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que a memoria titulada

ESTIMATES AND BOOTSTRAP CALIBRATION
FOR FUNCTIONAL REGRESSION WITH SCALAR RESPONSE
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González Manteiga

Prof. Dr. Frédéric Ferraty Prof. Dr. Philippe Vieu

A doutoranda:

Adela Mart́ınez Calvo



iv



Contents

Preface xi

1 Introduction to FDA 1
1.1 Functional data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 What are functional data? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Example 1. Brownian motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Example 2. Canadian weather data . . . . . . . . . . . . . . . . . . . . . . . . . 2
Example 3. Spectrometric data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Example 4. Atmospheric pollution data . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Other functional datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
a) Climatology and environmetrics . . . . . . . . . . . . . . . . . . . . . . . . . . 5
b) Chemometrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
c) Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
d) Econometrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
e) Biometrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
f) Further applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Functional space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 The Hilbert space H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Associated spaces and tensor products . . . . . . . . . . . . . . . . . . . . . . . . 9

a) The space of Hilbert–Schmidt operators . . . . . . . . . . . . . . . . . . . . . 9
b) The dual space H′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
c) Tensor notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.3 Measuring distances: semi–metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Example 1. Semi–metrics based on FPCA . . . . . . . . . . . . . . . . . . . . . . 11
Example 2. Semi–metrics based on MPLSR . . . . . . . . . . . . . . . . . . . . . 11
Example 3. Semi–metrics based on derivatives . . . . . . . . . . . . . . . . . . . 12

1.3 Preprocessing functional data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.1 Smoothing functional data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

a) Linear smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
b) Smoothing by basis functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
c) Smoothing with a roughness penalty . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.2 Registering functional data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
a) Amplitude variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
b) Phase variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Exploring functional data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.4.1 Descriptive statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

a) Measures of position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
b) Measures of dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4.2 Functional data classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.4.3 Spectral analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

a) Functional principal component analysis (FPCA) . . . . . . . . . . . . . . . . 25

v



vi CONTENTS

b) Functional canonical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
c) Functional linear discriminant analysis . . . . . . . . . . . . . . . . . . . . . . 28

2 Functional regression models 29
2.1 What does functional regression mean? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 Functional regression for scalar response . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3 Functional linear regression for scalar response . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.1 Estimators based on basis expansions . . . . . . . . . . . . . . . . . . . . . . . . 33
a) Least squares estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
b) Penalized least squares estimator . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.2 Estimators based on FPCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
a) Definition of standard FPCA estimator . . . . . . . . . . . . . . . . . . . . . . 35
b) Definition of general class of FPCA–type estimators . . . . . . . . . . . . . . . 37
c) Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
d) Conditional errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
e) Asymptotic normality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4 Functional nonparametric regression for scalar response . . . . . . . . . . . . . . . . . . 41
2.4.1 Kernel–type estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

a) Definition of kernel estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
b) Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
c) Bias and variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
d) Asymptotic normality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.5 Appendix Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.5.1 Formulation and proof of Lemma 2.5.1 . . . . . . . . . . . . . . . . . . . . . . . . 47
2.5.2 Proof of Theorem 2.3.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.5.3 Formulation and proof of Lemma 2.5.2 . . . . . . . . . . . . . . . . . . . . . . . . 48

3 Presmoothing in functional linear regression 51
3.1 Why introduce presmoothing techniques? . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2 Presmoothing via covariance structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.1 Definition of estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.2 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.3 Conditional errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Presmoothing via response variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.1 Definition of estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.2 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3.3 Conditional errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Heuristics on alternative presmoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4.1 Using Pezzulli and Silverman’ presmoothed FPCA . . . . . . . . . . . . . . . . . 60

Definition of estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Conditional errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.2 Using Silverman’s presmoothed FPCA . . . . . . . . . . . . . . . . . . . . . . . . 62
Definition of estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Conditional errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.5.1 Case A. Existence of null eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.5.2 Case B. Non existence of null eigenvalues . . . . . . . . . . . . . . . . . . . . . . 65

3.6 Real data application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.6.1 Canadian weather data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.6.2 Spectrometric data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.6.3 Atmospheric pollution data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.7 Final conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.8 Appendix Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



CONTENTS vii

3.8.1 Proof of Theorem 3.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.8.2 Formulation and proof of Lemma 3.8.1 . . . . . . . . . . . . . . . . . . . . . . . . 74
3.8.3 Proof of Theorem 3.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.8.4 Proof of Corollary 3.2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.8.5 Proof of Theorem 3.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.8.6 Formulation and proof of Lemma 3.8.2 . . . . . . . . . . . . . . . . . . . . . . . . 77
3.8.7 Formulation and proof of Lemma 3.8.3 . . . . . . . . . . . . . . . . . . . . . . . . 77
3.8.8 Proof of Theorem 3.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.8.9 Formulation and proof of Lemma 3.8.4 . . . . . . . . . . . . . . . . . . . . . . . . 79
3.8.10 Proof of Corollary 3.3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.8.11 Proof of Corollary 3.3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.8.12 Proof of Theorem 3.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.8.13 Proof of Corollary 3.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.8.14 Proof of Theorem 3.4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4 Bootstrap in functional linear regression 87
4.1 How to build confidence intervals? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.2 Asymptotic confidence intervals for linear regression . . . . . . . . . . . . . . . . . . . . 88
4.3 Bootstrap confidence intervals for linear regression . . . . . . . . . . . . . . . . . . . . . 89

4.3.1 Naive and wild bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3.2 Asymptotic validity of the bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.5 Final conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.6 Appendix Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.6.1 Proof of Theorem 4.3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.6.2 Formulation and proof of Lemma 4.6.1 . . . . . . . . . . . . . . . . . . . . . . . . 103
4.6.3 Formulation and proof of Lemma 4.6.2 . . . . . . . . . . . . . . . . . . . . . . . . 103
4.6.4 Formulation and proof of Lemma 4.6.3 . . . . . . . . . . . . . . . . . . . . . . . . 104

5 Testing in functional linear regression 105
5.1 Testing in FDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.2 Test for lack of dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2.1 Asymptotic theory for testing and bootstrap procedures . . . . . . . . . . . . . . 107
Theoretical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Linear independence test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Testing procedure and asymptotic theory . . . . . . . . . . . . . . . . . . . . . . 109
Bootstrap procedures and consistency . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2.2 Bootstrap calibration vs. asymptotic theory . . . . . . . . . . . . . . . . . . . . . 113
5.3 Test for equality of linear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3.1 Asymptotic theory for testing and bootstrap procedures . . . . . . . . . . . . . . 116
Theoretical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Equality of two linear models test . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Testing procedure and asymptotic theory . . . . . . . . . . . . . . . . . . . . . . 117
Bootstrap procedures and consistency . . . . . . . . . . . . . . . . . . . . . . . . 119

5.3.2 Bootstrap calibration vs. asymptotic theory . . . . . . . . . . . . . . . . . . . . . 120
5.4 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.4.1 Testing the lack of dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.4.2 Testing the equality of linear models . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.5 Real data application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.5.1 Testing the lack of dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.5.2 Testing the equality of linear models . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.6 Final conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.7 Appendix Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133



viii CONTENTS

5.7.1 Proof of Theorem 5.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.7.2 Proof of Corollary 5.2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.7.3 Proof of Theorem 5.2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.7.4 Proof of Theorem 5.2.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.7.5 Formulation and proof of Lemma 5.7.1 . . . . . . . . . . . . . . . . . . . . . . . . 135
5.7.6 Proof of Theorem 5.2.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.7.7 Formulation and proof of Lemma 5.7.2 . . . . . . . . . . . . . . . . . . . . . . . . 136
5.7.8 Proof of Theorem 5.3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.7.9 Proof of Corollary 5.3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.7.10 Proof of Theorem 5.3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.7.11 Proof of Theorem 5.3.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.7.12 Proof of Theorem 5.3.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6 Thresholding in nonparametric functional regression 141
6.1 Why consider a threshold approach? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.2 Threshold methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.2.1 Regression model and estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Examples of threshold functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
A particular scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Mean square convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.2.2 Cross–validation criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.3 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.3.1 Case A. Threshold on Y (same curves in both subsamples) . . . . . . . . . . . . 150
6.3.2 Case B. Threshold on Y and X (equally concentrated curves) . . . . . . . . . . . 150
6.3.3 Case C. Threshold on Y and X (differently concentrated curves) . . . . . . . . . 152

6.4 Real data application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.4.1 Canadian weather data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.4.2 Spectrometric data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.4.3 Atmospheric pollution data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.5 Final conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.6 Appendix Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.6.1 Proof of Theorem 6.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.6.2 Proof of Corollary 6.2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.6.3 Proof of Theorem 6.2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.6.4 Formulation and proof of Lemma 6.6.1 . . . . . . . . . . . . . . . . . . . . . . . . 164
6.6.5 Formulation and proof of Lemma 6.6.2 . . . . . . . . . . . . . . . . . . . . . . . . 165
6.6.6 Formulation and proof of Lemma 6.6.3 . . . . . . . . . . . . . . . . . . . . . . . . 167
6.6.7 Formulation and proof of Lemma 6.6.4 . . . . . . . . . . . . . . . . . . . . . . . . 168
6.6.8 Formulation and proof of Lemma 6.6.5 . . . . . . . . . . . . . . . . . . . . . . . . 169
6.6.9 Proof of Theorem 6.2.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
6.6.10 Proof of Theorem 6.2.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.6.11 Auxiliary technical lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Formulation and proof of Lemma 6.6.6 . . . . . . . . . . . . . . . . . . . . . . . . 173
Formulation and proof of Lemma 6.6.7 . . . . . . . . . . . . . . . . . . . . . . . . 174
Formulation and proof of Lemma 6.6.8 . . . . . . . . . . . . . . . . . . . . . . . . 176
Formulation and proof of Lemma 6.6.9 . . . . . . . . . . . . . . . . . . . . . . . . 176

Conclusions and further research 181

Summary 185

Resumo en galego 191

Bibliography 198



CONTENTS ix

List of Figures 223

List of Tables 225



x CONTENTS



Preface

Nowadays the progress of computational tools (both memory and capacity increasing) allows to create,
store and work with large databases. In many cases, the dataset is made up of observations from a
finite dimensional distribution, measured over a period of time or recorded at different spatial locations.
When the temporal or spatial grid is fine enough, the sample can be considered as an observation of a
random variable on a certain functional space. Analysing this kind of data with standard multivariate
methods and ignoring its functional feature may fail dramatically (curse of dimensionality, collinearity,
valuable information loss, etc.). In these cases, specific statistical techniques are required in order to
manage, leak and draw relevant underlying information.

This fact has turned Functional Data Analysis (FDA) into one of the most active statistical fields in
recent years. From the seminal works in the eighties and the nineties (Grenander, 1981; Dauxois et al.,
1982; Ramsay, 1982; Bosq, 1991), FDA gave rise to several books (Bosq, 2000; Ramsay and Silverman,
1997, 2002, 2005; Ferraty and Vieu, 2006b; Ferraty and Romain, 2011; Horváth and Kokoszka, 2012),
special issues in high impact factor journals (Davidian et al., 2004; González-Manteiga and Vieu, 2007;
Valderrama, 2007; Ferraty, 2010) and international workshops devoted to both methodological and
applied developments for functional data (Dabo-Niang and Ferraty, 2008; Ferraty, 2011). Furthermore,
some contributions focused on the state of the art of FDA were published during the last decade (Rice,
2004; Müller, 2005; González-Manteiga and Vieu, 2011; Delsol et al., 2011a; Cuevas, 2012).

It must be emphasized that functional data come up in a natural way in most scientific fields:
econometrics (e.g., daily stock returns or electricity production/demand curves), engineering sciences
(e.g., satellite imagery, topographic maps or image recognition), environmetrics and climatology (e.g.,
meteorological measurements or fluvial flows curves), medicine (e.g., growth curves or genetic data),
chemometrics (e.g., spectrometric data), etc. This fact generated a variety of applied FDA works in
the literature, such as Ramsay and Silverman (2002), and Ferraty and Vieu (2006a).

Due to the novelty of FDA, there is a wide range of research lines which could be explored: from the
extension to the functional context of well–known multidimensional methods, to the creation of new
statistical techniques devoted to specific functional data issues. Nevertheless, in spite of the functional
nature of the data, the pursued aims are essentially the same as the usual stated objectives for a
multivariate dataset analysis. Consequently, the developed methodology has been intended to satisfy
similar needs:

• Preprocess the data: registration and feature alignment, smoothing techniques, etc.

• Depict and explore the data, highlighting their most important features: measures of centrality
and dispersion, detection of outliers, Functional Principal Component Analysis (FPCA), etc.

• Functional data classification.

• Build models to explain the relationship between functional variables: parametric and nonpara-
metric regression models.

• Functional statistical inference: confidence intervals, hypotheses testing, etc.

This manuscript mainly deals with the last two items. As far as the fourth item is concerned, the
work has been focused on the functional linear model with scalar response (although some contributions

xi
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to nonparametric regression are also included in the last chapter), whereas regarding the fifth item
a bootstrap procedure has been developed, which allows to build confidence intervals and calibrate
hypotheses tests related to the functional linear model.

The thesis has been structured as follows.

Chapter 1. Introduction to FDA. In this chapter, some basic concepts on FDA are defined. The
notion of functional data is introduced, and some examples are given, which will be suitable to illustrate
the methods proposed in the next chapters. A general background is also presented: preprocessing
techniques, functional descriptive statistics, and some key exploratory methods in FDA. Furthermore,
this chapter is used to fix the notation and give a brief summary of the state of the art on statistical
methods for functional data.

Chapter 2. Functional regression models. Chapter 2 is devoted to functional regression models.
At first, a general review of functional regression is presented, and then the efforts are concentrated
on models with scalar response and functional covariate. There are two main approaches to discuss
this subject: the parametric and the nonparametric approaches. As regards the parametric approach,
the two most popular estimators are introduced: estimators based on basis systems and FPCA–
type estimators. As far as the nonparametric approach is concerned, the functional version of the
multivariate kernel–type estimator is also analysed in this chapter.

Chapter 3. Presmoothing in functional linear regression. The chapter is focused on the
functional linear model with scalar response, and explanatory variable valued in a functional space. As
it was discussed in Chapter 2, FPCA has been used to estimate the model functional parameter in recent
statistical literature. A modification of this approach by using presmoothing techniques is proposed
in Chapter 3: either presmoothing via covariance structure or presmoothing via response variable.
For these new estimators, consistency is stated and efficiency by comparison with the standard FPCA
estimator is analysed from a theoretical point of view. The effectiveness of the proposed presmoothed
estimators relative to the standard FPCA estimator and the penalized B–splines estimator is also
tested by means of simulation studies and real data applications.

Chapter 4. Bootstrap in functional linear regression. Weak convergence for a wide class
of FPCA–type estimators has been obtained for the functional linear model with scalar response in
the literature. Consequently, asymptotic confidence intervals for the linear regression operator can
be computed from this theoretical result. Chapter 4 presents an alternative approach to this issue
which allows obtaining pointwise confidence intervals by means of a bootstrap procedure. Specifically,
algorithms for naive and wild bootstrap are developed and asymptotic validity of both bootstrap
methods is proven. In addition, a simulation study compares the practical performance of asymptotic
and bootstrap confidence intervals in terms of length and coverage rates for two linear regression
operators and several sample sizes.

Chapter 5. Testing in functional linear regression. The first part of this chapter is devoted to
introduce a consistent bootstrap method to calibrate the distribution of test statistics for assesing the
lack of dependence in the functional linear model with scalar response. The asymptotic theory related
to this bootstrap approach is also developed. The second part of Chapter 5 presents a bootstrap
method for checking the equality of two linear models. For this methodology, a study of its main
asymptotic properties is done in order to show its consistency and correctness. Finally, a simulation
study and a real data example illustrate the performance of the proposed bootstrap techniques in
practice.

Chapter 6. Thresholding in nonparametric functional regression. This chapter presents
an exploratory tool focused on the detection of underlying complex structures in the nonparametric
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regression model with scalar response and functional covariate. The proposed methodology analyses
the existence of hidden patterns via a threshold procedure. A cross–validation criterion which allows
to estimate the parameters involved in the threshold model is also introduced, and the usefulness of its
graphical representation is studied. Furthermore, a simulation study and applications to real datasets
show the effectiveness of the threshold approach from a practical point of view.

Conclusions and further research. An overview of the main conclusions of the thesis and some
open questions which require further research are included in this section.

Summary. This section presents a summary of this manuscript in English language.

Resumo en galego. A summary of this manuscript in Galician language is enclosed in the final
part of this dissertation.

As well as the theoretical developments of the methodology presented in Chapter 3, Chapter 4,
Chapter 5 and Chapter 6, it is important to highlight that all the proposed methods were implemented
and applied to both simulated and real datasets. For this purpose, the statistical software R was
chosen (see further details in R Development Core Team, 2010, or http://www.r-project.org), and
R routines were developed for each one of the new techniques compiled in this document. In order to
build them, some existing routines were taking as a starting point. For instance, functions related with
the paper by Cardot et al. (2003c) (available at http://www.math.univ-toulouse.fr/staph, section
“Softwares on line”) were considered for the model parameter estimation in the functional linear model
with scalar response, whereas R routines corresponding to nonparametric methods discussed in the
book by Ferraty and Vieu (2006b) (available at http://www.math.univ-toulouse.fr/staph/npfda)
served as a basis for nonparametric regression contributions. Furthermore, some specific R packages
devoted to FDA, such as fda or fda.usc (see Ramsay et al., 2011, and Febrero-Bande and Oviedo de la
Fuente, 2011, respectively), were also consulted.
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Frédéric Ferraty, and Prof. Philippe Vieu, for their fruitful comments and their support during this
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contents of Chapter 5 by including some theoretical results which he developed for our paper González-
Manteiga et al. (2012).
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tria (regional project PGIDIT07PXIB207031PR) and Conselleŕıa de Economı́a e Industria (regional
project 10MDS207015PR), Xunta de Galicia.
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Chapter 1

Introduction to FDA

The basic concepts on FDA are presented in this chapter. Some essential definitions related
to functional data and functional spaces are introduced, jointly with the real datasets which
will be used to show the practical behaviour of some techniques introduced in the forth-
coming chapters. Next, a summarized review of some of the tools developed to preprocess
and explore functional data is presented. Special attention is paid to FPCA since it will be
the basis of the functional linear regression estimators proposed in Chapter 3. In order to
elaborate this chapter, the books by Ramsay and Silverman (2005) and Ferraty and Vieu
(2006b) have been used as main references. Furthermore, overviews by González-Manteiga
and Vieu (2011) and Cuevas (2012) have been really helpful in order to keep the list of
references up to date.

An important part of the state of the art of the techniques compiled in this chapter was
published in Delsol et al. (2011a).

1.1 Functional data

1.1.1 What are functional data?

In several fields of the applied sciences, the development of new technologies which enables the con-
tinuous time monitoring of many measures makes the objects of study to be curves instead of scalars
or vectors. This is what happens when one has to manage daily temperature datasets (Ramsay and
Silverman, 2005), spectrometric curves (Ferraty and Vieu, 2006b), concentrations of atmospheric pol-
lutants (Fernández de Castro et al., 2005; Febrero-Bande et al., 2007), and many other measurements.
In these contexts, the use of functional methods is essential. The functional approach allows to study
and interpret the global behaviour of the stochastic process, something impossible to achieve when the
data are analysed as realizations of a random vector. However, the discrete nature of the real datasets
must not be forgotten: although the grid where observations are taken becomes finer and finer, the
discretization effect cannot be ignored.

The main idea in FDA is to suppose that a random variable X is observed in a discrete grid {tl}Ll=1

with each tl ∈ T . If the time instants tl are close enough, one can assume that {X(tl)}Ll=1 is an
observation of a functional random variable

X = {X(t); t ∈ T}.

Note that T is often a real interval such as T = [T0, T1] ⊂ R, and each observation can be considered as
a curve. Nevertheless, FDA covers many other situations where the space T is a more general functional
space, including multidimensional ones. Next, the functional variable and functional dataset definitions
introduced by Ferraty and Vieu (2006b), jointly with the functional random sample definition, are
recalled in order to fix ideas.

1
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Definition 1.1.1. A random variable X is called a functional random variable if it takes values in an
infinite dimensional space or functional space S. An observation x of X is called a functional datum.

Given a probability space (Ω,A,P), a functional random variable X is indeed a measurable mapping
from Ω to an infinite dimensional space or functional space S. In this case, it will be said that X is a
functional random variable valued in S, or X is a S–valued functional random variable.

Definition 1.1.2. Given a functional random variable X and n ∈ N∗, a functional random sample of
X of lenght n is a set {Xi}ni=1 of independent and identically distributed (i.i.d.) functional random
variables with the same distribution as X. An observation {xi}ni=1 of {Xi}ni=1 is called a functional
dataset.

The general definitions given before include both the most common available functional datasets as
curves or surfaces, and more general functional variables valued in metric or semi–metric spaces.

Sometimes, one faces high–dimensional observations which cannot be correctly analysed by means
of the classical multivariate tools, due to the high correlation of their components, but which do not
seem to be functional by nature at first sight. To solve this issue, Chen et al. (2011) proposed stringing
methods in order to map this high–dimensional data into an infinite dimensional functional space in
such a way that they can be treated using FDA methodology.

There are important links between FDA and Longitudinal Data Analysis. Although some FDA
techniques can be used in longitudinal context, this cannot be done in general since longitudinal data
are notable for the sparseness of the discretization grid. Some recent contributions discussed and
compared longitudinal and functional approaches (see, for instance, James (2002); James and Sugar
(2003); Davidian et al. (2004); Zhao et al. (2004); Müller (2005); Hall et al. (2006); Yao (2007); Müller
and Yang (2010); James (2011)).

1.1.2 Examples

In this subsection, some examples of functional data are introduced, which will be analysed by means of
different statistical methods throughout the manuscript. The first example corresponds to a simulated
dataset and the next three to real data. Furthermore, a brief state of the art on applied contributions
involving real functional data can be found in the next subsection.

Example 1. Brownian motion

A simulated dataset is the first example of functional data included in this section: a Brownian motion.
A Brownian motion defined on T = [0, 1] is a random Gaussian element B such that

E(B(t)) = 0 and Cov(B(s), B(t)) = min(s, t), ∀s, t ∈ T.

A sample of 50 observations of a Brownian motion is depicted in Figure 1.1 (see page 3). The curves
are discretized on a grid of 100 equidistant points.

Example 2. Canadian weather data

The second example comes from the Canadian weather data. This dataset contains averaged daily
temperature and precipitation at 35 different locations in Canada from 1960 to 1994. The Canadian
weather data illustrated many functional methods in the book by Ramsay and Silverman (2005) (see
also the webpage http://www.psych.mcgill.ca/misc/fda), and it is available in the R package fda
(see Ramsay et al., 2011). Figure 1.2 (see page 3) shows the 35 daily temperature curves at each
weather station, being

Xi(t) : daily averaged temperature in the weather station i in the day t, with t ∈ {1, . . . , 365}.
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Figure 1.1: Brownian motion. Sample of 50
simulated observations.
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Figure 1.2: Canadian weather data. Sample
of 35 daily temperature curves.

Example 3. Spectrometric data

The third example corresponds to spectrometric curves: the pork data. The spectrometric dataset is a
part of a sample which can be downloaded from http://lib.stat.cmu.edu/datasets/tecator, and
it was also analysed from a functional point of view in the literature (Ferraty and Vieu, 2006b; see also
the companion website http://www.math.univ-toulouse.fr/staph/npfda). The dataset concerns
a sample of 215 pieces of finely chopped meat. For each unit, a spectrometric curve is observed which
corresponds to the absorbance1 at 100 wavelengths. The spectrometric dataset was recorded on a
Tecator Infratec Food and Feed Analyzer. The left panel of Figure 1.3 (see page 4) collects these 215
curves, given by

Xi(t) : absorbance of the piece i of meat at t nm, with t ∈ {850, . . . , 1050}

(note that nm is the symbol for nanometre). In the chemometric community, it is well–known that
derivatives of spectra are more informative than the original ones. This is the reason why right panel
of Figure 1.3 collects the second derivatives of the spectrometric curves which will play an important
role later on.

Example 4. Atmospheric pollution data

Finally, an environmental example have been selected: air pollution data. The data is a time series
Z corresponding to the concentration of hourly averaged NOx measured in the neighbourhood of a
power station belongs to ENDESA, located in As Pontes in the Northwest of Spain. The NOx level
was measured each minute from 2007 to 2009. The time series Z has been divided in various paths
corresponding to 4 hour periods (that is, the curves are discretized at 240 points). Thus,

Xi(t) = Z(t+ (i− 1)× 240) : hourly averaged NOx in the minute t (period i), with t ∈ {1, . . . , 240}.

Figure 1.4 (see page 4) presents 100 of these curves. Note that, though the NOx values are low in
general, during unfavourable meteorological conditions the NOx levels may quickly rise and cause an

1The absorbance is defined as Aw = − log10 (I(w)/I0(w)), where I(w) is the intensity of light at the wavelength w
that has passed through the sample, whereas I0(w) is the intensity of the light before it enters the sample.
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Figure 1.3: Spectrometric data. Sample of 215 spectrometric curves (left panel) and their second
derivatives (right panel).

air pollution episode2. This fact explains why the sample consists of several almost constant curves
and very few increasing/decreasing curves which correspond to air pollution episodes.
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Figure 1.4: Atmospheric pollution data. Sample of 100 hourly averaged NOx levels.

1.1.3 Other functional datasets

Many contributions devoted to FDA contain applied issues, for example, Ramsay and Silverman (2002)
or Ferraty and Vieu (2006a). These studies concern functional data coming from a variety of scientific
fields. Next, a selected collection of these applied contributions are summarized.

2An air pollution episode is a period of abnormally high concentration of air pollutants, often due to low winds and
temperature inversion, that can cause illness and death.
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a) Climatology and environmetrics

Recent environmental and climatological problems have required the use of FDA techniques (see, for
instance, Escabias et al., 2005; Ramsay and Silverman, 2005). Many of the applied contributions
to climatology are related with El Niño phenomenon (Besse et al., 2000; Valderrama et al., 2002;
Antoniadis and Sapatinas, 2003; Ferraty et al., 2005), or other climatic datasets (Vidakovic, 2001;
Ramsay and Silverman, 2002; Hall and Vial, 2006b).

As far as environmetrics applications are concerned, air pollution studies (Damon and Guillas,
2002; Fernández de Castro et al., 2005; Aneiros-Pérez et al., 2004; Cardot and Sarda, 2006; Cardot
et al., 2007b; Febrero-Bande et al., 2007; Meiring, 2007; Fernández de Castro and González-Manteiga,
2008; Ferraty and Vieu, 2009), papers on atmospheric radioactivity (Cardot et al., 2007d; Hlubinka and
Prchal, 2007), and water quality control contributions (Henderson, 2006; Nerini and Ghattas, 2007)
can be found in the literature.

b) Chemometrics

Spectrometry has focused the efforts of the statistical FDA community due to the intrinsic functional
nature of the spectrometric curves. From the early papers (Leurgans et al., 1993) to the most recent
works (Leardi, 2003; Amato et al., 2006; Ferraty et al., 2010a), spectrometric data have been the object
of study of many authors, specially the pork dataset presented before (see, amongst others, Borggaard
and Thodberg, 1992; Ferraty and Vieu, 2002; Ferré and Yao, 2005; Amato et al., 2006; Ferraty and
Vieu, 2006b; Ferraty et al., 2006; Aneiros-Pérez and Vieu, 2006; Ferraty et al., 2007a; Mas and Pumo,
2007; Ferraty et al., 2007b; Ferraty and Vieu, 2009; Burba et al., 2009).

c) Engineering

Functional dataset comes easily from engineering frameworks as the satellite imagery or signal recog-
nition. In the literature, FDA has been applied to satellite data (Vidakovic, 2001; Cardot et al., 2003a;
Cardot and Sarda, 2006), radar curves (Dabo-Niang et al., 2007) or sound signal recognition datasets
(Lucero, 1999; Hall et al., 2001; Hastie et al., 2001; Ferraty and Vieu, 2003, 2006b).

d) Econometrics

Functional data appears quite often in the economics, where continuous time series can be split and
analysed as curves. Examples can be found in Kneip and Utikal (2001); Ramsay and Silverman (2002);
Ferraty et al. (2002); Laukaitis and Rackauskas (2002); Kawasaki and Ando (2004); Reddy and Dass
(2006); Jank and Shmueli (2006); Wang et al. (2008); Laukaitis (2008); Liu and Müller (2009); Benko
et al. (2009); Müller et al. (2011).

e) Biometrics

One of the most important scientific fields involving FDA is medicine. Many medical datasets were
analysed from a functional viewpoint: growth curves (Ramsay et al., 1995; Gasser et al., 1998; James
et al., 2000; James and Sugar, 2003; Ramsay and Silverman, 2005; Liu and Yang, 2009), human motion
and perception (Ramsay et al., 1996; Ramsay and Silverman, 2002; Spitzner et al., 2003; Ormoneit
et al., 2005; López-Pintado and Romo, 2007; Antoniadis and Sapatinas, 2007), placebo effects (Tarpey
et al., 2003), mortality (Hyndman and Ullah, 2007; Chiou and Müller, 2009), genetics (Parker and
Wen, 2009), cancerology (Ramsay and Silverman, 2005; Cao and Ramsay, 2007; Erbas et al., 2007),
cardiology (Clot, 2002; Ratcliffe et al., 2002a,b; Cuevas et al., 2004; Harezlak et al., 2007), neurology
(Epifanio and Ventura-Campos, 2011; Goldsmith et al., 2011, 2012) or ophthalmology (Locantore et al.,
1999).

With regard to biostatistics, FDA methods have successfully been applied to many contexts as
the handbook by Härdle et al. (2007) captured. Among the applications one can emphasize works
connected with animal biological problems (Chiou et al., 2003a,b; Müller and Stadtmüller, 2005; Chiou
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and Müller, 2007), and contributions on genetics (Araki et al., 2004; Leng and Müller, 2005; Opgen-
Rhein and Strimmer, 2006).

f) Further applications

There are many other sciences where FDA methods find feasible applications: geology (Manté et al.,
2007), oceanology (Nerini and Ghattas, 2007), demography (Hyndman and Ullah, 2007), graphology
(Hastie et al., 1995; Ramsay, 2000a,b), etc.

Another source of functional datasets arises from the standard multivariate methods. There are
certain interesting curves which are estimated when one works with a multivariate sample, for example
the density function. These kinds of curves can be treated as functional data, and analysed by means
of FDA methodology. Some contributions can be found in the literature for density functions (Kneip
and Utikal, 2001; Ramsay and Silverman, 2002; Nerini and Ghattas, 2007; Delicado, 2007), distribution
functions (Manté et al., 2007), regression functions (Härdle and Marron, 1990; Heckman and Zamar,
2000), or other probabilistic functional characteristics (Rossi et al., 2002).

1.2 Functional space

Let {Xi}ni=1 be a functional random sample, that is, n i.i.d. functional random variables with the same
distribution as a functional variable X valued in an abstract space S. In many common situations,
functional data are curves, so S = L2([0, 1]) is quite often used (Crambes et al., 2009). However, more
general spaces, as Hilbert spaces (S = (H, 〈·, ·〉)) or Banach spaces (S = (B, ‖·‖)), are considered some-
times in order to solve certain technical problems (Bosq, 2000). In other cases, a broader framework
is considered: a functional space S endowed with a semi–metric d(·, ·) (Ferraty and Vieu, 2006b).

Throughout this manuscript, it has been assumed that the space where functional variables take
values is a real separable Hilbert space H, although sometimes the functional space has been restricted
to the well–known L2–space to illustrate certain methods. On the other hand, the need of measures
to determine the closeness of functional observations has motivated the use of semi–metrics in FDA.
These are the reasons why this section has been devoted to the introduction of some concepts connected
with both Hilbert spaces and semi–metrics.

1.2.1 The Hilbert space H
First of all, some basic concepts, which are necessary to introduce the definition of Hilbert space, are
included in order to clarify the kind of features and properties of the functional space.

Definition 1.2.1. A field F is a set with two binary operations3, usually called addition (+F :
F ×F → F ) and multiplication (·F : F ×F → F ), that satisfies the following axioms for all a, b, c ∈ F :

(i) Associativity of +F and ·F : (a+F b) +F c = a+F (b+F c), and (a ·F b) ·F c = a ·F (b ·F c).

(ii) Commutativity of +F and ·F : a+F b = b+F a, and a ·F b = b ·F a.

(iii) Identity element of +F and ·F : ∃ 0F ∈ F such that a+F 0F = a = 0F +F a, ∀a ∈ F , and ∃ 1F ∈ F
such that a ·F 1F = a = 1F ·F a, ∀a ∈ F .

(iv) Inverse element of +F and ·F : ∀a ∈ F , ∃ − a ∈ F such that a +F (−a) = 0 = (−a) +F a. In
addition, if a 6= 0, then ∃a−1 ∈ F such that a ·F a−1 = 1 = a−1 ·F a.

(v) Distributivity of ·F with respect to +F and distributivity of +F with respect to ·F : a ·F (b+F c) =
a ·F b+F a ·F c, and (a+F b) ·F c = a ·F c+F b ·F c.

The elements of a field F are called scalars.

3A binary operation on a non–empty set A is a map f : A×A → A such that f is defined for every pair of elements
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For instance, the rational numbers (Q), the real numbers (R) or the complex numbers (C) are fields.

Remark 1.2.2. To simplify the notation, and whenever there is no possible confusion, a +F b, a ·F b,
0F and 1F will be denoted by a+ b, ab, 0 and 1, respectively.

Definition 1.2.3. A vector space V over a field F is a set with two operations, usually called addition
(+V : V × V → V ) and scalar multiplication (·V : F × V → V ), that satisfies the following axioms for
all a, b ∈ F and x, y, z ∈ V :

(i) Associativity of +V : (x+V y) +V z = x+V (y +V z).

(ii) Commutativity of +V : x+V y = y +V x.

(iii) Identity element of +V and ·V : ∃ 0V ∈ V such that y +V 0V = y = 0V +V y, ∀y ∈ V ; if 1F ∈ F
denotes the multiplicative identity element in F , then 1F ·V y = y, ∀y ∈ V .

(iv) Inverse element of +V : ∀y ∈ V , ∃ − y ∈ V such that y +V (−y) = 0 = (−y) +V y.

(v) Distributivity of ·V with respect to +V , and ·V with respect to +F : a·V (x+V y) = a·V x+V a·V y,
and (a+F b) ·V y = a ·V y +V b ·V y.

(vi) a ·V (b ·V y) = (a ·F b) ·V y.

The elements of a vector space V are called vectors.

The most commonly used vector spaces are those over R (real vector spaces) or C (complex vector
spaces). Examples of vector spaces include the n–dimensional Euclidean spaces Rn and many functional
spaces, such as spaces of continuous functions, spaces of measurable functions or spaces of summable
functions.

Remark 1.2.4. Again, the notation will be simplified denoting x+V y, a ·V y and 0V by x+ v, ay and
0, respectively, when there is no possible confusion.

Definition 1.2.5. Let V be a vector space and let F be either the field of real numbers R or the
field of complex numbers C. An inner product is a map 〈·, ·〉 : V × V → F that verifies the following
properties for all x, y, z ∈ V and for all a ∈ F :

(i) Conjugate symmetry4: 〈x, y〉 = 〈y, x〉.

(ii) Linearity in the first argument: 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉, and 〈ax, y〉 = a〈x, y〉.

(iii) Positive definiteness: 〈x, x〉 ≥ 0 with equality only for x = 0.

A vector space V over the field F together with an inner product is called an inner product space.

Inner product spaces are the Euclidean space Rn with the inner product 〈x, y〉 =∑n
i=1 xiyi, or the space

of continuous C–valued functions on the interval [a, b] with the inner product 〈f, g〉 =
∫ b

a
f(t)g(t)dt.

Remark 1.2.6. For F = R, the axioms of conjugate symmetry and linearity in the definition of inner
product are reduced to symmetry and bilinearity. Therefore, the inner product is a positive definite
symmetric bilinear form. On the other hand, if F = C, the inner product is a positive definite
Hermitian form.

in A, and f uniquely essociates each pair of elements in A to some element of A.
4The conjugate of the complex number z = a+ ib, where a and b are real numbers, is z = a− ib.
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Definition 1.2.7. Let V be a vector space and let F be either the field of real numbers R or the field
of complex numbers C. A norm is a map ‖ · ‖ : V → F that verifies the following properties for all
x, y ∈ V and for all a ∈ F :

(i) Triangle inequality: ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

(ii) Positive homogeneity: ‖ax‖ = |a| ‖x‖.

(iii) Positive definiteness: ‖x‖ ≥ 0, and ‖x‖ = 0 for x = 0 only.

If ‖ · ‖ verifies the previous properties except non–degeneracy, that is, ‖x‖ = 0 does not preclude that
x 6= 0, then ‖ · ‖ is called semi–norm.
Furthermore, a vector space V over the field F together with a norm (respectively, semi–norm) is
called a normed space (respectively, semi–norm space).

Given an inner product space V , a norm can be generated by its inner product 〈·, ·〉 as follows

‖x‖ = 〈x, x〉1/2, ∀x ∈ V.

Thus, V is a normed space with this induced norm. Consequently, the examples of inner product spaces
commented before are also examples of norm spaces when the norm induced by the inner product is
considered.

Definition 1.2.8. A metric on a set Z is a map d(·, ·) : Z×Z → R that verifies the following properties
for all x, y, z ∈ Z:

(i) Triangle inequality: d(x, y) ≤ d(x, z) + d(z, y).

(ii) Symmetry: d(x, y) = d(y, x).

(iii) Positive definiteness: d(x, y) ≥ 0, and d(x, y) = 0 for x = y only.

If d(·, ·) verifies the previous properties except non–degeneracy, that is, d(x, y) = 0 does not preclude
that x 6= y, then d(·, ·) is called semi–metric.
Furthermore, a set Z provided with a metric (respectively, semi–metric) is called a metric space
(respectively, semi–metric space).

Remark 1.2.9. The concept of semi–metric included in the previous definition is often referred to as
pseudometric in the mathematical literature. Nevertheless, the term semi–metric has been chosen in
this thesis because of its relation to semi–norm notion and because of that it was used in the FDA
monograph by Ferraty and Vieu (2006b).

Definition 1.2.10. A complete metric space is a metric space in which every Cauchy sequence5 is
convergent.

Definition 1.2.11. A Hilbert space H is a vector space over R or C with an inner product 〈·, ·〉 such
that the induced norm defined by ‖x‖ = 〈x, x〉1/2, ∀x ∈ H, turns H into a complete metric space.

For instance, the complex space ℓ2, which consists of all infinite sequences of complex numbers {zn}∞n=1

5Given a metric space (Z, d), a sequence {zi}i∈N∗ is called Cauchy sequence if for any ε > 0 there is a positive integer
N0 such that d(zm, zn) < ε, for all m,n > N0.
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such that
∑∞

n=1 |zn|2 converges, with the inner product 〈{wn}∞n=1, {zn}∞n=1〉 =
∑∞

n=1 wnzn is a Hilbert
space. Another example of Hilbert space is the space L2([0, 1]) of square–integrable functions with
respect to the Lebesgue measure on the unit interval. Then, the inner product of f, g ∈ L2([0, 1]) is

defined by 〈f, g〉 =
∫ 1

0
f(t)g(t)dt in the complex case, and 〈f, g〉 =

∫ 1

0
f(t)g(t)dt in the real case.

Definition 1.2.12. A separable space is a topological6 space such that it has a countable7 dense8

subset.

From now on, the functional space where X is valued will be a real separable Hilbert space denoted
by (H, 〈·, ·〉), that is, H is a vector space with an inner product 〈·, ·〉 : H×H → R such that is also a
complete metric space with respect to the induced norm.

Remark 1.2.13. A Hilbert space is separable if and only if it has a countable orthonormal basis.
Hence, there exists a countable sequence {ej}∞j=1 of mutually orthonormal elements of H, that is,
〈ej1 , ej2〉 = δj1,j2 with δj1,j2 = 0 if j1 6= j2 and δj1,j2 = 1 if j1 = j2, such that span the space. Thus,

x =

∞∑

j=1

〈x, ej〉ej , ∀x ∈ H,

and the induced norm can be given by ‖x‖2 =
∑∞

j=1 |〈x, ej〉|2 (Parseval’s identity).

1.2.2 Associated spaces and tensor products

Given a real separable Hilbert space (H, 〈·, ·〉), recall that the induced norm has been denoted by
‖ · ‖ = 〈·, ·〉1/2. Now, other associated spaces and norms of interest (the space of Hilbert–Schmidt
operators and the dual space) and certain tensor notation are going to be presented.

a) The space of Hilbert–Schmidt operators

Let HS be the space of Hilbert–Schmidt operators defined on H given by

HS = {U : H → H such that U is a bounded operator, and
∞∑

j=1

‖Uej‖2 <∞, for all {ej}∞j=1 orthonormal basis of H}.

For all U ∈ HS, one can consider the usual Hilbert–Schmidt norm given by

‖U‖HS =




∞∑

j=1

‖Uej‖2



1/2

,

or the uniform norm

‖U‖∞ = sup
‖x‖=1

‖Ux‖.

Remark 1.2.14. These two norms satisfy the next inequality: ‖U‖∞ ≤ ‖U‖HS for all U ∈ HS.
6A topological space is a set Z together with a collection C of subsets of Z (called open sets) such that: the empty

set ∅ is in C, Z is in C, the intersection of a finite number of sets in C is in C, and the union of an arbitrary number of
sets in C is also in C.

7A countable set is a set of the same cardinality as the set of natural numbers N.
8A subset W of a topological space Z is dense if its closure satisfies W = Z.
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b) The dual space H′

The dual space of H is the space of all continuous linear functions from the space H into R

H′ = {T : H → R such that T is continuous and linear}.

The dual space is provided with a natural norm defined by

‖T‖H′ = sup
‖x‖=1

|Tx|,

which verifies that for all {ej}∞j=1 orthonormal basis of H

‖T‖H′ =




∞∑

j=1

(Tej)
2




1/2

.

Remark 1.2.15. For all T ∈ H′ and U ∈ HS, the following inequality holds ‖TU‖H′ ≤ ‖T‖H′‖U‖∞.

c) Tensor notation

To finish this section, some tensor product notation that will be used later is introduced. Given
x, y, z ∈ H, the tensor product x⊗H y is defined as the following operator

x⊗H y : H → H
z → x⊗H y(z) = 〈x, z〉y.

Besides, for x, z ∈ H and y ∈ R, the tensor product x⊗H′ y is defined as

x⊗H′ y : H → R

z → x⊗H′ y(z) = 〈x, z〉y.

These kinds of tensor products will be useful to define certain functional operators in future sections.

1.2.3 Measuring distances: semi–metrics

Sooner or later, there are two questions that appear when FDA comes to work on. The first difficulty
is to decide how to measure the distance between functional elements of H. The second question is
related to one of the greatest worries in finite dimensional spaces called the curse of dimensionality :
the larger the working space dimension is, the larger the sparseness of sample data is. This crucial
point for finite dimensional case is even more critical when working with infinite dimensional spaces.

The classic measures of the closeness of two elements in Rp are norms, for example, the Euclidean
norm. The choice of which norm to use is not an issue because of the equivalence among norms in
the finite dimensional Euclidean spaces. Nevertheless, in the infinite dimensional spaces the norms are
not equivalent so the selection of a preliminary norm turns into a priority problem. Ferraty and Vieu
(2006b) considered the notion of norm to be too restrictive in FDA context, and they suggested the
use of semi–metrics (recall Definition 1.2.8, page 8), which seem to be more suitable for this type of
data (see Geenens (2011) for an analysis of the usefulness of semi–metrics in order to avoid the curse
of dimensionality).

In the Hilbert space case, a semi–metric d(·, ·) can be easily defined: the metric induced by
〈·, ·〉 is also a semi–metric. However, it could be considered any other semi–metric, not necessar-
ily derived from the inner product of H. Next, some examples of semi–metrics are collected. They
were proposed by Ferraty and Vieu (2006b) for the particular case in which the functional data are

curves, being H the classical L2–space and, consequently, 〈x, y〉 =
∫ 1

0
x(t)y(t)dt for all x, y ∈ L2[0, 1].

Among the proposed semi–metrics, both the semi–metrics based on functional principal components
analysis (FPCA) and the semi–metrics based on the multivariate partial least squares regression
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(MPLSR) are suitable for rough datasets, whereas the semi–metrics based on derivatives are well
adapted for smooth curves. One must choose the semi–metric that has a better behaviour with re-
gard to the data. All the R routines which compute these semi–metrics are available in the website
http://www.math.univ-toulouse.fr/staph/npfda.

In the examples below, {Xi}ni=1 is a sample of i.i.d. curves as the L2[0, 1]–valued random functional
variable X, and x is a fixed element of L2[0, 1].

Example 1. Semi–metrics based on FPCA

Principal components analysis is a very useful tool for dimension reduction in the multivariate context.
In the functional case, FPCA can be used to reduce the dimension and subsequently calculate the
distances between the projected data. Due to the importance of FPCA techniques, Section 1.4.3, “ a)
Functional principal component analysis (FPCA) ”, in this chapter describes FPCA in great detail (see
page 25). Here the required concepts in order to build the proposed semi–metric are presented briefly,
using notation which will be rigorously introduced in the above–mentioned section.

Let {(λj , vj)}∞j=1 (with λ1 ≥ λ2, . . .) be the eigenvalues and eigenfunctions of the second moment
operator Γ (for more details, see Section 1.4.1, “ b) Measures of dispersion ”, page 22). The orthonormal

basis {vj}∞j=1 allows to write X as X =
∑∞

j=1 (
∫ 1

0
X(t)vj(t)dt)vj , and build truncated expansions as

follows

X [k] =
k∑

j=1

(∫ 1

0

X(t)vj(t)dt

)
vj ,

where the parameter k indicates the “resolution level” which has been applied. Note that X [k] min-

imizes E(
∫ 1

0
(X(t)− PkX(t))2dt) over all the projections Pk of X into k–dimensional spaces. Hence,

the following family of semi–metrics based on the L2–norm is proposed

dPCA
k (Xi, x) =

√√√√
k∑

j=1

(∫ 1

0

(Xi(t)− x(t))vj(t)dt

)2

.

In practice, the eigenfunctions of Γ are unknown. Therefore, they are replaced by the eigenfunctions
{v̂j}∞j=1 of the empirical second order operator Γn (see again Section 1.4.1, “ b) Measures of dispersion ”,

page 22). Furthermore, the curves are usually observed in a discrete grid {tl}Ll=1 and the integral
involved in the semi–metric should be replaced by an approximation. Hence, dPCA

k (Xi, x) will be
approximated, if the grid is fine enough, by

d̃PCA
k (Xi, x) =

√√√√√
k∑

j=1

(
L∑

l=1

wl(Xi(tl)− x(tl))v̂j(tl)dt

)2

,

where {wl}Ll=1 are quadrature weights for the approximate integration.

Remark 1.2.16. This parameterized family of semi–metrics does not require that functional data verify
smoothness conditions. Then these semi–metrics can be applied to quite rough data. However, there
are two implicit assumptions: the data must be balanced9, and the grid of measurements must be
sufficiently fine.

Example 2. Semi–metrics based on MPLSR

Sometimes, two variables are simultaneously observed: a response variable and an ifunctional covariate.
This fact enables the construction of a family of semi–metrics by means of multivariate regression
techniques. The Multivariate Partial Least Squares Regression (MPLSR) is a statistical method used
when the regression model consists of a multivariate response and a multivariate predictor. The key

9A functional dataset is balanced if all curves are measured at the same points {tl}Ll=1
.
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of the MPLSR is to obtain a simultaneous decomposition of both the independent and dependent
variables in components such that the covariance between the two sets of variables is maximized.

The number of components depends on a certain parameter, called number of factors, which plays a
similar role to the dimension k in the PCA: a large number of factors increases the variability, whereas
a small number of factors reduces the accuracy. In spite of the similarities, it must be reminded that
the PLS components have been designed to explain both the predictor and the response, whereas the
PCA components only incorporate information of the independent variables.

Denoting by {v̂qj}pj=1 the vectors obtained from MPLSR with q the number of factors and p the
number of scalar responses, the following family of semi–metrics can be defined

d̃PLS
q (Xi, x) =

√√√√√
p∑

j=1

(
L∑

l=1

wj(Xi(tl)− x(tl))v̂
q
j (tl)

)2

,

where {wl}Ll=1 are quadrature weights for the approximate integration.

Remark 1.2.17. These semi–metrics can be applied to balanced data without smoothness restrictions
when the grid is fine. Furthermore, note that a multivariate response (p > 1) is often an adequate
choice, since the semi–metric measures the closeness between curves in terms of a unique direction
when p = 1, and valuable information contained in the functional dataset may be lost with this drastic
dimension reduction.

Example 3. Semi–metrics based on derivatives

When the functional data fulfil some regularity conditions, one can think of measuring the distance
between two observations using the distance between their derivatives of a certain order. Hence, the
following family of semi–metrics is proposed

dderivq (Xi, x) =

√∫ 1

0

(
X

(q)
i (t)− x(q)(t)

)2
dt,

where the superscript (q) denotes the qth derivative. In particular, dderiv0 is the L2–norm.
In order to avoid the numerical instability of the derivatives computations, the curves are approx-

imated using B–splines. The procedure entails fixing the B–splines basis {B1, . . . , BnB
} and solving

(β̂i1, . . . , β̂inB
) = arg inf

(α1,...,αnB
)∈RnB

L∑

l=1

(
Xi(tl)−

nB∑

b=1

αbBb(tl)

)2

,

(β̂01, . . . , β̂0nB
) = arg inf

(α1,...,αnB
)∈RnB

L∑

l=1

(
x(tl)−

nB∑

b=1

αbBb(tl)

)2

.

In this situation, the observations can be approximated by X̂i =
∑nB

b=1 β̂ibBb and x̂ =
∑nB

b=1 β̂0bBb,

respectively, and their derivatives by X̂
(q)
i =

∑nB

b=1 β̂ibB
(q)
b and x̂(q) =

∑nB

b=1 β̂0bB
(q)
b . Hence, the

semi–metric is approximated by

d̃derivq (Xi, x) =

√∫ 1

0

(
X̂

(q)
i (t)− x̂(q)(t)

)2
dt,

where the integral can be computed using, for instance, the Gauss method.

Remark 1.2.18. The semi–metrics based on derivatives should be applied to quite smooth curves.
Nevertheless, they have the advantage of tolerating different grids of discretization for each curve
since the original unbalanced observations can be replaced by B–splines approximations, which can be
computed in a same grid for all the curves.
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1.3 Preprocessing functional data

From a practical viewpoint, one can only observe discretized versions of the functional datasets. Hence,
before processing the data one usually need to use some smoothing procedure in order to obtain
continuous functional data. Another preprocessing which is normally required is the curve registration.
These techniques try to suppress some artificial effects in the data as shifts, alignment problems or
unbalanced samples.

Next, a brief summary of the main methods devoted to solve this kind of problems when the
functional data are curves, that is, when the functional space is L2[0, 1], is presented, although some
of them can be extended and applied to other types of functional data.

1.3.1 Smoothing functional data

As it was said before, a functional dataset consists of discretized observations in practice

{Xi(tl), l = 1, . . . , L}ni=1,

being {tl}Ll=1 a grid of the unit interval T = [0, 1]. How can raw discrete data be turned into smooth
functional data? This step is given by means of standard nonparametric smoothing procedures, for
example, kernel smoothers, basis representations (Fourier basis, splines, wavelets, etc.) or more so-
phisticated methods which include a priori information on the shape of the functional data. In general,
the application of this type of techniques is based on some smoothness conditions (for example, the
existence of one or more derivatives).

This presmoothing treatment plays an important role in the presence of missing data, when the
discretization grid is not fine enough or when the sample is unbalanced. Moreover, presmoothing is a
key tool when measurement errors are involved in the discretized observations, that is, when one has
not obtained the original functional data but

{Xi(tl) + ǫil, l = 1, . . . , L}ni=1,

being ǫil the measurement and/or recording error of the data i at the time tl (see, for instance,
Hitchcock et al., 2006; Crambes, 2007; Zhang and Chen, 2007). Next, a general description of two
popular smoothing methods (linear smoothing and smoothing by basis functions) is presented. Some
notions of smoothing with roughness penalty have also been included.

In the following subsections, x ∈ L2[0, 1] is a fixed arbitrary curve, and

zl = x(tl) + ǫl, for each l ∈ {1, . . . , L} (1.1)

denote the observed values. Furthermore, bold letter and symbols will be used to denote vectors and
matrices.

a) Linear smoothing

An important issue is how to recover the function x starting from the observed L–vector Z associated
to x given by Z = (z1, . . . , zL)

t, where the superscript t denotes the transposed vector or matrix. This
reconstruction can be done by means of linear smoothers. A linear smoother allows to estimate x(tl0)
using the following linear combination of the discrete observations

x̂(tl0) =

L∑

l=1

sl0(tl)zl,

where sl0(tl) weights the observation zl for fitting the value of x at the time tl0 . Let S be the L× L–
matrix given by (S)l1,l2 = sl1(tl2). Then, one can rewrite the previous linear combination in matrix
terms

x̂(t) = SZ,
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where x̂(t) = (x̂(t1), . . . , x̂(tL))
t.

It seems reasonable to think that the value x(t) must be mostly influenced by the observed zj
corresponding to tj near t. This assumption leads to consider local weighting functions. One of the
simplest linear smoother based on this located weighting principle is the kernel estimator defined by

x̂(t) =

L∑

l=1

sl,h(t)zl,

with sl,h(t) = K(h−1(tl − t)), where K(·) is a kernel function and h is called the smoothing parameter
or bandwidth. In the fixed design context (i.e., {tl}Ll=1 are fixed), another possibility is to use the
estimator based on the Gasser and Müller’ weights

sl,h(t) =
1

h

∫ tl

tl−1

K(h−1(u− t))du,

with tl = (tl+1 + tl)/2, 1 < l < L, t0 = t1 y tL = tL. As far as the random design is concerned (i.e.,
{tl}Ll=1 are random), popular kernel estimators are the Nadaraya–Watson estimator, which considers

sl,h(t) =
K(h−1(tl − t))

∑L
r=1K(h−1(tr − t))

,

or the local linear kernel estimator, for which it can be found that the weights are the following

sl,h(t) =
K(h−1(tl − t))

(
1−D1D

−1
2 (tl − t)

)
∑L

r=1K(h−1(tr − t))
(
1−D1D

−1
2 (tr − t)

) ,

where D1 =
∑L

l=1 (tl − t)K(h−1(tl − t)) and D2 =
∑L

l=1 (tl − t)2K(h−1(tl − t)).
The kernel function K(·) is often a symmetric smooth function, with compact support in [−1, 1] or

with a fast decreasing for arguments u such that |u| ≥ 1. In particular, the following kernel functions
are commonly used

Uniform: K(u) = 0.5I{|u|≤1}
Triangle: K(u) = (1− |u|)I{|u|≤1}
Quadratic: K(u) = 0.75(1− u2)I{|u|≤1}
Gaussian: K(u) = (2π)−1/2 exp(−0.5u2)

where I is the indicator function (see Figure 1.5, page 15). Nevertheless, as it happens in the multi-
variate case, it seems that the selection of the kernel function is not a key issue, since there are no
noticeable changes in the smoothing results when different kernels are used.

The smoothing parameter h regulates the degree of concentration in the vicinity of t. The choice
of a suitable h is crucial since the bandwidth determines the bias–variance trade–off: a small h implies
small bias and large variance; whereas a large bandwidth reduces the variance but increases the bias.
The bandwidth selection is still an open question in the FDA literature: although there are some
data–driven techniques (for example, cross–validation methods), none of them have universal validity.

Leaving out the bandwidth selection question, kernel estimators are easy to implement and have
nice asymptotic properties. As a drawback of using the Nadaraya–Watson estimator, note that it
behaves badly near the limits of the data support (boundary effect). On the contrary, the local linear
estimator does not present this boundary effect.

b) Smoothing by basis functions

The second smoothing approach that has been considered is the approximation of x by basis functions.
Ramsay and Silverman (2005) defined a basis function system as a set of known functions {φj}∞j=1

such that they are mathematical independent of each other, and any function can be approximated
arbitrarily well by taking a linear combination of a sufficiently large number J of the functions {φj}∞j=1.
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Figure 1.5: Usual symmetric kernels: uniform (top left panel), triangle (top right panel), quadratic
(bottom left panel) and Gaussian (bottom right panel).

Hence, a basis system allows to move the main information of x from the functional space to the
J–dimensional space spanned by {φj}Jj=1, since any x can be approximated by the following truncated
linear expansion

x[J](t) =
J∑

j=1

cjφj(t), (1.2)

in other words
x[J] = ΦtC

being C = (c1, . . . , cJ )
t the J–vector of the coefficients, and Φ = (φ1, . . . , φJ )

t the functional J–vector
of the basis functions.

Remark 1.3.1. If the qth derivatives of x and the basis functions {φj}Jj=1 exist for q = 1, . . . , Q, then
the qth derivative of x can be approximated by

x[J](q)(t) =
J∑

j=1

cjφ
(q)
j (t), for each q = 1, . . . , Q,
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or equivalently, x[J](q) = (Φ(q))tC with Φ(q) = (φ
(q)
1 , . . . , φ

(q)
J )t.

At this point, there are three key questions: how to select the basis system, how to estimate the
vector of the coefficients C, and how to choose J .

Question 1. How to select the basis system? The choice of an appropriate basis system for the
observed data is the first crucial decision that one has to make. There is not any method which allows
to select the basis system in an automatic data–driven way, so one must choose it according to the
data features: Fourier basis for periodic data, B–splines basis for non–periodic data, wavelets for data
with discontinuities or rapid changes in behavior, etc. Below some basis systems which are commonly
used in the literature have been summarized (see further details in Ramsay and Silverman, 2005).

(i) Fourier basis system. The Fourier basis with period P is a periodic basis defined as

φ0(t) = 1, φ2j−1(t) = sin(jωt), φ2j(t) = cos(jωt),

with j ∈ {1, 2, . . .} and ω = 2π/P . The Fourier basis is orthonormal when the values {tl}Ll=1 are
equidistant on T , the period coincides with the length of T , and the basis functions are divided
by certain constants.
This basis is a very attractive option when the data have a periodic nature. Furthermore, the
expansions for the derivatives of x can be easily computed since the derivatives of sines and
cosines are well–known. From a computational viewpoint, the Fast Fourier Transform provide a
fast and efficient method in order to calculate the Fourier coefficients if the sample size is a power
of 2 and {tl}Ll=1 are equally spaced. As a disadvantage, it has to be mentioned the bad behaviour
of the Fourier approximation when there are discontinuities in x or in its first derivatives.

(ii) Spline basis system. First of all, it must be defined what a spline is. To construct a spline,
the interval T has to be divided into S subintervals separated by {τs}S−1

s=1 . These values, that
define the subintervals, are called breakpoints or knots. For a fixed q, a spline of order q is
a polynomial of order q (degree10 q − 1) over each subinterval, on condition that each pair
of consecutive polynomials, and their derivatives up to order q − 2, joins up smoothly at the
knots. The increment of the number of knots has a direct impact on the flexibility of the spline,
which produces an increasingly better approximation to the data. With respect to the knots
distribution, one should try to select them so that the following requirements are fulfilled:

(a) each subinterval contains at least one value of the grid {tl}Ll=1,

(b) there are more knots in the areas where the curve exhibits abrupt changes, and less knots
where its shape is smoother.

Once the spline notion has been stated, the next step is to build a system of basis functions
{φj}∞j=1 such that satisfies the next conditions:

(1) each φj is a spline function with order q and knots {τs}S−1
s=1 ,

(2) any linear combination of basis elements is a spline function,

(3) any spline function with order q and knots {τs}S−1
s=1 can be expressed as a linear combination

of {φj}∞j=1.

Among all the spline basis systems, one of the most popular is the B–splines basis, though other
options are also considered in literature as natural splines or M–splines (see a general review in
de Boor, 2001).
In general, the spline basis is chosen to approximate non–periodic functions because it requires
a low computational cost and it is extremely flexible and adaptable for almost any type of data.

10The degree of a polynomial is the highest power defining the polynomial. The order of a polynomial is the number
of coefficients defining the polynomial, which is one more than its degree.
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(iii) Wavelets. Selected a function φ calledmother wavelet, a basis for all square–integrable functions
on (−∞,+∞) can be built considering, for integers j and k, all translations and dilations of the
form

φjk(t) = 2j/2φ(2jt− k).

The basis is orthogonal if a suitable mother wavelet is chosen. Moreover, some properties of φ
are inherited by φjk, for example, if the mother wavelet is compact supported, the support of
all basis will also be compact. More details about wavelets can be found in Daubechies (1992).
This type of basis fits efficiently discontinuities and sudden increasing or decreasing movements.
Furthermore, when x is measured at 2M regularly spaced points, the coefficients can be calculated
fast by means of a Discrete Wavelet Transform.

(iv) Other basis systems. The advantages of the previous basis turn them into the most widely
used basis. Nevertheless, other simpler basis systems can produce good results in certain specific
situations. For instance, exponential basis (φj(t) = eλjt, where all λj are different), power basis
(φj(t) = tλj ), or polynomial basis (φj(t) = (t− ω)j , with j = 0, . . . , J) can be adequate systems
when the analytic expressions of the curves are linear combinations of exponential terms, power
terms or polynomial terms, respectively.

Question 2. How to estimate the coefficients? Once a suitable basis has been selected, one
can build the corresponding expansion (1.2) for x (see page 15). Hence, the issue is how to estimate
the coefficients cj starting from the observed pairs {(tl, zl)}Ll=1 (see (1.1), page 13). Three common
procedures for estimating the J–vector C = (c1, . . . , cJ )

t are the ordinary or unweighted least squares
estimator, the weighted least squares estimator, and the localized least squares estimator. Given that
the first approach can be seen as a particular case of the second one, the weighted least squares
estimator and the localized least squares estimator are described in detail below, whereas the ordinary
least squares estimator is commented as a noteworthy subcase of the weighted least squares estimator.

(i) Weighted least squares estimator. The coefficients cj can be obtained as the solution of the
following weighted least squares problem

min
c1,...,cJ

L∑

l1=1

L∑

l2=1

wl1l2


zl1 −

J∑

j=1

cjφj(tl1)




zl2 −

J∑

j=1

cjφj(tl2)


,

or in matrix notation
min
C

(Z−ΦC)tW(Z−ΦC), (1.3)

being Z = (z1, . . . , zL)
t, Φ the L × J–matrix given by (Φ)l,j = φj(tl) and W a symmetric

positive definite L × L–matrix. When the variance–covariance matrix Σǫ for the measurement
errors {ǫl}Ll=1 is known (recall (1.1), page 13), W = Σ−1

ǫ is selected; otherwise, one estimates

Σ̂ǫ (for example, using the sample covariance matrix for the residuals), and takes W = Σ̂−1
ǫ .

In order to simplify the choice of the weighting matrix, it is often assumed that errors are
uncorrelated, so W is a diagonal matrix, and the minimization problem turns into

min
c1,...,cJ

L∑

l=1

wll


zl −

J∑

j=1

cjφj(tl)




2

. (1.4)

In any case, the solution of the weighted least squares problem can be found, whenever suitable
smoothness conditions on the basis hold, taking the first derivative in (1.3), and make it equal
to zero: 2ΦtWΦC− 2ΦtWZ = 0. Hence, one obtains the solution

Ĉ = (ΦtWΦ)−1ΦtWZ,

and, consequently, the fitted values are given by Ẑ = ΦĈ = Φ(ΦtWΦ)−1ΦtWZ.
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Remark 1.3.2. The weighted least squares estimator can be interpreted as a linear smoother,
where the matrix S (usually called hat matrix ) is

S = Φ(ΦtWΦ)−1ΦtW.

(see Section 1.3.1, “ a) Linear smoothing ”, page 13). In this context, the following orthogonal

property is satisfied (Z− Ẑ)tWẐ = 0.

Remark 1.3.3. In the simplest case, corresponding to i.i.d. errors {ǫl}Ll=1 with E(ǫl) = 0 and
Var(ǫl) = σ2

ǫ , ∀l ∈ {1, . . . , L}, the variance–covariance matrix Σǫ is equal to σ
2
ǫ 1L×L, with 1L×L

the L×L–identity matrix (a L×L–matrix with ones in the main diagonal and zeros elsewhere).
Then, the least squares problem (1.3) turns into minC(Z−ΦC)t(Z−ΦC), and the weighted least
squares estimator is, in fact, the ordinary least squares estimator. In particular, the coefficients
are computed by means of Ĉ = (ΦtΦ)−1ΦtZ, and the fitted values by Ẑ = Φ(ΦtΦ)−1ΦtZ.
Note that the ordinary least squares criterion is inadequate when the errors are correlated or
heterocedastic. In these situations, the weighted least squares fitting should be used.

(ii) Localized least squares estimator. In order to estimate x at a fixed time t, local weighting
functions are often required. The weighted least squares criterion defined in (1.4) can be modified
in order to include local weights as follows

min
c1,...,cJ

L∑

l=1

wl(t)


zl −

J∑

j=1

cjφj(tl)




2

,

or equivalently,

min
C

(Z−ΦC)tW(t)(Z−ΦC),

with wl(t) = K(h−1(tl − t)), for K(·) a kernel function and h a strictly positive bandwidth.
Futhermore, W(t) is a diagonal L× L–matrix which contains all the weight functions, that is,

W(t) = diag(w1(t), . . . , wL(t)).

In this situation, one needs to solve the equation 2ΦtW(t)ΦC − 2ΦtW(t)Z = 0. Hence, the
estimated vector of coefficients, which depends on t, is computed as

Ĉ(t) = (ΦtW(t)Φ)−1ΦtWZ,

and x̂(t) = ΦĈ(t) = Φ(ΦtW(t)Φ)−1ΦtW(t)Z. This approach allows to capture local features
of the data suitably, although the need to repeat all the calculations for each new time t may
increase the computational cost considerably.

Remark 1.3.4. As in the previous case, the localized least squares estimator can be seen as a
linear smoother with local hat matrix

S(t) = Φ(ΦtW(t)Φ)−1ΦtW(t).

Question 3. How to choose the number of basis functions? The parameter J allows to adjust
the “smoothness” of the data. A large J fits better the data, but noise and artificial variability may be
introduced in the fitting. On the other hand, if one chooses a small J , perhaps notable data features
get lost. Thus, the larger J , the larger the variance; whereas, the smaller J , the larger the bias. In
order to balance this trade–off, the key is to find a value for J such that an error criterium is minimized:
either a local error criterium, such as the Mean Square Error (MSE)

MSE(x̂(t)) = E((x̂(t)− x(t))2) = Bias2(x̂(t)) + Var(x̂(t)),
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or a global error criterium, such as the Mean Integrated Square Error (MISE)

MISE(x̂) =

∫ 1

0

MSE(x̂(t)).

In practice, there are algorithms in the multivariate literature that select the order of the expansion
J which can be adapted to FDA field, for example, methods based on stepwise variable selection or
variable–pruning procedures.

c) Smoothing with a roughness penalty

The smoothing with roughness penalty is a powerful tool when it comes to approximate discrete data
by functional data. Besides the standard advantages of any smoothing method, this technique is
especially beneficial when the estimation of derivatives is involved. The roughness penalty approach is
based on the minimization of a criterion that ensures certain regularity conditions for the fitted values.
Therefore, the goal is to find a curve that gives a good fit to the data, but restricting the search to
“smooth” curves. This kind of constraint allows to control simultaneously both bias and variance.

The first issue that arises is how to quantify the roughness of a curve x. The most widespread
measures of the roughness are based on the derivatives of x. If the qth derivative of x exists, a natural
penalty is

PENq(x) =

∫ 1

0

(
x(q)(s)

)2
ds,

where x(q) denotes the qth derivative of x. In particular, the integrated squared second derivative

PEN2(x) =

∫ 1

0

(
x(2)(s)

)2
ds

is a common choice in many practical situations.
Once the penalty on the roughest curves has been chosen, the next step is the introduction of the

penalty into the optimization problem. The aim is to find a curve x that solves the penalized problem

min
x

(
(Z− x(t))tW(Z− x(t)) + ρPENq(x)

)
,

where Z = (z1, . . . , zL)
t is the observed L–vector, x(t) = (x(t1), . . . , x(tL))

t is the L–vector of the values
of x in the discretization grid, W is the weighting L×L–matrix, and ρ is a smoothing parameter. The
smoothing parameter determines if the priority is to suitable fit the data (smaller values for ρ) or to
reduce the variability of the fitted curve (larger values for ρ). In practice, a cross–validation method or
a generalized cross–validation method can be used to select an adequate value of ρ (see, for instance,
Ramsay and Silverman, 2005, Chapter 5).

Coming back to the basis expansion that were exposed in previous sections (see Remark 1.3.1,
page 15), the roughness penalty can be adapted for each fixed x as follows

PENq(x) =

∫ 1

0

(
(Φ(q)(s))tC

)2
ds = CtRC,

where Φ(q)(s) is the J–vector defined by Φ(q)(s) = (φ
(q)
1 (s), . . . , φ

(q)
J (s))t, and R is the J × J–matrix

given by R =
∫ 1

0
Φ(q)(s)(Φ(q)(s))tds. Then, the penalized least squares problem can be expressed as

min
C

(
(Z−ΦC)tW(Z−ΦC) + ρCtRC

)
, (1.5)

being Φ the L × J–matrix given by (Φ)l,j = φj(tl). Note that the previous minimization problem is
equal to the weighted least squares problem in (1.3) when ρ = 0. The solution of the minimization
problem (1.5) verifies 2ΦtWΦC− 2ΦtWZ+2ρRC = 0. Hence, the penalized estimator of the vector
of coefficients is

Ĉ = (ΦtWΦ+ ρR)−1ΦtWZ,

and the fitted values are Ẑ = ΦĈ = Φ(ΦtWΦ+ ρR)−1ΦtWZ.
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Remark 1.3.5. The smoothing with roughness penalty is a linear smoothing method too. In this case,
the hat matrix is defined as

Sρ = ΦĈ = Φ(ΦtWΦ+ ρR)−1ΦtW,

and depends on the smoothing parameter ρ. Note that this hat matrix is a sub–projection operator
(it is not a projection because SρSρ 6= Sρ).

1.3.2 Registering functional data

Registration is a problem of critical importance for functional data (see Ramsay and Silverman (2005,
Chapter 7) or Ramsay (2011)). This preprocessing may be needed when the variation in functional
observations involves amplitude and/or phase. Next the most common situations and the procedures
used to solve these issues are briefly described.

a) Amplitude variation

The vertical variation or amplitude variation corresponds to the familiar vertical shift: Xi1 and Xi2

may differ at points {tl}Ll=1 at which they are compared, but they exhibit the same global shape
features. The amplitude effects are often removed centring and/or rescaling the data.

A classical example of amplitude variation is the spectrometric data, since there is a vertical shift
in the curves which is called calibration effect in chemometrics (see left panel of Figure 1.3, page 4).
The amplitude variation is an artificial effect that has no link with the studied chemical structure,
hence the need to suppress it. In this case, one way for removing the shift is to consider the derivatives
of the curves (see right panel of Figure 1.3, page 4)

b) Phase variation

Sometimes, Xi1 and Xi2 cannot be compared at the same times {tl}Ll=1 because they have different
behaviours, whereas the comparison can be done if the time scale is previously transformed. This
situation happens when the functional data exhibit a phase variation. The most simple phase variation
corresponds to a horizontal shift. This often happens when one is interested on a segment of the
functional data which is arbitrary located inside the complete recorded observation. The aim is to
build a new sample

X̃i(t) = Xi(t+ δi), i = 1, . . . , n,

where δi is a shift parameter which enables the functional data alignment. In order to estimate
appropriate shift parameters, one has to define a criterion which indicates when two observations are
registered. One possibility is to identify a feature or landmark that is a characteristic of the functional
data associated with a specific argument value (maxima, minima, zero crossing, etc.). Then, each
functional data is shifted so that the selected feature occurs at a fixed point.

Depending on the landmarks, more complicated transformations of the argument t can be required.
For example, if F features are selected, for each Xi the arguments {tif}Ff=1 associated with each
landmark have to be identified. Next, one has to look for n transformations {wi}ni=1 such that the
registered observations

X̃i(t) = Xi(wi(t)), i = l, . . . , n

have similar argument values for the chosen landmarks. In the engineering literature, the transforma-
tions {wi}ni=1 are called time–warping functions.

The estimation of some common features of the functional data has generated many contributions
(Kneip and Gasser, 1988; Kneip and Engel, 1995; Rønn, 2001; Gamboa et al., 2007). Furthermore,
both landmark registration and warping techniques have been studied in depth in the literature. For
the former, one can look up Kneip and Gasser (1992), Gasser and Kneip (1995), Wang and Gasser
(1998), and Liu and Yang (2009). For the latter, some interesting references are Wang and Gasser
(1997), Ramsay and Li (1998), Wang and Gasser (1999), and Kneip et al. (2000).
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1.4 Exploring functional data

Many methods have been developed, or simply adapted from the existing multivariate methods, for
analysing a functional sample. Nevertheless, the impossibility of defining a density notion causes
serious analytic difficulties when one explores functional data. The origin of this drawback is the lack
of a natural functional measure which carries out the same role than the Lebesgue measure does in
the multivariate context. Contributions on the functional density problem can be found in Jacob and
Oliveira (1995), Dabo-Niang (2004), Delaigle and Hall (2010) or Dabo-Niang et al. (2010).

Here, a review of the main tools devoted to the exploration of the structure of a functional dataset is
presented: measures of position and dispersion, functional data classification and spectral analysis. In
this section, {Xi}ni=1 is a sample of i.i.d. functional variables as a random functional variable X valued
in H, being (H, 〈·, ·〉) a real separable Hilbert space. Nevertheless, sometimes the usual functional
space L2[0, 1] has been considered in order to introduce some concepts.

1.4.1 Descriptive statistics

a) Measures of position

Mean. In classical real data analysis, the centrality measure par excellence is the mean. Hence, the
main issue is to give a notion of mean for functional datasets. When the functional space is L2[0, 1],
the first attempt is to define the functional mean at each fixed time in T = [0, 1] as

E(X)(t) = E(X(t)), ∀t ∈ T,

and calculate a pointwise average across the sampled elements, that is,

X(t) =
1

n

n∑

i=1

Xi(t). (1.6)

This naive approach has been refined by means of smoothing procedures (Rice and Silverman, 1991;
Gervini, 2006; Li and Hsing, 2010; Cai and Yuan, 2011; Bunea et al., 2011), and robust methods such
as the trimmed mean where only a certain percentage of the central data are used (Cuesta-Albertos
and Fraiman, 2006). Other recent alternative is to replace the traditional cross–sectional mean by the
manifold mean such as Chen and Müller (2012) have proposed. Furthermore, inference based on the
mean has recently been developed by Horváth et al. (2012) in the functional time series context.
However, all these proposals do not yield a central measure from a purely functional viewpoint. A
common way to do this is based on functional depth ideas (Fraiman and Muniz, 2001; Cuevas et al.,
2006; Febrero-Bande et al., 2007; López-Pintado and Jornsten, 2007; López-Pintado and Romo, 2007,
2009).

Median and quantiles. An alternative central measure is the functional median. Along the years,
various median definitions have been introduced for variables valued in infinite dimensional spaces
(Kemperman, 1987; Vardi and Zhang, 2000; Cadre, 2001; Ferraty and Vieu, 2006b; Gervini, 2008;
Chaouch and Goga, 2012). Moreover, the functional depth can also be used to define and estimate
other median notions (Fraiman and Muniz, 2001; Cuevas et al., 2006; López-Pintado and Romo, 2006,
2007; López-Pintado and Jornsten, 2007). Specifically, a functional depth provides a criterion to order
a sample of curves from the center–outward, that is, from the deepest curves (curves which attain the
maximum value of the functional depth) to the most extreme ones (curves which attain the minimum
value of the functional depth). Hence, the functional median will be the deepest curve for a certain
functional depth.
Apart from the functional median, functional quantiles can be also introduced for functional datasets
by means of the functional depth concept and the order that is induced by this depth. More details
can be found in Fraiman and Muniz (2001); López-Pintado and Romo (2006, 2007); López-Pintado
and Jornsten (2007); Cuevas et al. (2007); Cheng and de Gooijer (2007); Chaouch (2008). A new
projection–based definition of quantiles for infinite dimensional Hilbert spaces can be found in Fraiman
and Pateiro-López (2012).
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Mode. The functional mode is another centrality measure, which can be defined and estimated
following different approaches as can be seen in Gasser et al. (1998), Hall and Heckman (2002), Cuevas
et al. (2006), Dabo-Niang et al. (2006, 2007), Cuevas et al. (2007) or Dabo-Niang et al. (2010). For
instance, the concept of functional mode introduced by Cuevas et al. (2006) lies in selecting the curve
most “densely surrounded” of the functional dataset {xi}ni=1, in particular, the curve which solves the
maximization problem maxi∈{1,...,n}

∑n
j=1K(h−1‖xj − xi‖), where K(·) is a kernel function and h a

bandwidth.

b) Measures of dispersion

For this section, it is necessary to recall the tensor notation that was introduced in Section 1.2.2, “ c)
Tensor notation ” (see page 10), since it will be used.

Covariance. To introduce the covariance concept, it is neccesary to assume that the H–valued
variable X satisfies E(‖X‖2) < ∞. In the particular case H = L2[0, 1], the dependence of records
along time can be summarized by means of the covariance function given by

KX(t1, t2) = E((X(t1)− µX(t1))(X(t2)− µX(t2))) = E(X(t1)X(t2))− µX(t1)µX(t2), ∀t1, t2 ∈ T,

where µX ∈ H denotes the expected value of X, that is, µX = E(X). In practice, the covariance
function is estimated using its empirical counterpart

K̂X(t1, t2) =
1

n

n∑

i=1

(Xi(t1)−X(t1))(Xi(t2)−X(t2))

=
1

n

n∑

i=1

(Xi(t1)Xi(t2))−X(t1)X(t2), ∀t1, t2 ∈ T,

with X defined as (1.6) (see page 21).
In the most general case, i.e., when (H, 〈·, ·〉) is a real separable Hilbert space, the covariance operator
ΓX can be defined as ΓX = E((X − µX)⊗H (X − µX)), and therefore

ΓX : H → H
x → ΓXx = E(〈X − µX , x〉(X − µX)) = E(〈X,x〉X)− 〈µX , x〉µX .

Note that ΓX is just the functional version of the standard multivariate variance–covariance matrix.
The covariance operator is a nuclear11, self–adjoint12 and positive13 operator (Dauxois et al., 1982).
Its eigenvalues will be denoted by {λj}∞j=1 (such that λ1 ≥ λ2 ≥ . . .), and the associated orthonormal
eigenfunctions by {vj}∞j=1. Given a sample {Xi}ni=1, the covariance operator ΓX can be estimated by

its empirical counterpart ΓX,n = n−1
∑n

i=1 (Xi −X)⊗H (Xi −X) defined as

ΓX,n : H → H
x → ΓX,nx = 1

n

∑n
i=1 〈(Xi −X), x〉(Xi −X) = 1

n

∑n
i=1 〈Xi, x〉Xi − 〈X,x〉X.

Furthermore, the eigenvalues and eigenfunctions of ΓX,n will be denoted by {(λ̂j , v̂j)}∞j=1, respectively

(being λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂n ≥ 0 = λ̂n+1 = . . .).

11An operator U on a Hilbert space H, given by U : H → H, is called nuclear if it can be written as
U =

∑
∞

j=1
ujfj ⊗H gj , where {fj}∞j=1

and {gj}∞j=1
are orthonormal sets of H, and {uj}∞j=1

is a set of real numbers

such that
∑

∞

j=1
uj < ∞.

12A self-adjoint operator is a linear operator A defined on a linear everywhere–dense set D(A) in a Hilbert space
H such that it coincides with its adjoint operator A∗, that is, such that D(A) = D(A∗) and 〈Ax, y〉 = 〈x,Ay〉 for all
x, y ∈ D(A).

13A positive operator on a Hilbert space H is a linear operator A such that 〈Ax, x〉 ≥ 0.
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Remark 1.4.1. The covariance operator will play a key role in FPCA exposed in Section 1.4.3, “ a)
Functional principal component analysis (FPCA) ” (see page 25). This fact motivated papers devoted
to estimate the covariance operator (Rice and Silverman, 1991; Lee et al., 2002; Gervini, 2006), and
some benchmark of its components (Hall and Vial, 2006a).

Remark 1.4.2. Considering the case H = L2([0, 1]), one has

(ΓXx)(t) = E

((∫ 1

0

(X(s)− µX(s))x(s)ds

)
(X(t)− µX(t))

)
=

∫ 1

0

KX(s, t)x(s)ds,

that is, the covariance function KX is the kernel of the covariance operator ΓX . Analogously, K̂X is
the kernel of ΓX,n

(ΓX,nx)(t) =
1

n

n∑

i=1

((∫ 1

0

(Xi(s)−X(s))x(s)ds

)
(Xi(t)−X(t))

)
=

∫ 1

0

K̂X(s, t)x(s)ds.

Remark 1.4.3. When X is a centred variable, i.e., µX = 0, the covariance operator coincides with
the second moment operator and becomes in ΓX = E(X ⊗H X), thus being ΓXx = E(〈X,x〉X) for
all x ∈ H. Consequently, the covariance operator can be estimated by the empirical second moment
operator ΓX,n = n−1

∑n
i=1Xi ⊗H Xi, that is, ΓX,nx = n−1

∑n
i=1 〈Xi, x〉Xi for all x ∈ H.

Remark 1.4.4. Whenever there is no possible confusion, ΓX and ΓX,n will be denoted by Γ and Γn,
respectively, in order to simplify the notation.

Cross–covariance. LetX and Y be twoH–valued variables such that E(‖X‖2) <∞ and E(‖Y ‖2) <
∞. If one want to analyse the degree of dependence between them when the functional space is
H = L2[0, 1], the cross–covariance function defined as

KX,Y (t1, t2) = E((X(t1)− µX(t1))(Y (t2)− µY (t2))) = E(X(t1)Y (t2))− µX(t1)µY (t2), ∀t1, t2 ∈ T,

can be used, being µX and µY the expected values of X and Y , respectively (i.e., µX = E(X) and
µY = E(Y )). Starting from a sample {(Xi, Yi)}ni=1 of i.i.d. functional variables distributed as (X,Y ),
the cross–covariance function can be estimated by

K̂X,Y (t1, t2) =
1

n

n∑

i=1

(Xi(t1)−X(t1))(Yi(t2)− Y (t2))

=
1

n

n∑

i=1

(Xi(t1)Yi(t2))−X(t1)Y (t2), ∀t1, t2 ∈ T,

with X and Y defined as (1.6) (see page 21).
If H is a general real separable Hilbert space, besides of the cross–covariance function, one can also
compute the cross–covariance operator defined by ∆X,Y = E((X − µX)⊗H (Y − µY )), that is,

∆X,Y : H → H
x → ∆X,Y x = E(〈X − µX , x〉(Y − µY )) = E(〈X,x〉Y )− 〈µX , x〉µY .

From a sample {(Xi, Yi)}ni=1 of (X,Y ), the cross–covariance operator can be estimated by means of
the empirical operator ∆X,Y,n = n−1

∑n
i=1 (Xi −X)⊗H (Yi − Y ) given by

∆X,Y,n : H → H
x → ∆X,Y,nx = 1

n

∑n
i=1 〈Xi −X,x〉(Yi − Y ) = 1

n

∑n
i=1 〈Xi, x〉Yi − 〈X,x〉Y .

An especially interesting situation happens when Y is a real random variable. Then, if H = L2([0, 1]),
the cross–covariance function and its empirical estimator turn into

KX,Y (t) = E((X(t)− µX(t))(Y − µY )) = E(X(t)Y )− µX(t)µY , ∀t ∈ T,

K̂X,Y (t) =
1

n

n∑

i=1

(Xi(t)−X(t))(Yi − Y ) =
1

n

n∑

i=1

(Xi(t)Yi)−X(t)Y , ∀t ∈ T.
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As far as a general real separable Hilbert space H is concerned, the cross–covariance operator ∆X,Y

turns into ∆X,Y = E((X − µX)⊗H′ (Y − µY )), defined as

∆X,Y : H → R

x → ∆X,Y x = E(〈X − µX , x〉(Y − µY )) = E(〈X,x〉Y )− 〈µX , x〉µY .

In this case, the cross–covariance operator can be estimated using its empirical counterpart ∆X,Y,n =
n−1

∑n
i=1 (Xi −X)⊗H′ (Yi − Y ), that is,

∆X,Y,n : H → R

x → ∆X,Y,nx = 1
n

∑n
i=1 〈Xi −X,x〉(Yi − Y ) = 1

n

∑n
i=1 〈Xi, x〉Yi − 〈X,x〉Y .

Remark 1.4.5. If H = L2([0, 1]), it is easy to show that

(∆X,Y x)(t) = E

((∫ 1

0

(X(s)− µX(s))x(s)ds

)
(Y (t)− µY (t))

)
=

∫ 1

0

KX,Y (s, t)x(s)ds,

(∆X,Y,nx)(t) =
1

n

n∑

i=1

((∫ 1

0

(Xi(s)−X(s))x(s)ds

)
(Yi(t)− Y (t))

)
=

∫ 1

0

K̂X,Y (s, t)x(s)ds.

Hence, KX,Y and K̂X,Y are the kernel functions of ∆X,Y and ∆X,Y,n, respectively.

Remark 1.4.6. If bothX and Y have zero–mean then ∆X,Y = E(X⊗HY ) with ∆X,Y x = E(〈X,x〉Y ) for
all x ∈ H. Therefore, the cross–covariance operator can be estimated by ∆X,Y,n = n−1

∑n
i=1Xi ⊗H Yi

being ∆X,Y,nx = n−1
∑n

i=1 〈Xi, x〉Yi for all x ∈ H. Furthermore, when Y ∈ R, the cross–covariance
operator and its empirical estimator turn into ∆X,Y = E(X⊗H′ Y ) and ∆X,Y,n = n−1

∑n
i=1Xi ⊗H′ Yi.

Remark 1.4.7. In order to abbreviate the notation, the cross–covariance operator and its empirical
counterpart will be denoted by ∆ and ∆n when confusion is not possible.

1.4.2 Functional data classification

Other types of exploratory tools are designed to gauge the existence of clusters in the functional
random sample {Xi}ni=1, and to identify them when they exist. The identification process, which
sets the different clusters, is often based on any of the distribution parameters that were presented in
the previous section as the mean or the mode. Within this scope, a general classification algorithm
usable with any centrality measure was proposed by Ferraty and Vieu (2006b), functional classification
focused on modal curve was presented by Dabo-Niang et al. (2006, 2007), and depth–based functional
classification tools were presented by López-Pintado and Romo (2006), Cuevas et al. (2007), Cuesta-
Albertos and Nieto-Reyes (2010), Li et al. (2012), and Sguera et al. (2012). On the other hand,
some contributions were devoted to the adaptation of well–known multivariate k–means procedures to
functional classification (see, for instance, Tarpey and Kinateder, 2003; Abraham et al., 2003; Mizuta,
2004; Cuesta-Albertos and Fraiman, 2007; Tarpey, 2007). There were other papers which analysed
the functional classification for sparsely observed curves (James and Sugar, 2003; James, 2011), or
which proposed alternatives approaches, for example, methods based on neural networks (Rossi et al.,
2004), on regression trees (Nerini and Ghattas, 2007), on regression techniques as PLS approach (Preda
and Saporta, 2005a; Preda et al., 2007; Delaigle and Hall, 2012), or on similarity measurements such
as a rank correlation (Heckman and Zamar, 2000). Furthermore, a recent survey on supervised and
unsupervised classification with functional data can be found in Báıllo et al. (2011).

1.4.3 Spectral analysis

From the seminal papers by Rao (1958) and Tucker (1958), factorial analysis has turned into a key
tool for exploring functional variables. The underlying idea of any factorial analysis is the spectral
decomposition of a functional operator, which is chosen depending on the proposed problem and the
considered methodology. Next, a review of the main contributions related to factorial analysis is
presented. It is focused on FPCA which will be recalled later to define functional linear regression
estimators (see Section 2.3.2 in Chapter 2, page 35, and Chapter 3).
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a) Functional principal component analysis (FPCA)

The analysis of the covariance structure of a functional dataset can report valuable information on the
features and the behaviour of the data. Since a direct study of the covariance operator is not feasible,
FPCA is a fundamental tool for summarizing and visualizing the underlying framework of this operator
in a clear and easy way. One of the advantages of FPCA is that the functional data are projected
on the space spanned by the eigenelements of the covariance operator. Therefore, a reduction of the
problem dimension is possible if one restricts the projection to only the first eigenfunctions. Next, it
will be exposed briefly how FPCA works (for more details, see Ramsay and Silverman, 2005, Chapter 8
or Hall, 2011).

