, 1e-4 26.46% 3 12 1.8282e-010 13s 5.3801+003s

Table 7.15: ILUT(τ), technique (6.5).

7.3.4 Interpretation of the numerical results

To construct preconditioners based on incomplete LU factorization with dropping tol-
erance (τ), one has to keep in mind the magnitude of the elements to be dropped. In
addition to the parameters k and ε, the quality of these kind of preconditioners depend
on the value of τ also, see (7.3). It is also observed that for fixed values of k and ε the
smaller the τ the better the preconditioner is.
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7.4
Sparsity patterns as preconditioners

using single and double threshold
sparsifying strategies

In this section we use the sparsified coefficient matrices as preconditioners (see (7.4.1),
(7.4.2)). These types of preconditioners are applied to matrices where it is possible to
find the inverse of the sparsified matrix by using the backslash operator in MatLab.

Tables (7.16) - (7.27) show the amount of iterations for preconditioners based on single
and double threshold sparsifying strategies using BiCGSTAB(l = 2) and the sparsification
techniques (6.5) - (6.7).

7.4.1 Single threshold strategy (SPST) - numerical results

Construction

• sparsify A and denote it by S

• compute the inverse S−1 by using the backslash operator in MatLab

• use the computed inverse as a left (right) preconditioner

Single threshold easy case, T1

ε M D iter. MVs relres tsolve tconst.

7e-2 0.23% 2 8 6.3178e-008 0.156s 0.19s
6e-4 27.19% 1 4 2.8270e-008 0.078s 0.17s

Table 7.16: Single threshold, technique (6.5).

k M D iter. MVs relres tsolve tconst.

3 0.23% 2 8 9.6373e-008 0.141s 0.25s
300 19.89% 1 4 8.7516e-008 0.078s 0.24s

Table 7.17: Single threshold, technique (6.6).
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k, ε M D iter. MVs relres tsolve tconst.

4, 7e-2 0.21% 2 8 5.0148e-008 0.14s 0.47s
300, 6e-4 22.68% 1 4 9.4022e-008 0.078s 0.51s

Table 7.18: Single threshold, technique (6.7).

Single threshold medium case, T2

ε M D iter. MVs relres tsolve tconst.

4e-3 11.13% 9 36 7.9148e-009 3.72s 1.00s
9e-4 24.07% 4 16 5.4302e-010 1.7s 0.93s
4e-5 55.74% 1 4 1.4172e-008 0.438s 0.90s

Table 7.19: Single threshold, technique (6.5).

k M D iter. MVs relres tsolve tconst.

500 15.32% 11 44 4.4040e-008 4.5s 1.62s
700 21.44% 5 20 2.8150e-008 2.06s 1.56s
2050 62.76% 1 4 4.1089e-008 0.453s 1.53s

Table 7.20: Single threshold, technique (6.6).
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k, ε M D iter. MVs relres tsolve tconst.

500, 1e-3 13.68% 12 48 2.8596e-008 4.88s 2.87s
700, 9e-4 17.15% 6 24 1.2663e-008 2.45s 2.95s
2200, 4e-5 54.30% 1 4 6.2283e-008 0.438s 2.85s

Table 7.21: Single threshold, technique (6.7).

Figure 7.5: Single threshold T2 - Sparsified A, spectrum of M −1A and MVs respectively.

7.4.2 Double threshold sparsifying strategy (SPDT) - numerical
results

• sparsify A and denote it by S .

• compute the inverse S−1, just using the backslash operator in MatLab.

• sparsify S−1.

• use the resulting matrix as a left (right) preconditioner.

Double threshold easy case, T1

ε1, ε2 M D sp. M −1
D iter. MVs relres tsolve tconst. + tinvsp.

