64,163 research outputs found

    L1L_1-Penalization in Functional Linear Regression with Subgaussian Design

    Get PDF
    We study functional regression with random subgaussian design and real-valued response. The focus is on the problems in which the regression function can be well approximated by a functional linear model with the slope function being "sparse" in the sense that it can be represented as a sum of a small number of well separated "spikes". This can be viewed as an extension of now classical sparse estimation problems to the case of infinite dictionaries. We study an estimator of the regression function based on penalized empirical risk minimization with quadratic loss and the complexity penalty defined in terms of L1L_1-norm (a continuous version of LASSO). The main goal is to introduce several important parameters characterizing sparsity in this class of problems and to prove sharp oracle inequalities showing how the L2L_2-error of the continuous LASSO estimator depends on the underlying sparsity of the problem

    Functional linear regression analysis for longitudinal data

    Full text link
    We propose nonparametric methods for functional linear regression which are designed for sparse longitudinal data, where both the predictor and response are functions of a covariate such as time. Predictor and response processes have smooth random trajectories, and the data consist of a small number of noisy repeated measurements made at irregular times for a sample of subjects. In longitudinal studies, the number of repeated measurements per subject is often small and may be modeled as a discrete random number and, accordingly, only a finite and asymptotically nonincreasing number of measurements are available for each subject or experimental unit. We propose a functional regression approach for this situation, using functional principal component analysis, where we estimate the functional principal component scores through conditional expectations. This allows the prediction of an unobserved response trajectory from sparse measurements of a predictor trajectory. The resulting technique is flexible and allows for different patterns regarding the timing of the measurements obtained for predictor and response trajectories. Asymptotic properties for a sample of nn subjects are investigated under mild conditions, as nn\to \infty, and we obtain consistent estimation for the regression function. Besides convergence results for the components of functional linear regression, such as the regression parameter function, we construct asymptotic pointwise confidence bands for the predicted trajectories. A functional coefficient of determination as a measure of the variance explained by the functional regression model is introduced, extending the standard R2R^2 to the functional case. The proposed methods are illustrated with a simulation study, longitudinal primary biliary liver cirrhosis data and an analysis of the longitudinal relationship between blood pressure and body mass index.Comment: Published at http://dx.doi.org/10.1214/009053605000000660 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Sparsity meets correlation in Gaussian sequence model

    Full text link
    We study estimation of an ss-sparse signal in the pp-dimensional Gaussian sequence model with equicorrelated observations and derive the minimax rate. A new phenomenon emerges from correlation, namely the rate scales with respect to p2sp-2s and exhibits a phase transition at p2spp-2s \asymp \sqrt{p}. Correlation is shown to be a blessing provided it is sufficiently strong, and the critical correlation level exhibits a delicate dependence on the sparsity level. Due to correlation, the minimax rate is driven by two subproblems: estimation of a linear functional (the average of the signal) and estimation of the signal's (p1)(p-1)-dimensional projection onto the orthogonal subspace. The high-dimensional projection is estimated via sparse regression and the linear functional is cast as a robust location estimation problem. Existing robust estimators turn out to be suboptimal, and we show a kernel mode estimator with a widening bandwidth exploits the Gaussian character of the data to achieve the optimal estimation rate

    Optimal linear estimation under unknown nonlinear transform

    Full text link
    Linear regression studies the problem of estimating a model parameter βRp\beta^* \in \mathbb{R}^p, from nn observations {(yi,xi)}i=1n\{(y_i,\mathbf{x}_i)\}_{i=1}^n from linear model yi=xi,β+ϵiy_i = \langle \mathbf{x}_i,\beta^* \rangle + \epsilon_i. We consider a significant generalization in which the relationship between xi,β\langle \mathbf{x}_i,\beta^* \rangle and yiy_i is noisy, quantized to a single bit, potentially nonlinear, noninvertible, as well as unknown. This model is known as the single-index model in statistics, and, among other things, it represents a significant generalization of one-bit compressed sensing. We propose a novel spectral-based estimation procedure and show that we can recover β\beta^* in settings (i.e., classes of link function ff) where previous algorithms fail. In general, our algorithm requires only very mild restrictions on the (unknown) functional relationship between yiy_i and xi,β\langle \mathbf{x}_i,\beta^* \rangle. We also consider the high dimensional setting where β\beta^* is sparse ,and introduce a two-stage nonconvex framework that addresses estimation challenges in high dimensional regimes where pnp \gg n. For a broad class of link functions between xi,β\langle \mathbf{x}_i,\beta^* \rangle and yiy_i, we establish minimax lower bounds that demonstrate the optimality of our estimators in both the classical and high dimensional regimes.Comment: 25 pages, 3 figure

    Functional Regression

    Full text link
    Functional data analysis (FDA) involves the analysis of data whose ideal units of observation are functions defined on some continuous domain, and the observed data consist of a sample of functions taken from some population, sampled on a discrete grid. Ramsay and Silverman's 1997 textbook sparked the development of this field, which has accelerated in the past 10 years to become one of the fastest growing areas of statistics, fueled by the growing number of applications yielding this type of data. One unique characteristic of FDA is the need to combine information both across and within functions, which Ramsay and Silverman called replication and regularization, respectively. This article will focus on functional regression, the area of FDA that has received the most attention in applications and methodological development. First will be an introduction to basis functions, key building blocks for regularization in functional regression methods, followed by an overview of functional regression methods, split into three types: [1] functional predictor regression (scalar-on-function), [2] functional response regression (function-on-scalar) and [3] function-on-function regression. For each, the role of replication and regularization will be discussed and the methodological development described in a roughly chronological manner, at times deviating from the historical timeline to group together similar methods. The primary focus is on modeling and methodology, highlighting the modeling structures that have been developed and the various regularization approaches employed. At the end is a brief discussion describing potential areas of future development in this field

    Varying-coefficient functional linear regression

    Full text link
    Functional linear regression analysis aims to model regression relations which include a functional predictor. The analog of the regression parameter vector or matrix in conventional multivariate or multiple-response linear regression models is a regression parameter function in one or two arguments. If, in addition, one has scalar predictors, as is often the case in applications to longitudinal studies, the question arises how to incorporate these into a functional regression model. We study a varying-coefficient approach where the scalar covariates are modeled as additional arguments of the regression parameter function. This extension of the functional linear regression model is analogous to the extension of conventional linear regression models to varying-coefficient models and shares its advantages, such as increased flexibility; however, the details of this extension are more challenging in the functional case. Our methodology combines smoothing methods with regularization by truncation at a finite number of functional principal components. A practical version is developed and is shown to perform better than functional linear regression for longitudinal data. We investigate the asymptotic properties of varying-coefficient functional linear regression and establish consistency properties.Comment: Published in at http://dx.doi.org/10.3150/09-BEJ231 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm
    corecore