Definition of FPCA. Let X be a zero–mean functional variable valued in H. FPCA can be defined
by means of the following stepwise procedure:

Step 1. Find the element ξ1 ∈ H that solves

max
‖ξ1‖=1

E(〈ξ1, X〉2) = max
‖ξ1‖=1

E(f21 ),

being f1 = 〈ξ1, X〉 the first principal component score, which gives the projection of X on
the direction ξ1.

Step 2. For j ∈ {2, 3, . . .}, compute ξj ∈ H such that ξj is solution of the next optimization problem

max
‖ξj‖=1

E(〈ξj , X〉2) = max
‖ξj‖=1

E(f2j )

subject to the j − 1 constraints

〈ξk, ξj〉 = 0, for all 1 ≤ k < j.

In this case, fj = 〈ξj , X〉 is the jth principal component score, and corresponds to the
projection of X on the direction ξj .

The directions {ξj}∞j=1 obtained in the course of the procedure will form an orthonormal basis of H. On
each step, the goal is to determine the main source of residual variation in X. In fact, the percentage
of variability explained for the first J components can be determined using the next expression

∑J
j=1 E(f

2
j )∑∞

j=1 E(f
2
j )

× 100. (1.7)

Eigenanalysis. Another characterization of FPCA can be derived from the spectral decomposition
of the covariance operator Γ (see Section 1.4.1, “ b) Measures of dispersion ”, page 22). The key involves
rewriting the maximization problem as follows

{
max‖ξ1‖=1 〈ξ1,Γξ1〉,
max‖ξj‖=1 〈ξj ,Γξj〉, subject to 〈ξk, ξj〉 = 0, for 1 ≤ k < j.

(1.8)

The previous optimization problem can be solved by considering the eigenfunction problem

Γv = λv,

that is, the principal components are precisely the orthonormal eigenfunctions {vj}∞j=1 of the covariance
operator, arranged from largest eigenvalue to smallest one. Furthermore, the associated eigenvalues
{λj}∞j=1 represent the variation in X explained by each component vj , since 〈vj ,Γvj〉 = λj . Hence,

the variability (1.7) explained by {vj}Jj=1 can also be expressed as

∑J
j=1 λj∑∞
j=1 λj

× 100.



26 CHAPTER 1. INTRODUCTION TO FDA

Estimation. Let {Xi}ni=1 be a centred sample of X. The estimation of FPCA can be done following
the next steps:

Step 1. Look for the element ξ1 ∈ H that solves

max
‖ξ1‖=1

1

n

n∑

i=1

〈ξ1, Xi〉2 = max
‖ξ1‖=1

1

n

n∑

i=1

f2i1,

where fi1 = 〈ξ1, Xi〉 for i ∈ {1, . . . , n}. The values {fi1}ni=1 are called the first principal
component scores.

Step 2. For j ∈ {2, 3, . . .}, find ξj ∈ H that solves

max
‖ξj‖=1

1

n

n∑

i=1

〈ξj , Xi〉2 = max
‖ξj‖=1

1

n

n∑

i=1

f2ij

subject to the j − 1 constraints

〈ξk, ξj〉 = 0, for all 1 ≤ k < j,

being {fij}ni=1 = {〈ξj , Xi〉}ni=1 the jth principal component scores.

The previous procedure is equivalent to find the solution of the eigenequation

Γnv = λv

(see Section 1.4.1, “ b) Measures of dispersion ”, page 22). The eigenfunctions {v̂j}∞j=1 of Γn are

estimators of the functional principal components of X, and the empirical eigenvalues {λ̂j}∞j=1 of Γn

estimate the variability of X explained by each component: 〈v̂j ,Γnv̂j〉 = λ̂j , for all j ∈ {1, 2, . . .}.
Remark 1.4.8. As it happens in the multivariate case, the variation defined by n−1

∑n
i=1 f

2
ij is reduced

step by step, so not all the principal components are computed in practice, but only the first ones.
Usually, one obtains the functional principal components, one after another, until a certain percentage
P of explained variability is reached, that is, one selects J such that

∑J
j=1 (

1
n

∑n
i=1 f

2
ij)∑∞

j=1 (
1
n

∑n
i=1 f

2
ij)

× 100 > P,

being this expression the empirical version of (1.7). Furthermore, the condition can also be expressed

in terms of the empirical eigenelements {λ̂j , v̂j}∞j=1 as follows

∑J
j=1 λ̂j∑∞
j=1 λ̂j

× 100 > P.

It is well–known that {v̂j}∞j=1 is an orthonormal basis of H. Remark 1.2.13 (see page 9) implies

that ‖Xi‖2 =
∑∞

j=1 〈Xi, v̂j〉2, so n−1
∑n

i=1 ‖Xi‖2 =
∑∞

j=1 λ̂j . Hence the denominator in the previous

expression could be computed using the empirical estimation of E(‖X‖2).
Although only a few statisticians paid attention to FPCA at first (Rao, 1958; Deville, 1974; Dauxois

et al., 1982; Ramsay, 1982), the number of contributions devoted to this topic increased considerably
from nineties to nowadays (see a general review in Ramsay and Silverman, 2005). Existing literature
includes papers concerned with the estimation of the covariance operator (Rice and Silverman, 1991;
Lee et al., 2002; Gervini, 2006; Hall and Vial, 2006a), works focused on theoretical aspects (Hall et al.,
2006; Hall and Hosseini-Nasab, 2006, 2009) or studies related to computational issues (Ocaña et al.,
2007).
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On the other hand, interesting contributions have analysed the importance of the scalar product
involved in the projection step (Silverman, 1996; Ocaña et al., 1999; Locantore et al., 1999) or the effect
of introducing smoothing techniques in the standard FPCA such as splines ideas (Ramsay and Dalzell,
1991; Pezzulli and Silverman, 1993; Silverman, 1996; Cardot, 2000; James et al., 2000; Yao and Lee,
2006; Zhou et al., 2008), local linear smoothing (Li and Hsing, 2010) or kernel–type approaches (Boente
and Fraiman, 2000). In particular, the methods presented in two of these papers (specifically, Pezzulli
and Silverman, 1993, and Silverman, 1996), which can be seen as a combination of the standard FPCA
and smoothing techniques, are going to be described briefly. These two approaches will be recalled in
Section 3.4 in Chapter 3 (see page 60).

(i) Pezzulli and Silverman’ smoothed FPCA. A roughness penalty was introduced in the opti-
mization problem (1.8) by Pezzulli and Silverman (1993), who considered the following stepwise
maximization process

{
max‖ξ1‖=1 (〈ξ1,Γξ1〉 − α〈ξ1, Qξ1〉),
max‖ξj‖=1 (〈ξj ,Γξj〉 − α〈ξj , Qξj〉), subject to 〈ξk, ξj〉 = 0, for 1 ≤ k < j,

where α is a positive smoothing parameter, and Q is a symmetric nonnegative operator that
quantifies the smoothness of solutions (for instance, an usual choice for Q is the fourth derivative
operator).

In practice, one needs to find the pairs {(λ̂α,1j , v̂α,1j )}∞j=1, which solve the generalized eigenproblem

(Γn − αQ)v = λv.

Each eigenfunction v̂α,1j estimates the jth functional principal component, and its contribution

to the explained variability is determined by the associated eigenvalue λ̂α,1j .

(ii) Silverman’s smoothed FPCA. In the smoothed FPCA proposed by Silverman (1996), the
roughness penalty is not inserted into the maximization problem, but into the inner product
definition. For a given smoothing parameter α, a new inner product is defined as

〈x, y〉α = 〈x, y〉+ α〈x,Qy〉,

being Q a symmetric nonnegative operator that controls the smoothness restrictions. This inner

product allows to build an induced norm by means of ‖x‖α = 〈x, x〉1/2α .
Once the smoothed inner product is stated, Silverman (1996) proposed to solve

{
max‖ξ1‖α=1 〈ξ1,Γξ1〉,
max‖ξj‖α=1 〈ξj ,Γξj〉, subject to 〈ξk, ξj〉α = 0, for 1 ≤ k < j.

It is important to highlight that the smoothness requirements only affect the orthonormality
constraints. In this situation, the estimation procedure leads to the solution {(λ̂α,2j , v̂α,2j )}∞j=1 of
the eigenproblem

Γnv = λ(1H + αQ)v,

with 1H the identity operator on H, i.e., 1Hx = x for all x ∈ H. Hence, the obtained eigenele-
ments allow to estimate the functional principal components, and the variability of X which is
explained using each of them.

Finally, note that FPCA has been successfully extended to a very wide range of situations: time
series (Bosq, 1991; Aguilera et al., 1997, 1999; Bosq, 2000), bi–functional data (Spitzner et al., 2003),
longitudinal data (James, 2002; Yao et al., 2005a), or conditional frameworks (Cardot, 2007).

Remark 1.4.9. Alternatives to functional principal components can be found in Park et al. (2009),
who tried to construct more informative structural components, or in Chen and Müller (2012), who
proposed the use of functional manifold components.
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b) Functional canonical analysis

When the sample involves two functional variables (X,Y ) and the goal is to determine the relationship
between them, the canonical analysis is a reasonable statistical methodology to be borne in mind.
First contribution on functional canonical analysis were presented by Dauxois and Pousse (1975), and
more recent advances can be found in He et al. (2000, 2003, 2004); Dauxois et al. (2004); Gou and
Fyfe (2004), Ramsay and Silverman (2005, Chapter 11), He et al. (2010).

c) Functional linear discriminant analysis

Functional linear discriminant analysis is also concerned with a pair of variables (X,Y ) but, unlike
canonical analysis, Y must be valued in a finite set in this case. Linear discriminant analysis has been
combined with other kind of techniques as penalization procedures, dimensionality reduction or partial
least squares approaches. Some interesting contributions in this field are the following: Hastie et al.
(1995); Ramsay and Silverman (1997); James and Hastie (2001); Ramsay and Silverman (2005); Preda
et al. (2007); Shin (2008); and Delaigle and Hall (2012).



Chapter 2

Functional regression models

After introducing the functional regression concept, this chapter focuses on the functional
regression model for scalar response. Two approaches to this problem are presented in
this chapter: functional linear regression (parametric approach) and kernel–type regression
(nonparametric approach). For the former estimators based on basis expansions (Ramsay
and Silverman, 2005) and FPCA–type estimators (Cardot et al., 1999, 2003c, 2007c; Ferraty
et al., 2012a) are described, whereas an extension of the multivariate Nadaraya–Watson
estimator (Ferraty and Vieu, 2004, 2006b; Ferraty et al., 2007a) is considered for the latter.
A final appendix compiles proofs of results and technical lemmas required for the chapter.
The state of the art of the functional regression approaches included in the first sections of
the chapter was partly updated by means of the contributions by González-Manteiga and
Vieu (2011) and Cuevas (2012).

The conditional errors for the standard FPCA estimator (see Theorem 2.3.14, page 39)
were published in the paper by Ferraty et al. (2012a).

2.1 What does functional regression mean?

One is often interested in studying the behaviour of a random variable Y (response or dependent
variable) taking into account that part of its variability could be explained by means of a random
variable X (covariate or independent variable). In this case, one considers the following regression
model

Y = m(X) + ǫ,

where m(·) is a regression function, and ǫ is a random variable called error. Table 2.1 compiles the
four possible situations that one can find according to the nature of the response and the covariate,
that is, depending on whether the concerned variables are valued in a finite dimensional space (for
example, Rp with p ≥ 1) or they belong to a general functional space (for example, the Hilbert space
H). Case A is the classic multivariate regression model, which has often been the subject of study
in the statistical literature. The remaining cases correspond to functional regression models since at
least one of the involved variables is a functional random variable.

Y ∈ Rp Y ∈ H
X ∈ Rp Case A. m : Rp → Rp Case B. m : Rp → H
X ∈ H Case C. m : H → Rp Case D. m : H → H

Table 2.1: Regression models depending on the nature of X and Y .

29
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Case B. For this case, when the dependent variable is functional and the independent variable
is multivariate, one can see some interesting contributions in the following works: Faraway (1997);
Brumback and Rice (1998); Yu and Lambert (1999); Guo (2002); Chiou et al. (2003a,b, 2004); Ramsay
and Silverman (2005, Chapter 13); Cardot et al. (2007d); Hlubinka and Prchal (2007); Nerini and
Ghattas (2007); Zhang and Chen (2007); Bücher et al. (2011); and Zhang (2011).

Case C. The prediction of scalar response (p = 1) from functional covariate was discussed in recent
papers both from a parametric (Ramsay and Silverman, 2005) and from a nonparametric approaches
(Ferraty and Vieu, 2006b). For instance, a comparison of two parametric estimators and a nonpara-
metric one can be found in Báıllo (2009). Since the following sections are especially devoted to Case C,
references related to this regression model can be seen in detail below.

Case D. First advances for dealing with this case, where both X and Y are functional variables,
can be found in Ramsay and Dalzell (1991) and Hastie and Tibshirani (1993). There are some more
recent contributions focused on the linear case (Hoover et al., 1998; Wu et al., 1998; Cuevas et al.,
2002; Malfait and Ramsay, 2003; Fan and Zhang, 2004; Kneip et al., 2004; Ramsay and Silverman,
2005, Chapter 14 and 16; Müller and Zhang, 2005; Yao et al., 2005b; Prchal and Sarda, 2007; Kokoszka
et al., 2008; Antoch et al., 2008; Wu et al., 2010; Antoch et al., 2010; Müller et al., 2011; Kim et al.,
2011; Horváth and Reeder, 2012). For nonparametric estimator, see for instance the kernel regression
studied by Ferraty et al. (2011a) and Ferraty et al. (2012d).

An important functional setting deals with the multilevel functional data and the functional
ANOVA. Some advances in this field can be found in Spitzner et al. (2003); Morris et al. (2003);
Abramovich et al. (2004); Cuevas et al. (2004); Abramovich and Angelini (2006); Morris and Carroll
(2006); Antoniadis and Sapatinas (2007); Zhang and Chen (2007); Schott (2007); Di et al. (2009);
Cuesta-Albertos and Febrero-Bande (2010); Staicu et al. (2010); González-Rodŕıguez et al. (2012).

Discrimination of functional data can be analysed as a particular regression case, where the response
variable is valued in a finite set and denotes the group each observation belongs to. This question can be
discussed both from a linear viewpoint (see Section 1.4.3, “ c) Functional linear discriminant analysis ”,
in Chapter 1, page 28), and from a nonparametric viewpoint (see Ferraty and Vieu, 2004 or Ferraty
and Vieu, 2006b, Chapter 8). For the latter, some authors developed specific tools based on projection
methods (Hall et al., 2001), on kernel methods (Ferraty and Vieu, 2003), on k–NN methods (Biau
et al., 2005; Ferraty and Vieu, 2006b; Cérou and Guyader, 2006; Abraham et al., 2006), on sliced
inverse regression (Ferré and Yao, 2005), on SVM ideas (Rossi and Villa, 2006), or on PLS approaches
(Costanzo et al., 2006; Preda et al., 2007).

Another special situation that requires a distinct treatment is the functional time series analysis.
In this case, the functional covariate is the past continuous path of the process, and the response is a
characteristic of the future of the process. This problem needs a suitable regression approach in order
to take into account the dependence between the covariate and the response (see, for instance, Bosq,
2000, Ferraty and Vieu, 2006b, Part IV, Bosq and Blanke, 2007, Delsol, 2011, or Mas and Pumo, 2011).
Some contributions which analysed this issue when the response variable is scalar are the following
ones: Ferraty et al. (2002); Ait-Säıdi et al. (2005); Ferraty et al. (2005); Masry (2005); Ezzahrioui and
Ould-Säıd (2008b); Aneiros-Pérez and Vieu (2008); Delsol (2009); and Aneiros-Pérez et al. (2011).

If the response variable is functional, then autoregressive models are the key to predict the future
path (Bosq, 1991, 2000). This approach resulted in theoretical advances (Merlevède et al., 1997; Pumo,
1998; Guillas, 2001, 2002; Mas, 2002; Mourid, 2002; Bosq, 2002, 2003; Antoniadis and Sapatinas, 2003;
Mas and Menneteau, 2003; Damon and Guillas, 2005; Menneteau, 2005; Mas, 2007b; Bosq, 2007; Mas
and Pumo, 2007; Ruiz-Medina et al., 2007; Horváth et al., 2010; Ruiz-Medina and Salmerón, 2010;
Ruiz-Medina, 2011, 2012b; Horváth and Kokoszka, 2012, Chapter 13), and applied contributions (Besse
and Cardot, 1996; Besse et al., 2000; Bouzas et al., 2002; Valderrama et al., 2002; Damon and Guillas,
2002; Valderrama et al., 2003; Bouzas et al., 2006; Laukaitis, 2008; Antoch et al., 2010; Ruiz-Medina
and Espejo, 2012). However, to describe nonlinear situations other kind of models are required, such
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as autoregressive conditional heteroscedastic models (ARCH models) which are commonly used in
econometrics. A functional version of ARCH model can be found in Hörmann et al. (2012).

Furthermore, some recent papers tried to generalize time dependence to spatial dependence (Deli-
cado et al., 2010; Guillas and Lai, 2010; Giraldo et al., 2010a,b) or to define new moment–based notions
of dependence (Hörmann and Kokoszka, 2010). A general overview of the main contributions (and
also future research lines) to spatial functional statistics can be found in Ruiz-Medina (2012a).

Remark 2.1.1. In order to reduce the dimension of the functional covariates in the regression context,
the variable selection by means of techniques such as the LASSO method can be an interesting option.
Some recent contributions related with this research line are Kneip and Sarda (2011) and Lee and
Park (2012).

From now on, the chapter is focused on the Case C with p = 1, which corresponds to the regression
model with functional covariate and scalar response.

2.2 Functional regression for scalar response

If the functional regression model with scalar response is considered (i.e., Case C with p = 1 in Ta-
ble 2.1, page 29), one could assume that the regression operator m : H → R belongs to a specific
parametric family, one could just impose certain smoothness conditions on m(·), or one could even
combine these two approaches. To fix ideas, the well–known parametric, nonparametric and semipara-
metric notions in the multivariate context will be extended to the functional regression field, such as
it was proposed in Ferraty and Vieu (2006b, 2011b).

Definition 2.2.1. A model for the estimation of the regression operator m(·) consists in introducing
some constraint of the form m ∈ C. The model is called parametric when C is indexed by NC elements
of H (NC < +∞), that is,

C = {C(θ1,...,θNC
)|(θ1, . . . , θNC

) ∈ H× NC. . . ×H}.

The model is called nonparametric when C cannot be indexed by a finite number of parameters. The
model is called semiparametric when it consists of both parametric and nonparametric components.

A clear advantage of parametric models is the simplification of the estimation process, since the
estimation of the functional operator is turned into the estimation of a finite number of parameters,
which can be easily interpreted. Nevertheless, this approach may provide misleading estimates if
the regression operator does not belong to the selected parametric family. Hence, nonparametric
estimation is a better option when one has no previous information about m(·) despite the increase of
computational complexity. The trade–off between parametric and nonparametric models is balanced by
means of semiparametric models, which try to combine the simplicity and interpretability of parametric
approach and nonparametric flexibility. Next, a brief summary of references related with these three
families of regression models is presented.

Parametric models. The most usual parametric model is the functional linear model that was
studied at first by Ramsay and Dalzell (1991) and Hastie and Mallows (1993). Later, several research
lines were developed in order to estimate the functional parameter involved in the model. Among
the published contributions, the methods based on smoothing splines (Ramsay and Silverman, 2005;
Cardot et al., 2003c, 2007a; Crambes et al., 2009), on FPCA (Cardot et al., 1999; Cai and Hall,
2006; Hall and Hosseini-Nasab, 2006; Crambes, 2007), on presmoothing ideas (Mart́ınez-Calvo, 2008;
Ferraty et al., 2012a), or on PLS techniques (Preda and Saporta, 2005a,b; Escabias et al., 2007; Reiss
and Ogden, 2007) should be mentioned. For each estimator, an outstanding question is to establish
the rates of convergence. Some efforts focused on this aim can be found in Cai and Hall (2006), Hall
and Horowitz (2007), Cardot et al. (2007c) or Crambes et al. (2009). See also some advances on point
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impact linear regression in McKeague and Sen (2010) and some advances on detection of influential
observations in Febrero-Bande et al. (2010). Furthermore, an interesting issue was studied by Wang
et al. (2012): how to transform (X,Y ) when the linear assumption is not satisfied in order to obtain
linearly related transformed data. Other problems on functional linear regression which also were the
subject of recent research can be found in Ramsay and Silverman (2005), Besse et al. (2005), and
Cardot and Sarda (2006, 2011).
Besides the linear regression, there are more complex regression models that were analysed recently,
such as the generalized functional linear model (James, 2002; Cardot and Sarda, 2005; Müller and
Stadtmüller, 2005; Li et al., 2010), or the special case of the functional logistic regression (Ratcliffe
et al., 2002b; Escabias et al., 2004, 2005; Aguilera et al., 2006; Lindquist and McKeague, 2009), and
the functional multilogit model (Besse et al., 2005).

Nonparametric models. The use of nonparametric models in the functional context started with
the monograph by Ferraty and Vieu (2006b). The most popular nonparametric methods are based
on the classical Nadaraya–Watson estimator, and were developed by Ferraty and Vieu (2002, 2004,
2006b, 2011a). Other works contributed complementary theoretical results (Masry, 2005; Delsol, 2007;
Ferraty et al., 2007a; Delsol, 2009; Aspirot et al., 2009; Ferraty et al., 2010b,c), applied issues linked
with the smoothing parameter selection (Benhenni et al., 2007; Rachdi and Vieu, 2007), or bootstrap
techniques for the nonparametric functional regression context (Ferraty et al., 2010c, 2012d).
Apart from the standard kernel estimator, alternative nonparametric estimators were proposed, such
as a k–NN estimator (Burba et al., 2009; Biau et al., 2010) and a local linear estimator (Boj et al.,
2008; Báıllo and Grané, 2008, 2009; Barrientos-Marin et al., 2010; Boj et al., 2010). Other approaches
which can be found in the literature are nonparametric methods based on neural networks (Rossi et al.,
2005; Rossi and Conan-Guez, 2005, 2006), and methods based on reproducing kernel Hilbert spaces
ideas (Preda, 2007).

Semiparametric models. Recently, the semiparametric models have started emerging in the func-
tional regression context. As mentioned before, these kinds of models consist of a parametric term and
a nonparametric one, which allow balancing the advantages and disadvantages of both components.
Although semiparametric regression is still starting out, some contributions were already presented
in order to give functional versions of some classic semiparametric models, such as additive models
(Aneiros-Pérez et al., 2004; Ferraty and Vieu, 2009), single index models (Ait-Säıdi et al., 2005; Amato
et al., 2006; Ait-Säıdi et al., 2008), partial linear models (Aneiros-Pérez and Vieu, 2006, 2008; Shin,
2009; Lian, 2011; Vilar et al., 2012; Aneiros-Pérez and Vieu, 2012), varying–coefficient functional mod-
els (Cai, 2011), and sliced inverse regression (Ferré and Yao, 2005; Ferré and Villa, 2006).
In all the previous references, the proposed techniques are based on conditional expectation, that is,
the authors considered the regression operator given by m(X) = E(Y |X). Nevertheless, other charac-
teristics of the conditional distribution can be studied, for instance, the conditional quantiles (Cardot
et al., 2005; Ferraty et al., 2005, 2006; Cardot et al., 2007b; Ezzahrioui and Ould-Säıd, 2008b) or the
conditional mode (Ferraty et al., 2006; Ezzahrioui and Ould-Säıd, 2008a). There were also some con-
tributions to functional conditional hazard estimation (Ferraty et al., 2008; Quintela del Ŕıo, 2008),
and robust regression estimation (Crambes et al., 2008).

The following sections are devoted to functional linear regression and functional kernel regression.
For the former, estimators based on basis expansions and estimators based on FPCA are going to be
analysed. For the latter, an adaptation of the multivariate Nadaraya–Watson estimator is considered.

2.3 Functional linear regression for scalar response

Recall that (H, 〈·, ·〉) is a real separable Hilbert space and ‖ · ‖ denotes its induced norm. Then, the
functional linear model with scalar response can be expressed as

Y = 〈θ,X〉+ ǫ, (2.1)
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where Y is a real random variable, m(·) = 〈θ, ·〉 is a linear regression operator with θ ∈ H and
‖θ‖2 < ∞, X is a zero–mean random variable valued in H such that E(‖X‖2) < ∞, and ǫ is a real
random variable satisfying that E(ǫ) = 0, Var(ǫ) = σ2 <∞, and E(ǫX) = 0.

Remark 2.3.1. If the variables X and Y are not centred, it can be defined

Ỹ = Y − E(Y ) and X̃ = X − E(X).

It can be deduced that the regression model Ỹ = 〈θ, X̃〉+ ǫ is equivalent to

Y = θ0 + 〈θ,X〉+ ǫ,

with θ0 = E(Y ) − 〈θ,E(X)〉. Hence, one can just focus on the model (2.1) with zero–mean variables,
without loss of generality.

Remark 2.3.2. Although the broad framework of Hilbert spaces has been fixed, functional data are
often valued in well–known common spaces. For example, the spaceH = L2([0, 1]) is usually considered
when the functional data are curves, that is, when X = {X(t), t ∈ [0, 1]}. In this situation, the general
regression model (2.1) becomes

Y =

∫ 1

0

θ(t)X(t)dt+ ǫ,

when one takes the inner product 〈x, y〉 =
∫ 1

0
x(t)y(t)dt for all x, y ∈ L2[0, 1].

The problem that comes up at this point is how to estimate the model parameter θ by means of
an i.i.d. sample {(Xi, Yi)}ni=1 from (X,Y ). In practice, one cannot measure the continuous functional
data {Xi}ni=1, but a dataset which consists of their discretized versions. Therefore, the sample is none
other than

{(Xi(t1), . . . , Xi(tl), . . . , Xi(tL), Yi)}ni=1,

being {tl}Ll=1 the discrete grid where each Xi is recorded. As a first naive attempt to estimate θ,
one could forget the functional nature of X, and consider each discretized Xi as a multidimensional
covariate. Hence the problem comes down to estimating the ordinary multivariate linear regression

Yi =

L∑

l=1

θ(tl)Xi(tl) + ǫi, for i = 1, . . . , n.

This simple approach has clear drawbacks, such as the need to solve a system of n equations with L
unknowns, being almost always L >> n, and the existence of infinite solutions which fit the observed
data perfectly.

In order to obtain an identifiable solution which can be interpreted, one could use some method of
regularization (see preprocessing techniques in Section 1.3 in Chapter 1, page 13). On the other hand,
one of the most widely used techniques for estimating θ are the methods based on basis systems as
Fourier series, wavelets or splines (see a general review in Ramsay and Silverman, 2005, and see Cardot
et al., 2003c or Crambes et al., 2009 for the popular splines approach). The main ideas linked with
this methodology has been summarized in Section 2.3.1. Another widespread methodology is based on
FPCA, and it has been developed and analysed during the last years (Cardot et al., 1999, 2003c; Cai
and Hall, 2006; Hall and Hosseini-Nasab, 2006; Hall and Horowitz, 2007; Cardot et al., 2007c). This
alternative estimator is presented in Section 2.3.2.

2.3.1 Estimators based on basis expansions

Let {φj}Jj be a basis function system in the functional space L2[0, 1]. As explained in Section 1.3.1,
“ b) Smoothing by basis functions ”, in Chapter 1 (see page 14), a basis system allows to project the
main information of the data onto the finite dimensional space spanned by the first basis elements.
Therefore, the model parameter θ can be expressed as a linear combination of the basis elements

θ[Jθ] =

Jθ∑

j=1

bjφj = ΦtB,
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with B = (b1, . . . , bJθ
)t the Jθ–vector of the coefficients, and Φ = (φ1, . . . , φJθ

)t the functional Jθ–
vector of the basis functions. The choice of Jθ is a key issue, since one needs a value large enough
to avoid the loss of information, but small enough to make the interpretation of the model parameter
easier.

One can repeat the procedure for the functional covariates by means of another basis function
system {ψj}∞j (with {ψj}∞j=1 not necessarily equal to {φj}∞j=1). Then, one gets

X
[JX ]
i =

JX∑

j=1

cijψj = ΨtCi, for i = 1, . . . , n,

where Ci = (ci1, . . . , ciJX
)t is the JX–vector of the coefficients for Xi, and Ψ = (ψ1, . . . , ψJX

)t is the
functional JX–vector of the basis functions.

Consequently, the regression model (2.1) (see page 32) could be approximated by

Yi = 〈θ[Jθ], X
[JX ]
i 〉+ ǫi =

Jθ∑

j1=1

JX∑

j2=1

bj1cij2〈φj1 , ψj2〉+ ǫi = Ct
iMΨΦB+ ǫi, for i = 1, . . . , n

where MΨΦ is the JX × Jθ–matrix given by (MΨΦ)j2,j1 = 〈ψj2 , φj1〉. Moreover, if C is the n × JX–
matrix whose rows are the vectors Ct

i, one can consider

Y = CMΨΦB+ e = ΞB+ e,

where Y is the n–vector of the observed responses, Ξ is the n × Jθ–matrix defined by Ξ = CMΨΦ,
and e is the n–vector of the errors.

Next, two methods for estimating B based on the minimization of the ordinary residual sum
of squares, and based on the minimization of a penalized residual sum of squares, respectively, are
presented.

a) Least squares estimator

The Kθ–vector of coefficients B can be estimated optimizing the standard least squares problem

min
B

(Y −ΞB)t(Y −ΞB).

It can be shown that the solution of this problem verifies the equation 2ΞtΞB− 2ΞtY = 0. Hence, B
is estimated by

B̂ = (ΞtΞ)−1ΞtY,

and the derived predictions Ŷ = ΞB̂ = Ξ(ΞtΞ)−1ΞtY.

b) Penalized least squares estimator

The introduction of roughness penalties in the ordinary least squares problem allows to fix regularity
conditions for the model parameter, and avoid excessive local fluctuation in the estimation. The trick
is to consider the following penalized residual sum of squares

min
B

(
(Y −ΞB)t(Y −ΞB) + ρPENq(θ)

)
,

being ρ the smoothing parameter, and PENq(·) a roughness penalty, for example, any of the penalties
considered in Section 1.3.1, “ c) Smoothing with a roughness penalty ”, in Chapter 1 (see page 19).

When the qth derivative of θ exists, PENq(θ) =
∫ 1

0
(θ(q)(s))2ds can be selected, and the penalty

can be expressed as

PENq(θ) =

∫ 1

0

(
(Φ(q)(s))tB

)2
ds = BtRB,
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where Φ(q)(s) = (φ
(q)
1 (s), . . . , φ

(q)
Jθ

(s))t is the Jθ–vector of the derivatives and R is the Jθ × Jθ–matrix

given by R =
∫ 1

0
Φ(q)(s)(Φ(q)(s))tds. Consequently, the penalized optimization problem can be rewrit-

ten as follows
min
B

(
(Y −ΞB)t(Y −ΞB) + ρBtRB

)
.

To solve this problem, one has to find the vector B which satisfies 2ΞtΞB−2ΞtY+2ρRB = 0. Hence,
the estimated parameter is

B̂ = (ΞtΞ+ ρR)−1ΞtY,

and the fitted responses are Ŷ = ΞB̂ = Ξ(ΞtΞ+ ρR)−1ΞtY.

Remark 2.3.3. The balance between bias and variance is controlled by the smoothing parameter. The
choice of ρ can be done in a subjective way or by data–driven selectors, such as a cross–validation
method (see further details in Ramsay and Silverman, 2005, Chapter 15).

Example. The penalized B–splines estimator. The penalized B–splines estimator is an estima-
tor based on basis expansions. Let {Bk,j , j = 1, . . . , k + q} be the normalized B–splines basis of the
space Sqk of splines defined on [0, 1] with degree q and (k−1) equispaced interior knots. The penalized
B–splines estimator is defined as

θ̂PS =

q+k∑

j=1

b̂jBk,j , (2.2)

where b̂ = (b̂1, . . . , b̂q+k) is the solution of the minimization problem

min
b




1

n

n∑

i=1


Yi −

q+k∑

j=1

〈bjBk,j , Xi〉




2

+ ρ‖(B(r)
k )tb‖2


, (2.3)

with ρ the smoothing parameter, andB
(r)
k the functional vector of derivatives of order r of the B–splines

(see, for instance, Cardot et al., 2003c).

Remark 2.3.4. Let Ξ be the n× (q + k)–matrix defined by (Ξ)l,j = 〈Bk,j , Xl〉, let R be the (q + k)×
(q+ k)–matrix defined by (R)l,j = 〈B(q)

k,l , B
(q)
k,j〉. Then the penalized B–splines estimator is an example

of penalized least squares estimator, since the minimization problem (2.3) is equivalent to

min
b

(
(Y −Ξb)t(Y −Ξb) +

ρ

n
btRb

)
.

2.3.2 Estimators based on FPCA

In this section, some recent results on FPCA–type estimators for the functional linear model (2.1) (see
page 32) are briefly recalled. Firstly, the construction of this kind of estimators following the papers
by Cardot et al. (1999, 2003c), and the most general approach by Cardot et al. (2007c), is presented.
Then, theoretical results related to consistency, conditional errors and some asymptotics are compiled.

Let (H, 〈·, ·〉) be a real separable Hilbert space. Recall that {(λj , vj)}∞j=1 denote the eigenelements
of the second moment operator Γ = E(X⊗HX), and ∆ = E(X⊗H′ Y ) is the cross second moment op-

erator. Furthermore, {(λ̂j , v̂j)}∞j=1 are the eigenvalues and eigenfunctions of Γn = n−1
∑n

i=1Xi ⊗H Xi,

and the empirical version of ∆ is denoted by ∆n = n−1
∑n

i=1Xi ⊗H′ Yi. See further details in Sec-
tion 1.4.1, “ b) Measures of dispersion ”, in Chapter 1 (see page 22).

a) Definition of standard FPCA estimator

In order to estimate the model parameter, Cardot et al. (2003c) studied the optimization problem

min
β∈H

E
(
(Y − 〈β,X〉)2

)
.

When
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(C.2.1) Ker(Γ) = {0}, and ∑∞
j=1 (∆vj/λj)

2 < +∞,

where Ker(Γ) denotes the kernel or null space of Γ defined as Ker(Γ) = {x ∈ H |Γx = 0}, the parameter
θ is the unique solution to this minimization problem, and it satisfies the equation ∆x = 〈θ,Γx〉 for
all x ∈ H. This fact allows to express the model parameter as

θ =

∞∑

j=1

∆vj
λj

vj .

Remark 2.3.5. The application of Remark 1.2.13 in Chapter 1 (see page 9), taking as orthonormal
basis {vj}j , leads to θ =

∑∞
j=1 〈θ, vj〉vj . Moreover, the equality ∆x = 〈θ,Γx〉, for all x ∈ H, ensures

that ∆vj = λj〈θ, vj〉 for all j. Thus, θ =
∑∞

j=1 λ
−1
j ∆vjvj .

There is no bounded inverse for Γ, so Cardot et al. (1999) projected the data on the subspace
spanned by the first kn eigenfunctions of Γn. Given {(Xi, Yi)}ni=1 a sample of i.i.d. random variables
drawn from (X,Y ), they proposed to estimate θ by

θ̂kn
=

kn∑

j=1

∆nv̂j

λ̂j
v̂j , (2.4)

where {kn}∞n=1 is a sequence of positive integers such that kn → +∞, kn ≤ n, and λ̂kn
> 0.

Remark 2.3.6. Note that (2.4) is the truncated version of θ̂ =
∑∞

j=1 λ̂
−1
j ∆nv̂j v̂j , which satisfies

∆nx = 〈θ̂,Γnx〉, ∀x ∈ Im(Γn),

where Im(Γn) denotes the image of the operator Γn, i.e., Im(Γn) = {x′ ∈ H |x′ = Γnx, x ∈ H}.

Alternative construction. The estimator θ̂kn
can be obtained by projecting the functional ob-

servations onto a finite subspace of H, and applying the same arguments used in Faraldo-Roca and
González-Manteiga (1987) in order to reduce the conditional mean square error of the standard least
squares estimator as follows. Let {ej}∞j=1 be an orthonormal basis of H, and fix kn < n. For all
x ∈ H, the corresponding boldfaced letter x denotes the kn–vector given by x = (〈x, e1〉, . . . , 〈x, ekn

〉)t.
Following the steps given by Cristóbal-Cristóbal et al. (1987), consider the generalized optimization
problem

min
b

Eµn

(
(m̂kn

(X)−Xtb)2
)
, with b = (〈β, e1〉, . . . , 〈β, ekn

〉)t, ∀β ∈ H, (2.5)

where

• m̂kn
(x) =

∑n
i=1 Yiδ(x,Xi)/

∑n
i=1 δ(x,Xi) is a nonparametric estimator of the regression function

mkn
(x) = E(Y |X = x), and

• µn(x) =
∫ x

−∞ f̂n(t)dt is a weighting function where f̂n is a nonparametric estimator of the density

f of X defined as f̂n(x) = n−1
∑n

i=1 δ(x,Xi),

being δ(·, ·) a measurable function from Rkn × Rkn into R. Solving (2.5) for the special case

δ(u,w) =

{
1, if u = w,
0, if u 6= w,

one gets that β0 ∈ H is a solution of (2.5) if and only if b0 = (〈β0, e1〉, . . . , 〈β0, ekn
〉)t satisfies the

kn–dimensional normal equation ∆n = Γnb0 where

Γn =
1

n

n∑

i=1

XiX
t
i and ∆n =

1

n

n∑

i=1

XiYi.
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This amounts to kn equations

∆nel =

kn∑

j=1

〈Γnel, ej〉〈β0, ej〉, for all l ∈ {1, . . . , kn}.

Taking el = v̂l, one gets 〈β0, v̂l〉 = λ̂−1
l ∆nv̂l for all l ∈ {1, . . . , kn}, and the estimator (2.4) appears as

the projection of β0 onto the subspace of H spanned by {v̂j}kn

j=1 (i.e., θ̂kn
=
∑kn

j=1〈β0, v̂j〉v̂j).

Remark 2.3.7. The standard FPCA estimator θ̂kn
is the solution of (2.5) for a basic nonparametric

estimator (i.e., m̂kn
(Xi) = Yi). A natural extension of θ̂kn

consists in investigating on the solution
of (2.5) for a general nonparametric estimator, which is equivalent to presmooth the responses before
estimating the functional parameter θ (see more details in Chapter 3).

b) Definition of general class of FPCA–type estimators

Following the standard FPCA approach, Cardot et al. (2007c) analysed a large class of FPCA–type
estimators, where (2.4) is included as particular case. They assumed that λ1 > λ2 > . . . > 0, where
the multiplicity of each λj is one, and they solved the original problem of ill–conditioned inverse of
Γ by means of a regularization procedure for which it is necessary to introduce some notation. They
define

δj =

{
λ1 − λ2, if j = 1,
min(λj−1 − λj , λj − λj+1), if j 6= 1,

fix a strictly positive sequence c = cn such that c→ 0 and c < λ1, and set

kcn = sup {j : λj + δj/2 ≥ c}.

They also consider a sequence {f cn : [c,+∞) → R}n of positive functions such that

(C.2.2) f cn is decreasing on [c, λ1 + δ1],

(C.2.3) (f cn)
′(x) exists for all x ∈ [c,+∞), and

(C.2.4) supx≥c |xf cn(x)− 1| = o(n−1/2).

Then, the proposed estimator of the model parameter θ is

θ̂c =

n∑

j=1

f cn(λ̂j)∆nv̂j v̂j . (2.6)

Remark 2.3.8. Regarding the support of f cn, one gets

θ̂c =

Jc
n∑

j=1

f cn(λ̂j)∆nv̂j v̂j ,

where Jc
n = sup {j : λ̂j ≥ c}. Obviously, Jc

n is a random sequence that can be different from kcn. How-
ever, looking at proof of Lemma 5 by Cardot et al. (2007c), it can be deduced that, if (kcn)

2 log kcn/
√
n→

0, P(Jc
n 6= kcn) → 0 fast enough to consider only the case Jc

n = kcn (rate n−1/2).

Example 1. From the previous remark, it is easy to deduce that the standard FPCA estimator (2.4)
is asymptotically equivalent to (2.6) when

fn(x) = x−1I{x≥c}.
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Example 2. The ridge–type FPCA estimator proposed by Mart́ınez-Calvo (2008) and Ferraty et al.
(2012a) also belongs to this large family of estimators based on FPCA. In this case, one has to choose

fn(x) = (x+ αn)
−1I{x≥c},

for αn a sequence of positive parameters.

c) Consistency

In this section, Theorem 3.2 by Cardot et al. (1999) is reproduced. This result ensures the almost

surely convergence of the standard FPCA estimator θ̂kn
. First of all, the almost surely convergence

and its associated “big O” and “little o” notation are introduced.

Definition 2.3.9. Let {Zn}n∈N be a sequence of real random variables and let Z be a real random
variable, all of them defined on the same probability space (Ω,A,P). {Zn}n∈N converges almost surely
(a.s. or a.s.− P) to Z, that is,

lim
n→∞

Zn = Z a.s., or equivalently, Zn → Z a.s.,

if and only if

P

(
ω ∈ Ω : lim

n→∞
Zn(ω) = Z(ω)

)
= 1.

Definition 2.3.10. Let {Zn}n∈N be a sequence of real random variables and let Z be a real random
variable, all of them defined on the same probability space (Ω,A,P). Let {un}n∈N be a deterministic
sequence of positive real numbers. The rate of almost surely convergence of {Zn}n∈N to Z is of order
un, that is,

Zn − Z = Oa.s.(un),

if and only if
P (ω ∈ Ω : ∃c <∞, ∃N, ∀n > N, |Zn(ω)− Z(ω)| ≤ cun) = 1.

Furthermore,
Zn − Z = oa.s.(un) if and only if (un)

−1(Zn − Z) → 0 a.s.

On the other hand, recall that ‖ · ‖H′ denotes the norm of the dual space H′ (see Section 1.2.2, “ b)
The dual space H′ ”, in Chapter 1, page 10). It is also necessary to introduce the following notation
aj = 2

√
2/δj , that is,

aj =

{
2
√
2/(λ1 − λ2), if j = 1,

2
√
2/min(λj−1 − λj , λj − λj+1), if j 6= 1,

and m(·) = 〈θ, ·〉 and m̂kn
(·) = 〈θ̂kn

, ·〉. In addition, the following assumptions are required:

(C.2.5) λ1 > λ2 > . . . > 0, and λ̂1 > λ̂2 > . . . > λ̂kn
> 0 a.s.

(C.2.6) ‖X‖ ≤ c1 a.s.

(C.2.7) ∃c2 > 0, ∀l ≥ 1,E(|ǫ|l) < l!c2 < +∞,

(C.2.8) nλ4kn
/ log n→ +∞, and nλ2kn

/((
∑kn

j=1 aj)
2 log n) → +∞.
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Theorem 2.3.11 (Cardot et al., 1999). If (C.2.1) and (C.2.5)–(C.2.8) are satisfied, then

‖m̂kn
−m‖H′ → 0 a.s.

Remark 2.3.12. Actually, Cardot et al. (1999) obtained the previous result assuming the hypothesis

(C.2.7 ’) |ǫ| ≤ c2 a.s.

instead of (C.2.7), but it can be shown that consistency holds despite this modification. The key
point is to replace the second part of Lemma 5.3 by Cardot et al. (1999) by Lemma 2.5.1 (see page 47).
This assumption has been altered in order to extend the original result by Cardot et al. (1999) to a
larger class of errors, which includes, for instance, non–bounded errors such as the Gaussian ones.

Remark 2.3.13. If kn = o(log n), (C.2.8) is satisfied when λj are geometrically or algebraically de-
creasing, that is, when

λj = c1c
j
2, with c1 > 0 and 0 < c2 < 1,

or
λj = c1j

−c3 , with c1 > 0 and c3 > 1.

d) Conditional errors

The next theorem gives the conditional mean square prediction error for a new response

Yn+1 = 〈θ,Xn+1〉+ ǫn+1,

and the conditional mean square estimation error. For any n ∈ N∗, denote Xn = {X1, . . . , Xn}, and
let EXn(·) be the expectation conditionally on Xn. Furthermore, let R̂kn

be the term defined as

R̂kn
=
∑

j>kn

〈θ, v̂j〉v̂j . (2.7)

Theorem 2.3.14 (Ferraty et al., 2012a). For the standard FPCA estimator (2.4), it holds that

EXn+1(Yn+1 − 〈θ̂kn
, Xn+1〉)2 = σ2 +

σ2

n

kn∑

j=1

〈Xn+1, v̂j〉2
λ̂j

+ 〈Xn+1, R̂kn
〉2,

EXn(‖θ − θ̂kn
‖2) = σ2

n

kn∑

j=1

1

λ̂j
+ ‖R̂kn

‖2,

where R̂kn
is defined in (2.7).

The proof of the previous result can be found in the appendix of the chapter (see Section 2.5.2, page 48).

Remark 2.3.15. Theorem 2.3.14 can be derived directly from Lemma 2.5.2 (see page 49), which allows
to obtain the conditional errors for a general type of estimators in a simple way. The conditional
estimation error of θ̂kn

given in Theorem 2.3.14 was already studied in literature. In fact, Theorem 5
in Hall and Hosseini-Nasab (2006) gives conditions in order to find that

E(‖θ − θ̂kn
‖2) ∼ σ2

n

kn∑

j=1

1

λ j
+ ‖Rkn

‖2,

where Rkn
=
∑

j>kn
〈θ, vj〉vj , and Wn ∼ Zn means that the ratio of Wn and Zn converges to 1 when

n→ +∞.
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e) Asymptotic normality

In this section, the general FPCA–type estimator θ̂c defined by (2.6) is considered. Cardot et al.
(2007c) proposed in their work to derive a Central Limit Theorem (CLT) in the functional linear
regression model with scalar response. In particular, they gave the following weak convergence results
for the prediction at a fixed x ∈ H, being the following assumptions required:

(C.2.9)
∑+∞

j=1 |〈θ, vj〉| < +∞,

(C.2.10) ∃λ a convex positive function such that λj = λ(j), for j large,

(C.2.11) E(‖X‖4) <∞, and supj (E(〈X, vj〉4)/λ2j ) < +∞,

(C.2.12) (kcn)
3(log (kcn))

2/(tcn,x
√
n) → 0 with tcn,x =

√∑kc
n

j=1 λj(f
c
n(λj))

2〈x, vj〉2,

(C.2.13)
∑+∞

j=1 (〈x, vj〉2/λj) < +∞.

In addition, recall the definition of convergence in distribution.

Definition 2.3.16. Let {Zn}n∈N be a sequence of real random variables with distribution Fn and let
Z be a real random variable with distribution F . {Zn}n∈N converges in distribution or weakly (d or
w) to Z, that is,

Zn
d→ Z, or equivalently, Zn

w→ Z,

if and only if
lim

n→∞
Fn(x) = F (x),

for every x ∈ R at which F is continuous.

Theorem 2.3.17 (Cardot et al., 2007c). Given a value x in H, if (C.2.1), (C.2.2)–(C.2.4), and
(C.2.9)–(C.2.13) hold, then

√
n

tcn,xσ
(〈θ̂c, x〉 − 〈Π̂kc

n
θ, x〉) w→ N (0, 1),

being Π̂kc
n
the projector onto the subspace spanned by the first kcn eigenfunctions of Γn, and N (0, 1)

the distribution of a Gaussian random variable with mean equals to 0 and variance equals to 1.

Corollary 2.3.18 (Cardot et al., 2007c). Theorem 2.3.17 still holds if tcn,x (defined in assumption
(C.2.12)) is replaced by its empirical counterpart

t̂cn,x =

√√√√
kc
n∑

j=1

λ̂j(f cn(λ̂j))
2〈x, v̂j〉2,

and σ is replaced by a consistent estimate σ̂.

Remark 2.3.19. Note that the bias term is random. Cardot et al. (2007c) remarked that very specific
assumptions on θ or {λj}j are required in order to replace the bias by a non–random quantity.
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Remark 2.3.20. Confidence intervals for prediction can be derived from the CLT in Corollary 2.3.18.
Let α ∈ [0, 1] be a certain confidence level, and let zα be the quantile of order α from a N (0, 1)
distribution. If it is assumed that θ (or x) is very well approximated by its projection Π̂kc

n
θ (or Π̂kc

n
x),

then Corollary 2.3.18 allows to evaluate asymptotic confidence intervals for 〈θ, x〉 by computing

CIasyx,α =
[
〈θ̂c, x〉 − t̂cn,xσ̂n

−1/2z1−α/2, 〈θ̂c, x〉+ t̂cn,xσ̂n
−1/2z1−α/2

]
, (2.8)

for which P(m(x) ∈ CIasyx,α) ≈ 1− α.

2.4 Functional nonparametric regression for scalar response

This section is focused on the kernel–type estimators for the functional nonparametric model expressed
as

Y = m(X) + ǫ, (2.9)

where Y is a real random variable, m(·) is a functional regression operator which satisfies some smooth-
ness restrictions, X is a zero–mean random variable valued in an abstract space S, and ǫ is a real
random variable satisfying that E(ǫ) = 0, Var(ǫ) = σ2 <∞, and E(ǫX) = 0.

The most general formulation assumes that the functional space S is a semi–metric space endowed
with a semi–metric d(·, ·), so this abstract approach has been almost always kept in the next subsections
except for certain results which require specifically normed spaces. In order to preserve the notation
used up to now, the semi–metric space (H, d(·, ·)), where H is still a real separable Hilbert space, and
d(·, ·) is the semi–metric induced by the inner product, i.e., d(x, y) = ‖x − y‖ = 〈x − y, x − y〉1/2
(in fact, d(·, ·) is a metric with this construction), is going to be selected. However, note that any
other semi–metric space could be considered (see some examples of semi–metrics in Section 1.2.3 in
Chapter 1, page 10).

Among the different existing nonparametric methods, the section is focused on the kernel–type
estimators based on conditional expectation introduced by Ferraty and Vieu (2006b), and studied by
Ferraty and Vieu (2004) and Ferraty et al. (2007a), although other nonparametric techniques based on
conditional median or conditional mode were also developed in the literature (see, for instance, Ferraty
and Vieu, 2006b). Next, some outstanding advances related with this functional kernel methodology
have been summed up.

2.4.1 Kernel–type estimators

Given the functional model (2.9), the goal is to estimate the regression operator m(·) defined by

m : H → R

x → m(x) = E(Y |X = x).

As mentioned before, the regression operator does not belong to any parametric family in this case,
but m(·) satisfies certain regularity assumptions. Usually, one considers continuity–type conditions

(C.2.14) m ∈ CH,0 = {f : H → R such that limd(x,x′)→0 f(x
′) = f(x)},

or Lipschitz–type conditions, that is, ∃β > 0 such that

(C.2.15) m ∈ LipH,β = {f : H → R such that ∃c > 0, |f(x)−f(x′)| < cd(x, x′)β}.
In the following subsections, the functional kernel estimator is presented, together with some in-

teresting results. In some of them, the small ball probability function ϕx(·) will play a decisive role.
Let B(x, h) be a ball centred at x ∈ H with radius h, that is, B(x, h) = {x′ ∈ H | d(x, x′) ≤ h}. Then
ϕx(h) will denote the probability of the ball B(x, h), i.e.,

ϕx(h) = P(X ∈ B(x, h)).

More details about the small ball probability notion and examples of what ϕx(h) is some specific cases
can be found in Li and Shao (2001), and Ferraty and Vieu (2006b, 2011a).



42 CHAPTER 2. FUNCTIONAL REGRESSION MODELS

a) Definition of kernel estimator

Given x ∈ H and a sample {(Xi, Yi)}ni=1 drawn from the pair (X,Y ), Ferraty and Vieu (2006b)
proposed the following estimator for the regression operator

m̂h(x) =

∑n
i=1 YiK(h−1d(x,Xi))∑n
i=1K(h−1d(x,Xi))

, (2.10)

where K(·) is an asymmetric kernel, and h = h(n) is a strictly positive real bandwidth. The kernel
estimator (2.10) is the natural adaptation of the Nadaraya–Watson estimator to the functional context,
where the ordinary multivariate norm was replaced by the functional semi–metric d(·, ·) which measures
the distances between functional observations. Given that d(x, y) ≥ 0 for all x, y ∈ H, the support of
K(·) should be positive. Hence, asymmetric kernels are the most adequate choice: for instance, the
asymetric versions of the kernel functions introduced in Figure 1.5 (see Chapter 1, page 15), which are
plotted in Figure 2.1.
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Figure 2.1: Usual asymmetric kernels: asymmetric uniform (top left panel), asymmetric triangle (top
right panel), asymmetric quadratic (bottom left panel) and asymmetric Gaussian (bottom right panel).

This kernel estimator is actually a weighted average of {Yi}ni=1. This issue can be easily seen if one
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considers the weights

wih(x) =
K(h−1d(x,Xi))∑n

i′=1K(h−1d(x,Xi′))
,

which satisfy
∑n

i=1 wih(x) = 1. Hence, the estimator (2.10) can be expressed as the weighted average
of the observed responses, that is,

m̂h(x) =

n∑

i=1

wih(x)Yi.

It is clear that the kernel estimator depends on the choice of the kernel function K(·), and the
smoothing parameter h. That is why some notes on K(·) and h selection are presented below.

Kernel functions. The kernel K(·) is usually an asymmetric version of kernel functions exposed
in Section 1.3.1, “ a) Linear smoothing ”, in Chapter 1 (see page 13). In general, the most common
kernels belong to one of the following families (see Ferraty and Vieu, 2006b).

Definition 2.4.1. A function K : R → [0,+∞) is called a kernel of type I if
∫
K(u)du = 1, and if

there exist c1, c2 ∈ R such that 0 < c1 < c2 < +∞ and

c1I{u∈[0,1]} ≤ K(u) ≤ c2I{u∈[0,1]},

being I the indicator function.

Definition 2.4.2. A function K : R → [0,+∞) is called a kernel of type II if
∫
K(u)du = 1, its

support is [0, 1], and its first derivative K ′ exists on [0, 1] and satisfies

c1 ≤ K ′ ≤ c2,

for c1, c2 ∈ R such that −∞ < c1 < c2 < 0.

The main discontinuous asymmetric kernels belong to the first family (e.g., asymmetric uniform),
whereas the second family contains the usual asymmetric continuous ones (e.g., asymmetric triangle
or asymmetric quadratic). There is a close link between these kernel families and the small ball
probability ϕx exactly as the next lemmas state.

Lemma 2.4.3 (Ferraty and Vieu, 2006b). Let K(·) be a kernel of type I. Then there exist c1, c2 ∈ R

with 0 ≤ c1, c2 < +∞ such that

c1ϕx(h) ≤ E(K(h−1d(x,X))) ≤ c2ϕx(h).

The previous result can be extended to kernel of type II. For this purpose, it is necessary that the next
assumption

(C.2.16) ∃c > 0, ∃ε0, ∀ε < ε0,
∫ ε

0
ϕx(u)du > cεϕx(ε)

is satisfied by the small ball probability ϕx.

Lemma 2.4.4 (Ferraty and Vieu, 2006b). Let K(·) be a kernel of type II. If ϕx(·) verifies (C.2.16)
then there exist c1, c2 ∈ R with 0 ≤ c1, c2 < +∞ such that, for h small enough,

c1ϕx(h) ≤ E(K(h−1d(x,X))) ≤ c2ϕx(h).
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Bandwidth. The bandwidth h acts as a smoothing parameter. For example, if K(·) is a positive
kernel supported on [0, 1], the estimator (2.10) only takes into account the responses Yi associated
to curves Xi such that d(x,Xi) ≤ h, since K(h−1d(x,Xi)) = 0 when the distance between x and
Xi is larger than h. Therefore, the larger h is, the larger the number of response values which are
involved in the estimation procedure is and the smoother estimator is obtained. Consequently, if h is
too small, the corresponding estimator will probably be too rough and sensitive to small alterations
of the responses. This is a constant issue shared by all the nonparametric methods: the search of the
right balance between bias and variance.

Remark 2.4.5. From a practical point of view, it seems that the choice of K(·) has no significant
effect on the obtained results, whereas the choice of the smoothing parameter is crucial. Some data–
driven methods were proposed in the literature in order to estimate h. For instance, one can use a
cross–validation method, and estimates h by means of the solution of the minimization problem

min
h

CV(h) = min
h

n∑

j=1

(Yj − m̂
(−j)
h (Xj)),

where

m̂
(−j)
h (x) =

∑
i6=j YiK(h−1d(x,Xi))∑
i6=j K(h−1d(x,Xi))

.

b) Consistency

Ferraty and Vieu (2006b) showed in their monograph the almost complete convergence of the kernel
estimator (in fact, they calculated the rate of convergence). First of all, recall what almost complete
convergence means.

Definition 2.4.6. Let {Zn}n∈N be a sequence of real random variables, and let Z be a real random
variable. {Zn}n∈N converges almost completely (a.co.) to Z, that is,

lim
n→∞

Zn = Z a.co., or equivalently, Zn → Z a.co.,

if and only if

∀ε > 0,
∑

n∈N

P(|Zn − Z| > ε) <∞.

Definition 2.4.7. Let {Zn}n∈N be a sequence of real random variables, let Z be a real random
variable, and let {un}n∈N be a deterministic sequence of positive real numbers. The rate of almost
complete convergence of {Zn}n∈N to Z is of order un, that is,

Zn − Z = Oa.co.(un),

if and only if

∃ε > 0,
∑

n∈N

P(|Zn − Z| > εun) <∞.

Furthermore,
Zn − Z = oa.co.(un) if and only if (un)

−1(Zn − Z) → 0 a.co.

Once the almost complete convergence has been introduced, one is in a position to expose the main
results presented by Ferraty and Vieu (2006b). The following hypotheses are required to obtain the
results below:
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(C.2.17) ∀ε > 0, ϕx(ε) > 0,

(C.2.18) h = h(n) is a positive sequence such that h→ 0, and log n/(nϕx(h)) → 0
when n→ ∞,

(C.2.19) K(·) is a kernel of type I, or K(·) is a kernel of type II such that (C.2.16)
holds,

(C.2.20) ∀m ≥ 2, E(|Y m| |X = x) = σm(x) <∞ with σm(·) continuous at x.

Theorem 2.4.8 (Ferraty and Vieu, 2006b). Under (C.2.14) and (C.2.17)–(C.2.20), it holds that

m̂h(x) → m(x) a.co.

Theorem 2.4.9 (Ferraty and Vieu, 2006b). Under (C.2.15) and (C.2.17)–(C.2.20), it holds that

m̂h(x)−m(x) = O(hβ) +Oa.co.

(√
log n

nϕx(h)

)
.

Remark 2.4.10. The assumption (C.2.17) is the functional adaptation of a usual condition in mul-
tivariate context: the density of the predictor variable is strictly positive. As far as (C.2.20) is
concerned, this hypothesis allows to deal with non–bounded response variables.

An extended study of the rate of convergence of the estimator (2.10) was developed by Ferraty
and Vieu (2004) (for a more general regression framework, see Ferraty et al., 2010b). One of their
corollaries states the uniform consistency if the next assumptions hold:

(C.2.21) C can be expressed as C ⊂ ⋃η
k=1B(tk, l), for any finite set {tk}ηk=1 ⊂ H

and any l > 0. Moreover, ∃γ1, γ2 > 0 such that ηlγ1 = γ2,

(C.2.22) K(·) is a Lipschitz continuous kernel of type II,

(C.2.23) there is a function φ such that
∫ 1

0
φ(ht)dt/φ(h) > c > 0, and verifying

∃c1, c2 ∈ (0,+∞), ∀x ∈ C, 0 < c1φ(h) ≤ ϕx(h) ≤ c2φ(h).

Theorem 2.4.11 (Ferraty and Vieu, 2004). Let C be a compact subset of H. Under (C.2.15),
(C.2.18) and (C.2.20), if (C.2.21)–(C.2.23) are satisfied, then it holds that

sup
x∈C

|m̂h(x)−m(x)| = O(hβ) +O

(√
log n

nφ(h)

)
a.s.

Remark 2.4.12. Although the topological assumption (C.2.21) seems very restrictive for a start, a
wide class of projection–based semi–metric spaces satisfies this condition (see, for instance, Ferraty
and Vieu, 2008, Proposition 3.1).

c) Bias and variance

Ferraty et al. (2007a) computed the expressions of the bias and the variance for the kernel estimator
when the functional space is a Banach space, and the considered semi–metric is d(x, y) = ‖x− y‖. To
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achieve this goal, some notation must be introduced. Let ψx be the function defined as

ψx(s) = E [(m(X)−m(x))|d(x,X) = s] , ∀s ∈ R,

and let τx,h be the function given by

τx,h(s) =
ϕx(hs)

ϕx(h)
= P(d(x,X) ≤ hs|d(x,X) ≤ h), ∀s ∈ [0, 1].

In addition, the following conditions are required:

(C.2.24) ψ′
x(0) exists,

(C.2.25) K(·) is supported on [0, 1], it has continuous derivative on [0, 1), K ′(s) ≤
0 and K(1) > 0,

(C.2.26) h→ 0, ϕx(0) = 0, and nϕx(h) → +∞,

(C.2.27) ∀s ∈ [0, 1], τx,h(s) → τx,0(s) when h→ 0.

Theorem 2.4.13 (Ferraty et al., 2007a). When (C.2.14) and (C.2.24)–(C.2.27) are satisfied, it
holds that

E(m̂h(x)) = m(x) + ψ′
x(0)

Mx,0

Mx,1
h+O

(
1

nϕx(h)

)
+ o(h),

Var(m̂h(x)) =
σ2

nϕx(h)

Mx,2

M2
x,1

+ o

(
1

nϕx(h)

)
,

where Mx,0 = K(1) −
∫ 1

0
(sK(s))′τx,0(s)ds, Mx,1 = K(1) −

∫ 1

0
K ′(s)τx,0(s)ds and Mx,2 = K2(1) −∫ 1

0
(K2)′(s)τx,0(s)ds.

Remark 2.4.14. Once again, the smoothing parameter plays a key role in the bias–variance trade–off:
large values of h reduce the variance (increase the bias), whereas small values of the bandwidth raise
the variance (decrease the bias). Nevertheless, the previous theorem gives expressions that depend on
unknown quantities, so these theoretical results cannot be used to find a value of h which balances
bias and variance in practice. To avoid this drawback, Ferraty et al. (2007a) proposed a bandwidth
selector based on a wild bootstrap method.

d) Asymptotic normality

The asymptotic distribution of the kernel estimator was also obtained by Ferraty et al. (2007a) in the
following theorem, where the same notation introduced in the previous section is used, and the next
condition is necessary:

(C.2.28) ψ′
x(0) 6= 0, and Mx,0 > 0.

Theorem 2.4.15 (Ferraty et al., 2007a). When (C.2.14), (C.2.24)–(C.2.27), and (C.2.28) are
satisfied, it holds that

√
nϕ̂x(h)(m̂h(x)−m(x)− ψ′

x(0)
Mx,0

Mx,1
h)

Mx,1

σ
√
Mx,2

w→ N (0, 1),

being ϕ̂x the empirical counterpart of ϕx(h), i.e., ϕ̂x(h) = #(i : d(x,Xi) ≤ h)/n.
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Besides, if the hypothesis

(C.2.29) h
√
nϕx(h) → 0

is verified, a simpler result can be derived from the previous theorem by means of the cancellation of
the bias term.

Corollary 2.4.16 (Ferraty et al., 2007a). When (C.2.14), (C.2.24)–(C.2.28), and (C.2.29) are
satisfied, it holds that √

nϕ̂x(h)(m̂h(x)−m(x))
Mx,1

σ
√
Mx,2

w→ N (0, 1),

being ϕ̂x the empirical counterpart of ϕx(h), i.e., ϕ̂x(h) = #(i : d(x,Xi) ≤ h)/n.

2.5 Appendix Chapter 2

In this appendix Lemma 2.5.1 has been compiled, which allow to replace the hypothesis (C.2.7’),
proposed by Cardot et al. (1999) in their result for consistency of m̂kn

, by (C.2.7) (see Remark 2.3.12,
page 39). This modification makes the extension of the original result by Cardot et al. (1999) to a
larger class of errors.

Furthermore, the proof of Theorem 2.3.14 is also presented in this appendix, jointly with the
technical Lemma 2.5.2 which is required to show it.

2.5.1 Formulation and proof of Lemma 2.5.1

Lemma 2.5.1. Under (C.2.6) and (C.2.7), it holds that

P(‖∆n −∆‖H′ > ξ) ≤ 2 exp

(
− ξ2n

2 c′3(c
′
3 + c′4ξ)

)
,

where c′3 and c′4 are positive constants.

Proof. This lemma adapts the second part of Lemma 5.3 in Cardot et al. (1999) to the weaker
assumption (C.2.7).

Take

Wi = Xi ⊗H′ Yi − E(X ⊗H′ Y ), i = 1, . . . , n,

with E(Wi) = 0. Note that Wi = Xi ⊗H′ m(Xi)− E(X ⊗H′ m(X)) +Xi ⊗H′ ǫi, and consequently

‖Wi‖H′ ≤ ‖m‖H′(‖Xi‖+ E‖Xi‖) + |ǫi| ‖Xi‖.

As a by–product, ∀l ≥ 2, one has

‖Wi‖lH′ ≤
l∑

k=0

Ck
l ‖m‖kH′(‖Xi‖+ E‖Xi‖)k|ǫi|l−k‖Xi‖l−k.

From this inequality, (C.2.6), (C.2.7), and ‖m‖H′ < c0 < +∞ imply

E(‖Wi‖lH′) ≤ l!

l∑

k=0

Ck
l c

k
0(2c1)

kc2c
l−k
1 = l! c2

l∑

k=0

Ck
l (2c0c1)

kcl−k
1 = l! c2(c1 + 2c0c1)

l.
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Then E(‖Wi‖lH′) ≤ (l!/2)b2i c
l−2, where bi =

√
2c2(c1 + 2c0c1) and c = c1 + 2c0c1. One can then apply

the Yurinskii’s exponential inequality (see Yurinskii, 1976) to obtain

P

(∥∥∥∥∥

n∑

i=1

Wi

∥∥∥∥∥
H′

> xBn

)
≤ 2 exp

(
− x2

2(1 + 1.62xc/Bn)

)
,

where Bn = (
∑n

i=1 b
2
i )

1/2 =
√
n c′3 with c′3 =

√
2c2(c1 + 2c0c1). Hence,

P(‖∆n −∆‖H′ > ξ) = P

(∥∥∥∥∥

n∑

i=1

Wi

∥∥∥∥∥
H′

>

√
nξ

c′3
Bn

)
≤ 2 exp

(
− ξ2n

2 c′3(c
′
3 + c′4ξ)

)
,

where c′4 is a positive finite constant.

2.5.2 Proof of Theorem 2.3.14

Theorem 2.3.14 is easily shown using Lemma 2.5.2 (see page 49) with γj = λ̂−1
j and wj = v̂j . In this

case,

R
(γ,w)
kn

= θ −
kn∑

j=1

λ̂−1
j 〈Γnv̂j , θ〉v̂j = R̂kn

,

where R̂kn
is defined in (2.7) (see page 39). Therefore, applying Lemma 2.5.2, one has

EXn+1(Yn+1 − 〈θ̂kn
, Xn+1〉)2 = σ2 +

σ2

n

kn∑

j1=1

kn∑

j2=1

〈Γnv̂j1 , v̂j2〉
λ̂j1 λ̂j2

〈Xn+1, v̂j1〉〈Xn+1, v̂j2〉+ 〈Xn+1, R̂kn
〉2

= σ2 +
σ2

n

kn∑

j=1

〈Xn+1, v̂j〉2
λ̂j

+ 〈Xn+1, R̂kn
〉2

for the conditional prediction error, and one gets

EXn(‖θ − θ̂kn
‖2) = σ2

n

kn∑

j1=1

kn∑

j2=1

〈Γnv̂j1 , v̂j2〉
λ̂j1 λ̂j2

〈v̂j1 , v̂j2〉+ ‖R̂kn
‖2 =

σ2

n

kn∑

j=1

1

λ̂j
+ ‖R̂kn

‖2

for the conditional estimation error.

2.5.3 Formulation and proof of Lemma 2.5.2

Next, a general result providing expressions for the conditional errors of a wide class of estimators will
be presented. The high degree of generality of this lemma has an advantage: it allows deriving the
conditional errors of the standard FPCA estimator and other FPCA–type estimators as almost direct
corollaries.
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Lemma 2.5.2. Considering the regression model (2.1) (see page 32), let θ̂ be an estimator for θ such
that

θ̂ =

kn∑

j=1

γj∆nwjwj ,

where {(γj , wj)}j ⊂ R×H only depend on Xn = {X1, . . . , Xn}. Then, it holds that

EXn+1(Yn+1 − 〈θ̂, Xn+1〉)2 = σ2 +
σ2

n

kn∑

j1=1

kn∑

j2=1

γj1γj2〈Γnwj1 , wj2〉〈Xn+1, wj1〉〈Xn+1, wj2〉

+ 〈Xn+1, R
(γ,w)
kn

〉2,

and

EXn(‖θ − θ̂‖2) = σ2

n

kn∑

j1=1

kn∑

j2=1

γj1γj2〈Γnwj1 , wj2〉〈wj1 , wj2〉+ ‖R(γ,w)
kn

‖2,

where R
(γ,w)
kn

= θ −∑kn

j=1 γj〈Γnwj , θ〉wj.

Proof. Observe that ∆nx = 〈Γnx, θ〉 + ∆ǫ
nx for all x ∈ H, with ∆ǫ

n = n−1
∑n

i=1Xi ⊗H′ ǫi. Conse-

quently, the difference θ − θ̂ can be expressed as

θ − θ̂ = R
(γ,w)
kn

−
kn∑

j=1

γj∆
ǫ
nwjwj , with R

(γ,w)
kn

= θ −
kn∑

j=1

γj〈Γnwj , θ〉wj . (2.11)

Then the regression model (2.1), (2.11), and conditions on ǫ imply that

EXn+1(Yn+1 − 〈θ̂, Xn+1〉)2 = EXn+1


ǫn+1 +

〈
Xn+1, R

(γ,w)
kn

−
kn∑

j=1

γj∆
ǫ
nwjwj

〉


2

= σ2 +

kn∑

j1=1

kn∑

j2=1

γj1γj2EXn(∆ǫ
nwj1∆

ǫ
nwj2)〈Xn+1, wj1〉〈Xn+1, wj2〉

− 2〈Xn+1, R
(γ,w)
kn

〉
〈
Xn+1,

kn∑

j=1

γjEXn(∆ǫ
nwj)wj

〉
+ 〈Xn+1, R

(γ,w)
kn

〉2.

Now, note that

EXn(∆ǫ
nwj) = 0, EXn(∆ǫ

nwj1∆
ǫ
nwj2) =

σ2

n
〈Γnwj1 , wj2〉. (2.12)

Therefore, using (2.12), one has

EXn+1(Yn+1 − 〈θ̂, Xn+1〉)2 = σ2 +
σ2

n

kn∑

j1=1

kn∑

j2=1

γj1γj2〈Γnwj1 , wj2〉〈Xn+1, wj1〉〈Xn+1, wj2〉

+ 〈Xn+1, R
(γ,w)
kn

〉2.

Analogously, for the conditional estimation error, (2.11) gives

EXn(‖θ − θ̂‖2) =
kn∑

j1=1

kn∑

j2=1

γj1γj2EXn(∆ǫ
nwj1∆

ǫ
nwj2)〈wj1 , wj2〉 − 2

〈
R

(γ,w)
kn

,

kn∑

j=1

γjEXn(∆ǫ
nwj)wj

〉

+ ‖R(γ,w)
kn

‖2,
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and, applying (2.12) again,

EXn(‖θ − θ̂‖2) = σ2

n

kn∑

j1=1

kn∑

j2=1

γj1γj2〈Γnwj1 , wj2〉〈wj1 , wj2〉+ ‖R(γ,w)
kn

‖2.



Chapter 3

Presmoothing in functional linear
regression

In this chapter, the functional linear model with scalar response and explanatory variable
valued in a functional space is considered. In recent statistical literature, FPCA has been
used to estimate the model functional parameter. This approach can be modified by using
presmoothing techniques: either presmoothing via covariance structure or presmoothing
via response variable. For these new estimators, consistency is stated and efficiency by
comparison with the standard FPCA estimator is studied from a theoretical point of view.
Furthermore, the finite sample performance of the proposed presmoothed estimators is
also analysed by means of a simulation study and three real data applications. Finally, the
proofs of the main results in the chapter and some technical lemmas are gathered together
in the appendix.

The first tools for developing the methodology which is compiled in this chapter were
presented in Mart́ınez-Calvo (2008). Later, the complete research on the approach based
on presmoothing via covariance structure was published in Ferraty et al. (2012a)

3.1 Why introduce presmoothing techniques?

In the previous chapter, it was showed how classical multivariate methods have been adapted to the
functional context where the response Y and/or the explanatory variable X are valued in a functional
space. Particularly, the functional linear model with scalar response was specified for being the subject
of several studies in the recent literature, as it is in this chapter. Recall that, given a real separable
Hilbert space (H, 〈·, ·〉) (‖·‖ denotes the induced norm), the functional linear model with scalar response
was introduced in (2.1) (see Chapter 2, page 32) as

Y = m(X) + ǫ = 〈θ,X〉+ ǫ,

where Y is a real random variable, m(·) = 〈θ, ·〉 is a linear regression operator such that θ ∈ H and
‖θ‖2 < ∞, X is a zero–mean random variable valued in H satisfying that E(‖X‖2) < ∞, and ǫ is a
real random variable such that E(ǫ) = 0, Var(ǫ) = σ2, and E(ǫX) = 0. Remark 2.3.1 (see Chapter 2,
page 33) showed that there is no loss of generality in the consideration of zero–mean variables in the
model, whereas Remark 2.3.2 (see Chapter 2, page 33) provides the particular expression of the model
when H = L2([0, 1]).

As it was commented in Chapter 2, estimators for the functional linear model with scalar response
can be obtained based on FPCA (Cardot et al., 1999, 2003c; Cai and Hall, 2006; Hall and Hosseini-
Nasab, 2006; Hall and Horowitz, 2007; Cardot et al., 2007c). Since the FPCA estimator is reintroduced
in this chapter, recall that when (C.2.1) holds (see Chapter 2, page 36), the model parameter can be
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expressed as θ =
∑∞

j=1 λ
−1
j ∆vjvj . Therefore, given {(Xi, Yi)}ni=1 a random sample of i.i.d. variables

drawn from (X,Y ), the standard FPCA estimator was defined in (2.4) (see Chapter 2, page 36) by

θ̂kn
=

kn∑

j=1

∆nv̂j

λ̂j
v̂j ,

where {(λ̂j , v̂j)}∞j=1 are the eigenvalues and eigenfunctions of the empirical second moment opera-

tor Γn = n−1
∑n

i=1Xi ⊗H Xi, ∆n = n−1
∑n

i=1Xi ⊗H′ Yi is the cross second moment operator, and

{kn}∞n=1 is a sequence of positive integers such that kn → +∞, kn ≤ n, and λ̂kn
> 0. Further details

related to this estimator can be found in Section 2.3.2 (see Chapter 2, page 35), for instance, the nor-

mal equation that θ̂kn
satisfies (see Remark 2.3.6 in Chapter 2, page 36), the alternative construction

of θ̂kn
as the projection of the model parameter onto the subspace spanned by v̂1, . . . , v̂kn

(see Chap-

ter 2, page 36), or the expressions of the conditional errors for θ̂kn
(see Theorem 2.3.14 in Chapter 2,

page 39). In this chapter, the FPCA estimator is revisited in order to improve its behaviour in terms
of conditional mean square errors by introducing presmoothing techniques.

The choice of presmoothing methods was decided on in light of Faraldo-Roca and González-
Manteiga (1987) and Cristóbal-Cristóbal et al. (1987). These authors proposed the application of
the least squares principle on the pairs (Xi, m̂n(Xi)) instead of (Xi, Yi), where m̂n is a nonparametric
kernel–type estimator of the regression function m(·). This alteration to the minimization problem
produced efficient estimators that reduced the mean square error of the classical least squares estima-
tors for the linear regression model, except in the compact support case. Later, Janssen et al. (2001)
showed that the inefficiency problem in the compact support case could be rectified using boundary
kernels. A similar procedure was developed by Akritas (1996) to fit polynomial regression models
to data with incomplete observations. Since then, the presmoothing methods have been successfully
applied in areas such as model selection procedures (see Aerts et al., 2010, who smoothed the response
data prior to model selection by Akaike’s Information Criterion), and censored/truncated survival data
analysis (see Cao-Abad et al., 2005; Jácome and Iglesias-Pérez, 2008; Jácome et al., 2008, who replaced
censoring indicator variables by values of a nonparametric regression estimator).

In FDA, presmoothing processes are usually included as preliminary steps in such a way that
the observations are replaced by their smoothed approximations. For instance, Hitchcock et al. (2006)
examined the effect of this substitution on estimating the dissimilarities among elements in the dataset.
Another way to use presmoothing methods has been considered by Zhang and Chen (2007) when
dealing with the regression model Yi(t) = Xt

i θ(t) + Vi(t) + ǫi(t), i = 1, . . . , n, where the covariate Xi

is multidimensional and independent of t (note that Xt
i denotes the transpose of the vector Xi), the

process Vi represents the ith individual variation, and Yi is the ith response process. These authors
proposed an estimator of θ based on a local polynomial kernel reconstruction of fi(t) = Xt

i θ(t)+Vi(t).
In this chapter, presmoothing is not used as a preprocessing tool, but rather as a way to build a

new efficient FPCA–type estimator, that reduces the conditional mean square errors of the standard
FPCA one, following the ideas of Faraldo-Roca and González-Manteiga (1987) in the real case. The
key here is similar to the one that motivates multivariate ridge regression: circumvent the problem of
an ill–conditioned covariance operator by means of an artificial perturbation of its eigenvalues. To see
the usefulness of the proposed approach, here is an example that shows the instability of the FPCA
estimator when the eigenvalues are close to 0; it will be analysed in detail in the simulation study (see
Section 3.5).

Example. Consider H = L2([0, 1]) and the linear regression model Y =
∫ 1

0
θ(t)X(t)dt + ǫ (see

Remark 2.3.2 in Chapter 2, page 33) where the explanatory curves are

X(t) = a1
√
2 sin(πt) + a2

√
2 cos(πt) + a3

√
2 sin(2πt) + a4

√
2 cos(2πt), t ∈ [0, 1]

with al ∼ U(−1/3l−1, 1/3l−1) for all l ∈ {1, . . . , 4}, the model parameter is

θ(t) = 2
√
2 cos(2πt), t ∈ [0, 1]
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and ǫ ∼ N (0, σ2) with σ = 0.2
√

E(〈X, θ〉2). The calculation of the standard FPCA estimator involves
the eigenelements of the second moment operator of X (see (2.4) in Chapter 2, page 36) and, in this
example, it can be shown that only the first four eigenvalues are different from zero. To analyse
the effect of null eigenvalues, 200 samples of 100 observations are simulated, and the mean square
prediction and estimation errors (see (3.4), page 63) when kn ∈ {1, . . . , 8} eigenelements of the second
order operator are involved in the FPCA estimator are computed. Figure 3.1 presents the obtained
results (see black solid line). The errors when the eigenvalues are slightly perturbed, adding α = 10−5

to them (see grey dashed line in Figure 3.1) are also calculated. It can be seen that the presence of
null eigenvalues (kn > 4), which hardly affects prediction error, considerably increases the estimation
error of the FPCA estimator. Moreover, it seems that perturbation of eigenvalues allows to keep
small estimation errors, even when null eigenvalues are involved. Thus, all these reasonings led to
developing a FPCA–type estimator based on a presmoothing method that avoids the inconvenience of
ill–conditioning.
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Figure 3.1: Example. Mean square prediction error (left panel) and estimated mean square estimation
error (right panel) for the standard FPCA estimator (solid black line) and for the FPCA–type estimator
with perturbed eigenvalues (dashed grey line).

In order to achieve this goal, a new estimator based on FPCA and presmoothing via covariance
structure is proposed in Section 3.2. The section contains theoretical results (consistency and mean
square error expressions) that allow to compare it with the standard FPCA estimator. Section 3.3
presents an alternative approach based on presmoothing via response variable (also including con-
sistency and mean square error expressions), whereas Section 3.4 compiles some heuristics on other
presmoothing methods. Section 3.5 includes a simulation study to analyse the behaviour of the dif-
ferent proposals from a practical point of view, and Section 3.6 is devoted to data applications. Some
final comments can be found in Section 3.7, and an appendix compiles technical lemmas and the proofs
of the main results in Section 3.8.

3.2 Presmoothing via covariance structure

3.2.1 Definition of estimator

By Remark 2.3.6 (see Chapter 2, page 36), the standard FPCA estimator θ̂kn
can be derived by solving

the equation

∆nx = 〈β,Γnx〉, ∀x ∈ Im(Γn),
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and truncating the expansion of the solution to the first kn components. The key of the proposed
method is to perturb the previous normal equation, and find a function β ∈ H such that

∆nx = 〈β, (Γn + αn1H)x〉, ∀x ∈ Im(Γn),

where αn is a positive real sequence verifying that αn → 0 when n → ∞, and 1H is the identity
operator in H, i.e., 1Hx = x for all x ∈ H. From this equation, one can derive the next estimator for θ

θ̂αn

kn
=

kn∑

j=1

∆nv̂j

λ̂j + αn

v̂j , (3.1)

which has the same structure as the standard FPCA estimator (2.4) (see Chapter 2, page 36), being
the main difference the presence of perturbed empirical eigenvalues in the denominator.

Remark 3.2.1. Note that (3.1) can be seen as a functional version of the estimator for the ordinary
multivariate ridge regression with penalization term equals to αn times the usual norm of the model
parameter.

Alternative construction. In order to build θ̂αn

kn
, a procedure similar to the one proposed for θ̂kn

in Section 2.3.2 (see Chapter 2, page 35) can be followed. The optimization problem (2.5), that is,

min
b

Eµn
[(m̂kn

(X)−Xtb)2], with b = (〈β, e1〉, . . . , 〈β, ekn
〉)t, ∀β ∈ H,

can be solved with

• m̂kn
(x) =

∑n
i=1 Yiδ(x,Xi)/

∑n
i=1 δ(x,Xi) is a nonparametric estimator of the regression function

mkn
(x) = E(Y |X = x), and

• µn(x) =
∫ x

−∞ f̂n(t)dt is a weighting function where f̂n is a nonparametric estimator of the density

of X, namely f , defined as f̂n(x) = n−1
∑n

i=1 δ(x,Xi),

using
δ(u,w) = hn

−knK∗(h−1
n (u−w)),

where K∗(x) =
∏kn

j=1K(xj) for all x = (x1, . . . , xkn
)t ∈ Rkn , with K : R → R a symmetric positive

kernel such that
∫
K(z)dz = 1,

∫
zK(z)dz = 0 and

∫
z2K(z)dz = c(K) <∞, and hn a strictly positive

sequence of bandwidths (note that hn usually satisfies hn → 0 and nhn → ∞). In this situation, β0 ∈ H
is a solution of (2.5) if and only if b0 = (〈β0, e1〉, . . . , 〈β0, ekn

〉)t satisfies the associated kn–dimensional
normal equation ∆n = (Γn + h2nc(K)1kn×kn

)b0, with ∆n = n−1
∑n

i=1 XiYi, Γn = n−1
∑n

i=1 XiX
t
i,

and 1kn×kn
the kn × kn–identity matrix (a kn × kn–matrix with ones on the main diagonal and zeros

elsewhere). This equation can be expressed as

∆nel =

kn∑

j=1

〈Γnel, ej〉〈β0, ej〉+ h2nc(K)〈β0, el〉, for all l ∈ {1, . . . , kn}.

By choosing el = v̂l, it holds that 〈β0, v̂l〉 = (∆nv̂l)/(λ̂l + h2nc(K)) and (3.1) can be derived with
αn = h2nc(K).

3.2.2 Consistency

In order to state convergence results for the presmoothed FPCA estimator θ̂αn

kn
, recall that ‖ · ‖H′

denotes the norm of the dual space H′, and ‖ · ‖∞ denotes the uniform norm of the space of Hilbert–
Schmidt operators defined on H (see Section 1.2.2, “ a) The space of Hilbert–Schmidt operators ” and
“ b) The dual space H′ ”, in Chapter 1, page 9).

The following notation is also used in the next theorem: m(·) = 〈θ, ·〉 and m̂αn

kn
(·) = 〈θ̂αn

kn
, ·〉.

Apart from the previously introduced assumptions for proving the consistency of the standard FPCA
estimator (see further details in Section 2.3.2, “ c) Consistency ”, in Chapter 2, page 38), and extra
assumption is required in this case:
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(C.3.1) λ2kn
/αn → ∞.

Theorem 3.2.2 (Ferraty et al., 2012a). Under the assumptions of Theorem 2.3.11 (see Chapter 2,
page 39), if (C.3.1) is also satisfied, it holds that

‖m̂αn

kn
−m‖H′ → 0 a.s.

The proof of previous theorem can be found in the appendix of the chapter (see Section 3.8.1, page 71).

3.2.3 Conditional errors

Next, the conditional mean square prediction error and the conditional mean square estimation error
for the presmoothed FPCA estimator θ̂αn

kn
are presented. In the theoretical results below, Yn+1 =

〈θ,Xn+1〉+ ǫn+1 is a new response and EXn(·) is the expectation conditionally on Xn = {X1, . . . , Xn}
for n ∈ N∗. In addition, the next conditions will be necessary:

(C.3.2) λ̂kn
/αn → ∞ a.s.

(C.3.3) nαn → 0.

On the other hand, recall the oa.s. notation introduced in Definition 2.3.10 (see Chapter 2, page 38),
and recall that R̂kn

was defined in (2.7) (see Chapter 2, page 39) as

R̂kn
=
∑

j>kn

〈θ, v̂j〉v̂j .

Theorem 3.2.3 (Ferraty et al., 2012a). For the presmoothed FPCA estimator (3.1), if (C.3.2) is
satisfied, it holds that

EXn+1(Yn+1 − 〈θ̂αn

kn
, Xn+1〉)2 − EXn+1(Yn+1 − 〈θ̂kn

, Xn+1〉)2

=


−2αn

σ2

n

kn∑

j=1

〈Xn+1, v̂j〉2
λ̂2j

+ 2αn〈Xn+1, R̂kn
〉〈Xn+1, T̂kn

〉+ α2
n〈Xn+1, T̂kn

〉2

 (1 + oa.s.(1)),

EXn(‖θ − θ̂αn

kn
‖2)− EXn(‖θ − θ̂kn

‖2) =


−2αn

σ2

n

kn∑

j=1

1

λ̂2j
+ α2

n‖T̂kn
‖2

 (1 + oa.s.(1)),

where T̂kn
=
∑kn

j=1 λ̂
−1
j 〈θ, v̂j〉v̂j, and R̂kn

is defined in (2.7) (see Chapter 2, page 39).

Corollary 3.2.4 (Ferraty et al., 2012a). Under the assumptions of Theorem 3.2.3, if (C.3.3) is
satisfied, it holds that

EXn+1(Yn+1 − 〈θ̂αn

kn
, Xn+1〉)2 − EXn+1(Yn+1 − 〈θ̂kn

, Xn+1〉)2

=


−2αn

σ2

n

kn∑

j=1

〈Xn+1, v̂j〉2
λ̂2j

+ 2αn〈Xn+1, R̂kn
〉〈Xn+1, T̂kn

〉


 (1 + oa.s.(1)),

EXn(‖θ − θ̂αn

kn
‖2)− EXn(‖θ − θ̂kn

‖2) =


−2αn

σ2

n

kn∑

j=1

1

λ̂2j


 (1 + oa.s.(1)).
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The proof of the previous results can be found in the appendix of this chapter (see Section 3.8.3,
page 74, and Section 3.8.4, page 75). They are derived from the general Lemma 2.5.2 (see Chapter 2,
page 49).

Remark 3.2.5. Corollary 3.2.4 shows that the bias term R̂kn
plays a fundamental role in the condi-

tional mean square error for prediction. In fact, the presmoothed estimator gives better or worse
results than the standard FPCA estimator θ̂kn

depending on the order of 〈Xn+1, R̂kn
〉. Thus if

〈Xn+1, R̂kn
〉(αn〈Xn+1, T̂kn

〉)−1 = oa.s.(1), then

EXn+1(Yn+1 − 〈θ̂αn

kn
, Xn+1〉)2 − EXn+1(Yn+1 − 〈θ̂kn

, Xn+1〉)2

=


−2αn

σ2

n

kn∑

j=1

〈Xn+1, v̂j〉2
λ̂2j

+ α2
n〈Xn+1, T̂kn

〉2

 (1 + oa.s.(1)).

With f(αn) = −2αnn
−1σ2

∑kn

j=1 λ̂
−2
j 〈Xn+1, v̂j〉2 + α2

n〈Xn+1, T̂kn
〉2, take αopt,1

n = argminα f(α). It

can be shown that αopt,1
n = n−1σ2

∑kn

j=1 λ̂
−2
j 〈Xn+1, v̂j〉2〈Xn+1, T̂kn

〉−2 and, in this case

EXn+1(Yn+1 − 〈θ̂α
opt,1
n

kn
, Xn+1〉)2 − EXn+1(Yn+1 − 〈θ̂kn

, Xn+1〉)2

=


−σ

4

n2




kn∑

j=1

〈Xn+1, v̂j〉2
λ̂2j




2

〈Xn+1, T̂kn
〉−2


 (1 + oa.s.(1)).