7e-2, 7e-2 0.23% 0.23% 2 8 6.2598e-008 0.188s 0.17+1.23s
6e-4, 6e-4 27.19% 25.07% 1 4 7.8555e-008 0.078s 0.17+1.47s

Table 7.22: Double threshold, technique (6.5).
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k, ε M D sp. M −1
D iter. MVs relres tsolve tconst. + tinvsp.

3, 6e-3 0.23% 0.30% 2 8 9.7944e-008 0.172s 0.29+1.21s
300, 8e-5 22.68% 46.37% 1 4 9.8380e-008 0.078s 0.26+1.29s

Table 7.23: Double threshold, technique (6.6).

k, ε1, ε2 M D sp. M −1
D iter MVs relres tsolve tconst. + tinvsp.

4,7e-2, 7e-2 0.21% 0.21% 2 8 7.3244e-008 0.219s 0.48+1.94s
300, 6e-4, 5e-5 19.89% 53.43% 1 4 9.7529e-008 0.078s 0.48+1.32s

Table 7.24: Double threshold, technique (6.7).

Double threshold medium case, T2

ε1, ε2 M D sp. M −1
D iter. MVs relres tsolve tconst. + tinvsp.

4e-3, 5e-3 11.13% 57.71% 9 36 6.9358e-008 3.7s 1.02+13.77s
9e-4, 3e-3 24.07% 78.99% 4 16 5.0341e-008 1.66s 0.95+13.54s
4e-5, 7e-4 55.74% 92.75% 1 4 5.5341e-008 0.437s 0.91+13.56s

Table 7.25: Double threshold, technique (6.5).
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k, ε M D sp. M −1
D iter. MVs relres tsolve tconst. + tinvsp.

500, 4e-3 15.32% 80.47% 11 44 8.6488e-008 4.56s 1.68+13.42s
700, 4e-5 21.44% 99.33% 5 20 8.7884e-008 2.09s 1.69+13.43s
2050, 6e-4 62.76% 93.69% 1 4 7.9012e-008 0.422s 1.69+13.43s

Table 7.26: Double threshold, technique (6.7).

k, ε1, ε2 M D sp. M −1
D iter. MVs relres tsolve tconst. + tinvsp.

500, 1e-3, 6e-3 13.68% 73.18% 12 48 5.1825e-008 4.94s 2.89+13.64s
700, 9e-4, 4e-5 17.15% 99.31% 6 24 9.4534e-008 2.5s 2.89+13.51s
2200, 4e-5, 4e-5 54.30% 99.22% 1 4 6.2354e-008 0.438s 2.97+13.63s

Table 7.27: Double threshold, technique (6.7).
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Figure 7.6: Double threshold T2 - Preconditioner M , spectrum of M −1A and MVs
respectively.

7.4.3 Interpretation of the numerical results

As already been stated, these types of preconditioners are only applicable when it is
possible to use the backslash operator in MatLab to find the inverse of a sparsified matrix.
The quality of these kind preconditioners is affected in the same way as that of the other
type of preconditioners discussed above. That is, the values of the sparsifying parameters
k and ε plays the same roles in this case as well. These types of preconditioners have an
impressive advantage in the sense that only very small time is spent for their construction
when compared to the others. One of the main disadvantages is when the sparsified
matrices are still big and dense which means they need large storage capacity and the
other disadvantage is these techniques can not be used to invert matrices of large size.

7.5
Reuse of preconditioners for different

parameters, test case T2
Because in the reconstruction loop one has to solve A(c)x (c) = b(c) for different (almost
identical) values of c it is important to know whether a preconditioner for value c1 is also
a good preconditioner for value c ∈ (c1 −∆c, c1 + ∆c).
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By changing the angles of incidence of the plane wave with the x and z - axes, φ and θ
respectively, we observed a significant variation in the number of matrix - vector products
(MVs). This is shown in Table (7.28) in the 4-th and 5-th columns. Column 4 shows the
amount of MVs obtained with the FORTRAN-VIM implementation and column 5 shows
the amount of MVs obtained with the equivalent MatLab implementation. By original
system we mean the system with angles of incidence φ = 45 and θ = 8.13010235. In Table
(7.28) PBiCGSTAB stands for the preconditioned BiCGSTAB. We have constructed an
ILUT(τ) preconditioner (see (6.2)) by using a column wise threshold strategy for the
parameters ε = 3e− 3 and τ = 1e− 3.