Hence, there is a decrease in the prediction error using θ̂
αopt,1

n

kn
, and this reduction is more important

when σ2 is large and/or sample size n is small.

Remark 3.2.6. Under the assumptions of Corollary 3.2.4, one has that θ̂αn

kn
improves against θ̂kn

in

terms of the conditional mean square error for estimation, when above all, σ2 is large and/or n is small.

Moreover, one can look for the value of αn that minimizes g(αn) = −2αnn
−1σ2

∑kn

j=1 λ̂
−2
j +α2

n‖T̂kn
‖2.

This is αopt,2
n = n−1σ2(

∑kn

j=1 λ̂
−2
j )‖T̂kn

‖−2, for which one gets

EXn(‖θ − θ̂
αopt,2

n

kn
‖2)− EXn(‖θ − θ̂kn

‖2) =


−σ

4

n2




kn∑

j=1

1

λ̂2j




2

‖T̂kn
‖−2


 (1 + oa.s.(1)).

Previous remarks ensure second order efficiency, that is, θ̂αn

kn
performs better than the standard

FPCA estimator in small samples, and the same as θ̂kn
in large ones. Second order efficiency was

already achieved for linear regression estimators based on presmoothing in the real case (Faraldo-Roca
and González-Manteiga, 1987; Janssen et al., 2001). Presmoothing techniques also allowed this kind of
gain in efficiency in other contexts (see the presmoothed Nelson–Aalen estimator versus the classical
Nelson–Aalen estimator in Cao-Abad et al., 2005).

3.3 Presmoothing via response variable

3.3.1 Definition of estimator

Another possible way to combine presmoothing techniques and FPCA estimators is to solve the fol-
lowing normal equation

∆hn
n x = 〈β,Γnx〉, ∀x ∈ Im(Γn),

where ∆hn
n = n−1

∑n
i=1Xi ⊗H′ m̂hn

(Xi), with m̂hn
(·) the nonparametric kernel estimator introduced

by Ferraty and Vieu (2006b), and defined in (2.10) (see Chapter 2, page 42) as

m̂hn
(x) =

∑n
i=1 YiK(h−1

n d(x,Xi))∑n
i=1K(h−1

n d(x,Xi))
,
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being now K(·) an asymmetric kernel and hn a strictly positive real bandwidth such that hn → 0 when
n→ +∞. This equation leads to the following presmoothed estimator for θ

θ̂hn

kn
=

kn∑

j=1

∆hn
n v̂j

λ̂j
v̂j . (3.2)

Alternative construction. As it was done for θ̂kn
and θ̂αn

kn
, the estimator θ̂hn

kn
can also be obtained

by means of the multivariate optimization problem (2.5) (see Chapter 2, page 36) given by

min
b

Eµn
[(m̂kn

(X)−Xtb)2], with b = (〈β, e1〉, . . . , 〈β, ekn
〉)t, ∀β ∈ H,

where

• m̂kn
(x) =

∑n
i=1 Yiδ(x,Xi)/

∑n
i=1 δ(x,Xi) is a nonparametric estimator of the regression function

mkn
(x) = E(Y |X = x), whereas, in this case,

• µn(x) = n−1
∑n

i=1 I{Xi∈(−∞,x]} is the weighting function, being I is the indicator function.

Furthermore, it can be selected again

δ(u,w) = h−kn
n K∗(h−1

n (u−w)),

with K∗(x) =
∏kn

j=1K(xj), being K(·) a symmetric positive kernel which verifies that
∫
K(z)dz = 1,∫

zK(z)dz = 0 and
∫
z2K(z)dz = c(K) < ∞, and hn a strictly positive sequence of bandwidths

such that hn → 0 and nhn → ∞. Consequently, β0 ∈ H is a solution of (2.5) if and only if b0 =
(〈β0, e1〉, . . . , 〈β0, ekn

〉)t satisfies the associated kn–dimensional normal equation ∆hn
n = Γnb0, where

∆hn
n = n−1

n∑

i=1

Xim̂kn
(Xi) and Γn = n−1

n∑

i=1

XiX
t
i.

This fact ensures that

∆hn
n el =

kn∑

j=1

〈Γnel, ej〉〈β0, ej〉, for all l ∈ {1, . . . , kn}.

If el = v̂l, one gets 〈β0, v̂l〉 = (∆hn
n v̂l)/λ̂l, being the associated estimator the one presented in (3.2).

k–NN approach. Although all the theoretical advances below involve θ̂hn

kn
, which is based on the

kernel estimator m̂hn
, a different approach in the simulation studies has been used (see Section 3.5,

page 63): a k–nearest neighbours estimator (k–NN). The key idea of the k–NN procedure is to replace
the global bandwidth hn by a local bandwidth hk(x) which ensures that, for any x, a fixed number k
of observations are taken into account to calculate the value of the estimator, that is,

m̂k–NN(x) =

∑n
i=1 YiK(hk(x)

−1d(x,Xi))∑n
i=1K(hk(x)−1d(x,Xi))

,

where hk(x) is a bandwidth such that there are exactly k elements in the sample which verify that
d(x,Xi) < hk(x). Hence, the next estimator for θ can be defined

θ̂k–NN
kn

=

kn∑

j=1

∆k–NN
n v̂j

λ̂j
v̂j , (3.3)

with ∆k–NN
n = n−1

∑n
i=1Xi ⊗H′ m̂k–NN(Xi).

Remark 3.3.1. The estimator θ̂hn

kn
have been considered in order to state convergence and other theo-

retical results, due to the easiness of calculations when the bandwidth is global and independent of x.
Nevertheless, some previous simulations revealed that θ̂k–NN

kn
provides more reduced errors than θ̂hn

kn
,

as can be seen in the following example. This is the reason why the results for θ̂k–NN
kn

are included in

the simulation studies (see Section 3.5, page 63) instead of the results obtained by θ̂hn

kn
.
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Figure 3.2: Example. Mean square prediction error (left panels) and estimated mean square estimation

error (right panels) for θ̂hn

kn
(first row) and for θ̂k–NN

kn
(second row). Each grey line corresponds to a

different value of the smoothing parameter (i.e., hn for θ̂hn

kn
and neig for θ̂k–NN

kn
), whereas solid black

line corresponds to curve which gives the minimum value for each error.

Example. Recall the example introduced at the beginning of this chapter in which

X(t) = a1
√
2 sin(πt) + a2

√
2 cos(πt) + a3

√
2 sin(2πt) + a4

√
2 cos(2πt), t ∈ [0, 1]

being al ∼ U(−1/3l−1, 1/3l−1) for all l ∈ {1, . . . , 4}, the model parameter is θ(t) = 2
√
2 cos(2πt) and

ǫ ∼ N (0, σ2) with σ = 0.2
√

E(〈X, θ〉2). From the model Y =
∫ 1

0
θ(t)X(t)dt + ǫ, 200 samples of 100

observations are generated, and θ̂hn

kn
and θ̂k–NN

kn
are computed for kn ∈ {1, . . . , 8}, neig ∈ {2, . . . , 21},

and hn valued in a grid in [0.75, 2]. For both m̂hn
and m̂k–NN, the quadratic kernel and the semi–metric

d(·, ·) based on the first derivative are selected. For each sample, the mean square prediction error
and the mean square estimation error (see (3.4), page 63) are obtained, and the mean of these errors
over the 200 samples is plotted in Figure 3.2, where each curve corresponds to a different value of hn
(respectively, neig). Furthermore, the curves where the minimum value is reached are highlighted by
means of a solid black line. It seems that both estimators give similar results in terms of the estimation
error, whereas the prediction errors of the k–NN version are generally smaller than errors of θ̂hn

kn
. On
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the other hand, both estimators are suffering the effect on estimation error of the null eigenvalues when
kn > 4, unlike the first presmoothing proposal θ̂αn

kn
(see Figure 3.1, page 53).

3.3.2 Consistency

The following theorem can be derived for m(·) = 〈θ, ·〉 and m̂hn

kn
(·) = 〈θ̂hn

kn
, ·〉 using the same notation

as in the previous section and the next conditions

(C.3.4) P(X ∈ C) = 1 being C a compact subset of H satisfying (C.2.21) (see
hypotheses of Theorem 2.4.11 in Chapter 2, page 45),

(C.3.5) λkn
/hβn → +∞ and λkn

√
nφ(hn)/ log n → +∞ (being φ(·) defined in

(C.2.23) in Chapter 2, page 45).

Theorem 3.3.2. Under the assumptions of Theorem 2.3.11 (see Chapter 2, page 39) and Theo-
rem 2.4.11 (see Chapter 2, page 45), if (C.3.4)–(C.3.5) are also satisfied, it holds that

‖m̂hn

kn
−m‖H′ → 0 a.s.

The proof of Theorem 3.3.2 can be found in the appendix of the chapter (see Section 3.8.5, page 76).

3.3.3 Conditional errors

The following theoretical advances introduce the expressions of the conditional errors of prediction and
estimation for the presmoothed FPCA estimator θ̂hn

kn
.

Theorem 3.3.3. For the presmoothed FPCA estimator (3.2), it holds that

EXn+1(Yn+1 − 〈θ̂hn

kn
, Xn+1〉)2 − EXn+1(Yn+1 − 〈θ̂kn

, Xn+1〉)2

=

kn∑

j1=1

kn∑

j2=1

Uhn
n (v̂j1)U

hn
n (v̂j2)

λ̂j1 λ̂j2
〈Xn+1, v̂j1〉〈Xn+1, v̂j2〉

+ σ2
kn∑

j1=1

kn∑

j2=1

Whn
n (v̂j1 , v̂j2)

λ̂j1 λ̂j2
〈Xn+1, v̂j1〉〈Xn+1, v̂j2〉 −

σ2

n

kn∑

j=1

〈Xn+1, v̂j〉2
λ̂j

− 2〈Xn+1, R̂kn
〉〈Xn+1,

kn∑

j=1

Uhn
n (v̂j)

λ̂j
v̂j〉,

EXn(‖θ − θ̂hn

kn
‖2)− EXn(‖θ − θ̂kn

‖2) =
kn∑

j=1

(Uhn
n (v̂j))

2

λ̂2j
+ σ2

kn∑

j=1

Whn
n (v̂j , v̂j)

λ̂2j
− σ2

n

kn∑

j=1

1

λ̂j
,

where

Uhn
n (x) =

1

n

n∑

i=1

〈Xi, x〉
(

n∑

l=1

wl,hn
(Xi)(m(Xl)−m(Xi))

)
, ∀x ∈ H,

and

Whn
n (x, y) =

1

n2

n∑

i1=1

n∑

i2=1

〈Xi1 , x〉〈Xi2 , y〉
(

n∑

l=1

wl,hn
(Xi1)wl,hn

(Xi2)

)
, ∀x, y ∈ H,

being wl,hn
(x) = K(h−1

n d(x,Xl))/
∑n

l′=1K(h−1
n d(x,Xl′)) the weights of the kernel estimator m̂hn

, and

R̂kn
is defined in (2.7) (see Chapter 2, page 39).
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Corollary 3.3.4. For the presmoothed FPCA estimator (3.2), if wl,hn
(Xi) = 1 when i = l, and

wl,hn
(Xi) = 0 when i 6= l, ∀i = 1, . . . , n, then

EXn+1(Yn+1 − 〈θ̂hn

kn
, Xn+1〉)2 = EXn+1(Yn+1 − 〈θ̂kn

, Xn+1〉)2,
EXn(‖θ − θ̂hn

kn
‖2) = EXn(‖θ − θ̂kn

‖2).

Corollary 3.3.5. For the presmoothed FPCA estimator (3.2), if wl,hn
(Xi) = n−1, ∀i = 1, . . . , n, then

EXn+1(Yn+1 − 〈θ̂hn

kn
, Xn+1〉)2 − EXn+1(Yn+1 − 〈θ̂kn

, Xn+1〉)2

=
σ2

n


〈Xn+1, M̂kn

〉2 −
kn∑

j=1

〈Xn+1, v̂j〉2
λ̂j


+

(
〈θ,X〉〈Xn+1, M̂kn

〉 − 〈Xn+1, θ〉
)2

− 〈Xn+1, R̂kn
〉2,

EXn(‖θ − θ̂hn

kn
‖2)− EXn(‖θ − θ̂kn

‖2) = σ2

n


‖M̂kn

‖2 −
kn∑

j=1

1

λ̂j


+

(
〈θ,X〉‖M̂kn

‖ − ‖θ‖
)2

+ 2〈θ,X〉
(
‖M̂kn

‖ ‖θ‖ − 〈M̂kn
, θ〉
)
− ‖R̂kn

‖2,

where M̂kn
=
∑kn

j=1 λ̂
−1
j 〈X, v̂j〉v̂j, and R̂kn

is defined in (2.7) (see Chapter 2, page 39).

The proof of these results can be found in the appendix of the chapter (see Section 3.8.8, page 78,
Section 3.8.10, page 82, and Section 3.8.11, page 82).

Remark 3.3.6. It is not easy to compare the conditional errors of θ̂hn

kn
and θ̂kn

by means of Theo-
rem 3.3.3, apart from the extreme cases considered in Corollary 3.3.4 and Corollary 3.3.5. Hence, each
specific choice of wl,hn

should be analysed individually by means of Theorem 3.3.3 in order to state

either the efficiency or inefficiency of the estimator θ̂hn

kn
with regard to the standard estimator θ̂kn

from
a theoretical point of view.

3.4 Heuristics on alternative presmoothing

In Section 3.2, the presmoothed estimator θ̂αn

kn
was proposed, which is based on a perturbation of

the covariance structure. In view of the good theoretical properties of this estimator, it has been
examined what happens when one replaces in θ̂kn

the standard FPCA components by smoothing
FPCA components, such as those proposed by Pezzulli and Silverman (1993) or Silverman (1996).
Further details about Pezulli and Silverman’ smoothed FPCA and Silverman’s smoothed FPCA can
be found in Section 1.4.3, “ a) Functional principal component analysis (FPCA) ” (see Chapter 1,
page 25).

3.4.1 Using Pezzulli and Silverman’ presmoothed FPCA

Definition of estimator

Recall that Pezzulli and Silverman (1993) proposed to find the eigenelements {(λ̂αn,1
j , v̂αn,1

j )}∞j=1, which
solve the generalized eigenproblem

(Γn − αnQ)v = λv,
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where αn is the positive smoothing parameter, and Q is a symmetric nonnegative operator. Hence, a
new estimator can be defined as follows

θ̂PS, αn

kn
=

kn∑

j=1

∆nv̂
αn,1
j

λ̂αn,1
j

v̂αn,1
j .

Conditional errors

In order to determine the effect that smoothing has on the estimation of the eigenelements of Γ,
i.e., {(λj , vj)}∞j=1, some heuristic calculations have been carried out using the standard technique of
asymptotic expansions, similarly to Pezzulli and Silverman (1993). For this purpose, it is necessary to
define

Πj =
∑

k 6=j

(λ̂j − λ̂k)
−1Pk, ρj = 〈v̂j , Qv̂j〉, and ρj1,j2 = 〈v̂j1 , Qv̂j2〉,

where Pk is the projection onto the subspace spanned by the empirical eigenfunction v̂k. Substituting
the expansions {

v̂αn,1
j = v̂j + αnv̂

(1)
j + α2

nv̂
(2)
j + . . . ,

λ̂αn,1
j = λ̂j + αnλ̂

(1)
j + α2

nλ̂
(2)
j + . . . ,

in (Γn − αnQ)v = λv, matching the coefficients of αn and applying the normalization conditions,

one can derive the values of {(λ̂(l)j , v̂
(l)
j )}l. In this case, for instance, one gets v̂

(1)
j = −ΠjQv̂j and

λ̂
(1)
j = −ρj . This kind of expansions allows to obtain the following theorem for θ̂PS, αn

kn
.

Theorem 3.4.1. For the estimator θ̂PS, αn

kn
, if (C.3.2) (see page 55) is satisfied, it holds that

EXn+1(Yn+1 − 〈θ̂PS, αn

kn
, Xn+1〉)2 − EXn+1(Yn+1 − 〈θ̂kn

, Xn+1〉)2

=

(
−2αn

σ2

n

kn∑

j=1

〈Xn+1, v̂j〉〈Xn+1,ΠjQv̂j〉
λ̂j

+ αn
σ2

n

kn∑

j=1

ρj
〈Xn+1, v̂j〉2

λ̂2j

+ αn
σ2

n

kn∑

j1=1

kn∑

j2=1

ρj1,j2

λ̂j1 λ̂j2
〈Xn+1, v̂j1〉〈Xn+1, v̂j2〉+ 2αn〈Xn+1, R̂kn

〉〈Xn+1, Ĉ
PS
kn

〉

+ α2
n〈Xn+1, Ĉ

PS
kn

〉2
)
(1 + oa.s.(1)),

EXn(‖θ − θ̂PS, αn

kn
‖2)− EXn(‖θ − θ̂kn

‖2) =


2αn

σ2

n

kn∑

j=1

ρj

λ̂2j
+ 2αn〈R̂kn

, ĈPS
kn

〉+ α2
n‖ĈPS

kn
‖2



· (1 + oa.s.(1)),

where ĈPS
kn

=
∑kn

j=1 (〈θ, v̂j〉ΠjQv̂j + 〈θ,ΠjQv̂j〉v̂j − λ̂−1
j 〈θ,Qv̂j〉v̂j), and R̂kn

is defined in (2.7) (see
Chapter 2, page 39).

The previous result is proved in the appendix of this chapter (see Section 3.8.12, page 83).
On account of the complexity of the errors expressions in Theorem 3.4.1, one can analyse what

happens for the particular case of Q = I. Note that {(λ̂αn,1
j , v̂αn,1

j )}j = {(λ̂j − αn, v̂j)}j in this case.
Hence, the estimator becomes

θ̂PS, αn

kn
=

kn∑

j=1

∆nv̂j

λ̂j − αn

v̂j ,

and it is easy to deduce the following corollary.
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Corollary 3.4.2. Under assumptions of Theorem 3.4.1, if Q = I, it holds that

EXn+1(Yn+1 − 〈θ̂PS, αn

kn
, Xn+1〉)2 − EXn+1(Yn+1 − 〈θ̂kn

, Xn+1〉)2

=


2αn

σ2

n

kn∑

j=1

〈Xn+1, v̂j〉2
λ̂2j

− 2αn〈Xn+1, R̂kn
〉〈Xn+1, T̂kn

〉+ α2
n〈Xn+1, T̂kn

〉2

 (1 + oa.s.(1)),

EXn(‖θ − θ̂PS, αn

kn
‖2)− EXn(‖θ − θ̂kn

‖2) =


2αn

σ2

n

kn∑

j=1

1

λ̂2j
+ α2

n‖T̂kn
‖2

 (1 + oa.s.(1)),

where T̂kn
is defined as in Theorem 3.2.3 (see page 55).

The proof of Corollary 3.4.2 can be found in Section 3.8.13, page 85.

Remark 3.4.3. Corollary 3.4.2 shows that θ̂PS, αn

kn
generates larger conditional estimation errors than

the standard FPCA estimator, whereas conclusions related with the prediction error are not clear,
depending on the bias term R̂kn

and on T̂kn
. On the other hand, note that these conditional errors

have the same structure than the computed errors for θ̂αn

kn
(see Theorem 3.2.3, page 55), which is not

surprising in view of the similarities between θ̂αn

kn
and θ̂PS, αn

kn
with Q = I. In fact,

EXn+1(Yn+1 − 〈θ̂PS, αn

kn
, Xn+1〉)2 − EXn+1(Yn+1 − 〈θ̂αn

kn
, Xn+1〉)2

=


4αn

σ2

n

kn∑

j=1

〈Xn+1, v̂j〉2
λ̂2j

− 4αn〈Xn+1, R̂kn
〉〈Xn+1, T̂kn

〉


 (1 + oa.s.(1)),

EXn(‖θ − θ̂PS, αn

kn
‖2)− EXn(‖θ − θ̂αn

kn
‖2) =


4αn

σ2

n

kn∑

j=1

1

λ̂2j


 (1 + oa.s.(1)).

3.4.2 Using Silverman’s presmoothed FPCA

Definition of estimator

If the smoothed FPCA proposed by Silverman (1996) is considered, one needs to find the pairs

{(λ̂αn,2
j , v̂αn,2

j )}∞j=1 that solve the eigenproblem

Γnv = λ(I + αnQ)v,

where the orthonormality constraints are based on the next inner product

〈x, y〉αn
= 〈x, y〉+ αn〈x,Qy〉,

being αn the smoothing parameter and Q a symmetric nonnegative operator. A new estimator based
on this eigenelements can be defined as follows

θ̂S, αn

kn
=

kn∑

j=1

∆nv̂
αn,2
j

λ̂αn,2
j

v̂αn,2
j .

Conditional errors

The asymptotic expansions for the eigenelements {(λ̂αn,2
j , v̂αn,2

j )}∞j=1 can be calculated following the

same procedure as in Pezzulli and Silverman’ case. Specifically, one gets v̂
(1)
j = −((ρj/2) + λ̂jΠjQ)v̂j

and λ̂
(1)
j = −ρj λ̂j , and the following result can be stated.



3.5. SIMULATION STUDY 63

Theorem 3.4.4. For the estimator θ̂S, αn

kn
, if (C.3.2) (see page 55) is satisfied, it holds that

EXn+1(Yn+1 − 〈θ̂S, αn

kn
, Xn+1〉)2 − EXn+1(Yn+1 − 〈θ̂kn

, Xn+1〉)2

=


−2αn

σ2

n

kn∑

j=1

〈Xn+1, v̂j〉〈Xn+1,ΠjQv̂j〉+ 2αn〈Xn+1, R̂kn
〉〈Xn+1, Ĉ

S
kn
〉+ α2

n〈Xn+1, Ĉ
S
kn
〉2



· (1 + oa.s.(1)),

EXn(‖θ − θ̂S, αn

kn
‖2)− EXn(‖θ − θ̂kn

‖2) =
(
2αn〈R̂kn

, ĈS
kn
〉+ α2

n‖ĈS
kn
‖2
)
(1 + oa.s.(1)),

where ĈS
kn

=
∑kn

j=1 (ρj〈θ, v̂j〉v̂j + λ̂j(〈θ, v̂j〉ΠjQv̂j + 〈θ,ΠjQv̂j〉v̂j)− 〈θ,Qv̂j〉v̂j), and R̂kn
is defined in

(2.7) (see Chapter 2, page 39).

Section 3.8.14 presents the proof of the previous result (see page 85).

Remark 3.4.5. The expressions for the conditional errors in Theorem 3.4.4 depend on many terms
which make their interpretation cumbersome, apart from the particular case Q = I. In this specific
situation, {(λ̂αn,2

j , v̂αn,2
j )}j = {((1 + αn)

−1λ̂j , (1 + αn)
−1/2v̂j)}j , and consequently θ̂S, αn

kn
= θ̂kn

.

These heuristics on alternative presmoothing approaches show how the general Lemma 2.5.2 (see
Chapter 2, page 49) is applied to many situations in order to compute the conditional errors of
estimation and prediction. However, sometimes the expressions are too complex to compare them
with the errors of other estimators (recall Theorem 3.4.1 or Theorem 3.4.4), except for the simplest
situations (e.g., Corollary 3.4.2 or previous remark).

3.5 Simulation study

This section is devoted to the presentation of two simulation studies for the regression model presented
in Remark 2.3.2 (see Chapter 2, page 33), that is, for H = L2([0, 1]) and

Y =

∫ 1

0

θ(t)X(t)dt+ ǫ.

The first case (Case A) is characterized by the existence of null eigenvalues: λj > 0 if j ∈ {1, . . . , 4},
and λj = 0 otherwise (it corresponds to the motivation example introduced at the beginning of this
chapter). In the second case (Case B), the eigenvalues of the covariance operator decrease quickly, but
all of them are different from zero.

In both studies, 200 samples were simulated, each containing 2n observations drawn from the
previous functional linear model with ǫ ∼ N (0, σ2) and signal–to–noise ratio r = σ/

√
E〈X, θ〉2. Each

sample is split up into two subsamples of size n: {(Xi, Yi)}ni=1 is used to estimate the parameter
θ (learning sample), and {(Xi, Yi)}2ni=n+1 is used to test the obtained results (test sample). Different
values for the signal–to–noise ratio r (r = 0.02, 0.2, 0.5, 1, 2), for the sample size n (n = 25, 50, 100, 200),
and for different percentages of outliers (out = 0%, 10%, 20%), constructed by changing the original
model error by ǫ∗ ∼ N (7, σ2), were fixed.

For each case, the standard estimator θ̂kn
(see (2.4) in Chapter 2, page 36) and the presmoothed

estimators θ̂αn

kn
(see (3.1), page 54) and θ̂k–NN

kn
(see (3.3), page 57) proposed in this chapter were cal-

culated. The penalized B–splines estimator θ̂PS (see (2.2) in Chapter 2, page 35) were also computed.

To compare the behaviour of these estimators, the following risk functions were used

R(Y ) =
1

n

2n∑

i=n+1

(Yi − Ŷi)
2, and R(θ) =

∫
(θ(t)− θ̂(t))2dt, (3.4)
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the mean square prediction error and the mean square estimation error of θ, respectively, being θ̂ ∈
{θ̂PS , θ̂kn

, θ̂αn

kn
, θ̂k–NN

kn
}. To calculate the first, for each simulated sample, each estimator θ̂ was built

from the learning sample {(Xi, Yi)}ni=1. The test sample {(Xi, Yi)}2ni=n+1 produces the prediction

Ŷi = 〈θ̂, Xi〉 for each i ∈ {n+ 1, . . . , 2n}, and the corresponding value of R(Y ).
Before presenting the simulation results, some issues on the discretization effect and the parameter

selection must be commented.

How to work with discrete data? Since curves are not recorded continuously, X and θ were
discretized on p = 100 equispaced design points (t1, . . . , t100) so that integrals involved had to be
approximated. Quadrature weights of p−1 were used, i.e.,

∫ 1

0

x(t)dt ≈ p−1

p∑

l=1

x(tl),

though more complex integral approximations are available, such as the Gauss method. As a result, the
eigenelements of Γn were approximated by those of the p×p–matrix Γn = (γl1,l2)l1=1,...,p;l2=1,...,p with
γl1,l2 = (np)−1

∑n
i=1Xi(tl1)Xi(tl2), and ∆n was approximated by the p–vector ∆n = (δl)l=1,...,p where

δl = (np)−1
∑n

i=1Xi(tl)Yi. The risk functions (3.4) also depend on integral calculations and they were

approximated by R(Y ) ≈ n−1
∑n

i=1 (Yi − p−1
∑p

l=1 θ(tl)Xi(tl))
2 and R(θ) ≈ p−1

∑p
l=1 (θ(tl)− θ̂(tl))

2.

Parameter selection. The estimators of θ which were computed require that some parameters are
fixed/estimated previously by the user.

θ̂PS: The parameters k = 20, q = 4 and r = 2 were fixed, that is, the normalized B–splines basis
with degree 4, with 19 equispaced interior knots, and a roughness penalty based on the second
derivative was considered. Moreover, a generalized cross–validation method (GCV) was used to
select ρ. That way one looked for the value of the smoothing parameter which minimized the
GCV criterion

GCV(ρ) =
n

(n− tr(Sρ))2

n∑

i=1

(Yi − 〈θ̂PS , Xi〉)2,

being Sρ the hat matrix which relates the fitted values Ŷi = 〈θ̂PS , Xi〉 to the observed values Yi.

θ̂kn
: The number of principal components involved was also computed by means of a GCV method.

Hence, kn was selected minimizing the following GCV criterion

GCV(kn) =
n

(n− tr(Skn
))2

n∑

i=1

(Yi − 〈θ̂kn
, Xi〉)2,

where Skn
is the hat matrix associated to θ̂kn

. In this case, it can be shown that tr(Skn
) = kn.

θ̂αn

kn
: Both kn and αn were chosen in order to minimize the criterion

GCV(kn, αn) =
n

(n− tr(Skn,αn
))2

n∑

i=1

(Yi − 〈θ̂αn

kn
, Xi〉)2,

being Skn,αn
the hat matrix which corresponds to θ̂αn

kn
. Some calculations allow to express its

trace as tr(Skn,αn
) =

∑kn

j=1 (λ̂j + αn)
−1λ̂j .

θ̂k–NN

kn
: For this estimator, kn and the number of neighbours neig minimized the next GCV criterion

GCV(kn, neig) =
n

(n− tr(Skn,neig))
2

n∑

i=1

(Yi − 〈θ̂k–NN
kn

, Xi〉)2,
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with Skn,neig the hat matrix for θ̂k–NN
kn

. It can be also seen that the trace of Skn,neig is given by

tr(Skn,neig) =
1

n

kn∑

j=1

n∑

i=1

〈Xi, v̂j〉
λ̂j

n∑

l=1

wl,hneig
(Xi)〈Xl, v̂j〉,

being wl,hneig
(·) the weights of the k–NN estimator m̂k–NN.

Furthermore, for θ̂kn
, θ̂αn

kn
and θ̂k–NN

kn
, the “optimal” parameters which minimize the risk functions R(Y )

and R(θ) were also calculated. These two alternative methods are going to be denoted as optR(Y ) and
optR(θ), respectively.

3.5.1 Case A. Existence of null eigenvalues

Consider the curves

X(t) = a1
√
2 sin(πt) + a2

√
2 cos(πt) + a3

√
2 sin(2πt) + a4

√
2 cos(2πt), ∀t ∈ [0, 1],

with al ∼ U(−1/3l−1, 1/3l−1) for all l ∈ {1, . . . , 4}, and

θ(t) = 2
√
2 cos(2πt), ∀t ∈ [0, 1].

It can be shown that the eigenvalues of Γ are

λj = Var(aj) = 1/32j−1 for j ∈ {1, . . . , 4}, and λj = 0 for j > 4.

Moreover, the model parameter is twice the fourth eigenfunction of the second moment operator. This
is then a favourable case for the FPCA–type estimators if one selects an adequate kn.

The median of the risk functions for the different values of n, r and out are compiled in Table 3.1,
Table 3.2, Table 3.3, and Table 3.4 (see pages 66–69). From them, one can see that both θ̂kn

and θ̂αn

kn

give better estimations for θ than the penalized B–splines estimator, as expected given the connection
between the model parameter and the fourth functional principal component. Furthermore, θ̂k–NN

kn

improves the results of θ̂PS in general, although it seems to have a worse performance when the
sample size is small, the percentage of outliers is large and the GCV criterion is used to select the
involved parameters (see R(θ) for GCV method in Table 3.1 and Table 3.2). As for R(Y ), the four
estimators have values of the same order.

When comparing the GCV method with the optimal selections, it can be seen that errors when the
GCV choice is used are similar to the optR(Y ) ones in terms of prediction error and generally higher
than optR(θ) errors when the estimation error is concerned. The results are reasonable since GCV
techniques minimize criteria strongly linked with prediction error.

Focusing on the FPCA–type estimators, the results show that θ̂αn

kn
obtains smaller errors than θ̂kn

in most cases. Nevertheless, note that the improvement is almost negligible for R(Y ), whereas it can
be very significant for R(θ) when the signal–to–noise ratio is high, when the sample size is small, or
when there is an important presence of outliers. These results coincide with the theoretical conclusions
exposed in Remark 3.2.5 (see page 56) and Remark 3.2.6 (see page 56). On the other hand, θ̂k–NN

kn

gives larger errors than the standard FPCA estimator in general, except if optR(Y ) is the choice for
selecting the involved parameters.

3.5.2 Case B. Non existence of null eigenvalues

The functional linear model with X a Brownian motion (see Section 1.1.2 in Chapter 1, page 2), and

θ(t) = log(15t2 + 10) + cos(4πt), ∀t ∈ [0, 1],

was simulated. It is well–known that the eigenelements of the second moment operator of a Brownian
motion are

λj =
1

(j − 0.5)2π2
, vj(t) =

√
2 sin ((j − 0.5)πt), ∀t ∈ [0, 1], j = 1, 2, . . . ,
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GCV optR(Y ) optR(θ)

error r out θ̂PS θ̂kn θ̂αn
kn

θ̂k–NN
kn

θ̂kn θ̂αn
kn

θ̂k–NN
kn

θ̂kn θ̂αn
kn

θ̂k–NN
kn

R(Y ) 0.02 0% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10% 4.25 4.32 4.13 4.08 4.08 3.88 3.86 4.15 3.97 3.96
20% 10.48 10.55 10.02 10.24 10.13 9.70 9.69 10.39 9.85 9.94

0.2 0% 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
10% 4.11 4.14 4.07 4.07 4.01 3.84 3.86 4.10 3.98 3.98
20% 10.58 10.63 10.19 10.24 10.21 9.70 9.63 10.40 9.89 9.88

0.5 0% 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.07 0.06 0.06
10% 4.32 4.36 4.11 4.14 4.10 3.86 3.90 4.22 4.01 4.04
20% 10.69 10.87 10.21 10.45 10.33 9.75 9.75 10.43 9.98 10.08

1 0% 0.25 0.25 0.25 0.24 0.24 0.22 0.22 0.25 0.24 0.24
10% 4.47 4.50 4.32 4.37 4.35 4.12 4.10 4.39 4.26 4.25
20% 10.91 11.01 10.44 10.55 10.51 9.99 9.90 10.71 10.20 10.22

2 0% 1.02 1.05 1.00 0.98 0.97 0.89 0.89 0.98 0.97 0.93
10% 5.12 5.16 4.94 4.96 4.96 4.71 4.68 5.05 4.87 4.87
20% 11.78 11.77 11.10 11.35 11.33 10.54 10.48 11.52 10.79 11.02

R(θ) 0.02 0% 0.17 0.01 0.01 5.25 1.16 0.01 4.45 0.01 0.00 0.41
10% 12.62 9.02 3.89 16.55 11.16 3.97 15.93 6.12 3.40 3.59
20% 19.39 11.95 3.98 116.45 18.32 4.17 20.11 7.92 3.49 4.37

0.2 0% 1.37 3.32 2.32 3.35 3.33 1.51 3.34 1.03 0.41 0.51
10% 12.40 7.82 3.91 18.34 11.99 4.15 24.74 5.96 3.45 3.60
20% 25.28 16.52 4.06 65.36 29.25 4.25 25.93 11.00 3.52 4.25

0.5 0% 5.00 3.41 3.37 3.39 3.40 3.33 3.37 3.33 1.55 0.73
10% 13.86 8.71 3.87 14.90 10.29 4.00 9.02 6.31 3.41 3.59
20% 24.47 16.72 4.02 118.13 22.87 4.24 22.34 9.68 3.55 4.58

1 0% 5.44 3.58 3.45 3.61 3.73 3.42 3.78 3.46 3.09 1.42
10% 13.72 8.57 3.96 15.89 10.89 4.01 7.99 6.62 3.45 3.67
20% 24.26 13.95 4.04 84.46 23.84 4.24 19.57 10.51 3.48 4.42

2 0% 6.58 4.40 3.61 4.94 4.60 3.58 4.02 3.84 3.36 3.14
10% 11.52 7.65 3.90 15.17 11.19 4.00 14.23 5.58 3.41 3.65
20% 23.37 14.74 4.10 70.42 25.79 4.15 15.03 11.03 3.52 4.92

Table 3.1: Case A. Median of R(Y ) and R(θ) for sample size n = 25.

with all eigenvalues of Γ strictly positive.

From Table 3.5, Table 3.6, Table 3.7, and Table 3.8 (see pages 70–73), one sees that θ̂αn

kn
gives

better estimates for θ than θ̂kn
, according with the theoretical results. Again, simulations confirm the

effect of the sample size and noise on the expected reduction for estimation of θ (see Remark 3.2.6,
page 56): more improvement when n is small and when the “noise level” is large. As happens in Case

A, θ̂kn
and θ̂αn

kn
give similar results in terms of R(Y ). Comparing the presmoothed estimator θ̂αn

kn
with

θ̂PS , the behaviour is similar as far as prediction error is concerned, θ̂αn

kn
gives smaller estimation errors

than the penalized B–splines estimator when n is small or the noise is large.

With regard to θ̂k–NN
kn

the conclusions are similar to those derived from the Case A: θ̂k–NN
kn

does

not reduce the prediction errors obtained by θ̂kn
, and its estimation error increases abruptly when the

GCV method is considered and there are outliers in the sample.

These simulations suggest that the presmoothing estimator θ̂αn

kn
improves the standard FPCA linear

estimator, and especially when the sample size is small, whereas θ̂k–NN
kn

do not significantly reduce the

conditional errors of θ̂kn
. The choice of the parameters of the proposed presmoothed estimators is of

course a key point. A general practical guideline is to choose these parameters by cross–validation
techniques. Even if the results above might point to a new way for selecting these parameters that
could give even more improvement (see results for the “optimal” choice with respect R(θ)), CV gives

good data–driven results, except for θ̂k–NN
kn

.
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GCV optR(Y ) optR(θ)

error r out θ̂PS θ̂kn θ̂αn
kn

θ̂k–NN
kn

θ̂kn θ̂αn
kn

θ̂k–NN
kn

θ̂kn θ̂αn
kn

θ̂k–NN
kn

R(Y ) 0.02 0% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10% 5.03 5.05 5.00 4.99 4.97 4.85 4.87 4.98 4.92 4.94
20% 10.13 10.15 9.92 10.06 9.92 9.71 9.75 10.00 9.81 9.86

0.2 0% 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
10% 5.05 5.09 5.03 5.01 5.00 4.86 4.90 5.03 4.94 4.95
20% 10.12 10.19 10.01 10.07 9.97 9.75 9.78 10.03 9.87 9.93

0.5 0% 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
10% 5.13 5.14 5.07 5.11 5.09 4.95 4.98 5.12 5.03 5.06
20% 10.27 10.27 10.08 10.16 10.12 9.86 9.90 10.18 9.93 10.03

1 0% 0.25 0.25 0.25 0.24 0.24 0.23 0.24 0.25 0.24 0.24
10% 5.40 5.41 5.29 5.32 5.28 5.10 5.13 5.33 5.16 5.21
20% 10.47 10.48 10.32 10.33 10.35 10.01 10.05 10.40 10.13 10.27

2 0% 0.97 0.98 0.97 0.96 0.95 0.93 0.92 0.97 0.95 0.94
10% 6.18 6.22 6.17 6.14 6.10 5.88 5.94 6.13 6.07 6.03
20% 11.14 11.24 10.96 11.01 11.01 10.70 10.70 11.10 10.79 10.87

R(θ) 0.02 0% 0.16 0.00 0.00 8.11 1.69 0.00 7.61 0.00 0.00 0.38
10% 7.85 5.31 3.68 12.75 6.12 3.79 7.16 4.56 3.35 3.62
20% 13.95 10.32 3.95 40.66 11.93 4.13 9.98 6.83 3.44 4.23

0.2 0% 0.57 0.58 0.58 3.92 3.30 0.57 3.75 0.50 0.20 0.31
10% 8.99 6.12 3.85 13.76 8.27 3.94 7.06 5.40 3.40 3.81
20% 13.63 8.90 3.94 54.58 12.64 4.12 13.17 6.24 3.44 4.20

0.5 0% 4.17 3.38 3.34 3.37 3.35 3.30 3.34 2.87 1.03 0.58
10% 8.88 5.40 3.82 13.25 9.64 3.82 7.54 4.69 3.36 3.71
20% 12.63 8.76 3.95 34.59 12.49 4.11 13.49 6.55 3.41 4.28

1 0% 5.06 3.47 3.39 3.43 3.53 3.38 3.60 3.39 2.65 1.00
10% 10.02 6.54 3.89 9.87 9.07 3.91 9.37 5.11 3.40 3.86
20% 12.65 8.39 3.93 18.03 13.90 4.01 18.03 6.55 3.47 4.40

2 0% 5.45 3.77 3.50 3.74 4.27 3.54 3.89 3.63 3.32 2.67
10% 9.38 5.97 3.86 14.52 9.35 3.89 9.48 4.96 3.39 3.71
20% 14.49 8.16 3.94 37.83 12.62 4.06 12.09 6.64 3.45 4.20

Table 3.2: Case A. Median of R(Y ) and R(θ) for sample size n = 50.

3.6 Real data application

In order to demonstrate the improved performance of the proposed methodology with respect to the
FPCA estimator in applications, three functional datasets with different size n were chosen: Canadian
weather data (n = 35), spectrometric data (n = 215), and atmospheric pollution data (n = 1, 000).

The aim is to see how the sample size affects to the improvement of θ̂αkn
with respect to the standard

FPCA estimator, and how the behaviour of θ̂k–NN
kn

is data applications.
Since the variables involved are not centred, the regression model with non–zero intercept given by

Remark 2.3.1 (see Chapter 2, page 33) was used, and the next steps were followed.

Step 1. Calculate the sample mean of curves (X) and scalar responses (Y ).

Step 2. Split the sample into a learning sample {(Xi, Yi)}i∈ILS
and a test sample {(Xi, Yi)}i∈ITS

.

Step 3. Use the centred learning sample {(Xi−X,Yi−Y )}i∈ILS
to build θ̂ (θ̂PS , θ̂kn

, θ̂αn

kn
or θ̂k–NN

kn
),

and estimate the intercept term by θ̂0 = Y − 〈θ̂, X〉.

Step 4. Compute the predicted responses for the test sample, Ŷi = θ̂0 + 〈θ̂, Xi〉, ∀i ∈ ITS .

Step 5. Obtain R(Y ) = 1
#ITS

∑
i∈ITS

(Yi − Ŷi)
2, where #ITS denotes the test sample size.

To avoid the effect of sample selection, this procedure was iterated 100 times, and the mean, the
median, and the standard deviation of R(Y ) over these replications were calculated.

The general guidelines of the simulations study to build the different estimates of θ were followed.
In particular, the involved parameters were selected by GCV (because a prediction objective exists in
the real data application).
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GCV optR(Y ) optR(θ)

error r out θ̂PS θ̂kn θ̂αn
kn

θ̂k–NN
kn

θ̂kn θ̂αn
kn

θ̂k–NN
kn

θ̂kn θ̂αn
kn

θ̂k–NN
kn

R(Y ) 0.02 0% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10% 4.99 4.99 4.96 4.98 4.94 4.88 4.91 4.97 4.93 4.95
20% 9.97 9.98 9.92 9.96 9.89 9.78 9.80 9.95 9.86 9.89

0.2 0% 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
10% 5.00 5.01 4.97 4.99 4.96 4.90 4.91 4.99 4.93 4.96
20% 9.97 10.00 9.94 9.98 9.91 9.78 9.82 9.95 9.85 9.90

0.5 0% 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
10% 5.08 5.10 5.04 5.07 5.02 4.93 4.97 5.03 4.98 5.03
20% 10.05 10.07 10.00 10.02 9.96 9.82 9.86 10.00 9.90 9.95

1 0% 0.25 0.25 0.24 0.25 0.24 0.24 0.24 0.24 0.24 0.25
10% 5.24 5.24 5.21 5.24 5.18 5.12 5.14 5.23 5.18 5.19
20% 10.21 10.27 10.17 10.23 10.16 10.00 10.06 10.19 10.09 10.15

2 0% 0.97 0.97 0.97 0.97 0.96 0.94 0.95 0.96 0.96 0.97
10% 5.92 5.93 5.91 5.92 5.87 5.82 5.79 5.89 5.86 5.84
20% 10.96 10.98 10.85 10.92 10.85 10.68 10.73 10.92 10.80 10.82

R(θ) 0.02 0% 0.16 0.00 0.00 7.64 2.78 0.00 7.69 0.00 0.00 0.37
10% 7.03 4.74 3.73 5.66 6.84 3.75 6.32 4.27 3.37 3.69
20% 8.23 5.56 3.89 8.31 6.96 3.97 8.13 4.53 3.41 3.86

0.2 0% 0.40 0.23 0.27 5.19 1.94 0.19 4.36 0.23 0.10 0.50
10% 7.22 4.54 3.85 5.14 5.87 3.72 6.26 4.07 3.34 3.51
20% 8.86 5.84 3.87 8.41 7.94 3.79 7.04 4.71 3.38 3.81

0.5 0% 1.76 3.33 3.32 3.35 3.33 3.17 3.33 1.48 0.60 0.61
10% 7.63 4.93 3.65 6.40 5.57 3.66 6.05 4.19 3.36 3.62
20% 9.04 6.38 3.85 14.14 8.71 4.01 11.36 4.89 3.38 4.01

1 0% 4.94 3.41 3.37 3.39 3.40 3.34 3.39 3.34 1.52 0.82
10% 6.94 4.63 3.74 5.09 6.24 3.70 6.00 4.07 3.36 3.52
20% 8.29 5.67 3.82 9.70 7.11 3.76 10.29 4.60 3.37 3.77

2 0% 5.23 3.58 3.43 3.69 3.70 3.41 3.60 3.45 2.97 2.98
10% 6.99 4.81 3.72 6.35 5.93 3.68 6.13 4.14 3.36 3.56
20% 9.40 6.47 3.87 8.66 8.48 3.88 8.83 5.00 3.38 3.89

Table 3.3: Case A. Median of R(Y ) and R(θ) for sample size n = 100.

3.6.1 Canadian weather data

Firstly, the Canadian weather data is considered (for further details, see Section 1.1.2 in Chapter 1,
page 2). Here Y is the logarithm of total annual precipitation at each weather station, and X is the
daily temperature curve (see Ramsay and Silverman, 2005, Chapter 15, for a Fourier basis approach
to this case). The original sample was split into two subsamples: a learning sample (25 stations) and

a testing one (10 stations). For θ̂k–NN
kn

, the quadratic kernel, and the semi–metric based on the first
derivatives were selected. Table 3.9 (see page 73) shows the mean, median, and standard deviation of

R(Y ). Note that both θ̂αn

kn
and θ̂k–NN

kn
yield to a reduction of the error of the standard FPCA estimator

and the penalized B–splines estimator.

3.6.2 Spectrometric data

For the second illustration, spectrometric data was selected (see Section 1.1.2 in Chapter 1, page 2).
The dataset contains 215 spectrometric curves obtained from pieces of finely chopped meat, and a scalar
value corresponding to the fat content of each of them. The second derivatives of the spectrometric
curve for each meat piece were taken as the functional variable X, and its fat content as the response
Y (Ferraty and Vieu, 2006b also chose the second derivatives in order to get better predictive results
in the functional nonparametric regression context). The sample was split into a learning sample of

160 pieces and a test sample of 55 pieces. For θ̂k–NN
kn

, the quadratic kernel, and the semi–metric based
on FPCA with q = 2 were selected. Table 3.10 (see page 73) contains the results for this example. In

this case, the best results are produced by θ̂αn

kn
.
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GCV optR(Y ) optR(θ)

error r out θ̂PS θ̂kn θ̂αn
kn

θ̂k–NN
kn

θ̂kn θ̂αn
kn

θ̂k–NN
kn

θ̂kn θ̂αn
kn

θ̂k–NN
kn

R(Y ) 0.02 0% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10% 4.95 4.95 4.94 4.94 4.92 4.90 4.91 4.93 4.92 4.93
20% 9.88 9.90 9.86 9.90 9.85 9.79 9.80 9.86 9.82 9.84

0.2 0% 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
10% 4.96 4.96 4.95 4.95 4.95 4.92 4.92 4.96 4.94 4.95
20% 9.88 9.89 9.86 9.88 9.84 9.79 9.81 9.86 9.84 9.86

0.5 0% 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
10% 5.00 5.01 5.00 5.01 4.99 4.95 4.96 5.00 4.98 4.99
20% 9.96 9.98 9.95 9.98 9.93 9.86 9.89 9.94 9.90 9.92

1 0% 0.24 0.24 0.24 0.24 0.23 0.23 0.23 0.24 0.24 0.24
10% 5.24 5.25 5.22 5.24 5.20 5.14 5.18 5.22 5.18 5.22
20% 10.11 10.14 10.10 10.11 10.07 10.00 10.03 10.10 10.05 10.08

2 0% 0.96 0.96 0.96 0.96 0.95 0.94 0.94 0.96 0.96 0.95
10% 5.92 5.94 5.92 5.92 5.91 5.85 5.83 5.91 5.88 5.86
20% 10.90 10.92 10.84 10.90 10.83 10.70 10.77 10.86 10.77 10.82

R(θ) 0.02 0% 0.16 0.00 0.00 8.49 2.44 0.00 8.41 0.00 0.00 0.35
10% 6.14 3.92 3.55 4.12 4.44 3.55 4.87 3.66 3.33 3.43
20% 7.38 4.55 3.70 5.57 5.04 3.65 5.01 4.12 3.35 3.60

0.2 0% 0.27 0.12 0.13 6.87 1.27 0.11 4.59 0.12 0.05 0.36
10% 5.73 3.78 3.52 3.90 4.38 3.61 4.67 3.67 3.33 3.41
20% 6.91 4.47 3.64 5.10 5.92 3.70 6.44 4.00 3.34 3.64

0.5 0% 1.02 1.93 1.48 3.34 3.33 0.95 3.35 0.82 0.31 0.35
10% 5.63 4.00 3.56 4.18 4.36 3.54 4.75 3.69 3.33 3.43
20% 7.06 4.41 3.69 4.65 5.04 3.71 5.58 4.00 3.37 3.56

1 0% 4.14 3.36 3.34 3.35 3.35 3.32 3.35 2.76 1.17 0.82
10% 5.84 3.94 3.56 4.28 5.15 3.60 4.88 3.69 3.33 3.49
20% 7.80 4.87 3.74 6.22 6.95 3.72 8.32 3.99 3.35 3.65

2 0% 5.04 3.48 3.40 3.46 3.51 3.38 3.39 3.38 2.57 1.76
10% 6.24 4.31 3.58 4.69 4.52 3.61 4.68 3.76 3.33 3.47
20% 7.97 4.92 3.72 5.78 5.73 3.69 7.31 4.28 3.38 3.67

Table 3.4: Case A. Median of R(Y ) and R(θ) for sample size n = 200.

3.6.3 Atmospheric pollution data

Finally, an environmental example have been considered: the atmospheric pollution data (see Sec-
tion 1.1.2 in Chapter 1, page 2). The data here correspond to hourly averaged NOx concentrations
measured in the neighbourhood of a power station of ENDESA, located in As Pontes in the Northwest
of Spain, from 2007 to 2009. The aim is to forecast NOx with half an hour horizon to allow the power
plant staff to preclude NOx concentrations reaching the limits fixed by the current environmental leg-
islation (see a functional kernel and a linear autoregressive approach to this problem with SO2 levels
in Fernández de Castro et al., 2005). Each curve X was built with 240 consecutive minute–by–minute
values of hourly averaged NOx concentration1, and the NOx value half an hour ahead was taken as
response Y . As in previous examples, different pairs of learning/testing samples were considered,

consisted of 750 and 250 observations, respectively. For θ̂k–NN
kn

, the quadratic kernel, and the semi–
metric based on the L2–norm were selected. Table 3.11 (see page 73) compiles the main results. For

this dataset, the smallest values of R(Y ) correspond to θ̂PS . Among the FPCA–type estimators, θ̂αn

kn

improves slightly the results of the standard estimator, whereas θ̂k–NN
kn

gives the largest errors.

Remark 3.6.1. In Corollary 3.2.4 (see page 55), the second order efficiency of the estimator θ̂αkn
in

terms of the conditional estimation error was stated. The existence of an inverse relation between
the improvement of θ̂αkn

with respect to θ̂kn
, and the sample size n was also indicated. This fact is

reflected in the real data applications: the gain of the presmoothed estimator decreases from small to
large sample size (see Table 3.9, Table 3.10 and Table 3.11, page 73).

1Each value of this hourly averaged NOx concentration is computed as the average of 60 minute–by–minute NOx

values, which correspond to the values at the previous 59 time points and at the current time point.
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GCV optR(Y ) optR(θ)

error r out θ̂PS θ̂kn θ̂αn
kn

θ̂k–NN
kn

θ̂kn θ̂αn
kn

θ̂k–NN
kn

θ̂kn θ̂αn
kn

θ̂k–NN
kn

R(Y ) 0.02 0% 0.00 0.00 0.00 0.05 0.00 0.00 0.05 0.00 0.00 0.07
10% 4.26 4.31 4.26 4.32 4.04 3.84 3.80 4.17 4.03 4.09
20% 10.97 11.07 10.70 11.04 10.13 9.59 9.51 10.36 9.94 10.01

0.2 0% 0.12 0.12 0.12 0.16 0.10 0.10 0.15 0.11 0.11 0.18
10% 4.38 4.37 4.34 4.42 4.09 3.91 3.91 4.22 4.11 4.14
20% 10.93 10.94 10.77 11.05 10.05 9.56 9.54 10.38 10.20 10.25

0.5 0% 0.71 0.72 0.71 0.78 0.65 0.62 0.69 0.70 0.68 0.76
10% 5.26 5.22 5.10 5.11 4.68 4.52 4.51 4.93 4.74 4.83
20% 11.42 11.49 11.21 11.40 10.72 9.96 9.93 11.00 10.67 10.60

1 0% 2.75 2.82 2.71 2.68 2.52 2.35 2.37 2.62 2.52 2.56
10% 7.31 7.30 6.93 6.92 6.44 6.04 6.09 6.66 6.38 6.51
20% 13.96 14.18 13.59 13.44 12.70 12.06 11.94 13.20 12.71 12.69

2 0% 11.12 11.23 10.73 10.89 10.45 9.93 9.60 10.70 10.26 10.30
10% 16.60 16.85 16.04 16.14 15.19 13.69 13.86 15.76 14.83 14.97
20% 22.70 23.19 21.85 21.75 20.37 19.28 18.79 21.02 20.31 20.50

R(θ) 0.02 0% 0.06 0.47 0.45 1.39 0.43 0.43 1.45 0.42 0.40 1.31
10% 10.27 6.82 4.01 14.75 9.58 3.12 12.59 3.73 1.67 1.86
20% 17.43 11.98 6.29 128.15 18.73 4.11 24.99 6.96 1.79 2.42

0.2 0% 0.72 1.40 1.36 1.68 1.41 1.36 1.80 1.16 0.96 1.38
10% 10.07 6.56 4.07 20.24 7.47 3.22 13.20 3.78 1.70 1.86
20% 19.90 17.26 6.55 163.58 25.91 7.01 28.16 5.98 2.02 2.42

0.5 0% 1.45 1.95 2.03 2.47 2.65 1.89 2.88 1.53 1.21 1.42
10% 9.23 6.87 4.08 16.81 12.16 3.56 15.62 3.60 1.65 1.93
20% 20.72 14.72 6.29 142.17 19.25 5.14 25.76 7.75 2.07 2.50

1 0% 5.50 4.08 3.38 5.86 6.35 2.66 11.10 2.39 1.47 1.69
10% 13.43 10.46 5.06 36.89 11.20 3.50 21.48 4.95 1.67 1.90
20% 24.08 14.42 6.56 83.28 22.13 4.99 17.68 8.15 2.17 3.00

2 0% 14.97 9.47 4.48 28.14 19.50 5.46 22.56 5.52 1.84 2.34
10% 33.05 19.14 6.61 60.22 44.83 6.56 32.91 8.86 2.18 2.52
20% 43.98 27.31 6.53 141.35 36.98 6.54 41.44 13.36 2.50 2.84

Table 3.5: Case B. Median of R(Y ) and R(θ) for sample size n = 25.

3.7 Final conclusions

Throughout this chapter, new FPCA–type estimators for the linear model parameter θ based on
different presmoothing techniques have been introduced.

First of all, θ̂αn

kn
has been proposed, which can be seen as an extension of the ordinary multivariate

ridge regression estimator to general Hilbert spaces: one slightly perturbs the eigenvalues of the second
moment operator in order to avoid ill–conditioned problems. It has been shown that the presmoothed
estimator preserves the consistency properties of the standard FPCA estimator, and expressions for
conditional mean square errors for prediction and estimation have been obtained. A remark highlights
the effect of the bias term in the conditional prediction error: one can only obtain clear efficiency
when the bias is negligible. As far as the conditional estimation error is concerned, one is able to
get improvement over the FPCA estimate, especially if the model noise is large and/or the sample

size is small. Then, other presmoothing approaches as θ̂hn

kn
, or the estimators based on presmoothed

FPCA analysis by Pezzulli and Silverman (1993) and Silverman (1996), have been introduced. The

consistency of θ̂hn

kn
, and the conditional error expressions for all of them, have been obtained.

The effectiveness of the presmoothed estimators θ̂αn

kn
and θ̂k–NN

kn
relative to the standard FPCA

estimator and the penalized B–splines estimator have been tested by means of simulation studies and
data applications. In terms of conditional estimation error, θ̂αn

kn
gives better results than the FPCA

estimator, and it is a serious rival to the spline estimator when the sample size is small or the noise
level is large. Nevertheless, second order efficiency only generates a clear improvement for small sample
size, whereas for n large enough θ̂kn

and θ̂αkn
have similar behaviour. On the other hand, the efficiency

of θ̂k–NN
kn

could not be stated. Furthermore, from a practical point of view, it has been seen that this
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GCV optR(Y ) optR(θ)

error r out θ̂PS θ̂kn θ̂αn
kn

θ̂k–NN
kn

θ̂kn θ̂αn
kn

θ̂k–NN
kn

θ̂kn θ̂αn
kn

θ̂k–NN
kn

R(Y ) 0.02 0% 0.00 0.00 0.00 0.02 0.00 0.00 0.02 0.00 0.00 0.03
10% 5.17 5.21 5.15 5.26 4.98 4.88 4.92 5.06 5.01 5.05
20% 10.22 10.28 10.26 10.47 9.93 9.67 9.71 10.06 9.87 9.94

0.2 0% 0.11 0.11 0.11 0.13 0.10 0.10 0.12 0.11 0.11 0.14
10% 5.32 5.28 5.27 5.31 5.10 4.98 4.99 5.20 5.10 5.13
20% 10.35 10.33 10.23 10.57 10.05 9.80 9.81 10.16 10.07 10.08

0.5 0% 0.66 0.69 0.67 0.67 0.64 0.62 0.63 0.65 0.65 0.67
10% 5.83 5.89 5.83 5.95 5.65 5.56 5.61 5.74 5.74 5.78
20% 11.07 11.29 10.96 11.25 10.75 10.41 10.40 10.86 10.63 10.68

1 0% 2.69 2.63 2.59 2.66 2.56 2.45 2.49 2.58 2.55 2.56
10% 7.79 7.79 7.67 7.67 7.41 7.23 7.13 7.59 7.48 7.36
20% 13.61 13.77 13.51 13.73 13.02 12.63 12.65 13.30 13.00 13.35

2 0% 11.09 10.99 10.70 10.76 10.27 10.07 10.30 10.51 10.41 10.54
10% 16.32 16.34 15.71 15.76 15.66 14.98 14.93 15.87 15.33 15.31
20% 21.57 21.54 21.08 21.46 20.29 19.67 19.87 20.65 20.08 20.40

R(θ) 0.02 0% 0.04 0.33 0.33 1.24 0.32 0.31 1.28 0.31 0.29 1.14
10% 5.14 4.36 3.34 20.58 5.34 3.00 7.43 2.53 1.52 1.88
20% 8.89 7.39 3.84 71.15 14.95 3.95 12.54 4.05 1.76 2.50

0.2 0% 0.64 1.28 1.26 1.37 1.23 1.18 1.39 1.03 0.76 1.17
10% 5.41 4.11 3.30 11.11 6.77 2.58 7.57 2.74 1.45 1.64
20% 9.38 6.04 3.63 55.30 7.16 3.53 17.77 3.73 1.69 1.99

0.5 0% 0.97 1.64 1.65 1.95 1.60 1.43 2.10 1.35 1.16 1.28
10% 6.34 4.85 3.70 15.70 5.35 2.44 6.36 2.81 1.46 1.77
20% 10.21 10.26 5.51 75.29 9.80 3.55 14.70 4.34 1.75 2.45

1 0% 2.68 3.26 2.92 4.18 3.51 2.20 4.06 1.94 1.37 1.49
10% 6.60 5.48 3.38 23.25 6.73 3.04 11.19 3.01 1.61 1.76
20% 12.60 8.40 4.17 74.19 15.33 4.21 12.97 4.21 1.68 2.52

2 0% 9.65 6.28 3.64 14.97 9.41 3.96 16.15 3.69 1.63 1.97
10% 9.11 7.06 4.20 23.10 12.08 3.62 26.68 4.68 1.70 2.32
20% 18.37 12.81 6.36 82.13 17.30 5.38 21.93 7.31 2.18 3.06

Table 3.6: Case B. Median of R(Y ) and R(θ) for sample size n = 50.

estimator reduces the conditional error of θ̂kn
in some cases, whereas it gives larger errors than the

FPCA estimator in other ones.

3.8 Appendix Chapter 3

In this appendix, the proofs of all the theorems and corollaries (in order of appearance) introduced
throughout the chapter have been compiled, jointly with the technical lemmas required to prove them.

3.8.1 Proof of Theorem 3.2.2

This proof is similar to that of Theorem 3.2 in Cardot et al. (1999).

First, take mkn
= ∆Πkn

(Πkn
ΓΠkn

)−1, where Πkn
is the orthogonal projection onto the space

spanned by the first kn eigenfunctions of Γ. It is clear that

‖m− m̂αn

kn
‖H′ ≤ ‖m−mkn

‖H′ + ‖mkn
− m̂αn

kn
‖H′ .

Cardot et al. (1999) showed that ‖m−mkn
‖H′ → 0, so one just needs to show that ‖mkn

−m̂αn

kn
‖H′ → 0.

Let En = {λkn
/2 < λ̂kn

< 3λkn
/2}. In En, Lemma 3.8.1 (see page 74) ensures that

‖mkn
− m̂αn

kn
‖H′ ≤ δn‖∆‖H′‖Γ− Γn‖∞ + 2

‖∆−∆n‖H′

λkn

+ 2αn
‖∆‖H′

λ2kn

,
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GCV optR(Y ) optR(θ)

error r out θ̂PS θ̂kn θ̂αn
kn

θ̂k–NN
kn

θ̂kn θ̂αn
kn

θ̂k–NN
kn

θ̂kn θ̂αn
kn

θ̂k–NN
kn

R(Y ) 0.02 0% 0.00 0.00 0.00 0.02 0.00 0.00 0.01 0.00 0.00 0.02
10% 5.01 5.05 5.00 5.02 4.94 4.89 4.89 4.98 4.96 4.96
20% 9.98 9.99 9.93 10.09 9.82 9.74 9.75 9.93 9.86 9.87

0.2 0% 0.11 0.11 0.11 0.12 0.11 0.11 0.12 0.11 0.11 0.13
10% 5.15 5.17 5.14 5.19 5.06 5.00 5.00 5.09 5.09 5.10
20% 10.16 10.20 10.14 10.31 10.02 9.91 9.96 10.12 10.06 10.07

0.5 0% 0.66 0.68 0.67 0.69 0.66 0.65 0.66 0.66 0.67 0.68
10% 5.69 5.71 5.65 5.67 5.61 5.52 5.55 5.65 5.62 5.62
20% 10.68 10.68 10.64 10.74 10.51 10.36 10.38 10.58 10.49 10.49

1 0% 2.57 2.59 2.57 2.58 2.52 2.48 2.52 2.57 2.52 2.55
10% 7.66 7.70 7.67 7.66 7.57 7.45 7.42 7.63 7.56 7.55
20% 13.00 13.01 12.86 13.07 12.55 12.44 12.56 12.75 12.67 12.72

2 0% 10.70 10.72 10.54 10.57 10.37 10.26 10.26 10.56 10.42 10.51
10% 15.68 15.80 15.51 15.41 15.28 14.88 14.99 15.51 15.14 15.37
20% 20.52 20.90 20.60 20.57 20.21 19.89 19.83 20.36 20.19 20.10

R(θ) 0.02 0% 0.02 0.25 0.24 1.10 0.24 0.24 1.12 0.23 0.23 0.96
10% 2.40 2.82 2.35 5.86 3.35 2.03 4.21 1.77 1.31 1.51
20% 4.47 3.90 2.93 30.94 5.38 2.86 6.85 2.72 1.44 1.77

0.2 0% 0.60 1.23 1.13 1.24 1.15 1.01 1.22 0.86 0.65 1.01
10% 2.43 2.63 2.43 6.47 3.45 2.11 4.03 1.85 1.31 1.43
20% 4.78 4.50 3.06 32.77 4.96 2.81 4.98 2.43 1.57 1.87

0.5 0% 0.79 1.46 1.48 1.52 1.43 1.31 1.48 1.23 1.04 1.14
10% 3.07 3.10 2.74 6.14 3.91 2.25 4.84 2.01 1.32 1.40
20% 3.68 3.10 2.56 40.80 4.56 2.57 7.37 2.24 1.39 1.73

1 0% 1.51 1.80 1.83 2.69 3.15 1.94 2.62 1.56 1.25 1.37
10% 3.96 3.42 2.68 5.35 4.65 2.42 5.50 2.36 1.53 1.62
20% 3.86 3.97 2.64 30.56 5.61 3.12 8.28 2.50 1.58 1.89

2 0% 4.42 3.60 2.77 13.52 5.58 2.83 6.18 2.39 1.44 1.77
10% 6.06 5.09 3.21 15.05 9.50 3.35 9.36 3.09 1.53 1.90
20% 9.16 7.64 4.09 30.66 10.02 3.53 9.57 4.17 1.68 2.22

Table 3.7: Case B. Median of R(Y ) and R(θ) for sample size n = 100.

with δn = 2/λ2kn
+ 6

∑kn

j=1 aj/λkn
. Therefore

P(‖mkn
− m̂αn

kn
‖H′ > η) ≤ P

(
‖Γ− Γn‖∞ >

η

3δn‖∆‖H′

)
+ P

(
‖∆−∆n‖H′ >

λkn
η

6

)

+ I{αn>ηλ2
kn

/(6‖∆‖H′ )} + P(En).

(3.5)

It can be shown that

P(En) ≤ P(‖Γ− Γn‖∞ > λkn
/2) ≤ 2 exp (−Cnλ2kn

), (3.6)

where C is a positive constant independent of n, and the last inequality is derived from Lemma 5.3 in
Cardot et al. (1999). Furthermore,

P

(
‖Γ− Γn‖∞ >

η

3δn‖∆‖H′

)
≤ 2 exp

(
−Aηn

δ2n

)
, (3.7)

P

(
‖∆−∆n‖H′ >

λkn
η

6

)
≤ 2 exp (−Bηnλ

2
kn
) (3.8)

where Aη and Bη are positive constants independent of n. These two inequalities are obtained using
Lemma 5.3 in Cardot et al. (1999), and Lemma 2.5.1 (see Chapter 2, page 47). Using (3.6), (3.7), and
(3.8) in (3.5), one gets

P(‖mkn
− m̂αn

kn
‖H′ > η) ≤ 2 exp

(
−Aηn

δ2n

)
+ 2 exp (−Bηnλ

2
kn
) + I{αn>ηλ2

kn
/(6‖∆‖H′ )}

+ 2 exp (−Cnλ2kn
).
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GCV optR(Y ) optR(θ)

error r out θ̂PS θ̂kn θ̂αn
kn

θ̂k–NN
kn

θ̂kn θ̂αn
kn

θ̂k–NN
kn

θ̂kn θ̂αn
kn

θ̂k–NN
kn

R(Y ) 0.02 0% 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01
10% 4.95 4.97 4.94 4.97 4.91 4.89 4.89 4.94 4.93 4.93
20% 9.91 9.91 9.90 9.95 9.83 9.79 9.79 9.87 9.85 9.85

0.2 0% 0.11 0.11 0.11 0.12 0.11 0.11 0.11 0.11 0.11 0.12
10% 5.08 5.08 5.07 5.09 5.03 5.00 5.01 5.06 5.04 5.05
20% 10.00 10.02 9.99 10.04 9.92 9.86 9.86 9.96 9.95 9.94

0.5 0% 0.66 0.66 0.66 0.67 0.65 0.65 0.65 0.66 0.65 0.66
10% 5.68 5.71 5.68 5.68 5.62 5.57 5.59 5.65 5.63 5.61
20% 10.63 10.63 10.60 10.66 10.51 10.42 10.47 10.56 10.51 10.54

1 0% 2.61 2.64 2.63 2.62 2.59 2.58 2.57 2.61 2.60 2.60
20% 7.65 7.65 7.62 7.66 7.53 7.48 7.53 7.56 7.54 7.60
10% 12.44 12.47 12.42 12.45 12.35 12.28 12.27 12.40 12.37 12.35

2 0% 10.53 10.50 10.54 10.54 10.44 10.39 10.39 10.49 10.43 10.46
10% 15.41 15.47 15.37 15.43 15.24 15.18 15.19 15.28 15.32 15.34
20% 20.59 20.57 20.59 20.50 20.23 20.08 20.05 20.32 20.23 20.23

R(θ) 0.02 0% 0.01 0.22 0.21 0.95 0.21 0.21 1.00 0.21 0.21 0.88
10% 1.85 1.98 2.04 4.09 2.17 1.71 2.57 1.49 1.22 1.31
20% 1.91 2.21 2.17 11.11 3.04 1.93 5.03 1.81 1.29 1.51

0.2 0% 0.53 1.02 0.79 1.15 0.88 0.75 1.15 0.60 0.49 0.91
10% 1.51 2.04 1.92 2.99 2.17 1.65 2.39 1.56 1.21 1.36
20% 2.43 2.55 2.12 15.12 3.43 1.93 3.61 1.86 1.28 1.40

0.5 0% 0.68 1.34 1.32 1.36 1.28 1.22 1.28 1.15 0.89 1.10
10% 2.08 2.23 2.31 3.73 2.43 1.75 2.56 1.57 1.24 1.33
20% 2.46 2.46 2.26 11.24 2.99 1.94 4.12 1.71 1.26 1.48

1 0% 1.23 1.65 1.59 1.76 1.69 1.46 2.03 1.33 1.14 1.22
10% 2.36 2.23 2.39 4.88 2.73 1.86 3.61 1.63 1.27 1.35
20% 2.86 2.68 2.58 8.20 4.05 2.22 4.32 2.09 1.38 1.47

2 0% 2.43 2.44 2.32 3.71 3.57 2.19 3.78 1.81 1.29 1.46
10% 3.75 3.43 2.80 6.60 4.64 2.84 6.45 2.19 1.49 1.66
20% 4.85 3.85 3.21 17.51 5.72 2.48 5.96 2.47 1.44 1.76

Table 3.8: Case B. Median of R(Y ) and R(θ) for sample size n = 200.

GCV

error θ̂PS θ̂kn θ̂αn
kn

θ̂k–NN
kn

mean(R(Y )) 0.03698 0.03566 0.03293 0.02601
median(R(Y )) 0.03626 0.03466 0.03230 0.02585
sd(R(Y )) 0.01772 0.01579 0.01436 0.01483

Table 3.9: Canadian weather data. Mean, median and standard deviation of R(Y ).

GCV

error θ̂PS θ̂kn θ̂αn
kn

θ̂k–NN
kn

mean(R(Y )) 6.656 6.926 6.604 8.072
median(R(Y )) 6.313 6.524 6.088 7.598
sd(R(Y )) 1.935 2.153 1.939 2.157

Table 3.10: Spectrometric data. Mean, median and standard deviation of R(Y ).

GCV

error θ̂PS θ̂kn θ̂αn
kn

θ̂k–NN
kn

mean(R(Y )) 2.865 3.238 3.207 19.664
median(R(Y )) 2.780 3.074 3.062 19.202
sd(R(Y )) 0.966 0.866 0.833 5.221

Table 3.11: Atmospheric pollution data. Mean, median and standard deviation of R(Y ).
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Cardot et al. (1999) showed exp (−Aηn/δ
2
n), exp (−Bηnλ

2
kn
) and exp (−Cnλ2kn

) are general terms
of convergent series under hypothesis (C.2.8). On the other hand, under (C.3.1), there is an n0
such that αn < ηλ2kn

/(6‖∆‖H′) for all n > n0. Therefore,
∑

n∈N∗ P(‖mkn
− m̂αn

kn
‖H′ > η) < ∞, and

Borel–Cantelli Lemma gives ‖mkn
− m̂αn

kn
‖H′ → 0 a.s.

3.8.2 Formulation and proof of Lemma 3.8.1

Lemma 3.8.1. With γn = ‖∆‖H′{1/(λkn
λ̂kn

) + 2(1/λkn
+ 1/λ̂kn

)
∑kn

j=1 aj},

‖mkn
− m̂αn

kn
‖H′ ≤ γn‖Γ− Γn‖∞ +

‖∆−∆n‖H′

λ̂kn

+ αn
‖∆‖H′

λkn
λ̂kn

.

Proof. Take Γ̃kn
=
∑kn

j=1 λj v̂j ⊗H v̂j . The first step is to write

‖mkn
− m̂αn

kn
‖H′ ≤ ‖∆Πkn

‖H′‖(Πkn
ΓΠkn

)−1 − Γ̃−1
kn

‖∞ + ‖∆Πkn
‖H′‖Γ̃−1

kn
− (Π̂kn

(Γn + αnI)Π̂kn
)−1‖∞

+ ‖∆Πkn
−∆nΠ̂kn

‖H′‖(Π̂kn
(Γn + αnI)Π̂kn

)−1‖∞.
(3.9)

From (11) and (14) in the proof of Lemma 5.1 in Cardot et al. (1999),

‖∆Πkn
‖H′‖(Πkn

ΓΠkn
)−1 − Γ̃−1

kn
‖∞ ≤ 2

‖∆‖H′

λkn

‖Γ− Γn‖∞
kn∑

j=1

aj , (3.10)

‖∆Πkn
−∆nΠ̂kn

‖H′ ≤ 2‖∆‖H′‖Γ− Γn‖∞
kn∑

j=1

aj + ‖∆−∆n‖H′ . (3.11)

Moreover, with arguments as in the proof of Lemma 5.1 in Cardot et al. (1999), one has

‖∆Πkn
‖H′‖Γ̃−1

kn
− (Π̂kn

(Γn + αnI)Π̂kn
)−1‖∞ ≤ ‖∆‖H′

λkn
λ̂kn

(‖Γ− Γn‖∞ + αn), (3.12)

‖(Π̂kn
(Γn + αnI)Π̂kn

)−1‖∞ ≤ 1

λ̂kn

. (3.13)

Hence, using (3.10), (3.11), (3.12), and (3.13) in (3.9), one gets

‖mkn
− m̂αn

kn
‖H′ ≤ ‖∆‖H′


 1

λkn
λ̂kn

+ 2

(
1

λkn

+
1

λ̂kn

)
kn∑

j=1

aj


 ‖Γ− Γn‖∞ +

‖∆−∆n‖H′

λ̂kn

+ αn
‖∆‖H′

λkn
λ̂kn

.

3.8.3 Proof of Theorem 3.2.3

Consider Lemma 2.5.2 (see Chapter 2, page 49), with γj = (λ̂j + αn)
−1 and wj = v̂j . Then,

R
(γ,w)
kn

= θ −
kn∑

j=1

λ̂j

λ̂j + αn

〈v̂j , θ〉v̂j = R̂kn
+

kn∑

j=1

αn

λ̂j + αn

〈v̂j , θ〉v̂j ,
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with R̂kn
defined in (2.7) (see Chapter 2, page 39). One then obtains for the conditional prediction

error

EXn+1(Yn+1 − 〈θ̂αn

kn
, Xn+1〉)2 = σ2 +

σ2

n

kn∑

j=1

λ̂j

(λ̂j + αn)2
〈Xn+1, v̂j〉2

+ 〈Xn+1, R̂kn
+

kn∑

j=1

αn

λ̂j + αn

〈v̂j , θ〉v̂j〉2.
(3.14)

Some calculations and (C.3.2) allow to obtain

λ̂j

(λ̂j + αn)2
=

1

λ̂j
− 2

αn

λ̂2j
+

α2
n

λ̂j(λ̂j + αn)2

(
3 + 2

αn

λ̂j

)
=

1

λ̂j
− 2

αn

λ̂2j
(1 + oa.s.(1)), (3.15)

αn

λ̂j + αn

=
αn

λ̂j

(
1− αn

λ̂j + αn

)
=
αn

λ̂j
(1 + oa.s.(1)). (3.16)

Using (3.15) and (3.16) in (3.14), one gets

EXn+1(Yn+1 − 〈θ̂αn

kn
, Xn+1〉)2 = σ2 +

σ2

n

kn∑

j=1

〈Xn+1, v̂j〉2
λ̂j

− 2αn
σ2

n

kn∑

j=1

〈Xn+1, v̂j〉2
λ̂2j

(1 + oa.s.(1))

+ 〈Xn+1, R̂kn
〉2 + 2αn〈Xn+1, R̂kn

〉〈Xn+1, T̂kn
〉(1 + oa.s.(1)) + α2

n〈Xn+1, T̂kn
〉2(1 + oa.s.(1)),

where T̂kn
=
∑kn

j=1 λ̂
−1
j 〈θ, v̂j〉v̂j . Comparing this expression with the conditional prediction error for

θ̂kn
given in Theorem 2.3.14 (see Chapter 2, page 39), one gets

EXn+1(Yn+1 − 〈θ̂αn

kn
, Xn+1〉)2 − EXn+1(Yn+1 − 〈θ̂kn

, Xn+1〉)2 = −2αn
σ2

n

kn∑

j=1

〈Xn+1, v̂j〉2
λ̂2j

(1 + oa.s.(1))

+ 2αn〈Xn+1, R̂kn
〉〈Xn+1, T̂kn

〉(1 + oa.s.(1)) + α2
n〈Xn+1, T̂kn

〉2(1 + oa.s.(1)).

On the other hand, for the conditional estimation error Lemma 2.5.2 (see Chapter 2, page 49)
implies

EXn(‖θ − θ̂αn

kn
‖2) = σ2

n

kn∑

j=1

λ̂j

(λ̂j + αn)2
+ ‖R̂kn

‖2 +

∥∥∥∥∥∥

kn∑

j=1

αn

λ̂j + αn

〈v̂j , θ〉v̂j

∥∥∥∥∥∥

2

. (3.17)

Using (3.15) and (3.16) in (3.17), one has

EXn(‖θ − θ̂αn

kn
‖2) = σ2

n

kn∑

j=1

1

λ̂j
− 2αn

σ2

n

kn∑

j=1

1

λ̂2j
(1 + oa.s.(1)) + ‖R̂kn

‖2 + α2
n‖T̂kn

‖2(1 + oa.s.(1)),

with T̂kn
defined as before. Bearing in mind Theorem 2.3.14 (see Chapter 2, page 39),

EXn(‖θ − θ̂αn

kn
‖2)− EXn(‖θ − θ̂kn

‖2) = −2αn
σ2

n

kn∑

j=1

1

λ̂2j
(1 + oa.s.(1)) + α2

n‖T̂kn
‖2(1 + oa.s.(1)).

3.8.4 Proof of Corollary 3.2.4

Note that

〈Xn+1, T̂kn
〉2 =




kn∑

j=1

〈θ, v̂j〉
λ̂j

〈Xn+1, v̂j〉




2

≤




kn∑

j=1

〈θ, v̂j〉2





kn∑

j=1

〈Xn+1, v̂j〉2
λ̂2j




≤ ‖θ‖2
kn∑

j=1

〈Xn+1, v̂j〉2
λ̂2j

,
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and so αn〈Xn+1, T̂kn
〉2(n−1

∑kn

j=1 λ̂
−2
j 〈Xn+1, v̂j〉2)−1 ≤ nαn‖θ‖2. Hence, using Theorem 3.2.3 and

(C.3.3), one has

EXn+1(Yn+1 − 〈θ̂αn

kn
, Xn+1〉)2 − EXn+1(Yn+1 − 〈θ̂kn

, Xn+1〉)2 = −2αn
σ2

n

kn∑

j=1

〈Xn+1, v̂j〉2
λ̂2j

(1 + oa.s.(1))

+ 2αn〈Xn+1, R̂kn
〉〈Xn+1, T̂kn

〉(1 + oa.s.(1)).

Furthermore,

‖T̂kn
‖2 =

kn∑

j=1

〈θ, v̂j〉2
λ̂2j

≤ ‖θ‖2
kn∑

j=1

1

λ̂2j
.

Then αn‖T̂kn
‖2(n−1

∑kn

j=1 λ̂
−2
j ) ≤ nαn‖θ‖2. Applying this inequality and (C.3.3) to Theorem 3.2.3,

one gets

EXn(‖θ − θ̂αn

kn
‖2)− EXn(‖θ − θ̂kn

‖2) = −2αn
σ2

n

kn∑

j=1

1

λ̂2j
(1 + oa.s.(1)).

3.8.5 Proof of Theorem 3.3.2

The notation and the structure of this proof are the same as that of Theorem 3.2.2.

One gets

‖m− m̂hn

kn
‖H′ ≤ ‖m−mkn

‖H′ + ‖mkn
− m̂hn

kn
‖H′ ,

where mkn
= ∆Πkn

(Πkn
ΓΠkn

)−1 being Πkn
the orthogonal projection onto the space spanned by the

first kn eigenfunctions of Γ. Thus one only has to show that ‖mkn
− m̂hn

kn
‖H′ → 0, since Cardot et al.

(1999) showed that ‖m−mkn
‖H′ → 0.

Applying Lemma 3.8.2 (see page 77), one gets in En

‖mkn
− m̂hn

kn
‖H′ ≤ δn‖∆‖H′‖Γ− Γn‖∞ + 2

‖∆−∆hn
n ‖H′

λkn

,

being En = {λkn
/2 < λ̂kn

< 3λkn
/2}, and δn = 2/λ2kn

+ 6
∑kn

j=1 aj/λkn
. Consequently,

P(‖mkn
−m̂hn

kn
‖H′ > η) ≤ P

(
‖Γ− Γn‖∞ >

η

2δn‖∆‖H′

)
+P

(
‖∆−∆hn

n ‖H′ >
λkn

η

4

)
+P(En). (3.18)

Using (3.6), (3.7), and Lemma 3.8.3 (see page 77) in (3.18), one has

P(‖mkn
− m̂hn

kn
‖H′ > η) ≤ 2 exp (−Aηn/δ

2
n) + 4 exp (−Bηnλ

2
kn
) + 2 exp (−Cnλ2kn

)

+ P

(
sup
x∈C

|m(x)− m̂hn
(x)| > Cηλkn

)
.

where C, Aη, Bη and Cη are positive constants independent of n. Cardot et al. (1999) showed
exp (−Aηn/δ

2
n), exp (−Bηnλ

2
kn
) and exp (−Cnλ2kn

) are general terms of convergent series under hy-
pothesis (C.2.8). On the other hand, Theorem 2.4.11 (see Chapter 2, page 45) and (C.3.5) ensure
that

P

(
sup
x∈C

|m(x)− m̂hn
(x)| > Cηλkn

)
= 0,

for n large enough. As a result, one obtains that
∑

n∈N∗ P(‖mkn
− m̂hn

kn
‖H′ > η) < ∞ and, applying

Borel–Cantelli Lemma, one has ‖mkn
− m̂hn

kn
‖H′ → 0 a.s.
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3.8.6 Formulation and proof of Lemma 3.8.2

Lemma 3.8.2. With γn = ‖∆‖H′{1/(λkn
λ̂kn

) + 2(1/λkn
+ 1/λ̂kn

)
∑kn

j=1 aj},

‖mkn
− m̂hn

kn
‖H′ ≤ γn‖Γ− Γn‖∞ +

‖∆−∆hn
n ‖H′

λ̂kn

.

Proof. It suffices to follow the proof of Lemma 5.1 in Cardot et al. (1999), replacing ∆n with ∆hn
n .

3.8.7 Formulation and proof of Lemma 3.8.3

Lemma 3.8.3. Under (C.2.6), (C.2.7), and (C.3.4) (see Chapter 2, page 38 and page 59), it holds
that

P(‖∆hn
n −∆‖H′ > ξ) ≤ 4 exp

(
− ξ2n

2 c5(c5 + c6ξ)

)
+ P

(
sup
x∈C

|m(x)− m̂hn
(x)| > ξ

c7

)
,

where c5, c6 and c7 are positive constants.

Proof. This lemma adapts the part (b) of Lemma 5.3 in Cardot et al. (1999) to the weaker assumption
(C.2.7) and the operator ∆hn

n .
Remark that

‖∆hn
n −∆‖H′ ≤ ‖∆hn

n −∆n‖H′ + ‖∆n −∆‖H′ ,

where, by (C.2.6),

‖∆hn
n −∆n‖H′ =

∥∥∥∥∥
1

n

n∑

i=1

Xi ⊗H′ (Yi − m̂hn
(Xi))

∥∥∥∥∥
H′

≤ 1

n

∥∥∥∥∥

n∑

i=1

Xi ⊗H′ ǫi

∥∥∥∥∥
H′

+ c1 sup
x∈C

|m(x)− m̂hn
(x)|.

Therefore, taking Ui = Xi ⊗H′ ǫi for i = 1, . . . , n, one has

P(‖∆hn
n −∆‖H′ > ξ) ≤ P

(
1

n
‖

n∑

i=1

Ui‖H′ >
ξ

3

)
+ P

(
sup
x∈C

|m(x)− m̂hn
(x)| > ξ

3c1

)

+ P

(
‖∆n −∆‖H′ >

ξ

3

)
.

(3.19)

Note that E(Ui) = 0, and ‖Ui‖H′ ≤ |ǫi| ‖Xi‖. As a by–product, ∀l ≥ 2, it holds ‖Ui‖lH′ ≤ |ǫi|l‖Xi‖l.
From this inequality, (C.2.6), and (C.2.7), one gets E(‖Ui‖lH′) ≤ l!c2c

l
1. Then

E(‖Ui‖lH′) ≤ l!

2
b2i c

l−2, ∀l ≥ 2

where bi =
√

2c2c21 and c = c1. Therefore, the hypotheses of the Yurinskii exponential inequality
(Yurinskii, 1976) hold, and one gets

P

(∥∥∥∥∥

n∑

i=1

Ui

∥∥∥∥∥
H′

> xBn

)
≤ 2 exp

(
− x2

2(1 + 1.62xc/Bn)

)
,

where Bn = (
∑n

i=1 b
2
i )

1/2 =
√
n c3 with c3 =

√
2c2c1. Hence,

P

(
1

n
‖

n∑

i=1

Ui‖H′ >
ξ

3

)
= P

(∥∥∥∥∥

n∑

i=1

Ui

∥∥∥∥∥
H′

>

√
nξ

3c3
Bn

)
≤ 2 exp

(
− ξ2n

6 c3(3c3 + c4ξ)

)
, (3.20)
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where c4 is a positive finite constant. Therefore, using (3.20) and Lemma 2.5.1 (see Chapter 2, page 47)
in (3.19), one gets

P(‖∆hn
n −∆‖H′ > ξ) ≤ 4 exp

(
− ξ2n

2 c5(c5 + c6ξ)

)
+ P

(
sup
x∈C

|m(x)− m̂hn
(x)| > ξ

c7

)
,

with c5, c6 and c7 positive finite constants.