When we take larger angles for θ and φ the new system seems to be better than the
original one. To the contrary, the preconditioned system for these new angles seems to
take a little more MVs than the preconditioned original system. But still the results (6-th
column) imply that the preconditioner built from the original coefficient matrix is also
good for other angles of incidence.

System ∆φ ∆θ VIM BiCGSTAB(l = 2) PBiCGSTAB(l = 2)

Original 0 0 400 MVs 416 MVs 40 MVs
New system 1 0 0.2 432 MVs 392 MVs 40 MVs
New system 2 0 10 316 MVs 360 MVs 48 MVs
New system 3 0 20 351 MVs 308 MVs 52 MVs
New system 4 10 0 392 MVs 396 MVs 36 MVs
New system 5 20 0 380 MVs 360 MVs 40 MVs
New system 6 10 10 368 MVs 376 MVs 44 MVs
New system 7 20 10 372 MVs 376 MVs 48 MVs
New system 8 10 20 395 MVs 384 MVs 56 MVs
New system 9 20 20 400 MVs 384 MVs 60 MVs

Table 7.28: MVs for systems of different angles of incidence φ, θ : test case T2.
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Chapter 8

Conclusion and Recommendation

8.1
Conclusion

By shifting the spectrum to the right hand side of the complex plane we observed a
significant decrease in the number of iterations. Moreover by moving the small eigenvalues
towards zero we came to realize that the system become much worse conditioned. This
implies that the small eigenvalues, not just their negative real parts, have a huge impact
in affecting the system.

By the experiments in section (5.4) we tried to see what happens when the singular
values less than one are replaced by 1. In one of these experiments we found a number
of iterations of 43 and in the other 29. From these two experiments we came to realize
that the small singular values are not the only ones ruining the system. So, instead one
can conclude that the distribution of the singular values (eigenvalues) between the two
extremes plays decisive roles. For instance, if we have a system with a large condition
number but the eigenvalues are, let us say, accumulated in two regions; experts claim
that the system can be solved in just two steps. On the other hand if another system
has a relatively small condition number but the eigenvalues are distributed everywhere,
it might take quite a while before such a system converges.

By varying the angles of incidence of the plane wave, we observed a significant variation
in the number of matrix - vector products (MVs). It is also observed that by using a
fixed preconditioner for all the systems, the changes in the angles of incidence have a
little effect on the preconditioned system when compared to the un-preconditioned ones,
see Table (7.28).

The preconditioner for a fixed value of φ and θ is also a good preconditioner for systems
obtained by varying these two angles like φ+ ∆φ and θ+ ∆θ even for relatively large ∆φ
and ∆θ, see (7.5).

Sections (7.2) - (7.4) show that sensible sparsifications depend on the test case, i.e., there
is no unique ”optimal” value for k and ε.
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By looking at the amount of time needed to construct the preconditioners one can observe
that the high the quality of the preconditioner the more time it needs for construction.
What can also be observed from the tables is the density of the preconditioners has a
direct relationship with the quality of the preconditioner, the denser the preconditioner
the better the quality. Moreover as can easily be concluded, the time needed to compute
the accurate solution keeps decreasing when the quality of the preconditioner increases.

We conclude this section by jotting down more reasons why one needs to sparsify dense
coefficient matrices for constructing preconditioners.

• For storage purposes.

• Easier to compute inverses.

• For Frobenius minimization methods, the complexity of the least square problems
gets reduced when the matrix is sparse.