3.8.8 Proof of Theorem 3.3.3

Consider Lemma 3.8.4 (see page 79), with γj = λ̂−1
j and ωj = v̂j . In this case,

R
(γ,ω)
kn

= θ −
kn∑

j=1

λ̂−1
j 〈Γnv̂j , θ〉v̂j = R̂kn

with R̂kn
defined in (2.7) (see Chapter 2, page 39). One then obtains for the conditional prediction

error,

EXn+1(Yn+1 − 〈θ̂hn

kn
, Xn+1〉)2 = σ2 +

kn∑

j1=1

kn∑

j2=1

Uhn
n (v̂j1)U

hn
n (v̂j2)

λ̂j1 λ̂j2
〈Xn+1, v̂j1〉〈Xn+1, v̂j2〉

+ σ2
kn∑

j1=1

kn∑

j2=1

Whn
n (v̂j1 , v̂j2)

λ̂j1 λ̂j2
〈Xn+1, v̂j1〉〈Xn+1, v̂j2〉

− 2〈Xn+1, R̂kn
〉
〈
Xn+1,

kn∑

j=1

Uhn
n (v̂j)

λ̂j
v̂j

〉
+ 〈Xn+1, R̂kn

〉2,

and for the conditional estimation error,

EXn(‖θ − θ̂hn

kn
‖2) =

kn∑

j=1

(Uhn
n (v̂j))

2

λ̂2j
+ σ2

kn∑

j=1

Whn
n (v̂j , v̂j)

λ̂2j
+ ‖R̂kn

‖2,

where

Uhn
n (x) =

1

n

n∑

i=1

〈Xi, x〉
(

n∑

l=1

wl,hn
(Xi)(m(Xl)−m(Xi))

)
, ∀x ∈ H,

and

Whn
n (x, y) =

1

n2

n∑

i1=1

n∑

i2=1

〈Xi1 , x〉〈Xi2 , y〉
(

n∑

l=1

wl,hn
(Xi1)wl,hn

(Xi2)

)
, ∀x, y ∈ H,

being wl,hn
(x) = K(h−1

n d(x,Xl))/
∑n

l′=1K(h−1
n d(x,Xl′)) the weights of the kernel estimator m̂hn

.
Hence the proof is finished using Theorem 2.3.14 (see Chapter 2, page 39).
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3.8.9 Formulation and proof of Lemma 3.8.4

Lemma 3.8.4. Considering the regression model (2.1) (see Chapter 2, page 32), let θ̂ be an estimator
for θ such that

θ̂ =

kn∑

j=1

γj∆
hn
n ωjωj ,

where {(γj , ωj)}j ⊂ R×H only depend on Xn = {X1, . . . , Xn}. Then, it holds that

EXn+1(Yn+1 − 〈θ̂, Xn+1〉)2 = σ2 +

kn∑

j1=1

kn∑

j2=1

γj1γj2U
hn
n (ωj1)U

hn
n (ωj2)〈Xn+1, ωj1〉〈Xn+1, ωj2〉

+ σ2
kn∑

j1=1

kn∑

j2=1

γj1γj2W
hn
n (ωj1 , ωj2)〈Xn+1, ωj1〉〈Xn+1, ωj2〉

− 2〈Xn+1, R
(γ,ω)
kn

〉
〈
Xn+1,

kn∑

j=1

γjU
hn
n (ωj)ωj

〉
+ 〈Xn+1, R

(γ,ω)
kn

〉2,

and

EXn(‖θ − θ̂‖2) =
kn∑

j1=1

kn∑

j2=1

γj1γj2U
hn
n (ωj1)U

hn
n (ωj2)〈ωj1 , ωj2〉

+ σ2
kn∑

j1=1

kn∑

j2=1

γj1γj2W
hn
n (ωj1 , ωj2)〈ωj1 , ωj2〉 − 2

〈
R

(γ,ω)
kn

,

kn∑

j=1

γjU
hn
n (ωj)ωj

〉
+ ‖R(γ,ω)

kn
‖2,

where

Uhn
n (x) =

1

n

n∑

i=1

〈Xi, x〉
(

n∑

l=1

wl,hn
(Xi)(m(Xl)−m(Xi))

)
, ∀x ∈ H,

and

Whn
n (x, y) =

1

n2

n∑

i1=1

n∑

i2=1

〈Xi1 , x〉〈Xi2 , y〉
(

n∑

l=1

wl,hn
(Xi1)wl,hn

(Xi2)

)
, ∀x, y ∈ H,

being wl,hn
(x) = K(h−1

n d(x,Xl))/
∑n

l′=1K(h−1
n d(x,Xl′)) the weights of the kernel estimator m̂hn

, and

R
(γ,ω)
kn

= θ −∑kn

j=1 γj〈Γnωj , θ〉ωj .

Proof. This proof is similar to that of Lemma 2.5.2 (see Chapter 2, page 49).
Note that ∆hn

n x = 〈Γnx, θ〉+∆ǫ
nx+ Zhn

n x for all x ∈ H, where ∆ǫ
n = n−1

∑n
i=1Xi ⊗H′ ǫi and

Zhn
n =

1

n

n∑

i=1

Xi ⊗H′

(
n∑

l=1

wl,hn
(Xi)(Yl − Yi)

)
,

being wl,hn
the weights of the kernel estimator m̂hn

, i.e.,

wl,hn
(x) =

K(h−1
n d(x,Xl))∑n

l′=1K(h−1
n d(x,Xl′))

.

Hence, the difference θ − θ̂ can be expressed as

θ − θ̂ = R
(γ,ω)
kn

−
kn∑

j=1

γj∆
ǫ
nωjωj −

kn∑

j=1

γjZ
hn
n ωjωj , with R

(γ,ω)
kn

= θ −
kn∑

j=1

γj〈Γnωj , θ〉ωj . (3.21)
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Then the regression model (2.1) (see Chapter 2, page 32), (3.21), and conditions on ǫ imply that

EXn+1(Yn+1 − 〈θ̂, Xn+1〉)2 = EXn+1


ǫn+1 +

〈
Xn+1, R

(γ,ω)
kn

−
kn∑

j=1

γj∆
ǫ
nωjωj −

kn∑

j=1

γjZ
hn
n ωjωj

〉


2

= σ2 +

kn∑

j1=1

kn∑

j2=1

γj1γj2EXn(∆ǫ
nωj1∆

ǫ
nωj2)〈Xn+1, ωj1〉〈Xn+1, ωj2〉

+

kn∑

j1=1

kn∑

j2=1

γj1γj2EXn(Zhn
n ωj1Z

hn
n ωj2)〈Xn+1, ωj1〉〈Xn+1, ωj2〉

+ 2

kn∑

j1=1

kn∑

j2=1

γj1γj2EXn(∆ǫ
nωj1Z

hn
n ωj2)〈Xn+1, ωj1〉〈Xn+1, ωj2〉

− 2〈Xn+1, R
(γ,ω)
kn

〉
〈
Xn+1,

kn∑

j=1

γjEXn(∆ǫ
nωj)ωj

〉

− 2〈Xn+1, R
(γ,ω)
kn

〉
〈
Xn+1,

kn∑

j=1

γjEXn(Zhn
n ωj)ωj

〉
+ 〈Xn+1, R

(γ,ω)
kn

〉2.

(3.22)

It can be shown that

EXn(∆ǫ
nωj) =

1

n

n∑

i=1

〈Xi, ωj〉EXn(ǫi) = 0, (3.23)

EXn(∆ǫ
nωj1∆

ǫ
nωj2) =

1

n2

n∑

i1=1

n∑

i2=1

〈Xi1 , ωj1〉〈Xi2 , ωj2〉EXn(ǫi1ǫi2) =
σ2

n
〈Γnωj1 , ωj2〉, (3.24)

and

EXn(∆ǫ
nωj1Z

hn
n ωj2) =

1

n2

n∑

i1=1

n∑

i2=1

〈Xi1 , ωj1〉〈Xi2 , ωj2〉
(

n∑

l=1

wl,hn
(Xi2)EXn(ǫi1(Yl − Yi2))

)

=
1

n2

n∑

i1=1

n∑

i2=1

〈Xi1 , ωj1〉〈Xi2 , ωj2〉
(

n∑

l=1

wl,hn
(Xi2)EXn(ǫi1(ǫl − ǫi2))

)

=
σ2

n2

n∑

i1=1

n∑

i2=1

〈Xi1 , ωj1〉〈Xi2 , ωj2〉wi1,hn
(Xi2)−

σ2

n
〈Γnωj1 , ωj2〉.

(3.25)

Furthermore, if Uhn
n and Whn

n are defined as

Uhn
n (x) =

1

n

n∑

i=1

〈Xi, x〉
(

n∑

l=1

wl,hn
(Xi)(m(Xl)−m(Xi))

)
, ∀x ∈ H,

and

Whn
n (x, y) =

1

n2

n∑

i1=1

n∑

i2=1

〈Xi1 , x〉〈Xi2 , y〉
(

n∑

l=1

wl,hn
(Xi1)wl,hn

(Xi2)

)
, ∀x, y ∈ H,

respectively, then one gets

EXn(Zhn
n ωj) =

1

n

n∑

i=1

〈Xi, ωj〉
(

n∑

l=1

wl,hn
(Xi)EXn(Yl − Yi)

)
= Uhn

n (ωj), (3.26)
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and

EXn(Zhn
n ωj1Z

hn
n ωj2)

=
1

n2

n∑

i1=1

n∑

i2=1

〈Xi1 , ωj1〉〈Xi2 , ωj2〉
(

n∑

l1=1

n∑

l2=1

wl1,hn
(Xi1)wl2,hn

(Xi2)EXn((Yl1 − Yi1)(Yl2 − Yi2))

)

= Uhn
n (ωj1)U

hn
n (ωj2)

+
1

n2

n∑

i1=1

n∑

i2=1

〈Xi1 , ωj1〉〈Xi2 , ωj2〉
(

n∑

l1=1

n∑

l2=1

wl1,hn
(Xi1)wl2,hn

(Xi2)EXn((ǫl1 − ǫi1)(ǫl2 − ǫi2))

)

= Uhn
n (ωj1)U

hn
n (ωj2) +

1

n2

n∑

i1=1

n∑

i2=1

〈Xi1 , ωj1〉〈Xi2 , ωj2〉
(

n∑

l=1

wl,hn
(Xi1)wl,hn

(Xi2)EXn(ǫ2l )

)

− 2

n2

n∑

i1=1

n∑

i2=1

〈Xi1 , ωj1〉〈Xi2 , ωj2〉
(

n∑

l=1

wi2,hn
(Xi1)wl,hn

(Xi2)EXn(ǫ2i2)

)

+
1

n2

n∑

i=1

〈Xi, ωj1〉〈Xi, ωj2〉
(

n∑

l1=1

n∑

l2=1

wl1,hn
(Xi)wl2,hn

(Xi)EXn(ǫ2i )

)

= Uhn
n (ωj1)U

hn
n (ωj2) + σ2Whn

n (ωj1 , ωj2)− 2
σ2

n2

n∑

i1=1

n∑

i2=1

〈Xi1 , ωj1〉〈Xi2 , ωj2〉wi2,hn
(Xi1)

+
σ2

n
〈Γnωj1 , ωj2〉.

(3.27)

Consequently, using (3.23), (3.24), (3.25), (3.26), and (3.27) in (3.22) one has

EXn+1(Yn+1 − 〈θ̂, Xn+1〉)2 = σ2 +

kn∑

j1=1

kn∑

j2=1

γj1γj2U
hn
n (ωj1)U

hn
n (ωj2)〈Xn+1, ωj1〉〈Xn+1, ωj2〉

+ σ2
kn∑

j1=1

kn∑

j2=1

γj1γj2W
hn
n (ωj1 , ωj2)〈Xn+1, ωj1〉〈Xn+1, ωj2〉

− 2〈Xn+1, R
(γ,ω)
kn

〉
〈
Xn+1,

kn∑

j=1

γjU
hn
n (ωj)ωj

〉
+ 〈Xn+1, R

(γ,ω)
kn

〉2.

For the conditional estimation error, (3.21) gives

EXn(‖θ − θ̂‖2)

= EXn



〈
R

(γ,ω)
kn

−
kn∑

j=1

γj∆
ǫ
nωjωj −

kn∑

j=1

γjZ
hn
n ωjωj , R

(γ,ω)
kn

−
kn∑

j=1

γj∆
ǫ
nωjωj −

kn∑

j=1

γjZ
hn
n ωjωj

〉


=

kn∑

j1=1

kn∑

j2=1

γj1γj2EXn(∆ǫ
nωj1∆

ǫ
nωj2)〈ωj1 , ωj2〉+

kn∑

j1=1

kn∑

j2=1

γj1γj2EXn(Zhn
n ωj1Z

hn
n ωj2)〈ωj1 , ωj2〉

+ 2

kn∑

j1=1

kn∑

j2=1

γj1γj2EXn(∆ǫ
nωj1Z

hn
n ωj2)〈ωj1 , ωj2〉 − 2

〈
R

(γ,ω)
kn

,

kn∑

j=1

γjEXn(∆ǫ
nωj)ωj

〉

− 2

〈
R

(γ,ω)
kn

,

kn∑

j=1

γjEXn(Zhn
n ωj)ωj

〉
+ ‖R(γ,ω)

kn
‖2.

(3.28)
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As a result, using (3.23), (3.24), (3.25), (3.26), and (3.27) in (3.28), one has

EXn(‖θ − θ̂‖2) =
kn∑

j1=1

kn∑

j2=1

γj1γj2U
hn
n (ωj1)U

hn
n (ωj2)〈ωj1 , ωj2〉

+ σ2
kn∑

j1=1

kn∑

j2=1

γj1γj2W
hn
n (ωj1 , ωj2)〈ωj1 , ωj2〉 − 2

〈
R

(γ,ω)
kn

,

kn∑

j=1

γjU
hn
n (ωj)ωj

〉
+ ‖R(γ,ω)

kn
‖2.

3.8.10 Proof of Corollary 3.3.4

Note that if wl,hn
(Xi) = 1 when i = l, and wl,hn

(Xi) = 0 when i 6= l, then Uhn
n (x) = 0 for all x ∈ H,

and Whn
n (x, y) = n−1〈Γnx, y〉 for all x, y ∈ H. Thus, the proof is finished by Theorem 3.3.3, given that

EXn+1(Yn+1 − 〈θ̂hn

kn
, Xn+1〉)2 = σ2 +

σ2

n

kn∑

j=1

〈Xn+1, v̂j〉2
λ̂j

+ 〈Xn+1, R̂kn
〉2,

EXn(‖θ − θ̂hn

kn
‖2) = σ2

n

kn∑

j=1

1

λ̂j
+ ‖R̂kn

‖2.

3.8.11 Proof of Corollary 3.3.5

Note that if wl,hn
(Xi) = n−1 for all i = 1, . . . , n, then

Uhn
n (x) =

1

n

n∑

i=1

〈Xi, x〉
(
〈θ,X〉 − 〈θ,Xi〉

)
= 〈θ,X〉〈X,x〉 − 〈Γnx, θ〉, ∀x ∈ H,

Whn
n (x, y) =

1

n2

n∑

i1=1

n∑

i2=1

〈Xi1 , x〉〈Xi2 , y〉
(

n∑

l=1

1

n2

)
=

1

n
〈X,x〉〈X, y〉, ∀x, y ∈ H,

where X = n−1
∑n

i=1Xi. Consequently, Theorem 3.3.3 gives

EXn+1(Yn+1 − 〈θ̂hn

kn
, Xn+1〉)2 − EXn+1(Yn+1 − 〈θ̂kn

, Xn+1〉)2

=




kn∑

j=1

(〈θ,X〉〈X, v̂j〉 − λ̂j〈v̂j , θ〉)
λ̂j

〈Xn+1, v̂j〉




2

+
σ2

n

kn∑

j=1

〈X, v̂j〉
λ̂j

〈Xn+1, v̂j〉 −
σ2

n

kn∑

j=1

〈Xn+1, v̂j〉2
λ̂j

− 2〈Xn+1, R̂kn
〉
〈
Xn+1,

kn∑

j=1

〈θ,X〉〈X, v̂j〉 − λ̂j〈v̂j , θ〉
λ̂j

v̂j

〉

=
(
〈θ,X〉〈Xn+1, M̂kn

〉 − 〈Xn+1, θ − R̂kn
〉
)2

+
σ2

n


〈Xn+1, M̂kn

〉2 −
kn∑

j=1

〈Xn+1, v̂j〉2
λ̂j




− 2〈θ,X〉〈Xn+1, R̂kn
〉〈Xn+1, M̂kn

〉+ 2〈Xn+1, R̂kn
〉〈Xn+1, θ − R̂kn

〉

=
σ2

n


〈Xn+1, M̂kn

〉2 −
kn∑

j=1

〈Xn+1, v̂j〉2
λ̂j


+

(
〈θ,X〉〈Xn+1, M̂kn

〉 − 〈Xn+1, θ〉
)2

+ 2
(
〈θ,X〉〈Xn+1, M̂kn

〉 − 〈Xn+1, θ〉
)
〈Xn+1, R̂kn

〉+ 〈Xn+1, R̂kn
〉2

− 2〈θ,X〉〈Xn+1, R̂kn
〉〈Xn+1, M̂kn

〉+ 2〈Xn+1, R̂kn
〉〈Xn+1, θ〉 − 2〈Xn+1, R̂kn

〉2

=
σ2

n


〈Xn+1, M̂kn

〉2 −
kn∑

j=1

〈Xn+1, v̂j〉2
λ̂j


+

(
〈θ,X〉〈Xn+1, M̂kn

〉 − 〈Xn+1, θ〉
)2

− 〈Xn+1, R̂kn
〉2,
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and

EXn(‖θ − θ̂hn

kn
‖2)− EXn(‖θ − θ̂kn

‖2) =
kn∑

j=1

(〈θ,X〉〈X, v̂j〉 − λ̂j〈v̂j , θ〉)2
λ̂2j

+
σ2

n

kn∑

j=1

〈X, v̂j〉2
λ̂2j

− σ2

n

kn∑

j=1

1

λ̂j

=
σ2

n




kn∑

j=1

〈X, v̂j〉2
λ̂2j

−
kn∑

j=1

1

λ̂j


+ 〈θ,X〉2

kn∑

j=1

〈X, v̂j〉2
λ̂2j

− 2〈θ,X〉
〈

kn∑

j=1

〈X, v̂j〉
λ̂j

v̂j , θ

〉
+

kn∑

j=1

〈θ, v̂j〉2

=
σ2

n


‖M̂kn

‖2 −
kn∑

j=1

1

λ̂j


+ 〈θ,X〉2‖M̂kn

‖2 − 2〈θ,X〉〈M̂kn
, θ〉+ ‖θ‖2 − ‖R̂kn

‖2

=
σ2

n


‖M̂kn

‖2 −
kn∑

j=1

1

λ̂j


+

(
〈θ,X〉‖M̂kn

‖ − ‖θ‖
)2

+ 2〈θ,X〉
(
‖M̂kn

‖ ‖θ‖ − 〈M̂kn
, θ〉
)
− ‖R̂kn

‖2,

with M̂kn
=
∑kn

j=1 λ̂
−1
j 〈X, v̂j〉v̂j .

3.8.12 Proof of Theorem 3.4.1

Consider Lemma 2.5.2 (see Chapter 2, page 49), with γj = (λ̂αn,1
j )−1 and wj = v̂αn,1

j . Therefore, the
conditional prediction error is given by

EXn+1(Yn+1 − 〈θ̂PS, αn

kn
, Xn+1〉)2 = σ2

+
σ2

n

kn∑

j1=1

kn∑

j2=1

(λ̂αn,1
j1

λ̂αn,1
j2

)−1〈Γnv̂
αn,1
j1

, v̂αn,1
j2

〉〈Xn+1, v̂
αn,1
j1

〉〈Xn+1, v̂
αn,1
j2

〉+ 〈Xn+1, R
(γ,w)
kn

〉2,
(3.29)

with R
(γ,w)
kn

= θ −∑kn

j=1 (λ̂
αn,1
j )−1〈Γnv̂

αn,1
j , θ〉v̂αn,1

j . Recall that {λ̂αn,1
j , v̂αn,1

j }j satisfy

Γnv̂
αn,1
j = λ̂αn,1

j v̂αn,1
j + αnQv̂

αn,1
j and 〈v̂αn,1

j1
, v̂αn,1

j2
〉 = δj1j2 , (3.30)

where δj1j2 = 1 if j1 = j2, and 0 otherwise. Hence,

R
(γ,w)
kn

= θ −
kn∑

j=1

〈θ, v̂αn,1
j 〉v̂αn,1

j − αn

kn∑

j=1

〈θ,Qv̂αn,1
j 〉

λ̂αn,1
j

v̂αn,1
j . (3.31)

Using (3.30) and (3.31) in (3.29), one gets

EXn+1(Yn+1 − 〈θ̂PS, αn

kn
, Xn+1〉)2 = σ2

+
σ2

n

kn∑

j=1

〈Xn+1, v̂
αn,1
j 〉2

λ̂αn,1
j

+ αn
σ2

n

kn∑

j1=1

kn∑

j2=1

ραn,1
j1,j2

λ̂αn,1
j1

λ̂αn,1
j2

〈Xn+1, v̂
αn,1
j1

〉〈Xn+1, v̂
αn,1
j2

〉

+

〈
Xn+1, θ −

kn∑

j=1

〈θ, v̂αn,1
j 〉v̂αn,1

j − αn

kn∑

j=1

〈θ,Qv̂αn,1
j 〉

λ̂αn,1
j

v̂αn,1
j

〉2

,

(3.32)

where ραn,1
j1,j2

= 〈v̂αn,1
j1

, Qv̂αn,1
j2

〉. On the other hand, due to the asymptotic expansions of λ̂αn,1
j and

v̂αn,1
j , ones has

1

λ̂αn,1
j

=
1

λ̂j
+ αn

ρj

λ̂2j
(1 + oa.s.(1)) and v̂αn,1

j = v̂j − αnΠjQv̂j + oa.s.(αn). (3.33)
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Thus, using (3.33) in (3.32),

EXn+1(Yn+1 − 〈θ̂PS, αn

kn
, Xn+1〉)2 = σ2 +

σ2

n

kn∑

j=1

〈Xn+1, v̂j〉2
λ̂j

− 2αn
σ2

n

kn∑

j=1

〈Xn+1, v̂j〉〈Xn+1,ΠjQv̂j〉
λ̂j

(1 + oa.s.(1)) + αn
σ2

n

kn∑

j=1

ρj
〈Xn+1, v̂j〉2

λ̂2j
(1 + oa.s.(1))

+ αn
σ2

n

kn∑

j1=1

kn∑

j2=1

ρj1,j2

λ̂j1 λ̂j2
〈Xn+1, v̂j1〉〈Xn+1, v̂j2〉(1 + oa.s.(1)) + 〈Xn+1, R̂kn

〉2

+ 2αn〈Xn+1, R̂kn
〉〈Xn+1, Ĉ

PS
kn

〉(1 + oa.s.(1)) + α2
n〈Xn+1, Ĉ

PS
kn

〉2(1 + oa.s.(1)),

with ĈPS
kn

=
∑kn

j=1 (〈θ, v̂j〉ΠjQv̂j + 〈θ,ΠjQv̂j〉v̂j − λ̂−1
j 〈θ,Qv̂j〉v̂j), and by Theorem 2.3.14 (see Chap-

ter 2, page 39)

EXn+1(Yn+1 − 〈θ̂PS, αn

kn
, Xn+1〉)2 − EXn+1(Yn+1 − 〈θ̂kn

, Xn+1〉)2

= −2αn
σ2

n

kn∑

j=1

〈Xn+1, v̂j〉〈Xn+1,ΠjQv̂j〉
λ̂j

(1 + oa.s.(1)) + αn
σ2

n

kn∑

j=1

ρj
〈Xn+1, v̂j〉2

λ̂2j
(1 + oa.s.(1))

+ αn
σ2

n

kn∑

j1=1

kn∑

j2=1

ρj1,j2

λ̂j1 λ̂j2
〈Xn+1, v̂j1〉〈Xn+1, v̂j2〉(1 + oa.s.(1))

+ 2αn〈Xn+1, R̂kn
〉〈Xn+1, Ĉ

PS
kn

〉(1 + oa.s.(1)) + α2
n〈Xn+1, Ĉ

PS
kn

〉2(1 + oa.s.(1)).

For the conditional estimation error, one gets from Lemma 2.5.2 (see Chapter 2, page 49)

EXn(‖θ − θ̂PS, αn

kn
‖2) = σ2

n

kn∑

j1=1

kn∑

j2=1

(λ̂αn,1
j1

λ̂αn,1
j2

)−1〈Γnv̂
αn,1
j1

, v̂αn,1
j2

〉〈v̂αn,1
j1

, v̂αn,1
j2

〉+ ‖R(γ,w)
kn

‖2. (3.34)

Using (3.30) and (3.31) in (3.34),

EXn(‖θ − θ̂PS, αn

kn
‖2) = σ2

n

kn∑

j=1

1

λ̂αn,1
j

+ αn
σ2

n

kn∑

j=1

ραn,1
j

(λ̂αn,1
j )2

+

∥∥∥∥∥∥
θ −

kn∑

j=1

〈θ, v̂αn,1
j 〉v̂αn,1

j − αn

kn∑

j=1

〈θ,Qv̂αn,1
j 〉

λ̂αn,1
j

v̂αn,1
j

∥∥∥∥∥∥

2

,

(3.35)

where ραn,1
j = 〈v̂αn,1

j , Qv̂αn,1
j 〉. As a result, replacing (3.33) in (3.35), it can be shown that

EXn(‖θ − θ̂PS, αn

kn
‖2) = σ2

n

kn∑

j=1

1

λ̂j
+ 2αn

σ2

n

kn∑

j=1

ρj

λ̂2j
(1 + oa.s.(1)) + ‖R̂kn

+ αnĈ
PS
kn

‖2(1 + oa.s.(1)),

and by Theorem 2.3.14 (see Chapter 2, page 39)

EXn(‖θ − θ̂PS, αn

kn
‖2)− EXn(‖θ − θ̂kn

‖2) =


2αn

σ2

n

kn∑

j=1

ρj

λ̂2j
+ 2αn〈R̂kn

, ĈPS
kn

〉+ α2
n‖ĈPS

kn
‖2



· (1 + oa.s.(1)).
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3.8.13 Proof of Corollary 3.4.2

If Q = I, ρj = 1, ρj1,j2 = δj1,j2 , and ΠjQv̂j = 0. Thus, Theorem 3.4.1 implies

EXn+1(Yn+1 − 〈θ̂PS, αn

kn
, Xn+1〉)2 − EXn+1(Yn+1 − 〈θ̂kn

, Xn+1〉)2

=


2αn

σ2

n

kn∑

j=1

〈Xn+1, v̂j〉2
λ̂2j

− 2αn〈Xn+1, R̂kn
〉〈Xn+1, T̂kn

〉+ α2
n〈Xn+1, T̂kn

〉2

 (1 + oa.s.(1)),

EXn(‖θ − θ̂PS, αn

kn
‖2)− EXn(‖θ − θ̂kn

‖2) =


2αn

σ2

n

kn∑

j=1

1

λ̂2j
+ α2

n‖T̂kn
‖2

 (1 + oa.s.(1)),

where T̂kn
is defined as in Theorem 3.2.3 (see page 55).

3.8.14 Proof of Theorem 3.4.4

In this case, Lemma 2.5.2 (see Chapter 2, page 49) is going to be applied with γj = (λ̂αn,2
j )−1 and

wj = v̂αn,2
j . Then, the conditional prediction error is

EXn+1(Yn+1 − 〈θ̂S, αn

kn
, Xn+1〉)2 = σ2

+
σ2

n

kn∑

j1=1

kn∑

j2=1

(λ̂αn,2
j1

λ̂αn,2
j2

)−1〈Γnv̂
αn,2
j1

, v̂αn,2
j2

〉〈Xn+1, v̂
αn,2
j1

〉〈Xn+1, v̂
αn,2
j2

〉+ 〈Xn+1, R
(γ,w)
kn

〉2,
(3.36)

where R
(γ,w)
kn

= θ −∑kn

j=1 (λ̂
αn,2
j )−1〈Γnv̂

αn,2
j , θ〉v̂αn,2

j . Note that {λ̂αn,2
j , v̂αn,2

j }j satisfy

Γnv̂
αn,2
j = λ̂αn,2

j (v̂αn,2
j + αnQv̂

αn,2
j ), (3.37)

whereas the orthonormality conditions are based on the penalized inner product 〈·, ·〉αn
, i.e.,

〈v̂αn,2
j1

, v̂αn,2
j2

〉αn
= 〈v̂αn,2

j1
, v̂αn,2

j2
〉+ αn〈v̂αn,2

j1
, Qv̂αn,2

j2
〉 = 〈v̂αn,2

j1
, v̂αn,2

j2
〉+ αnρ

αn,2
j1,j2

= δj1j2 , (3.38)

where ραn,2
j1,j2

= 〈v̂αn,2
j1

, Qv̂αn,2
j2

〉 (with ραn,2
j = 〈v̂αn,2

j , Qv̂αn,2
j 〉), and δj1j2 = 1 if j1 = j2, and 0 otherwise.

Therefore,

R
(γ,w)
kn

= θ −
kn∑

j=1

〈θ, v̂αn,2
j 〉v̂αn,2

j − αn

kn∑

j=1

〈θ,Qv̂αn,2
j 〉v̂αn,2

j . (3.39)

Using (3.37), (3.38) and (3.39) in (3.36), one has

EXn+1(Yn+1 − 〈θ̂S, αn

kn
, Xn+1〉)2

= σ2 +
σ2

n

kn∑

j=1

〈Xn+1, v̂
αn,2
j 〉2

λ̂αn,2
j

+

〈
Xn+1, θ −

kn∑

j=1

〈θ, v̂αn,2
j 〉v̂αn,2

j − αn

kn∑

j=1

〈θ,Qv̂αn,2
j 〉v̂αn,2

j

〉2

.
(3.40)

In this case, the asymptotic expansions of the eigenelements imply

1

λ̂αn,2
j

=
1

λ̂j
+ αn

ρj

λ̂j
(1 + oa.s.(1)) and v̂αn,2

j = v̂j − αn

(ρj
2

+ λ̂jΠjQ
)
v̂j + oa.s.(αn). (3.41)

As a result, using (3.41) in (3.40), one gets for the conditional prediction error

EXn+1(Yn+1 − 〈θ̂S, αn

kn
, Xn+1〉)2 = σ2 +

σ2

n

kn∑

j=1

〈Xn+1, v̂j〉2
λ̂j

− 2αn
σ2

n

kn∑

j=1

〈Xn+1, v̂j〉〈Xn+1,ΠjQv̂j〉(1 + oa.s.(1)) + 〈Xn+1, R̂kn
〉2

+ 2αn〈Xn+1, R̂kn
〉〈Xn+1, Ĉ

S
kn
〉(1 + oa.s.(1)) + α2

n〈Xn+1, Ĉ
S
kn
〉2(1 + oa.s.(1)),
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where ĈS
kn

=
∑kn

j=1 (ρj〈θ, v̂j〉v̂j + λ̂j(〈θ, v̂j〉ΠjQv̂j + 〈θ,ΠjQv̂j〉v̂j)− 〈θ,Qv̂j〉v̂j), and by the error ex-
pressions obtained in Theorem 2.3.14 (see Chapter 2, page 39)

EXn+1(Yn+1 − 〈θ̂S, αn

kn
, Xn+1〉)2 − EXn+1(Yn+1 − 〈θ̂kn

, Xn+1〉)2

= −2αn
σ2

n

kn∑

j=1

〈Xn+1, v̂j〉〈Xn+1,ΠjQv̂j〉(1 + oa.s.(1)) + 2αn〈Xn+1, R̂kn
〉〈Xn+1, Ĉ

S
kn
〉(1 + oa.s.(1))

+ α2
n〈Xn+1, Ĉ

S
kn
〉2(1 + oa.s.(1)).

As far as the conditional estimation error is concerned, Lemma 2.5.2 (see Chapter 2, page 49)
ensures

EXn(‖θ − θ̂S, αn

kn
‖2) = σ2

n

kn∑

j1=1

kn∑

j2=1

(λ̂αn,2
j1

λ̂αn,2
j2

)−1〈Γnv̂
αn,2
j1

, v̂αn,2
j2

〉〈v̂αn,2
j1

, v̂αn,2
j2

〉+ ‖R(γ,w)
kn

‖2. (3.42)

Using (3.37), (3.38) and (3.39) in (3.42), one has

EXn(‖θ − θ̂S, αn

kn
‖2) = σ2

n

kn∑

j=1

1

λ̂αn,2
j

− αn
σ2

n

kn∑

j=1

ραn,2
j

λ̂αn,2
j

+

∥∥∥∥∥∥
θ −

kn∑

j=1

〈θ, v̂αn,2
j 〉v̂αn,2

j − αn

kn∑

j=1

〈θ,Qv̂αn,2
j 〉v̂αn,2

j

∥∥∥∥∥∥

2

.

(3.43)

Then, using (3.41) in (3.43),

EXn(‖θ − θ̂S, αn

kn
‖2) = σ2

n

kn∑

j=1

1

λ̂j
+ ‖R̂kn

‖2 + 2αn〈R̂kn
, ĈS

kn
〉(1 + oa.s.(1)) + α2

n‖ĈS
kn
‖2(1 + oa.s.(1)),

and by Theorem 2.3.14 (see Chapter 2, page 39),

EXn(‖θ − θ̂S, αn

kn
‖2)− EXn(‖θ − θ̂kn

‖2) = 2αn〈R̂kn
, ĈS

kn
〉(1 + oa.s.(1)) + α2

n‖ĈS
kn
‖2(1 + oa.s.(1)).



Chapter 4

Bootstrap in functional linear
regression

Dealing with the functional linear model with functional explanatory variable and scalar
response, and as commented previously, one of the most popular methods for parameter
model estimation is based on FPCA. Weak convergence for a wide class of FPCA–type
estimators has recently been proved and, as a result, asymptotic confidence sets can be
obtained. In this chapter, an alternative approach in order to compute pointwise confidence
intervals by means of a bootstrap procedure is proposed, obtaining also its asymptotic
validity in the sense specified in Theorem 4.3.6 (i.e., the conditional distribution of the
estimator can be approximated by the bootstrap distribution). In addition, a simulation
study allows to compare the practical performance of asymptotic and bootstrap confidence
intervals in terms of coverage rates for different sample sizes.

The methodology presented in this chapter was firstly introduced by González-Manteiga
and Mart́ınez-Calvo (2010) and it gave rise to the contribution by González-Manteiga and
Mart́ınez-Calvo (2011).

4.1 How to build confidence intervals?

Current technology collects data in such a fine grid that recorded measurements can be seen as ob-
servations of variables valued in functional spaces. This fact has aroused great interest in developing
techniques that are focused on functional data sets, and many authors have made an effort to adapt the
existing multivariate regression methods to the functional regression model with scalar response. As
mentioned in previous chapters, regarding parametric regression, the most extensively studied model
is the functional linear model with scalar response given by (2.1) (see Chapter 2, page 32), that is,

Y = 〈θ,X〉+ ǫ,

wherem(·) = 〈θ, ·〉 : H → R is a linear regression operator such that (H, 〈·, ·〉) is a real separable Hilbert
space and θ ∈ H satisfies ‖θ‖2 <∞ (being ‖ · ‖ = 〈·, ·〉1/2), X is a zero–mean random variable valued
in H, and Y and ǫ are real random variables with the latter verifying that E(ǫ) = 0, E(ǫ2) = σ2 < +∞,
and E(ǫX) = 0. In addition, E(‖X‖4) <∞ is required throughout this chapter.

Among the different techniques for estimating θ, methods based on FPCA are quite popular (Cardot
et al., 1999, 2003c; Cai and Hall, 2006; Hall and Hosseini-Nasab, 2006; Hall and Horowitz, 2007; Cardot
et al., 2007c), and this kind of estimators have been considered in this chapter. However, the aim is
not to estimate the regression function m(·) but to obtain pointwise confidence intervals for a certain
confidence level α ∈ (0, 1), that is, CIx,α ⊂ R such that P(m(x) ∈ CIx,α) = 1− α for a fixed x ∈ H.

In order to compute such intervals, asymptotic and bootstrap approaches have been widely used in
the multivariate regression context. For example, it is well–known the asymptotic normality of the stan-
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dard least squares estimator for the linear model, or the asymptotic normality of the Nadaraya–Watson
estimator for more general regression functions in a nonparametric setting. Hence, approximated con-
fidence intervals can be built using normal quantiles. As far as bootstrap is concerned, its introduction
by Efron (1979) resulted in a new distribution approximation applicable to a large number of situ-
ations (Bickel and Freedman, 1981; Singh, 1981; Parr, 1985). In particular, bootstrap validity was
obtained for linear and nonparametric regression models by Freedman (1981) and Cao-Abad (1991),
respectively.

Nowadays, the adaptation of these procedures to the functional context has been initiated for
parametric and nonparametric estimators of the regression operator m(·). In this sense, Cardot et al.
(2007c) proved weak convergence for a large class of FPCA–type estimators and Ferraty et al. (2007a)
obtained normality results for the nonparametric estimator proposed by Ferraty and Vieu (2006b).
Moreover, Ferraty et al. (2010c) and Ferraty et al. (2012d) showed the validity of the bootstrap in
nonparametric functional regression with scalar response and functional response, respectively. In this
chapter, a bootstrap procedure for the functional linear model with scalar response has been proposed,
and its asymptotic validity has been analysed.

Although this chapter is focused on the use of bootstrap techniques in the functional context, some
authors studied this issue in other contexts, for instance, in functional estimation (Cuevas et al., 2006).
An updated state of the art of methodological and practical developments for resampling methods for
functional data (including bootstrap) can be found in McMurry and Politis (2011). Furthermore,
contributions such as Giné and Zinn (1990), Dudley (1990), Sheehy and Wellner (1992), Politis and
Romano (1994) or van der Vaart and Wellner (1996) provided theoretical tools which allow to obtain
validity results for applications of bootstrap to FDA.

Coming back to the problem formulated in this chapter, obtaining pointwise confidence intervals
for the linear regression operator m(·) = 〈θ, ·〉, Section 4.2 is devoted to recall some notation about the
general FPCA–type estimator introduced in (2.6) (see Chapter 2, page 37) and present the asymptotic
confidence intervals that can be derived from its weak convergence (see Theorem 2.3.17 in Chapter 2,
page 40). In Section 4.3, a naive and a wild bootstrap procedures are described (they are similar to
the ones considered by Ferraty et al., 2010c in the nonparametric case), and its asymptotic validity is
shown. A simulation study is compiled in Section 4.4 in order to compare asymptotic and bootstrap
intervals. Finally, some conclusions can be found in Section 4.5, whereas appendix collects the proof
of the main result of the chapter and some necessary technical lemmas (see Section 4.6).

4.2 Asymptotic confidence intervals for linear regression

First of all, recall the general class of FPCA–type estimators introduced in Section 2.3.2, “ b) Definition
of general class of FPCA–type estimators ”, in Chapter 2 (see page 37). Let {(Xi, Yi)}ni=1 be a sample
of i.i.d. random variables drawn from (X,Y ). Assuming that the eigenvalues of Γ verify that λ1 >
λ2 > . . . > 0, with the multiplicity of each λj equals to one, and assuming that (C.2.1) holds (see
Chapter 2, page 36), Cardot et al. (2007c) developed asymptotic theory for a large class of FPCA–type
estimators given by (2.6) (see Chapter 2, page 37), that is,

θ̂c =
n∑

j=1

f cn(λ̂j)∆nv̂j v̂j ,

where c = cn is a strictly positive sequence such that c → 0 and c < λ1, {f cn : [c,+∞) → R}n is a se-
quence of positive functions such that (C.2.2)–(C.2.4) are satisfied (see Chapter 2, page 37), whereas,

as usual, ∆n = n−1
∑n

i=1Xi ⊗H′ Yi, and {(λ̂j , v̂j)}∞j=1 are the eigenvalues and the eigenfunctions of

Γn = n−1
∑n

i=1Xi ⊗H Xi.
Furthermore, Remark 2.3.8 (see Chapter 2, page 37) highlighted that if

kcn = sup {j : λj + δj/2 ≥ c}

verifies that (kcn)
2 log kcn/

√
n→ 0, then θ̂c ≈

∑kc
n

j=1 f
c
n(λ̂j)∆nv̂j v̂j . Hence, the standard FPCA estima-

tor θ̂kn
(see (2.4) in Chapter 2, page 36) is asymptotically equivalent to θ̂c when fn(x) = x−1I{x≥c},
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whereas the presmoothed FPCA estimator θ̂αn

kn
(see (3.1) in Chapter 3, page 54) is asymptotically

equivalent to θ̂c when fn(x) = (x+ αn)
−1I{x≥c}.

For θ̂c, Cardot et al. (2007c) derived confidence sets for prediction by means of a CLT for the weak
topology of the functional space H (see Theorem 2.3.17 in Chapter 2, page 40). In particular, given
x ∈ H, Corollary 2.3.18 (see Chapter 2, page 40) ensures that

√
n

t̂cn,xσ̂
(m̂c(x)− 〈Π̂kc

n
θ, x〉) w→ N (0, 1),

being t̂cn,x =
√∑kc

n

j=1 λ̂j(f
c
n(λ̂j))

2〈x, v̂j〉2, σ̂2 a consistent estimate of σ2, m̂c(·) = 〈θ̂c, ·〉, and Π̂kc
n
the

projector onto the subspace spanned by the first kcn eigenfunctions of Γn.
Thus, the approximated asymptotic confidence intervals form(·) introduced in (2.8) (see Chapter 2,

page 41) can be derived as follows for a fixed confidence level α ∈ (0, 1). Let zα be the quantile of order
α from a N (0, 1) distribution, and suppose that θ (or x) can be “well” approximated by its projection
Π̂kc

n
θ (or Π̂kc

n
x). Then, Corollary 2.3.18 (see Chapter 2, page 40) ensures that

CIasyx,α =

[
m̂c(x)− z1−α/2

t̂cn,xσ̂√
n
, m̂c(x) + z1−α/2

t̂cn,xσ̂√
n

]

satisfies that P(m(x) ∈ CIasyx,α) ≈ 1− α.

Remark 4.2.1. Broadly speaking, the construction of CIasyx,α is implicitly based on the replacement of θ

(or x) by Π̂kc
n
θ (or Π̂kc

n
x) in Corollary 2.3.18 (see Chapter 2, page 40). However, Cardot et al. (2007c)

indicated in their Remark 5 that this substitution requires very restrictive conditions either on θ or
on the eigenvalues {λj}∞j=1. Despite this fact, in practice, intervals CIasyx,α will be built, but taking into
account that they can be decentred due to this replacement.

4.3 Bootstrap confidence intervals for linear regression

The introduction of bootstrap techniques in this chapter has as its objective to build pointwise confi-
dence intervals for the regression operator, which are able to compete with the asymptotic approach
presented in Section 4.2. In Section 4.3.1, the bootstrap procedure that will be considered in this
chapter is introduced, and Section 4.3.2 collects the main theorem that ensures the asymptotic validity
of the proposed bootstrap method.

4.3.1 Naive and wild bootstrap

The multivariate naive and wild bootstrap procedures have been adapted to the functional context,
in the same way as Ferraty et al. (2010c) did for the nonparametric case. Algorithms for resampling
proceeds as follows.

Algorithm 4.3.1 (Naive bootstrap).

Step 1. Construct a pilot estimator for θ: θ̂d =
∑n

j=1 f
d
n(λ̂j)∆nv̂j v̂j. Obtain the residuals ǫ̂i =

Yi − 〈θ̂d, Xi〉 for all i = 1, . . . , n.

Step 2. Draw ǫ̂∗1, . . . , ǫ̂
∗
n i.i.d. random variables from the cumulative distribution of (ǫ̂i − ǫ̂)ni=1, where

ǫ̂ = n−1
∑n

i=1 ǫ̂i.

Step 3. Define Y ∗
i = 〈θ̂d, Xi〉+ ǫ̂∗i , for all i = 1, . . . , n.

Step 4. Use the bootstrap sample {(Xi, Y
∗
i )}ni=1 in order to obtain the following estimator of θ: θ̂∗c,d =∑n

j=1 f
c
n(λ̂j)∆

∗
nv̂j v̂j , where ∆∗

n = n−1
∑n

i=1Xi ⊗H′ Y ∗
i .
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Step 5. Repeat Step 2–Step 4 a large number of times nboot ∈ N in order to obtain a sequence of
values {θ̂∗,lc,d}nboot

l=1 .

Algorithm 4.3.2 (Wild bootstrap).

Step 1. Construct a pilot estimator for θ: θ̂d =
∑n

j=1 f
d
n(λ̂j)∆nv̂j v̂j. Obtain the residuals ǫ̂i =

Yi − 〈θ̂d, Xi〉 for all i = 1, . . . , n.

Step 2. Define ǫ̂∗i = ǫ̂iVi for i = 1, . . . , n, being V1, . . . , Vn i.i.d. random variables independent of the
data {(Xi, Yi)}ni=1, such that E(V1) = 0 and E(V 2

1 ) = 1.

Step 3. Define Y ∗
i = 〈θ̂d, Xi〉+ ǫ̂∗i , for all i = 1, . . . , n.

Step 4. Use the bootstrap sample {(Xi, Y
∗
i )}ni=1 in order to obtain the following estimator of θ: θ̂∗c,d =∑n

j=1 f
c
n(λ̂j)∆

∗
nv̂j v̂j , where ∆∗

n = n−1
∑n

i=1Xi ⊗H′ Y ∗
i .

Step 5. Repeat Step 2–Step 4 a large number of times nboot ∈ N in order to obtain a sequence of
values {θ̂∗,lc,d}nboot

l=1 .

As it can be seen in the previous algorithm, two sequences must be fixed: d for the pilot estimator
θ̂d and c for θ̂∗c,d. In fact, the following assumption will be required to guarantee the asymptotic validity
of the bootstrap method

(C.4.1) c = cn and d = dn are strictly positive sequence such that c, d → 0 and
c, d < λ1. Moreover, c ≤ d for all n.

Remark 4.3.3. Note that under (C.4.1), that is, if c ≤ d, the number of principal components used

for constructing θ̂∗c,d is larger than the number of components used for θ̂d. Therefore, in some way,
one should oversmooth when the pilot estimator is calculated. In this sense, the need to choose
the sequences d and c creates a similar problem to the selection of bandwidth in the nonparametric
regression: b for the pilot estimator and h for the bootstrap one. However, the choice of optimal
smoothing parameters is still an open question in both this parametric context and nonparametric one:
see Mammen (2000) or González-Manteiga et al. (2004) for the multivariate nonparametric regression,
and Ferraty et al. (2010c) for the functional nonparametric regression.

4.3.2 Asymptotic validity of the bootstrap

From now on, x will denote a fixed element of H. Furthermore, recall the convergence in probability
definition and its associated “big O” and “little o” notation.

Definition 4.3.4. Let {Zn}n∈N be a sequence of real random variables and let Z be a real random
variable. {Zn}n∈N converges in probability (P) to Z, that is,

plimn→∞Zn = Z, or equivalently, Zn
P→ Z,

if and only if
∀ε > 0, lim

n→∞
P(|Zn − Z| > ε) = 0.
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Definition 4.3.5. Let {Zn}n∈N be a sequence of real random variables, let Z be a real random
variable, and let {un}n∈N be a deterministic sequence of positive real numbers. The rate of convergence
in probability of {Zn}n∈N to Z is of order un, that is,

Zn − Z = OP(un),

if and only if
lim
p

limn→∞P(|Zn − Z| < pun) = 1.

Furthermore,

Zn − Z = oP(un) if and only if (un)
−1(Zn − Z)

P→ 0.

In order to obtain the main result in this chapter, it is necessary that the hypotheses required by
Cardot et al. (2007c) in their weak convergence results for the prediction at a given value hold (see
Theorem 2.3.17 in Chapter 2, page 40). This fact will be essential to show the asymptotic validity
of the bootstrap procedure in the next theorem, where PXnYn denotes the probability conditionally
on (Xn,Yn) = {(X1, Y1), . . . , (Xn, Yn)}, and PXn denotes the probability conditionally on Xn =

{X1, . . . , Xn}. In addition, the following notation is also used: m̂∗
c,d(·) = 〈θ̂∗c,d, ·〉, m̂d(·) = 〈θ̂d, ·〉, and

m̂c(·) = 〈θ̂c, ·〉.

Theorem 4.3.6. Under the assumptions of Theorem 2.3.17 (see Chapter 2, page 40), if (C.4.1) is
satisfied, it holds that, for both the naive and the wild bootstrap,

sup
y∈R

|PXnYn(
√
n(m̂∗

c,d(x)− m̂d(x)) ≤ y)− PXn(
√
n(m̂c(x)− 〈Π̂kc

n
θ, x〉) ≤ y)| P→ 0,

where Π̂kc
n
is the projector onto the subspace spanned by the first kcn eigenfunctions of Γn.

The proof of the previous theorem can be found in Section 4.6.1 (see page 102).

Let α ∈ (0, 1) be a confidence level. Assuming that θ (or x) can be well approximated by its
projection Π̂kc

n
θ (or Π̂kc

n
x), Theorem 4.3.6 ensures that the distribution of the true error (m̂c(x)−m(x))

can be approximated by the distribution of the bootstrap error (m̂∗
c,d(x)−m̂d(x)). Hence, the pointwise

α–quantile qα(x) of the distribution of the true error can be approximated by the corresponding
pointwise bootstrap α–quantile q∗α(x). Therefore, one can approximate the (1−α)–confidence interval
for m(x) by means of

CI∗x,α =
[
m̂c(x)− q∗1−α/2(x), m̂c(x)− q∗α/2(x)

]
, (4.1)

since P(m(x) ∈ CI∗x,α) ≈ 1− α.

Remark 4.3.7. As highlighted in Remark 4.2.1 for the asymptotic intervals CIasyx,α, the replacement of
θ (or x) by its projection onto the subspace spanned by the first kn eigenfunctions of Γn needs certain
specific hypotheses on θ or on the eigenvalues of Γ which are hardly ever fulfilled. Hence, a decentring
effect could also appear when the bootstrap confidence intervals (4.1) are built in practice.

4.4 Simulation study

For the simulation study, H = L2([0, 1]) was selected, with 〈x, y〉 =
∫ 1

0
x(t)y(t)dt for all x, y ∈ L2([0, 1]).

The study required the simulation of 500 samples, each one consisted of n observations (n =

50, 100, 200, 500) from the model Y = 〈θ,X〉 + ǫ =
∫ 1

0
θ(t)X(t)dt + ǫ, where X is a Brownian motion

and ǫ ∼ N (0, σ2) with signal–to–noise ratio r = σ/
√
E(〈X, θ〉2) = 0.2. For the parameter θ, the
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following functions were considered

θ1(t) = sin(4πt) and θ2(t) = |t− 0.5|, ∀t ∈ [0, 1].

Six deterministic curves x

x1(t) = sin(πt/2), x2(t) = sin(3πt/2), x3(t) = t,

x4(t) = t2, x5(t) = 2|t− 0.5| and x6(t) = 2I{t>0.5}, ∀t ∈ [0, 1],

were also fixed, for which pointwise asymptotic and bootstrap prediction intervals, their empirical
coverage rate and length were obtained. Note that all the curves (X, θ and x) were discretized to
p = 100 equispaced design points in the interval [0, 1], and quadrature weights of p−1 were used to
approximate integrals which had to be computed. Further details about this approximation procedure
can be found in Section 3.5, “How to work with discrete data?” (see Chapter 3, page 63).

In order to illustrate the behaviour of confidence intervals, two confidence levels (α = 0.05, 0.10)

were considered and the standard FPCA estimator θ̂kn
(see (2.4) in Chapter 2, page 36) was chosen

for estimating the model parameter θ. For this estimator, kn was selected by means of GCV method
(see Section 3.5, “Parameter selection”, in Chapter 3, page 63), denoting this value by k̂GCV

n .
Since the confidence intervals presented in this chapter are based on asymptotic and bootstrap

approximations of the pointwise α–quantile qα(x) of the distribution of the true error (〈θ̂kn
, x〉−〈θ, x〉),

it was decided to estimate these quantiles by means of a Monte–Carlo procedure. In this way, the
following confidence intervals for m(x) were computed

CImc
x,α =

[
〈θ̂kn

, x〉 − qmc
1−α/2(x), 〈θ̂kn

, x〉 − qmc
α/2(x)

]
, (4.2)

where qmc
α (x) is the estimated α–quantile of the distribution of the true error obtained from 1, 000

Monte–Carlo iterations, that is, from {〈θ̂mc,l
kn

− θ, x〉}1,000l=1 .
The asymptotic confidence intervals CIasyx,α defined in (2.8) (see Chapter 2, page 41) were also

obtained by means of

CIasyx,α =

[
〈θ̂kn

, x〉 − z1−α/2

t̂kn
n,xσ̂√
n
, 〈θ̂kn

, x〉+ z1−α/2

t̂kn
n,xσ̂√
n

]
, (4.3)

where t̂kn
n,x =

√∑kn

j=1 λ̂
−1
j 〈x, v̂j〉2 and the true variance σ2 was estimated by the residual mean of

squares for the k̂GCV
n value.

The previous confidence intervals were compared with the bootstrap intervals introduced in (4.1)
(see page 91) and defined as

CI∗x,α =
[
〈θ̂kn

, x〉 − q∗1−α/2(x), 〈θ̂kn
, x〉 − q∗α/2(x)

]
, (4.4)

where the pointwise bootstrap quantiles were computed from 1, 000 bootstrap iterations of the wild
bootstrap procedure presented in Algorithm 4.3.2 (see page 90), that is, from {〈θ̂∗,l

kc
n,k

d
n
− θ̂lkd

n
, x〉}1,000l=1 .

For the first step in Algorithm 4.3.2, the construction of the pilot estimator of θ, ten different pilot
values for kdn were considered in order to analyse its effect in the results: kdn ∈ {k̂GCV

n −6, . . . , k̂GCV
n +3}

(recall that k̂GCV
n is the number of principal components selected by GCV for the original sample).

For the second step, {V1, . . . , Vn} were drawn from the following sum of two Dirac distributions:
0.1(5 +

√
5)δ(1−

√
5)/2 + 0.1(5 −

√
5)δ(1+

√
5)/2 (i.e., P(Vi = (1 −

√
5)/2) = 0.1(5 +

√
5) and P(Vi =

(1 +
√
5)/2) = 0.1(5−

√
5) for all i = 1 . . . , n). Finally, GCV was used again to select an adequate kcn

for θ̂∗,l
kc
n,k

d
n
in the fourth step of the algorithm.

Note that several types of bootstrap confidence intervals have been proposed in the literature. Hall
(1988) examined and compared seven bootstrap methods, among them the studentized bootstrap. In
the simulation study, studentized versions of the Monte–Carlo intervals and bootstrap intervals were
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also computed in order to compare them with (4.2) and (4.4) as follows. The studentized Monte–Carlo
intervals were defined by

CImc,s
x,α =

[
〈θ̂kn

, x〉 − qmc,s
1−α/2(x)

t̂kn
n,xσ̂√
n
, 〈θ̂kn

, x〉 − qmc,s
α/2 (x)

t̂kn
n,xσ̂√
n

]
, (4.5)

where qmc,s
α (x) is the α–quantile estimated from {√n〈θ̂mc,l

kn
− θ, x〉/(t̂mc,l,kn

n,x σ̂mc,l)}1,000l=1 . Analogously,
the studentized bootstrap intervals were built as

CI∗,sx,α =

[
〈θ̂kn

, x〉 − q∗,s1−α/2(x)
t̂kn
n,xσ̂√
n
, 〈θ̂kn

, x〉 − q∗,sα/2(x)
t̂kn
n,xσ̂√
n

]
, (4.6)

where q∗,sα (x) were computed from {√n〈θ̂∗,l
kc
n,k

d
n
− θ̂lkd

n
, x〉/(t̂∗,l,k

c
n

n,x σ̂∗,l)}1,000l=1 .

Therefore, the simulation study compared the confidence intervals for m(x) obtained by Monte–
Carlo (see (4.2) and (4.5)), by asymptotic approximations (see (4.3)), and by bootstrap methodology
(see (4.4) and (4.6)). Table 4.1, Table 4.2, Table 4.3, and Table 4.4 (see pages 94–97) contain the
empirical coverage rate and the mean length of the intervals for the different sample sizes when the
model parameter is θ1, whereas Table 4.5, Table 4.6, Table 4.7, and Table 4.8 (see pages 98–101)
show the same information for the second case in which the model parameter is θ2. In order to
clarify tables, the mean length of the intervals was multiplied by 102 and appears in brackets after the
empirical coverage rate.

From these results, one can deduce that with a correct pilot kn selection, bootstrap intervals have
empirical coverage rates nearer to α than asymptotic intervals. However, these optimal bootstrap
intervals tend to be larger than the asymptotic ones.

In general, the asymptotic approach tends to give larger coverage rates and shorter intervals than
the optimal bootstrap intervals. Furthermore, asymptotic intervals look like being decentred. It has
been mentioned before that using both asymptotic and bootstrap confidence intervals could cause a
decentring effect due to the substitution of θ (or x) by its projection onto the subspace spanned by
the first kn eigenfunctions of Γn (see Remark 4.2.1, page 89, and Remark 4.3.7, page 91). However, it
seems that the bootstrap intervals can prevent this effect with an adequate pilot selection and a length
increment.

As commented in the construction of the confidence intervals were built, it was assumed that either
θ or x is well approximated by its projection on the subspace spanned by the first kn eigenfunctions
of Γn. In the simulation, θ1 is a smooth function whereas θ2 does not have a continuous derivative.
Besides, the deterministic curves x are ordered from greatest to least according to their smoothness
level. This fact justify that both asymptotic and bootstrap intervals give worse results for θ2 than for
θ1, and better results for x1, . . . , x4 than for x5 and x6. Note that results are really misleading when
θ = θ2 and x = x5; in this case, the empirical coverage rates are quite far from the theoretical ones. On
the other hand, the sample size affects asymptotic intervals seriously: their empirical coverage is far
from the nominal one when n = 50. Nevertheless, bootstrap intervals behave properly for all sample
sizes.

For bootstrap procedures, it is not easy to deduce from simulations which is the best choice of the
pilot parameter kdn. Comparing the results of CI∗x,α and CI∗,sx,α, it can be found that the kdn selection
has less effect in the empirical coverage for the studentized intervals than for CI∗x,α. For the latter,

the most adequate kdn seems to be smaller than the value obtained by GCV and it tends to increase
in accordance with the smoothness of x when a moderate sample size is considered. Nevertheless, this
reasoning is not clear in large sample size cases.

To sum up, bootstrap intervals can be an interesting alternative to the asymptotic confidence
intervals, specially for small sample sizes. However, the profit of bootstrap procedure is subject to a
correct choice of pilot kdn, being this choice more critical for CI∗x,α than for CI∗,sx,α. Furthermore, the

adequate selection of kdn seems to be influenced by the smoothness of θ and x, and by the sample size
n. Undoubtedly, this is an open question which requires further research.
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α CI x1 x2 x3 x4 x5 x6

5% CImc
x,α 4.6 ( 1.35) 6.6 ( 4.09) 6.0 ( 1.21) 8.0 ( 1.37) 6.4 ( 5.53) 6.2 ( 7.88)

CImc,s
x,α 4.0 ( 1.40) 4.6 ( 4.18) 4.6 ( 1.25) 6.6 ( 1.42) 5.6 ( 5.65) 6.2 ( 8.05)

CIasy
x,α 8.8 ( 1.15) 9.0 ( 3.44) 10.6 ( 1.02) 13.2 ( 1.15) 19.8 ( 3.83) 23.0 ( 5.46)

CI∗x,α, k̂GCV
n + 3 11.2 ( 1.13) 10.4 ( 3.37) 11.2 ( 1.01) 12.8 ( 1.14) 14.0 ( 4.61) 15.6 ( 6.47)

CI∗x,α, k̂GCV
n + 2 10.6 ( 1.14) 10.8 ( 3.38) 11.4 ( 1.01) 13.4 ( 1.14) 14.4 ( 4.53) 17.0 ( 6.33)

CI∗x,α, k̂GCV
n + 1 10.4 ( 1.15) 10.4 ( 3.41) 12.0 ( 1.02) 13.2 ( 1.14) 15.6 ( 4.45) 19.6 ( 6.27)

CI∗x,α, k̂GCV
n 10.6 ( 1.15) 11.6 ( 3.43) 11.6 ( 1.02) 13.6 ( 1.15) 14.4 ( 4.41) 18.8 ( 6.23)

CI∗x,α, k̂GCV
n − 1 6.4 ( 1.36) 8.8 ( 4.04) 8.0 ( 1.21) 10.2 ( 1.37) 11.2 ( 4.97) 15.2 ( 7.11)

CI∗x,α, k̂GCV
n − 2 5.4 ( 1.67) 5.4 ( 4.99) 5.8 ( 1.48) 7.4 ( 1.67) 7.6 ( 5.95) 10.8 ( 8.69)

CI∗x,α, k̂GCV
n − 3 4.4 ( 2.11) 3.2 ( 6.33) 4.6 ( 1.88) 5.8 ( 2.11) 6.4 ( 7.33) 9.8 (10.97)

CI∗x,α, k̂GCV
n − 4 3.2 ( 2.62) 2.2 ( 7.74) 3.8 ( 2.32) 4.2 ( 2.59) 5.0 ( 8.75) 7.2 (13.59)

CI∗x,α, k̂GCV
n − 5 2.2 ( 2.96) 1.8 ( 8.80) 2.8 ( 2.63) 2.4 ( 2.92) 4.2 ( 9.69) 5.4 (15.63)

CI∗x,α, k̂GCV
n − 6 1.4 ( 3.21) 0.4 ( 9.56) 2.0 ( 2.86) 2.4 ( 3.19) 3.2 (10.29) 3.4 (17.17)

CI∗,sx,α, k̂GCV
n + 3 6.2 ( 1.35) 6.2 ( 4.00) 7.4 ( 1.19) 8.8 ( 1.34) 11.2 ( 4.98) 14.0 ( 7.07)

CI∗,sx,α, k̂GCV
n + 2 6.8 ( 1.33) 6.8 ( 3.96) 6.8 ( 1.18) 9.2 ( 1.33) 11.0 ( 4.94) 14.2 ( 6.97)

CI∗,sx,α, k̂GCV
n + 1 6.0 ( 1.33) 6.4 ( 3.94) 7.2 ( 1.18) 10.2 ( 1.32) 12.6 ( 4.86) 16.6 ( 6.91)

CI∗,sx,α, k̂GCV
n 6.0 ( 1.32) 7.0 ( 3.93) 7.4 ( 1.18) 9.8 ( 1.31) 13.0 ( 4.83) 16.0 ( 6.87)

CI∗,sx,α, k̂GCV
n − 1 5.8 ( 1.32) 6.4 ( 3.92) 7.4 ( 1.18) 9.4 ( 1.33) 12.4 ( 4.86) 14.6 ( 6.99)

CI∗,sx,α, k̂GCV
n − 2 6.0 ( 1.32) 6.4 ( 3.93) 7.6 ( 1.18) 8.8 ( 1.34) 9.4 ( 5.11) 13.0 ( 7.17)

CI∗,sx,α, k̂GCV
n − 3 5.8 ( 1.32) 5.8 ( 3.95) 7.2 ( 1.18) 9.6 ( 1.35) 9.4 ( 5.33) 12.0 ( 7.45)

CI∗,sx,α, k̂GCV
n − 4 6.8 ( 1.32) 5.8 ( 3.93) 6.8 ( 1.19) 8.2 ( 1.36) 8.4 ( 5.62) 9.4 ( 7.84)

CI∗,sx,α, k̂GCV
n − 5 7.0 ( 1.31) 7.0 ( 3.93) 7.8 ( 1.18) 10.2 ( 1.36) 8.8 ( 5.65) 7.2 ( 8.09)

CI∗,sx,α, k̂GCV
n − 6 6.2 ( 1.31) 6.0 ( 3.91) 7.8 ( 1.18) 9.4 ( 1.37) 8.4 ( 5.51) 7.2 ( 8.33)

10% CImc
x,α 10.2 ( 1.13) 10.2 ( 3.40) 9.8 ( 1.01) 12.8 ( 1.15) 11.8 ( 4.60) 10.6 ( 6.53)

CImc,s
x,α 9.2 ( 1.16) 8.8 ( 3.48) 10.2 ( 1.04) 13.0 ( 1.18) 11.2 ( 4.69) 12.0 ( 6.68)

CIasy
x,α 17.4 ( 0.97) 15.2 ( 2.89) 18.0 ( 0.86) 19.2 ( 0.96) 26.0 ( 3.21) 29.8 ( 4.58)

CI∗x,α, k̂GCV
n + 3 16.2 ( 0.96) 18.8 ( 2.86) 18.2 ( 0.85) 17.4 ( 0.97) 19.2 ( 3.85) 24.6 ( 5.40)

CI∗x,α, k̂GCV
n + 2 17.2 ( 0.96) 18.0 ( 2.87) 18.2 ( 0.86) 19.6 ( 0.97) 21.0 ( 3.77) 26.8 ( 5.29)

CI∗x,α, k̂GCV
n + 1 17.2 ( 0.97) 18.0 ( 2.88) 18.8 ( 0.86) 19.4 ( 0.97) 20.6 ( 3.70) 26.2 ( 5.21)

CI∗x,α, k̂GCV
n 17.4 ( 0.97) 17.6 ( 2.89) 18.4 ( 0.86) 19.2 ( 0.97) 21.8 ( 3.66) 27.6 ( 5.16)

CI∗x,α, k̂GCV
n − 1 12.6 ( 1.15) 12.0 ( 3.42) 13.8 ( 1.03) 14.4 ( 1.16) 18.6 ( 4.08) 20.8 ( 5.87)

CI∗x,α, k̂GCV
n − 2 10.4 ( 1.41) 10.8 ( 4.22) 10.0 ( 1.26) 12.4 ( 1.41) 14.8 ( 4.86) 18.2 ( 7.13)

CI∗x,α, k̂GCV
n − 3 6.6 ( 1.78) 5.8 ( 5.35) 6.6 ( 1.59) 8.0 ( 1.78) 10.8 ( 5.92) 13.6 ( 8.93)

CI∗x,α, k̂GCV
n − 4 5.6 ( 2.21) 4.6 ( 6.55) 5.4 ( 1.96) 5.6 ( 2.18) 8.0 ( 7.03) 10.0 (10.97)

CI∗x,α, k̂GCV
n − 5 3.8 ( 2.51) 2.6 ( 7.44) 4.0 ( 2.22) 4.8 ( 2.46) 7.0 ( 7.71) 7.2 (12.58)

CI∗x,α, k̂GCV
n − 6 3.0 ( 2.72) 1.8 ( 8.09) 3.0 ( 2.41) 3.6 ( 2.68) 5.4 ( 8.14) 5.2 (13.75)

CI∗,sx,α, k̂GCV
n + 3 11.2 ( 1.13) 11.6 ( 3.35) 11.8 ( 1.00) 13.8 ( 1.13) 15.6 ( 4.19) 21.0 ( 5.92)

CI∗,sx,α, k̂GCV
n + 2 10.8 ( 1.12) 11.4 ( 3.32) 13.2 ( 0.99) 14.2 ( 1.11) 17.0 ( 4.13) 21.4 ( 5.83)

CI∗,sx,α, k̂GCV
n + 1 11.4 ( 1.12) 12.2 ( 3.30) 13.4 ( 0.99) 14.2 ( 1.11) 18.8 ( 4.06) 22.4 ( 5.77)

CI∗,sx,α, k̂GCV
n 11.8 ( 1.11) 12.4 ( 3.30) 13.2 ( 0.98) 14.4 ( 1.10) 18.6 ( 4.03) 23.0 ( 5.74)

CI∗,sx,α, k̂GCV
n − 1 11.6 ( 1.11) 12.2 ( 3.28) 12.2 ( 0.99) 15.0 ( 1.12) 17.0 ( 4.06) 20.6 ( 5.83)

CI∗,sx,α, k̂GCV
n − 2 12.6 ( 1.10) 11.6 ( 3.30) 12.4 ( 0.99) 14.6 ( 1.12) 16.6 ( 4.26) 19.8 ( 5.98)

CI∗,sx,α, k̂GCV
n − 3 11.6 ( 1.11) 10.2 ( 3.31) 12.6 ( 0.99) 13.6 ( 1.13) 14.0 ( 4.43) 18.2 ( 6.20)

CI∗,sx,α, k̂GCV
n − 4 12.0 ( 1.11) 11.8 ( 3.29) 12.2 ( 1.00) 15.0 ( 1.14) 15.0 ( 4.69) 15.2 ( 6.50)

CI∗,sx,α, k̂GCV
n − 5 13.4 ( 1.10) 11.0 ( 3.28) 13.0 ( 0.99) 14.2 ( 1.14) 14.0 ( 4.71) 14.0 ( 6.70)

CI∗,sx,α, k̂GCV
n − 6 12.8 ( 1.10) 10.6 ( 3.28) 13.2 ( 0.99) 14.6 ( 1.15) 12.6 ( 4.64) 13.6 ( 6.90)

Table 4.1: Empirical coverage and mean length (×102) of confidence intervals for the model parameter
θ1 and sample size n = 50, in brackets.
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α CI x1 x2 x3 x4 x5 x6

5% CImc
x,α 4.8 ( 0.89) 6.4 ( 2.68) 4.8 ( 0.80) 4.8 ( 0.91) 5.4 ( 3.85) 3.8 ( 5.43)

CImc,s
x,α 4.4 ( 0.90) 5.0 ( 2.69) 4.4 ( 0.81) 4.4 ( 0.92) 6.8 ( 3.79) 3.8 ( 5.42)

CIasy
x,α 6.0 ( 0.83) 6.8 ( 2.47) 6.0 ( 0.74) 6.6 ( 0.83) 14.6 ( 2.89) 14.2 ( 4.13)

CI∗x,α, k̂GCV
n + 3 6.8 ( 0.82) 7.2 ( 2.44) 7.8 ( 0.73) 8.0 ( 0.83) 7.2 ( 3.52) 8.2 ( 4.95)

CI∗x,α, k̂GCV
n + 2 7.0 ( 0.82) 7.8 ( 2.44) 7.6 ( 0.73) 8.0 ( 0.84) 8.4 ( 3.42) 7.4 ( 4.84)

CI∗x,α, k̂GCV
n + 1 7.4 ( 0.83) 7.2 ( 2.44) 8.2 ( 0.74) 7.8 ( 0.83) 9.2 ( 3.37) 8.6 ( 4.77)

CI∗x,α, k̂GCV
n 7.2 ( 0.83) 7.6 ( 2.44) 7.8 ( 0.74) 8.0 ( 0.84) 9.0 ( 3.32) 9.4 ( 4.72)

CI∗x,α, k̂GCV
n − 1 6.0 ( 0.90) 6.8 ( 2.66) 6.2 ( 0.80) 6.2 ( 0.91) 8.2 ( 3.46) 8.8 ( 4.93)

CI∗x,α, k̂GCV
n − 2 4.2 ( 1.09) 5.0 ( 3.20) 4.2 ( 0.97) 4.8 ( 1.09) 7.4 ( 4.03) 7.8 ( 5.82)

CI∗x,α, k̂GCV
n − 3 1.8 ( 1.37) 3.0 ( 4.08) 2.8 ( 1.22) 3.6 ( 1.38) 5.8 ( 5.01) 5.4 ( 7.41)

CI∗x,α, k̂GCV
n − 4 2.2 ( 1.69) 2.6 ( 5.04) 1.6 ( 1.50) 2.4 ( 1.69) 4.4 ( 5.96) 4.4 ( 9.31)

CI∗x,α, k̂GCV
n − 5 1.4 ( 1.97) 2.2 ( 5.87) 1.2 ( 1.75) 1.4 ( 1.96) 3.4 ( 6.69) 3.0 (10.94)

CI∗x,α, k̂GCV
n − 6 0.8 ( 2.18) 1.0 ( 6.56) 0.6 ( 1.95) 0.2 ( 2.19) 2.4 ( 7.30) 2.2 (12.30)

CI∗,sx,α, k̂GCV
n + 3 5.0 ( 0.89) 5.6 ( 2.63) 5.2 ( 0.79) 6.0 ( 0.90) 7.4 ( 3.49) 7.8 ( 4.97)

CI∗,sx,α, k̂GCV
n + 2 5.2 ( 0.88) 6.2 ( 2.62) 5.4 ( 0.79) 6.4 ( 0.89) 8.6 ( 3.45) 7.4 ( 4.90)

CI∗,sx,α, k̂GCV
n + 1 5.8 ( 0.88) 6.2 ( 2.61) 5.4 ( 0.78) 6.0 ( 0.89) 9.6 ( 3.42) 8.8 ( 4.87)

CI∗,sx,α, k̂GCV
n 5.8 ( 0.88) 6.0 ( 2.61) 5.4 ( 0.78) 6.4 ( 0.89) 9.2 ( 3.40) 10.6 ( 4.84)

CI∗,sx,α, k̂GCV
n − 1 5.0 ( 0.88) 6.2 ( 2.58) 6.0 ( 0.78) 6.0 ( 0.89) 9.4 ( 3.42) 9.8 ( 4.85)

CI∗,sx,α, k̂GCV
n − 2 5.8 ( 0.87) 6.2 ( 2.59) 5.0 ( 0.78) 6.6 ( 0.89) 8.6 ( 3.49) 9.6 ( 4.94)

CI∗,sx,α, k̂GCV
n − 3 5.6 ( 0.87) 6.2 ( 2.60) 5.8 ( 0.78) 6.0 ( 0.89) 8.0 ( 3.75) 7.6 ( 5.11)

CI∗,sx,α, k̂GCV
n − 4 5.6 ( 0.87) 6.0 ( 2.61) 5.6 ( 0.78) 6.2 ( 0.90) 7.2 ( 3.76) 5.8 ( 5.35)

CI∗,sx,α, k̂GCV
n − 5 5.6 ( 0.87) 6.4 ( 2.61) 5.0 ( 0.79) 5.6 ( 0.91) 7.4 ( 3.85) 3.8 ( 5.59)

CI∗,sx,α, k̂GCV
n − 6 5.8 ( 0.87) 5.6 ( 2.62) 5.4 ( 0.79) 5.2 ( 0.92) 7.2 ( 3.84) 3.2 ( 5.82)

10% CImc
x,α 9.2 ( 0.75) 9.0 ( 2.24) 9.0 ( 0.67) 9.8 ( 0.77) 10.8 ( 3.20) 9.0 ( 4.51)

CImc,s
x,α 10.2 ( 0.75) 8.8 ( 2.26) 9.6 ( 0.68) 8.8 ( 0.77) 10.8 ( 3.17) 9.4 ( 4.54)

CIasy
x,α 13.4 ( 0.69) 12.8 ( 2.08) 13.0 ( 0.62) 15.0 ( 0.70) 22.0 ( 2.43) 22.6 ( 3.47)

CI∗x,α, k̂GCV
n + 3 13.6 ( 0.69) 13.6 ( 2.06) 14.6 ( 0.62) 15.2 ( 0.70) 12.4 ( 2.94) 14.4 ( 4.13)

CI∗x,α, k̂GCV
n + 2 14.2 ( 0.70) 13.4 ( 2.06) 14.4 ( 0.62) 15.2 ( 0.70) 14.2 ( 2.85) 16.0 ( 4.04)

CI∗x,α, k̂GCV
n + 1 14.6 ( 0.70) 14.0 ( 2.06) 14.8 ( 0.62) 15.8 ( 0.70) 16.4 ( 2.80) 18.2 ( 3.96)

CI∗x,α, k̂GCV
n 13.8 ( 0.70) 14.0 ( 2.06) 14.8 ( 0.62) 15.8 ( 0.70) 17.0 ( 2.76) 18.2 ( 3.91)

CI∗x,α, k̂GCV
n − 1 10.8 ( 0.76) 12.2 ( 2.25) 11.8 ( 0.68) 12.0 ( 0.76) 16.4 ( 2.86) 17.4 ( 4.06)

CI∗x,α, k̂GCV
n − 2 8.6 ( 0.92) 10.0 ( 2.70) 8.4 ( 0.82) 9.0 ( 0.92) 13.6 ( 3.31) 14.0 ( 4.78)

CI∗x,α, k̂GCV
n − 3 6.8 ( 1.16) 5.8 ( 3.45) 5.8 ( 1.03) 6.8 ( 1.16) 10.6 ( 4.09) 10.2 ( 6.04)

CI∗x,α, k̂GCV
n − 4 5.4 ( 1.43) 4.4 ( 4.25) 4.2 ( 1.27) 5.2 ( 1.42) 8.6 ( 4.82) 7.4 ( 7.50)

CI∗x,α, k̂GCV
n − 5 3.6 ( 1.66) 3.2 ( 4.96) 3.2 ( 1.47) 3.6 ( 1.65) 5.6 ( 5.38) 4.8 ( 8.76)

CI∗x,α, k̂GCV
n − 6 2.0 ( 1.84) 1.6 ( 5.54) 2.0 ( 1.64) 1.8 ( 1.84) 3.8 ( 5.82) 3.6 ( 9.83)

CI∗,sx,α, k̂GCV
n + 3 11.2 ( 0.75) 10.6 ( 2.21) 12.2 ( 0.67) 12.2 ( 0.75) 13.2 ( 2.95) 14.6 ( 4.17)

CI∗,sx,α, k̂GCV
n + 2 12.0 ( 0.74) 11.0 ( 2.20) 11.8 ( 0.66) 11.8 ( 0.75) 14.2 ( 2.91) 16.4 ( 4.12)

CI∗,sx,α, k̂GCV
n + 1 11.6 ( 0.74) 11.2 ( 2.20) 11.8 ( 0.66) 12.8 ( 0.75) 15.0 ( 2.88) 16.6 ( 4.09)

CI∗,sx,α, k̂GCV
n 11.0 ( 0.74) 11.0 ( 2.19) 11.8 ( 0.66) 12.6 ( 0.75) 16.6 ( 2.85) 18.6 ( 4.06)

CI∗,sx,α, k̂GCV
n − 1 11.4 ( 0.74) 11.0 ( 2.18) 12.0 ( 0.66) 12.2 ( 0.75) 16.6 ( 2.88) 17.2 ( 4.08)

CI∗,sx,α, k̂GCV
n − 2 11.0 ( 0.73) 11.0 ( 2.18) 12.2 ( 0.66) 12.4 ( 0.75) 15.0 ( 2.93) 13.6 ( 4.15)

CI∗,sx,α, k̂GCV
n − 3 11.6 ( 0.73) 10.8 ( 2.18) 12.0 ( 0.66) 12.4 ( 0.75) 13.8 ( 3.13) 11.6 ( 4.29)

CI∗,sx,α, k̂GCV
n − 4 11.4 ( 0.74) 10.6 ( 2.19) 11.2 ( 0.66) 12.4 ( 0.76) 13.2 ( 3.16) 10.0 ( 4.49)

CI∗,sx,α, k̂GCV
n − 5 11.2 ( 0.73) 10.8 ( 2.20) 12.4 ( 0.66) 12.4 ( 0.77) 11.6 ( 3.25) 8.0 ( 4.69)

CI∗,sx,α, k̂GCV
n − 6 12.2 ( 0.73) 10.2 ( 2.20) 13.0 ( 0.66) 10.8 ( 0.78) 12.6 ( 3.25) 6.6 ( 4.87)

Table 4.2: Empirical coverage and mean length (×102) of confidence intervals for the model parameter
θ1 and sample size n = 100, in brackets.
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α CI x1 x2 x3 x4 x5 x6

5% CImc
x,α 4.2 ( 0.61) 4.8 ( 1.83) 4.4 ( 0.55) 3.4 ( 0.63) 4.2 ( 2.73) 4.6 ( 3.83)

CImc,s
x,α 4.2 ( 0.61) 4.8 ( 1.84) 4.2 ( 0.55) 4.8 ( 0.63) 5.4 ( 2.70) 4.4 ( 3.81)

CIasy
x,α 5.0 ( 0.59) 5.6 ( 1.77) 5.6 ( 0.53) 5.4 ( 0.60) 10.6 ( 2.20) 9.2 ( 3.10)

CI∗x,α, k̂GCV
n + 3 5.2 ( 0.58) 6.6 ( 1.75) 6.0 ( 0.52) 5.0 ( 0.60) 6.0 ( 2.63) 5.8 ( 3.70)

CI∗x,α, k̂GCV
n + 2 5.2 ( 0.58) 6.4 ( 1.75) 6.0 ( 0.52) 5.0 ( 0.60) 6.8 ( 2.58) 6.0 ( 3.61)

CI∗x,α, k̂GCV
n + 1 5.2 ( 0.58) 6.4 ( 1.75) 6.0 ( 0.52) 5.8 ( 0.60) 8.0 ( 2.52) 6.6 ( 3.54)

CI∗x,α, k̂GCV
n 5.4 ( 0.58) 6.2 ( 1.76) 6.4 ( 0.52) 4.8 ( 0.60) 7.8 ( 2.49) 7.0 ( 3.50)

CI∗x,α, k̂GCV
n − 1 4.4 ( 0.60) 5.8 ( 1.82) 5.8 ( 0.54) 5.2 ( 0.62) 8.4 ( 2.47) 7.6 ( 3.46)

CI∗x,α, k̂GCV
n − 2 4.0 ( 0.67) 4.4 ( 2.01) 5.0 ( 0.60) 4.2 ( 0.68) 8.0 ( 2.58) 8.0 ( 3.68)

CI∗x,α, k̂GCV
n − 3 3.2 ( 0.83) 3.2 ( 2.49) 3.6 ( 0.74) 3.4 ( 0.84) 6.6 ( 3.12) 7.4 ( 4.58)

CI∗x,α, k̂GCV
n − 4 2.4 ( 1.04) 1.4 ( 3.14) 3.4 ( 0.93) 2.4 ( 1.05) 6.2 ( 3.80) 6.4 ( 5.83)

CI∗x,α, k̂GCV
n − 5 2.2 ( 1.28) 0.6 ( 3.86) 2.2 ( 1.14) 1.6 ( 1.29) 4.6 ( 4.55) 4.6 ( 7.31)

CI∗x,α, k̂GCV
n − 6 1.6 ( 1.46) 0.6 ( 4.39) 1.6 ( 1.30) 0.8 ( 1.47) 4.2 ( 5.01) 4.2 ( 8.44)

CI∗,sx,α, k̂GCV
n + 3 4.2 ( 0.60) 5.6 ( 1.81) 5.4 ( 0.54) 5.2 ( 0.62) 8.2 ( 2.57) 6.6 ( 3.61)

CI∗,sx,α, k̂GCV
n + 2 4.6 ( 0.60) 5.4 ( 1.81) 6.0 ( 0.54) 4.8 ( 0.62) 8.0 ( 2.55) 6.2 ( 3.58)

CI∗,sx,α, k̂GCV
n + 1 4.6 ( 0.60) 5.8 ( 1.82) 5.6 ( 0.54) 4.8 ( 0.62) 8.4 ( 2.53) 7.2 ( 3.53)

CI∗,sx,α, k̂GCV
n 4.4 ( 0.60) 6.0 ( 1.81) 6.0 ( 0.54) 5.0 ( 0.62) 8.2 ( 2.51) 7.0 ( 3.52)

CI∗,sx,α, k̂GCV
n − 1 4.4 ( 0.60) 6.0 ( 1.81) 5.2 ( 0.54) 5.0 ( 0.62) 8.8 ( 2.52) 6.6 ( 3.52)

CI∗,sx,α, k̂GCV
n − 2 4.8 ( 0.60) 5.6 ( 1.81) 5.6 ( 0.54) 4.8 ( 0.62) 9.2 ( 2.49) 6.4 ( 3.53)

CI∗,sx,α, k̂GCV
n − 3 5.0 ( 0.60) 5.8 ( 1.81) 6.0 ( 0.54) 4.8 ( 0.62) 7.6 ( 2.59) 6.4 ( 3.63)

CI∗,sx,α, k̂GCV
n − 4 4.2 ( 0.60) 5.6 ( 1.80) 5.6 ( 0.55) 5.4 ( 0.63) 7.8 ( 2.67) 6.2 ( 3.78)

CI∗,sx,α, k̂GCV
n − 5 5.0 ( 0.60) 5.2 ( 1.81) 5.6 ( 0.54) 5.2 ( 0.63) 6.0 ( 2.81) 5.2 ( 3.98)

CI∗,sx,α, k̂GCV
n − 6 4.0 ( 0.60) 5.2 ( 1.81) 5.8 ( 0.55) 5.0 ( 0.64) 6.4 ( 2.73) 4.4 ( 4.16)

10% CImc
x,α 8.0 ( 0.51) 9.4 ( 1.53) 8.4 ( 0.46) 10.4 ( 0.53) 9.4 ( 2.27) 9.6 ( 3.19)

CImc,s
x,α 8.6 ( 0.51) 9.0 ( 1.55) 8.8 ( 0.46) 9.0 ( 0.53) 9.0 ( 2.27) 8.6 ( 3.20)

CIasy
x,α 9.4 ( 0.49) 10.6 ( 1.49) 10.4 ( 0.44) 11.4 ( 0.50) 19.2 ( 1.84) 15.0 ( 2.60)

CI∗x,α, k̂GCV
n + 3 9.6 ( 0.49) 10.6 ( 1.48) 10.8 ( 0.44) 10.0 ( 0.51) 11.2 ( 2.20) 9.6 ( 3.09)

CI∗x,α, k̂GCV
n + 2 9.4 ( 0.49) 10.8 ( 1.47) 11.4 ( 0.44) 10.8 ( 0.51) 13.0 ( 2.15) 10.6 ( 3.01)

CI∗x,α, k̂GCV
n + 1 9.2 ( 0.49) 11.4 ( 1.48) 11.0 ( 0.44) 10.2 ( 0.51) 12.4 ( 2.10) 12.2 ( 2.95)

CI∗x,α, k̂GCV
n 10.0 ( 0.49) 10.0 ( 1.48) 10.8 ( 0.44) 10.6 ( 0.50) 14.2 ( 2.07) 12.0 ( 2.91)

CI∗x,α, k̂GCV
n − 1 9.0 ( 0.51) 9.2 ( 1.53) 10.0 ( 0.46) 9.8 ( 0.52) 15.8 ( 2.04) 13.0 ( 2.87)

CI∗x,α, k̂GCV
n − 2 8.0 ( 0.56) 9.2 ( 1.69) 8.6 ( 0.50) 8.4 ( 0.57) 14.0 ( 2.12) 12.4 ( 3.04)

CI∗x,α, k̂GCV
n − 3 6.0 ( 0.70) 7.2 ( 2.10) 7.2 ( 0.63) 6.0 ( 0.71) 10.8 ( 2.55) 10.8 ( 3.74)

CI∗x,α, k̂GCV
n − 4 5.2 ( 0.88) 3.2 ( 2.64) 5.2 ( 0.78) 4.2 ( 0.89) 10.0 ( 3.09) 8.0 ( 4.72)

CI∗x,α, k̂GCV
n − 5 3.6 ( 1.08) 2.2 ( 3.25) 4.2 ( 0.96) 3.2 ( 1.09) 7.8 ( 3.67) 6.6 ( 5.86)

CI∗x,α, k̂GCV
n − 6 2.4 ( 1.23) 1.8 ( 3.70) 3.4 ( 1.10) 1.8 ( 1.23) 6.4 ( 4.01) 5.4 ( 6.75)

CI∗,sx,α, k̂GCV
n + 3 8.0 ( 0.51) 9.0 ( 1.53) 9.4 ( 0.46) 9.4 ( 0.52) 12.6 ( 2.16) 10.8 ( 3.04)

CI∗,sx,α, k̂GCV
n + 2 8.8 ( 0.51) 9.2 ( 1.53) 9.4 ( 0.46) 10.0 ( 0.52) 13.8 ( 2.14) 10.4 ( 3.01)

CI∗,sx,α, k̂GCV
n + 1 9.0 ( 0.51) 8.6 ( 1.53) 9.4 ( 0.46) 9.2 ( 0.52) 14.4 ( 2.12) 13.8 ( 2.98)

CI∗,sx,α, k̂GCV
n 8.8 ( 0.51) 9.2 ( 1.52) 9.6 ( 0.45) 9.8 ( 0.52) 15.4 ( 2.11) 12.8 ( 2.95)

CI∗,sx,α, k̂GCV
n − 1 9.0 ( 0.51) 9.2 ( 1.53) 9.6 ( 0.45) 9.6 ( 0.52) 13.0 ( 2.12) 12.6 ( 2.96)

CI∗,sx,α, k̂GCV
n − 2 9.2 ( 0.50) 9.8 ( 1.52) 11.0 ( 0.45) 9.8 ( 0.52) 14.4 ( 2.10) 11.6 ( 2.98)

CI∗,sx,α, k̂GCV
n − 3 9.8 ( 0.51) 9.2 ( 1.52) 9.4 ( 0.46) 9.0 ( 0.53) 12.2 ( 2.16) 10.6 ( 3.05)

CI∗,sx,α, k̂GCV
n − 4 9.6 ( 0.51) 9.8 ( 1.52) 10.0 ( 0.46) 9.8 ( 0.53) 10.4 ( 2.24) 9.0 ( 3.19)

CI∗,sx,α, k̂GCV
n − 5 9.2 ( 0.51) 9.8 ( 1.52) 10.2 ( 0.46) 10.0 ( 0.53) 10.4 ( 2.33) 7.6 ( 3.35)

CI∗,sx,α, k̂GCV
n − 6 10.0 ( 0.51) 10.2 ( 1.52) 10.2 ( 0.46) 9.4 ( 0.54) 9.4 ( 2.31) 7.0 ( 3.50)

Table 4.3: Empirical coverage and mean length (×102) of confidence intervals for the model parameter
θ1 and sample size n = 200, in brackets.
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α CI x1 x2 x3 x4 x5 x6

5% CImc
x,α 5.4 ( 0.38) 4.4 ( 1.13) 5.0 ( 0.34) 5.2 ( 0.39) 3.8 ( 1.75) 5.8 ( 2.47)

CImc,s
x,α 5.4 ( 0.38) 3.8 ( 1.13) 4.6 ( 0.34) 6.0 ( 0.39) 5.4 ( 1.74) 5.2 ( 2.44)

CIasy
x,α 5.8 ( 0.37) 4.4 ( 1.12) 6.4 ( 0.33) 6.8 ( 0.38) 12.8 ( 1.49) 10.2 ( 2.09)

CI∗x,α, k̂GCV
n + 3 6.6 ( 0.37) 5.6 ( 1.11) 5.6 ( 0.33) 6.8 ( 0.38) 7.4 ( 1.76) 6.0 ( 2.47)

CI∗x,α, k̂GCV
n + 2 6.4 ( 0.37) 5.2 ( 1.11) 5.6 ( 0.33) 6.8 ( 0.38) 8.4 ( 1.72) 6.4 ( 2.42)

CI∗x,α, k̂GCV
n + 1 6.0 ( 0.37) 5.6 ( 1.11) 5.2 ( 0.33) 6.6 ( 0.38) 7.8 ( 1.69) 6.0 ( 2.38)