8.2
Recommendation

1. Advantage of SPDT over SPST - the inverse of the preconditioner is less dense in
the former case due to the fact that the inverse is also sparsified using a second
dropping tolerance.

2. For matrices where the backslash operator is possible to find inverses SPDT (SPST)
is recommended.

3. If the above is not possible, we recommend ILUT(τ) based preconditioners.

4. In the case when the above two methods fail Frobenius based preconditioners come
to the rescue, even if it always takes too much time to construct such kind of
preconditioners . These preconditioners are recommended provided that one uses
multi-core (multi-processor) computers. The columns of the Frobenius precondi-
tioners better be computed in parallel using these kind of computers, since their
computation needs too much time in ordinary computers.

5. In the case when all the above three are impossible we would like to recommend
the block Jacobi preconditioners.

6. Among the sparsification strategies, we would like to recommend the column wise
threshold strategy due to the fact that it enables a quality preconditioner with
smaller density when compared to the others. But we would also like to bring to
the readers’ attention that the ”k - largest” strategy has the advantage of enabling
researchers to decide the density of their preconditioners prior to computing them.

7. Preconditioners can also be reused for different angles of incedence.
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Chapter 9

Future Work

1. Relevant information for the construction of the preconditioner can be extracted
from the meshes of the underlying physical problem. In particular, two types of
information are directly available

• The connectivity graph, describing the topological neighborhood amongst the
edges

• The coordinates of the nodes in the mesh, describing geometric
neighborhoods amongst the edges

We believe it is a good practice to explore these two strategies and construct pre-
conditioners out of them.

2. Use some information from the properties of the grids and use something like multi-
grid preconditioners.

3. Use multi-core (multi-processor) computers to construct Frobenius based precondi-
tioners.
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Appendix A

The non-linear reconstruction
problem

The motivation for the diffraction problem is that of reconstruction: A beam of (laser)
light is targeted at a grating and the reflected image is shot with a camera. The aim of
this exercise is to exactly determine the grating’s dimensions and material properties.

The beam of laser light is focused at the grating through a lens which causes the light
to come from all directions θ (see Figure (2.3)). This implies that the reflected image
is a superposition (intensities) of the reflected electromagnetic field over all angles θ. In
practice each angle of incidence contributes to 2 or more ”pixels” in the resulting image,
an amount which depends on the incoming wave’s amount of diffraction angles.

In order to create a (computer simulated) reflected image for a specific set of geometry
and material parameters one therefore must solve the Maxwell equations for (a discrete
subset) all θ and accumulate the computed “pixels” into an image. After this is done
the calculated image is compared to the measured (shot) one and geometry and material
parameters are adapted to find a proper fit.

This section first provides an impression of the mathematical nature of the sketch pro-
cedure. Thereafter, several standard algorithms to obtain a best fit are provided and
explained. To conclude with, as part of this thesis a MatLab code has been written which
implements these best fit determination algorithms not for the Maxwell equations
but for scalar pde’s – which depend in a non-linear manner on parameters. The exten-
sive amount of implicit differentiation and determination of higher order derivatives (not
vectors but tensors as iterands) makes the MatLab code far from trivial.

For a structure (grating) with geometry and material parameterized by real valued pa-
rameters g ∈ Rd and geometry parameters w ∈ Rn−d−1, the mapping

U : Rn−1 → RN (A.1)

produces a (discrete) image. The parameters w (in the sequel) are subject to minimiza-
tion, but not the parameters g . Below an element u ∈ RN is regarded as u ∈ Rm×m

(m×m = N) the discrete version of an image in L2(Ω) (Ω = (0, 1)2), i.e, a matrix of pixels
(see Figure (A.1)). The problem of interest is that when an image M ∈ RN (a measured
image) is given and when one has to reconstruct the geometry parameters w ∈ Rn−d−1
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Figure A.1: Image ∈ RN .

which led to the image. In such cases one needs to determine w that minimizes

min
w

1

2
‖U (g ,w)−M ‖2. (A.2)

Now, we define U for the specific case of interest. Let θ ∈ R, (g ,w) ∈ Rd × Rn−d−1 be
geometry parameters and assume that

b : Rn−1 × R→ RN , A : Rn−1 × R→ RN×N .

Let
u : Rn−1 × R → RN

solve
A(g ,w , θ)u(g ,w , θ) = b(g ,w , θ). (A.3)

Let θi ∈ R and define U : Rn−1 → RN by

U (g ,w) =
∑
i

u(g ,w , θi) =
∑
i

u i. (A.4)

For the specific problem of interest, U is non-linear in the argument w , and u solves
the linear system (A.3).

Figure (A.2) shows an example: In that figure N = 25, thus

U : Rn−1 → R25.

Each u i = u(g ,w , θi) is a 5 × 5 image. Therefore the entire picture has only three
non-zero pixels such that

U (g ,w) =
3∑
i=1

u i =
3∑
i=1

u(g ,w , θi) ∈ R25 (≡ R5×5).

For our application the linear system

A(g ,w , θ)u(g ,w , θ) = b(g ,w , θ)
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Figure A.2: Special case: Three 5× 5 images with one non-zero pixel
(
u(g ,w , θi)

)3

i=1
.

Figure A.3: Special case: The sum of the images in Figure (A.2) as seen by the camera.

is the VIM discretized system described in Chapter (4) based on the layer-wise discretiza-
tion depicted in Figure (3.2) in Chapter (3).

In order to abbreviate notations let

Rc = Rd × Rn−d−1 × R,

then one can write (A.3) as

A(c)x (c) = b(c).

This shows that to calculate one image one has to solve several systems (see (A.4))

A(cp)x (cp) = b(cp), ∀p ∈ P

where P ⊂ N.
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A.1
The reconstruction algorithm

First we introduce the reconstruction algorithms. The next section applies them to one
specific image reconstruction case.

A.1.1 Newton’s method

First take a suitable initial guess u (0), then the remaining iterates are calculated according
to

u (k+1) = u (k) − [∂F (u (k))]−1F (u (k))︸ ︷︷ ︸
d

∀k = 0, 1, 2, . . . . (A.5)

Each step of this method needs to calculate the direction d ∈ RN such that

∂F (u (k))d = F (u (k)). (A.6)

A.1.2 The generalized Gauss - Newton method

Let x ∈ Rm and y ∈ RN . Let f : Rm 7→ Rn and let g : RN 7→ R:

g(x ) =
1

2
||f (x )− y ||22. (A.7)

Then g is differentiable and a critical point x of g satisfies

∇g(x ) = (∂f (x ))T (f (x )− y) = 0 . (A.8)

This shows that a critical point is either a solution of

f (x )− y = 0 (A.9)

or that a real critical point for which

f (x )− y ∈ ker(∂f (x ))T . (A.10)

If m = n and ∂f (x ) is of maximal rank (for instance if it is non-singular) then only
solutions of (A.9) exist, not other critical points.

To find critical points we have to find the roots of

h(x ) = ∇g(x ) = (∂f (x ))T (f (x )− y).

Then one step of the Newton method for this critical point search (also called modified
Newton for the search of a ”root” of x 7→ f (x )− y):

∂h(x k)(x k+1 − x k) = −h(x k) (A.11)

Note that if f is affine then

∂h = (∂2f )f + ∂f T∂f = ∂f T∂f .
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Also ∂f (x )T∂f (x ) is non-singular if ∂f (x ) is of maximal rank.

A generalized steepest descent method for problem (A.8) would be: Determine R 3 λk > 0
and set

x k+1 = x k − λk∇g(x k) = x k − λk(∂f (x k))T (f (x k)− y).