CI∗x,α, k̂GCV
n 6.2 ( 0.37) 4.6 ( 1.11) 6.0 ( 0.33) 6.6 ( 0.38) 9.2 ( 1.67) 6.6 ( 2.35)

CI∗x,α, k̂GCV
n − 1 6.6 ( 0.37) 4.4 ( 1.12) 5.4 ( 0.34) 6.4 ( 0.38) 11.0 ( 1.61) 7.2 ( 2.26)

CI∗x,α, k̂GCV
n − 2 6.2 ( 0.39) 4.2 ( 1.15) 5.4 ( 0.35) 6.2 ( 0.39) 11.4 ( 1.57) 8.6 ( 2.22)

CI∗x,α, k̂GCV
n − 3 5.0 ( 0.42) 4.0 ( 1.27) 4.0 ( 0.38) 4.6 ( 0.43) 9.0 ( 1.67) 8.4 ( 2.38)

CI∗x,α, k̂GCV
n − 4 4.4 ( 0.53) 3.6 ( 1.60) 3.2 ( 0.48) 3.8 ( 0.54) 8.0 ( 2.03) 7.2 ( 2.98)

CI∗x,α, k̂GCV
n − 5 2.8 ( 0.68) 2.8 ( 2.05) 2.8 ( 0.61) 2.2 ( 0.69) 5.6 ( 2.58) 6.2 ( 3.89)

CI∗x,α, k̂GCV
n − 6 2.0 ( 0.81) 2.2 ( 2.42) 1.4 ( 0.72) 1.4 ( 0.82) 5.2 ( 2.88) 5.6 ( 4.68)

CI∗,sx,α, k̂GCV
n + 3 6.0 ( 0.38) 5.2 ( 1.12) 5.0 ( 0.34) 6.4 ( 0.39) 8.8 ( 1.70) 7.0 ( 2.39)

CI∗,sx,α, k̂GCV
n + 2 6.0 ( 0.38) 5.2 ( 1.12) 4.6 ( 0.34) 6.4 ( 0.39) 9.4 ( 1.69) 7.6 ( 2.38)

CI∗,sx,α, k̂GCV
n + 1 6.6 ( 0.38) 4.6 ( 1.13) 5.6 ( 0.34) 6.2 ( 0.39) 9.2 ( 1.68) 6.8 ( 2.35)

CI∗,sx,α, k̂GCV
n 6.2 ( 0.38) 4.6 ( 1.12) 5.4 ( 0.34) 6.4 ( 0.39) 10.2 ( 1.67) 7.6 ( 2.34)

CI∗,sx,α, k̂GCV
n − 1 6.2 ( 0.38) 5.0 ( 1.12) 5.4 ( 0.34) 7.0 ( 0.39) 9.2 ( 1.67) 6.8 ( 2.34)

CI∗,sx,α, k̂GCV
n − 2 6.2 ( 0.38) 4.6 ( 1.12) 5.2 ( 0.34) 7.4 ( 0.39) 10.4 ( 1.66) 6.6 ( 2.33)

CI∗,sx,α, k̂GCV
n − 3 6.4 ( 0.37) 5.0 ( 1.12) 5.0 ( 0.34) 6.8 ( 0.39) 8.8 ( 1.67) 5.8 ( 2.35)

CI∗,sx,α, k̂GCV
n − 4 7.2 ( 0.37) 4.6 ( 1.12) 6.4 ( 0.34) 6.0 ( 0.39) 8.8 ( 1.70) 5.2 ( 2.42)

CI∗,sx,α, k̂GCV
n − 5 6.0 ( 0.37) 4.8 ( 1.12) 5.2 ( 0.34) 5.6 ( 0.39) 8.6 ( 1.76) 4.6 ( 2.52)

CI∗,sx,α, k̂GCV
n − 6 5.6 ( 0.37) 4.2 ( 1.12) 5.4 ( 0.34) 4.8 ( 0.40) 7.6 ( 1.78) 4.4 ( 2.65)

10% CImc
x,α 11.4 ( 0.32) 9.8 ( 0.95) 11.0 ( 0.29) 10.6 ( 0.33) 9.8 ( 1.46) 11.0 ( 2.06)

CImc,s
x,α 10.8 ( 0.32) 10.6 ( 0.95) 10.2 ( 0.29) 10.2 ( 0.33) 10.8 ( 1.46) 11.4 ( 2.06)

CIasy
x,α 11.2 ( 0.31) 10.0 ( 0.94) 12.0 ( 0.28) 11.4 ( 0.32) 18.2 ( 1.25) 17.8 ( 1.76)

CI∗x,α, k̂GCV
n + 3 11.4 ( 0.31) 10.2 ( 0.93) 11.8 ( 0.28) 11.4 ( 0.32) 12.6 ( 1.47) 10.8 ( 2.07)

CI∗x,α, k̂GCV
n + 2 11.6 ( 0.31) 10.4 ( 0.93) 11.2 ( 0.28) 11.0 ( 0.32) 14.0 ( 1.44) 11.6 ( 2.02)

CI∗x,α, k̂GCV
n + 1 11.0 ( 0.31) 10.2 ( 0.93) 12.0 ( 0.28) 12.2 ( 0.32) 14.2 ( 1.41) 12.6 ( 1.98)

CI∗x,α, k̂GCV
n 11.4 ( 0.31) 10.6 ( 0.93) 10.8 ( 0.28) 11.0 ( 0.32) 14.8 ( 1.39) 13.4 ( 1.96)

CI∗x,α, k̂GCV
n − 1 11.2 ( 0.31) 10.8 ( 0.94) 11.6 ( 0.28) 11.4 ( 0.32) 17.0 ( 1.33) 15.4 ( 1.88)

CI∗x,α, k̂GCV
n − 2 10.6 ( 0.32) 9.2 ( 0.97) 10.8 ( 0.29) 10.2 ( 0.33) 18.0 ( 1.29) 16.2 ( 1.84)

CI∗x,α, k̂GCV
n − 3 9.4 ( 0.36) 8.8 ( 1.07) 9.0 ( 0.32) 8.8 ( 0.36) 17.4 ( 1.37) 15.8 ( 1.96)

CI∗x,α, k̂GCV
n − 4 7.8 ( 0.45) 6.6 ( 1.35) 7.4 ( 0.40) 6.6 ( 0.46) 13.4 ( 1.66) 12.4 ( 2.43)

CI∗x,α, k̂GCV
n − 5 5.4 ( 0.57) 5.6 ( 1.73) 5.4 ( 0.51) 4.6 ( 0.58) 10.8 ( 2.09) 9.2 ( 3.14)

CI∗x,α, k̂GCV
n − 6 3.6 ( 0.68) 4.2 ( 2.04) 4.0 ( 0.61) 3.8 ( 0.69) 8.6 ( 2.32) 7.4 ( 3.75)

CI∗,sx,α, k̂GCV
n + 3 11.4 ( 0.32) 9.6 ( 0.95) 11.8 ( 0.28) 11.2 ( 0.33) 13.8 ( 1.43) 12.6 ( 2.01)

CI∗,sx,α, k̂GCV
n + 2 11.0 ( 0.32) 9.8 ( 0.95) 11.2 ( 0.28) 11.4 ( 0.32) 15.4 ( 1.42) 13.0 ( 1.99)

CI∗,sx,α, k̂GCV
n + 1 11.0 ( 0.32) 9.2 ( 0.95) 11.2 ( 0.28) 10.8 ( 0.32) 14.6 ( 1.41) 14.4 ( 1.98)

CI∗,sx,α, k̂GCV
n 11.6 ( 0.32) 9.6 ( 0.95) 11.6 ( 0.28) 11.2 ( 0.32) 15.0 ( 1.40) 13.8 ( 1.97)

CI∗,sx,α, k̂GCV
n − 1 11.6 ( 0.32) 9.8 ( 0.95) 12.0 ( 0.28) 11.6 ( 0.32) 15.8 ( 1.40) 14.6 ( 1.97)

CI∗,sx,α, k̂GCV
n − 2 10.6 ( 0.32) 9.6 ( 0.95) 11.4 ( 0.28) 11.2 ( 0.32) 14.4 ( 1.39) 13.2 ( 1.96)

CI∗,sx,α, k̂GCV
n − 3 11.2 ( 0.31) 10.4 ( 0.94) 12.2 ( 0.28) 11.8 ( 0.33) 14.6 ( 1.40) 12.6 ( 1.97)

CI∗,sx,α, k̂GCV
n − 4 10.8 ( 0.32) 10.0 ( 0.94) 11.0 ( 0.28) 11.4 ( 0.33) 14.2 ( 1.43) 11.2 ( 2.03)

CI∗,sx,α, k̂GCV
n − 5 11.4 ( 0.31) 9.6 ( 0.94) 10.8 ( 0.28) 11.4 ( 0.33) 13.2 ( 1.48) 9.4 ( 2.12)

CI∗,sx,α, k̂GCV
n − 6 11.6 ( 0.31) 9.2 ( 0.95) 11.6 ( 0.29) 11.2 ( 0.33) 11.8 ( 1.51) 7.6 ( 2.23)

Table 4.4: Empirical coverage and mean length (×102) of confidence intervals for the model parameter
θ1 and sample size n = 500, in brackets.
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α CI x1 x2 x3 x4 x5 x6

5% CImc
x,α 5.6 ( 1.84) 5.2 ( 5.64) 4.6 ( 1.64) 5.2 ( 1.85) 5.4 ( 7.27) 5.8 ( 8.58)

CImc,s
x,α 4.8 ( 1.91) 4.6 ( 5.71) 5.4 ( 1.69) 6.0 ( 1.87) 5.2 ( 8.45) 4.4 ( 8.35)

CIasy
x,α 9.0 ( 1.66) 8.4 ( 4.95) 9.0 ( 1.46) 10.2 ( 1.59) 48.8 ( 4.42) 15.0 ( 6.18)

CI∗x,α, k̂GCV
n + 3 10.8 ( 1.65) 9.6 ( 4.88) 8.4 ( 1.47) 10.4 ( 1.65) 28.6 ( 6.11) 8.4 ( 8.39)

CI∗x,α, k̂GCV
n + 2 10.6 ( 1.66) 10.2 ( 4.90) 8.6 ( 1.47) 10.4 ( 1.65) 30.6 ( 5.96) 7.8 ( 8.21)

CI∗x,α, k̂GCV
n + 1 10.2 ( 1.66) 9.4 ( 4.93) 9.2 ( 1.47) 10.0 ( 1.65) 33.6 ( 5.80) 9.0 ( 8.03)

CI∗x,α, k̂GCV
n 10.6 ( 1.66) 8.8 ( 4.93) 8.8 ( 1.47) 10.6 ( 1.64) 34.2 ( 5.76) 8.6 ( 7.95)

CI∗x,α, k̂GCV
n − 1 8.0 ( 1.84) 6.8 ( 5.42) 6.8 ( 1.63) 7.2 ( 1.80) 29.6 ( 6.27) 7.8 ( 8.28)

CI∗x,α, k̂GCV
n − 2 6.6 ( 1.94) 5.8 ( 5.78) 5.8 ( 1.72) 6.6 ( 1.90) 26.6 ( 6.74) 7.4 ( 8.43)

CI∗x,α, k̂GCV
n − 3 5.6 ( 2.00) 5.8 ( 5.96) 4.6 ( 1.77) 5.8 ( 1.95) 24.6 ( 7.01) 6.8 ( 8.50)

CI∗x,α, k̂GCV
n − 4 5.0 ( 2.04) 4.8 ( 6.05) 5.0 ( 1.80) 5.6 ( 1.99) 25.0 ( 7.16) 5.8 ( 8.56)

CI∗x,α, k̂GCV
n − 5 4.4 ( 2.07) 4.4 ( 6.10) 4.4 ( 1.83) 5.4 ( 2.01) 24.8 ( 7.30) 6.2 ( 8.61)

CI∗x,α, k̂GCV
n − 6 3.8 ( 2.08) 4.4 ( 6.15) 4.6 ( 1.84) 4.6 ( 2.03) 24.6 ( 7.35) 6.2 ( 8.59)

CI∗,sx,α, k̂GCV
n + 3 6.8 ( 1.86) 6.0 ( 5.53) 5.8 ( 1.65) 7.4 ( 1.83) 25.4 ( 6.84) 6.4 ( 8.32)

CI∗,sx,α, k̂GCV
n + 2 6.4 ( 1.86) 4.8 ( 5.50) 5.4 ( 1.64) 7.6 ( 1.82) 26.0 ( 6.77) 6.8 ( 8.25)

CI∗,sx,α, k̂GCV
n + 1 6.6 ( 1.85) 6.6 ( 5.49) 6.6 ( 1.63) 7.6 ( 1.81) 26.2 ( 6.68) 8.0 ( 8.13)

CI∗,sx,α, k̂GCV
n 7.2 ( 1.84) 5.8 ( 5.48) 6.6 ( 1.62) 8.0 ( 1.80) 28.2 ( 6.62) 9.4 ( 8.05)

CI∗,sx,α, k̂GCV
n − 1 9.0 ( 1.83) 6.8 ( 5.44) 6.8 ( 1.62) 8.0 ( 1.81) 25.6 ( 6.79) 7.8 ( 8.05)

CI∗,sx,α, k̂GCV
n − 2 7.8 ( 1.82) 6.6 ( 5.44) 6.0 ( 1.62) 7.4 ( 1.81) 26.4 ( 6.79) 6.8 ( 7.99)

CI∗,sx,α, k̂GCV
n − 3 8.4 ( 1.82) 6.2 ( 5.45) 6.0 ( 1.61) 8.0 ( 1.81) 24.2 ( 6.92) 6.6 ( 7.92)

CI∗,sx,α, k̂GCV
n − 4 8.2 ( 1.82) 6.8 ( 5.45) 6.8 ( 1.62) 7.8 ( 1.82) 23.2 ( 6.83) 7.4 ( 7.87)

CI∗,sx,α, k̂GCV
n − 5 8.4 ( 1.81) 6.2 ( 5.44) 6.2 ( 1.62) 7.2 ( 1.82) 23.6 ( 6.84) 7.0 ( 7.84)

CI∗,sx,α, k̂GCV
n − 6 7.6 ( 1.80) 6.0 ( 5.43) 6.8 ( 1.61) 8.0 ( 1.81) 24.8 ( 6.78) 7.2 ( 7.80)

10% CImc
x,α 11.2 ( 1.55) 10.4 ( 4.68) 10.0 ( 1.38) 11.0 ( 1.54) 10.4 ( 5.95) 12.0 ( 6.97)

CImc,s
x,α 10.8 ( 1.59) 8.6 ( 4.75) 10.4 ( 1.40) 11.4 ( 1.56) 10.0 ( 6.94) 11.6 ( 6.98)

CIasy
x,α 16.6 ( 1.39) 14.2 ( 4.16) 15.8 ( 1.22) 17.4 ( 1.33) 56.2 ( 3.71) 25.2 ( 5.19)

CI∗x,α, k̂GCV
n + 3 17.6 ( 1.39) 15.6 ( 4.13) 14.8 ( 1.24) 15.6 ( 1.40) 39.6 ( 5.06) 13.8 ( 6.92)

CI∗x,α, k̂GCV
n + 2 17.8 ( 1.40) 15.6 ( 4.14) 15.0 ( 1.24) 15.0 ( 1.39) 41.8 ( 4.89) 14.0 ( 6.75)

CI∗x,α, k̂GCV
n + 1 18.0 ( 1.40) 16.6 ( 4.17) 14.8 ( 1.24) 15.2 ( 1.39) 45.4 ( 4.73) 16.6 ( 6.56)

CI∗x,α, k̂GCV
n 17.6 ( 1.41) 16.6 ( 4.18) 15.6 ( 1.24) 15.4 ( 1.38) 45.6 ( 4.68) 18.0 ( 6.44)

CI∗x,α, k̂GCV
n − 1 14.6 ( 1.56) 13.2 ( 4.59) 13.6 ( 1.38) 13.0 ( 1.52) 41.0 ( 5.07) 14.8 ( 6.61)

CI∗x,α, k̂GCV
n − 2 12.4 ( 1.65) 10.2 ( 4.88) 11.6 ( 1.45) 12.6 ( 1.60) 39.0 ( 5.40) 13.8 ( 6.66)

CI∗x,α, k̂GCV
n − 3 11.4 ( 1.70) 8.4 ( 5.03) 9.6 ( 1.49) 11.6 ( 1.64) 37.6 ( 5.59) 14.2 ( 6.67)

CI∗x,α, k̂GCV
n − 4 9.6 ( 1.73) 8.2 ( 5.12) 10.2 ( 1.52) 10.6 ( 1.67) 36.8 ( 5.70) 13.0 ( 6.68)

CI∗x,α, k̂GCV
n − 5 8.6 ( 1.75) 7.8 ( 5.17) 8.6 ( 1.54) 10.0 ( 1.69) 35.8 ( 5.79) 12.8 ( 6.72)

CI∗x,α, k̂GCV
n − 6 8.2 ( 1.76) 7.6 ( 5.20) 8.2 ( 1.55) 9.4 ( 1.70) 36.2 ( 5.87) 13.2 ( 6.72)

CI∗,sx,α, k̂GCV
n + 3 11.4 ( 1.57) 10.8 ( 4.64) 10.8 ( 1.39) 11.4 ( 1.54) 35.0 ( 5.48) 13.0 ( 6.97)

CI∗,sx,α, k̂GCV
n + 2 13.6 ( 1.56) 11.2 ( 4.62) 11.0 ( 1.38) 11.4 ( 1.52) 36.6 ( 5.41) 13.8 ( 6.92)

CI∗,sx,α, k̂GCV
n + 1 13.2 ( 1.55) 11.6 ( 4.61) 11.8 ( 1.37) 12.4 ( 1.52) 40.0 ( 5.32) 15.8 ( 6.78)

CI∗,sx,α, k̂GCV
n 14.8 ( 1.54) 12.2 ( 4.59) 11.4 ( 1.36) 13.0 ( 1.51) 40.0 ( 5.28) 16.6 ( 6.72)

CI∗,sx,α, k̂GCV
n − 1 14.4 ( 1.54) 11.2 ( 4.57) 12.4 ( 1.36) 12.4 ( 1.52) 35.4 ( 5.53) 15.6 ( 6.75)

CI∗,sx,α, k̂GCV
n − 2 14.4 ( 1.53) 12.8 ( 4.57) 11.4 ( 1.36) 11.4 ( 1.52) 33.8 ( 5.62) 14.0 ( 6.69)

CI∗,sx,α, k̂GCV
n − 3 14.2 ( 1.53) 11.0 ( 4.58) 12.8 ( 1.36) 12.4 ( 1.52) 32.4 ( 5.69) 14.8 ( 6.63)

CI∗,sx,α, k̂GCV
n − 4 14.2 ( 1.52) 11.4 ( 4.57) 12.4 ( 1.36) 12.8 ( 1.53) 31.2 ( 5.68) 15.0 ( 6.58)

CI∗,sx,α, k̂GCV
n − 5 14.2 ( 1.52) 11.4 ( 4.57) 12.6 ( 1.36) 12.8 ( 1.53) 31.2 ( 5.73) 14.4 ( 6.58)

CI∗,sx,α, k̂GCV
n − 6 14.8 ( 1.51) 11.0 ( 4.55) 13.0 ( 1.35) 13.2 ( 1.52) 31.8 ( 5.73) 14.8 ( 6.54)

Table 4.5: Empirical coverage and mean length (×102) of confidence intervals for the model parameter
θ2 and sample size n = 50, in brackets.
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α CI x1 x2 x3 x4 x5 x6

5% CImc
x,α 7.0 ( 1.26) 5.0 ( 3.83) 5.8 ( 1.13) 4.0 ( 1.28) 3.8 ( 5.55) 3.8 ( 6.32)

CImc,s
x,α 6.6 ( 1.27) 4.4 ( 3.82) 5.6 ( 1.13) 4.8 ( 1.27) 4.6 ( 6.34) 3.8 ( 6.08)

CIasy
x,α 8.2 ( 1.19) 5.6 ( 3.56) 7.6 ( 1.05) 7.0 ( 1.16) 53.2 ( 3.46) 11.0 ( 4.77)

CI∗x,α, k̂GCV
n + 3 9.0 ( 1.18) 6.0 ( 3.56) 6.8 ( 1.05) 6.2 ( 1.20) 34.6 ( 4.67) 4.6 ( 6.30)

CI∗x,α, k̂GCV
n + 2 8.0 ( 1.18) 6.4 ( 3.56) 6.4 ( 1.06) 6.4 ( 1.20) 37.2 ( 4.50) 5.0 ( 6.10)

CI∗x,α, k̂GCV
n + 1 9.4 ( 1.18) 6.4 ( 3.57) 7.0 ( 1.06) 6.4 ( 1.20) 42.0 ( 4.35) 6.0 ( 5.95)

CI∗x,α, k̂GCV
n 8.6 ( 1.19) 6.4 ( 3.57) 7.0 ( 1.06) 6.2 ( 1.20) 42.2 ( 4.28) 6.0 ( 5.85)

CI∗x,α, k̂GCV
n − 1 6.6 ( 1.26) 5.8 ( 3.78) 6.0 ( 1.12) 5.4 ( 1.25) 43.2 ( 4.37) 4.8 ( 5.81)

CI∗x,α, k̂GCV
n − 2 5.8 ( 1.34) 4.2 ( 4.00) 5.2 ( 1.18) 4.4 ( 1.32) 37.4 ( 4.66) 4.8 ( 5.91)

CI∗x,α, k̂GCV
n − 3 4.8 ( 1.40) 4.4 ( 4.17) 4.2 ( 1.24) 3.4 ( 1.37) 35.0 ( 4.90) 5.8 ( 6.02)

CI∗x,α, k̂GCV
n − 4 4.4 ( 1.43) 4.0 ( 4.26) 3.6 ( 1.26) 3.8 ( 1.39) 33.8 ( 5.04) 5.4 ( 6.01)

CI∗x,α, k̂GCV
n − 5 3.8 ( 1.46) 3.4 ( 4.34) 3.8 ( 1.28) 3.4 ( 1.41) 33.8 ( 5.16) 5.0 ( 6.05)

CI∗x,α, k̂GCV
n − 6 3.8 ( 1.46) 3.2 ( 4.38) 4.0 ( 1.29) 4.0 ( 1.43) 32.6 ( 5.20) 5.6 ( 6.08)

CI∗,sx,α, k̂GCV
n + 3 7.2 ( 1.25) 5.2 ( 3.77) 5.8 ( 1.12) 5.8 ( 1.25) 32.8 ( 4.74) 6.6 ( 5.95)

CI∗,sx,α, k̂GCV
n + 2 7.2 ( 1.25) 5.4 ( 3.75) 6.2 ( 1.11) 5.4 ( 1.25) 35.2 ( 4.63) 5.4 ( 5.90)

CI∗,sx,α, k̂GCV
n + 1 7.2 ( 1.25) 5.4 ( 3.75) 6.8 ( 1.11) 6.0 ( 1.25) 37.8 ( 4.53) 6.8 ( 5.85)

CI∗,sx,α, k̂GCV
n 7.8 ( 1.25) 5.4 ( 3.74) 6.8 ( 1.11) 6.2 ( 1.24) 39.2 ( 4.50) 8.4 ( 5.79)

CI∗,sx,α, k̂GCV
n − 1 8.2 ( 1.24) 5.2 ( 3.73) 6.4 ( 1.10) 5.4 ( 1.24) 41.8 ( 4.49) 6.0 ( 5.82)

CI∗,sx,α, k̂GCV
n − 2 7.4 ( 1.23) 5.2 ( 3.72) 6.0 ( 1.10) 6.2 ( 1.25) 34.8 ( 4.67) 6.0 ( 5.82)

CI∗,sx,α, k̂GCV
n − 3 8.0 ( 1.23) 5.2 ( 3.70) 5.8 ( 1.11) 5.4 ( 1.25) 33.8 ( 4.77) 5.2 ( 5.79)

CI∗,sx,α, k̂GCV
n − 4 8.2 ( 1.23) 5.8 ( 3.71) 6.8 ( 1.10) 5.6 ( 1.25) 33.2 ( 4.82) 5.6 ( 5.79)

CI∗,sx,α, k̂GCV
n − 5 8.2 ( 1.23) 5.4 ( 3.70) 6.4 ( 1.10) 5.4 ( 1.25) 33.2 ( 4.90) 5.4 ( 5.78)

CI∗,sx,α, k̂GCV
n − 6 7.0 ( 1.23) 5.2 ( 3.71) 6.0 ( 1.10) 5.6 ( 1.25) 32.0 ( 4.94) 5.6 ( 5.78)

10% CImc
x,α 11.6 ( 1.06) 8.2 ( 3.20) 9.4 ( 0.94) 9.6 ( 1.07) 8.2 ( 4.59) 9.0 ( 5.17)

CImc,s
x,α 11.4 ( 1.06) 8.4 ( 3.20) 9.6 ( 0.95) 8.0 ( 1.06) 8.0 ( 5.28) 8.8 ( 5.12)

CIasy
x,α 13.8 ( 1.00) 10.4 ( 2.99) 11.0 ( 0.88) 10.6 ( 0.97) 60.2 ( 2.91) 17.8 ( 4.00)

CI∗x,α, k̂GCV
n + 3 13.0 ( 0.99) 9.8 ( 3.01) 11.8 ( 0.89) 10.0 ( 1.01) 44.6 ( 3.89) 9.4 ( 5.21)

CI∗x,α, k̂GCV
n + 2 14.2 ( 1.00) 10.4 ( 3.01) 11.4 ( 0.89) 10.2 ( 1.01) 48.8 ( 3.72) 9.6 ( 5.05)

CI∗x,α, k̂GCV
n + 1 13.6 ( 1.00) 10.2 ( 3.01) 10.6 ( 0.89) 10.6 ( 1.01) 50.0 ( 3.58) 11.4 ( 4.90)

CI∗x,α, k̂GCV
n 14.0 ( 1.00) 10.6 ( 3.01) 11.4 ( 0.89) 10.8 ( 1.01) 51.4 ( 3.52) 12.8 ( 4.80)

CI∗x,α, k̂GCV
n − 1 11.0 ( 1.06) 9.2 ( 3.19) 9.8 ( 0.94) 9.6 ( 1.05) 53.0 ( 3.53) 11.6 ( 4.71)

CI∗x,α, k̂GCV
n − 2 9.6 ( 1.13) 8.6 ( 3.38) 8.8 ( 1.00) 8.0 ( 1.11) 52.6 ( 3.75) 12.2 ( 4.73)

CI∗x,α, k̂GCV
n − 3 9.2 ( 1.18) 6.2 ( 3.52) 7.2 ( 1.04) 6.4 ( 1.15) 47.6 ( 3.93) 11.8 ( 4.77)

CI∗x,α, k̂GCV
n − 4 8.8 ( 1.21) 6.4 ( 3.59) 7.4 ( 1.06) 6.0 ( 1.17) 47.6 ( 4.03) 12.2 ( 4.76)

CI∗x,α, k̂GCV
n − 5 8.0 ( 1.23) 5.8 ( 3.66) 6.8 ( 1.08) 6.4 ( 1.19) 47.6 ( 4.09) 12.4 ( 4.77)

CI∗x,α, k̂GCV
n − 6 8.4 ( 1.24) 6.2 ( 3.69) 7.0 ( 1.09) 6.0 ( 1.20) 47.6 ( 4.14) 11.4 ( 4.78)

CI∗,sx,α, k̂GCV
n + 3 12.4 ( 1.05) 8.2 ( 3.16) 10.2 ( 0.94) 8.6 ( 1.05) 42.0 ( 3.93) 11.4 ( 5.01)

CI∗,sx,α, k̂GCV
n + 2 12.4 ( 1.05) 8.8 ( 3.16) 10.0 ( 0.93) 8.4 ( 1.05) 44.6 ( 3.82) 10.8 ( 4.97)

CI∗,sx,α, k̂GCV
n + 1 12.0 ( 1.05) 9.6 ( 3.16) 9.4 ( 0.93) 9.2 ( 1.05) 46.0 ( 3.72) 12.6 ( 4.91)

CI∗,sx,α, k̂GCV
n 12.4 ( 1.05) 8.8 ( 3.15) 9.8 ( 0.93) 9.0 ( 1.05) 48.2 ( 3.70) 12.6 ( 4.85)

CI∗,sx,α, k̂GCV
n − 1 12.2 ( 1.04) 9.4 ( 3.13) 9.8 ( 0.93) 9.0 ( 1.05) 50.0 ( 3.77) 11.2 ( 4.90)

CI∗,sx,α, k̂GCV
n − 2 12.4 ( 1.04) 10.0 ( 3.13) 9.6 ( 0.93) 8.8 ( 1.05) 45.8 ( 3.94) 11.2 ( 4.90)

CI∗,sx,α, k̂GCV
n − 3 13.2 ( 1.04) 9.2 ( 3.12) 10.2 ( 0.93) 8.0 ( 1.06) 43.4 ( 4.04) 11.2 ( 4.89)

CI∗,sx,α, k̂GCV
n − 4 12.8 ( 1.04) 9.0 ( 3.12) 10.4 ( 0.93) 8.6 ( 1.05) 42.2 ( 4.10) 11.8 ( 4.89)

CI∗,sx,α, k̂GCV
n − 5 13.0 ( 1.04) 9.0 ( 3.12) 11.2 ( 0.93) 8.6 ( 1.06) 42.0 ( 4.17) 11.8 ( 4.87)

CI∗,sx,α, k̂GCV
n − 6 13.4 ( 1.04) 10.6 ( 3.12) 11.0 ( 0.93) 8.4 ( 1.05) 43.2 ( 4.20) 12.0 ( 4.87)

Table 4.6: Empirical coverage and mean length (×102) of confidence intervals for the model parameter
θ2 and sample size n = 100, in brackets.



100 CHAPTER 4. BOOTSTRAP IN FUNCTIONAL LINEAR REGRESSION

α CI x1 x2 x3 x4 x5 x6

5% CImc
x,α 3.6 ( 0.87) 3.4 ( 2.64) 4.4 ( 0.78) 5.2 ( 0.89) 6.4 ( 4.25) 5.2 ( 4.69)

CImc,s
x,α 5.0 ( 0.87) 3.6 ( 2.62) 4.8 ( 0.78) 6.2 ( 0.88) 6.8 ( 4.89) 4.4 ( 4.57)

CIasy
x,α 5.6 ( 0.85) 3.8 ( 2.54) 6.0 ( 0.75) 7.4 ( 0.84) 49.6 ( 2.74) 10.2 ( 3.78)

CI∗x,α, k̂GCV
n + 3 5.4 ( 0.84) 4.2 ( 2.51) 6.2 ( 0.75) 7.0 ( 0.85) 31.4 ( 3.66) 4.6 ( 4.83)

CI∗x,α, k̂GCV
n + 2 5.0 ( 0.85) 4.8 ( 2.52) 6.0 ( 0.75) 7.8 ( 0.85) 36.2 ( 3.52) 6.0 ( 4.70)

CI∗x,α, k̂GCV
n + 1 5.2 ( 0.85) 4.8 ( 2.52) 6.2 ( 0.76) 7.6 ( 0.85) 37.8 ( 3.42) 6.0 ( 4.59)

CI∗x,α, k̂GCV
n 5.4 ( 0.85) 3.6 ( 2.52) 6.0 ( 0.75) 7.6 ( 0.85) 39.2 ( 3.36) 6.2 ( 4.53)

CI∗x,α, k̂GCV
n − 1 5.4 ( 0.86) 3.6 ( 2.57) 6.0 ( 0.77) 6.4 ( 0.86) 41.4 ( 3.20) 6.4 ( 4.32)

CI∗x,α, k̂GCV
n − 2 4.8 ( 0.91) 3.2 ( 2.72) 5.2 ( 0.81) 6.2 ( 0.90) 37.4 ( 3.32) 7.4 ( 4.30)

CI∗x,α, k̂GCV
n − 3 3.6 ( 0.96) 2.0 ( 2.85) 3.8 ( 0.85) 5.2 ( 0.94) 35.4 ( 3.49) 7.2 ( 4.33)

CI∗x,α, k̂GCV
n − 4 3.4 ( 0.98) 2.0 ( 2.92) 3.8 ( 0.86) 4.4 ( 0.95) 34.8 ( 3.54) 8.6 ( 4.34)

CI∗x,α, k̂GCV
n − 5 3.4 ( 1.00) 2.0 ( 2.98) 3.2 ( 0.88) 3.4 ( 0.98) 32.6 ( 3.64) 7.0 ( 4.35)

CI∗x,α, k̂GCV
n − 6 2.8 ( 1.02) 1.8 ( 3.04) 2.8 ( 0.90) 2.6 ( 0.99) 33.6 ( 3.72) 7.2 ( 4.36)

CI∗,sx,α, k̂GCV
n + 3 5.2 ( 0.87) 3.6 ( 2.59) 5.0 ( 0.77) 6.2 ( 0.87) 29.2 ( 3.76) 6.0 ( 4.60)

CI∗,sx,α, k̂GCV
n + 2 5.0 ( 0.87) 3.6 ( 2.59) 5.2 ( 0.77) 6.4 ( 0.87) 34.0 ( 3.67) 7.0 ( 4.54)

CI∗,sx,α, k̂GCV
n + 1 4.8 ( 0.87) 3.6 ( 2.59) 5.8 ( 0.77) 5.8 ( 0.87) 36.8 ( 3.59) 8.0 ( 4.52)

CI∗,sx,α, k̂GCV
n 5.6 ( 0.87) 4.2 ( 2.59) 5.6 ( 0.77) 6.8 ( 0.87) 37.4 ( 3.56) 7.6 ( 4.48)

CI∗,sx,α, k̂GCV
n − 1 4.8 ( 0.86) 3.6 ( 2.58) 5.6 ( 0.77) 6.6 ( 0.87) 40.4 ( 3.46) 6.8 ( 4.52)

CI∗,sx,α, k̂GCV
n − 2 5.6 ( 0.87) 3.6 ( 2.58) 6.0 ( 0.77) 6.8 ( 0.87) 39.0 ( 3.52) 6.4 ( 4.50)

CI∗,sx,α, k̂GCV
n − 3 6.2 ( 0.86) 3.4 ( 2.57) 5.6 ( 0.77) 5.4 ( 0.88) 35.8 ( 3.63) 6.2 ( 4.52)

CI∗,sx,α, k̂GCV
n − 4 5.4 ( 0.86) 3.4 ( 2.58) 5.6 ( 0.77) 6.0 ( 0.88) 33.8 ( 3.65) 6.4 ( 4.53)

CI∗,sx,α, k̂GCV
n − 5 6.0 ( 0.86) 3.2 ( 2.58) 5.4 ( 0.77) 6.4 ( 0.89) 32.4 ( 3.72) 5.6 ( 4.52)

CI∗,sx,α, k̂GCV
n − 6 5.4 ( 0.86) 3.8 ( 2.57) 5.2 ( 0.77) 6.2 ( 0.89) 33.2 ( 3.77) 5.2 ( 4.50)

10% CImc
x,α 9.0 ( 0.74) 6.4 ( 2.21) 10.0 ( 0.66) 10.0 ( 0.75) 11.2 ( 3.54) 10.2 ( 3.86)

CImc,s
x,α 8.8 ( 0.73) 8.0 ( 2.20) 9.4 ( 0.66) 10.8 ( 0.74) 11.8 ( 4.12) 10.4 ( 3.84)

CIasy
x,α 11.0 ( 0.71) 9.4 ( 2.13) 11.4 ( 0.63) 12.0 ( 0.71) 57.6 ( 2.30) 16.0 ( 3.17)

CI∗x,α, k̂GCV
n + 3 11.4 ( 0.71) 9.4 ( 2.12) 11.0 ( 0.63) 12.4 ( 0.72) 40.2 ( 3.06) 9.8 ( 4.02)

CI∗x,α, k̂GCV
n + 2 10.8 ( 0.71) 9.4 ( 2.13) 11.6 ( 0.63) 12.8 ( 0.72) 43.8 ( 2.92) 10.4 ( 3.90)

CI∗x,α, k̂GCV
n + 1 11.6 ( 0.71) 9.6 ( 2.12) 11.0 ( 0.63) 12.8 ( 0.72) 45.4 ( 2.84) 11.0 ( 3.80)

CI∗x,α, k̂GCV
n 11.2 ( 0.71) 9.0 ( 2.12) 11.4 ( 0.63) 13.4 ( 0.71) 47.8 ( 2.78) 12.6 ( 3.73)

CI∗x,α, k̂GCV
n − 1 10.4 ( 0.73) 9.4 ( 2.16) 10.6 ( 0.65) 12.6 ( 0.72) 51.6 ( 2.62) 13.8 ( 3.54)

CI∗x,α, k̂GCV
n − 2 9.0 ( 0.77) 7.0 ( 2.29) 9.6 ( 0.68) 10.6 ( 0.75) 51.0 ( 2.69) 14.2 ( 3.49)

CI∗x,α, k̂GCV
n − 3 7.6 ( 0.81) 6.0 ( 2.40) 8.4 ( 0.71) 8.8 ( 0.79) 48.2 ( 2.81) 13.8 ( 3.48)

CI∗x,α, k̂GCV
n − 4 6.8 ( 0.82) 4.6 ( 2.46) 7.0 ( 0.73) 8.4 ( 0.80) 49.6 ( 2.85) 15.0 ( 3.46)

CI∗x,α, k̂GCV
n − 5 6.0 ( 0.84) 4.4 ( 2.51) 6.2 ( 0.74) 9.0 ( 0.82) 46.6 ( 2.91) 14.6 ( 3.45)

CI∗x,α, k̂GCV
n − 6 5.4 ( 0.86) 4.0 ( 2.56) 5.8 ( 0.76) 8.0 ( 0.83) 44.8 ( 2.96) 13.8 ( 3.44)

CI∗,sx,α, k̂GCV
n + 3 10.4 ( 0.73) 8.4 ( 2.18) 9.8 ( 0.65) 11.6 ( 0.73) 38.6 ( 3.12) 12.4 ( 3.87)

CI∗,sx,α, k̂GCV
n + 2 10.2 ( 0.73) 9.0 ( 2.18) 10.2 ( 0.65) 12.4 ( 0.73) 42.4 ( 3.03) 11.2 ( 3.82)

CI∗,sx,α, k̂GCV
n + 1 10.6 ( 0.73) 9.0 ( 2.18) 10.6 ( 0.65) 12.4 ( 0.73) 45.2 ( 2.98) 13.4 ( 3.80)

CI∗,sx,α, k̂GCV
n 10.0 ( 0.73) 8.8 ( 2.18) 11.0 ( 0.65) 13.0 ( 0.73) 47.2 ( 2.94) 14.2 ( 3.76)

CI∗,sx,α, k̂GCV
n − 1 10.8 ( 0.73) 9.4 ( 2.17) 11.2 ( 0.65) 12.6 ( 0.73) 47.4 ( 2.90) 12.0 ( 3.79)

CI∗,sx,α, k̂GCV
n − 2 10.2 ( 0.73) 8.8 ( 2.17) 11.6 ( 0.65) 11.6 ( 0.73) 45.4 ( 2.96) 12.4 ( 3.79)

CI∗,sx,α, k̂GCV
n − 3 11.0 ( 0.73) 8.6 ( 2.17) 10.6 ( 0.65) 11.2 ( 0.74) 43.0 ( 3.06) 11.2 ( 3.80)

CI∗,sx,α, k̂GCV
n − 4 9.4 ( 0.73) 8.4 ( 2.17) 11.2 ( 0.65) 11.4 ( 0.74) 40.2 ( 3.10) 11.6 ( 3.81)

CI∗,sx,α, k̂GCV
n − 5 10.8 ( 0.73) 8.6 ( 2.17) 10.6 ( 0.65) 11.6 ( 0.74) 40.4 ( 3.16) 10.8 ( 3.81)

CI∗,sx,α, k̂GCV
n − 6 10.6 ( 0.73) 8.6 ( 2.17) 10.8 ( 0.65) 10.8 ( 0.75) 39.6 ( 3.21) 10.4 ( 3.80)

Table 4.7: Empirical coverage and mean length (×102) of confidence intervals for the model parameter
θ2 and sample size n = 200, in brackets.
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α CI x1 x2 x3 x4 x5 x6

5% CImc
x,α 5.8 ( 0.55) 4.8 ( 1.64) 4.4 ( 0.49) 4.2 ( 0.56) 6.0 ( 3.01) 5.0 ( 3.22)

CImc,s
x,α 5.6 ( 0.55) 4.2 ( 1.64) 4.6 ( 0.49) 4.4 ( 0.56) 5.6 ( 3.52) 5.8 ( 3.09)

CIasy
x,α 6.4 ( 0.54) 4.4 ( 1.62) 5.6 ( 0.48) 4.6 ( 0.55) 56.2 ( 1.92) 11.2 ( 2.65)

CI∗x,α, k̂GCV
n + 3 7.2 ( 0.54) 4.6 ( 1.61) 5.4 ( 0.48) 4.8 ( 0.55) 37.4 ( 2.53) 5.0 ( 3.30)

CI∗x,α, k̂GCV
n + 2 6.8 ( 0.54) 4.8 ( 1.62) 5.6 ( 0.48) 4.6 ( 0.55) 41.6 ( 2.45) 4.8 ( 3.22)

CI∗x,α, k̂GCV
n + 1 6.6 ( 0.54) 4.8 ( 1.61) 6.0 ( 0.48) 4.6 ( 0.55) 43.2 ( 2.37) 6.2 ( 3.13)

CI∗x,α, k̂GCV
n 6.8 ( 0.54) 4.8 ( 1.61) 5.8 ( 0.48) 4.6 ( 0.55) 43.6 ( 2.34) 6.4 ( 3.09)

CI∗x,α, k̂GCV
n − 1 6.2 ( 0.54) 4.2 ( 1.62) 5.4 ( 0.49) 4.8 ( 0.55) 49.4 ( 2.16) 8.0 ( 2.92)

CI∗x,α, k̂GCV
n − 2 6.2 ( 0.55) 4.4 ( 1.64) 5.6 ( 0.49) 5.0 ( 0.55) 55.0 ( 2.07) 8.6 ( 2.81)

CI∗x,α, k̂GCV
n − 3 5.0 ( 0.57) 3.2 ( 1.71) 3.8 ( 0.51) 4.0 ( 0.57) 54.0 ( 2.10) 11.6 ( 2.76)

CI∗x,α, k̂GCV
n − 4 5.2 ( 0.59) 3.2 ( 1.76) 4.4 ( 0.52) 4.0 ( 0.58) 53.4 ( 2.12) 11.4 ( 2.70)

CI∗x,α, k̂GCV
n − 5 4.4 ( 0.62) 2.2 ( 1.84) 3.2 ( 0.55) 3.8 ( 0.61) 48.2 ( 2.23) 9.6 ( 2.73)

CI∗x,α, k̂GCV
n − 6 3.6 ( 0.64) 1.8 ( 1.91) 2.2 ( 0.56) 2.8 ( 0.63) 44.4 ( 2.33) 9.8 ( 2.76)

CI∗,sx,α, k̂GCV
n + 3 7.2 ( 0.55) 4.2 ( 1.64) 4.8 ( 0.49) 4.2 ( 0.56) 33.8 ( 2.59) 8.0 ( 3.11)

CI∗,sx,α, k̂GCV
n + 2 5.8 ( 0.54) 4.2 ( 1.63) 5.8 ( 0.49) 5.0 ( 0.56) 38.0 ( 2.54) 7.2 ( 3.09)

CI∗,sx,α, k̂GCV
n + 1 6.6 ( 0.55) 4.8 ( 1.63) 5.2 ( 0.49) 5.0 ( 0.56) 38.6 ( 2.48) 7.6 ( 3.07)

CI∗,sx,α, k̂GCV
n 6.6 ( 0.55) 4.4 ( 1.63) 4.6 ( 0.49) 5.0 ( 0.56) 40.2 ( 2.46) 7.6 ( 3.06)

CI∗,sx,α, k̂GCV
n − 1 6.2 ( 0.55) 4.4 ( 1.63) 5.8 ( 0.49) 4.6 ( 0.56) 44.4 ( 2.36) 8.0 ( 3.05)

CI∗,sx,α, k̂GCV
n − 2 5.8 ( 0.54) 5.0 ( 1.63) 5.0 ( 0.49) 4.8 ( 0.56) 47.6 ( 2.31) 6.4 ( 3.03)

CI∗,sx,α, k̂GCV
n − 3 6.8 ( 0.54) 4.2 ( 1.63) 5.8 ( 0.49) 4.6 ( 0.56) 48.0 ( 2.34) 5.8 ( 3.03)

CI∗,sx,α, k̂GCV
n − 4 6.4 ( 0.54) 4.8 ( 1.63) 5.6 ( 0.49) 4.6 ( 0.56) 46.0 ( 2.38) 6.6 ( 3.04)

CI∗,sx,α, k̂GCV
n − 5 6.6 ( 0.54) 4.8 ( 1.62) 5.2 ( 0.49) 5.0 ( 0.57) 40.2 ( 2.48) 5.8 ( 3.07)

CI∗,sx,α, k̂GCV
n − 6 6.8 ( 0.54) 4.6 ( 1.63) 5.2 ( 0.49) 4.4 ( 0.57) 38.4 ( 2.56) 6.0 ( 3.10)

10% CImc
x,α 10.6 ( 0.46) 11.0 ( 1.38) 10.4 ( 0.41) 8.2 ( 0.47) 10.4 ( 2.53) 11.2 ( 2.67)

CImc,s
x,α 11.2 ( 0.46) 10.8 ( 1.38) 11.4 ( 0.41) 8.8 ( 0.47) 10.8 ( 3.00) 11.6 ( 2.61)

CIasy
x,α 11.4 ( 0.45) 11.2 ( 1.36) 11.4 ( 0.41) 9.8 ( 0.46) 63.8 ( 1.61) 17.6 ( 2.23)

CI∗x,α, k̂GCV
n + 3 11.0 ( 0.45) 11.6 ( 1.36) 11.6 ( 0.41) 8.8 ( 0.47) 47.4 ( 2.12) 10.4 ( 2.75)

CI∗x,α, k̂GCV
n + 2 11.6 ( 0.45) 11.4 ( 1.36) 11.0 ( 0.41) 9.2 ( 0.46) 49.0 ( 2.05) 11.6 ( 2.68)

CI∗x,α, k̂GCV
n + 1 11.4 ( 0.45) 12.0 ( 1.36) 11.6 ( 0.41) 9.4 ( 0.46) 50.2 ( 1.97) 12.0 ( 2.60)

CI∗x,α, k̂GCV
n 12.4 ( 0.45) 11.4 ( 1.36) 11.2 ( 0.41) 9.0 ( 0.46) 52.0 ( 1.94) 14.2 ( 2.56)

CI∗x,α, k̂GCV
n − 1 11.6 ( 0.46) 11.4 ( 1.37) 10.4 ( 0.41) 9.2 ( 0.46) 58.8 ( 1.78) 15.2 ( 2.41)

CI∗x,α, k̂GCV
n − 2 11.6 ( 0.46) 11.2 ( 1.38) 10.8 ( 0.41) 9.6 ( 0.47) 61.4 ( 1.69) 16.0 ( 2.30)

CI∗x,α, k̂GCV
n − 3 9.4 ( 0.48) 7.4 ( 1.44) 9.4 ( 0.43) 7.8 ( 0.48) 64.2 ( 1.70) 17.8 ( 2.23)

CI∗x,α, k̂GCV
n − 4 8.6 ( 0.49) 6.6 ( 1.48) 9.4 ( 0.44) 7.4 ( 0.49) 64.8 ( 1.71) 18.2 ( 2.17)

CI∗x,α, k̂GCV
n − 5 7.4 ( 0.52) 5.0 ( 1.55) 7.6 ( 0.46) 6.4 ( 0.51) 63.6 ( 1.79) 18.2 ( 2.18)

CI∗x,α, k̂GCV
n − 6 6.4 ( 0.54) 5.2 ( 1.61) 6.0 ( 0.47) 4.8 ( 0.53) 60.8 ( 1.87) 18.2 ( 2.19)

CI∗,sx,α, k̂GCV
n + 3 11.0 ( 0.46) 11.2 ( 1.37) 11.4 ( 0.41) 9.6 ( 0.47) 43.8 ( 2.14) 12.6 ( 2.62)

CI∗,sx,α, k̂GCV
n + 2 12.0 ( 0.46) 10.8 ( 1.37) 10.6 ( 0.41) 9.4 ( 0.47) 46.6 ( 2.10) 12.6 ( 2.60)

CI∗,sx,α, k̂GCV
n + 1 11.2 ( 0.46) 10.6 ( 1.37) 11.0 ( 0.41) 9.4 ( 0.47) 47.2 ( 2.05) 14.0 ( 2.58)

CI∗,sx,α, k̂GCV
n 11.0 ( 0.46) 10.8 ( 1.37) 11.2 ( 0.41) 9.0 ( 0.47) 47.6 ( 2.03) 14.6 ( 2.57)

CI∗,sx,α, k̂GCV
n − 1 11.6 ( 0.46) 11.8 ( 1.37) 10.8 ( 0.41) 8.0 ( 0.47) 51.6 ( 1.97) 14.2 ( 2.57)

CI∗,sx,α, k̂GCV
n − 2 11.2 ( 0.46) 11.2 ( 1.37) 10.6 ( 0.41) 8.4 ( 0.47) 55.6 ( 1.93) 13.0 ( 2.55)

CI∗,sx,α, k̂GCV
n − 3 12.0 ( 0.46) 11.0 ( 1.37) 12.0 ( 0.41) 8.8 ( 0.47) 56.4 ( 1.97) 13.8 ( 2.55)

CI∗,sx,α, k̂GCV
n − 4 11.6 ( 0.46) 10.0 ( 1.37) 11.6 ( 0.41) 8.6 ( 0.47) 56.4 ( 2.01) 13.8 ( 2.56)

CI∗,sx,α, k̂GCV
n − 5 11.2 ( 0.46) 11.2 ( 1.37) 11.0 ( 0.41) 7.6 ( 0.48) 50.6 ( 2.10) 13.6 ( 2.59)

CI∗,sx,α, k̂GCV
n − 6 11.2 ( 0.46) 12.0 ( 1.37) 11.2 ( 0.41) 7.8 ( 0.48) 48.2 ( 2.18) 13.0 ( 2.61)

Table 4.8: Empirical coverage and mean length (×102) of confidence intervals for the model parameter
θ2 and sample size n = 500, in brackets.
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4.5 Final conclusions

In this chapter, naive and wild bootstrap techniques have been proposed in order to get pointwise
confidence intervals for the regression operator m(x) in the functional linear model with scalar re-
sponse. For these two bootstrap approaches, algorithms have been presented (see Algorithm 4.3.1
and Algorithm 4.3.2, pages 89–90) and their asymptotic validity has been proved (see Theorem 4.3.6,
page 91).

From a practical point of view, a simulation study has been carried out, allowing to confirm the
good behaviour of bootstrap confidence intervals. Moreover, it was observed that empirical coverage
rates of these intervals are closer to nominal α than the coverage rates of confidence intervals based on
asymptotic normality results when an optimal value for the pilot parameter kdn is considered, specially
for small sample sizes. However, further research is required in order to find a data–driven method
which allows selecting this optimal value.

4.6 Appendix Chapter 4

This appendix includes the proof of Theorem 4.3.6, the main result of the chapter, together with the
technical lemmas which are necessary to prove it.

4.6.1 Proof of Theorem 4.3.6

In order to prove Theorem 4.3.6, the proof of Theorem 3.2 in Ferraty et al. (2010c) will be mimicked.

Firstly, it is defined

φc,d(y) = Φ


y −

√
n(EXnYn(m̂∗

c,d(x))− m̂d(x))√
nVarXnYn(m̂∗

c,d(x))


 ,

φc(y) = Φ

(
y −√

n(EXn(m̂c(x))− 〈Π̂kc
n
θ, x〉)√

nVarXn(m̂c(x))

)
,

(4.7)

where Φ is the distribution function of the standard normal distribution N (0, 1), EXnYn and VarXnYn

denote the expectation and the variance conditionally on (Xn,Yn) = {(X1, Y1), . . . , (Xn, Yn)}, and
EXn and VarXn denote the expectation and the variance conditionally on Xn = {X1, . . . , Xn}. Then,
one can write

PXnYn(
√
n(m̂∗

c,d(x)− m̂d(x)) ≤ y)− PXn(
√
n(m̂c(x)− 〈Π̂kc

n
θ, x〉) ≤ y)

= (PXnYn(
√
n(m̂∗

c,d(x)− m̂d(x)) ≤ y)− φc,d(y)) + (φc,d(y)− φc(y))

+ (φc(y)− PXn(
√
n(m̂c(x)− 〈Π̂kc

n
θ, x〉) ≤ y))

= T1(y) + T2(y) + T3(y).

Lemma 4.6.1 ensures T1(y) → 0 a.s. and T3(y) → 0 a.s. for a fixed y, and the uniform convergence
can be obtained using the continuity of Φ and Polya’s Theorem. Finally, Lemma 4.6.3 (see page 104)

allows to obtain supy |T2(y)|
P→ 0.
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4.6.2 Formulation and proof of Lemma 4.6.1

Lemma 4.6.1. When the assumptions of Theorem 4.3.6 (see page 91) hold, then

m̂c(x)− EXn(m̂c(x))√
VarXn(m̂c(x))

w→ N (0, 1) and
m̂∗

c,d(x)− EXnYn(m̂∗
c,d(x))√

VarXnYn(m̂∗
c,d(x))

w→ N (0, 1),

where EXn and VarXn denote the expectation and the variance conditionally on Xn = {X1, . . . , Xn},
whereas EXnYn and VarXnYn denote the expectation and the variance conditionally on (Xn,Yn) =
{(X1, Y1), . . . , (Xn, Yn)}.

Proof. The first statement is shown by Cardot et al. (2007c) (see Theorem 2.3.17 in Chapter 2,
page 40). The second one follows after considering Lemma 4.6.2 and checking the next Liapunov’s
condition ∑n

i=1 EXnYn |(n−1
∑n

j=1 f
c
n(λ̂j)〈Xi, v̂j〉〈x, v̂j〉)ǫ∗i |3

(n−1σ2(t̂cn,x)
2)3/2

P→ 0.

It can be shown that the numerator is OP(n
−2). Moreover, using (C.2.13) and [t̂cn,x]

2/[tcn,x]
2 P→ 1 (see

proof of Corollary 2 by Cardot et al., 2007c), one has that the denominator is OP(n
−3/2). Therefore,

Liapunov’s condition is verified.

4.6.3 Formulation and proof of Lemma 4.6.2

Lemma 4.6.2. When the assumptions of Theorem 4.3.6 (see page 91) hold, then

EXn(m̂c(x)) = 〈Π̂kc
n
θ, x〉+ oP(n

−1/2), VarXn(m̂c(x)) =
σ2

n (t̂cn,x)
2 + oP(n

−3/2),

EXnYn(m̂∗
c,d(x)) = m̂d(x) + oP(n

−1/2), VarXnYn(m̂∗
c,d(x)) =

σ2

n (t̂cn,x)
2 + oP(n

−1),

where Π̂kc
n
is the projector onto the subspace spanned by the first kcn eigenfunctions of Γn, and t̂

c
n,x =√∑kc

n

j=1 λ̂j(f
c
n(λ̂j))

2〈x, v̂j〉2.

Proof. Rewriting m̂c(x) = n−1
∑n

i=1 (
∑n

j=1 f
c
n(λ̂j)〈Xi, v̂j〉〈x, v̂j〉)Yi, then

EXn(m̂c(x)) =
1

n

n∑

i=1




n∑

j=1

f cn(λ̂j)〈Xi, v̂j〉〈x, v̂j〉


〈θ,Xi〉 =

n∑

j=1

λ̂jf
c
n(λ̂j)〈θ, v̂j〉〈x, v̂j〉

= 〈Π̂kc
n
θ, x〉+ oP(n

−1/2),

where the last equality follows from assumption (C.2.4) (see Chapter 2, page 37) and Remark 2.3.8
(see Chapter 2, page 37). For the variance, using Remark 2.3.8 again, one gets

VarXn(m̂c(x)) =
σ2

n2

n∑

i=1




n∑

j=1

f cn(λ̂j)〈Xi, v̂j〉〈x, v̂j〉




2

=
σ2

n

n∑

j1=1

n∑

j2=1

f cn(λ̂j1)f
c
n(λ̂j2)〈Γnv̂j1 , v̂j2〉〈x, v̂j1〉〈x, v̂j1〉 =

σ2

n

n∑

j=1

λ̂j(f
c
n(λ̂j))

2〈x, v̂j〉2

=
σ2

n
(t̂cn,x)

2 + oP(n
−3/2).
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On the other hand, m̂∗
c,d(x) = n−1

∑n
i=1 (

∑n
j=1 f

c
n(λ̂j)〈Xi, v̂j〉〈x, v̂j〉)Y ∗

i , so one can reproduce the
reasoning which was done for m̂c and obtain

EXnYn(m̂∗
c,d(x)) =

1

n

n∑

i=1




n∑

j=1

f cn(λ̂j)〈Xi, v̂j〉〈x, v̂j〉


〈θ̂d, Xi〉 =

n∑

j=1

λ̂jf
c
n(λ̂j)〈θ̂d, v̂j〉〈x, v̂j〉

= 〈Π̂kc
n
θ̂d, x〉+ oP(n

−1/2) = m̂d(x) + oP(n
−1/2),

where the last equality comes from (C.4.1). Moreover, for the naive bootstrap one has that

VarXnYn(m̂∗
c,d(x)) =

1

n2

n∑

i=1




n∑

j=1

f cn(λ̂j)〈Xi, v̂j〉〈x, v̂j〉




2(
1

n

n∑

i=1

(ǫ̂i − ǫ̂)2

)

=
σ2 + oP(1)

n

n∑

j=1

λ̂j(f
c
n(λ̂j))

2〈x, v̂j〉2 =
σ2

n
(t̂cn,x)

2 + oP(n
−1),

and similar calculations allow to reach the same result when one considers the wild bootstrap procedure.

4.6.4 Formulation and proof of Lemma 4.6.3

Lemma 4.6.3. When the assumptions of Theorem 4.3.6 (see page 91) hold, then

sup
y∈R

|φc,d(y)− φc(y)| P→ 0,

with φc,d and φc defined in (4.7) (see page 102).

Proof. First of all, it is necessary to prove that for any a ∈ R and b > 0

sup
z∈R

|Φ(a+ bz)− Φ(z)| ≤ |a|+max(b, b−1)− 1. (4.8)

In order to show (4.8), let z be a fixed value z ∈ R. One has that

|Φ(a+ bz)− Φ(z)| ≤ |Φ(a+ bz)− Φ(bz)|+ |Φ(bz)− Φ(z)|. (4.9)

It can be found that
|Φ(a+ bz)− Φ(bz)| ≤ |a|. (4.10)

On the other hand, |Φ(bz)− Φ(z)| ≤ |b− 1|max (b−1, 1). Therefore,

|Φ(bz)− Φ(z)| ≤ max (b, b−1)− 1. (4.11)

Then, one gets the inequality (4.8) replacing (4.10) and (4.11) in (4.9).

Consider a0 = −(EXnYn(m̂∗
c,d(x))− m̂d(x)− EXn(m̂c(x)) + 〈Π̂kc

n
θ, x〉)/

√
VarXnYn(m̂∗

c,d(x)), b0 =
√
VarXn(m̂c(x))/VarXnYn(m̂∗

c,d(x)), and z0 = (y −√
n(EXn(m̂c(x)) − 〈Π̂kc

n
θ, x〉))/

√
nVarXn(m̂c(x)).

Substituting these values in (4.8), one has

sup
y∈R

|φc,d(y)− φc(y)| = sup
z0∈R

|Φ(a0 + b0z0)− Φ(z0)| ≤ |a0|+max(b0, b
−1
0 )− 1.

Thus, the convergence follows from Lemma 4.6.2 (see page 103).



Chapter 5

Testing in functional linear
regression

As indicated before, functional data have been the subject of many research works over
the last years, being functional regression one of the most discussed issues. In this chapter,
the functional linear model with scalar response is considered but, unlike Chapter 3 and
Chapter 4, including an intercept term, that is, Y = 〈θ,X〉+ b+ ǫ, where Y and ǫ are real
random variables, X is a random variable valued in a separable Hilbert space (H, 〈·, ·〉),
and the model parameters b and θ belong to R and H, respectively. In this context,
a consistent bootstrap method to calibrate the distribution of test statistics for assesing
H0 : θ = 0 versus H1 : θ 6= 0 (i.e., for testing the lack of dependence) is developed, and the
related asymptotic theory is presented. Next, two linear models, Y1 = 〈θ1, X1〉 + b1 + ǫ1
and Y2 = 〈θ2, X2〉+ b2 + ǫ2, satisfying that X1 and X2 have the same covariance operator,
and ǫ1 and ǫ2 have the same variance, are taken. Then, a bootstrap method for checking
the equality of the two linear models, i.e., for testing H0 : θ1 = θ2 versus H1 : θ1 6= θ2,
is introduced, and its asymptotic properties are studied. Finally, a simulation study and
a real data example illustrate the performance of the proposed bootstrap techniques in
practice.

The applications of bootstrap calibration for testing in functional linear regression compiled
in this chapter were firstly introduced in González-Manteiga and Mart́ınez-Calvo (2010).
Furthermore, the asymptotic theory for the first testing problem, i.e., the lack of dependence
test, was developed in González-Manteiga et al. (2012)1.

5.1 Testing in FDA

Although the literature on model construction and estimation methods for FDA has increased consid-
erably during the last years, there are still few contributions on testing procedures. This fact makes
this field an important challenge for the statistical community nowadays. Among the testing issues
which researchers already started studying can be highlighted curve comparison problems (Cuevas
et al., 2004; Delicado, 2007; Hall and Van Keilegom, 2007; Ferraty et al., 2007b; Zhang and Chen,
2007; Berkes et al., 2009; Bugni et al., 2009; Cuesta-Albertos and Febrero-Bande, 2010; Zhang, 2011;
Horváth et al., 2012; González-Rodŕıguez et al., 2012), hypothesis testing on the structure of the dis-
tribution of functional data (Viele, 2001; James and Sood, 2006; Hall and Vial, 2006b; Mas, 2007a),
goodness–of–fit tests for parametric distributions (Cuesta-Albertos et al., 2007), or testing a specific
form of the conditional density function (Ferraty et al., 2012c).

1In particular, Theorem 5.2.3, Corollary 5.2.4, Theorem 5.2.5, Theorem 5.2.7, Theorem 5.2.9, Lemma 5.7.1 and
Lemma 5.7.2 were developed by Prof. Gil González–Rodŕıguez, who has allowed to include them in this thesis in order
to enrich the theoretical contents of this chapter.
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Other testing problems analysed in the literature are testing procedures in regression models with
a functional component. In this context, tests for no effect of regression or no effect of any of the
terms included in the model (Cardot et al., 2003b, 2004; Gadiaga and Ignaccolo, 2005; Müller and
Stadtmüller, 2005; Antoniadis and Sapatinas, 2007; Cardot et al., 2007d; Kokoszka et al., 2008; Delsol
et al., 2011b; Horváth and Reeder, 2011; Hilgert et al., 2012; Aneiros-Pérez and Vieu, 2012), as well
as tests for a specific parametric form of the regression operator (Cardot et al., 2007d; Bücher et al.,
2011; Delsol et al., 2011b; Garćıa-Portugués et al., 2012) can be emphasized. Other contributions
focused on testing the lack of fit by examining the residuals of the regression model (Chiou and
Müller, 2007; Gabrys et al., 2010; Patilea et al., 2012). Moreover, tests for dimension reduction (Delsol
et al., 2011b), for detecting change–points in the regression operator (Horváth and Reeder, 2012), for
choosing among two nested linear models (Shen and Faraway, 2004), or for testing equality of two
linear models (Horváth et al., 2009) were also developed.

Many of these testing methods require the use of resampling techniques, such as bootstrap, in
order to be applied in practice since either their asymptotic theory has not been developed, or it is
difficult to compute, or it does not exhibit an acceptable behaviour for small sample size cases. In
this regard, the application of bootstrap to the functional field has been successfully initiated (see a
general overview of resampling methods for functional data in McMurry and Politis (2011)). For in-
stance, Politis and Romano (1994) derived theoretical results that support the asymptotic validity of a
stationary bootstrap method for a broad class of estimators. Cuevas et al. (2006) proposed bootstrap
confidence bands for several functional estimators such as the sample and the trimmed functional
means. In the regression field, Ferraty et al. (2010c), and González-Manteiga and Mart́ınez-Calvo
(2011) showed the validity of the bootstrap in the estimation of nonparametric functional regression
and functional linear model, respectively, for scalar response, whereas the asymptotic validity of a
componentwise bootstrap procedure was proved by Ferraty et al. (2012d) when a nonparametric re-
gression is considered and both the response and the regressor are functional. On the other hand, as
remarked before, bootstrap techniques can be also very helpful for testing purposes, since they may be
used to approximate the distribution of the statistic under the null hypothesis. For example, Cuevas
et al. (2004) developed a sort of parametric bootstrap to obtain quantiles for a functional ANOVA
test, and González-Rodŕıguez et al. (2012) proved the validity of a residual bootstrap in that context.
Hall and Vial (2006b) and, more recently, Bathia et al. (2010) studied the finite dimensionality of
functional data using a bootstrap approximation for independent and dependent samples, respectively.
Furthermore, in the nonparametric regression model with functional response, Bücher et al. (2011)
proposed tests for the hypothesis that the regression function presents a specific parametric form, and
constructed their bootstrap versions, obtaining tests with an accurate approximation of the nominal
level for small samples.

This chapter is devoted to two testing problems in the functional linear model with scalar response:
testing the lack of dependence and testing the equality of two models. Bootstrap methods for these
two issues are introduced in Section 5.2 and Section 5.3, respectively. In both cases, their empirical
behaviour is analysed by means of a simulation study in Section 5.4, and applications to real datasets
in Section 5.5. Then, a brief final discussion and a technical appendix with the proofs of the results
presented in the chapter can be found in Section 5.6 and Section 5.7.

5.2 Test for lack of dependence

This section is going to be focused on the functional linear regression model with scalar response that
is described below. Let (H, 〈·, ·〉) be a separable Hilbert space, and let ‖ · ‖ be the norm associated
with its inner product. Moreover, let (Ω,A,P) be a probability space and let (X,Y ) be a measurable
mapping from Ω to H × R, that is, X is an H–valued random element whereas Y is a real random
variable, such that (X,Y ) verifies the following linear model with scalar response,

Y = 〈θ,X〉+ b+ ǫ, (5.1)

where θ ∈ H is a fixed functional model parameter, b ∈ R is the intercept term, and ǫ is a real random
variable such that E(ǫ) = 0, E(ǫ2) = σ2 <∞, and E(ǫX) = 0.
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The main aim of this section is to develop a consistent general bootstrap resampling approach to
calibrate the distribution of statistics for testing the significance of the relationship between X and Y ,
that is, for testing H0 : θ = 0 versus H1 : θ 6= 0, on the basis of a simple random sample {(Xi, Yi)}ni=1

drawn from (X,Y ). Bootstrap techniques will become an alternative useful tool when the asymptotics
of test statistics are unknown or when they are not accurate enough for small sample sizes.

Testing the lack of dependence between X and Y has stirred up a great interest during the last
years due to its practical applications in the functional context. For instance, Kokoszka et al. (2008)
proposed a test for lack of dependence in the functional linear model with functional response which
was applied to magnetometer curves consisting of minute–by–minute records of the horizontal intensity
of the magnetic field measured at observatories located at different latitude. The aim was to analyse
if the high–latitude records had a linear effect on the mid–latitude or low–latitude records. On the
other hand, Cardot et al. (2007d) presented a statistical procedure to check if a real–valued covariate
has an effect on a functional response in a nonparametric regression context, using this methodology
for a study of atmospheric radiation. In this case, the dataset were radiation profiles curves measured
at a random time and the authors tested if the radiation profiles changed along the time.

Some contributions have studied similar tests in other functional regression contexts. For instance,
in the case of scalar response and functional predictor, Müller and Stadtmüller (2005) analysed the
generalized functional linear regression model and tested whether the predictor function has any influ-
ence on the outcome; Horváth and Reeder (2011) studied a quadratic functional regression model and
tested the significance of the nonlinear term in the model; Aneiros-Pérez and Vieu (2012) assessed the
linear component of a functional partially linear model; and Gadiaga and Ignaccolo (2005) and Delsol
et al. (2011b) checked if the explanatory variable has an effect on the response using nonparametric
methods. Moreover, Antoniadis and Sapatinas (2007) provided procedures for testing whether certain
fixed–effects functional components or the random–effects functional components are equal to zero in
a general functional mixed–effects model with functional response.

Regarding the regression model (5.1), testing the significance of the relationship between the func-
tional covariate and the scalar response has been the subject of recent works, and asymptotic ap-
proaches for this problem can be found in Cardot et al. (2003b, 2004), Kokoszka et al. (2008) or
Hilgert et al. (2012) (Kokoszka et al. (2008) studied indeed the more general situation of functional
response). The methods presented in these papers are mainly based on the calibration of the statistics
distribution by using asymptotic distribution approximations. In contrast, a consistent bootstrap cal-
ibration is proposed in order to approximate the statistics distribution under H0. For that purpose,
some notation and basic concepts about the regression model (5.1), the asymptotic theory for the
testing procedure, and the consistency of the bootstrap techniques that are proposed, are introduced
in Section 5.2.1. In Section 5.2.2, the bootstrap calibration is presented as an alternative to the asymp-
totic theory previously exposed. Later, in Section 5.4.1 and Section 5.5.1, a simulation study and a
real data application allow to show the performance of the bootstrap methodology in comparison with
the asymptotic approach.

5.2.1 Asymptotic theory for testing and bootstrap procedures

Theoretical background

Riesz Representation Theorem ensures that the functional linear model with scalar response can be
handled theoretically within the considered framework. Specifically, let H be the separable Hilbert
space of square Lebesgue integrable functions on a given compact set C ⊂ R, denoted by L2(C, λ),
with the usual inner product and the associated norm ‖ · ‖. The functional linear model with scalar
response between a random function X and a real random variable Y is defined as

Y = Ψ(X) + ǫ, (5.2)

where Ψ is a continuous linear operator, i.e., Ψ ∈ H′ being H′ the dual space of H with associated norm
‖·‖H′ (see Section 1.2.2, “ b) The dual space H′ ”, in Chapter 1, page 10), and ǫ is a real centred random
variable with finite variance and independent of X. In virtue of Riesz Representation Theorem, H and
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H′ are isometrically identified, in such a way that for any Ψ ∈ H′ there exists a unique θ ∈ H such
that ‖θ‖ = ‖Ψ‖H′ and Ψ(x) = 〈θ, x〉 for all x ∈ H. Consequently, the model presented in equation
(5.2) is just a particular case of the one considered in (5.1).

Previous works regarding functional linear model assumed that b = 0 (see Cardot et al. 2003b,
and Kokoszka et al. 2008). Of course, the intercept term can be embedded in the variable counterpart
of the model, as in the multivariate case, as follows. Let He be the product space H × R with the
corresponding inner product 〈·, ·〉e. Defining X̃ = (X, 1) and θ̃ = (θ, b) ∈ He, the model considered
in (5.1) can be rewritten as Y = 〈θ̃, X̃〉e + ǫ and, consequently, X̃ cannot be assumed to be centred.
Nevertheless, in the context of the linear independence test, the aim is to check if θ = 0 or not, which is
not equivalent to checking whether θ̃ = 0 or not. In addition, the intercept term b cannot be assumed
to be equal to 0 in practice. Because of all of this, the intercept term b has been written explicitly in
this section in order to avoid any kind of confusion.

In the same way, the random element X is assumed to be centred in the above–mentioned papers.
Although, the asymptotic distribution of the proposed statistics does not change in many cases if
{Xi}ni=1 is replaced by the dependent sample {Xi − X}ni=1, where X = n−1

∑n
i=1Xi, the situation

could be quite different when the bootstrap version of the statistics are considered. In fact, as it will
be shown afterwards, different bootstrap statistics could be considered when this replacement is done.
Hence, for the developments in this section, it will not be assumed that the predictor variable X is
centred.

Linear independence test

Assuming that the linear model defined in (5.1) holds (see page 106), where the regression operator
m(·) is given by m(x) = E(Y |X = x) = 〈θ, x〉 + b, for all x ∈ H, the goal is to develop correct and
consistent bootstrap techniques for testing

{
H0 : θ = 0
H1 : θ 6= 0

(5.3)

on the basis of a random sample {(Xi, Yi)}ni=1 of i.i.d. random elements with the same distribution as
(X,Y ). In other words, the objective is to check whether X and Y are linearly independent (H0) or
not (H1).

Recall the definitions of the covariance and cross–covariance operators (see Section 1.4.1, “ b)
Measures of dispersion ”, in Chapter 1, page 22), and the normal equation that link them when
the linear model holds. Given a generic H–valued random element H such that E(‖H‖2) < ∞, its
associated covariance operator ΓH is defined as

ΓH = E((H − µH)⊗H (H − µH)) = E(H ⊗H H)− µH ⊗H µH ,

where µH ∈ H denotes the expected value of H. From now on, it will be assumed that E(‖X‖2) <∞,
and thus, as a consequence of Hölder’s inequality, E(Y 2) <∞. Whenever there is no possible confusion,
ΓX will be abbreviated as Γ. It is well–known that Γ is a nuclear and self–adjoint operator and, in
particular, a compact operator of trace class. Therefore, in virtue of the Spectral Decomposition
Theorem, there is an orthonormal basis of H, {vj}∞j=1, consisting of the eigenfunctions of Γ with
associated eigenvalues {λj}∞j=1 (i.e., Γvj = λjvj for all j). As usual, the eigenvalues are assumed to
be arranged in decreasing order (λ1 ≥ λ2 ≥ . . .). Furthermore, these eigenvalues are non–negative
since the operator Γ is symmetric and non–negative definite. On the other hand, the cross–covariance
operator between X and Y is given by

∆X,Y = E((X − µX)⊗H′ (Y − µY )) = E(X ⊗H′ Y )− µX ⊗H′ µY ,

where µX ∈ H and µY ∈ R denote the expected value of X and Y , respectively. Again, ∆X,Y will be
abbreviated as ∆ in order to simplify the notation, when confusion is not possible. Of course, ∆ ∈ H′

and the following relation between the covariance and cross–covariance operators and the regression
parameter θ is satisfied

∆x = 〈θ,Γx〉, ∀x ∈ H. (5.4)
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The Hilbert space H can be expressed as the direct sum of two orthogonal subspaces induced by
the self–adjoint operator Γ: the kernel or null space of Γ defined as Ker(Γ) = {x ∈ H/Γx = 0}, and
the closure of the image or range of Γ, Im(Γ), where Im(Γ) = {x′ ∈ H |x′ = Γx, x ∈ H}. Then, θ
is determined uniquely by θ = θ1 + θ2, with θ1 ∈ Ker(Γ) and θ2 ∈ Im(Γ). It is easy to check that
Var(〈θ1, X〉) = 0, since θ1 ∈ Ker(Γ). Consequently, the model introduced in (5.1) can be expressed as

Y = 〈θ2, X〉+ 〈θ1, µX〉+ b+ ǫ.

Hence, there is an identifiability problem, since it is not possible to distinguish between the term
〈θ1, µX〉 and the intercept term b and, as a result, it is not feasible to check whether θ1 = 0 or not.
Taking this fact into account, the hypothesis test will be restricted to check

{
H0 : θ2 = 0
H1 : θ2 6= 0

(5.5)

on the basis of the available sample information. Note that, in this case, according to the relation
between the operators ∆, Γ and the regression parameter θ shown in (5.4), θ2 = 0 if, and only if,
∆x = 0 for all x ∈ H. Hence, the hypothesis test in (5.5) is equivalent to

{
H0 : ‖∆‖H′ = 0
H1 : ‖∆‖H′ 6= 0.

(5.6)

Remark 5.2.1. Recall that µX is assumed to be equal 0 in previous works, revised at the beginning of
Section 5.2. Therefore, the preceding reasoning leads to the fact that θ1 cannot be estimated based on
the information provided by X (see, for instance, Cardot et al. (2003b)). Consequently, the hypothesis
testing is also restricted to (5.6). In addition, Cardot et al. (2003b) assumed for technical reasons that
Im(Γ) is an infinite dimensional space. On the contrary, this restriction is not imposed in the study
developed here.

Remark 5.2.2. Note that another usual assumption is that the intercept term vanishes. Although this
is not common in most of situations, it should be noted that if b = 0 and X is not assumed to be
centred as in this section, then an interesting possibility appears: to check whether θ1 = 0 or not by
testing the nullity of the intercept term of the model, and thus to check the original hypothesis in
(5.3). This open problem cannot be solved with the methodology described in the current section, or
with the techniques developed in the existing literature, since the idea is based on testing (5.6), which
is equivalent to the restricted test (5.5) but not to the unrestricted one in (5.3).

Testing procedure and asymptotic theory

According to the connection between ‖ · ‖H′ and ‖ · ‖, the dual norm of ∆ ∈ H′ can be expressed
equivalently in terms of the H–valued random element

T Ind = E((X − µX)(Y − µY ))

as follows

‖∆‖H′ = ‖E((X − µX)⊗H′ (Y − µY ))‖H′ = ‖E((X − µX)(Y − µY ))‖ = ‖T Ind‖.

Therefore, given an i.i.d. sample {(Xi, Yi)}ni=1 drawn from (X,Y ), ‖T Ind‖ can be estimated in a
natural way by means of its empirical counterpart ‖T Ind

n ‖, being T Ind
n the H–valued random element

defined as

T Ind
n =

1

n

n∑

i=1

(Xi −X)(Yi − Y ),

where X and Y denote the corresponding sample means, i.e., X = n−1
∑n

i=1Xi and Y = n−1
∑n

i=1 Yi.
The next theorem establishes some basic properties of T Ind

n when the assumption
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(C.5.1) E(‖X‖4) <∞
is satisfied.

Theorem 5.2.3 (González-Manteiga et al., 2012). Assuming that (5.1) and (C.5.1) hold, then

(i) E(T Ind
n ) = n−1(n− 1)T Ind.

(ii) T Ind
n converges a.s.− P to T Ind as n→ ∞.

(iii)
√
n(T Ind

n − T Ind) converges in law, as n → ∞, to a centred Gaussian element Z in H with
covariance operator ΓZ given by ΓZ = σ2Γ + E(〈θ,X − µX〉2(X − µX)⊗H (X − µX)).

The proof of Theorem 5.2.3 can be found in the appendix of the chapter (see Section 5.7.1, page 134).
In order to simplify the notation, from now on, given any H–valued random element H such that

E(‖H‖2) <∞, ZH will denote a centred Gaussian element in H with covariance operator ΓH .

Corollary 5.2.4 (González-Manteiga et al., 2012). Under the assumptions of Theorem 5.2.3, if the
null hypothesis in (5.6) is satisfied (i.e., ‖∆‖H′ = 0), then

√
nT Ind

n converges in law to Z(X−µX)ǫ with

covariance operator σ2Γ, and consequently, ‖√nT Ind
n ‖ converges in law to ‖Z(X−µX)ǫ‖.

The proof of the previous corollary has been included in Section 5.7.2 (see page 134).
In contrast to Theorem 1 in Cardot et al. (2003b), the result in Corollary 5.2.4 is directly established

on the Hilbert space H instead of on its dual space H′. In addition, no assumptions of centred random
elements X or null intercept term are necessary. However, these two assumptions could be easily
removed in that paper in order to establish a dual result of Corollary 5.2.4. Furthermore, in view of
Corollary 5.2.4, the asymptotic null distribution of ‖√nT Ind

n ‖ is not explicitly known. This is the
reason why no further research on how to use in practice this statistic (or its dual one) for checking
if θ2 equals 0 was carried out in Cardot et al. (2003b). Indeed, an alternative statistic that is used in
the simulation section for comparative purposes is considered. Nevertheless, it is still possible to use
‖√nT Ind

n ‖ as a core statistic in order to solve this test in practice by means of bootstrap techniques.
Next, a natural way of using the asymptotic result of Corollary 5.2.4 for addressing the testing

problem under study is presented. Consider a consistent (at least under H0) estimator σ̂2 of σ2 (for
instance, the sample variance of Y , or perhaps the estimator introduced by Cardot et al. (2003b), pro-
vided that its theoretical behaviour is analysed). Then, according to Slutsky’s Theorem ‖√nT Ind

n ‖/σ̂
converges in law under H0 to the norm of ZX . Since its covariance operator Γ is unknown, it can
be approximated by the empirical operator Γn. Thus, ‖ZX‖ can be approximated by ‖Zn‖, being
Zn a centred Gaussian element in H with covariance operator Γn. The distribution of ‖Zn‖ is still
difficult to compute directly, however one can use the CLT and approximate its distribution by means
of Monte–Carlo method, that is, by the distribution of ‖(nmc)

−1
∑nmc

i=1 (X∗
i −X)‖ for a large value of

nmc, being {X∗
i }nmc

i=1 i.i.d. random elements chosen at random from the fixed population (X1, . . . , Xn).
Obviously, this method is a precursor of the bootstrap procedures.

Local alternatives. In order to complete the asymptotic study of the statistic ‖√nT Ind
n ‖, its be-

haviour under local alternatives is studied. For this purpose, let θ ∈ H be such that ‖θ2‖ > 0, and
given δn > 0 take the modified random sample

Y n
i =

〈
δn√
n
θ,Xi

〉
+ b+ ǫi, i = 1, . . . , n.

In this situation, the null hypothesis is not verified. Nevertheless, if the condition

(C.5.2) δn → ∞ and δn/
√
n→ 0 as n→ ∞,
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is satisfied, then ‖δnθ/
√
n‖ → 0, that is, H0 is approached at rate δn/

√
n. Under these conditions, the

following theorem that establishes the behaviour of the statistic under the considered local alternatives
can be easily deduced.

Theorem 5.2.5 (González-Manteiga et al., 2012). Under the assumptions of Theorem 5.2.3, and with
the above notation, if (C.5.2) holds, then

P

(∥∥∥∥∥
√
n

(
1

n

n∑

i=1

(Xi −X)(Y n
i − Y

n
)

)∥∥∥∥∥ ≤ t

)
→ 0, ∀t ∈ R

as n→ ∞.

The proof of Theorem 5.2.5 is compiled in Section 5.7.3 (see page 134).

Bootstrap procedures and consistency

The difficulty in using the previously proposed statistic to solve the hypothesis test by means of
asymptotic procedures suggests the development of appropriated bootstrap techniques. The asymp-
totic consistency of a bootstrap approach is guaranteed if the associated bootstrap statistic converges
in law to a non–degenerated distribution irrespectively of H0 being satisfied or not. In addition, in
order to ensure its asymptotic correctness, this limit distribution must coincide with the asymptotic
distribution of the testing statistic provided that H0 holds.

For the first issue, recall that, by item 3 in Theorem 5.2.3,

√
n(T Ind

n − T Ind) =
√
n

(
1

n

n∑

i=1

((Xi −X)(Yi − Y )− E((X − µX)(Y − µY )))

)
(5.7)

converges in law to Z(X−µX)(Y−µY ), regardless of whether H0 holds or not. For the second one,
the asymptotic limit established in Corollary 5.2.4 plays a fundamental role for defining appropriate
bootstrap statistics: if H0 is satisfied then (5.7) converges in law to Z(X−µX)ǫ with covariance operator
σ2Γ. Thus, (5.7) is an interesting statistic in order to be mimicked by a bootstrap one, and the
consistency and correctness of this bootstrap statistic will be ensured if it converges to the above–
mentioned limit distributions.

On the other hand, by the Strong Law of Large Numbers (SLLN), n−1
∑n

i=1 (Yi − Y )2 converges
a.s. − P to σY = Var(Y ) = σ2 + E(〈θ,X − µX〉2) as n → ∞. Furthermore, n−1/2

∑n
i=1 (Xi − µX)

converges in law to ZX by the CLT for separable Hilbert–valued random elements. Therefore, the
Slutsky’s Theorem ensures that

(
1

n

n∑

i=1

(Yi − Y )2

)
√
n

(
1

n

n∑

i=1

(Xi − µX)

)
(5.8)

converges in law to (σ2 + E(〈θ,X − µX〉2))ZX , whose covariance operator is (σ2 + E(〈θ,X − µX〉2)Γ.
In particular, when H0 is satisfied, this operator reduces again to σ2Γ. Therefore, another possibility
consists in mimicking this second statistic by means of a bootstrap one, improving the approximation
suggested in the previous section. Moreover, the left term in the product in (5.8) could be substituted
by any other consistent estimator of σ2 under H0, which converges to a finite constant if H0 does not
hold. Anyway, this second approach could lead to worse results than (5.7) under the null hypothesis,
because the possible dependence between X and ǫ is lost (since the resampling would focus only on
the X information).

Two possibilities for mimicking the above–mentioned statistics are going to be explored, namely a
naive paired bootstrap and a wild bootstrap approach.
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Naive bootstrap. Let {(X∗
i , Y

∗
i )}ni=1 be a collection of i.i.d. random elements drawn at random

from {(Xi, Yi)}ni=1. Then, the following naive paired bootstrap statistic can be defined

T Ind,N∗
n =

1

n

n∑

i=1

((X∗
i −X

∗
)(Y ∗

i − Y
∗
)− (Xi −X)(Yi − Y )).

In addition, defining σ̂2 = n−1
∑n

i=1(Yi − Y )2 and

σ̂∗2 =
1

n

n∑

i=1

(Y ∗
i − Y

∗
)2,

that is, the empirical estimator of σ2
Y under H0 and its corresponding bootstrap version, then the

naive bootstrap approach is described in the following algorithm.

Algorithm 5.2.6 (Naive bootstrap).

Step 1. Compute the value of the statistic T Ind
n (or the value of the statistic T Ind

n /σ̂).

Step 2. Draw {(X∗
i , Y

∗
i )}ni=1, a sequence of i.i.d. random elements chosen at random from the initial

sample {(Xi, Yi)}ni=1, and compute an = ‖T Ind,N∗
n ‖ (or compute bn = ‖T Ind,N∗

n ‖/σ̂∗).

Step 3. Repeat Step 2 a large number of times nboot ∈ N in order to obtain a sequence of values
{aln}nboot

l=1 (or a sequence of values {bln}nboot

l=1 ).

Step 4. Approximate the p–value of the test by the proportion of values in {aln}nboot

l=1 greater than or
equal to ‖T Ind

n ‖ (or by the proportion of values in {bln}nboot

l=1 greater than or equal to ‖T Ind
n ‖/σ̂).

The asymptotic behaviour of the naive bootstrap statistic will be obtained as a consequence of results
on bootstrapping general empirical measures by Giné and Zinn (1990) (see Lemma 5.7.1, page 135).
Hence, the following theorem establishes the asymptotic consistency and correctness of the naive
bootstrap approach.

Theorem 5.2.7 (González-Manteiga et al., 2012). Under the assumptions of Theorem 5.2.3, it holds
that

√
nT Ind,N∗

n converges in law to Z(X−µX)(Y−µY ) a.s.−P. In addition, σ̂∗2 converges in probability
to σ2

Y = σ2 + E(〈θ,X − µX〉2) a.s.− P.

The proof of Theorem 5.2.7 can be found in Section 5.7.4 (see page 134).

Wild bootstrap. Analogously, let {ǫ∗i }ni=1 be i.i.d. centred real random variables, independent
of {(Xi, Yi)}ni=1, satisfying that E((ǫ∗i )

2) = 1 and
∫∞
0

P(|ǫ∗1| > t)1/2dt < ∞. To guarantee this last

assumption, it is enough that E((ǫ∗i )
d) < ∞ for certain d > 2. Let T Ind,W∗

n be the following wild
bootstrap statistic

T Ind,W∗
n =

1

n

n∑

i=1

(Xi −X)(Yi − Y )ǫ∗i ,

and let σ̂ and σ̂∗ be computed as in the naive bootstrap case. Hence, the proposed wild bootstrap
approach can be applied by means of the following algorithm.

Algorithm 5.2.8 (Wild bootstrap).

Step 1. Compute the value of the statistic T Ind
n (or the value of the statistic T Ind

n /σ̂).

Step 2. Draw {ǫ∗i }ni=1 a sequence of i.i.d. random elements drawn from a real random variable ǫ∗ inde-
pendent of {(Xi, Yi)}ni=1, which satisfies E(ǫ∗) = 0, E((ǫ∗)2) = 1 and

∫∞
0

(P(|ǫ∗| > t)1/2) <∞,

and compute an = ‖T Ind,W∗
n ‖ (or compute bn = ‖T Ind,W∗

n ‖/σ̂∗).
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Step 3. Repeat Step 2 a large number of times nboot ∈ N in order to obtain a sequence of values
{aln}nboot

l=1 (or a sequence of values {bln}nboot

l=1 ).

Step 4. Approximate the p–value of the test by the proportion of values in {aln}nboot

l=1 greater than or
equal to ‖T Ind

n ‖ (or by the proportion of values in {bln}nboot

l=1 greater than or equal to ‖T Ind
n ‖/σ̂).