The generalized Newton method for problem f (x ) = y is the Newton method applied
to (A.8), which is

x k+1 = x k −
((
∂2f (x k)

)
f (x k) + ∂f (x k)∂f (x k)

)−1
∂f (x k)T

(
f (x k)− y

)
. (A.12)

If one substitutes λkI n for the second derivative term
(
∂2f (x k)

)
f (x k) one obtains the

Levenberg method :

x k+1 = x k −
(
∂f (x k)T∂f (x k) + λkI n

)−1
∂f (x k)T

(
f (x k)− y

)
(A.13)

and if one substitutes λkdiag(∂f (x k)T∂f (x k)) instead one obtains the Levenberg-Marquardt
method

x k+1 = x k −
(
∂f (x k)T∂f (x k) + λkdiag(∂f (x k)T∂f (x k))

)−1
∂f (x k)T

(
f (x k)− y

)
.

(A.14)

A.2
The specific non-linear case

Let U be defined as in (A.4) and let M be a measured image. For the sake of argument
assume that c ∈ Rn−1 = R3. We start off by the minimization problem

min
c∈R3

1

2
‖U (c)−M︸ ︷︷ ︸

∈RN

‖2. (A.15)

A minimizer ĉ of (A.15) satisfies(
∇U (c)

)T
︸ ︷︷ ︸
∈R3×N

(
U (c)−M

)
= 0 (A.16)

where (see (A.4))

U (c) =
∑
i

u(c, θi), ∇U (c) =
∑
i

∇cu(c, θi),

with ∇cu(c, θi) to be determined later by (A.20).

To solve (A.16) with Newton (see (A.5)) one needs the derivative

∇H(c) =
(
∇(∇U (c))

)T
︸ ︷︷ ︸

∈R3×3×N

(
U (c)−M

)
+
(
∇U (c)

)T(
∇U (c)︸ ︷︷ ︸
∈RN×3

)
(A.17)
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of

H(c) =
(
∇U (c)

)T(
U (c)−M

)
.

Note that
∇
(
∇U (c)

)
=
∑
i

∇c(∇cu(c, θi)),

with ∇c(∇cu(c, θi)) to be determined later from (A.22).

Observe that in the Maxwell’s applications c /∈ Rn−1. In that application c is an element
of a convex subset (closed and bounded) of Rn−1

Let c = (c1, c2, c3) ∈ R3 and assume that u(c, θi) solves

F (c,u(c, θi)) = 0 . (A.18)

Under some assumptions, by the implicit function theorem one can show that there is a
unique (differentiable) u(c, θi) satisfying (A.18).

In order to determine ∇cu(c, θi) one implicitly differentiates (take the total derivative
of) (A.18) which leads to

dcF (c,u(c, θi))
Chain rule

= ∇cF (c,u(c, θi))︸ ︷︷ ︸
∈RN×3

+∇uF (c,u(c, θi))︸ ︷︷ ︸
∈RN×N

∇cu(c, θi)︸ ︷︷ ︸
∈RN×3

= 0︸︷︷︸
∈RN×3

,

(A.19)
which implies

∇cu(c, θi) = −[∇uF (c,u(c, θi))]
−1∇cF (c,u(c, θi)). (A.20)

In order to determine ∇cu one can apply Newton’s method and solve

Hc(v) = 0 .

where Hc : RN×3 → RN×3 is defined by

Hc(v) = ∇cF (c,u(c, θi)) +∇uF (c,u(c, θi))v .