In order to analyse the asymptotic behaviour of the wild bootstrap statistic, Lemma 5.7.2 (see page 136)
will be fundamental. As a result of this lemma, the asymptotic consistency and correctness of the wild
bootstrap approach is guaranteed by the following theorem.

Theorem 5.2.9 (González-Manteiga et al., 2012). Under the assumptions of Theorem 5.2.3, it holds
that

√
nT Ind,W∗

n converges in law to Z(X−µX)(Y−µY ) a.s.− P.

The proof of the previous theorem can be found in the appendix of the chapter (see Section 5.7.6,
page 136).

5.2.2 Bootstrap calibration vs. asymptotic theory

For simplicity, suppose from now on that b = 0 and µX = 0 (consequently, µY = 0) in (5.1) (see
page 106), that is, assume that the regression model is given by Y = 〈θ,X〉+ ǫ where both Y and X
are zero–mean random elements valued in R and H, respectively. In this situation, different statistics
can be used for testing the lack of dependence between X and Y . Bearing in mind (5.5) (see page 109),
one may think about using an estimator of θ in order to test the null hypothesis. In an alternative
way, expression (5.6) (see page 109) can be a motivation for a different class of statistics based on the
estimation of ‖∆‖H′ .

An asymptotic distribution free statistic based on the latter approach was given by Cardot et al.
(2003b). They proposed as test statistic

T Ind
1,n =

1√
kn

(
1

σ̂2

∥∥∥
√
n∆nÂn

∥∥∥
2

H′
− kn

)
,

where {kn}∞n=1 is a sequence of positive integers such that kn → +∞ and kn ≤ n, σ̂2 is a consistent es-

timator of σ2 under H0, ∆n = n−1
∑n

i=1Xi ⊗H′ Yi, and Ân =
∑kn

j=1 λ̂
−1/2
j v̂j ⊗H v̂j with {(λ̂j , v̂j)}∞j=1

the eigenelements of Γn = n−1
∑n

i=1Xi ⊗H Xi. Therefore, note that, in fact,

T Ind
1,n =

1√
kn


 n

σ̂2

kn∑

j=1

(∆nv̂j)
2

λ̂j
− kn


 . (5.9)

Cardot et al. (2003b) showed that, under certain conditions on kn and σ̂2, T Ind
1,n converges in distribu-

tion, under H0 in (5.6), to a centred Gaussian variable with variance equal to 2. Hence, H0 is rejected
if |T Ind

1,n | >
√
2z1−α/2, where zα is the α–quantile of a N (0, 1); otherwise, there is no evidence to reject

the null hypothesis. Besides, Cardot et al. (2003b) also proposed another calibration of the statistic
distribution based on a permutation mechanism.

As it was already commented, another possibility is to try to test (5.5), or equivalently, to test
whether ‖θ‖2 = 0 or not. For this purpose, recall some issues related with the standard FPCA estimator
introduced in Section 2.3.2, “ a) Definition of standard FPCA estimator ”, in Chapter 2 (see page 35).
Assuming that (C.2.1) holds (see Chapter 2, page 36), then θ =

∑∞
j=1 λ

−1
j ∆vjvj and, consequently,

‖θ‖2 =
∑∞

j=1 (λ
−1
j ∆vj)

2. A natural estimator for θ is the FPCA estimator based on the first kn

functional principal components (2.4) (see Chapter 2, page 36) given by θ̂kn
=
∑kn

j=1 λ̂
−1
j ∆nv̂j v̂j ,

where ∆n = n−1
∑n

i=1Xi ⊗H′ Yi, {(λ̂j , v̂j)}∞j=1 are the eigenelements of Γn = n−1
∑n

i=1Xi ⊗H Xi,

and {kn}∞n=1 is a sequence of positive integers such that kn → +∞, kn ≤ n, and λ̂kn
> 0. Since



114 CHAPTER 5. TESTING IN FUNCTIONAL LINEAR REGRESSION

‖θ̂kn
‖2 =

∑kn

j=1 (λ̂
−1
j ∆nv̂j)

2 is an estimator of ‖θ‖2, in order to test the lack of dependence between
X and Y one may consider the statistic

T Ind
2,n =

kn∑

j=1

(
∆nv̂j

λ̂j

)2

. (5.10)

Unfortunately, the limit distribution of (5.10) is currently unknown, so further research about this
statistic is necessary in order to obtain it. Meanwhile, its asymptotic distribution can be calibrated
using the bootstrap approach proposed below.

Finally, another statistic is the one based on ideas proposed throughout Section 5.2.1, that is,

T Ind
3,n =

∥∥∥∥∥
1

n

n∑

i=1

(Xi −X)(Yi − Y )

∥∥∥∥∥ , (5.11)

which will be denoted by F–test from now on, since it is the natural generalization of the well–known
F–test in the finite dimensional context. Another possibility is to consider the studentized version of
(5.11) defined by

T Ind
3s,n =

1

σ̂

∥∥∥∥∥
1

n

n∑

i=1

(Xi −X)(Yi − Y )

∥∥∥∥∥ , (5.12)

where σ̂2 is a consistent estimator of σ2 (at least under H0), for instance, the empirical estimation of
σ2 (recall that studentized versions were also computed for confidence intervals; see (4.5) and (4.6) in
Chapter 4, page 93).

In general, for the statistics such as (5.9), (5.10), (5.11) and (5.12), the calibration of the distribution
can be obtained by bootstrap. For instance, for (5.11) and (5.12), the following bootstrap statistics
can be considered

T Ind,∗
3,n =

∥∥∥∥∥
1

n

n∑

i=1

(Xi −X)(Yi − Y )ǫ∗i

∥∥∥∥∥ , (5.13)

T Ind,∗
3s,n =

1

σ̂∗

∥∥∥∥∥
1

n

n∑

i=1

(Xi −X)(Yi − Y )ǫ∗i

∥∥∥∥∥ , (5.14)

where {ǫ∗i }ni=1 and σ̂∗ are built following the wild bootstrap approach described in Algorithm 5.2.8
(see page 112). Furthermore, in the previous section, both naive and wild bootstrap were shown to be
consistent for the F–test. This fact guarantees from a theoretical point of view that the distribution of
T Ind
3,n and T Ind

3s,n can be approximated by the corresponding bootstrap distribution of (5.13) and (5.14),
and H0 can be rejected when the approximated p–value of the statistic is smaller than α.

A similar bootstrap calibration is proposed for the tests based on T Ind
1,n and T Ind

2,n . Although the
consistency of the bootstrap procedure in these cases has not been proved in this chapter. For (5.9),
two bootstrap statistics are built

T
Ind,∗(a)
1,n =

1√
kn


 n

σ̂∗2

kn∑

j=1

(∆∗
nv̂j)

2

λ̂j
− kn


 , (5.15)

T
Ind,∗(b)
1,n =

1√
kn


 n

σ̂2

kn∑

j=1

(∆∗
nv̂j)

2

λ̂j
− kn


 . (5.16)

The difference between the two proposed bootstrap approximations is that in the first one the estima-
tion of σ2, denoted by σ̂∗2, is computed using the bootstrap sample generated in each iteration. On
the other hand, for (5.10), the proposed bootstrap statistic is

T Ind,∗
2,n =

kn∑

j=1

(
∆∗

nv̂j

λ̂j

)2

. (5.17)
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In order to obtain the bootstrap distribution of (5.15), (5.16) and (5.17), the following wild bootstrap
algorithm can be used.

Algorithm 5.2.10 (Wild bootstrap).

Step 1. Compute the value of the statistic T Ind
1,n (or the value of the statistic T Ind

2,n ).

Step 2. Draw {ǫ∗i }ni=1 a sequence of i.i.d. random elements drawn from ǫ∗, which satisfies E(ǫ∗) = 0,
E((ǫ∗)2) = 1 and

∫∞
0

(P(|ǫ∗| > t)1/2) <∞, and define Y ∗
i = Yiǫ

∗
i for all i = 1, . . . , n.

Step 3. Build ∆∗
n = n−1

∑n
i=1Xi ⊗H′ Y ∗

i , and compute an = |T Ind,∗
1,n | (or compute bn = |T Ind,∗

2,n |).

Step 4. Repeat Steps 2 and 3 a large number of times nboot ∈ N in order to obtain a sequence of
values {aln}nboot

l=1 (or a sequence of values {bln}nboot

l=1 ).

Step 5. Approximate the p–value of the test by the proportion of values in {aln}nboot

l=1 greater than or
equal to |T Ind

1,n | (or by the proportion of values in {bln}nboot

l=1 greater than or equal to |T Ind
2,n |).

5.3 Test for equality of linear models

As stated in the previous section, let (H, 〈·, ·〉) be a separable Hilbert space (being ‖ · ‖ its associated
norm), and let (Ω,A,P) be a probability space. In this case, let (X1, Y1) and (X2, Y2) be two measurable
mappings from Ω to H × R (i.e., X1 and X2 are H–valued random elements and Y1 and Y2 are real
random variables) such that both of them satisfy the functional linear model with scalar response as
follows {

Y1 = 〈θ1, X1〉+ b1 + ǫ1,
Y2 = 〈θ2, X2〉+ b2 + ǫ2,

(5.18)

where θ1, θ2 ∈ H are the fixed functional model parameters, b1, b2 ∈ R are the intercept terms, and ǫ1
and ǫ2 are real random variables such that E(ǫ1) = E(ǫ2) = 0, E(ǫ21) = σ2

1 <∞, E(ǫ22) = σ2
2 <∞, and

E(ǫ1X1) = E(ǫ2X2) = 0.

This section is focused on the introduction of a bootstrap calibration procedure to approximate the
distribution of statistics for testing the equality of two functional linear models with scalar response,
that is, for testing H0 : θ1 = θ2 versus H1 : θ1 6= θ2. Simple random samples {(X1,i, Y1,i)}n1

i=1 and
{(X2,i, Y2,i)}n2

i=1 drawn from (X1, Y1) and (X2, Y2), which are assumed to be independent, will be used
in order to achieve this objective. Note that bootstrap methods can be an especially interesting option
when the asymptotic distribution of a test statistic is hard to compute or it has not an appropriate
behaviour for small sample sizes.

The problem of checking the equality of two functional linear models has barely been studied in
FDA literature. In this sense, the paper by Horváth et al. (2009) is the most noteworthy contribution
to this issue. The authors compared two functional linear models in which explanatory variables
are curves and responses can be either scalars or curves, and they tested the null hypothesis that
the two regression operators are the same. The proposed test statistics have asymptotic chi–squared
distribution. Hence, they used this distribution in practice, when they applied their methodology to
the two real data applications considered in their work.

In this section, a test statistics for assesing the equality of the linear models in (5.18) is proposed
and a bootstrap algorithm is introduced to approximate its distribution. Section 5.3.1 compiles theo-
retical background for the regression model (5.18), describes the testing procedure and its asymptotic
properties, and presents the bootstrap techniques and their associated consistency and correctness
results. Next, Section 5.3.2 is devoted to compare the bootstrap calibration and the asymptotic one.
Recall that a simulation study and a real data application related to this testing problem can be found
in Section 5.4.2 and Section 5.5.2, respectively.
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5.3.1 Asymptotic theory for testing and bootstrap procedures

Theoretical background

First of all, as it was done for the test of lack of dependence, the special case where H = L2(C, λ), i.e.,
the separable Hilbert space of square Lebesgue integrable functions on a given compact set C ⊂ R with
the usual inner product and norm, will be analysed from a theoretical viewpoint. In this situation, the
linear dependence of the scalar responses Y1 and Y2 on the functional random predictors X1 and X2

is modelled by {
Y1 = Ψ1(X1) + ǫ1,
Y2 = Ψ2(X2) + ǫ2,

(5.19)

where Ψ1,Ψ2 ∈ H′ are continuous linear operators (for further information about the dual space H′

and its associated norm, see Section 1.2.2, “ b) The dual space H′ ”, in Chapter 1, page 10), and
ǫ1 and ǫ2 are zero–mean real random variables with finite variance and independent of X1 and X2,
respectively. Riesz Representation Theorem states that H and H′ are isometrically identified, and
there exist unique θ1, θ2 ∈ H satisfying that ‖θ1‖ = ‖Ψ1‖H′ , ‖θ2‖ = ‖Ψ2‖H′ , and Ψ1(x) = 〈θ1, x〉 and
Ψ2(x) = 〈θ2, x〉 for all x ∈ H. This fact ensures that (5.19) can be seen as a particular case of (5.18).

Horváth et al. (2009) assumed that the intercept terms b1 and b2 are equal to zero. The intercept
terms in (5.18) can be embedded in the variable counterpart of the models if one defines X̃1 = (X1, 1),
X̃2 = (X2, 1), θ̃1 = (θ1, b1) ∈ He and θ̃2 = (θ2, b2) ∈ He, where He is the product space H × R

with the corresponding inner product 〈·, ·〉e. Hence, the two models in (5.18) can be expressed as
Y1 = 〈θ̃1, X̃1〉e + ǫ1 and Y2 = 〈θ̃2, X̃2〉e + ǫ2, respectively. In this case, neither X̃1 nor X̃2 can be
assumed to be zero–mean random elements. Given that testing θ1 = θ2 is not equivalent to testing
θ̃1 = θ̃2, since the intercept terms cannot be assumed to be zero in practice, both b1 and b2 has been
written explicitly in the following. Furthermore, Horváth et al. (2009) also supposed that X1 and X2

are mean zero random elements. Given that this condition could be too restrictive in some practical
cases, the predictor variables are not assumed to be centred in the following theoretical results.

Equality of two linear models test

Given the two linear models defined in (5.18) (see page 115), the aim is to build a correct and consistent
bootstrap method that allows testing

{
H0 : θ1 = θ2
H1 : θ1 6= θ2

(5.20)

by means of two independent random samples, denoted by {(X1,i, Y1,i)}n1
i=1 and {(X2,i, Y2,i)}n2

i=1, of
i.i.d. random elements drawn from (X1, Y1) and (X2, Y2), respectively. In order to obtain the theoret-
ical results compiled below, it will be assumed that the two samples have the same size, i.e.,

(C.5.3) n1 = n2 = n, with n→ ∞.

Remark 5.3.1. Assumption (C.5.3), which is a severe restriction, has been introduced in order to
simplify the notation and the calculations involved in the theoretical results of this section. However,
the developments in the proofs seem to indicate that (C.5.3) could be replaced by assuming that
there exists a constant 0 < c < ∞ such that n1/n2 → c when n1, n2 → ∞. Nevertheless, additional
messy notation and tedious work will be surely required for this. Due to this fact, (C.5.3) has been
considered in this chapter, although alternative (and less restrictive) assumptions will be studied in
detail in future research.

From now on, assume that E(‖X1‖2) < ∞ and E(‖X2‖2) < ∞. Consequently, E(Y 2
1 ) < ∞ and

E(Y 2
2 ) <∞ by the Hölder’s inequality. Furthermore, suppose that the covariance operator of X1 and

the covariance operator X2 are equal, and the errors ǫ1 and ǫ2 have equal variances, that is,

(C.5.4) E((X1 − µX1
) ⊗H (X1 − µX1

)) = E((X2 − µX2
) ⊗H (X2 − µX2

)) = ΓX ,
and σ2

1 = σ2
2 = σ2,
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where µX1
∈ H and µX2

∈ H denote the expected values of X1 and X2, respectively. Whenever
there is no possible confusion, ΓX will be abbreviated as Γ. As usual, {(λj , vj)}∞j=1 will denote the
eigenvalues and eigenfunctions of Γ, where the eigenvalues are assumed to be arranged in decreasing
order (λ1 ≥ λ2 ≥ . . .). Moreover, the cross–covariance operator between X1 and Y1, and the cross–
covariance operator between X2 and Y2 are given by

∆X1,Y1
= E((X1 − µX1

)⊗H′ (Y1 − µY1
)) and ∆X2,Y2

= E((X2 − µX2
)⊗H′ (Y2 − µY2

))

where µX1
, µX2

∈ H denote the expected value of X1 and X2, and µY1
, µY2

∈ R denote the expected
value of Y1 and Y2. The cross–covariance operators ∆X1,Y1

and ∆X2,Y2
will be denoted by ∆1 and ∆2,

respectively, in order to simplify the notation. It can be shown that ∆1,∆2 ∈ H′ and, in addition,
∆1x = 〈θ1,Γx〉 and ∆2x = 〈θ2,Γx〉 for all x ∈ H. Thus, the following relation between the covariance
operator, the cross–covariance operators and the regression parameters is satisfied

(∆1 −∆2)x = 〈θ1 − θ2,Γx〉, ∀x ∈ H. (5.21)

As previously commented in this chapter, the Hilbert space H can be seen as the direct sum of
two orthogonal subspaces induced by the self–adjoint operator Γ: the kernel of Γ denoted by Ker(Γ),
and the closure of the image of Γ denoted by Im(Γ). Therefore, θ1 and θ2 are determined uniquely by
θ1 = θ1,1 + θ1,2 and θ2 = θ2,1 + θ2,2, where θ1,1, θ2,1 ∈ Ker(Γ) and θ1,2, θ2,2 ∈ Im(Γ). It can be shown
that Var(〈θ1,1, X1〉) = Var(〈θ2,1, X2〉) = 0, and as a result (5.18) can be rewritten as

{
Y1 = 〈θ1,2, X1〉+ 〈θ1,1, µX1

〉+ b1 + ǫ1,
Y2 = 〈θ2,2, X2〉+ 〈θ2,1, µX2

〉+ b2 + ǫ2.

Consequently, it will be unfeasible to test whether θ1,1 = θ2,1 or not, since 〈θ1,1, µX1
〉 is indistinguish-

able from the intercept term b1 and, analogously, 〈θ2,1, µX2
〉 is indistinguishable from b2. Consequently,

the hypothesis test will be restricted to check

{
H0 : θ1,2 = θ2,2
H1 : θ1,2 6= θ2,2.

(5.22)

Furthermore, due to (5.21), one gets that θ1,2 = θ2,2 if, and only if, ∆1x = ∆2x for all x ∈ H. Hence,
the hypothesis test in (5.22) is equivalent to

{
H0 : ‖∆1 −∆2‖H′ = 0
H1 : ‖∆1 −∆2‖H′ 6= 0.

(5.23)

Remark 5.3.2. Horváth et al. (2009) assumed that µX1
= µX2

= 0. This assumption jointly with the
previous reasoning imply that neither θ1,1 nor θ2,1 can be estimated based on the information provided
by X1 and X2, so the hypothesis testing is also restricted to (5.22) (or, equivalently, to (5.23)).

Remark 5.3.3. If b1 = b2 = 0 and both µX1
and µX2

are different from zero, one could test if θ1,1 = θ2,1
by checking whether the intercept terms in the models are equal or not. However, this is still an open
problem in the literature, which will not be solved in this section since it has been focused on the
restricted test (5.22) and not on the unrestricted test (5.20).

Testing procedure and asymptotic theory

It is straightforward to show that ‖∆1 −∆2‖H′ can be expressed depending on the H–valued random
element

TEq = E((X1 − µX1
)(Y1 − µY1

)− (X2 − µX2
)(Y2 − µY2

))

as follows

‖∆1 −∆2‖H′ = ‖E((X1 − µX1
)⊗H′ (Y1 − µY1

)− (X2 − µX2
)⊗H′ (Y2 − µY2

))‖H′

= ‖E((X1 − µX1
)(Y1 − µY1

)− (X2 − µX2
)(Y2 − µY2

))‖ = ‖TEq‖.
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Then, given two independent random samples {(X1,i, Y1,i)}ni=1 and {(X2,i, Y2,i)}ni=1 of i.i.d. random
elements drawn from (X1, Y1) and (X2, Y2), respectively, ‖TEq‖ can be estimated by means of its
empirical counterpart ‖TEq

n ‖, where TEq
n is the following H–valued random element

TEq
n =

1

n

n∑

i=1

((X1,i −X1)(Y1,i − Y 1)− (X2,i −X2)(Y2,i − Y 2)),

with X1 = n−1
∑n

i=1X1,i, X2 = n−1
∑n

i=1X2,i, Y 1 = n−1
∑n

i=1 Y1,i, and Y 2 = n−1
∑n

i=1 Y2,i. Some
properties of TEq

n are stated in the next theorem and corollary, being the next assumption necessary:

(C.5.5) E(‖X1‖4) <∞ and E(‖X2‖4) <∞.

Furthermore, recall that, given an H–valued random element H such that E(‖H‖2) <∞, ZH denotes
a centred Gaussian element in H with covariance operator ΓH .

Theorem 5.3.4. Assuming that (5.18), (C.5.3), (C.5.4) and (C.5.5) hold, then

(i) E(TEq
n ) = n−1(n− 1)TEq.

(ii) TEq
n converges a.s.− P to TEq as n→ ∞.

(iii)
√
n(TEq

n − TEq) converges in law, as n → ∞, to Z(X1−µX1
)(Y1−µY1

)−(X2−µX2
)(Y2−µY2

) with co-

variance operator 2σ2Γ+E(〈θ1, X1−µX1
〉2(X1−µX1

)⊗H (X1−µX1
))+E(〈θ2, X2−µX2

〉2(X2−
µX2

)⊗H (X2 − µX2
)).

Corollary 5.3.5. Under the assumptions of Theorem 5.3.4, if the null hypothesis in (5.23) is satisfied
(i.e., ‖∆1 − ∆2‖H′ = 0), then

√
nTEq

n converges in law to Z(X1−µX1
)(Y1−µY1

)−(X2−µX2
)(Y2−µY2

) with

covariance operator 2σ2Γ+E(〈θ1, X1−µX1
〉2(X1−µX1

)⊗H(X1−µX1
))+E(〈θ1, X2−µX2

〉2(X2−µX2
)⊗H

(X2 − µX2
)), and consequently, ‖√nTEq

n ‖ converges in law to ‖Z(X1−µX1
)(Y1−µY1

)−(X2−µX2
)(Y2−µY2

)‖.

The proofs of the previous results can be found in the appendix of the chapter (see Section 5.7.8,
page 137, and Section 5.7.9, page 137, respectively).

Although the asymptotic null distribution of ‖√nTEq
n ‖ cannot be explicitly calculated from Corol-

lary 5.3.5, this statistic could be used in practice approximating its distribution by means of bootstrap
methods. Nevertheless, an alternative statistic will be considered in the simulation study for compar-
ative purposes.

Local alternatives. To finish the asymptotic analysis of the statistic ‖√nTEq
n ‖, it is necessary to

study its behaviour under local alternatives. For this purpose, it will be assumed that θ1, θ2 ∈ H
satisfy that ‖θ1,2‖ > 0 and θ2 = (1 − δn/

√
n)θ1, where δn is a positive sequence such that (C.5.2)

holds (see page 110). Then, the modified random sample

{
Y1,i = 〈θ1, X1,i〉+ b1 + ǫ1,i, ∀i ∈ {1, . . . , n},
Y n
2,i = 〈(1− δn/

√
n)θ1, X2,i〉+ b2 + ǫ2,i, ∀i ∈ {1, . . . , n},

can be considered. Obviously, H0 is not verified in this case. However, ‖θ1 − (1 − δn/
√
n)θ1‖ =

δn‖θ1‖/
√
n → 0, so the null hypothesis is approached at rate δn/

√
n. The behaviour of the proposed

statistic under this kind of local alternatives is stated in the following theorem.



5.3. TEST FOR EQUALITY OF LINEAR MODELS 119

Theorem 5.3.6. Under the assumptions of Theorem 5.3.4, and with the above notation, if (C.5.2)
holds, then

P

(∥∥∥∥∥
√
n

(
1

n

n∑

i=1

((X1,i −X1)(Y1,i − Y 1)− (X2,i −X2)(Y
n
2,i − Y

n

2 ))

)∥∥∥∥∥ ≤ t

)
→ 0, ∀t ∈ R

as n→ ∞.

Its proof is collected in Section 5.7.10 (see page 138).

Bootstrap procedures and consistency

As an alternative to using the asymptotic distributions introduced in the previous section, bootstrap
procedures are proposed below in order to check the null hypothesis in (5.23).

First of all, let
√
n(TEq

n − TEq) be the statistic given by

√
n(TEq

n − TEq) =
√
n

(
1

n

n∑

i=1

((X1,i −X1)(Y1,i − Y 1)− (X2,i −X2)(Y2,i − Y 2)

− E((X1 − µX1
)(Y1 − µY1

)− (X2 − µX2
)(Y2 − µY2

)))

)
.

(5.24)

By Theorem 5.3.4, the previous statistic converges in law to a centred Gaussian element with covariance
operator 2σ2Γ + E(〈θ1, X1 − µX1

〉2(X1 − µX1
) ⊗H (X1 − µX1

)) + E(〈θ2, X2 − µX2
〉2(X2 − µX2

) ⊗H
(X2 − µX2

)), regardless H0 holds or not. In addition, if H0 is satisfied, Corollary 5.3.5 ensures that
(5.24) converges in law to a centred Gaussian element with covariance operator 2σ2Γ + E(〈θ1, X1 −
µX1

〉2(X1 − µX1
)⊗H (X1 − µX1

)) + E(〈θ1, X2 − µX2
〉2(X2 − µX2

)⊗H (X2 − µX2
)).

Consequently, this statistic seems to be a good bet for being mimicked by a bootstrap one. The
consistency and correctness of the bootstrap statistic will be guaranteed whenever its limit distribution
irrespectively of H0 and its limit distribution under H0 coincide with the above–mentioned asymptotic
distributions. Next, a naive paired bootstrap and a wild bootstrap are proposed and their asymptotic
properties are studied.

Naive bootstrap. Let {(X∗
1,i, Y

∗
1,i)}ni=1 and {(X∗

2,i, Y2,i)
∗}ni=1 two independent collections of i.i.d.

random elements drawn at random from (X1, Y1) and (X2, Y2), respectively. Then, the next naive
paired bootstrap statistic can be considered

TEq,N∗
n =

1

n

n∑

i=1

((X∗
1,i −X

∗
1)(Y

∗
1,i − Y

∗
1)− (X∗

2,i −X
∗
2)(Y

∗
2,i − Y

∗
2)

− (X1,i −X1)(Y1,i − Y 1) + (X2,i −X2)(Y2,i − Y 2)).

The following algorithm describes in detail the naive bootstrap approach.

Algorithm 5.3.7 (Naive bootstrap).

Step 1. Compute the value of the statistic TEq
n .

Step 2. Draw {(X∗
1,i, Y

∗
1,i)}ni=1 and {(X∗

2,i, Y2,i)
∗}ni=1, two independent sequences of i.i.d. random

elements chose at random from the initial samples (X1, Y1) and (X2, Y2), respectively, and
compute an = ‖TEq,N∗

n ‖.

Step 3. Repeat Step 2 a large number of times nboot ∈ N in order to obtain a sequence of values
{aln}nboot

l=1 .
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Step 4. Approximate the p–value of the test by the proportion of values in {aln}nboot

l=1 greater than or
equal to ‖TEq

n ‖.

The asymptotic consistency and correctness of the naive bootstrap approach is stated in the following
theorem.

Theorem 5.3.8. Under the assumptions of Theorem 5.3.4, it holds that
√
nTEq,N∗

n converges in law
to Z(X1−µX1

)(Y1−µY1
)−(X2−µX2

)(Y2−µY2
) a.s.− P.

The proof of Theorem 5.3.8 can be found in Section 5.7.11 (see page 138).

Wild bootstrap. Let {ǫ∗i }ni=1 be i.i.d. centred real random variables, independent of {(X1,i, Y1,i)}ni=1

and {(X2,i, Y2,i)}ni=1, such that E((ǫ∗i )
2) = 1 and

∫∞
0

P(|ǫ∗1| > t)1/2dt <∞ (for instance, E((ǫ∗i )
d) <∞

for certain d > 2 ensures the second condition). Then, a wild bootstrap statistic can be defined as
follows

TEq,W∗
n =

1

n

n∑

i=1

((X1,i −X1)(Y1,i − Y 1)− (X2,i −X2)(Y2,i − Y 2))ǫ
∗
i .

Thus, the wild bootstrap approach can be applied by means of the following algorithm.

Algorithm 5.3.9 (Wild bootstrap).

Step 1. Compute the value of the statistic TEq
n .

Step 2. Draw {ǫ∗i }ni=1 a sequence of i.i.d. random elements drawn from a real random variable ǫ∗

independent of {(X1,i, Y1,i)}ni=1 and {(X2,i, Y2,i)}ni=1, which satisfies E(ǫ∗) = 0, E((ǫ∗)2) = 1
and

∫∞
0

(P(|ǫ∗| > t)1/2) <∞, and compute an = ‖TEq,W∗
n ‖.

Step 3. Repeat Step 2 a large number of times nboot ∈ N in order to obtain a sequence of values
{aln}nboot

l=1 .

Step 4. Approximate the p–value of the test by the proportion of values in {aln}nboot

l=1 greater than or
equal to ‖TEq

n ‖.

The asymptotic behaviour of the wild bootstrap statistic is analysed in the following theorem.

Theorem 5.3.10. Under the assumptions of Theorem 5.3.4, it holds that
√
nTEq,W∗

n converges in
law to Z(X1−µX1

)(Y1−µY1
)−(X2−µX2

)(Y2−µY2
) a.s.− P.

See the proof of the previous theorem in Section 5.7.12, page 139.

5.3.2 Bootstrap calibration vs. asymptotic theory

From now on, it is assumed that the model (5.18) (see page 115) holds with b1 = b2 = 0 and µX1
=

µX2
= 0 (thus, µY1

= µY2
= 0). Then, different test statistics can be considered in order to check if

the two linear models are equal or not.
First of all, note that Horváth et al. (2009) developed several methods of comparing two linear

models with functional explanatory variables and scalar responses, based on test statistics with chi–
squared asymptotic distribution, when H = L2([0, 1]). This methodology can be applied to the case
analysed here if (C.5.3), (C.5.4) and (C.5.5) hold. Furthermore, it has to be assumed that the errors
satisfy that E(ǫ41) <∞ and E(ǫ42) <∞, and the first k eigenvalues of the common covariance operator

Γ are nonzero and distinct, that is, λ1 > λ2 > . . . > λk > 0. In this situation, let {(λ̂j , v̂j)}∞j=1 be the
eigenelements of the empirical covariance operator Γn computed with respect to the pooled sample, i.e.,
Γn = (2n)−1

∑n
i=1 (X1,i ⊗H X1,i +X2,i ⊗H X2,i). Given the set of empirical eigenfunctions {v̂j}∞j=1,
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which is an orthonormal basis of L2([0, 1]), let X1 and X2 be the n × k–matrices given by (X1)i,j =
〈X1,i, v̂j〉 and (X2)i,j = 〈X2,i, v̂j〉. In addition, let Y1 and Y2 be the n–vectors given by Y1 =

(Y1,1, . . . , Y1,n)
t and Y2 = (Y2,1, . . . , Y2,n)

t, and let Σ̂k be the k×k–matrix given by (Σ̂k)j,j = λ̂−1
j for

all j ∈ {1, . . . , k}, and (Σ̂k)j1,j2 = 0 for all j1, j2 ∈ {1, . . . , k} such that j1 6= j2. Then, the reasoning
in Horváth et al. (2009) led to the following test statistic

TEq
1,n =

n

2σ̂2
(Ĉ1 − Ĉ2)

tdiag(λ̂1, . . . , λ̂k)(Ĉ1 − Ĉ2), (5.25)

where Ĉ1 = (Xt
1X1)

−1Xt
1Y1 and Ĉ2 = (Xt

2X2)
−1Xt

2Y2, and σ̂2 are residual standard deviations
from the estimated regression models computed with respect to the two samples together, i.e., σ̂2 =
(2n− k)−1

∑n
i=1 ((Y1,i − Ŷ1,i)

2 + (Y2,i − Ŷ2,i)
2). Horváth et al. (2009) showed that the distribution of

(5.25) can be approximated by the chi–squared distribution with k degrees of freedom. Thus, H0 is

rejected if TEq
1,n > q1−α being qα the α–quantile of a χ2

k. Finally, note that test statistics proposed by
Horváth et al. (2009) can be applied to check H0 : ‖θ1 − θ2‖ = 0 versus H1 : ‖θ1 − θ2‖ 6= 0 in more
general situations that the specific case which is studied in this chapter such as: when the covariance
operators of X1 and X2 are not equal, when σ1 and σ2 are different, when the two samples have
different sizes of roughly the same order (i.e., n1 6= n2 such that n1/n2 → c as n1, n2 → ∞, with
0 < c <∞), or when the response variables Y1 and Y2 are functional.

Another choice to check whether ‖θ1 − θ2‖ = 0 or not is based on the standard FPCA estimator
introduced in Section 2.3.2, “ a) Definition of standard FPCA estimator ”, in Chapter 2 (see page 35).
Recall that, under (C.2.1) (see Chapter 2, page 36), the model parameters θ1 and θ2 can be expressed
as θ1 =

∑∞
j=1 λ

−1
j ∆1vjvj and θ2 =

∑∞
j=1 λ

−1
j ∆2vjvj , respectively, whenever (C.5.4) holds. There-

fore, ‖θ1 − θ2‖2 = ‖∑∞
j=1 λ

−1
j (∆1vj −∆2vj)vj‖2 =

∑∞
j=1 λ

−2
j (∆1vj −∆2vj)

2. The model parameters
can be estimated by the standard FPCA estimator (see (2.4) in Chapter 2, page 36), so the norm

of their difference can be approximated by ‖θ̂1,kn
− θ̂2,kn

‖2 = ‖∑kn

j=1 λ̂
−1
j (∆1,nv̂j −∆2,nv̂j)v̂j‖2 =

∑kn

j=1 λ̂
−2
j (∆1,nv̂j −∆2,nv̂j)

2, where ∆1,n = n−1
∑n

i=1X1,i ⊗H′ Y1,i, ∆2,n = n−1
∑n

i=1X2,i ⊗H′ Y2,i,

{(λ̂j , v̂j)}∞j=1 are the eigenelements of Γn = (2n)−1
∑n

i=1 (X1,i ⊗H X1,i +X2,i ⊗H X2,i), and {kn}∞n=1

is a sequence of positive integers such that kn → +∞, kn ≤ n, and λ̂kn
> 0. Hence, the next test

statistic can be considered

TEq
2,n =

kn∑

j=1

(
∆1,nv̂j −∆2,nv̂j

λ̂j

)2

. (5.26)

Since the asymptotic distribution of (5.26) is not known, a bootstrap approach is required to use this
statistic in practice.

Finally, the developments presented in Section 5.3.1 lead to propose as test statistic

TEq
3,n =

∥∥∥∥∥
1

n

n∑

i=1

((X1,i −X1)(Y1,i − Y 1)− (X2,i −X2)(Y2,i − Y 2))

∥∥∥∥∥ . (5.27)

The calibration of the distribution of (5.25), (5.26) and (5.27) under H0 can be done by means of
bootstrap techniques. For (5.27), the bootstrap statistics defined as

TEq,∗
3,n =

∥∥∥∥∥
1

n

n∑

i=1

((X1,i −X1)(Y1,i − Y 1)− (X2,i −X2)(Y2,i − Y 2))ǫ
∗
i

∥∥∥∥∥ (5.28)

can be considered. Hence, the p–values of TEq
3,n can be approximated using the wild bootstrap approach

described in Algorithm 5.3.9 (see page 120), which is consistent based on the theoretical results intro-
duced in the previous section. Therefore, H0 is rejected when the approximated p–value of (5.27) is
smaller than α.

For the statistics TEq
1,n and TEq

2,n another wild bootstrap procedure is proposed, although its con-
sistency and correctness has not been proved in this chapter. The bootstrap statistics for (5.25) are
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given by the following expressions

T
Eq,∗(a)
1,n =

n

2σ̂∗2 (Ĉ
∗
1 − Ĉ∗

2)
tdiag(λ̂1, . . . , λ̂k)(Ĉ

∗
1 − Ĉ∗

2), (5.29)

T
Eq,∗(b)
1,n =

n

2σ̂2
(Ĉ∗

1 − Ĉ∗
2)

tdiag(λ̂1, . . . , λ̂k)(Ĉ
∗
1 − Ĉ∗

2). (5.30)

The only difference between (5.29) and (5.30) is the estimation of σ2 for each iteration: it computed
from each bootstrap sample in the first one, whereas it is obtained from the original samples in the
second one. Regarding to (5.26), the proposed bootstrap statistic is

TEq,∗
2,n =

kn∑

j=1

(
∆∗

1,nv̂j −∆∗
2,nv̂j

λ̂j

)2

. (5.31)

The bootstrap distributions of (5.29), (5.30) and (5.31) are obtained by means of the following wild
bootstrap algorithm. For the pilot estimation of the common model parameter θ = θ1 = θ2, under H0,
the standard FPCA estimator is considered (see (2.4) in Chapter 2, page 36).

Algorithm 5.3.11 (Wild bootstrap).

Step 1. Compute the value of the statistic TEq
1,n (or the value of the statistic TEq

2,n).

Step 2. Construct a pilot estimator of the common parameter θ: θ̂kpilot
n

=
∑kpilot

n

j=1 λ̂−1
j ∆n(v̂j)v̂j, where

{(λ̂j , v̂j)}∞j=1 are the eigenelements of Γn = (2n)−1
∑n

i=1 (X1,i ⊗H X1,i +X2,i ⊗H X2,i), and

∆n = (2n)−1
∑n

i=1 (X1,i ⊗H′ Y1,i +X2,i ⊗H′ Y2,i). Obtain the residuals for each sample:

ǫ̂1,i = Y1,i − 〈θ̂kn
, X1,i〉 and ǫ̂2,i = Y2,i − 〈θ̂kn

, X2,i〉 for all i = 1, . . . , n.

Step 3. Draw {ǫ∗1,i}ni=1 and {ǫ∗2,i}ni=1 two independent sequences of i.i.d. random elements drawn

from ǫ∗, which satisfies E(ǫ∗) = 0, E((ǫ∗)2) = 1 and
∫∞
0

(P(|ǫ∗| > t)1/2) < ∞, and define

Y ∗
1,i = 〈θ̂kn

, X1,i〉+ ǫ̂1,iǫ
∗
1,i and Y

∗
2,i = 〈θ̂kn

, X2,i〉+ ǫ̂2,iǫ
∗
2,i for all i = 1, . . . , n. Consequently,

define Y∗
1 = (Y ∗

1,1, . . . , Y
∗
1,n)

t and Y∗
2 = (Y ∗

2,1, . . . , Y
∗
2,n)

t.

Step 4. Build Ĉ∗
1 = (Xt

1X1)
−1Xt

1Y
∗
1 and Ĉ∗

2 = (Xt
2X2)

−1Xt
2Y

∗
2 (or ∆∗

1,n = n−1
∑n

i=1X1,i ⊗H′ Y ∗
1,i

and ∆∗
2,n = n−1

∑n
i=1X2,i ⊗H′ Y ∗

2,i), and compute an = |TEq,∗
1,n | (or compute bn = |TEq,∗

2,n |).

Step 5. Repeat Steps 3 and 4 a large number of times nboot ∈ N in order to obtain a sequence of
values {aln}nboot

l=1 (or a sequence of values {bln}nboot

l=1 ).

Step 6. Approximate the p–value of the test by the proportion of values in {aln}nboot

l=1 greater than or

equal to |TEq
1,n| (or by the proportion of values in {bln}nboot

l=1 greater than or equal to |TEq
2,n|).

5.4 Simulation study

In this section a simulation study illustrates the performance of the asymptotic approach and the
bootstrap calibration for testing the lack of dependence (see Section 5.4.1), and the equality of two
linear models (see Section 5.4.2). In both cases, H = L2[0, 1] was selected, with its usual inner product,

i.e., 〈x, y〉 =
∫ 1

0
x(t)y(t)dt for all x, y ∈ L2[0, 1].

5.4.1 Testing the lack of dependence

For this first issue, the considered regression model was (5.1) (see page 106) with b = 0, µX = 0 and
µY = 0, that is,

Y =

∫ 1

0

θ(t)X(t)dt+ ǫ,
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where X is a centred random element valued in L2[0, 1], Y and ǫ are centred random variables valued
in R, and θ ∈ L2[0, 1] is the fixed model parameter. Then, ns = 500 samples were simulated, each
one consisted of n observations (n = 50, 100) from this functional linear model, being X a Brownian
motion and ǫ ∼ N (0, σ2) with signal–to–noise ratio r = σ/

√
E(〈θ,X〉2). Under H0,

θH0
(t) = 0, ∀t ∈ [0, 1]

was taken as the parameter of the linear model, whereas under H1, the selected parameter was

θH1
(t) = sin(2πt3)3, ∀t ∈ [0, 1].

Furthermore, σ = 1 was chosen under H0, while in the alternative H1 σ = r
√
E(〈θ,X〉2) with three

different values for the signal–to–noise ratio (r = 0.5, 1, 2) was considered. Remark that both X
and θ were discretized to p = 100 equidistant design points in [0, 1]. As done in previous chapters,
quadrature weights of p−1 were used to approximate integrals involved in the calculations (see more
details in Section 3.5, “How to work with discrete data?”, in Chapter 3, page 63).

The statistical tests which were introduced in Section 5.2.2 (see page 113) were considered, that
is, T Ind

1,n , T Ind
2,n , T Ind

3,n and T Ind
3s,n defined as (5.9), (5.10), (5.11) and (5.12), respectively. For T Ind

1,n , three
distribution approximations were considered: its asymptotic distribution (that is, N (0, 2)), and the

two calibrations based on the bootstrap statistics T
Ind,∗(a)
1,n and T

Ind,∗(b)
1,n , given by (5.15) and (5.16).

For T Ind
2,n , T Ind

3,n and T Ind
3s,n only the bootstrap approaches based on the statistics T Ind,∗

2,n , T Ind,∗
3,n and

T Ind,∗
3s,n (see (5.17), (5.13) and (5.14), respectively) were computed. In most of these statistics, an

estimation of σ (or σ∗) is involved. It was decided to use the following estimate based on the residual
sum of squares, which was proposed by Cardot et al. (2003b),

σ̂2 =
1

n− tr(Sρ)

n∑

i=1

(Yi − SρYi)
2,

where Sρ is the hat matrix for the penalized B–splines estimator, i.e., SρYi = 〈θ̂PS , Xi〉 (recall (2.2) in
Chapter 2, page 35), with the next choices: B–splines with degree 4 and 20 equispaced knots, second
derivatives for the penalty, and parameter ρ selected by GCV (see Section 3.5, “Parameter estimation”,
in Chapter 3, page 63). Bedides, σ̂∗2 is computed analogously using the bootstrap sample generated
in each iteration.

In order to calibrate the bootstrap distributions, the wild bootstrap algorithm introduced in Sec-

tion 5.2.2 (see Algorithm 5.2.10, page 115) was used for T
Ind,∗(a)
1,n , T

Ind,∗(b)
1,n and T Ind,∗

2,n , whereas the
wild bootstrap algorithm introduced in Section 5.2.1 (see Algorithm 5.2.8, page 112) was computed for

T Ind,∗
3,n and T Ind,∗

3s,n . In all these cases, nboot = 1, 000 bootstrap iterations were computed to approximate
the corresponding p–values. Furthermore, {ǫ∗i }ni=1 were drawn from the following sum of two Dirac
distributions: 0.1(5+

√
5)δ(1−

√
5)/2+0.1(5−

√
5)δ(1+

√
5)/2 (i.e., P(ǫ∗i = (1−

√
5)/2) = 0.1(5+

√
5) and

P(ǫ∗i = (1 +
√
5)/2) = 0.1(5−

√
5) for all i = 1 . . . , n).

Since the significance level α and the parameter kn involved in T Ind
1,n and T Ind

2,n (and in their bootstrap
versions) must be fixed to run the procedure, the study was done for four significance levels (α =
0.2, 0.1, 0.05, 0.01) and for different numbers of principal components (kn = 1, . . . , 20). Nevertheless,
in order to simplify the presentation, the information collected in the following tables corresponds to
only three of the values of kn which were analyed (kn = 5, 10, 20), whereas the results depicted in the
figures correspond to only two of the values of α (α = 0.1, 0.05).

Table 5.1 (see page 124) displays the empirical size (i.e., the percentage of rejections under H0) of
the test statistics obtained in the simulation study and Figure 5.1 (see page 124) shows the effect of
the parameter kn for the testing procedures based on T Ind

1,n and T Ind
2,n . For T Ind

1,n , it can be highlighted
that bootstrap approaches present empirical sizes closer to the nominal level α than the asymptotic
approximation for T Ind

1,n , mainly when kn is small and α = 0.2. If one compares the performance

of the two bootstrap procedures proposed, it seems that if σ2 is bootstrapped (T
Ind,∗(a)
1,n ) the results

are better than if the same estimation of the variance is considered in all the bootstrap replications
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(T
Ind,∗(b)
1,n ) above all when kn is large. As far as T Ind

2,n is concerned, the estimated levels are near to the
nominal ones, being the largest kn the cases in which they are farther from the theoretical α. Finally,
it must be remarked that the F–test and its studentized versions also get good results in terms of test
levels.

T Ind
1,n T Ind

2,n T Ind
3,n T Ind

3s,n

N (0, 2) T
Ind,∗(a)
1,n T

Ind,∗(b)
1,n T Ind,∗

2,n T Ind,∗
3,n T Ind,∗

3s,n

n α kn 5 10 20 5 10 20 5 10 20 5 10 20

50 20% 19.4 17.6 16.0 21.4 21.6 20.0 21.6 19.0 15.2 19.8 20.8 18.4 21.6 20.8
10% 10.8 10.4 8.2 9.0 10.8 10.6 8.0 7.2 3.2 8.6 7.2 7.2 11.8 11.2
5% 8.2 7.0 4.4 5.0 4.0 4.6 5.0 2.4 0.0 4.0 3.2 3.0 6.0 6.2
1% 4.8 4.2 2.2 1.2 0.4 0.0 0.6 0.0 0.0 0.2 0.6 0.4 0.6 1.2

100 20% 15.0 19.4 20.0 20.8 21.0 19.0 21.0 20.8 18.0 21.4 19.4 17.6 21.6 21.2
10% 8.6 9.6 9.0 11.8 10.8 10.4 10.4 9.6 6.2 9.8 8.8 7.0 11.6 11.8
5% 5.6 5.2 4.0 4.4 4.6 3.6 3.6 3.4 2.2 4.6 5.2 2.8 5.6 5.6
1% 2.6 2.4 1.2 1.4 1.2 0.8 1.2 0.6 0.2 1.0 0.6 0.8 0.4 0.4

Table 5.1: Testing the lack of dependence. Estimated levels for T Ind
1,n (using the asymptotic distribution

N (0, 2) and the bootstrap distributions of T
Ind,∗(a)
1,n and T

Ind,∗(b)
1,n ), T Ind

2,n (using the bootstrap distri-

bution of T Ind,∗
2,n ), T Ind

3,n (using the bootstrap distribution of T Ind,∗
3,n ), and T Ind

3s,n (using the bootstrap

distribution of T Ind,∗
3s,n ).
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Figure 5.1: Testing the lack of dependence. Estimated levels when n = 50 (left panel) and n =
100 (right panel) for T Ind

1,n (circle for the asymptotic distribution N (0, 2); square for the bootstrap

distributions of T
Ind,∗(a)
1,n ; diamond for the bootstrap distributions of T

Ind,∗(b)
1,n ), and T Ind

2,n (triangle

for the bootstrap distribution of T Ind,∗
2,n ). Significance level: α = 0.1 (solid grey lines) and α = 0.05

(dashed black lines).

On the other hand, Table 5.2 (see page 125) and Figure 5.2 (see page 126) show the empirical power
obtained with the different procedures for each considered signal–to–noise ratio r. In terms of power,
when r = 0.5 the results for all the methods are similar, except for T Ind

2,n for which the empirical power
decreases drastically, above all when kn increases (this effect is also observed for r = 1 and r = 2).
This fact seems to be due to the construction of T Ind

2,n since this test statistic is the only one which

does not involve the estimation of σ2. In addition, the power of T Ind
1,n also falls abruptly when T

Ind,∗(b)
1,n

is considered, n and α are small and kn is very large.
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A similar situation can be observed when r = 1 and r = 2. For r = 2, it can be seen that the
empirical power is smaller for all the methods in general, being obtained an important loss of power
when the sample is small (n = 50), and kn increases and/or α decreases. Furthermore, in this case,
the empirical power relies heavily on the selected kn value (see Figure 5.2, page 126). Hence, the
advantage of using T Ind

3,n or T Ind
3s,n is that they do not require the selection of kn or any other parameter,

and they are competitive in terms of power. Nevertheless, it also seems that an adequate kn selection
can make T Ind

1,n obtain better empirical power than T Ind
3,n or T Ind

3s,n in some cases.

T Ind
1,n T Ind

2,n T Ind
3,n T Ind

3s,n

N (0, 2) T
Ind,∗(a)
1,n T

Ind,∗(b)
1,n T Ind,∗

2,n T Ind,∗
3,n T Ind,∗

3s,n

r n α kn 5 10 20 5 10 20 5 10 20 5 10 20

0.5 50 20% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 88.8 0.0 0.0 100.0 100.0
10% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 60.8 0.0 0.0 100.0 100.0
5% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.0 32.2 0.0 0.0 100.0 100.0
1% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.4 51.4 3.4 0.0 0.0 99.4 100.0

100 20% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1.0 0.0 100.0 100.0
10% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.0 0.0 100.0 100.0
5% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.4 0.0 0.0 100.0 100.0
1% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 70.0 0.0 0.0 100.0 100.0

1 50 20% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.2 66.6 3.6 0.2 100.0 100.0
10% 100.0 100.0 100.0 100.0 100.0 99.8 100.0 99.8 89.6 33.6 0.8 0.0 100.0 100.0
5% 100.0 100.0 99.8 100.0 100.0 99.6 100.0 99.0 59.6 16.6 0.2 0.0 99.2 99.2
1% 100.0 100.0 99.6 99.6 97.6 94.6 95.2 67.6 2.6 2.2 0.0 0.0 87.8 92.4

100 20% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 97.0 7.8 0.0 100.0 100.0
10% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 86.4 2.2 0.0 100.0 100.0
5% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 67.8 1.0 0.0 100.0 100.0
1% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.8 21.6 0.2 0.0 100.0 100.0

2 50 20% 85.4 75.6 66.8 89.0 81.2 77.2 89.0 76.8 51.4 34.0 11.8 7.2 90.4 89.8
10% 80.0 68.6 56.4 79.4 68.6 59.4 76.4 57.4 20.2 16.6 4.0 2.4 79.0 79.0
5% 74.4 62.2 48.4 67.4 51.6 43.6 60.8 37.8 6.2 10.4 1.0 0.4 67.8 67.2
1% 67.4 51.4 35.6 40.0 26.4 20.2 25.4 6.0 0.0 0.8 0.0 0.0 34.4 39.0

100 20% 99.8 98.8 94.6 100.0 99.8 98.0 100.0 99.2 94.2 60.0 14.6 7.6 99.8 99.8
10% 99.6 96.6 91.2 99.6 97.2 93.6 99.6 96.0 82.4 34.2 6.2 2.0 97.8 97.4
5% 99.6 95.6 85.8 97.8 94.0 85.8 97.2 90.4 64.6 18.0 2.8 0.4 94.4 94.4
1% 97.6 91.4 75.4 88.2 76.4 64.0 85.2 63.4 26.2 2.2 0.8 0.0 79.2 82.4

Table 5.2: Testing the lack of dependence. Empirical power for T Ind
1,n (using the asymptotic distribution

N (0, 2) and the bootstrap distributions of T
Ind,∗(a)
1,n and T

Ind,∗(b)
1,n ), T Ind

2,n (using the bootstrap distri-

bution of T Ind,∗
2,n ), T Ind

3,n (using the bootstrap distribution of T Ind,∗
3,n ), and T Ind

3s,n (using the bootstrap

distribution of T Ind,∗
3s,n ).

5.4.2 Testing the equality of linear models

To show the behaviour of the proposed procedures for checking the equality of the two linear models
in (5.18) (see page 115), the simplified case in which b1 = b2 = 0, µX1

= µX2
= 0 and µY1

= µY2
= 0

is going to be considered. Hence, (5.18) turns into

{
Y1 =

∫ 1

0
θ1(t)X1(t)dt+ ǫ1,

Y2 =
∫ 1

0
θ2(t)X2(t)dt+ ǫ2,

where X1 and X2 are centred random elements valued in L2[0, 1], Y1, Y2, ǫ1 and ǫ2 are centred random
variables valued in R, and θ1, θ2 ∈ L2[0, 1] are the fixed model parameters. Hence, ns = 500 samples of
n observations (n = 50, 100) from each of these two functional linear model were simulated, where X1

and X2 were Brownian motions and ǫ1, ǫ2 ∼ N (0, σ2) with signal–to–noise ratio r = σ/
√

E(〈θ,X〉2) =
0.2. Under H0, the two model parameters coincide

θ1,H0
(t) = θ2,H0

(t) = 2 sin(0.5πt) + 4 sin(1.5πt) + 5 sin(2.5πt), ∀t ∈ [0, 1]
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Figure 5.2: Testing the lack of dependence. Empirical power when n = 50 (left panels) and n =
100 (right panels) for T Ind

1,n (circle for the asymptotic distribution N (0, 2); square for the bootstrap

distributions of T
Ind,∗(a)
1,n ; diamond for the bootstrap distributions of T

Ind,∗(b)
1,n ), and T Ind

2,n (triangle for

the bootstrap distribution of T Ind,∗
2,n ). Significance level: α = 0.1 (solid grey lines) and α = 0.05 (dashed

black lines). Rows correspond to the three different values for the signal–to–noise ratio (r = 0.5, 1, 2).
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whereas under H1 the parameters were defined as

{
θ1,H1

(t) = 2 sin(0.5πt) + 4 sin(1.5πt) + 5 sin(2.5πt), ∀t ∈ [0, 1],
θ2,H1

(t) = 2(2 sin(0.5πt) + 4 sin(1.5πt) + 5 sin(2.5πt)), ∀t ∈ [0, 1].

As was commented in Section 5.4.1, the functional covariates and the model parameters were discretized
to p = 100 equidistant design points in [0, 1], using quadrature weights of p−1 in order to approximate
integrals which appear in the different computations (further details in Section 3.5, “How to work with
discrete data?”, in Chapter 3, page 63).

For this simulation study, the statistical tests presented in Section 5.3.2 (see page 120) were com-

puted: TEq
1,n, T

Eq
2,n and TEq

3,n (see (5.25), (5.26) and (5.27), respectively). For TEq
1,n, three different

approximations of its distribution were considered: the asymptotic approach (that is, χ2
k), and the two

calibrations based on the bootstrap statistics T
Eq,∗(a)
1,n and T

Eq,∗(b)
1,n , given by (5.29) and (5.30). For

TEq
2,n and TEq

3,n, only the approaches based on the bootstrap statistics TEq,∗
2,n and TEq,∗

3,n were computed

(see (5.31) and (5.28)). In TEq
1,n and its bootstrap versions, an estimation of σ (or σ∗) is required. The

following estimate based on the residual sum of squares for the standard FPCA estimator was chosen

σ̂2 =
1

n− tr(Skn
)

n∑

i=1

(Yi − Skn
Yi)

2,

where Skn
is the hat matrix for the standard FPCA estimator, i.e., Skn

Yi = 〈θ̂kn
, Xi〉 with tr(Skn

) = kn
(recall (2.4) in Chapter 2, page 36), being kn selected by GCV (see Section 3.5, “Parameter estimation”,
in Chapter 3, page 63).

The wild bootstrap algorithm introduced in Section 5.3.2 (see Algorithm 5.3.11, page 122) was

considered for calibrating the bootstrap distribution of T
Eq,∗(a)
1,n , T

Eq,∗(b)
1,n and TEq,∗

2,n . For the pilot

FPCA estimator the value of kpilotn was obtained by GCV using the initial samples. On the other
hand, the wild bootstrap algorithm introduced in Section 5.3.1 (see Algorithm 5.3.9, page 120) was

computed in order to calibrate the bootstrap distribution of TEq,∗
3,n . As in the previous simulation

study, nboot = 1, 000 bootstrap iterations were done to approximate the p–values of the bootstrap test
statistics, and the real random variable ǫ∗ was built as the following sum of two Dirac distributions:
0.1(5 +

√
5)δ(1−

√
5)/2 + 0.1(5−

√
5)δ(1+

√
5)/2.

Finally, note that the simulation study was done for four significance levels (α = 0.2, 0.1, 0.05, 0.01)
and for different numbers of principal components (k = 1, . . . , 10 and kn = 1, . . . , 10) involved in

TEq
1,n, T

Eq
2,n and their associated bootstrap statistics (althought the simulation study was computed for

k, kn ∈ {1, . . . , 20}, the results for k, kn ∈ {11, . . . , 20} were omitted given that the estimated levels
and the empirical power for these values were similar to those obtained for k, kn = 10). In order to
simplify the presentation, the results for only two of the values of α (α = 0.1, 0.05) are shown in the
following figures, whereas three of the values of kn (k/kn = 1, 5, 10) were selected for the next tables.

The comparison of the estimated levels for test statistics can be found in Table 5.3 (see page 128).
In addition, Figure 5.3 (see page 128) illustrates the effect of the k/kn parameter for the testing

procedures based on TEq
1,n and TEq

2,n. Note that bootstrap calibrations for TEq
1,n have empirical sizes

closer to α than the χ2
k approximation when k is large and n is small. If one compares the behaviour of

the two bootstrap approaches, it can be seen that the estimated levels for T
Eq,∗(a)
1,n (σ2 bootstrapped for

each iteration) are nearer to the nominal than the estimated levels for T
Eq,∗(b)
1,n (same initial estimate

σ̂2 for all the replications) when k is large and n = 50, above all for α = 0.2 and α = 0.1. As far as

TEq
2,n is concerned, the estimated levels are also quite near to the nominal ones, except for the largest

kn values. Regarding to TEq
3,n, its behaviour is also adequate in most of cases, except when n and α are

both small.
The empirical power of the different proposed methods is shown in Table 5.4 (see page 129).

Furthermore, Figure 5.4 (see page 129) allows visualizing the influence of the parameter k/kn on the

empirical power of TEq
1,n and TEq

2,n. The highest powers correspond to procedures based on TEq
1,n, for
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TEq
1,n TEq

2,n TEq
3,n

χ2
k T

Eq,∗(a)
1,n T

Eq,∗(b)
1,n TEq,∗

2,n TEq,∗
3,n

n α k/kn 1 5 10 1 5 10 1 5 10 1 5 10

50 20% 16.6 22.2 28.4 19.2 19.2 19.6 19.8 21.4 23.0 18.8 19.4 16.4 19.0
10% 8.0 10.4 17.0 9.4 9.2 10.8 9.4 10.0 13.4 10.4 8.2 8.6 7.4
5% 4.2 5.6 9.6 4.6 4.4 5.6 3.8 5.4 5.8 4.0 5.0 3.8 1.6
1% 0.6 1.0 2.4 0.6 0.8 1.4 0.8 0.8 1.0 0.6 1.0 0.6 0.4

100 20% 18.6 21.4 23.2 19.2 20.0 20.4 19.6 21.6 21.6 19.0 17.6 16.8 17.6
10% 7.2 9.4 11.8 10.6 9.6 9.2 10.4 10.2 9.4 9.8 8.8 8.0 8.4
5% 4.6 4.8 6.0 4.4 5.0 5.0 4.6 5.2 5.0 4.2 5.2 4.4 4.8
1% 0.8 1.4 0.8 1.0 1.2 0.8 1.2 1.2 0.8 0.6 0.4 1.2 1.2

Table 5.3: Testing the equality of linear models. Estimated levels for TEq
1,n (using the asymptotic

distribution χ2
k and the bootstrap distributions of T

Eq,∗(a)
1,n and T

Eq,∗(b)
1,n ), TEq

2,n (using the bootstrap

distribution of TEq,∗
2,n ), and TEq

3,n (using the bootstrap distribution of TEq,∗
3,n ).
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Figure 5.3: Testing the equality of linear models. Estimated levels when n = 50 (left panel) and

n = 100 (right panel) for TEq
1,n (circle for the asymptotic distribution χ2

k; square for the bootstrap

distributions of T
Eq,∗(a)
1,n ; diamond for the bootstrap distributions of T

Eq,∗(b)
1,n ), and TEq

2,n (triangle for

the bootstrap distribution of TEq,∗
2,n ). Significance level: α = 0.1 (solid grey lines) and α = 0.05 (dashed

black lines).

which the three approximations of the test distribution give similar results: the maximum power is
reached for all k, apart from k = 1. On the other hand, the empirical power of TEq

2,n is clearly smaller

than that obtained by means of TEq
1,n and, in addition, it decreases drastically when kn increases. The

results for TEq
3,n are not satisfactory either, since the empirical power is small, above all when n = 50,

and α = 0.05 or α = 0.01. Since neither TEq
2,n nor TEq

3,n involve the estimation of σ2, a possible future
research line could be to studentize these statistics, and analyse if their studentized versions improve
the present results in terms of empirical power.
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TEq
1,n TEq

2,n TEq
3,n

χ2
k T

Eq,∗(a)
1,n T

Eq,∗(b)
1,n TEq,∗

2,n TEq,∗
3,n

n α k/kn 1 5 10 1 5 10 1 5 10 1 5 10

50 20% 99.4 100.0 100.0 94.6 100.0 100.0 94.8 100.0 100.0 80.4 46.2 3.4 76.0
10% 96.8 100.0 100.0 93.0 100.0 100.0 93.0 100.0 100.0 77.6 33.6 0.8 62.0
5% 95.0 100.0 100.0 90.6 100.0 100.0 91.4 100.0 100.0 76.8 23.4 0.0 48.0
1% 85.6 100.0 100.0 88.2 100.0 100.0 89.4 100.0 100.0 74.0 8.4 0.0 22.0

100 20% 100.0 100.0 100.0 99.6 100.0 100.0 99.6 100.0 100.0 91.2 74.4 5.8 97.4
10% 100.0 100.0 100.0 99.4 100.0 100.0 99.2 100.0 100.0 90.4 63.4 0.4 91.2
5% 100.0 100.0 100.0 99.2 100.0 100.0 99.2 100.0 100.0 89.4 52.0 0.0 83.8
1% 99.8 100.0 100.0 98.0 100.0 100.0 98.2 100.0 100.0 86.6 35.2 0.0 58.0

Table 5.4: Testing the equality of linear models. Empirical power for TEq
1,n (using the asymptotic

distribution χ2
k and the bootstrap distributions of T

Eq,∗(a)
1,n and T

Eq,∗(b)
1,n ), TEq

2,n (using the bootstrap

distribution of TEq,∗
2,n ), and TEq

3,n (using the bootstrap distribution of TEq,∗
3,n ).
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Figure 5.4: Testing the equality of linear models. Empirical power when n = 50 (left panel) and

n = 100 (right panel) for TEq
1,n (circle for the asymptotic distribution χ2

k; square for the bootstrap

distributions of T
Eq,∗(a)
1,n ; diamond for the bootstrap distributions of T

Eq,∗(b)
1,n ), and TEq

2,n (triangle for

the bootstrap distribution of TEq,∗
2,n ). Significance level: α = 0.1 (solid grey lines) and α = 0.05 (dashed

black lines).

5.5 Real data application

For the data application, the environmental example introduced in the first chapter has been consid-
ered: the atmospheric pollution data (see Section 1.1.2 in Chapter 1, page 2). Recall that this dataset
contains concentrations of hourly averaged NOx (measured in µg/m3) in the neighbourhood of a power
station belonging to ENDESA, located in As Pontes in the Northwest of Spain (from Jan 2007 to Dec
2009). Next, the tests for lack of dependence and for equality of linear models previously studied are
applied to this real data.

5.5.1 Testing the lack of dependence

During unfavourable meteorological conditions, NOx levels can quickly rise and cause an air pollution
episode. Due to this fact, an important issue is to forecast NOx levels with half an hour horizon in
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order to allow the power plant staff to avoid NOx concentrations reaching the limit values fixed by
the current environmental legislation. Therefore, it is necessary to estimate properly the regression
model which defines the relationship between the observed NOx concentration in the last minutes (X)
and the NOx concentration with half an hour horizon (Y ). For this purpose, a first step could be to
determine if there exists a linear dependence between X and Y by means of the testing procedures
presented in Section 5.2.

A sample of size n = 300 was built, where each curve X corresponds to 240 consecutive minute–by–
minute values of hourly averaged NOx concentration, and the response Y corresponds to the hourly
averaged NOx value half an hour ahead. Taking α = 0.05, the tests for lack of dependence reject the
null hypothesis in all cases (thus, there is a linear relationship between the variables), except T Ind

2,n

when kn is large (see Table 5.5 and Figure 5.5). Nevertheless, as it was commented in the simulation
study, this test statistic does not take into account the variance term and its power is clearly lower
than the power of the other tests. As a result, it seems that the relationship between the last 240
observations of the NOx concentration and the NOx value half an hour ahead could be modelled by
means of a functional linear regression with scalar response. Indeed, the estimation of this linear model
was done in Section 3.6 in Chapter 3 (see Table 3.11, page 73).

T Ind
1,n T Ind

2,n T Ind
3,n T Ind

3s,n

N (0, 2) T
Ind,∗(a)
1,n T

Ind,∗(b)
1,n T Ind,∗

2,n T Ind,∗
3,n T Ind,∗

3s,n

kn 1 5 10 1 5 10 1 5 10 1 5 10

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.006 0.000 0.000

Table 5.5: Atmospheric pollution data. Testing the lack of dependence. P–values for T Ind
1,n (using

the asymptotic distribution N (0, 2) and the bootstrap distributions of T
Ind,∗(a)
1,n and T

Ind,∗(b)
1,n ), T Ind

2,n

(using the bootstrap distribution of T Ind,∗
2,n ), T Ind

3,n (using the bootstrap distribution of T Ind,∗
3,n ), and

T Ind
3s,n (using the bootstrap distribution of T Ind,∗

3s,n ).
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Figure 5.5: Atmospheric pollution data. Testing the lack of dependence. P–values for T Ind
1,n (circle for

the asymptotic distribution N (0, 2); square for the bootstrap distributions of T
Ind,∗(a)
1,n ; diamond for

the bootstrap distributions of T
Ind,∗(b)
1,n ), and T Ind

2,n (triangle for the bootstrap distribution of T Ind,∗
2,n ).

Horizontal dotted line corresponds to the significance level α = 0.5.
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5.5.2 Testing the equality of linear models

The observed NOx levels are low (and practically constant) in general. However, under certain mete-
orological conditions, these concentrations can quickly rise and, thus, cause an air pollution episode.
Hence, one could think that the linear regression model which links the curves of hourly averaged
NOx concentrations (X) and the hourly averaged NOx levels half an hour ahead (Y ) is different when
the covariates in the sample corresponds to low–valued curves, medium–valued curves or high–valued
curves.

In order to check this assumption, three samples of size n = 100 were considered, where the
curves X consist of 240 consecutive minute–by–minute values of hourly averaged NOx concentration,
and the responses Y are the associated hourly averaged NOx values half an hour ahead. The first
sample, denoted by bin 1, corresponds to curves X such that the last measured NOx level belongs to
the interval [0µg/m3, 10µg/m3), i.e., X(240) ∈ [0µg/m3, 10µg/m3). The second sample, or bin 2,
consists of pairs (X,Y ) satisfying that X(240) ∈ [10µg/m3, 20µg/m3). Finally, the third sample is
called bin 3 and their covariates verifying that X(240) is equal or higher to 20µg/m3.

Table 5.6 and Figure 5.6 (see page 132) show the obtained results when the equality of models

among the different bins is tested using the techniques introduced in Section 5.3. Note that TEq
1,n with

the asymptotic approach rejects the equality of models in all cases irrespectively of k (except if bin 2

and bin 3 are compared and k = 1), whereas TEq
2,n never rejects H0. On the other hand the behaviour

of TEq
1,n for bootstrap calibrations is similar for both T

Eq,∗(a)
1,n and T

Eq,∗(b)
1,n : H0 cannot be rejected when

bin 1 and bin 2 are compared; H0 is rejected when bin 1 and bin 3 are compared for moderate k
values (and not rejected for very small or large k); and H0 cannot be rejected when bin 2 and bin 3

are compared, except if the parameter k is very large. Finally, TEq
3,n, which does not depend on any

parameter, does not reject the null hypothesis only for the first studied case (bin 1 vs. bin 2).

TEq
1,n TEq

2,n TEq
3,n

χ2
k T

Eq,∗(a)
1,n T

Eq,∗(b)
1,n TEq,∗

2,n TEq,∗
3,n

k/kn 1 5 10 1 5 10 1 5 10 1 5 10

bin 1 vs. bin 2 0.000 0.000 0.002 0.706 0.060 0.946 0.698 0.056 0.941 0.472 0.306 0.437 0.701
bin 1 vs. bin 3 0.000 0.000 0.000 0.165 0.012 0.013 0.160 0.008 0.002 0.626 0.336 0.823 0.038
bin 2 vs. bin 3 0.890 0.023 0.000 0.776 0.902 0.331 0.789 0.932 0.315 0.546 0.895 0.720 0.035

Table 5.6: Atmospheric pollution data. Testing the equality of linear models. P–values for TEq
1,n (using

the asymptotic distribution χ2
k and the bootstrap distributions of T

Eq,∗(a)
1,n and T

Eq,∗(b)
1,n ), TEq

2,n (using

the bootstrap distribution of TEq,∗
2,n ), and TEq

3,n (using the bootstrap distribution of TEq,∗
3,n ) when bin 1

is compared with bin 2, bin 1 is compared with bin 3, and bin 2 is compared with bin 3.

Given that this is a multiple testing problem, corrected p–values were also computed. Two ad-
justement methods were considered: Bonferroni’s method and Benjamini and Hochberg’ method (see
Benjamini and Hochberg, 1995). Both techniques were applied using the R routine p.adjust available
in the package stats (see R Development Core Team, 2010). The obtained results are shown in Ta-
ble 5.7 and Figure 5.7 (see page 132) for the Bonferroni’s method, and Table 5.8 and Figure 5.8 (see
page 133) for Benjamini and Hochberg’ method. Note that similar conclusions can be derived using
the corrected p–values to those obtained using the original ones.

5.6 Final conclusions

The proposed bootstrap methods are competitive alternatives to tests based on asymptotic distribu-
tions, and they often give test sizes closer to the nominal ones. In terms of power, the statistic tests
which include a consistent estimation of the error variance σ2 obtain higher empirical power than the
test statistics which do not take it into account. Furthermore, in all the statistics involving a k/kn
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Figure 5.6: Atmospheric pollution data. Testing the equality of linear models. P–values for TEq
1,n (circle

for the asymptotic distribution χ2
k; square for the bootstrap distributions of T

Eq,∗(a)
1,n ; diamond for the

bootstrap distributions of T
Eq,∗(b)
1,n ), and TEq

2,n (triangle for the bootstrap distribution of TEq,∗
2,n ) when

bin 1 is compared with bin 2 (left panel), bin 1 is compared with bin 3 (centre panel), and bin 2 is
compared with bin 3 (right panel). Horizontal dotted line corresponds to the significance level α = 0.5.

TEq
1,n TEq

2,n TEq
3,n

χ2
k T

Eq,∗(a)
1,n T

Eq,∗(b)
1,n TEq,∗

2,n TEq,∗
3,n

k/kn 1 5 10 1 5 10 1 5 10 1 5 10

bin 1 vs. bin 2 0.001 0.000 0.006 1.000 0.180 1.000 1.000 0.168 1.000 1.000 0.918 1.000 1.000
bin 1 vs. bin 3 0.000 0.000 0.000 0.495 0.036 0.039 0.480 0.024 0.006 1.000 1.000 1.000 0.114
bin 2 vs. bin 3 1.000 0.070 0.000 1.000 1.000 0.993 1.000 1.000 0.945 1.000 1.000 1.000 0.105

Table 5.7: Atmospheric pollution data. Testing the equality of linear models. P–values adjusted using
Bonferroni correction for TEq

1,n (using the asymptotic distribution χ2
k and the bootstrap distributions of

T
Eq,∗(a)
1,n and T

Eq,∗(b)
1,n ), TEq

2,n (using the bootstrap distribution of TEq,∗
2,n ), and TEq

3,n (using the bootstrap

distribution of TEq,∗
3,n ) when bin 1 is compared with bin 2, bin 1 is compared with bin 3, and bin 2 is

compared with bin 3.
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Figure 5.7: Atmospheric pollution data. Testing the equality of linear models. P–values adjusted
using Bonferroni correction for TEq

1,n (circle for the asymptotic distribution χ2
k; square for the bootstrap

distributions of T
Eq,∗(a)
1,n ; diamond for the bootstrap distributions of T

Eq,∗(b)
1,n ), and TEq

2,n (triangle for

the bootstrap distribution of TEq,∗
2,n ) when bin 1 is compared with bin 2 (left panel), bin 1 is compared

with bin 3 (centre panel), and bin 2 is compared with bin 3 (right panel). Horizontal dotted line
corresponds to the significance level α = 0.5.
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TEq
1,n TEq

2,n TEq
3,n

χ2
k T

Eq,∗(a)
1,n T

Eq,∗(b)
1,n TEq,∗

2,n TEq,∗
3,n

k/kn 1 5 10 1 5 10 1 5 10 1 5 10

bin 1 vs. bin 2 0.001 0.000 0.002 0.776 0.090 0.946 0.789 0.084 0.941 0.626 0.504 0.823 0.701
bin 1 vs. bin 3 0.000 0.000 0.000 0.495 0.036 0.039 0.480 0.024 0.006 0.626 0.504 0.823 0.057
bin 2 vs. bin 3 0.890 0.023 0.000 0.776 0.902 0.497 0.789 0.932 0.473 0.626 0.895 0.823 0.057

Table 5.8: Atmospheric pollution data. Testing the equality of linear models. P–values adjusted using
Benjamini and Hochberg correction for TEq

1,n (using the asymptotic distribution χ2
k and the bootstrap

distributions of T
Eq,∗(a)
1,n and T

Eq,∗(b)
1,n ), TEq

2,n (using the bootstrap distribution of TEq,∗
2,n ), and TEq

3,n (using

the bootstrap distribution of TEq,∗
3,n ) when bin 1 is compared with bin 2, bin 1 is compared with bin 3,

and bin 2 is compared with bin 3.
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Figure 5.8: Atmospheric pollution data. Testing the equality of linear models. P–values adjusted
using Benjamini–Hochberg correction for TEq

1,n (circle for the asymptotic distribution χ2
k; square for

the bootstrap distributions of T
Eq,∗(a)
1,n ; diamond for the bootstrap distributions of T

Eq,∗(b)
1,n ), and TEq

2,n

(triangle for the bootstrap distribution of TEq,∗
2,n ) when bin 1 is compared with bin 2 (left panel), bin 1

is compared with bin 3 (centre panel), and bin 2 is compared with bin 3 (right panel). Horizontal
dotted line corresponds to the significance level α = 0.5.

parameter, a suitable choice of k/kn seems to be a quite important point and it is currently an open
question.

Besides of the optimal k/kn selection, other issues related to these hypotheses tests require further
research, such as their extension to functional linear models with functional response. In addition, for
the test of lack of dependence, it would be interesting to combine it with the functional ANOVA test
(see Cuevas et al. (2004), and González-Rodŕıguez et al. (2012)) in order to develop an ANCOVA test
in this context. On the other hand, for the test of equality, the extension of the results to other test
statistics proposed by Horváth et al. (2009), which are applicable to more general situations (different
covariance structures, different sample sizes,. . . ), is still a pending issue.

5.7 Appendix Chapter 5

This section contains the proofs of the main results of the chapter and some necessary technical lemmas.
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5.7.1 Proof of Theorem 5.2.3

Since T Ind
n can be equivalently expressed as

T Ind
n =

1

n

n∑

i=1

(Xi − µX)(Yi − µY )− (X − µX)(Y − µY )

=
n− 1

n2

n∑

i=1

(Xi − µX)(Yi − µY )−
1

n2

n∑

i=1

∑

j 6=i

(Xi − µX)(Yj − µY ),

it is straightforward to check item 1. Furthermore, the a.s.− P convergence is a direct application of
the SLLN for separable Hilbert–valued random elements.

On the other hand, given that E(‖(X − µX)(Y − µY )‖2) < ∞, the convergence in law can be
deduced by applying the CLT for separable Hilbert–valued random elements (see, for instance, Laha
and Rohatgi (1979)) together with Slutsky’s Theorem. The concrete expression of the operator ΓZ

can be obtained by simple computations as follows

ΓZ = Γ(X−µX)(Y−µY ) = Γ(X−µX)(ǫ+〈θ,X−µX〉) = Γ(X−µX)ǫ + Γ(X−µX)〈θ,X−µX〉

= E(ǫ2(X − µX)⊗H (X − µX)) + E(〈θ,X − µX〉2(X − µX)⊗H (X − µX))

= σ2Γ + E(〈θ,X − µX〉2(X − µX)⊗H (X − µX)).

5.7.2 Proof of Corollary 5.2.4

Corollary 5.2.4 can be derived from item 3 in Theorem 5.2.3 because, under the null hypothesis,
‖T Ind‖ = ‖∆‖H′ = 0, and Y − µY = ǫ (hence, ΓZ = Γ(X−µX)(Y−µY ) = Γ(X−µX)ǫ = σ2Γ).

5.7.3 Proof of Theorem 5.2.5

Theorem 5.2.5 is easily proven taking into account that n−1
∑n

i=1 (Xi −X)(Y n
i − Y

n
) converges a.s.−P

to E((X−µX)(Y n−µY n)) when n→ ∞, by the SLLN for separable Hilbert–valued random elements,
and ‖E((X − µX)(Y n − µY n))‖ = δn‖Γθ‖/

√
n.

5.7.4 Proof of Theorem 5.2.7

First of all, note that

√
nT Ind,N∗

n =
1√
n

n∑

i=1

(X∗
i − µX)(Y ∗

i − µY )−
1√
n

n∑

i=1

(Xi − µX)(Yi − µY )

−√
n(X

∗ − µX)(Y
∗ − µY ) +

√
n(X − µX)(Y − µY )

=
√
nS∗

n +
1√
n

√
n(X

∗ −X)
√
n(Y

∗ − Y )−√
n(X

∗ −X)(Y
∗ − µY )− (X

∗ − µX)
√
n(Y

∗ − Y ),

(5.32)

where S∗
n is defined as S∗

n = n−1
∑n

i=1 (X
∗
i − µX)(Y ∗

i − µY ) − n−1
∑n

i=1 (Xi − µX)(Yi − µY ). Given
that {(X∗

i − µX)(Y ∗
i − µY )}ni=1 are i.i.d. H–valued random elements chosen at random from the

bootstrap population {(Xi−µX)(Yi−µY )}ni=1 and E(‖(X−µX)(Y −µY )‖2) <∞, item 1 in Lemma 5.7.1
guarantees that the bootstrap statistic

√
nS∗

n converges in law to Z(X−µX)(Y−µY ) a.s.− P.
On the other hand, given that E(‖X‖2) < ∞ and E(Y 2) < ∞, items 1 and 2 in Lemma 5.7.1,

together with Slutsky’s Theorem, ensure that the last three terms in (5.32) converge in probability to
0 a.s.− P, and consequently the convergence in law stated in the theorem is proven.

Finally, note that σ̂∗2 = (Y ∗)2 − (Y
∗
)2. Then, the convergence of σ̂∗2 holds in virtue of items 2

and 3 in Lemma 5.7.1, since E(Y 2) <∞.
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5.7.5 Formulation and proof of Lemma 5.7.1

As was indicated previously, the asymptotic behaviour of the naive bootstrap statistic is going to be
analysed through some results on bootstrapping general empirical measures presented by Giné and
Zinn (1990) (specifically, through their Theorem 2.4). For this reason, it is necessary to introduce
some notation used by Giné and Zinn (1990), and check certain conditions required in their paper, in
order to obtain the Lemma 5.7.1 below.

It should be noted that the bootstrap results in Giné and Zinn (1990) refer to empirical processes
indexed by a class of functions F , and based on a probability measure P, that particularly extend to
the bootstrap about the mean in separable Banach (and thus Hilbert) spaces. In order to establish
this connection, it is enough to choose

F = {f ∈ H′| ‖f‖H′ ≤ 1}
(see Giné (1997) and Kosorok (2008), for a general overview of indexed empirical processes). Note
that F is image admissible Suslin2 considering the weak topology. This fact ensures that F satisfies
the measurability conditions which are necessary to apply Theorem 2.4 in Giné and Zinn (1990). In
addition, let F be defined as F (x) = supf∈F |f(x)| = ‖x‖ for all x ∈ H, which satisfies

E(F 2(X)) = E(‖X‖2) <∞.

Finally, consider the bounded and linear (so continuous) operator δ from H to l∞(F)3, given by
δ(x)(f) = δx(f) = f(x) for all x ∈ H and f ∈ F , and denote by Im(δ) ⊂ l∞(F) its range. Since
‖δ(x)‖∞ = ‖x‖ for all x ∈ H, then there exists δ−1 : Im(δ) → H, such that δ−1 is continuous (see, for
instance, Lemma 6.16 in Kosorok (2008)). In addition, as Im(δ) is closed, Dugundji’s Theorem allows to
consider a continuous extension δ−1 : l∞(F) → H (see, for instance, Theorem 10.9 in Kosorok (2008)).
Thus, following the typical empirical process notation, the empirical process n−1/2

∑n
i=1 (δXi

− P)
indexed in F is directly connected with n−1/2

∑n
i=1 (Xi − E(X)) by means of the continuous mapping

δ−1 and vice versa. As a result, the CLT for separable Hilbert–valued random elements (see, for
instance, Laha and Rohatgi (1979)) together with the Continuous Mapping Theorem applied to δ
guarantee that F ∈ CLT (P)4, which is another condition involved in Theorem 2.4 by Giné and Zinn
(1990).

All these considerations lead to the results collected in the following lemma.

Lemma 5.7.1 (González-Manteiga et al., 2012). Let ξ be a measurable mapping from a probabilistic
space denoted by (Ω,A,P) to a separable Hilbert space (H, 〈·, ·〉) with corresponding norm ‖ · ‖ such
that E(‖ξ‖2) < ∞. Let {ξi}ni=1 be a sequence of i.i.d. random elements with the same distribution as
ξ, and let {ξ∗i }ni=1 be i.i.d. from {ξi}ni=1. Then

(i)
√
n(ξ

∗ − ξ) converges in law to Zξ a.s.− P

(ii) ξ
∗
converges in probability to E(ξ) a.s.− P

(iii) ‖ξ∗‖2 converges in probability to E(‖ξ‖2) a.s.− P

2A separable measurable space (Y,S) will be called a Suslin space iff there is a Polish space X and a Borel measurable
map from X onto Y (a Polish space is a topological space metrizable as a complete separable metric space).
If (Ω,A) is a measurable space and F a set, then a real–valued function X : (f, ω) → X(f, ω) will be called image

admissible Suslin via (Y,S, T ) iff (Y,S) is a Suslin measurable space, T is a function from Y onto F , and (y, ω) →
X(T (y), ω) is jointly measurable on Y ×Ω. Let F be a set of functions on Ω and X(f, ω) ≡ f(ω). F will be called image

admissible Suslin if X is image admissible Suslin via some (Y,S, T ) as above.
3l∞(F) is the space of the bounded functions F → R with the uniform norm topology.
4A Radon measure γ is a measure defined on the σ–algebra of Borel sets of a topological space X which is

locally finite (i.e., for any x ∈ X there is a neighbourhood which has finite measure) and inner regular (i.e.,
γ(B) = sup {γ(K) : K ⊂ B,K compact}).
A sequence {Yn}∞n=1

of random elements of l∞(F) converges weakly in l∞(F) if there exists a Radon probability measure
γ on l∞(F) such that for all H : l∞(F) → R bounded and continuous, limn→∞ E∗H(Yn) =

∫
Hdγ.

F ∈ CLT (P) if the sequence {√n(Pn − P)(f) : f ∈ F} converges weakly in l∞(F) to a Radon centred Gaussian
probability measure γP on l∞(F), being Pn the empirical measure given by Pn = n−1

∑n
i=1

δXi
.
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Proof. Taking into account the reasoning commented before the lemma formulation, Theorem 2.4
of Giné and Zinn (1990) ensures that

√
n(P∗

n(ω) − Pn(ω)) converges in law to a centred Gaussian
process on F , G = δ(Zξ), a.s.−P, where Pn(ω) = n−1

∑n
i=1 δξi(ω), and P∗

n(ω) is the empirical measure
based on {ξ∗i }ni=1, i.e., P

∗
n(ω) = n−1

∑n
i=1 δξ∗i (ω). Consequently, by applying the Continuous Mapping

Theorem to δ−1,
√
n(ξ

∗ − ξ) converges in law to Zξ = δ−1(G), and item 1 is shown. Note that item 1
is also a direct consequence of Remark 2.5 of Giné and Zinn (1990); nevertheless it was proven based
on Theorem 2.4 to illustrate the technique.

Items 2 and 3 can be checked in a similar way by applying Theorem 2.6 of Giné and Zinn (1990).

5.7.6 Proof of Theorem 5.2.9

Remark that, for all ω ∈ Ω,

√
nT Ind,W∗

n (ω) =
1√
n

n∑

i=1

(Xi(ω)− µX)(Yi(ω)− µY )ǫ
∗
i −

(
1√
n

n∑

i=1

(Xi(ω)− µX)ǫ∗i

)
(Y (ω)− µY )

− (X(ω)− µX)
1√
n

n∑

i=1

(Yi(ω)− µY )ǫ
∗
i + (X(ω)− µX)(Y (ω)− µY )

1√
n

n∑

i=1

ǫ∗i

= S∗
n −

(
1√
n

n∑

i=1

(Xi(ω)− µX)ǫ∗i

)
(Y (ω)− µY )

− (X(ω)− µX)

(
1√
n

n∑

i=1

(Yi(ω)− µY )ǫ
∗
i

)
+ (X(ω)− µX)(Y (ω)− µY )

(
1√
n

n∑

i=1

ǫ∗i

)
,

(5.33)

where S∗
n = n−1/2

∑n
i=1 (Xi(ω)− µX)(Yi(ω)− µY )ǫ

∗
i . According to Lemma 5.7.2, for almost all ω ∈ Ω,

S∗
n converges in law to Z(X−µX)(Y−µY ), since E(‖(X − µX)(Y − µY )‖2) <∞.

On the other hand, (X(ω)− µX) and (Y (ω)− µY ) converge to 0 by SLLN. This fact jointly with
Lemma 5.7.2 and Slutsky’s Theorem guarantee the convergence in probability to 0 of the last three
summands in (5.33), given that E(‖(X − µX)‖2) < ∞ and E((Y − µY )

2) < ∞. Thus, the result is
reached by applying again Slutsky’s Theorem.

5.7.7 Formulation and proof of Lemma 5.7.2

Lemma 5.7.2 (González-Manteiga et al., 2012). Let ξ be a measurable mapping from a probabilistic
space denoted by (Ω,A,P) to a separable Hilbert space (H, 〈·, ·〉) with corresponding norm ‖·‖ such that
E(‖ξ‖2) < ∞. Let {ξi}ni=1 be a sequence of i.i.d. random elements with the same distribution as ξ,
and let {Wi}ni=1 be a sequence of i.i.d. real random variables independent of {ξi}ni=1, with E(Wi) = 0
and

∫∞
0

(P(|W1| > t)1/2) <∞. Then the following statements are equivalent

(i) E(‖ξ‖2) <∞ (and, consequently,
√
n(ξ − E(ξ)) converges in law to Zξ).

(ii) For almost all ω ∈ Ω, n−1/2
∑n

i=1Wiξi(ω) converges in law to Zξ.

Proof. This lemma is a particularization of a result due to Ledoux, Talagrand and Zinn (see Giné
and Zinn (1990) and Ledoux and Talagrand (1988)). See also the Multiplier CLT in Kosorok (2008)
for the empirical process indexed by a class of measurable functions counterpart.
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5.7.8 Proof of Theorem 5.3.4

Remark that TEq
n can be expressed as

TEq
n =

1

n

n∑

i=1

((X1,i − µX1
)(Y1,i − µY1

)− (X2,i − µX2
)(Y2,i − µY2

))

− ((X1 − µX1
)(Y 1 − µY1

)− (X2 − µX2
)(Y 2 − µY2

))

=
n− 1

n2

n∑

i=1

((X1,i − µX1
)(Y1,i − µY1

)− (X2,i − µX2
)(Y2,i − µY2

))

− 1

n2

n∑

i=1

∑

j 6=i

((X1,i − µX1
)(Y1,j − µY1

)− (X2,i − µX2
)(Y2,j − µY2

)),

so it is straightforward to check item 1. Moreover, by the SLLN for separable Hilbert–valued random
elements and the Slutsky’s Theorem, the a.s.− P convergence in item 2 can be stated.

On the other hand, one has that

√
n(TEq

n − TEq) =
√
n

(
1

n

n∑

i=1

((X1,i − µX1
)(Y1,i − µY1

)− (X2,i − µX2
)(Y2,i − µY2

))− TEq

)

− 1√
n

√
n(X1 − µX1

)
√
n(Y 1 − µY1

) +
1√
n

√
n(X2 − µX2

)
√
n(Y 2 − µY2

).