To this end one needs the derivative

∇vHc(v) = ∇uF (c,u(c, θi)). (A.21)

And by taking the total derivative of (A.19) one gets

∇c(∇cF (c,u(c, θi))) +∇u(∇cF (c,u(c, θi)))∇cu(c, θi) +∇c(∇uF (c,u(c, θi))∇cu(c, θi)

+∇u(∇uF (c,u(c, θi)))∇cu(c, θi)∇cu(c, θi) +∇uF (c,u(c, θi))∇c(∇cu(c, θi)) = 0 .
(A.22)

In order to determine the double gradient ∇c(∇cu) one can apply Newton’s method and
solve

Hc(v) = 0 .

where

Hc(v) = ∇c(∇cF (c,u(c, θi))) +∇u(∇cF (c,u(c, θi)))∇cu(c, θi)

+∇u(∇uF (c,u(c, θi)))∇cu(c, θi) +∇u(∇uF (c,u(c)))∇cu(c, θi)∇cu(c, θi)

+∇uF (c,u(c, θi))v . (A.23)

To this end one needs the gradient

∇vHc(v) = ∇uF (c,u(c, θi)). (A.24)
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A.3
The non-linear numerical test cases

A.3.1 Mathematical problem formulation

Let Ω = (0, 1), let n ∈ N, m = n + 1, h = 1/m and xi = i · h, i = 0, . . . , n + 1. Let
Ωh = {xi}ni=1 and ∂Ωh = {x0, xn+1}. Let c ∈ cc be a parameter in the parameter-set Rc.
Let a, f, g : Rc ×Ω 7→ R be real valued smooth functions defined on the domain Ω, which
in addition depend on a parameter/parameters c. Let

L = −a(c)∂2, Lh = −a(c)D+D− =: −a(c)∂2
h

be two linear operators (for the sake of demonstration) in u. The boundary value
problems (BVPs) are: Let c ∈ R3. Find ubvp ∈ C2(Ω̄) such that

L(c)(u) = f(c) in Ω, u = g(c) in ∂Ω. (A.25)

Application of a finite difference method (FDM) leads to: Let c ∈ R3. Find u fdm ∈ RN

such that
Lh(c)(u) = f(c) in Ωh, u = g(c) in ∂Ωh. (A.26)

The FDM discretization depends on parameter h which can be considered as one of the
parameters w related to (A.26). Let the linear system related to (A.26) be written as

L(c)u fdm(c) = f (c)

A.3.2 The specific non-linear case

The specific non-linear case of interest is of the form

F (c,u(c)) = L(c)u(c)− b(c) = 0 , (A.27)

where F : R3 × RN → RN .

Example 1. Let c = (c1, c2, c3). The function ubvp(c, x) = c1 + c2x+ c3x
2 solves

F (u(c), c) = 0 ⇔ L(c)u(c) = f (c)⇔


−u′′ = −2c3 in (0, 1)
u = c1 at x = 0
u′ = c2 + 2c3 at x = 1.

(A.28)

where L = −a(c)∂2
h. Here F is linear in both u and c

Example 2. Let c = (c1, c2, c3). The function ubvp(c, x) = c1(x− c2)(x− c3) solves
−u′′ = −2c1 in (0, 1)
u = c1c2c3 at x = 0
u′ = c1(2− c2 − c3) at x = 1.

(A.29)

Here F (c,u(c)) = L(c)u(c)− f (c) where L is linear in u and c but f is non-linear in
c.
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Example 3. Let c = (c1, c2, c3). The function ubvp(c, x) = c1(x− c2)(x− c3) solves
− c1u

′′ = −2c1c1 in (0, 1)
u = c1c2c3 at x = 0
u′ = c1(2− c2 − c3) at x = 1.

(A.30)

Here F (c,u(c)) = L(c)u(c)− f (c) where L is linear in u and c but f is non-linear in
c.

Example 4. Let c = (c1, c2, c3). The function ubvp(c, x) = c1(x− c2)(x− c3) solves
− (1/c1)u′′ = −2 in (0, 1)

u = c1c2c3 at x = 0
u′ = c1(2− c2 − c3) at x = 1.

(A.31)

Here F (c,u(c)) = L(c)u(c)− f (c) where L is linear in u , but non-linear in c and f is
non-linear in c.