The last two terms in the right side of the previous expression converge a.s.−P to 0 as n→ ∞ by the
CLT for separable Hilbert–valued random elements, since E(‖X1‖2) <∞, E(‖X2‖2) <∞, E(Y 2

1 ) <∞
and E(Y 2

2 ) < ∞, and the Slutsky’s Theorem. Therefore, due to Slutsky’s Theorem, item 3 will be
proven if it is showed the convergence in law of

√
n

(
1

n

n∑

i=1

((X1,i − µX1
)(Y1,i − µY1

)− (X2,i − µX2
)(Y2,i − µY2

))− TEq

)
.

Given that E(‖(X1−µX1
)(Y1−µY1

)− (X2−µX2
)(Y2−µY2

)‖2) <∞, this convergence can be deduced
by applying again the CLT for separable Hilbert–valued random elements. Finally, taking into account
that (C.5.4) is satisfied, the concrete expression of the operator ΓZ can be obtained as follows

ΓZ = Γ(X1−µX1
)(Y1−µY1

)−(X2−µX2
)(Y2−µY2

) = Γ(X1−µX1
)(ǫ1+〈θ1,X1−µX1

〉)−(X2−µX2
)(ǫ2+〈θ2,X2−µX2

〉)

= Γ(X1−µX1
)ǫ1 + Γ(X1−µX1

)〈θ1,X1−µX1
〉 + Γ(X2−µX2

)ǫ2 + Γ(X2−µX2
)〈θ2,X2−µX2

〉

= E(ǫ21(X1 − µX1
)⊗H (X1 − µX1

)) + E(〈θ1, X1 − µX1
〉2(X1 − µX1

)⊗H (X1 − µX1
))

+ E(ǫ22(X2 − µX2
)⊗H (X2 − µX2

)) + E(〈θ2, X2 − µX2
〉2(X2 − µX2

)⊗H (X2 − µX2
))

= 2σ2Γ + E(〈θ1, X1 − µX1
〉2(X1 − µX1

)⊗H (X1 − µX1
))

+ E(〈θ2, X2 − µX2
〉2(X2 − µX2

)⊗H (X2 − µX2
)).

5.7.9 Proof of Corollary 5.3.5

Corollary 5.3.5 can be derived from item 3 in Theorem 5.3.4 taking into account that, under the null
hypothesis, ‖TEq‖ = ‖∆1 −∆2‖H′ = 0.
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5.7.10 Proof of Theorem 5.3.6

Remark that

1

n

n∑

i=1

((X1,i −X1)(Y1,i − Y 1)− (X2,i −X2)(Y
n
2,i − Y

n

2 ))

=
1

n

n∑

i=1

((X1,i − µX1
)(Y1,i − µY1

)− (X2,i − µX2
)(Y n

2,i − µY n
2
))− ((X1 − µX1

)(Y 1 − µY1
)

− (X2 − µX2
)(Y

n

2 − µY n
2
)).

One gets that the previous statistic converges a.s.−P to E((X1−µX1
)(Y1−µY1

)−(X2−µX2
)(Y n

2 −µY n
2
)),

as n → ∞, by the SLLN for separable Hilbert–valued random elements and the Slutsky’s Theorem.
Hence, Theorem 5.3.6 is easily proven given that, when (C.5.4) is satisfied, ‖E((X1−µX1

)(Y1−µY1
)−

(X2 − µX2
)(Y n

2 − µY n
2
))‖ = δn‖Γθ1‖/

√
n.

5.7.11 Proof of Theorem 5.3.8

First of all, note that

√
nTEq,N∗

n =
1√
n

n∑

i=1

((X∗
1,i − µX1

)(Y ∗
1,i − µY1

)− (X∗
2,i − µX2

)(Y ∗
2,i − µY2

))

− 1√
n

n∑

i=1

((X1,i − µX1
)(Y1,i − µY1

)− (X2,i − µX2
)(Y2,i − µY2

))−√
n(X

∗
1 − µX1

)(Y
∗
1 − µY1

)

+
√
n(X

∗
2 − µX2

)(Y
∗
2 − µY2

)) +
√
n(X1 − µX1

)(Y 1 − µY1
)−√

n(X2 − µX2
)(Y 2 − µY2

)

=
√
nS∗

n +
1√
n

√
n(X

∗
1 −X1)

√
n(Y

∗
1 − Y 1)−

√
n(X

∗
1 −X1)(Y

∗
1 − µY1

)− (X
∗
1 − µX1

)
√
n(Y

∗
1 − Y 1)

− 1√
n

√
n(X

∗
2 −X2)

√
n(Y

∗
2 − Y 2) +

√
n(X

∗
2 −X2)(Y

∗
2 − µY2

) + (X
∗
2 − µX2

)
√
n(Y

∗
2 − Y 2),

(5.34)

where S∗
n is defined as

S∗
n =

1

n

n∑

i=1

((X∗
1,i − µX1

)(Y ∗
1,i − µY1

)− (X∗
2,i − µX2

)(Y ∗
2,i − µY2

))

− 1

n

n∑

i=1

((X1,i − µX1
)(Y1,i − µY1

)− (X2,i − µX2
)(Y2,i − µY2

)).

Given that {(X∗
1,i−µX1

)(Y ∗
1,i−µY1

)−(X∗
2,i−µX2

)(Y ∗
2,i−µY2

)}ni=1 are i.i.d. H–valued random elements
chosen at random from the bootstrap population {(X1,i−µX1

)(Y1,i−µY1
)−(X2,i−µX2

)(Y2,i−µY2
)}ni=1

and E(‖(X1−µX1
)(Y1−µY1

)− (X2−µX2
)(Y2−µY2

)‖2) <∞, the bootstrap statistic
√
nS∗

n converges
in law to Z(X1−µX1

)(Y1−µY1
)−(X2−µX2

)(Y2−µY2
) a.s.− P due to item 1 in Lemma 5.7.1 (see page 135).

In addition, the last six terms in (5.34) converge in probability to 0 a.s. − P by items 1 and 2 in
Lemma 5.7.1, together with Slutsky’s Theorem, since E(‖X1‖2) < ∞, E(‖X2‖2) < ∞, E(Y 2

1 ) < ∞
and E(Y 2

2 ) < ∞. As a result, the convergence in law stated in the theorem is proven applying again
the Slutsky’s Theorem.
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5.7.12 Proof of Theorem 5.3.10

Remark that, for all ω ∈ Ω,

√
nTEq,W∗

n (ω) =
1√
n

n∑

i=1

((X1,i(ω)− µX1
)(Y1,i(ω)− µY1

)− (X2,i(ω)− µX2
)(Y2,i(ω)− µY2

))ǫ∗i

−
(

1√
n

n∑

i=1

(X1,i(ω)− µX1
)ǫ∗i

)
(Y 1(ω)− µY1

)− (X1(ω)− µX1
)
1√
n

n∑

i=1

(Y1,i(ω)− µY1
)ǫ∗i

+ (X1(ω)− µX1
)(Y 1(ω)− µY1

)
1√
n

n∑

i=1

ǫ∗i +

(
1√
n

n∑

i=1

(X2,i(ω)− µX2
)ǫ∗i

)
(Y 2(ω)− µY2

)

+ (X2(ω)− µX2
)
1√
n

n∑

i=1

(Y2,i(ω)− µY2
)ǫ∗i − (X2(ω)− µX2

)(Y 2(ω)− µY2
)
1√
n

n∑

i=1

ǫ∗i

= S∗
n −

(
1√
n

n∑

i=1

(X1,i(ω)− µX1
)ǫ∗i

)
(Y 1(ω)− µY1

)− (X1(ω)− µX1
)
1√
n

n∑

i=1

(Y1,i(ω)− µY1
)ǫ∗i

+

(
1√
n

n∑

i=1

(X2,i(ω)− µX2
)ǫ∗i

)
(Y 2(ω)− µY2

) + (X2(ω)− µX2
)
1√
n

n∑

i=1

(Y2,i(ω)− µY2
)ǫ∗i

+ ((X1(ω)− µX1
)(Y 1(ω)− µY1

)− (X2(ω)− µX2
)(Y 2(ω)− µY2

))
1√
n

n∑

i=1

ǫ∗i ,

(5.35)

where S∗
n = n−1/2

∑n
i=1 ((X1,i(ω)− µX1

)(Y1,i(ω)− µY1
)− (X2,i(ω)− µX2

)(Y2,i(ω)− µY2
))ǫ∗i . Apply-

ing Lemma 5.7.2 (see page 136), S∗
n converges in law to Z(X1−µX1

)(Y1−µY1
)−(X2−µX2

)(Y2−µY2
), for almost

all ω ∈ Ω, since E(‖(X1 − µX1
)(Y1 − µY1

)− (X2 − µX2
)(Y2 − µY2

)‖2) <∞.
Furthermore, (X1(ω) − µX1

), (Y 1(ω) − µY1
), (X2(ω) − µX2

) and (Y 2(ω) − µY2
) converge to 0

by the SLLN. This fact, Lemma 5.7.2 and Slutsky’s Theorem ensure the convergence in probability
to 0 of the last six summands in (5.35), given that E(‖X1 − µX1

‖2) < ∞, E((Y1 − µY1
)2) < ∞,

E(‖X2−µX2
‖2) <∞ and E((Y2−µY2

)2) <∞. Consequently, the theorem is proven by the application
of the Slutsky’s Theorem.
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Chapter 6

Thresholding in nonparametric
functional regression

The main goal of this chapter is to introduce an exploratory tool that allows the detection
of underlying complex structures in functional data. The chapter is focused on the nonpara-
metric regression model with scalar response Y and functional covariate X, and presents a
methodology for the analysis of hidden patterns via a threshold procedure. Furthermore,
several threshold functions are proposed, based on X and/or Y , and a cross–validation
criterion is introduced in order to estimate the threshold value. A graphical tool is also
obtained as a by–product, which can be helpful to decide if there are concealed structures
that require a more detailed analysis of the data. The effectiveness of the proposal is shown
by means of a simulation study and its application to real datasets.

The threshold approach compiled in this chapter was introduced in Ferraty et al. (2011b,
2012b).

6.1 Why consider a threshold approach?

In previous chapters, the functional regression with scalar response (specifically, the functional linear
model) has been analysed from a parametric viewpoint. However, the more general nonparametric
framework has been considered in this chapter. Recall the functional nonparametric regression model
for scalar response defined in (2.9) (see Chapter 2, page 41)

Y = m(X) + ǫ,

where Y is a real random variable, X is a random variable valued in a separable Hilbert space (H, 〈·, ·〉),
m : H → R is the regression operator, and ǫ is a real random variable such that E(ǫ|X) = 0 and
E(ǫ2|X) = σ2

ǫ (X) <∞. A particularly interesting situation is H = L2[a, b] with a, b ∈ R (note that X

is a curve in this case, and the inner product is given by 〈x, y〉 =
∫ b

a
x(t)y(t)dt for all x, y ∈ L2[a, b]),

since most of the available functional datasets are this kind of data. Due to this, the simulation study
and the real applications which are included in this chapter correspond to datasets where the covariate
is a curve. Nevertheless the notion of functional variable covers other types of data. That is why all
theoretical results for the techniques proposed in this chapter were developed for the wider context of
a general separable Hilbert space (H, 〈·, ·〉). This fact guarantees the application of these theoretical
advances to a larger area of functional data, not only curves, but also any other elements belonging to
a separable Hilbert space.

Sometimes, one is confronted with complex regression structures, which are unlikely detectable
using standard graphical or descriptive techniques, such as the existence of different subsamples of
functional covariates or different regression models in the sample. These situations can lead to obtain
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biased results or incorrect conclusions if the hidden patterns are not taken into account. The objective
of this chapter is to detect this kind of structures by means of an exploratory method which studies
the existence of a threshold value in the covariate X or in the real response Y and, when this threshold
exists, estimates it by means of a cross–validation procedure. Moreover, the cross–validation criterion
can be plotted providing a graphical support when one has to decide if there is any threshold on the
dataset or not.

Contributions on thresholding applications in FDA field are currently few. For instance, Bunea
et al. (2011) proposed data–driven methods based on thresholded least squares estimators for inference
about the mean function of a Gaussian process. Their aim was to use the thresholding approach to
adapt estimates to the sparsity of the mean function related to the approximating basis. On the other
hand, Chesneau et al. (2012) introduced an adaptative methodology to deal with both density and
regression estimation problems based on wavelet thresholding. Nevertheless, as far as the author is
concerned, the use of thresholding in the nonparametric regression context in order to find hidden
patterns in a dataset has not been previously studied in FDA literature.

Section 6.2 is devoted to introduce the methodology and show some potentially interesting threshold
functions. Furthermore, some theoretical properties are also presented. Then, the method is tested
with a simulation study and real data applications, being the main results collected in Section 6.3 and
Section 6.4. Finally, a brief discussion of the main conclussions of the work can be found in Section 6.5,
and proofs and technical lemmas have been compiled in the appendix of the chapter (see Section 6.6).

6.2 Threshold methodology

Firstly, the threshold estimator is introduced in Section 6.2.1. In addition, some families of threshold
functions are proposed, and a theoretical result related with the mean square convergence of the
threshold estimator is also presented. Next, a cross–validation method which allows for estimating
the threshold value, when it exists, is built in Section 6.2.2, and its optimality with respect to MISE
criterium is studied. From now on, let {(Xi, Yi)}ni=0 be an of i.i.d. sample of (X,Y ).

6.2.1 Regression model and estimate

The key of the procedure is to rewrite the regression operator m(·) given by

m : H → R

x → m(x) = E(Y |X = x)

as a finite sum of operators as follows. First of all, let Ψ be a function such that Ψ : H × R → E ,
being E a beforehand fixed space, and let {(Eυ

1 , . . . , Eυ
NE

)}υ∈Υ be an indexed family of sets where NE
is a fixed integer such that 1 < NE <∞ and, for all υ ∈ Υ,

{
Eυ
s ⊂ E ∀s ∈ S, Eυ

s1 ∩ Eυ
s2 = ∅ ∀s1, s2 ∈ S such that s1 6= s2,

P(Ψ(X,Y ) ∈ Eυ
s ) > 0 ∀s ∈ S, and P(Ψ(X,Y ) ∈ ⋃s∈S Eυ

s ) = 1,

where S = {1, . . . , NE}. For each s ∈ S, the next definitions can be introduced Y υ
s = Y I{Ψ(X,Y )∈Eυ

s }
being I the indicator function,

mυ
s : H → R

x → mυ
s (x) = E(Y υ

s |X = x),

and ǫυs = ǫI{Ψ(X,Y )∈Eυ
s }. Thus, one gets that Y =

∑
s∈S Y

υ
s , m(x) =

∑
s∈S m

υ
s (x), and ǫ =

∑
s∈S ǫ

υ
s .

Consequently, the regression model (2.9) (see Chapter 2, page 41) can be expressed as

∑

s∈S

Y υ
s =

∑

s∈S

mυ
s (X) +

∑

s∈S

ǫυs .



6.2. THRESHOLD METHODOLOGY 143

Once the regression operator m(·) is written as the sum of the operators mυ
s , each component

mυ
s can be estimated separately, using the sample {(Xi, Y

υ
i,s)}ni=1, where Y

υ
i,s = YiI{Ψ(Xi,Yi)∈Eυ

s } for
i = 1, . . . , n. Thus, an indexed family of estimators can be built by means of

m̂υ(x) =
∑

s∈S

m̂υ
s (x), ∀υ ∈ Υ.

Specifically, for each s ∈ S, the kernel–type estimator (2.10) (see Chapter 2, page 42) has been taken
with the semi–metric induced by the inner product of H as the semi–metric d(·, ·), that is,

m̂υ
s (x) =

∑n
i=1 Y

υ
i,sK(h−1

s ‖Xi − x‖)
∑n

i=1K(h−1
s ‖Xi − x‖) ,

where ‖ · ‖ = 〈·, ·〉1/2 is the induced norm of H, K(·) is a kernel function, and hs = hs(n) is a sequence
of strictly positive real bandwidths such that hs ∈ Hn ⊂ R+ for all s ∈ S. In order to simplify the
notation, let K̃s,i be K̃s,i(x) = K(h−1

s ‖Xi − x‖), and introduce the following terms

m̂υ
s,N (x) =

1

n

n∑

i=1

Y υ
i,sK̃s,i(x)

E(K̃s,0(x))
and m̂υ

s,D(x) =
1

n

n∑

i=1

K̃s,i(x)

E(K̃s,0(x))
.

Hence, the estimator m̂υ previously introduced can be expressed as

m̂υ(x) =
∑

s∈S

∑n
i=1 Y

υ
i,sK̃s,i(x)∑n

i=1 K̃s,i(x)
=
∑

s∈S

m̂υ
s,N (x)

m̂υ
s,D(x)

. (6.1)

Remark 6.2.1. When the same bandwidth is selected for all the components m̂υ
s in the estimator m̂υ,

that is, when exists h ∈ Hn such that hs = h for all s ∈ S, the proposed estimator (6.1) is just the
standard kernel–type estimator (2.10) (see Chapter 2, page 42) with the semi–metric induced by the
inner product of H, i.e., d(x, y) = ‖x− y‖ = 〈x, y〉1/2 for all x, y ∈ H, given by

m̂h(x) =

∑n
i=1 YiK(h−1‖Xi − x‖)∑n
i=1K(h−1‖Xi − x‖) , (6.2)

which has been studied in detail during the last few years (see, for instance, Ferraty and Vieu, 2006b;
Ferraty et al., 2007a, 2010b).

Examples of threshold functions

The proposed method requires the specification of a threshold function in advance, and this choice
should be done as far as possible in accordance with the pattern to be possibly detected in the dataset.
Next, some useful threshold functions are presented, which can be taken into consideration when
H = L2[a, b], E = R, Υ ⊂ R, NE = 2 and the indexed family of pairs {(Eυ

1 , Eυ
2 )}υ∈Υ is given by

Eυ
1 = (−∞, υ] and Eυ

2 = (υ,+∞) for each υ ∈ Υ.

Threshold on Y . When one suspects that there is a threshold connected to the response, functions
which only depend on Y , i.e., Ψ : L2[a, b] × R → R such that Ψ(x, y) = f(y) with f : R → R, can
be considered. The most adequate function, according to the kind of structure one wants to detect,
should be selected: Ψ(x, y) = |y|, Ψ(x, y) = log(y), Ψ(x, y) = exp(y), Ψ(x, y) = cos(y),. . .

Threshold on X. If the threshold is only related to the covariate, then threshold functions only
depending on X, such as Ψ : L2[a, b] × R → R with Ψ(x, y) = f(x) being f : L2[a, b] → R, can be a
good choice. For instance, the following alternatives could be used:

• From the induced norm of L2[a, b] defined as ‖x‖ = (
∫ b

a
x2(t)dt)1/2 for all x ∈ L2[a, b], a family

of semi–norms can be constructed by means of Ψ(x, y) = ‖x(q)‖, where x(q) is the qth derivative
of the curve x. Note that if q = 0, this threshold function is just the norm of L2[a, b].
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• Selecting {ej}+∞
j=1 an orthonormal basis of L2[a, b] (according to the kind of data, it could be

B–splines basis, Fourier basis, principal components basis,...), and projecting the data on their
first J elements, one can define Ψ(x, y) = ‖xJ‖J , where xJ = (〈x, e1〉, . . . , 〈x, eJ 〉)t and ‖ · ‖J is
a norm in RJ (e.g., ‖xJ‖J =

√
xtJMxJ being M a fixed J × J–matrix).

• When there is one interesting direction e ∈ L2[a, b], one can consider Ψ(x, y) = |〈x, e〉|.

• In other cases, the dataset nature can lead to choose another type of functions, such as Ψ(x, y) =

maxt∈[0,1] |x(t)|, Ψ(x, y) =
∫ 1

0
x(t)dt or Ψ(x, y) = ‖x− x0‖ for a fixed x0 ∈ L2[a, b].

Obviously, more complicated Ψ functions can be selected. For example, threshold functions which
depend simultaneously on X and Y , or related with the projection of the curve onto several directions
(e.g., Ψ(x, y) = (|〈x, e1〉|, . . . , |〈x, eJ 〉|)) can be considered. One can also construct threshold functions
based on measures of concentration of the curves such as the small ball probability, that is, Ψ(x, y) =
ϕx(h) = P(X ∈ B(x, h)) (in this case, an estimation for ϕx and for h should be previously obtained),
or on any other measure related with X and/or Y . However, one must bear in mind that these options
will probably imply an increment of the computational cost of the estimation process.

A particular scenario

Suppose that

(C.6.1) there exists a compact set C of H such that P(X ∈ C) = 1.

Moreover, assume that E is a metric space, provided with a metric ρE(·, ·), and Ψ is a threshold function
only related to the covariate X such that

(C.6.2) Ψ : H × R → E with Ψ(x, y) = Ψ̃(x) for all (x, y) ∈ H × R, where
Ψ̃ : H → E is continuous on C.

Note that when the threshold only depends on X

Y υ
s = Y I{Ψ̃(X)∈Eυ

s } and mυ
s (X) = E(Y υ

s |X) = E(Y |X)I{Ψ̃(X)∈Eυ
s } = m(X)I{Ψ̃(X)∈Eυ

s }. (6.3)

Given that Ψ̃ is continuous on a compact set C, Ψ̃ is uniformly continuous on C by Heine–Cantor
theorem. Thus, for any ε > 0, there is a δ > 0 such that

∀x1, x2 ∈ C satisfying ‖x1 − x2‖ < δ, the inequality ρE(Ψ̃(x1), Ψ̃(x2)) < ε holds. (6.4)

On the other hand, let {(Eυ
1 , . . . , Eυ

NE
)}υ∈Υ be an indexed family of sets such that NE is finite and

(C.6.3)

{ Eυ
s ⊂ E ∀s ∈ S, Eυ

s1 ∩ Eυ
s2 = ∅ ∀s1, s2 ∈ S such that s1 6= s2,

P(Ψ̃(X) ∈ Eυ
s ) ≥ c0 > 0 ∀s ∈ S, and P(Ψ̃(X) ∈ ⋃s∈S Eυ

s ) = 1,

which also satisfies the following condition

(C.6.4) there exists D > 0 such that

D = min
s1,s2∈S,s1 6=s2

ρE(Eυ
s1 , Eυ

s2), where ρE(Eυ
s1 , Eυ

s2) = inf
e1∈Eυ

s1
,e2∈Eυ

s2

ρE(e1, e2).

It is important to highlight that, since Ψ̃ is uniformly continuous (see (6.4)) and D > 0, there exists
δD > 0 such that for all x1, x2 ∈ C verifying ‖x1 − x2‖ < δD, ρE(Ψ̃(x1), Ψ̃(x2)) < D, and as result,
Ψ̃(x1) and Ψ̃(x2) belongs to the same subset of {(Eυ

1 , . . . , Eυ
NE

)}υ∈Υ. Hence,

∀x1, x2 ∈ C satisfying ‖x1 − x2‖ < δD, I{Ψ̃(x1)∈Eυ
s } = I{Ψ̃(x2)∈Eυ

s }, ∀s ∈ S. (6.5)
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Therefore, in the situation that has just been described, if the bandwidth hs satisfies hs < δD, (6.3)
and (6.5) imply that m̂υ

s (x) is indeed

m̂υ
s (x) =

∑n
i=1 YiI{Ψ̃(Xi)∈Eυ

s }K̃s,i(x)
∑n

i=1 K̃s,i(x)
=

∑n
i=1 YiK̃s,i(x)∑n
i=1 K̃s,i(x)

I{Ψ̃(x)∈Eυ
s } = m̂hs

(x)I{Ψ̃(x)∈Eυ
s }, (6.6)

where m̂hs
is the standard kernel estimator with bandwidth hs (see (6.2), page 143). In addition, since

there is only a sx ∈ S such that Ψ̃(x) ∈ Eυ
sx , m̂

υ
sx(x) is the only non–null component of m̂υ(x) and,

consequently, m̂υ(x) =
∑

s∈S m̂
υ
s (x) = m̂υ

sx(x) = m̂hsx
(x).

Remark 6.2.2. In a certain sense, m̂υ(x) can be seen as a kernel–type estimator with “local” bandwith
which depends on the value Ψ̃(x): for all x ∈ C such that Ψ̃(x) ∈ Eυ

1 , the kernel estimator is computed
using the bandwidth h1; for all x ∈ C such that Ψ̃(x) ∈ Eυ

2 , the kernel estimator is computed using the
bandwidth h2,. . .

Mean square convergence

In the following, let x ∈ C be a fixed element, such that sx denotes the only sx ∈ S such that
Ψ̃(x) ∈ Eυ

sx . Expectation and variance of each component m̂υ
s of the proposed threshold estimator m̂υ

(see (6.1), page 143) are given in this section for the scenario described above. Hence, the expectation
and the variance of m̂υ can be obtained as a corollary.

Next, before formulating the theoretical results of this section, recall the definition of ψx and τx,h,
which were introduced by Ferraty et al. (2007a) in order to compute the bias and variance expressions
of the standard kernel estimator (see Section 2.4.1, “ c) Bias and variance ”, in Chapter 2, page 45),

ψx(t) = E ((m(X)−m(x)) | ‖X − x‖ = t) , ∀t ∈ R,

and

τx,h(t) =
ϕx(ht)

ϕx(h)
, ∀t ∈ [0, 1],

where ϕx is the small ball probability given by ϕx(h) = P(X ∈ B(x, h)) = P(‖X −x‖ ≤ h). Moreover,
the following assumptions are also required for stating the results below:

(C.6.5) ϕx(0) = 0, and τx,h(t) → τx,0(t) as h→ 0 for all t ∈ [0, 1].

(C.6.6) m(·) and σ2
ǫ (·) are continuous in a neighbourhood of x.

(C.6.7) ψ′
x(0) exists.

(C.6.8) For all s ∈ S, the sequence of bandwiths hs verifies that limn→+∞ hs = 0,
limn→+∞ nϕx(hs) = +∞, and hs < δD (with δD defined as in (6.5)).

(C.6.9) K(·) is a kernel supported on [0, 1] with a continuous derivative on [0, 1)
such that K(1) > 0 and K ′(t) < 0.

Theorem 6.2.3. Under (C.6.1)–(C.6.4), if (C.6.5)–(C.6.9) are satisfied, then for all s ∈ S

E(m̂υ
s (x)) =

(
m(x) + ψ′

x(0)
Mx,0

Mx,1
hs +O

(
1

nϕx(hs)

)
+ o(hs)

)
I{Ψ̃(x)∈Eυ

s },

Var(m̂υ
s (x)) =

(
σ2
ǫ (x)

Mx,2

M2
x,1

1

nϕx(hs)
+ o

(
1

nϕx(hs)

))
I{Ψ̃(x)∈Eυ

s },

Cov(m̂υ
s1(x), m̂

υ
s2(x)) = 0,

with Mx,0 = K(1) −
∫ 1

0
(tK(t))′τx,0(t)dt, Mx,1 = K(1) −

∫ 1

0
K ′(t)τx,0(t)dt and Mx,2 = K2(1) −∫ 1

0
(K2)′(t)τx,0(t)dt.
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Corollary 6.2.4. Under the assumptions of Theorem 6.2.3, it holds that

E(m̂υ(x)) = m(x) + ψ′
x(0)

Mx,0

Mx,1

∑

s∈S

hsI{Ψ̃(x)∈Eυ
s } +

∑

s∈S

(
O

(
1

nϕx(hs)

)
+ o(hs)

)
I{Ψ̃(x)∈Eυ

s },

Var(m̂υ(x)) = σ2
ǫ (x)

Mx,2

M2
x,1

∑

s∈S

1

nϕx(hs)
I{Ψ̃(x)∈Eυ

s } +
∑

s∈S

(
o

(
1

nϕx(hs)

))
I{Ψ̃(x)∈Eυ

s },

with Mx,0 = K(1) −
∫ 1

0
(tK(t))′τx,0(t)dt, Mx,1 = K(1) −

∫ 1

0
K ′(t)τx,0(t)dt and Mx,2 = K2(1) −∫ 1

0
(K2)′(t)τx,0(t)dt. In particular, if sx denotes the only sx ∈ S such that Ψ̃(x) ∈ Eυ

sx , then

E(m̂υ(x)) = m(x) + ψ′
x(0)

Mx,0

Mx,1
hsx +O

(
1

nϕx(hsx)

)
+ o(hsx),

Var(m̂υ(x)) = σ2
ǫ (x)

Mx,2

M2
x,1

1

nϕx(hsx)
+ o

(
1

nϕx(hsx)

)
.

The proofs of the previous results can be found in the appendix of the chapter (see Section 6.6.1 and
Section 6.6.2, respectively).

Remark 6.2.5. Theorem 6.2.3 is a direct consequence of Theorem 1 in Ferraty et al. (2007a) (see
Theorem 2.4.13 in Chapter 2, page 46), since m̂υ

s (x) can be expressed as (6.6) (see page 145).

6.2.2 Cross–validation criterion

Several parameters need to be estimated in m̂υ (see (6.1), page 143): the threshold υ and the NE band-
widths {hs}s∈S . From now on, the following notation is going to be used: ({hs}s∈S) ≡ (h1, . . . , hNE

),

(υ, {hs}s∈S) ≡ (υ, h1, . . . , hNE
), HNE

n ≡ Hn×
NE· · · ×Hn, and Υ×HNE

n ≡ Υ×Hn×
NE· · · ×Hn.

To obtain adequate values for (υ, {hs}s∈S), it is proposed to use one of the most widespread
techniques in the literature: a cross–validation method (see, for instance, Härdle and Marron, 1985).
In this case, the aim is to find (υ, {hs}s∈S) ∈ Υ × HNE

n minimizing the following cross–validation
criterion

CV(υ, {hs}s∈S) =
1

n

n∑

j=1

(Yj − m̂υ,(−j)(Xj))
2, (6.7)

where m̂υ,(−j)(x) =
∑

s∈S m̂
υ,(−j)
s (x) being

m̂υ,(−j)
s (x) =

∑
i6=j Y

υ
i,sK̃s,i(x)∑

i6=j K̃s,i(x)
.

Moreover, adopting the following notation

m̂
υ,(−j)
s,N (x) =

1

n− 1

∑

i6=j

Y υ
i,sK̃s,i(x)

E(K̃s,0(x))
and m̂

υ,(−j)
s,D (x) =

1

n− 1

∑

i6=j

K̃s,i(x)

E(K̃s,0(x))
,

then m̂υ,(−j) can be built by means of the next expression

m̂υ,(−j)(x) =
∑

s∈S

∑
i6=j Y

υ
i,sK̃s,i(x)∑

i6=j K̃s,i(x)
=
∑

s∈S

m̂
υ,(−j)
s,N (x)

m̂
υ,(−j)
s,D (x)

.

Minimizing the CV criterion (6.7), the model parameters (υ, {hs}s∈S) in (6.1) (see page 143) will be
estimated by

(υCV, {hs,CV}s∈S) = arg min
(υ,{hs}s∈S)∈Υ×H

NE
n

CV(υ, {hs}s∈S).
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The theoretical results below are focused on showing the optimality of this data–driven selection
regarding to the mean integrated squared error given by

MISE(υ, {hs}s∈S) = E((m(X)− m̂υ(X))2), (6.8)

which depends on the unknown regression operator and it is incalculable in practice. For that purpose,
it is necessary to introduce the definition of the Kolmogorov’s ζ–entropy and certain assumptions.
Given a subset S ⊂ H and ζ > 0, the Kolmogorov’s ζ–entropy of S is defined as HS(ζ) = logNζ(S),
where Nζ(S) is the minimal number of open balls in H of radius ζ such that S is covered, that is,

Nζ(S) = min{N ∈ N : ∃(x1, . . . , xN ) ∈ H× N. . . ×H such that S ⊂
N⋃

k=1

B(xk, ζ)},

with B(xk, ζ) = {x ∈ H : ‖x− xk‖ ≤ ζ}. Besides, the conditions which are required are the following:

(C.6.10) ϕx(0) = 0 and τx,h(t) → τx,0(t) as h → 0 for all t ∈ [0, 1], for all x ∈ C.
Furthermore, for h > 0, 0 < c1φ(h) ≤ ϕx(h) ≤ c2φ(h) < +∞ for all
x ∈ C, being c1, c2 > 0 and φ a bijective increasing function satisfying
that ∃c3 > 0 and ∃h0 > 0 such that φ′(h) < c3 for all h < h0.

(C.6.11) For all s ∈ S, there exist c4, c5 > 0 such that c4 n
−ν2 < φ(hs) < c5 n

−ν1 ,
with 0 < ν1 < ν2 < 1 (thus, limn→+∞ nφ(hs) = +∞).

(C.6.12) There exist c6 > 0 and β > 0 such that |m(x1)−m(x2)| ≤ c6‖x1 −x2‖β ,
for all x1, x2 ∈ C.

(C.6.13) For all p ≥ 1, E(|Y |p |X = x) ≤ c7 < +∞ for all x ∈ C.

(C.6.14) There exists c8 > 0 such that E(Y 2|X = x) = σ(x) ≥ c8, with σ contin-
uous on C.

(C.6.15) K(·) is an asymmetric, bounded and Lipschitz kernel supported on [0, 1]
with a continuous derivative on [0, 1) such that K(1) > 0 and K ′(t) < 0
for all t ∈ [0, 1).

(C.6.16) For all s ∈ S, the sequence of bandwiths hs verifies that limn→+∞ hs = 0
and hs < δD (with δD defined as in (6.5)).

(C.6.17) For n large enough, (log n)2/(nφ(hs)) < HC(log n/n) < (nφ(hs))/ log n,
for all s ∈ S (consequently, limn→+∞HC(log n/n)/(nφ(hs)) = 0 and
limn→+∞ log n/(nφ(hs)) = 0). Furthermore, the Kolmogorov’s entropy
of C verifies for some c9 > 1 that

+∞∑

n=1

exp

{
(1− c9)HC

(
log n

n

)}
< +∞.

(C.6.18) card(Υ×HNE

n ) = nα with α > 0.

The first optimality result ensures that (υCV, {hs,CV}s∈S) approximates the optimal choice in terms
of MISE criterion, that is, (υCV, {hs,CV}s∈S) approximates

(υ∗, {h∗s}s∈S) = arg min
(υ,{hs}s∈S)∈Υ×H

NE
n

MISE(υ, {hs}s∈S).
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Theorem 6.2.6. Under (C.6.1)–(C.6.4) and (C.6.10)–(C.6.18), it holds that

MISE(υ∗, {h∗s}s∈S)

MISE(υCV, {hs,CV}s∈S)
→ 1 a.s.

The proof of Theorem 6.2.6 can be found in Section 6.6.3.

Remark 6.2.7. Ait-Säıdi et al. (2008) showed the asymptotic optimality of the cross–validation tech-
niques in the single–functional index model. The procedure and reasonings which they proposed in their
paper were mimicked in the proof of the technical lemmas which are necessary to get Theorem 6.2.6
and obtain the theoretical properties of the cross–validation method.

On the other hand, for υ ∈ Υ, one can define

({hs,CV(υ)}s∈S) = arg min
({hs}s∈S)∈H

NE
n

CV(υ, {hs}s∈S)

and

({h∗s(υ)}s∈S) = arg min
({hs}s∈S)∈H

NE
n

MISE(υ, {hs}s∈S).

Then, Theorem 6.2.8 indicates that ({h∗s(υ)}s∈S) can be approximated by ({hs,CV(υ)}s∈S), whereas
Theorem 6.2.9 shows that both CV and MISE criteria have similar shape.

Theorem 6.2.8. Under hypotheses of Theorem 6.2.6, it holds that

MISE(υ, {h∗s(υ)}s∈S)

MISE(υ, {hs,CV(υ)}s∈S)
→ 1 a.s.

for each υ ∈ Υ.

Theorem 6.2.9. Under hypotheses of Theorem 6.2.6, it holds that

sup
υ∈Υ

∣∣∣∣
CV(υ, {hs,CV(υ)}s∈S)−MISE(υ, {h∗s(υ)}s∈S)− σ̂2

ǫ

MISE(υ, {h∗s(υ)}s∈S)

∣∣∣∣→ 0 a.s.

where σ̂2
ǫ = n−1

∑n
j=1 ǫ

2
j .

Section 6.6.9 and Section 6.6.10 compile the proofs of Theorem 6.2.8 and Theorem 6.2.9, respectively.
Thanks to the previous results, the behaviour of the MISE criterion can be deduced, which can not

be obtained from a practical point of view since it depends on the unknown regression operator, by
means of the analysis of the CV criterion that can be derived from the data. In addition, by selecting
a grid of possible υ values, and plotting CV(υ, {hs,CV(υ)}s∈S), it will be obtained an almost constant
curve when there is no threshold in the data, and a convex curve with minimum in υ0 when a theshold
exists for υ = υ0. As a result, depicting the CV criterion as a function of υ yields graphical tool for
analysing the existence of threshold in the data, and estimate its value when it exists. For more details,
see the simulation study in the next section, where some examples of CV graphics are presented and
interpreted in this way.

6.3 Simulation study

The practical behaviour of the proposed methodology is analysed in this section by means of a sim-
ulation study. The case H = L2[0, π] with ‖ · ‖ denoting the standard L2–norm given by ‖x‖ =
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(
∫ π

0
x2(t)dt)1/2 for all x ∈ L2[0, π] was considered. For each of the three cases analysed in the simula-

tion study, ns = 200 samples of size n = 200 drawn from

{
Yi = m1(Xi) + ǫi for i = 1, . . . , n/2,
Yi = m2(Xi) + ǫi for i = n/2 + 1, . . . , n,

(6.9)

were generated, where ǫi ∼ N (0, σǫ) with σǫ = 0.01 for all i = 1, . . . , n. The covariates Xi were
simulated as

Xi(t) = ai
√

2/π cos(2t), ∀t ∈ [0, π] (6.10)

being ai ∼ U(u1, u2) with u1, u2 ∈ R. The impossibility of dealing with the continuous curves in
practice led to discretize the curves {Xi}ni=1 in an equidistant grid formed by p = 100 values in [0, π].
In order to calculate the norm of a curve, the approximation of the involved integral was done using
quadrature weights of p−1π (see Section 3.5, “How to work with discrete data?”, in Chapter 3, page 63).

The standard nonparametric estimator m̂h given by (6.2) (see page 143), and the estimator m̂υ

based on the proposed procedure defined in (6.1) (see page 143) were calculated. In both cases, the
quadratic kernel was used and the parameters were selected minimizing the corresponding CV criteria.
For m̂υ, the same setting as the one proposed for examples in Section 6.2.1 was fixed: Υ ⊂ R, NE = 2
and the indexed family of pairs {(Eυ

1 , Eυ
2 )}υ∈Υ defined as Eυ

1 = (−∞, υ] and Eυ
2 = (υ,+∞) for each

υ ∈ Υ. In this situation, the next threshold functions were considered

Ψ1(Xi, Yi) = Yi and Ψ2(Xi, Yi) = ‖Xi‖ = |ai|,

where the first one only depends on the response value and the second one only depends on the norm
of the covariate. In order to distinguish which threshold function is being considered in each moment,
a new superscript is used in such a way that the estimator based on Ψ1 was denoted by m̂υ,1, whereas
the estimator based on Ψ2 by m̂υ,2.

When the selected threshold function is Ψ2, another estimator for the regression operator was also
built as follows. Fixing the threshold value υ̂ estimated during the calculation of m̂υ,2, it is defined
Îs = {i ∈ {1, . . . , n}|Ψ2(Xi, Yi) ∈ E υ̂

s } for all s ∈ S. Hence, for a new observation (Xn+1, Yn+1), one
can obtain ŝ ∈ S such that Ψ2(Xn+1, Yn+1) ∈ E υ̂

ŝ , and one can predict the response value Yn+1 by

Ŷn+1 = m̂υ̂,2
ŝ (Xn+1) where m̂

υ̂,2
ŝ is defined as

m̂υ̂,2
ŝ (Xn+1) =

∑
i∈Îŝ

YiK(h̃−1
ŝ ‖Xi −Xn+1‖)∑

i∈Îŝ
K(h̃−1

ŝ ‖Xi −Xn+1‖)
. (6.11)

That is, the original sample is split into two subsamples according to υ̂, and the standard nonparametric
estimator is computed independently for each one. Then, being (Xn+1, Yn+1) a new observation, it is
assigned to the subsample ŝ (with ŝ the unique subsample such that Ψ2(Xn+1, Yn+1) ∈ E υ̂

ŝ ), and the
estimator which corresponds to this subsample is used.

For each iteration in the simulation study, a learning sample {(Xi, Yi)}ni=1 and a testing sample
{(Xi, Yi)}2ni=n+1 were generated to assess the performance of all these estimators. The different estima-

tors m̃ ∈ {m̂h, m̂
υ,1, m̂υ,2, m̂υ̂,2

ŝ } were obtained with the learning sample, and then the testing sample
was used to calculate the mean square prediction error

MSPE =
1

n

2n∑

i=n+1

(Yi − m̃(Xi))
2. (6.12)

MSPE was obtained for each replicate, but only summary measures will be shown. Specifically, mean,
median and standard deviation of the prediction error are reported.

Remark 6.3.1. The R routine funopare.kernel.cv developed by Ferraty and Vieu (2006b) (and available
in http://www.math.univ-toulouse.fr/staph/npfda) was used to calculate the standard kernel
estimator m̂h. Furthermore, funopare.kernel.cv was adapted to calculate the estimators introduced in
this chapter. On the other hand, as previously commented, the estimators were computed using a global
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bandwidth for both standard estimator and the proposed estimators. However, a simulation study was
also run using a k–nearest neighbours method (local bandwidths) for all estimators, obtaining similar
results.

Next, the main results of the three cases considered in the simulation study are presented. Each
case begins with a brief description of the dataset, and then the CV graphics and the MSPE summary
are shown and analysed.

6.3.1 Case A. Threshold on Y (same curves in both subsamples)

Model. For this case, it is assumed that the functional covariates X belong to the family (6.10) being
ai ∼ U(0, 1) for all i = 1, . . . , n, and the model (6.9) holds with the following regression submodels

{
m1(Xi) = ‖Xi‖ = ai for i = 1, . . . , n/2,
m2(Xi) = ‖Xi‖+ b = ai + b for i = n/2 + 1, . . . , n,

where b ∈ {0, 1, 2}. Hence, one has that Ψ1(Xi, Yi) ≈ m1(Xi) ∈ [0, 1] for 1 ≤ i ≤ n/2, and Ψ1(Xi, Yi) ≈
m2(Xi) ∈ [b, b+ 1] for n/2 < i ≤ n. Consequently, when b = 0, there is no threshold in the response;
when b = 1, one could take υ ≈ 1; and when b = 2, there is a gap in the responses and any υ ∈ [1, 2]
could be detected as possible threshold. On the other hand, when Ψ2 is considered, one should not
find any threshold since the same curves are simulated for the two subsamples.

CV criteria. CV(υ, {hs,CV(υ)}s∈S) was computed for υ in a fixed grid of Υ = [0, b+ 1] for Ψ1 and
Υ = [0, 1] for Ψ2. The obtained CV criteria for the three subcases according to b (columns) and the
two threshold functions Ψ1 and Ψ2 (rows) are plotted in Figure 6.1 (see page 151). The black solid
line is the pointwise mean of all CV criteria, and its minimum is indicated by means of a black point.
As it was expected, the first column shows clearly that there is no threshold neither in the response
nor in the curves. For Ψ1, both the threshold value 1 (when b = 1) and the threshold interval [1, 2]
(when b = 2) are detected by the graphical tool. One has also observed that for Ψ2 the CV curves
only are almost constant in the first subcase (when b = 0), although in the others there is no threshold
either. This fact could be due to the strong link between the regression operators (m1 and m2) and
the threshold function (Ψ2).

Mean square prediction error (MSPE) summary. Table 6.1 (see page 151) presents the mean,
the median and the standard deviation of the mean square prediction error for the three subcases.
The row named “%” correspond to the percentage of cases such that MSPE(m̂h) > MSPE(m̃) (and

MSPE(m̂h) = MSPE(m̃), in brackets) for each m̃ ∈ {m̂υ,1, m̂υ,2, m̂υ̂,2
ŝ }. Results in Table 6.1 indicate

that there is no significant improvement in terms of MSPE when the threshold estimators are used.
Furthermore, the results are better for Ψ1 than for Ψ2, as it was expected since the simulated threshold
is related to the values of the response variable Y . Looking at the column which corresponds to m̂υ,1,
one also notices that, when the gap in Y increases (i.e., b increases), the percentage of cases for which
the error of m̂υ,1 is smaller than the error of m̂h also increases.

6.3.2 Case B. Threshold on Y and X (equally concentrated curves)

Model. In this case, the curves were constructed as (6.10) with ai ∼ U(0, 1) for 1 ≤ i ≤ n/2, and
ai ∼ U(b, b+ 1) for n/2 < i ≤ n, where b ∈ {0, 1/2, 1}. The simulated submodels in (6.9) were

{
m1(Xi) = maxt∈[0,π] |Xi(t)| =

√
2/πai for i = 1, . . . , n/2,

m2(Xi) = ‖Xi‖ = ai for i = n/2 + 1, . . . , n.

Therefore, one gets that Ψ1(Xi, Yi) ≈ m1(Xi) ∈ [0,
√

2/π] and Ψ2(Xi, Yi) ∈ [0, 1] for 1 ≤ i ≤ n/2,
whereas Ψ1(Xi, Yi) ≈ m2(Xi) ∈ [b, b + 1] and Ψ2(Xi, Yi) ∈ [b, b + 1] for n/2 < i ≤ n. Hence, there is
no threshold on X or Y when b = 0, while threshold can be detected using any of the two proposed
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Figure 6.1: Case A. CV criteria for each replication (grey curves) and pointwise mean of all the CV
criteria (black solid curve) with its minimum (black point). First row corresponds to Ψ1(Xi, Yi) = Yi
and second one corresponds to Ψ2(Xi, Yi) = ‖Xi‖. Each column corresponds to the different values of
b (b ∈ {0, 1, 2}). Vertical dashed lines indicate the true threshold value/interval (when it exists).

b MSPE m̂h m̂υ,1 m̂υ,2 m̂υ̂,2
ŝ

0 mean 0.00013 0.00013 0.00013 0.00013
median 0.00013 0.00013 0.00013 0.00013
sd 0.00002 0.00002 0.00002 0.00002

% — 28%(20%) 26%(32%) 26%(20%)

1 mean 0.25550 0.25796 0.26087 0.26072
median 0.25474 0.25653 0.25879 0.25860
sd 0.00668 0.00892 0.01146 0.00980

% — 36%( 0%) 22%( 0%) 9%(11%)

2 mean 1.02278 1.02976 1.05131 1.04693
median 1.01606 1.02133 1.03812 1.03548
sd 0.03433 0.04287 0.05110 0.05131

% — 41%( 0%) 15%( 0%) 6%(18%)

Table 6.1: Case A. Mean, median and standard deviation of MSPE. % is the percentage of cases such
that MSPE(m̂h) > MSPE(m̃) (MSPE(m̂h) = MSPE(m̃), in brackets) for m̃ ∈ {m̂υ,1, m̂υ,2, m̂υ̂,2

ŝ }.

threshold functions when b = 1 (any υ ∈ [
√
2/π, 1] for Ψ1 and υ ≈ 1 for Ψ2). It must be emphasized

that the case b = 1/2 represents an intermediate situation, since the images of Ψ1 and Ψ2 for each
subsample are overlapped.

CV criteria. The cross–validation criteria CV(υ, {hs,CV(υ)}s∈S), for υ in a fixed grid of Υ = [0, b+1],
are plotted in Figure 6.2 (see page 152), where rows corresponds to the two threshold functions and
columns to each value for b. Again, the black solid line is the pointwise mean of all CV criteria, and a
black point indicates its minimum. The first column (b = 0) shows that there is no threshold neither
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for Ψ1 nor for Ψ2. In the second column (b = 1/2), although there is no clear threshold, both Ψ1

and Ψ2 have overlapped images for the two subsamples. This is the reason why the CV curves seem
to detect something in [1/2,

√
2/π] for Ψ1 and in [1/2, 1] for Ψ2. Finally, both Ψ1 and Ψ2 estimate

correctly their respective threshold values for b = 1 (third column).
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Figure 6.2: Case B. CV criteria for each replication (grey curves) and pointwise mean of all the CV
criteria (black solid curve) with its minimum (black point). First row corresponds to Ψ1(Xi, Yi) = Yi
and second one corresponds to Ψ2(Xi, Yi) = ‖Xi‖. Each column corresponds to the different values of
b (b ∈ {0, 1/2, 1}). Vertical dashed lines indicate the true threshold value/interval (when it exists).

Mean square prediction error (MSPE) summary. The mean, the median and the standard
deviation of MSPE for the three subcases is shown in Table 6.2 (see page 153). Furthermore, the
row “%” compiles the percentages of cases such that MSPE(m̂h) > MSPE(m̃) (and MSPE(m̂h) =
MSPE(m̃), in brackets) for each computed estimator. From Table 6.2 it can be deduced that there is
no improvement in terms of the mean square prediction error when there is no threshold (b = 0) and

m̂υ,1, m̂υ,2 and m̂υ̂,2
ŝ are considered. Nevertheless, when the threshold exists (b = 1), m̂υ̂,2

ŝ produces
smaller MSPE values than the standard estimator m̂h, so one can reduce the prediction error if the
sample is split into two subsamples and one works with each one separately.

6.3.3 Case C. Threshold on Y and X (differently concentrated curves)

Model. Let X be as (6.10) being ai ∼ U(0, 1) for 1 ≤ i ≤ n/2 and ai ∼ U(1, b+ 1) for n/2 < i ≤ n,
with b ∈ {1, 1/2, 1/4}. Moreover, the same submodels as in Case B are considered in this case, that is,

{
m1(Xi) = maxt∈[0,π] |Xi(t)| =

√
2/πai for i = 1, . . . , n/2,

m2(Xi) = ‖Xi‖ = ai for i = n/2 + 1, . . . , n.

Consequently, Ψ1(Xi, Yi) ≈ m1(Xi) ∈ [0,
√

2/π] for 1 ≤ i ≤ n/2, and Ψ1(Xi, Yi) ≈ m2(Xi) ∈ [1, b+ 1]

for n/2 < i ≤ n, so any value in the interval [
√
2/π, 1] can be taken as threshold in this case. On
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b MSPE m̂h m̂υ,1 m̂υ,2 m̂υ̂,2
ŝ

0 mean 0.00372 0.00382 0.00378 0.00378
median 0.00368 0.00378 0.00375 0.00375
sd 0.00030 0.00037 0.00032 0.00033

% — 26%( 0%) 28%( 0%) 28%( 4%)

1/2 mean 0.00339 0.00347 0.00346 0.00338
median 0.00340 0.00346 0.00345 0.00336
sd 0.00033 0.00037 0.00041 0.00036

% — 33%( 0%) 38%( 0%) 56%( 0%)

1 mean 0.00035 0.00034 0.00034 0.00019
median 0.00033 0.00032 0.00033 0.00016
sd 0.00013 0.00014 0.00014 0.00011

% — 64%( 4%) 58%( 8%) 91%( 6%)

Table 6.2: Case B. Mean, median and standard deviation of MSPE. % is the percentage of cases such
that MSPE(m̂h) > MSPE(m̃) (MSPE(m̂h) = MSPE(m̃), in brackets) for m̃ ∈ {m̂υ,1, m̂υ,2, m̂υ̂,2

ŝ }.

the other hand, Ψ2(Xi, Yi) ∈ [0, 1] for all 1 ≤ i ≤ n/2, and Ψ2(Xi, Yi) ∈ [1, b + 1] otherwise. Hence,
υ ≈ 1 is the threshold value when Ψ2 is used. Note that, in this case, b is not directly linked with the
existence of threshold but with the concentration of curves which belong to the second subsample.

CV criteria. The curves CV(υ, {hs,CV(υ)}s∈S) were obtained for υ in a fixed grid of Υ = [0, b+ 1],
and they are depicted in Figure 6.3. As it was expected, it seems that threshold can be detected using
both Ψ1 and Ψ2 in all the subcases.
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Figure 6.3: Case C. CV criteria for each replication (grey curves) and pointwise mean of all the CV
criteria (black solid curve) with its minimum (black point). First row corresponds to Ψ1(Xi, Yi) = Yi
and second one corresponds to Ψ2(Xi, Yi) = ‖Xi‖. Each column corresponds to the different values of
b (b ∈ {1, 1/2, 1/4}). Vertical dashed lines indicate the true threshold value/interval (when it exists).
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Mean square prediction error (MSPE) summary. Furthermore, as it was done in the pre-
vious scenarios, Table 6.3 compiles the main results related to the MSPE, and the percentage of
cases such that MSPE(m̂h) > MSPE(m̃) (and MSPE(m̂h) = MSPE(m̃), in brackets) for each m̃ ∈
{m̂υ,1, m̂υ,2, m̂υ̂,2

ŝ }. Table 6.3 shows that m̂υ,1 and m̂υ,2 give similar MSPE values to the standard esti-

mator m̂h, whereas m̂
υ̂,2
ŝ can noticeably reduce the prediction error since the two different subsamples

are detected and analysed separately.

b MSPE m̂h m̂υ,1 m̂υ,2 m̂υ̂,2
ŝ

0 mean 0.00033 0.00033 0.00033 0.00019
median 0.00032 0.00030 0.00031 0.00016
sd 0.00012 0.00012 0.00014 0.00010

% — 63%( 4%) 54%(11%) 92%( 5%)

1/2 mean 0.00033 0.00035 0.00035 0.00019
median 0.00030 0.00028 0.00028 0.00014
sd 0.00018 0.00030 0.00027 0.00017

% — 66%( 4%) 60%( 4%) 92%( 2%)

1 mean 0.00036 0.00037 0.00041 0.00016
median 0.00030 0.00030 0.00030 0.00014
sd 0.00020 0.00024 0.00042 0.00009

% — 55%( 2%) 50%( 2%) 92%( 0%)

Table 6.3: Case C. Mean, median and standard deviation of MSPE. % is the percentage of cases such
that MSPE(m̂h) > MSPE(m̃) (MSPE(m̂h) = MSPE(m̃), in brackets) for m̃ ∈ {m̂υ,1, m̂υ,2, m̂υ̂,2

ŝ }.

6.4 Real data application

In this section, the results from the application of the proposed methodology to three different datasets
will be presented: Canadian weather data, spectrometric data, and atmospheric pollution data. It is
well–known that sometimes the derivatives are more informative than the original curves themselves.
This is the reason why the original functional curves of the dataset (X), their first derivatives (X ′), or
their second derivatives (X ′′) were taken as functional covariates in the functional regression model.

The standard nonparametric estimator m̂h (see (6.2), page 143) and the proposed estimator m̂υ

(see (6.1), page 143) were calculated, taking the quadratic kernel and choosing the involved parameters
by means of the CV method. For m̂υ, Υ ⊂ R, NE = 2, {(Eυ

1 , Eυ
2 )}υ∈Υ defined as Eυ

1 = (−∞, υ] and
Eυ
2 = (υ,+∞) for each υ ∈ Υ were considered, and the following threshold functions1

Ψ1(Xi, Yi) = Yi, Ψ2(Xi, Yi) = ‖Xi‖, and Ψ3k(Xi, Yi) = |〈Xi, v̂k〉| for k ∈ {1, 2},

where v̂k is the empirical estimator of the kth functional principal component of X, i.e., v̂k is the
kth eigenfunction of Γn = n−1

∑n
i=1 (Xi −X)⊗ (Xi −X) with X = n−1

∑n
i=1Xi. Mantaining the

notation introduced in the simulation study, a new superscript indicates which threshold function is
taken in each case: m̂υ,1 is based on Ψ1, m̂

υ,2 is based on Ψ2, and m̂
υ,3k is based on Ψ3k for k ∈ {1, 2}.

In addition, m̂υ̂,2
ŝ and m̂υ̂,3k

ŝ for k ∈ {1, 2} were also computed since the threshold functions chosen in
these three cases only depend on the functional covariate X (see (6.11), page 149).

Furthermore, the dataset was randomly split into a learning sample used to build the estima-
tors, and a testing sample which allows computing the MSPE (see (6.12), page 149). This partition
procedure was iterated 200 times in order to avoid the effect of the subsampling construction.

1In the simulation study the threshold function Ψ31(Xi, Yi) = |〈Xi, v̂k〉| was also computed. Nevertheless, it can be
shown that Ψ31(Xi, Yi) ≈ |ai| in that scenario (recall that Ψ2(Xi, Yi) = |ai| too), since the curves were simulated from
(6.10). Hence, the results using Ψ31 were similar to those which were obtained using Ψ2, and this is the reason why only
Ψ1 and Ψ2 were mentioned in the simulation study.
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6.4.1 Canadian weather data

The first example is the Canadian weather data (see Section 1.1.2 in Chapter 1, page 2). This dataset
contains daily temperature and precipitation at n = 35 different locations in Canada averaged over
1960 to 1994. For the weather station i, Xi(t) is the daily averaged temperature in the day t, with
t ∈ {1, . . . , 365}, and Yi is the logarithm of total annual precipitation in the station. The dataset was
split at random into a learning sample of 25 stations and a testing sample of 10 stations.

CV criteria. Figure 6.4 (see page 156) shows the curves CV(υ, {hs,CV(υ)}s∈S) for each of the four
threshold functions (rows), and each of the three possible covariates (columns): X, X ′ and X ′′. It
seems that a threshold is clearly detected when, for instance, Ψ1 is considered, and the covariate is
the first derivative of the original temperature curves (X ′). Since certain underlying structure was
found, the median of the estimated thresholds (median({υ̂l}ns=200

l=1 ) ≈ 2.89) when the first derivatives
are involved in the regression model as covariate, and the threshold function is Ψ1, was considered
and the sample was split using this value into two subsamples (see Figure 6.5, page 157). It seems
that the first subsample consists of the weather stations with higher differences between summer and
winter temperatures, whereas the second one corresponds to weather stations with lower temperature
variation over the year. On the other hand, the Canadian weather stations are classified into four
climatic zones: atlantic, pacific, continental, and arctic. In Figure 6.6 (see page 157), the 35 stations
were drawn by means of their coordinates (latitude–longitude), with different symbols to identify these
four climatic zones and different tones (light and dark) to distinguish the two detected subsamples.
As a conclusion, it can be said that the threshold procedure seems to highlight the differences between
pacific–atlantic weather stations and arctic–continental ones.

Mean square prediction error (MSPE) summary. With regard to the MSPE, its mean, median
and standard deviation for the different cases are compiled in Table 6.4. In general, it is observed that
the threshold estimators do not reduce the prediction errors obtained by the standard nonparametric
estimator m̂h. Moreover, the prediction error significantly decreases when the first derivatives are used
in all cases.

MSPE m̂h m̂υ,1 m̂υ,2 m̂υ̂,2
ŝ

m̂υ,31 m̂υ̂,31
ŝ

m̂υ,32 m̂υ̂,32
ŝ

X mean 0.051 0.052 0.052 0.053 0.060 0.048 0.055 0.054
median 0.049 0.046 0.046 0.049 0.055 0.045 0.047 0.050
sd 0.019 0.027 0.023 0.020 0.025 0.021 0.026 0.025

% — 55%(0%) 56%(0%) 47%(0%) 26%(0%) 66%(0%) 46%(0%) 44%(0%)

X′ mean 0.029 0.032 0.035 0.031 0.041 0.031 0.042 0.038
median 0.026 0.029 0.033 0.028 0.035 0.028 0.032 0.026
sd 0.016 0.021 0.020 0.015 0.037 0.016 0.040 0.032

% — 51%(0%) 36%(0%) 42%(0%) 25%(0%) 42%(0%) 39%(0%) 46%(0%)

X′′ mean 0.041 0.044 0.045 0.045 0.050 0.049 0.050 0.056
median 0.041 0.042 0.040 0.037 0.048 0.043 0.044 0.048
sd 0.022 0.024 0.028 0.033 0.029 0.035 0.030 0.035

% — 50%(0%) 46%(0%) 52%(0%) 28%(2%) 39%(1%) 28%(1%) 22%(0%)

Table 6.4: Canadian weather data. Mean, median and standard deviation of MSPE. % is the per-
centage of cases such that MSPE(m̂h) > MSPE(m̃) (MSPE(m̂h) = MSPE(m̃), in brackets) for

m̃ ∈ {m̂υ,1, m̂υ,2, m̂υ̂,2
ŝ , m̂υ,31, m̂υ̂,31

ŝ , m̂υ,32, m̂υ̂,32
ŝ }.

6.4.2 Spectrometric data

The spectrometric data is a part of a pork dataset which has been analysed from a functional point
of view in the recent literature (see Section 1.1.2 in Chapter 1, page 2). The data concerns a sample
of n = 215 pieces of finely chopped meat. For each piece, one observes a spectrometric curve which
corresponds to the absorbance at 100 wavelengths, and its fat content. Hence, Xi(t) is the absorbance
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Figure 6.4: Canadian weather data. CV criteria for each replication (grey curves) and pointwise mean
of all the CV criteria (black solid curve) with its minimum (black point). Rows correspond to the
four threshold functions: Ψ1(Xi, Yi) = Yi, Ψ2(Xi, Yi) = ‖Xi‖, Ψ3k(Xi, Yi) = |〈Xi, v̂k〉| for k ∈ {1, 2}.
Columns correspond to the three covariates: X (first column), X ′ (second column) and X ′′ (third
column). Vertical dashed line corresponds to the median of the estimated threshold values.
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Figure 6.5: Canadian weather data. Subsamples of original temperature curves defined using
Ψ1(Xi, Yi) = Yi as threshold function: the first subsample corresponds to curves X ′

i such that Yi ≤ 2.89
(left panel), whereas the second one corresponds to those curves such that Yi > 2.89 (right panel).
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Figure 6.6: Canadian weather data. Subsamples of original temperature curves defined using
Ψ1(Xi, Yi) = Yi as threshold function, plotted using the geografical coordinates of the weather stations
where the measurements were recorded.

of the ith piece of meat at the wavelength t, where t ∈ {850, . . . , 1050}, and Yi is the corresponding
fat content. In this case, learning samples of 160 pieces of meat and testing samples of 55 pieces of
meat were considered.

CV criteria. The cross–validation curves CV(υ, {hs,CV(υ)}s∈S) which were obtained are plotted in
Figure 6.7 (see page 158). In this figure, rows correspond to each threshold function, and columns
indicate if one has used the original curves (first column), their first derivatives (second column) or their
second derivatives (third column). It can be seen that the existence of a threshold is detected when
the covariates are the second derivatives of the spectrometric curves for all the considered threshold
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Figure 6.7: Spectrometric data. CV criteria for each replication (grey curves) and pointwise mean
of all the CV criteria (black solid curve) with its minimum (black point). Rows correspond to the
four threshold functions: Ψ1(Xi, Yi) = Yi, Ψ2(Xi, Yi) = ‖Xi‖, Ψ3k(Xi, Yi) = |〈Xi, v̂k〉| for k ∈ {1, 2}.
Columns correspond to the three covariates: X (first column), X ′ (second column) and X ′′ (third
column). Vertical dashed line corresponds to the median of the estimated threshold values.



6.4. REAL DATA APPLICATION 159

functions, except for Ψ32. Furthermore, when the original curves are taken as covariates, it seems that
a threshold is also detected for Ψ2 and Ψ31. Taking into account the median of the threshold values
computed over replications when, for instance, X ′′ and Ψ31 are considered (median({υ̂l}ns=200

l=1 ) ≈
4.67), one can divide the data into two groups: second derivatives belonging to the first group are
drawn in the left panel of Figure 6.8, whereas second derivatives belonging to the second one are
drawn in the right panel. It seems that the most noticeable difference between the two groups is the
presence/absence of a big valley in the wavelengths around 920–940 nm.
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Figure 6.8: Spectrometric data. Subsamples of second derivatives of spectrometric curves defined
using Ψ31(X

′′
i , Yi) = |〈X ′′

i , v̂1〉| as threshold function: the first subsample corresponds to curves X ′′
i

such that |〈X ′′
i , v̂1〉| ≤ 4.67 (left panel), whereas the second one corresponds to those curves such that

|〈X ′′
i , v̂1〉| > 4.67 (right panel).

Mean square prediction error (MSPE) summary. Table 6.5 (see page 160) compiles the mean,
the median and the standard deviation of MSPE for the different threshold functions, estimators and
covariates. Note that the smallest MSPE values are obtained when the second derivatives of the
spectrometric curves are introduced in the regression model. This fact is not surprising because it
is known in the chemometric community that the derivatives of spectra are more informative than
the original spectra. On the other hand, note that the proposed theshold estimators produce smaller
prediction errors than m̂h in many of the analysed cases.

6.4.3 Atmospheric pollution data

Finally, an environmental example have been selected: an air pollution data (see Section 1.1.2 in
Chapter 1, page 2). The data is a time series corresponding to the concentration of hourly averaged
NOx in the neighbourhood of a power station property of ENDESA, located in As Pontes in the
Northwest of Spain. The NOx level was measured each minute from 2007 to 2009. The time series
has been divided in various paths corresponding to 4 hour periods (i.e., curves are discretized at 240
points). Among these paths, n = 1, 000 of them were selected, in such a way that Xi(t) is the hourly
averaged NOx measurement for the minute t during the period i, with t ∈ {1, . . . , 240}, and the scalar
response Yi is the value of the hourly averaged NOx level 30 minutes ahead. From this dataset, learning
samples and testing samples of 750 and 250 observations, respectively, were obtained.

CV criteria. Figure 6.9 (see page 161) presents the CV curves defined as CV(υ, {hs,CV(υ)}s∈S)
for the four threshold functions (rows) and the three possible inputs (columns). Examining the CV
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MSPE m̂h m̂υ,1 m̂υ,2 m̂υ̂,2
ŝ

m̂υ,31 m̂υ̂,31
ŝ

m̂υ,32 m̂υ̂,32
ŝ

X mean 123.30 124.78 122.77 85.08 122.72 85.19 123.42 128.21
median 120.51 121.93 120.64 73.99 120.63 73.60 121.35 127.68
sd 20.46 21.58 19.23 29.92 19.22 30.32 20.03 19.70

% — 43%(0%) 50%(0%) 95%(0%) 50%( 0%) 95%(0%) 40%( 2%) 36%(1%)

X′ mean 20.63 17.70 20.70 17.93 20.65 21.41 20.63 19.93
median 12.61 11.26 12.71 10.99 12.61 13.17 12.76 12.94
sd 18.23 15.47 18.17 16.72 18.21 17.63 18.17 16.34

% — 86%(0%) 62%(4%) 56%(3%) 26%(37%) 48%(9%) 33%(32%) 38%(8%)

X′′ mean 6.87 5.17 6.18 6.06 5.18 4.26 6.94 6.12
median 6.05 4.61 5.57 5.58 4.64 4.05 6.09 5.75
sd 2.50 2.01 2.17 2.16 1.99 1.32 2.51 2.18

% — 100%(0%) 90%(0%) 82%(0%) 100%( 0%) 97%(0%) 28%(20%) 49%(4%)

Table 6.5: Spectrometric data. Mean, median and standard deviation of MSPE. % is the per-
centage of cases such that MSPE(m̂h) > MSPE(m̃) (MSPE(m̂h) = MSPE(m̃), in brackets) for

m̃ ∈ {m̂υ,1, m̂υ,2, m̂υ̂,2
ŝ , m̂υ,31, m̂υ̂,31

ŝ , m̂υ,32, m̂υ̂,32
ŝ }.

criteria, it seems that all the curves are almost constant when X ′ and X ′′ are considered, whereas
a convex shape appears when the original curves are selected, specially for Ψ1, Ψ2 and Ψ31. Using
the median of the estimated threhold values when Ψ2 and the original NOx curves are considered
(median({υ̂l}ns=200

l=1 ) ≈ 5.36), the functional dataset can be split into two groups (100 curves of each
group are plotted in Figure 6.10, page 162). Hence, it seems that the threshold procedure separates
curves corresponding to the lowest NOx levels from the rest of curves in which air pollution episodes
are included.

Mean square prediction error (MSPE) summary. The mean, the median and the standard
deviation of MSPE are shown in Table 6.6 for the different analysed cases. Note that the covariates
with the highest predictive impact are the original NOx curves, giving the threshold estimators smaller
errors than m̂h in most of cases.

MSPE m̂h m̂υ,1 m̂υ,2 m̂υ̂,2
ŝ

m̂υ,31 m̂υ̂,31
ŝ

m̂υ,32 m̂υ̂,32
ŝ

X mean 26.88 25.52 25.52 22.79 25.59 23.42 26.38 25.41
median 25.87 24.42 24.46 21.73 24.61 22.66 25.20 24.50
sd 6.36 6.25 6.23 5.74 6.23 5.78 6.33 6.00

% — 100%(0%) 98%(0%) 100%(0%) 98%(0%) 98%(0%) 100%(0%) 94%(0%)

X′ mean 80.25 80.30 80.27 64.97 80.26 66.29 80.27 65.36
median 80.07 80.08 79.95 64.65 80.13 66.17 79.96 65.08
sd 7.25 7.25 7.26 7.39 7.27 6.36 7.26 5.99

% — 57%(0%) 66%(0%) 100%(0%) 68%(0%) 100%(0%) 62%(0%) 100%(0%)

X′′ mean 80.34 80.34 80.34 73.74 80.34 75.57 80.35 73.80
median 79.60 79.63 79.61 73.92 79.61 75.38 79.61 73.95
sd 7.09 7.09 7.09 8.03 7.09 8.06 7.09 8.04

% — 48%(0%) 52%(2%) 93%(0%) 50%(1%) 94%(0%) 44%(0%) 94%(0%)

Table 6.6: Atmospheric pollution data. Mean, median and standard deviation of MSPE. % is the
percentage of cases such that MSPE(m̂h) > MSPE(m̃) (MSPE(m̂h) = MSPE(m̃), in brackets) for

m̃ ∈ {m̂υ,1, m̂υ,2, m̂υ̂,2
ŝ , m̂υ,31, m̂υ̂,31

ŝ , m̂υ,32, m̂υ̂,32
ŝ }.

6.5 Final conclusions

In this chapter, a graphical tool that detects threshold structures in the context of the nonparametric
functional model with scalar response has been presented. This methodology allows to detect hidden
patterns related to both the functional covariate X and the scalar response Y . For that purpose, an
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Figure 6.9: Atmospheric pollution data. CV criteria for each replication (grey curves) and pointwise
mean of all the CV criteria (black solid curve) with its minimum (black point). Rows correspond to the
four threshold functions: Ψ1(Xi, Yi) = Yi, Ψ2(Xi, Yi) = ‖Xi‖, Ψ3k(Xi, Yi) = |〈Xi, v̂k〉| for k ∈ {1, 2}.
Columns correspond to the three covariates: X (first column), X ′ (second column) and X ′′ (third
column). Vertical dashed line corresponds to the median of the estimated threshold values.
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Figure 6.10: Atmospheric pollution data. Subsamples of original NOx curves defined using
Ψ2(Xi, Yi) = ‖Xi‖ as threshold function: the first subsample corresponds to curves Xi such that
‖Xi‖ ≤ 5.36 (100 of them are plotted in left panel), whereas the second one corresponds to those
curves such that ‖Xi‖ > 5.36 (100 of them are plotted in right panel).

adequate threshold function must be chosen by the user according to the structure one wants to detect.
Nevertheless, how to select this threshold function in a data–driven and efficient way is still an open
question that will require further research.

When threshold exists, it have been proposed to estimate its value by means of a cross–validation
method. Its optimality with respect to MISE criterium was derived in a particular scenario, so further
research is necessary in order to extend this type of theoretical results to other situations, for instance,
threshold functions which depends on the response Y . On the other hand, the graphical representation
of the cross–validation criterion is the basis of a useful graphical tool.

In terms of the mean square prediction error, both the proposed estimators and the standard
nonparametric estimator obtain similar results. However it can be observed in the simulation study
that, in some cases, the mean square prediction error can be reduced if each subsample detected by
the threshold technique is studied separately. Furthermore, in view of the data applications, one can
conclude that the proposed methodology allows to detect some kind of hidden structures which are
present in the data, although the effectiveness of the procedure depends on the choice of the threshold
function Ψ. In the Canadian weather example, a geographical pattern appeared when one looked for
threshold in the response. For the spectrometric data, good predictive results were generated when the
sample was split according to the behaviour of the second derivatives in certain influential wavelength
interval. Finally, a weak structure came up in the atmospheric pollution dataset (only if the original
curves were considered), which seemed to be linked with the NOx concentration level of each curve.

6.6 Appendix Chapter 6

This section is an appendix devoted to compile the proofs of the main results introduced in the
chapter. Furthermore, the technical lemmas used to develope these proofs are also included. In order
to simplify the presentation, the proofs of theorems and the main lemmas required to show them have
been compiled at first, whereas the remainder auxiliary lemmas have been gathered in Section 6.6.11.

In order to simplify the notation, in the following C will denote a generic positive constant which
may take on different values even in the same formula.
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6.6.1 Proof of Theorem 6.2.3

As commented in (6.6) (see page 145), m̂υ
s (x) = m̂hs

(x)I{Ψ̃(x)∈Eυ
s }, where m̂hs

is the standard kernel

estimator (6.2) (see page 143). The required assumptions in this theorem guarantee that Theorem 1
by Ferraty et al. (2007a) (see Theorem 2.4.13 in Chapter 2, page 46) can be applied, which stated the
following asymptotics for the standard kernel estimator

E(m̂hs
(x)) = m(x) + ψ′

x(0)
Mx,0

Mx,1
hs +O

(
1

nϕx(hs)

)
+ o(hs), (6.13)

and

Var(m̂hs
(x)) = σ2

ǫ (x)
Mx,2

M2
x,1

1

nϕx(hs)
+ o

(
1

nϕx(hs)

)
, (6.14)

for all s ∈ S, with Mx,0 = K(1) −
∫ 1

0
(tK(t))′τx,0(t)dt, Mx,1 = K(1) −

∫ 1

0
K ′(t)τx,0(t)dt and Mx,2 =

K2(1)−
∫ 1

0
(K2)′(t)τx,0(t)dt. Therefore, the expectation of m̂υ

s (x) comes from (6.13) as follows

E(m̂υ
s (x)) = E

(
m̂hs

(x)I{Ψ̃(x)∈Eυ
s }

)
= E(m̂hs

(x))I{Ψ̃(x)∈Eυ
s }

=

(
m(x) + ψ′

x(0)
Mx,0

Mx,1
hs +O

(
1

nϕx(hs)

)
+ o(hs)

)
I{Ψ̃(x)∈Eυ

s },

whereas the expression for variance is obtained using (6.14)

Var(m̂υ
s (x)) = Var(m̂hs

(x)I{Ψ̃(x)∈Eυ
s }) = Var(m̂hs

(x))
(
I{Ψ̃(x)∈Eυ

s }

)2

=

(
σ2
ǫ (x)

Mx,2

M2
x,1

1

nϕx(hs)
+ o

(
1

nϕx(hs)

))
I{Ψ̃(x)∈Eυ

s }.

Furthermore, for all s1, s2 ∈ S such that s1 6= s2, one has

Cov(m̂υ
s1(x), m̂

υ
s2(x)) = Cov

(
m̂hs1

(x)I{Ψ̃(x)∈Eυ
s1

}, m̂hs2
(x)I{Ψ̃(x)∈Eυ

s2
}

)

= Cov(m̂hs1
(x), m̂hs2

(x))I{Ψ̃(x)∈Eυ
s1

}I{Ψ̃(x)∈Eυ
s2

} = Cov(m̂hs1
(x), m̂hs2

(x))I{Ψ̃(x)∈Eυ
s1

∩Eυ
s2

} = 0,

since Eυ
s1 ∩ Eυ

s2 = ∅ for all s1 6= s2 due to (C.6.3).

6.6.2 Proof of Corollary 6.2.4

Given that m̂υ(x) =
∑

s∈S m̂
υ
s (x), one has that E(m̂υ(x)) =

∑
s∈S E(m̂υ

s (x)) and

Var(m̂υ(x)) =
∑

s∈S

Var(m̂υ
s (x)) +

∑

s1∈S

∑

s1 6=s2

Cov(m̂υ
s1(x), m̂

υ
s2(x)).

Hence, applying Theorem 6.2.3 (see page 145), for the expectation of the threshold estimator one has
that

E(m̂υ(x)) =
∑

s∈S

E(m̂υ
s (x)) =

∑

s∈S

(
m(x) + ψ′

x(0)
Mx,0

Mx,1
hs +O

(
1

nϕx(hs)

)
+ o(hs)

)
I{Ψ̃(x)∈Eυ

s }

= m(x) + ψ′
x(0)

Mx,0

Mx,1

∑

s∈S

hsI{Ψ̃(x)∈Eυ
s } +

∑

s∈S

(
O

(
1

nϕx(hs)

)
+ o(hs)

)
I{Ψ̃(x)∈Eυ

s },
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and for its variance one gets

Var(m̂υ(x)) =
∑

s∈S

Var(m̂υ
s (x)) +

∑

s1∈S

∑

s1 6=s2

Cov(m̂υ
s1(x), m̂

υ
s2(x))

=
∑

s∈S

(
σ2
ǫ (x)

Mx,2

M2
x,1

1

nϕx(hs)
+ o

(
1

nϕx(hs)

))
I{Ψ̃(x)∈Eυ

s }

= σ2
ǫ (x)

Mx,2

M2
x,1

∑

s∈S

1

nϕx(hs)
I{Ψ̃(x)∈Eυ

s } +
∑

s∈S

(
o

(
1

nϕx(hs)

))
I{Ψ̃(x)∈Eυ

s }.

Furthermore, if sx denotes the only sx ∈ S such that Ψ̃(x) ∈ Eυ
sx , then

E(m̂υ(x)) = m(x) + ψ′
x(0)

Mx,0

Mx,1
hsx +O

(
1

nϕx(hsx)

)
+ o(hsx),

and

Var(m̂υ(x)) = σ2
ǫ (x)

Mx,2

M2
x,1

1

nϕx(hsx)
+ o

(
1

nϕx(hsx)

)
.

6.6.3 Proof of Theorem 6.2.6

The theorem will be proven by showing that
∣∣∣∣
MISE(υCV, {hs,CV}s∈S)−MISE(υ∗, {h∗s}s∈S)

MISE(υCV, {hs,CV}s∈S)

∣∣∣∣→ 0 a.s.

Let σ̂2
ǫ be defined as σ̂2

ǫ = n−1
∑n

j=1 ǫ
2
j , and note that MISE(υCV, {hs,CV}s∈S) ≥ MISE(υ∗, {h∗s}s∈S)

and CV(υ∗, {h∗s}s∈S) ≥ CV(υCV, {hs,CV}s∈S). Thus, one has that

|MISE(υCV, {hs,CV}s∈S)−MISE(υ∗, {h∗s}s∈S)| ≤ | − CV(υCV, {hs,CV}s∈S)

+MISE(υCV, {hs,CV}s∈S) + σ̂2
ǫ +CV(υ∗, {h∗s}s∈S)−MISE(υ∗, {h∗s}s∈S)− σ̂2

ǫ |.

As a result, one gets
∣∣∣∣
MISE(υCV, {hs,CV}s∈S)−MISE(υ∗, {h∗s}s∈S)

MISE(υCV, {hs,CV}s∈S)

∣∣∣∣

≤
∣∣∣∣
CV(υCV, {hs,CV}s∈S)−MISE(υCV, {hs,CV}s∈S)− σ̂2

ǫ

MISE(υCV, {hs,CV}s∈S)

∣∣∣∣

+

∣∣∣∣
CV(υ∗, {h∗s}s∈S)−MISE(υ∗, {h∗s}s∈S)− σ̂2

ǫ

MISE(υ∗, {h∗s}s∈S)

∣∣∣∣
∣∣∣∣

MISE(υ∗, {h∗s}s∈S)

MISE(υCV, {hs,CV}s∈S)

∣∣∣∣

≤ 2 sup
(υ,{hs}s∈S)∈Υ×H

NE
n

∣∣∣∣
CV(υ, {hs}s∈S)−MISE(υ, {hs}s∈S)− σ̂2

ǫ

MISE(υ, {hs}s∈S)

∣∣∣∣,

where the last inequality is true since MISE(υ∗, {h∗s}s∈S) ≤ MISE(υCV, {hs,CV}s∈S). Hence, the
convergence is deduced from Lemma 6.6.1.

6.6.4 Formulation and proof of Lemma 6.6.1

The main aim of the next lemma is to allow to show the optimality of the CV procedure (see (6.7),
page 146) with respect to the MISE criterion (see (6.8), page 147). For proving this lemma, one needs
to introduce some other quadratic distances such as the average squared error

ASE(υ, {hs}s∈S) =
1

n

n∑

j=1

(m(Xj)− m̂υ(Xj))
2 (6.15)
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and the following two terms

ÃSE(υ, {hs}s∈S) =
1

n

n∑

j=1

(m(Xj)− m̂υ,(−j)(Xj))
2, and (6.16)

CT(υ, {hs}s∈S) =
1

n

n∑

j=1

ǫj(m̂
υ,(−j)(Xj)−m(Xj)). (6.17)

Lemma 6.6.1. Under hypotheses of Theorem 6.2.6,

sup
(υ,{hs}s∈S)∈Υ×H

NE
n

∣∣∣∣
CV(υ, {hs}s∈S)−MISE(υ, {hs}s∈S)− σ̂2

ǫ

MISE(υ, {hs}s∈S)

∣∣∣∣→ 0 a.s.

where σ̂2
ǫ = n−1

∑n
j=1 ǫ

2
j .

Proof. First of all, note that the CV criterion (see (6.7), page 146) can be expressed as

CV(υ, {hs}s∈S) =
1

n

n∑

j=1

(Yj − m̂υ,(−j)(Xj))
2 =

1

n

n∑

j=1

((m(Xj)− m̂υ,(−j)(Xj)) + ǫj)
2

=
1

n

n∑

j=1

(m(Xj)− m̂υ,(−j)(Xj))
2 +

2

n

n∑

j=1

(m(Xj)− m̂υ,(−j)(Xj))ǫj +
1

n

n∑

j=1

ǫ2j

= ÃSE(υ, {hs}s∈S)− 2CT(υ, {hs}s∈S) + σ̂2
ǫ

= ÃSE(υ, {hs}s∈S)−ASE(υ, {hs}s∈S) + ASE(υ, {hs}s∈S)− 2CT(υ, {hs}s∈S) + σ̂2
ǫ .

Therefore, one has

|CV(υ, {hs}s∈S)−MISE(υ, {hs}s∈S)− σ̂2
ǫ | ≤ |ÃSE(υ, {hs}s∈S)−ASE(υ, {hs}s∈S)|

+ |ASE(υ, {hs}s∈S)−MISE(υ, {hs}s∈S)|+ 2|CT(υ, {hs}s∈S)|.

Taking into account this fact, one gets

sup
(υ,{hs}s∈S)∈Υ×H

NE
n

∣∣∣∣
CV(υ, {hs}s∈S)−MISE(υ, {hs}s∈S)− σ̂2

ǫ

MISE(υ, {hs}s∈S)

∣∣∣∣

≤ sup
(υ,{hs}s∈S)∈Υ×H

NE
n

∣∣∣∣∣
ÃSE(υ, {hs}s∈S)−ASE(υ, {hs}s∈S)

MISE(υ, {hs}s∈S)

∣∣∣∣∣

+ sup
(υ,{hs}s∈S)∈Υ×H

NE
n

∣∣∣∣
ASE(υ, {hs}s∈S)−MISE(υ, {hs}s∈S)

MISE(υ, {hs}s∈S)

∣∣∣∣

+ 2 sup
(υ,{hs}s∈S)∈Υ×H

NE
n

∣∣∣∣
CT(υ, {hs}s∈S)

MISE(υ, {hs}s∈S)

∣∣∣∣.

Then, the theorem is proven due to Lemma 6.6.2, Lemma 6.6.4 (see page 168) and Lemma 6.6.5 (see
page 170).

6.6.5 Formulation and proof of Lemma 6.6.2

Recall that C will denote a generic positive constant which may take on different values even in the
same formula.
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Lemma 6.6.2. Under hypotheses of Theorem 6.2.6,

sup
(υ,{hs}s∈S)∈Υ×H

NE
n

∣∣∣∣∣
ÃSE(υ, {hs}s∈S)−ASE(υ, {hs}s∈S)

MISE(υ, {hs}s∈S)

∣∣∣∣∣→ 0 a.s.

where ÃSE(υ, {hs}s∈S) and ASE(υ, {hs}s∈S) are defined in (6.16) (see page 165) and (6.15) (see
page 164), respectively.

Proof. This proof is analogous to the proof of Lemma 3 by Ait-Säıdi et al. (2008). By Lemma 6.6.6
(see page 173), the following expression for ASE(υ, {hs}s∈S) can be obtained

ASE(υ, {hs}s∈S) =
1

n

n∑

j=1

(m(Xj)− m̂υ(Xj))
2 =

1

n

n∑

j=1

(
∑

s∈S

(mυ
s (Xj)− m̂υ

s (Xj))

)2

=
1

n

n∑

j=1

(
∑

s∈S

(m̂υ
s,D(Xj)(m

υ
s (Xj)− m̂υ

s (Xj)) + (1− m̂υ
s,D(Xj))(m

υ
s (Xj)− m̂υ

s (Xj)))

)2

=
1

n

n∑

j=1

(
∑

s∈S

(m̂υ
s,D(Xj)m

υ
s (Xj)− m̂υ

s,N (Xj))

)2

+ oa.co.(ASE(υ, {hs}s∈S))

= ASE∗(υ, {hs}s∈S) + oa.co.(ASE(υ, {hs}s∈S)),

where ASE∗(υ, {hs}s∈S) = n−1
∑n

j=1 (
∑

s∈S (m̂υ
s,D(Xj)m

υ
s (Xj)− m̂υ

s,N (Xj)))
2. Analogously, it can

be seen that

ÃSE(υ, {hs}s∈S) = ÃSE
∗
(υ, {hs}s∈S) + oa.co.(ÃSE(υ, {hs}s∈S)),

with ÃSE
∗
(υ, {hs}s∈S) = n−1

∑n
j=1 (

∑
s∈S (m̂

υ,(−j)
s,D (Xj)m

υ
s (Xj)− m̂

υ,(−j)
s,N (Xj)))

2. In order to finish

the proof of the lemma, the equivalence between ASE∗(υ, {hs}s∈S) and ÃSE
∗
(υ, {hs}s∈S) can be found

by means of a similar procedure to that given by Härdle and Marron (1985) as follows.
First of all, note that

m̂
υ,(−j)
s,N (Xj) =

1

n− 1

∑

i6=j

Y υ
i,sK̃s,i(Xj)

E(K̃s,0(Xj))
=

n

n− 1
m̂υ

s,N (Xj)−
1

n− 1

Y υ
j,sK(0)

E(K̃s,0(Xj))
,

m̂
υ,(−j)
s,D (Xj) =

1

n− 1

∑

i6=j

K̃s,i(Xj)

E(K̃s,0(Xj))
=

n

n− 1
m̂υ

s,D(Xj)−
1

n− 1

K(0)

E(K̃s,0(Xj))
.

Hence, one has that

ÃSE
∗
(υ, {hs}s∈S) =

1

n

n∑

j=1

(
∑

s∈S

(m̂
υ,(−j)
s,D (Xj)m

υ
s (Xj)− m̂

υ,(−j)
s,N (Xj))

)2

=
1

n

n∑

j=1

(
n

n− 1

∑

s∈S

(m̂υ
s,D(Xj)m

υ
s (Xj)− m̂υ

s,N (Xj)) +
K(0)

n− 1

∑

s∈S

Y υ
j,s −mυ

s (Xj)

E(K̃s,0(Xj))

)2

=
n2

(n− 1)2
ASE∗(υ, {hs}s∈S) + 2

n

(n− 1)2
K(0)

1

n

n∑

j=1

(
∑

s∈S

(m̂υ
s,D(Xj)m

υ
s (Xj)− m̂υ

s,N (Xj))

)

·
(
∑

s∈S

Y υ
j,s −mυ

s (Xj)

E(K̃s,0(Xj))

)
+

1

(n− 1)2
K2(0)

1

n

n∑

j=1

(
∑

s∈S

Y υ
j,s −mυ

s (Xj)

E(K̃s,0(Xj))

)2

,
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and, consequently,

|ÃSE∗
(υ, {hs}s∈S)−ASE∗(υ, {hs}s∈S)| ≤

2n− 1

(n− 1)2
ASE∗(υ, {hs}s∈S)

+ 2
n

(n− 1)2
K(0)

∣∣∣∣∣∣
1

n

n∑

j=1

(
∑

s∈S

(m̂υ
s,D(Xj)m

υ
s (Xj)− m̂υ

s,N (Xj))

)(
∑

s∈S

Y υ
j,s −mυ

s (Xj)

E(K̃s,0(Xj))

)∣∣∣∣∣∣

+
1

(n− 1)2
K2(0)

1

n

n∑

j=1

(
∑

s∈S

Y υ
j,s −mυ

s (Xj)

E(K̃s,0(Xj))

)2

.