Example 5. Let c = (c1, c2, c3). The function ubvp(c, x) = c1 + c2x+ c3x
2 solves

−u′′ − ku = −2c3 − k(c1 + c2x+ c3x
2) in (0, 1)

u = c1 at x = 0
u′ = c2 + 2c3 at x = 1.

(A.32)

Here F (c,u(c)) = L(c)u(c) − f (c) where L is linear in u , but non-linear in c and f
is non-linear in c.
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Appendix B

The determination of an initial guess

Let c ∈ Rn and A(c) ∈ RN×N be non-singular, b(c) ∈ RN and assume that x (c) ∈ RN

is defined by
A(c)x (c) = b(c) ⇒ x (c) = A−1(c)b(c). (B.1)

Now a good initial guess for x (c + ∆c) would be x (c + ∆c) itself or (since unknown) an
approximation based on x (c):

x (c + ∆c) = x (c) +∇x (c)∆c +O(|∆c|2).

The following Lemma calculates ∇x (c).

Lemma B.0.1.

∇x(c) = A−1(c)
(
∇b(c)− (∇A(c))TA−1(c)b(c)

)
. (B.2)

Proof. For the scalar case, i.e., when c ∈ R

x (c) = A−1(c)b(c) ⇒ (x ′(c))T = A−1(c)(b ′(c))T + [A−1]′(c)b(c). (B.3)

Let A : Rn → RN×N be non-singular. Then

A(c)A−1(c) = IN ⇒ A′(c)A−1(c) + A(c)[A−1]′(c) = 0. (B.4)

Thus,

[A−1]′(c) = −A−1(c)A′(c)A−1(c). (B.5)

Therefore, substituting (B.5) into (B.3) gives the desired result.

Under the assumption that one can calculate ∇x (c) with Lemma (B.0.1) (or by other
means) one can construct at least two equally good initial guesses; x (c) + ∆c itself and

x (c + ∆c)
.
= x (c) +∇x (c)∆c

since A(c)x (c) = b(c). Another option is to use x (c) as an initial guess for the deter-
mination of x (c + ∆c).

In fact note that (B.2) gives
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(x ′)T = A−1((b ′)T −A′A−1b) ⇔ A(x ′)T = (b ′)T −A′x ,

which can also be obtained directly by implicit differentiation

Ax = b ⇒ A′x + A(x ′)T = (b ′)T

⇔ A(x ′)T = (b ′)T −A′x .
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Appendix C

Script for checking diagonal
dominance

function isdiagonallydominantf(A)

%--------------------------------------------------------------------------

% checks whether a square matrix A is (weakly) diagonally dominant or not.

%

% Definition: A square matrix is said to be

% (weakly) diagonally dominant if for all rows the absolute value of the

% diagonal element in a row is greater than or equal to the sum of the

% absolute values of the rest of the elements in that row.

%--------------------------------------------------------------------------

%

% Example 1. NOT diagonally dominant

% A=[-2 -6+3i 0 1;5 11 -8 -9; 0 20 22 -4;3 2+3i 1 -7];

%

%--------------------------------------------------------------------------

% Example 3. Diagonally dominant

% A=[10,2,2,2,2,2;2,10,2,2,2,2;2,2,10,2,2,2;2,2,2,10,2,2;2,2,2,2,10,2;2,2,2,2,2,10];

%

%--------------------------------------------------------------------------

%

% Example 4:

%

A=buildAxb;

%

%--------------------------------------------------------------------------

rowcol=size(A);

%size of the matrix A (how many rows/columns ).

n=rowcol(1);

% count = the number of rows which satisfy the inequality.

count=0;

for i=1:1:n

sumrow=0;

for j=1:1:n

if i~=j

sumrow=sumrow+abs(A(i,j));

end

end

if abs(A(i,i))-sumrow >=0

count=count+1;

end

end

if count==n

disp(’YES’)

else

disp(’NO’)

end

count2=n-count % counts the number of rows where abs(A(i,i))-sumrow < 0 count=629
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