(6.18)

Using the Cauchy–Schwarz inequality, it can be found that

∣∣∣∣∣∣
1

n

n∑

j=1

(
∑

s∈S

(m̂υ
s,D(Xj)m

υ
s (Xj)− m̂υ

s,N (Xj))

)(
∑

s∈S

Y υ
j,s −mυ

s (Xj)

E(K̃s,0(Xj))

)∣∣∣∣∣∣

≤ (ASE∗(υ, {hs}s∈S))
1/2


 1

n

n∑

j=1

(
∑

s∈S

Y υ
j,s −mυ

s (Xj)

E(K̃s,0(Xj))

)2



1/2

.

(6.19)

In addition, the SLLN ensures that

1

n

n∑

j=1

(
∑

s∈S

Y υ
j,s −mυ

s (Xj)

E(K̃s,0(Xj))

)2

→ E



(
∑

s∈S

Y υ
s −mυ

s (X)

E(K̃s,0(X))

)2

 a.s., (6.20)

whereas Lemma 6.6.7 (see page 174) states that

E



(
∑

s∈S

Y υ
s −mυ

s (X)

E(K̃s,0(X))

)2

 ≤ C

(
∑

s∈S

1

φ(hs)

)2

. (6.21)

Therefore, (6.18), (6.19), (6.20) and (6.21) ensure that

|ÃSE∗
(υ, {hs}s∈S)−ASE∗(υ, {hs}s∈S)| ≤

2n− 1

(n− 1)2
ASE∗(υ, {hs}s∈S)

+ 2C1/2 n

(n− 1)2
K(0)(ASE∗(υ, {hs}s∈S))

1/2

(
∑

s∈S

1

φ(hs)

)
(1 + oa.s.(1))

+ C
1

(n− 1)2
K2(0)

(
∑

s∈S

1

φ(hs)

)2

(1 + oa.s.(1)).

By the previous expression and Lemma 6.6.3, it can be found that

sup
(υ,{hs}s∈S)∈Υ×H

NE
n

∣∣∣∣∣
ÃSE

∗
(υ, {hs}s∈S)−ASE∗(υ, {hs}s∈S)

MISE(υ, {hs}s∈S)

∣∣∣∣∣→ 0 a.s.

which leads to Lemma 6.6.2.

6.6.6 Formulation and proof of Lemma 6.6.3

Recall that C will denote a generic positive constant which may take on different values even in the
same formula.
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Lemma 6.6.3. Under hypotheses of Theorem 6.2.6,

MISE(υ, {hs}s∈S) ≥ c10
∑

s∈S

1

nφ(hs)
.

Proof. This proof is analogous to the proof of Lemma 1 by Ait-Säıdi et al. (2008). For each
(υ, {hs}s∈S) ∈ Υ×HNE

n , one gets

MISE(υ, {hs}s∈S) = E((m(X)− m̂υ(X))2) = E(E((m(X)− m̂υ(X))2|X))

= E((m(X)− E(m̂υ(X)|X))2) + E(Var(m̂υ(X)|X)) ≥ E(Var(m̂υ(X)|X)).

Note that hypotheses of Theorem 6.2.6 (see page 148) ensure that Corollary 6.2.4 (see page 146) can
be applied. Thus, Corollary 6.2.4 and assumptions (C.6.3), (C.6.10), (C.6.14) and (C.6.15) lead
to

E(Var(m̂υ(X)|X)) ≥ C
∑

s∈S

1

nφ(hs)
E

(
I{Ψ̃(X)∈Eυ

s }

)
= C

∑

s∈S

1

nφ(hs)
P(Ψ̃(X) ∈ Eυ

s ) ≥ C
∑

s∈S

1

nφ(hs)
,

which completes the proof of Lemma 6.6.3.

6.6.7 Formulation and proof of Lemma 6.6.4

Lemma 6.6.4. Under hypotheses of Theorem 6.2.6,

sup
(υ,{hs}s∈S)∈Υ×H

NE
n

∣∣∣∣
ASE(υ, {hs}s∈S)−MISE(υ, {hs}s∈S)

MISE(υ, {hs}s∈S)

∣∣∣∣→ 0 a.s.

where ASE(υ, {hs}s∈S) is defined in (6.15) (see page 164).

Proof. This lemma is analogous to Lemma 2 by Ait-Säıdi et al. (2008). Recall that it was shown in
the proof of Lemma 6.6.2 (see page 166) that

ASE(υ, {hs}s∈S) = ASE∗(υ, {hs}s∈S) + oa.co.(ASE(υ, {hs}s∈S)),

with ASE∗(υ, {hs}s∈S) = n−1
∑n

j=1 (
∑

s∈S (m̂υ
s,D(Xj)m

υ
s (Xj)− m̂υ

s,N (Xj)))
2. Similar calculations

and Lemma 6.6.6 (see page 173) allow to obtain the following expression for MISE(υ, {hs}s∈S)

MISE(υ, {hs}s∈S) = E((m(X)− m̂υ(X))2) = E



(
∑

s∈S

(mυ
s (X)− m̂υ

s (X))

)2



= E



(
∑

s∈S

(m̂υ
s,D(X)(mυ

s (X)− m̂υ
s (X)) + (1− m̂υ

s,D(X))(mυ
s (X)− m̂υ

s (X)))

)2



= E



(
∑

s∈S

(m̂υ
s,D(X)mυ

s (X)− m̂υ
s,N (X))

)2

+ oa.co.(MISE(υ, {hs}s∈S))

= MISE∗(υ, {hs}s∈S) + oa.co.(MISE(υ, {hs}s∈S)),

where MISE∗(υ, {hs}s∈S) = E

((∑
s∈S (m̂υ

s,D(X)mυ
s (X)− m̂υ

s,N (X))
)2)

. Hence, the lemma can be

proven by showing the equivalence between ASE∗(υ, {hs}s∈S) and MISE∗(υ, {hs}s∈S). Specifically, it
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is enough to show that

sup
(υ,{hs}s∈S)∈Υ×H

NE
n

∣∣∣∣
ASE∗(υ, {hs}s∈S)−MISE∗(υ, {hs}s∈S)

MISE∗(υ, {hs}s∈S)

∣∣∣∣→ 0 a.s. (6.22)

For this purpose, first of all, assume that s0 ∈ S is selected, and υ ∈ Υ and hs ∈ Hn for all s ∈ S
with s 6= s0 are fixed. In addition, consider λ ∈ Λ = {1/φ(hs0) +

∑
s 6=s0

1/φ(hs) : hs0 ∈ Hn}. Then, a
delta sequence estimator ĝλ : H → R can be defined as follows

ĝλ(x) =
1

n

n∑

i=1

δλ(x,Xi, Yi),

where

δλ(x,Xi, Yi) =
(mυ

s0(x)− Y υ
i,s0

)K(f(λ)−1‖Xi − x‖)
E(K(f(λ)−1‖X0 − x‖)) +

∑

s 6=s0

(mυ
s (x)− Y υ

i,s)K̃s,i(x)

E(K̃s,0(x))
,

with f(λ) = φ−1((λ − (
∑

s 6=s0
1/φ(hs)))

−1), being φ−1 the inverse function of φ (note that (C.6.10)

ensures that φ is a bijective function, so there is a unique inverse function φ−1 which is also a bijection).
Given that f(λ) = hs0 , in fact, δλ(x,Xi, Yi) is

δλ(x,Xi, Yi) =
∑

s∈S

(mυ
s (x)− Y υ

i,s)K̃s,i(x)

E(K̃s,0(x))
. (6.23)

In this situation, ĝλ(x) =
∑

s∈S (m̂υ
s,D(x)mυ

s (x)− m̂υ
s,N (x)), and it may be considered that ĝλ estimates

the operator g : H → R defined as g(x) = 0 for all x ∈ H. Besides, computing the mean integrated
squared error and the average squared error for ĝλ (denoted by MISEĝ(λ) and ASEĝ(λ), respectively),
one has

MISEĝ(λ) = E((g(X)− ĝλ(X))2) = E((ĝλ(X))2) = MISE∗(υ, {hs}s∈S), (6.24)

and

ASEĝ(λ) =
1

n

n∑

j=1

(g(Xj)− ĝλ(Xj))
2 =

1

n

n∑

j=1

(ĝλ(Xj))
2 = ASE∗(υ, {hs}s∈S). (6.25)

On the other hand, (C.6.11), (C.6.18) and Lemma 6.6.9 (see page 177) indicate that the assumptions
of the theoretical results for delta sequence estimators in Marron and Härdle (1986) hold. Thus,
applying Theorem 2 by Marron and Härdle (1986), one gets

sup
λ∈Λ

∣∣∣∣
ASEĝ(λ)−MISEĝ(λ)

MISEĝ(λ)

∣∣∣∣→ 0 a.s. (6.26)

Taking into account (6.24) and (6.25), it can be seen

∣∣∣∣
ASE∗(υ, {hs}s∈S)−MISE∗(υ, {hs}s∈S)

MISE∗(υ, {hs}s∈S)

∣∣∣∣ ≤ sup
λ∈Λ

∣∣∣∣
ASEĝ(λ)−MISEĝ(λ)

MISEĝ(λ)

∣∣∣∣.

Hence, (6.22) is verified due to (6.26), and consequently the proof of the lemma is complete.

6.6.8 Formulation and proof of Lemma 6.6.5

Recall that C will denote a generic positive constant which may take on different values even in the
same formula.
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Lemma 6.6.5. Under hypotheses of Theorem 6.2.6,

sup
(υ,{hs}s∈S)∈Υ×H

NE
n

∣∣∣∣
CT(υ, {hs}s∈S)

MISE(υ, {hs}s∈S)

∣∣∣∣→ 0 a.s.

where CT(υ, {hs}s∈S) is defined in (6.17) (see page 165).

Proof. The proof of this lemma can be obtained following the proof of Lemma 4 in Ait-Säıdi et al.
(2008), which in turn is based on the ideas proposed by Härdle and Marron (1985), as follows. By the
second statement in Lemma 6.6.6 (see page 173), one can see that

CT(υ, {hs}s∈S) =
1

n

n∑

j=1

ǫj(m̂
υ,(−j)(Xj)−m(Xj)) =

1

n

n∑

j=1

ǫj

(
∑

s∈S

(m̂υ,(−j)
s (Xj)−mυ

s (Xj))

)

=
1

n

n∑

j=1

ǫj

(
∑

s∈S

(m̂
υ,(−j)
s,D (Xj)(m̂

υ,(−j)
s (Xj)−mυ

s (Xj)))

)

+
1

n

n∑

j=1

ǫj

(
∑

s∈S

((1− m̂
υ,(−j)
s,D (Xj))(m̂

υ,(−j)
s (Xj)−mυ

s (Xj)))

)

=
1

n

n∑

j=1

ǫj

(
∑

s∈S

(m̂
υ,(−j)
s,N (Xj)− m̂

υ,(−j)
s,D (Xj)m

υ
s (Xj))

)
+ oa.co(CT(υ, {hs}s∈S))

= CT∗(υ, {hs}s∈S) + oa.co(CT(υ, {hs}s∈S)),

where CT∗(υ, {hs}s∈S) = n−1
∑n

j=1 ǫj

(∑
s∈S (m̂

υ,(−j)
s,N (Xj)− m̂

υ,(−j)
s,D (Xj)m

υ
s (Xj))

)
. This fact and

Lemma 6.6.3 (see page 168) allow to deduce that it is enough to show

sup
(υ,{hs}s∈S)∈Υ×H

NE
n

∣∣∣∣∣∣

(
∑

s∈S

1

nφ(hs)

)−1

CT∗(υ, {hs}s∈S)

∣∣∣∣∣∣
→ 0 a.s.

in order to prove the lemma. In addition, note that if i 6= j and ‖Xi −Xj‖ ≤ hs, (6.3) (see page 144)
and (6.5) (see page 144) imply that

(Y υ
i,s −mυ

s (Xj)) = (Y υ
i,s −mυ

s (Xi)) + (mυ
s (Xi)−mυ

s (Xj)) = (ǫi + (m(Xi)−m(Xj))) I{Ψ̃(Xj)∈Eυ
s }.

Therefore,

|CT∗(υ, {hs}s∈S)| =

∣∣∣∣∣∣
1

n

n∑

j=1

ǫj

(
∑

s∈S

(m̂
υ,(−j)
s,N (Xj)− m̂

υ,(−j)
s,D (Xj)m

υ
s (Xj))

)∣∣∣∣∣∣

=

∣∣∣∣∣∣

∑

s∈S


 1

n(n− 1)

n∑

j=1

∑

i6=j

ǫj(Y
υ
i,s −mυ

s (Xj))K̃s,i(Xj)

E(K̃s,0(Xj))



∣∣∣∣∣∣

≤
∑

s∈S


 1

n(n− 1)

n∑

j=1

∑

i6=j

|ǫj ||ǫi|I{Ψ̃(Xi)∈Eυ
s }K̃s,i(Xj)

E(K̃s,0(Xj))




+
∑

s∈S


 1

n(n− 1)

n∑

j=1

∑

i6=j

|ǫj ||m(Xi)−m(Xj)|I{Ψ̃(Xj)∈Eυ
s }K̃s,i(Xj)

E(K̃s,0(Xj))




≤
∑

s∈S


 1

n(n− 1)

n∑

j=1

∑

i6=j

Uυ
i,j,s +

1

n(n− 1)

n∑

j=1

∑

i6=j

V υ
i,j,s


,
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where

Uυ
i,j,s =

|ǫj ||ǫi|K̃s,i(Xj)

E(K̃s,0(Xj))
and V υ

i,j,s =
|ǫj ||m(Xi)−m(Xj)|K̃s,i(Xj)

E(K̃s,0(Xj)),

for i, j ∈ {1, . . . , n} such that i 6= j. Furthermore, note that
∣∣∣∣∣∣

(
∑

s∈S

1

nφ(hs)

)−1

CT∗(υ, {hs}s∈S)

∣∣∣∣∣∣
≤
∣∣∣∣∣

(
1

nφ(hs)

)−1

CT∗(υ, {hs}s∈S)

∣∣∣∣∣

≤
∑

s∈S



∣∣∣∣∣∣

(
1

nφ(hs)

)−1
1

n(n− 1)

n∑

j=1

∑

i6=j

Uυ
i,j,s

∣∣∣∣∣∣
+

∣∣∣∣∣∣

(
1

nφ(hs)

)−1
1

n(n− 1)

n∑

j=1

∑

i6=j

V υ
i,j,s

∣∣∣∣∣∣


.

Consequently, the lemma will be established as soon as, for each s ∈ S, one states that

sup
(υ,hs)∈Υ×Hn

∣∣∣∣∣∣

(
1

nφ(hs)

)−1
1

n(n− 1)

n∑

j=1

∑

i6=j

Uυ
i,j,s

∣∣∣∣∣∣
→ 0 a.s. (6.27)

and

sup
(υ,hs)∈Υ×H

NE
n

∣∣∣∣∣∣

(
1

nφ(hs)

)−1
1

n(n− 1)

n∑

j=1

∑

i6=j

V υ
i,j,s

∣∣∣∣∣∣
→ 0 a.s. (6.28)

In order to prove (6.27), note that by (C.6.18) and Chebyshev’s inequality, given η > 0 and for
all p = 1, 2, . . ., one has

P


 sup

(υ,hs)∈Υ×Hn

∣∣∣∣∣∣

(
1

nφ(hs)

)−1
1

n(n− 1)

n∑

j=1

∑

i6=j

Uυ
i,j,s

∣∣∣∣∣∣
> η




≤ η−2pcard(Υ×Hn) sup
(υ,hs)∈Υ×Hn

E






(

1

nφ(hs)

)−1
1

n(n− 1)

n∑

j=1

∑

i6=j

Uυ
i,j,s




2p



≤ η−2pnα sup
(υ,hs)∈Υ×Hn





φ(hs)
2p

(n− 1)2p
E







n∑

j=1

∑

i6=j

Uυ
i,j,s




2p






.

Hence, it is enough to show that, for p large enough,

∞∑

n=1

nα sup
(υ,hs)∈Υ×Hn





φ(hs)
2p

(n− 1)2p
E







n∑

j=1

∑

i6=j

Uυ
i,j,s




2p






<∞, (6.29)

to prove (6.27) due to Borel–Cantelli Lemma. Analogously, it can be found that (6.28) can be verified
by showing that

∞∑

n=1

nα sup
(υ,hs)∈Υ×Hn





φ(hs)
2p

(n− 1)2p
E







n∑

j=1

∑

i6=j

V υ
i,j,s




2p






<∞. (6.30)

To obtain (6.29), note that using Lemma 6.6.8 (see page 176) it can be seen that

E







n∑

j=1

∑

i6=j

Uυ
i,j,s




2p

 =

∑

I2p

E

(
2p∏

l=1

Uυ
il,jl,s

)
≤ Cφ(hs)

−2p

4p∑

q=2

∑

Jq

E

(
q∏

l=1

|ǫrl |alK̃bl
s,ul

(Xwl
)

)
,
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where I2p = {(i1, . . . , i2p, j1, . . . , j2p) ∈ {1, . . . , n}2p, such that i1 6= j1, . . . , i2p 6= j2p}, Jq ⊂ I2p is the
subset which contains the elements of I2p with only q different integers, and

∑q
l=1 al = 4p (al ≥ 1)

and
∑q

l=1 bl = 2p. It can be shown that

E

(
q∏

l=1

|ǫrl |alK̃bl
s,ul

(Xwl
)

)
= E

(
E

(
q∏

l=1

|ǫrl |alK̃bl
s,ul

(Xwl
)|Xr1 , . . . , Xrq

))

= E

(
q∏

l=1

E(|ǫrl |al |Xrl)

q∏

l=1

K̃bl
s,ul

(Xwl
)

)
.

This last quantity vanishes when q > 2p. Using this fact and Lemma 6.6.8 (see page 176), and taking
into account that there are q/2 separated pairs with q different integers, one can obtain

E







n∑

j=1

∑

i6=j

Uυ
i,j,s




2p

 ≤ Cφ(hs)

−2p

2p∑

q=2

nqφ(hs)
q/2 ≤ Cn2pφ(hs)

−p,

where the last inequality is due to (C.6.11). Therefore, using (C.6.11) again, one has

∞∑

n=1

nα sup
(υ,hs)∈Υ×Hn





φ(hs)
2p

(n− 1)2p
E







n∑

j=1

∑

i6=j

Uυ
i,j,s




2p







≤ C

∞∑

n=1

nα−ν1p,

so (6.29) holds for p large enough, and consequently (6.27) is proven.

Analogously, it can be checked (6.30) as follows in order to show the convergence for the term
related to V υ

i,j,s. Firstly, Lemma 6.6.8 (see page 176) and (C.6.12) can be used to get

E







n∑

j=1

∑

i6=j

V υ
i,j,s




2p

 =

∑

I2p

E

(
2p∏

l=1

V υ
il,jl,s

)
≤ Cφ(hs)

−2p

4p∑

q=2

∑

Jq

E

(
q∏

l=1

|ǫrl |alK̃bl
s,ul

(Xwl
)

)
,

with I2p and Jq defined as above, and
∑q

l=1 al =
∑q

l=1 bl =
∑q

l=1 cl = 2p. Then, similar arguments to
those used for the case Uυ

i,j,s above lead to

∞∑

n=1

nα sup
(υ,hs)∈Υ×Hn





φ(hs)
2p

(n− 1)2p
E







n∑

j=1

∑

i6=j

V υ
i,j,s




2p







≤ C

∞∑

n=1

nα−ν1p.

Consequently, one gets (6.30) for p large enough, and thus (6.28) is shown.

6.6.9 Proof of Theorem 6.2.8

The result stated in Theorem 6.2.8 can be proven following step by step the proof of Theorem 6.2.6
as follows. Given that MISE(υ, {hs,CV(υ)}s∈S) ≥ MISE(υ, {h∗s(υ)}s∈S) and CV(υ, {h∗s(υ)}s∈S) ≥
CV(υ, {hs,CV(υ)}s∈S), it can be shown that

|MISE(υ, {hs,CV(υ)}s∈S)−MISE(υ, {h∗s(υ)}s∈S)| ≤ | − CV(υ, {hs,CV(υ)}s∈S)

+MISE(υ, {hs,CV(υ)}s∈S) + σ̂2
ǫ +CV(υ, {h∗s(υ)}s∈S)−MISE(υ, {h∗s(υ)}s∈S)− σ̂2

ǫ |,
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with σ̂2
ǫ = n−1

∑n
j=1 ǫ

2
j as usual. Then

∣∣∣∣
MISE(υ, {hs,CV(υ)}s∈S)−MISE(υ, {h∗s(υ)}s∈S)

MISE(υ, {hs,CV(υ)}s∈S)

∣∣∣∣

≤
∣∣∣∣
CV(υ, {hs,CV(υ)}s∈S)−MISE(υ, {hs,CV(υ)}s∈S)− σ̂2

ǫ

MISE(υ, {hs,CV(υ)}s∈S)

∣∣∣∣

+

∣∣∣∣
CV(υ, {h∗s(υ)}s∈S)−MISE(υ, {h∗s(υ)}s∈S)− σ̂2

ǫ

MISE(υ, {h∗s(υ)}s∈S)

∣∣∣∣
∣∣∣∣

MISE(υ, {h∗s(υ)}s∈S)

MISE(υ, {hs,CV(υ)}s∈S)

∣∣∣∣

≤ 2 sup
(υ,{hs}s∈S)∈Υ×H

NE
n

∣∣∣∣
CV(υ, {hs}s∈S)−MISE(υ, {hs}s∈S)− σ̂2

ǫ

MISE(υ, {hs}s∈S)

∣∣∣∣.

Consequently, the theorem is proven due to Lemma 6.6.1 (see page 165).

6.6.10 Proof of Theorem 6.2.9

In this case, one has that

|CV(υ, {hs,CV(υ)}s∈S)−MISE(υ, {h∗s(υ)}s∈S)− σ̂2
ǫ | = |MISE(υ, {hs,CV(υ)}s∈S)

−MISE(υ, {h∗s(υ)}s∈S) + CV(υ, {hs,CV(υ)}s∈S)−MISE(υ, {hs,CV(υ)}s∈S)− σ̂2
ǫ |.

Therefore,
∣∣∣∣
CV(υ, {hs,CV(υ)}s∈S)−MISE(υ, {h∗s(υ)}s∈S)− σ̂2

ǫ

MISE(υ, {h∗s(υ)}s∈S)

∣∣∣∣ ≤
∣∣∣∣
MISE(υ, {hs,CV(υ)}s∈S)

MISE(υ, {h∗s(υ)}s∈S)
− 1

∣∣∣∣

+

∣∣∣∣
CV(υ, {hs,CV(υ)}s∈S)−MISE(υ, {hs,CV(υ)}s∈S)− σ̂2

ǫ

MISE(υ, {hs,CV(υ)}s∈S)

∣∣∣∣
∣∣∣∣
MISE(υ, {hs,CV(υ)}s∈S)

MISE(υ, {h∗s(υ)}s∈S)

∣∣∣∣

≤
∣∣∣∣
MISE(υ, {hs,CV(υ)}s∈S)

MISE(υ, {h∗s(υ)}s∈S)
− 1

∣∣∣∣

+ sup
(υ,{hs}s∈S)∈Υ×H

NE
n

∣∣∣∣
CV(υ, {hs}s∈S)−MISE(υ, {hs}s∈S)− σ̂2

ǫ

MISE(υ, {hs}s∈S)

∣∣∣∣
∣∣∣∣
MISE(υ, {hs,CV(υ)}s∈S)

MISE(υ, {h∗s(υ)}s∈S)

∣∣∣∣ .

Hence, Theorem 6.2.8 (see page 148) and Lemma 6.6.1 (see page 165) allow to finish the proof.

6.6.11 Auxiliary technical lemmas

Formulation and proof of Lemma 6.6.6

For the lemma below, recall the definition of the almost completely convergence introduced in Defini-
tion 2.4.6 and Definition 2.4.7 (see Chapter 2, page 44).

Lemma 6.6.6. Under (C.6.1), (C.6.10), (C.6.15) and (C.6.17), it holds that

sup
x∈C

|m̂υ
s,D(x)− 1| = Oa.co.

(√
HC(log n/n)
nφ(hs)

)
, ∀s ∈ S,

and

sup
x∈C

|m̂υ,(−j)
s,D (x)− 1| = Oa.co.

(√
HC(log n/n)
nφ(hs)

)
, ∀s ∈ S.

Proof. Ferraty et al. (2010b) studied rates of uniform consistency for a generalized nonparametric
regression context in terms of almost completely convergence. In particular, the first statement in the
lemma corresponds to Lemma 8 in Ferraty et al. (2010b). Furthermore, the result still hold if m̂υ

s,D is

replaced with m̂
υ,(−j)
s,D , since the second statement can be seen as a corollary of the first one.
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Formulation and proof of Lemma 6.6.7

Recall that C will denote a generic positive constant which may take on different values even in the
same formula.

Lemma 6.6.7. Under hypotheses of Theorem 6.2.6,

(i) for p = 1, 2, . . ., there exists c11,p > 0 such that

E

(∣∣∣∣∣
∑

s∈S

Y υ
s −mυ

s (X)

E(K̃s,0(X))

∣∣∣∣∣

p)
≤ c11,p

(
∑

s∈S

1

φ(hs)

)p

.

(ii) for p = 1, 2, . . ., there exists c12,p > 0 such that

E

(∣∣∣∣∣
∑

s∈S

(Y υ
i,s −mυ

s (Xi))K̃s,i(Xi)

E(K̃s,0(Xi))

∣∣∣∣∣

p

|Xi

)
≤ c12,p

(
∑

s∈S

1

φ(hs)

)p

a.s.

(iii) for p = 1, 2, . . ., there exists c13,p > 0 such that for all i 6= j

E

(∣∣∣∣∣
∑

s∈S

(Y υ
j,s −mυ

s (Xi))K̃s,j(Xi)

E(K̃s,0(Xi))

∣∣∣∣∣

p

|Xi

)
≤ c13,p

(
∑

s∈S

1

φ(hs)

)p−1

a.s.

(iv) there exists c14 > 0 such that for all i 6= j

E



(
∑

s∈S

(Y υ
j,s −mυ

s (Xi))K̃s,j(Xi)

E(K̃s,0(Xi))

)2

|Xi


 ≥ c14

∑

s∈S

I{Ψ̃(Xi)∈Eυ
s }

φ(hs)
a.s.

Proof.

Proof of item (i). First of all, note that (6.3) (see page 144) ensures that

Y υ
s −mυ

s (X) = Y I{Ψ̃(X)∈Eυ
s } −m(X)I{Ψ̃(X)∈Eυ

s } = (Y −m(X))I{Ψ̃(X)∈Eυ
s } = ǫI{Ψ̃(X)∈Eυ

s }. (6.31)

Using (6.31), and the fact that Eυ
s1 ∩ Eυ

s2 = ∅ for all s1 6= s2, one gets

E

(∣∣∣∣∣
∑

s∈S

Y υ
s −mυ

s (X)

E(K̃s,0(X))

∣∣∣∣∣

p)
= E

(
|ǫ|p

∣∣∣∣∣
∑

s∈S

I{Ψ̃(X)∈Eυ
s }

E(K̃s,0(X))

∣∣∣∣∣

p)
= E

(
E(|ǫ|p|X)

∑

s∈S

I{Ψ̃(X)∈Eυ
s }

(E(E(K̃s,0(X)|X))p

)
.

Then, by assumption (C.6.13) and Lemma 6.6.8 (see page 176),

E

(∣∣∣∣∣
∑

s∈S

Y υ
s −mυ

s (X)

E(K̃s,0(X))

∣∣∣∣∣

p)
≤ CE

(
∑

s∈S

I{Ψ̃(X)∈Eυ
s }

(φ(hs))p

)
= C

∑

s∈S

E(I{Ψ̃(X)∈Eυ
s })

(φ(hs))p
= C

∑

s∈S

P(Ψ̃(X) ∈ Eυ
s )

(φ(hs))p

≤ C
∑

s∈S

1

(φ(hs))p
≤ C

(
∑

s∈S

1

φ(hs)

)p

.
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Proof of item (ii). By (6.3) (see page 144), (C.6.13) and the fact that Eυ
s1 ∩Eυ

s2 = ∅ for all s1 6= s2,
one has

E

(∣∣∣∣∣
∑

s∈S

(Y υ
i,s −mυ

s (Xi))K̃s,i(Xi)

E(K̃s,0(Xi))

∣∣∣∣∣

p

|Xi

)
= E

(
|ǫi|p

(
∑

s∈S

I{Ψ̃(Xi)∈Eυ
s }K(0)

E(K̃s,0(Xi))

)p

|Xi

)

≤ CE(|ǫi|p|Xi)

(
∑

s∈S

I{Ψ̃(Xi)∈Eυ
s }

E(K̃s,0(Xi))

)p

≤ C
∑

s∈S

1

(E(K̃s,0(Xi)))p
= C

∑

s∈S

1

(E(E(K̃s,0(Xi)|Xi)))p
.

Thus, Lemma 6.6.8 (see page 176) leads to

E

(∣∣∣∣∣
∑

s∈S

(Y υ
i,s −mυ

s (Xi))K̃s,i(Xi)

E(K̃s,0(Xi))

∣∣∣∣∣

p

|Xi

)
≤ C

∑

s∈S

1

(φ(hs))p
≤ C

(
∑

s∈S

1

φ(hs)

)p

.

Proof of item (iii). If i 6= j and ‖Xi −Xj‖ ≤ hs, then (6.3) (see page 144), (6.5) (see page 144),
(6.31) and assumption (C.6.12) lead to

|Y υ
j,s −mυ

s (Xi)| ≤ |Y υ
j,s −mυ

s (Xj)|+ |mυ
s (Xj)−mυ

s (Xi)|
= |ǫj |I{Ψ̃(Xj)∈Eυ

s } + |m(Xj)−m(Xi)|I{Ψ̃(Xj)∈Eυ
s } ≤ (|ǫj |+ Chβs )I{Ψ̃(Xj)∈Eυ

s }.
(6.32)

Using (6.32), (C.6.13), (C.6.16) and the fact that Eυ
s1 ∩ Eυ

s2 = ∅ for all s1 6= s2, it can be shown that

E

(∣∣∣∣∣
∑

s∈S

(Y υ
j,s −mυ

s (Xi))K̃s,j(Xi)

E(K̃s,0(Xi))

∣∣∣∣∣

p

|Xi

)
≤ E

(
(|ǫj |+ C)p

(
∑

s∈S

I{Ψ̃(Xj)∈Eυ
s }K̃s,j(Xi)

E(K̃s,0(Xi))

)p

|Xi

)

≤ E

(
E((|ǫj |+ C)p|Xj)

(
∑

s∈S

I{Ψ̃(Xj)∈Eυ
s }K̃s,j(Xi)

E(K̃s,0(Xi))

)p

|Xi

)

≤ CE

((
∑

s∈S

I{Ψ̃(Xj)∈Eυ
s }K̃s,j(Xi)

E(K̃s,0(Xi))

)p

|Xi

)
≤ CE

(
∑

s∈S

K̃p
s,j(Xi)

(E(K̃s,0(Xi)))p
|Xi

)

= C
∑

s∈S

E(K̃p
s,j(Xi)|Xi)

(E(K̃s,0(Xi)))p
= C

∑

s∈S

E(K̃p
s,j(Xi)|Xi)

(E(E(K̃s,0(Xi)|Xi)))p
.

Hence, using Lemma 6.6.8 (see page 176),

E

(∣∣∣∣∣
∑

s∈S

(Y υ
j,s −mυ

s (Xi))K̃s,j(Xi)

E(K̃s,0(Xi))

∣∣∣∣∣

p

|Xi

)
≤ C

∑

s∈S

φ(hs)

(φ(hs))p
= C

∑

s∈S

1

(φ(hs))p−1
≤ C

(
∑

s∈S

1

φ(hs)

)p−1

.
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Proof of item (iv). Using the reasonings presented in (6.32), (6.5) (see page 144), the fact that
Eυ
s1 ∩ Eυ

s2 = ∅ for all s1 6= s2, and (C.6.14), then

E



(
∑

s∈S

(Y υ
j,s −mυ

s (Xi))K̃s,j(Xi)

E(K̃s,0(Xi))

)2

|Xi




= E

(
∑

s∈S

(ǫj + (m(Xj)−m(Xi)))
2I{Ψ̃(Xi)∈Eυ

s }K̃
2
s,j(Xi)

(E(K̃s,0(Xi)))2
|Xi

)

=
∑

s∈S

E(E((ǫj + (m(Xj)−m(Xi)))
2|Xj)K̃

2
s,j(Xi)|Xi)I{Ψ̃(Xi)∈Eυ

s }

(E(K̃s,0(Xi)))2

=
∑

s∈S

E((E(ǫ2j |Xj) + (m(Xj)−m(Xi))
2)K̃2

s,j(Xi)|Xi)I{Ψ̃(Xi)∈Eυ
s }

(E(K̃s,0(Xi)))2

≥ C
∑

s∈S

E(K̃2
s,j(Xi)|Xi)I{Ψ̃(Xi)∈Eυ

s }

(E(E(K̃s,0(Xi)|Xi)))2
.

Therefore, using Lemma 6.6.8

E



(
∑

s∈S

(Y υ
j,s −mυ

s (Xi))K̃s,j(Xi)

E(K̃s,0(Xi))

)2

|Xi


 ≥ C

∑

s∈S

I{Ψ̃(Xi)∈Eυ
s }

φ(hs)
.

Formulation and proof of Lemma 6.6.8

Lemma 6.6.8. Under (C.6.1), (C.6.10) and (C.6.15), for all γ > 0 and for all i 6= j, there exist
c15,γ , c16,γ > 0 such that

c15,γφ(hs) ≤ E(K̃γ
s,j(Xi)|Xi) ≤ c16,γφ(hs) a.s., ∀s ∈ S.

Proof. Note that (C.6.15) ensures that there exist c, c′ > 0 such that

cI{t∈[0,1]} ≤ K(t) ≤ c′I{t∈[0,1]}, ∀t ∈ [0, 1]. (6.33)

For all γ > 0, using (6.33) with t = h−1
s ‖Xj −Xi‖, one gets

cγI{‖Xj−Xi‖≤hs} ≤ K̃γ
s,j(Xi) ≤ (c′)γI{‖Xj−Xi‖≤hs}.

Therefore, applying the conditional expectation, one has

cγP(‖Xj −Xi‖ ≤ hs|Xi) ≤ E(K̃γ
s,j(Xi)|Xi) ≤ (c′)γP(‖Xj −Xi‖ ≤ hs|Xi),

and, consequently,
cγc1φ(hs) ≤ E(K̃γ

s,j(Xi)|Xi) ≤ (c′)γc2φ(hs),

since (C.6.10) holds. Hence, the proof is finished by taking c15,γ = cγc1 and c16,γ = (c′)γc2.

Formulation and proof of Lemma 6.6.9

Recall that C will denote a generic positive constant which may take on different values even in the
same formula.
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Lemma 6.6.9. Under hypotheses of Theorem 6.2.6,

(i) ∀p = 1, 2, . . ., ∀q = 2, . . . , 2p,

∣∣∣∣∣∣
E




q∏

i=1

q∏

j=1

(δλ(Xi, Xj , Yj))
aij



∣∣∣∣∣∣
≤ c17,p

(
∑

s∈S

1

φ(hs)

)p−q/2

,

where aij ∈ {0, . . . , p}, ∑q
i=1

∑q
j=1 aij = p, and, for each i ∈ {1, . . . , q}, there exists j 6= i such

that either aij 6= 0 or aji 6= 0,

(ii)
∣∣∣E
(
(E (δλ(X3, X1, Y1)δλ(X3, X2, Y2)|X1, X2))

2
)∣∣∣ ≤ c18

∑
s∈S

1
φ(hs)

,

(iii) |E (δλ(X3, X1, Y1)δλ(X3, X2, Y2))| ≤ c19,

(iv) E

(
(δλ(X1, X2, Y2))

2
)
≥ c20

∑
s∈S

1
φ(hs)

,

(v) ∀p = 1, 2, . . ., E
(
(E (δλ(X1, X2, Y2)|X1))

2p
)
≤ c21,p,

(vi) ∀p = 1, 2, . . ., E
(
(δλ(X1, X1, Y1))

2p
)
≤ c22,p

(∑
s∈S

1
φ(hs)

)2p
,

where the operator δλ is defined in (6.23) (see page 169).

Proof. This lemma is analogous to Lemma 6 by Ait-Säıdi et al. (2008).

Proof of item (i). By Jensen’s inequality, (6.32) (see page 175), (C.6.13) and the fact that Eυ
s1 ∩

Eυ
s2 = ∅ for all s1 6= s2, it can be seen that

∣∣∣∣∣∣
E




q∏

i=1

q∏

j=1

(δλ(Xi, Xj , Yj))
aij



∣∣∣∣∣∣
≤ E




q∏

i=1

q∏

j=1

|δλ(Xi, Xj , Yj)|aij




≤ E




q∏

i=1

q∏

j=1

(
∑

s∈S

|mυ
s (Xi)− Y υ

j,s|K̃s,j(Xi)

E(K̃s,0(Xi))

)aij




≤ E




q∏

i=1

q∏

j=1

(
∑

s∈S

(|ǫj |+ C)I{Ψ̃(Xj)∈Eυ
s }K̃s,j(Xi)

E(K̃s,0(Xi))

)aij



≤ CE




q∏

i=1

q∏

j=1

(
∑

s∈S

I{Ψ̃(Xj)∈Eυ
s }K̃s,j(Xi)

E(K̃s,0(Xi))

)aij

 ≤ CE




q∏

i=1

q∏

j=1

(
∑

s∈S

I{Ψ̃(Xj)∈Eυ
s }K̃

aij

s,j (Xi)

(E(K̃s,0(Xi)))aij

)


≤ CE


∑

s∈S




q∏

i=1

q∏

j=1

I{Ψ̃(Xj)∈Eυ
s }K̃

aij

s,j (Xi)

(E(K̃s,0(Xi)))aij




 ≤ C

∑

s∈S

E




q∏

i=1

q∏

j=1

K̃
aij

s,j (Xi)

(E(E(K̃s,0(Xi))|Xi))aij


.

(6.34)

On the other hand, Lemma 6.6.8 (see page 176) guarantees that

E




q∏

i=1

q∏

j=1

K̃
aij

s,j (Xi)

(E(K̃s,0(Xi)))aij


 ≤ C

1

(φ(hs))p
E




q∏

i=1

q∏

j=1

K̃
aij

s,j (Xi)


 .
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Besides, the restrictions on the definition of the pairs (i, j) and aij imply that there are q/2 separated
pairs (i, j) with aij 6= 0. This fact and Lemma 6.6.8 (see page 176) allow to deduce

E




q∏

i=1

q∏

j=1

K̃
aij

s,j (Xi)

(E(K̃s,0(Xi)))aij


 ≤ C

1

(φ(hs))p
(φ(hs))

q/2 = C
1

(φ(hs))p−q/2
. (6.35)

Consequently, by (6.34) and (6.35), one has,

∣∣∣∣∣∣
E




q∏

i=1

q∏

j=1

(δλ(Xi, Xj , Yj))
aij



∣∣∣∣∣∣
≤ C

∑

s∈S

1

(φ(hs))p−q/2
≤ C

(
∑

s∈S

1

φ(hs)

)p−q/2

.

Proof of item (ii). It can be shown that

∣∣∣E
(
(E (δλ(X3, X1, Y1)δλ(X3, X2, Y2)|X1, X2))

2
)∣∣∣

≤ E (E (|δλ(X3, X1, Y1)δλ(X3, X2, Y2)δλ(X4, X1, Y1)δλ(X4, X2, Y2)||X1, X2))

= E (|δλ(X3, X1, Y1)δλ(X3, X2, Y2)δλ(X4, X1, Y1)δλ(X4, X2, Y2)|) .

Hence, due to (6.32) (see page 175), the fact that Eυ
s1 ∩ Eυ

s2 = ∅ for all s1 6= s2, and (C.6.13), it can
be found that

∣∣∣E
(
(E (δλ(X3, X1, Y1)δλ(X3, X2, Y2)|X1, X2))

2
)∣∣∣

≤ E

(
∑

s1∈S

∑

s2∈S

∑

s3∈S

∑

s4∈S

(
|mυ

s1(X3)− Y υ
1,s1 ||mυ

s2(X3)− Y υ
2,s2 ||mυ

s3(X4)− Y υ
1,s3 ||mυ

s4(X4)− Y υ
2,s4 |

· K̃s1,1(X3)K̃s2,2(X3)K̃s3,1(X4)K̃s4,2(X4)

E(K̃s1,0(X3))E(K̃s2,0(X3))E(K̃s3,0(X4))E(K̃s4,0(X4))

))

≤ E

(
∑

s1∈S

∑

s2∈S

∑

s3∈S

∑

s4∈S

(
(|ǫ1|+ C)2(|ǫ2|+ C)2I{Ψ̃(X3)∈Eυ

s1
}I{Ψ̃(X3)∈Eυ

s2
}I{Ψ̃(X4)∈Eυ

s3
}

· I{Ψ̃(X4)∈Eυ
s4

}
K̃s1,1(X3)K̃s2,2(X3)K̃s3,1(X4)K̃s4,2(X4)

E(K̃s1,0(X3))E(K̃s2,0(X3))E(K̃s3,0(X4))E(K̃s4,0(X4))

))

≤ E

(
E((|ǫ1|+ C)2(|ǫ2|+ C)2|X1, X2, X3, X4)

∑

s1∈S

∑

s3∈S

(
I{Ψ̃(X3)∈Eυ

s1
}I{Ψ̃(X4)∈Eυ

s3
}

· K̃s1,1(X3)K̃s1,2(X3)K̃s3,1(X4)K̃s3,2(X4)

(E(K̃s1,0(X3)))2(E(K̃s3,0(X4)))2

))

≤ CE

(
∑

s1∈S

∑

s3∈S

(
I{Ψ̃(X3)∈Eυ

s1
}I{Ψ̃(X4)∈Eυ

s3
}
K̃s1,1(X3)K̃s1,2(X3)K̃s3,1(X4)K̃s3,2(X4)

(E(K̃s1,0(X3)))2(E(K̃s3,0(X4)))2

))
.



6.6. APPENDIX CHAPTER 6 179

Given that K̃s3,2(X4) ≤ C for all s ∈ S (since (C.6.15) holds), K̃s,i(Xj) = K̃s,j(Xi), the indicator
functions are bounded, and Lemma 6.6.8 (see page 176) can be applied, one gets

∣∣∣E
(
(E (δλ(X3, X1, Y1)δλ(X3, X2, Y2)|X1, X2))

2
)∣∣∣

≤ C
∑

s1∈S

∑

s3∈S

E(K̃s1,1(X3)K̃s1,2(X3)K̃s3,1(X4))

(E(E(K̃s1,0(X3)|X3)))2(E(E(K̃s3,0(X4)|X4)))2

≤ C
∑

s1∈S

∑

s3∈S

E(K̃s1,1(X3)E(K̃s1,2(X3)|X1, X3, X4)K̃s3,1(X4))

(φ(hs1))
2(φ(hs3))

2

≤ C
∑

s1∈S

∑

s3∈S

E(K̃s1,1(X3)E(K̃s3,1(X4)|X1, X3))

φ(hs1)(φ(hs3))
2

≤ C
∑

s1∈S

∑

s3∈S

E(K̃s1,1(X3))

φ(hs1)φ(hs3)
≤ C

∑

s∈S

1

φ(hs)
.

Proof of item (iii). Regarding to this item, Jensen’s inequality, (6.32) (see page 175), (6.5) (see
page 144), the fact that Eυ

s1 ∩ Eυ
s2 = ∅ for all s1 6= s2, and (C.6.13) imply

|E (δλ(X3, X1, Y1)δλ(X3, X2, Y2))| ≤ E (|δλ(X3, X1, Y1)δλ(X3, X2, Y2)|)

≤ E

(
∑

s1∈S

∑

s2∈S

|mυ
s1(X3)− Y υ

1,s1 ||mυ
s2(X3)− Y υ

2,s2 |K̃s1,1(X3)K̃s2,2(X3)

E(K̃s1,0(X3))E(K̃s2,0(X3))

)

≤ E

(
∑

s∈S

(|ǫ1|+ C)(|ǫ2|+ C)I{Ψ̃(X3)∈Eυ
s }K̃s,1(X3)K̃s,2(X3)

(E(K̃s,0(X3)))2

)

=
∑

s∈S

E(E((|ǫ1|+ C)(|ǫ2|+ C)|X1, X2, X3)I{Ψ̃(X3)∈Eυ
s }K̃s,1(X3)K̃s,2(X3))

(E(K̃s,0(X3)))2

≤ C
∑

s∈S

E(I{Ψ̃(X3)∈Eυ
s }K̃s,1(X3)K̃s,2(X3))

(E(K̃s,0(X3)))2
= C

∑

s∈S

E(I{Ψ̃(X3)∈Eυ
s }E(K̃s,1(X3)|X3)E(K̃s,2(X3)|X3))

(E(E(K̃s,0(X3)|X3)))2
.

Hence, the application of Lemma 6.6.8 (see page 176) leads to

|E (δλ(X3, X1, Y1)δλ(X3, X2, Y2))| ≤ C
∑

s∈S

P(Ψ̃(X3) ∈ Eυ
s ) ≤ CNE ≤ C.

Proof of item (iv). This item comes from Lemma 6.6.7 (see page 174) and (C.6.3) as follows

E

(
(δλ(X1, X2, Y2))

2
)
= E



(
∑

s∈S

(mυ
s (X1)− Y υ

2,s)K̃s,2(X1)

E(K̃s,0(X1))

)2



= E


E



(
∑

s∈S

(mυ
s (X1)− Y υ

2,s)K̃s,2(X1)

E(K̃s,0(X1))

)2

|X1




 ≥ C

∑

s∈S

P(Ψ̃(X1) ∈ Eυ
s )

φ(hs)
≥ C

∑

s∈S

1

φ(hs)
.

Proof of item (v). By Jensen’s inequality and Lemma 6.6.7 (see page 174),

|E (δλ(X1, X2, Y2)|X1)| ≤ E (|δλ(X1, X2, Y2)| |X1) = E

(∣∣∣∣∣
∑

s∈S

(mυ
s (X1)− Y υ

2,s)K̃s,2(X1)

E(K̃s,0(X1))

∣∣∣∣∣ |X1

)
≤ C.

Thus, E
(
(E (δλ(X1, X2, Y2)|X1))

2p
)
≤ C.
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Proof of item (vi). This item is a direct consequence of Lemma 6.6.7 (see page 174) given that

E

(
(δλ(X1, X1, Y1))

2p
)
= E



(
∑

s∈S

(mυ
s (X1)− Y υ

1,s)K(0)

E(K̃s,0(X1))

)2p



≤ CE



(
∑

s∈S

mυ
s (X1)− Y υ

1,s

E(K̃s,0(X1))

)2p

 ≤ C

(
∑

s∈S

1

φ(hs)

)2p

.



Conclusions and further research

The FDA problems which have been analysed throughout the present manuscript have been focused
on the regression model with functional covariate and scalar response. The three main aims of the
thesis have been the following:

• The proposal of new estimators for functional linear regression model with scalar response, based
on FPCA and presmoothing techniques, which exhibit a good behaviour in terms of consistency
and efficiency.

• The development of a bootstrap approach for functional linear regression model that allows
obtaining pointwise confidence intervals for the FPCA-type estimates, and to test different hy-
potheses related to the model parameter, such as the lack of dependence and the equality of
linear models.

• The construction of an exploratory tool for nonparametric functional regression model which
analyses the existence of hidden patterns in functional data via a thresholding procedure.

The two first items were studied in a parametric regression context, specifically, the functional
linear model, whereas the third one was developed for a nonparametric functional model. Next, final
conclusions, and some open questions, related with this three research issues are summarized.

Presmoothing in functional linear regression

In Chapter 3, four different FPCA–type estimators for the linear model parameter θ were introduced,
all of them based on presmoothing techniques:

(i) Presmoothing via covariance structure: θ̂αn

kn
=
∑kn

j=1
∆nv̂j

λ̂j+αn

v̂j .

(ii) Presmoothing via response variable: θ̂hn

kn
=
∑kn

j=1
∆hn

n v̂j

λ̂j

v̂j .

(iii) Using Pezzulli and Silverman’ presmoothed FPCA: θ̂PS, αn

kn
=
∑kn

j=1

∆nv̂
αn,1
j

λ̂αn,1
j

v̂αn,1
j .

(iv) Using Silverman’s presmoothed FPCA: θ̂S, αn

kn
=
∑kn

j=1

∆nv̂
αn,2
j

λ̂αn,2
j

v̂αn,2
j .

The first proposal, θ̂αn

kn
, can be seen as an extension of the ordinary multivariate ridge regression

estimator to general Hilbert spaces. The key idea is to avoid ill–conditioned problems by perturbing
slightly the eigenvalues of the second moment operator. The consistency and expressions for condi-
tional mean square errors for prediction and estimation were obtained for θ̂αn

kn
. Using the conditional

estimation error, it can be seen, from a theoretical point of view, that this presmoothed estimate gets
improvement over the FPCA estimate, especially when the model noise is large and/or the sample size
is small.
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As far as θ̂hn

kn
is concerned, its consistency was stated and the expressions for conditional mean

square errors for prediction and estimation were computed. In the simulation study and the real data
applications, θ̂hn

kn
was replaced by

θ̂k–NN
kn

=

kn∑

j=1

∆k–NN
n v̂j

λ̂j
v̂j ,

because θ̂k–NN
kn

provided more reduced errors than θ̂hn

kn
in some previous simulations. Due to this fact,

it could be interesting to find the conditional error expressions for θ̂k–NN
kn

in order to compare them

from a theoretical point of view. On the other hand, the efficiency of θ̂k–NN
kn

could not be stated, so
this is an open question too.

Regarding to θ̂PS, αn

kn
and θ̂S, αn

kn
, only their conditional error expressions were computed, so the

study of their consistency properties is a pending issue. Furthermore, these estimators were ommited
in the simulation study. As future work, these estimators could be included in a numerical study
in order to compare them with the other proposed presmoothed estimators and check if they are
competitive alternatives.

Bootstrap techniques in functional linear regression

Naive and wild bootstrap algorithms were used to build pointwise confidence intervals for the regression
operator m(·) in Chapter 4 as follows

CI∗x,α =
[
〈θ̂kn

, x〉 − q∗1−α/2(x), 〈θ̂kn
, x〉 − q∗α/2(x)

]
.

Apart from proving the asymptotic validity of this bootstrap approach from a theoretical point of
view, the simulation study allowed to confirm the good behaviour of bootstrap confidence intervals
with respect to the asymptotic confidence intervals

CIasyx,α =

[
〈θ̂kn

, x〉 − z1−α/2

t̂kn
n,xσ̂√
n
, 〈θ̂kn

, x〉+ z1−α/2

t̂kn
n,xσ̂√
n

]
,

which are based on weak convergence results. In particular, it was noted that an adequate selection of
the pilot parameter kdn involved in the bootstrap procedure makes empirical coverage rates of bootstrap
intervals be closer to nominal level α than the coverage rates of asymptotic confidence intervals.
Unfortunately, a data–driven methodology which automatically selects this optimal value of kdn is not
yet available, so further research is required in order to solve this issue.

Chapter 5 was devoted to introduce bootstrap algorithms in order to calibrate the distribution of
test statistics for testing the lack of dependence (H0 : θ = 0 versus H1 : θ 6= 0) or the equality of two
linear models (H0 : θ1 = θ2 versus H1 : θ1 6= θ2). The chapter only presented the asymptotic theory
for some of the proposed bootstrap methods, so a future research line could be to try to develope the
asymptotic theory for the remaining bootstrap proposals.

From a practical point of view, the simulation study showed that bootstrap methods are competitive
alternatives to tests based on asymptotic distributions, since they often give test sizes closer to the
nominal ones. In addition, it must be recalled that the test statistics which included a consistent
estimation of the error variance σ2 obtained higher empirical power than the test statistics which did
not take it into account. Due to this fact, it could be interesting to study in future works what happens
if test statistics which does not include σ̂2 are studentized, that is, to analyse if their studentized
versions improve the obtained results in the simulation study in terms of empirical power.

It is important to highlight that for all the studied statistic test in which a k/kn parameter is
involved, the selection of this parameter seems to be a key issue, and it is another research line that
should be taken into account in the future. Besides of the optimal k/kn selection, other issues related
to these hypotheses tests require further research, such as their extension to functional linear models
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with functional response. In addition, for the test of lack of dependence, it would be interesting to
combine it with the functional ANOVA test (see Cuevas et al. (2004), and González-Rodŕıguez et al.
(2012)) in order to develop an ANCOVA test in this context, whereas, for the test of equality, the
extension of the results to other test statistics proposed by Horváth et al. (2009), which are applicable
to more general situations (such as different covariance structures, different sample sizes,. . . ), is also a
pending problem.

Thresholding in nonparametric functional regression

A graphical tool that detects threshold structures in the context of the functional linear model with
scalar response was presented in this chapter. This methodology allows to find hidden patterns related
to both the functional covariate X and the scalar response Y . For this purpose, an adequate thresh-
old function must be chosen by the user according to the structure one wants to detect. Indeed, the
real data applications showed that the methodology allows to detect some kind of hidden structures,
although the effectiveness of the procedure depends on the choice of the threshold function. Neverthe-
less, how to select this threshold function in a data–driven and efficient way is still an open question
that will require further research.

A cross–validation method was proposed in order to estimate the threshold value, when it exists,
and its optimality with respect to MISE was studied for a particular scenario. However, it would be
interesting to develop more general optimality results, which may include other cases, for instance,
threshold functions which depends on the response Y .

In the simulation study, it was found that the threshold estimators and the standard nonparametric
estimator obtain similar results in terms of the mean square prediction error, whereas the mean square
prediction error can be reduced if each subsample detected by the threshold technique is studied
separately. As future work, it could be interesting to try to prove theoretically this performance which
was observed in practice.

Finally, recall that, as was commented in the preface, all the new techniques introduced througthout
this manuscript were implemented using the statistical software R (see further details in R Development
Core Team, 2010, or http://www.r-project.org). Given that the use of this free software is very
widespread among the statistical community, the developed routines will be available online in order
to allow any other researcher interested in FDA to use them.
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Summary

Nowadays the progress of computational tools (both memory and capacity increasing) allows to create,
store and work with large databases. In many cases, the dataset is made up of observations from a
finite dimensional distribution, measured over a period of time or recorded at different spatial locations.
When the temporal or spatial grid is fine enough, the sample can be considered as an observation of a
random variable on a certain functional space. Analysing this kind of data with standard multivariate
methods and ignoring its functional feature may fail dramatically (curse of dimensionality, collinearity,
valuable information loss, etc.). In these cases, specific statistical techniques are required in order to
manage, leak and draw relevant underlying information.

This fact has turned Functional Data Analysis (FDA) into one of the most active statistical fields in
recent years. From the seminal works in the eighties and the nineties (Grenander, 1981; Dauxois et al.,
1982; Ramsay, 1982; Bosq, 1991), FDA gave rise to several books (Bosq, 2000; Ramsay and Silverman,
1997, 2002, 2005; Ferraty and Vieu, 2006b; Ferraty and Romain, 2011; Horváth and Kokoszka, 2012),
special issues in high impact factor journals (Davidian et al., 2004; González-Manteiga and Vieu, 2007;
Valderrama, 2007; Ferraty, 2010) and international workshops devoted to both methodological and
applied developments for functional data (Dabo-Niang and Ferraty, 2008; Ferraty, 2011). Furthermore,
some contributions focused on the state of the art of FDA were published during the last years (Rice,
2004; Müller, 2005; González-Manteiga and Vieu, 2011; Delsol et al., 2011a; Cuevas, 2012).

It must be emphasized that functional data come up in a natural way in most scientific fields:
econometrics (e.g., daily stock returns or electricity production/demand curves), engineering sciences
(e.g., satellite imagery, topographic maps or image recognition), environmetrics and climatology (e.g.,
meteorological measurements or fluvial flows curves), medicine (e.g., growth curves or genetic data),
chemometrics (e.g., spectrometric data), etc. This fact generated a variety of applied FDA works in
the literature, such as Ramsay and Silverman (2002), and Ferraty and Vieu (2006a).

Due to the novelty of FDA, there is a wide range of research lines which could be explored: from the
extension to the functional context of well–known multidimensional methods, to the creation of new
statistical techniques devoted to specific functional data issues. Nevertheless, in spite of the functional
nature of the data, the pursued aims are essentially the same as the usual stated objectives for a
multivariate dataset analysis. Consequently, the developed methodology has been intended to satisfy
similar needs:

• Preprocess the data: registration and feature alignment, smoothing techniques, etc.

• Depict and explore the data, highlighting their most important features: measures of centrality
and dispersion, detection of outliers, Functional Principal Component Analysis (FPCA), etc.

• Functional data classification.

• Build models to explain the relationship between functional variables: parametric and nonpara-
metric regression models.

• Functional statistical inference: confidence intervals, hypotheses testing, etc.

This manuscript mainly deals with the last two items. As far as the fourth item is concerned, the
work has been focused on the functional linear model with scalar response (although some contributions
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to nonparametric regression are also included in the last chapter), whereas regarding the fifth item
a bootstrap procedure has been developed, which allows to build confidence intervals and calibrate
hypotheses tests related to the linear model.

The thesis has been structured in six chapters. For each of them, a brief summary is given below.
Then some computational issues and an acknowledgement section are included.

Chapter 1. Introduction to FDA

The first chapter of this thesis is used to fix the notation and give a brief summary of the state of the
art on statistical methods for functional data. The main idea in FDA is to suppose that a random
variable X is observed in a discrete grid {tl}Ll=1 with each tl ∈ T . If the time instants tl are close
enough, one can assume that {X(tl)}Ll=1 is an observation of a functional random variable

X = {X(t); t ∈ T}.

Note that T is often a real interval such as T = [T0, T1] ⊂ R, and each observation can be considered
as a curve. Nevertheless, FDA covers many other situations where the space T is a more general
functional space, as it can be deduced from the following definitions.

Definition 1. A random variable X is called a functional random variable if it takes values in an
infinite dimensional space or functional space S. An observation x of X is called a functional datum.

Definition 2. Given a functional random variable X and n ∈ N∗, a functional random sample of
X of lenght n is a set {Xi}ni=1 of independent and identically distributed (i.i.d.) functional random
variables with the same distribution as X. An observation {xi}ni=1 of {Xi}ni=1 is called a functional
dataset.

Once it has been defined what functional data are, some examples are given in the chapter, which
will illustrate the methods proposed in the next chapters.

Throughout the manuscript, it has been assumed that the space where functional variables take
values is a real separable Hilbert space H (although sometimes the functional space has been restricted
to the well–known L2–space to illustrate certain methods). This motivates the introduction of some
associated spaces, such as the space of Hilbert–Schmidt operators and the dual space H′, some tensor
notation (that is, operators ⊗H and ⊗H′) and semi–metrics, which are very useful in order to determine
the closeness of functional observations.

Then, a general background of existing FDA tools is presented: preprocessing techniques (smothing
and registration methods), functional descriptive statistics (measures of position and dispersion), and
some key exploratory methods (for instance, Functional Principal Component Analysis (FPCA), which
will be recalled later to define functional linear regression estimators).

Chapter 2. Functional regression models

This chapter is devoted to functional regression models. At first, a general review of functional regres-
sion is presented, and then the efforts are concentrated on models with scalar response and functional
covariate. There are two main approaches to discuss this subject: the parametric and the nonparamet-
ric approaches. As regards the parametric approach, the most usual parametric model is the functional
linear model with scalar response given by

Y = 〈θ,X〉+ ǫ,



187

where Y is a real random variable, m(·) = 〈θ, ·〉 is a linear regression operator with θ ∈ H and
‖θ‖2 < ∞, X is a zero–mean random variable valued in H such that E(‖X‖2) < ∞, and ǫ is a real
random variable satisfying that E(ǫ) = 0, Var(ǫ) = σ2 < ∞, and E(ǫX) = 0. The two most popular
estimators in this situation are introduced in this chapter: estimators based on basis systems, such as
the penalized B–splines estimator

θ̂PS =

q+k∑

j=1

b̂jBk,j

(see, for instance, Cardot et al., 2003c), and FPCA–type estimators, such as the standard FPCA
estimator

θ̂kn
=

kn∑

j=1

∆nv̂j

λ̂j
v̂j

(see Cardot et al., 1999, 2003c, 2007c).
As far as the nonparametric approach is concerned, the functional nonparametric model can be

expressed as
Y = m(X) + ǫ,

where Y is a real random variable, m(·) is a functional regression operator which satisfies some smooth-
ness restrictions, X is a zero–mean random variable valued in an abstract space S endowed with a
semi–metric d(·, ·), and ǫ is a real random variable satisfying that E(ǫ) = 0, Var(ǫ) = σ2 < ∞,
and E(ǫX) = 0. Among the different existing nonparametric methods, the functional version of the
multivariate kernel–type estimator defined as

m̂h(x) =

∑n
i=1 YiK(h−1d(x,Xi))∑n
i=1K(h−1d(x,Xi))

,

is analysed in this chapter (see Ferraty and Vieu, 2004, 2006b; Ferraty et al., 2007a).

Chapter 3. Presmoothing in functional linear regression

The chapter is focused on the functional linear model with scalar response, and explanatory variable
valued in a functional space. As it was discussed in previous chapter, FPCA has been used to estimate
the model functional parameter in recent statistical literature. A modification of this approach by using
presmoothing techniques is proposed in this chapter: either presmoothing via covariance structure or
presmoothing via response variable. Specifically, four different FPCA–type estimators for the linear
model parameter θ were introduced, all of them based on presmoothing techniques:

(i) Presmoothing via covariance structure: θ̂αn

kn
=
∑kn

j=1
∆nv̂j

λ̂j+αn

v̂j .

(ii) Presmoothing via response variable: θ̂hn

kn
=
∑kn

j=1
∆hn

n v̂j

λ̂j

v̂j .

(iii) Using Pezzulli and Silverman’ presmoothed FPCA (Pezzulli and Silverman, 1993):

θ̂PS, αn

kn
=

kn∑

j=1

∆nv̂
αn,1
j

λ̂αn,1
j

v̂αn,1
j .

(iv) Using Silverman’s presmoothed FPCA (Silverman, 1996): θ̂S, αn

kn
=
∑kn

j=1

∆nv̂
αn,2
j

λ̂αn,2
j

v̂αn,2
j .

The first proposal, θ̂αn

kn
, can be seen as an extension of the ordinary multivariate ridge regression

estimator to general Hilbert spaces. The key idea is to avoid ill–conditioned problems by perturbing
slightly the eigenvalues of the second moment operator. The consistency and expressions for condi-
tional mean square errors for prediction and estimation were obtained for θ̂αn

kn
. Using the conditional
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estimation error, it can be seen, from a theoretical point of view, that this presmoothed estimate gets
improvement over the FPCA estimate, especially when the model noise is large and/or the sample

size is small. As far as θ̂hn

kn
is concerned, its consistency was stated and the expressions for conditional

mean square errors for prediction and estimation were computed. Regarding to θ̂PS, αn

kn
and θ̂S, αn

kn
,

only their conditional error expressions were computed using some heuristic calculations by means of
the standard technique of asymptotic expansions.

The effectiveness of the proposed estimators based on presmoothing via covariance structure and
presmoothing via response variable relative to the standard FPCA estimator and the penalized B–
splines estimator is also tested by means of simulation studies and real data applications. In both
cases, θ̂hn

kn
was replaced by

θ̂k–NN
kn

=

kn∑

j=1

∆k–NN
n v̂j

λ̂j
v̂j ,

given that θ̂k–NN
kn

provided more reduced errors than θ̂hn

kn
in some previous simulations. The simulations

suggest that the presmoothing estimator θ̂αn

kn
improves the standard FPCA linear estimator, especially

when the sample size is small, whereas θ̂k–NN
kn

do not significantly reduce the conditional errors of θ̂kn
.

The choice of the parameters of the proposed presmoothed estimators is of course a key point. A
general practical guideline is to choose these parameters by cross–validation techniques.

Chapter 4. Bootstrap in functional linear regression

Dealing with the functional linear model with functional explanatory variable and scalar response, and
as commented previously, one of the most popular methods for parameter model estimation is based
on FPCA. Weak convergence for a wide class of FPCA–type estimators has recently been proved and,
as a result, the next asymptotic confidence intervals for the linear regression operator m(·) can be
obtained for a fixed confidence level α ∈ (0, 1)

CIasyx,α =

[
〈θ̂kn

, x〉 − z1−α/2

t̂kn
n,xσ̂√
n
, 〈θ̂kn

, x〉+ z1−α/2

t̂kn
n,xσ̂√
n

]
,

where zα is the quantile of order α from a N (0, 1) distribution. In this chapter, an alternative approach
in order to compute pointwise confidence intervals by means of a bootstrap procedure is proposed,
obtaining also its asymptotic validity (that is, the conditional distribution of the estimator can be
approximated by the bootstrap distribution). In particular, algorithms for naive and wild bootstrap
are developed and the bootstrap intervals can be constructed as

CI∗x,α =
[
〈θ̂kn

, x〉 − q∗1−α/2(x), 〈θ̂kn
, x〉 − q∗α/2(x)

]
,

being q∗α(x) the pointwise bootstrap α–quantile.

A simulation study compares the practical performance of asymptotic and bootstrap confidence
intervals in terms of length and coverage rates for two linear regression operators and several sample
sizes. This numerical study allowed confirm the good behaviour of bootstrap confidence intervals
with respect to the asymptotic confidence intervals. In particular, it was noted that an adequate
selection of the pilot parameter kdn involved in the bootstrap procedure makes empirical coverage rates
of bootstrap intervals be closer to nominal level α than the coverage rates of asymptotic confidence
intervals. Unfortunately, a data–driven methodology which automatically selects this optimal value of
kdn is not yet available, so further research is required in order to solve this issue.
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Chapter 5. Testing in functional linear regression

In this chapter, the functional linear model with scalar response is considered but including an intercept
term, that is,

Y = 〈θ,X〉+ b+ ǫ,

where Y and ǫ are real random variables, X is a random variable valued in a separable Hilbert space
(H, 〈·, ·〉), and the model parameters b and θ belong to R and H, respectively. In this context, a
consistent bootstrap method to calibrate the distribution of test statistics for assesing H0 : θ = 0
versus H1 : θ 6= 0 (i.e., for testing the lack of dependence) is developed, and the related asymptotic
theory is presented.

Next, two linear models,

Y1 = 〈θ1, X1〉+ b1 + ǫ1 and Y2 = 〈θ2, X2〉+ b2 + ǫ2,

satisfying that X1 and X2 have the same covariance operator, and ǫ1 and ǫ2 have the same variance,
are taken. A bootstrap method for checking the equality of the two linear models, i.e., for testing
H0 : θ1 = θ2 versus H1 : θ1 6= θ2, is introduced, and a study of its main asymptotic properties is done
in order to show its consistency and correctness.

From a practical point of view, the simulation study showed that bootstrap methods are competitive
alternatives to tests based on asymptotic distributions, since they often give test sizes closer to the
nominal ones. In addition, it must be recalled that the statistic tests which included a consistent
estimation of the error variance σ2 obtained higher empirical power than the test statistics which did
not take it into account. Due to this fact, it could be interesting to study in future works what happens
if statistic tests which does not include σ̂2 are studentized, that is, to analyse if their studentized
versions improve the obtained results in the simulation study in terms of empirical power. Finally, a
real data example also illustrates the performance of the proposed bootstrap techniques in practice.

It is important to highlight that for all the studied statistic test in which a k/kn parameter is
involved, the selection of this parameter seems to be a key issue. It is another research line that
should be taken into account in the future. Besides the optimal k/kn selection, other issues related
to these hypotheses tests require further research, such as their extension to functional linear models
with functional response.

Chapter 6. Thresholding in nonparametric functional regression

This chapter presents an exploratory tool focused on the detection of underlying complex structures
in the nonparametric regression model with scalar response and functional covariate. The proposed
methodology analyses the existence of hidden patterns related to the functional covariate X and/or
the scalar response Y via a threshold procedure. For this purpose, an adequate threshold function
must be chosen by the user according to the structure one wants to detect. A cross–validation criterion
which allows to estimate the parameters involved in the threshold model is also introduced, and the
usefulness of its graphical representation is studied.

A simulation study and applications to real datasets show the effectiveness of the threshold approach
from a practical point of view. In the simulation study, it was found that the threshold estimators
and the standard nonparametric estimator obtain similar results in terms of the mean square pre-
diction error, whereas the mean square estimation error can be reduced if each subsample detected
by the threshold technique is studied separately. In addition, the real data applications showed that
the methodology allows to detect some kind of hidden structures, although the effectiveness of the
procedure depends on the choice of the threshold function. Nevertheless, how to select this threshold
function in a data–driven and efficient way is still an open question that will require further research.

Some computational issues. As well as the theoretical developments of the methodology presented
throughout the manuscript, it is important to highlight that all the proposed methods were imple-
mented and applied to both simulated and real datasets. For this purpose, the statistical free software
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R was chosen (see further details in R Development Core Team, 2010, or http://www.r-project.org),
and R routines were developed for each one of the new techniques compiled in this document. Given
that the use of this free software is very widespread among the statistical community, the developed
routines will be available online in order to allow any other researcher interested in FDA to use them.
It must be noted that, in order to implement the new techniques introduced in this thesis, some
existing routines were taking as a starting point. For instance, functions related with the paper by
Cardot et al. (2003c) (available at http://www.math.univ-toulouse.fr/staph, section “Softwares
on line”) were considered for the model parameter estimation in the functional linear model with
scalar response, whereas R routines corresponding to nonparametric methods discussed in the book by
Ferraty and Vieu (2006b) (available at http://www.math.univ-toulouse.fr/staph/npfda) served
as a basis for nonparametric regression contributions. Furthermore, some specific R packages devoted
to FDA, such as fda or fda.usc (see Ramsay et al., 2011, and Febrero-Bande and Oviedo de la Fuente,
2011, respectively), were also consulted.

Acknowledgements. I would like to thank my advisors, Prof. Wenceslao González–Manteiga, Prof.
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Manteiga et al. (2012).

This work has been supported by Ministry of Science and Innovation (FPI grant BES–2006–13389;
national projects MTM2005–00820 and MTM2008–03010); and by Conselleŕıa de Innovación e Indus-
tria (regional project PGIDIT07PXIB207031PR) and Conselleŕıa de Economı́a e Industria (regional
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Resumo en galego

Hoxe en d́ıa, o progreso das ferramentas computacionais (tanto o aumento de capacidade como o
de memoria) permite crear, almacenar e traballar con grandes bases de datos. En moitos casos, os
conxuntos de datos que se manexan están compostos por observacións xeradas dunha distribución
finito dimensional, áında que medidas ao longo dun peŕıodo de tempo ou rexistradas en diferentes
localizacións espaciais. Cando ese grid temporal ou espacial é suficientemente fino, a mostra pode
chegar a ser considerada como unha observación dunha variable aleatoria que toma valores nun espazo
funcional. Analizar este tipo de datos cos métodos multivariantes estándar e ignorar a súa natureza
funcional pode fallar estrepitosamente debido, por exemplo, á maldición da dimensionalidade, á exis-
tencia de colinearidade, ou á perda de información valiosa relativa á estrutura funcional subxacente.
Nestes casos, reqúırese o emprego de técnicas estat́ısticas espećıficas, adaptadas a esta tipolox́ıa de
datos, para manexar, filtrar e obter toda a información relevante contida nos datos.

Este feito converteu á Análise de Datos Funcionais (FDA de aqúı en diante, pola terminolox́ıa in-
glesa Functional Data Analysis) nun dos campos estat́ısticos máis activos durante estes últimos anos.
Desde os primeiras traballos iniciais dedicados a esta temática nos anos oitenta e noventa (Grenan-
der, 1981; Dauxois et al., 1982; Ramsay, 1982; Bosq, 1991), a FDA deu lugar a varios libros (Bosq,
2000; Ramsay and Silverman, 1997, 2002, 2005; Ferraty and Vieu, 2006b; Ferraty and Romain, 2011;
Horváth and Kokoszka, 2012), números especiais en revistas de alto factor de impacto (Davidian et al.,
2004; González-Manteiga and Vieu, 2007; Valderrama, 2007; Ferraty, 2010) e workshops internacionais
adicados tanto a desenvolvementos metodolóxicos como a desenvolvementos aplicados para datos fun-
cionais (Dabo-Niang and Ferraty, 2008; Ferraty, 2011). Ademais, algunhas contribucións centradas
en revisións do estado da arte da FDA foron publicadas durante os últimos anos (Rice, 2004; Müller,
2005; González-Manteiga and Vieu, 2011; Delsol et al., 2011a; Cuevas, 2012).

Cómpre resaltar que os datos funcionais xorden de forma natural na maior parte dos campos
cient́ıficos: econometŕıa (por exemplo, valoración de activos financeiros ou curvas de produción e
demanda de electricidade), ciencias e enxeñaŕıa (por exemplo, imaxes por satélite, planos topográficos
ou técnicas de recoñecemento de imaxe), medio ambiente e climatolox́ıa (por exemplo, medicións
meteorolóxicas ou curvas de fluxos fluviais), medicina (por exemplo, curvas de crecemento ou datos
xenéticos), qúımica (por exemplo, datos espectrométricos), etc. Debido a isto, xeráronse numerosos
traballos aplicados relativos á FDA na literatura estat́ıstica, como as monograf́ıas de Ramsay and
Silverman (2002) e Ferraty and Vieu (2006a).

Debido á novidade da FDA, áında hai un longo listado de liñas de investigación que non foron ini-
ciadas ata o momento e que seŕıan susceptibles de ser exploradas nos próximos anos: desde a extensión
ao contexto funcional de métodos multidimensionais ben coñecidos e estudados na literatura exis-
tente, á creación de novas técnicas estat́ısticas focalizadas, e especialmente adaptadas, ao tratamento
de datos funcionais e aos seus problemas espećıficos. Non obstante, a pesar da natureza funcional
dos conxuntos de datos que se manexan, os obxectivos que se marcan na FDA son esencialmente os
mesmos que os que aparecen habitualmente cando un analiza conxuntos de datos multivariantes. Por
conseguinte, a metodolox́ıa desenvolvida a d́ıa de hoxe no eido da FDA foi aparecendo co gallo de
satisfacer necesidades similares ás existentes no ámbito da estat́ıstica multivariante:

• Preprocesado de datos: problemas de rexistro e aliñamento de caracteŕısticas dos datos, técnicas
de suavizado, etc.
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• Análise descritiva e exploratoria dos datos, subliñando as súas caracteŕısticas máis importantes:
medidas de centralidade e dispersión, detección de valores at́ıpicos ou outliers, Análise de Com-
poñentes Principais Funcionais (FPCA de aqúı en diante, pola terminolox́ıa inglesa Functional
Principal Component Analysis), etc.

• Clasificación de datos funcionais.

• Construción de modelos que expliquen a relación entre variables funcionais: modelos de regresión
paramétricos e non–paramétricos.

• Inferencia estat́ıstica funcional: intervalos de confianza, contrastes de hipóteses, etc.

Este manuscrito trata principalmente dos últimos dous puntos do listado anterior. Polo que con-
cirne ao cuarto punto, o traballo concentrouse no modelo lineal funcional con resposta escalar (áında
que no último caṕıtulo da tese se inclúen tamén algunhas contribucións á regresión non–paramétrica
funcional), mentres que no relacionado co quinto punto do listado desenvolveuse un procedemento
bootstrap que permite tanto a construción de intervalos de confianza como a calibración de contrastes
de hipóteses relativas ao modelo lineal funcional con resposta escalar.

A tese foi estruturada en seis caṕıtulos diferentes. Para cada un deles, exponse a continuación un
breve resumo do seu contido. Despois de ditos resumos, inclúense algunhas cuestións computacionais
relativas á implementación das novas metodolox́ıas propostas neste documento, xunto cun apartado
de agradecementos.

Caṕıtulo 1. Introdución á FDA

O primeiro caṕıtulo desta tese é empregado para fixar a notación e dar un breve resumo xeral do estado
da arte sobre os métodos estat́ısticos para datos funcionais. A idea clave na FDA consiste en supoñer
que unha variable aleatoria X é observada nun grid discreto {tl}Ll=1 onde cada tl ∈ T . Se os instantes
de tempo tl están próximos abondo, un podeŕıa asumir que {X(tl)}Ll=1 é unha única observación dunha
variable aleatoria funcional

X = {X(t); t ∈ T}.
É importante salientar que T é a miúdo un intervalo real tal que T = [T0, T1] ⊂ R, polo que cada
observación pode ser considerada como se fose unha curva. Non obstante, a FDA cobre moitas outras
situacións onde o espazo T é un espazo funcional máis xeral, tal e como se pode deducir a partir das
seguintes definicións.

Definición 1. Dise que unha variable aleatoria X é unha variable aleatoria funcional se toma valores
nun espazo dimensional infinito ou nun espazo funcional, denotado por S. Unha observación x de X
dise que é un dato funcional.

Definición 2. Dada unha variable aleatoria funcional X e un valor n ∈ N∗, unha mostra aleatoria
funcional deX de lonxitude n é un conxunto {Xi}ni=1 de variables aleatorias funcionais independentes e
identicamente distribúıdas (i.i.d. de aqúı en diante) coa mesma distribución que X. Unha observación
{xi}ni=1 de {Xi}ni=1 dise que é un conxunto de datos funcional.

Unha vez que se ten definido o que son os datos funcionais, danse no caṕıtulo algúns exemplos reais
deste tipo de datos, os cales serán moi útiles á hora de ilustrar os métodos propostos nos seguintes
caṕıtulos.

Ao longo do manuscrito, suponse habitualmente que o espazo onde as variables funcionais toman
valores é un espazo de Hilbert real e separable denotado por H (áında que ás veces o espazo funcional
se restrinxe ao ben coñecido espazo L2 para poder ilustrar con maior claridade certos métodos). Isto
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motiva a introdución dalgúns espazos asociados, como é o espazo dos operadores de Hilbert–Schmidt
ou o espazo dual H′, de certas notacións relativas aos produtos tensorias (é dicir, os operadores ⊗H e
⊗H′) e da noción de semi–métrica, que é unha ferramenta verdadeiramente útil á hora de determinar
a proximidade entre dúas observacións de tipo funcional.

Tras estas definicións e conceptos relacionados cos espazos de Hilbert, preséntase unha revisión
xeral das ferramentas da FDA existentes hoxe en d́ıa: técnicas para o preprocesado de datos (métodos
de suavizado e métodos de rexistro), estat́ıstica descritiva funcional (medidas de posición e dispersión),
e algúns métodos exploratorios clave (como por exemplo, a FPCA, a cal será recordada máis adiante
para poder definir certo tipo de estimadores para o modelo de regresión lineal funcional).

Caṕıtulo 2. Modelos de regresión funcional

Este caṕıtulo está dedicado aos modelos de regresión funcionais. Ao principio do mesmo, preséntase
unha revisión xeral dos modelos de regresión funcional, para logo, durante o resto do caṕıtulo, con-
centrarse nos modelos de regresión con resposta escalar e covariable funcional. Hai dous enfoques
principais na literatura da FDA á hora de discutir este tema: o enfoque paramétrico e o enfoque non–
paramétrico. En canto ao enfoque paramétrico, o modelo paramétrico máis usual é o modelo lineal
funcional con resposta escalar dado por

Y = 〈θ,X〉+ ǫ,

onde Y é unha variable aleatoria real, m(·) = 〈θ, ·〉 é un operador de regresión lineal con θ ∈ H
e ‖θ‖2 < ∞, X é unha variable aleatoria de media cero que toma valores no espazo H tal que
E(‖X‖2) < ∞, e ǫ é unha variable aleatoria real que verifica as seguintes condicións: E(ǫ) = 0,
Var(ǫ) = σ2 < ∞, e E(ǫX) = 0. As dúas estimacións máis populares nesta situación que se acaba de
describir introdúcense neste caṕıtulo: os estimadores baseados en sistemas de bases, como o estimador
B–splines penalizado

θ̂PS =

q+k∑

j=1

b̂jBk,j

(ver, por exemplo, Cardot et al., 2003c), e os estimadores tipo FPCA, como o estimador FPCA estándar

θ̂kn
=

kn∑

j=1

∆nv̂j

λ̂j
v̂j

(ver Cardot et al., 1999, 2003c, 2007c).

Polo que concirne ao enfoque non–paramétrico do problema, o modelo non–paramétrico funcional
pode ser expresado como

Y = m(X) + ǫ,

onde Y é unha variable aleatoria real, m(·) é un operador de regresión funcional que satisfai algunhas
restricións de suavidade, X é unha variable aleatoria con media cero que toma valores nun espazo
abstracto S dotado dunha semi–métrica d(·, ·), e ǫ é unha variable aleatoria real que satisfai as seguintes
condicións E(ǫ) = 0, Var(ǫ) = σ2 < ∞, e E(ǫX) = 0. Entre os diferentes métodos non–paramétricos
que existen na actualidade, a versión funcional do estimador tipo núcleo multivariante definido como

m̂h(x) =

∑n
i=1 YiK(h−1d(x,Xi))∑n
i=1K(h−1d(x,Xi))

,

é analizado neste caṕıtulo (ver Ferraty and Vieu, 2004, 2006b; Ferraty et al., 2007a).
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Caṕıtulo 3. Presuavización na regresión lineal funcional

Este caṕıtulo focaĺızase no modelo lineal funcional con resposta escalar e variable explicativa que toma
valores nun espazo funcional. Tal e como se discutiu no caṕıtulo anterior, a FPCA foi empregada
para estimar o parámetro funcional do modelo na literatura estat́ıstica recente. Unha modificación
deste enfoque utilizando técnicas presuavizado é xustamente o que se propón no presente caṕıtulo: ou
ben mediante a presuavización da estrutura de covarianza da variable funcional, ou ben mediante a
presuavización da variable resposta escalar. Concretamente, son introducidos catro estimadores tipo
FPCA diferentes para o parámetro θ do modelo lineal, todos eles baseados en técnicas de presuavizado:

(i) Presuavización da estrutura de covarianza: θ̂αn

kn
=
∑kn

j=1
∆nv̂j

λ̂j+αn

v̂j .

(ii) Presuavización da variable resposta: θ̂hn

kn
=
∑kn

j=1
∆hn

n v̂j

λ̂j

v̂j .

(iii) Uso da FPCA presuavizada proposta por Pezzulli and Silverman (Pezzulli and Silverman, 1993):

θ̂PS, αn

kn
=

kn∑

j=1

∆nv̂
αn,1
j

λ̂αn,1
j

v̂αn,1
j .

(iv) Uso da FPCA presuavizada proposta por Silverman (Silverman, 1996):

θ̂S, αn

kn
=

kn∑

j=1

∆nv̂
αn,2
j

λ̂αn,2
j

v̂αn,2
j .

A primeira proposta, θ̂αn

kn
, pode ser vista como unha extensión do estimador de regresión ordinario

ridge multivariante a espazos máis xerais, neste caso aos espazos de Hilbert. A idea clave é evitar
os problemas de mal–condicionamento perturbando lixeiramente os autovalores do operador momento
de segunda orde. A consistencia e as expresións para os erros cadráticos medios condicionais para a
predición e para a estimación son obtidos para θ̂αn

kn
. Empregando o erro de estimación condicional,

pode verse, desde un punto de vista teórico, que este estimador presuavizado consegue mellorar os
resultados do estimador FPCA estándar, especialmente cando o rúıdo do modelo é grande e/ou o

tamaño de mostra é pequeno. Polo que concirne ao estimador θ̂hn

kn
, a súa consistencia foi establecida e

as expresións para os seus erros cadráticos medios condicionais para a predición e a estimación foron
calculadas. En canto aos estimadores presuavizados θ̂PS, αn

kn
e θ̂S, αn

kn
, soamente se calcularon as súas

expresións para os erros condicionais empregando para iso algúns cálculos heuŕısticos baseados nas
técnicas estándar de expansións asintóticas.

A efectividade dos estimadores propostos baseados na presuavización da estrutura de covarianza
e na presuavización da variable resposta con respecto ao estimador FPCA estándar e o estimador
B–splines penalizado tamén se comprobou mediante un estudo de simulación e a aplicación destas
metodolox́ıas a conxuntos de datos reais. En ambos os dous casos, θ̂hn

kn
foi substitúıdo por

θ̂k–NN
kn

=

kn∑

j=1

∆k–NN
n v̂j

λ̂j
v̂j ,

dado que θ̂k–NN
kn

proporcionou erros máis reducidos que os de θ̂hn

kn
nalgunhas simulacións previas. As

simulacións suxiren que o estimador presuavizado θ̂αn

kn
mellora os resultados obtidos polo estimador

FPCA estándar, especialmente cando o tamaño de mostra é pequeno, mentres que o estimador θ̂k–NN
kn

non reduce significativamente os erros condicionais de θ̂kn
. A selección dos parámetros involucrados

nos estimadores presuavizados propostos é, por suposto, un punto clave. Unha pauta práctica xeral é
elixir estes parámetros mediante técnicas de validación cruzada.
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Caṕıtulo 4. Bootstrap na regresión funcional lineal

Para tratar o modelo lineal funcional con variable independente funcional e variable resposta escalar, tal
e como foi comentado anteriormente, un dos métodos máis populares para a estimación do parámetro
do modelo está baseado na FPCA. A converxencia débil para unha clase ampla de estimadores tipo
FPCA foi recentemente demostrada e, como resultado, os seguintes intervalos de confianza asintóticos
para o operador de regresión lineal m(·) poden ser obtidos para un nivel de confianza fixado α ∈ (0, 1)

CIasyx,α =

[
〈θ̂kn

, x〉 − z1−α/2

t̂kn
n,xσ̂√
n
, 〈θ̂kn

, x〉+ z1−α/2

t̂kn
n,xσ̂√
n

]
,

onde zα é o cuantil de orde α dunha distribución N (0, 1). Neste caṕıtulo, proponse unha aproximación
alternativa ao problema que permite calcular intervalos de confianza punto a punto mediante un
procedemento bootstrap, obténdose tamén a súa validez asintótica (validez asintótica no sentido de que a
distribución condicional do estimador pode ser aproximada pola distribución bootstrap). En particular,
algoritmos para o bootstrap naive e o wild bootstrap foron desenvolvidos, polo que os intervalos bootstrap
poden ser constrúıdos como

CI∗x,α =
[
〈θ̂kn

, x〉 − q∗1−α/2(x), 〈θ̂kn
, x〉 − q∗α/2(x)

]
,

sendo q∗α(x) o α–cuantil bootstrap punto a punto.
Un estudo de simulación compara o rendemento práctico dos intervalos de confianza asintóticos e os

intervalos de confianza bootstrap en termos de lonxitude e cobertura para dous operadores de regresión
lineais e varios tamaños de mostra. Este estudo numérico permitiu confirmar o bo comportamento dos
intervalos de confianza boostrap con respecto aos intervalos de confianza asintóticos. En particular,
observouse que unha selección axeitada do parámetro piloto kdn implicado no procedemento bootstrap
fai que as coberturas emṕıricas dos intervalos bootstrap estean máis próximos ao nivel nominal α
que as coberturas dos intervalos de confianza asintóticos. Desafortunadamente, non existe ningunha
metodolox́ıa polo de agora que permita seleccionar automaticamente este valor “óptimo” de kdn, aśı
que vai ser precisa máis investigación neste tema para poder resolver esta cuestión.

Caṕıtulo 5. Contrastes de hipóteses na regresión funcional lin-
eal

O modelo lineal funcional con resposta escalar é o modelo considerado neste caṕıtulo, pero desta vez
inclúındo un intercepto non nulo no modelo, isto é,

Y = 〈θ,X〉+ b+ ǫ,

onde Y e ǫ son variables aleatorias reais, X é unha variable aleatoria que toma valores nun espazo de
Hilbert separable (H, 〈·, ·〉), e os parámetros do modelo b e θ pertencen a R e H, respectivamente. Neste
contexto, desenvólvese un método bootstrap consistente para calibrar a distribución do test estat́ıstico
para contrastar a hipótese nula H0 : θ = 0 fronte a hipótese alternativa H1 : θ 6= 0 (isto é, para
contrastar a falta de dependencia). Ademais, a teoŕıa asintótica relacionada con esta metodolox́ıa
bootstrap tamén se presenta neste caṕıtulo.

A continuación, considéranse dous modelos lineais,

Y1 = 〈θ1, X1〉+ b1 + ǫ1 and Y2 = 〈θ2, X2〉+ b2 + ǫ2,

que verifiquen que X1 e X2 teñen o mesmo operador de covarianza, e ǫ1 e ǫ2 teñen a mesma varianza.
No caṕıtulo introdúcese un método bootstrap para comprobar a igualdade destes dous modelos lineais,
isto é, para contrastar H0 : θ1 = θ2 contra H1 : θ1 6= θ2. Tamén se desenvolveu un estudo das principais
propiedades asintóticas de do método bootstrap proposto, estudo que permite afirmar que é consistente
e correcto.
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Desde un punto de vista práctico, o estudo de simulación demostrou que os métodos bootstrap
son alternativas competitivas aos tests baseados en distribucións asintóticas, posto que a miúdo dan
proporcións de rexeitamentos baixo a hipótese nula máis próximas aos nominais. Ademais, debe
recordarse que os tests estat́ısticos que inclúıron unha estimación consistente da varianza de erro σ2

obtiveron potencias emṕıricas máis elevadas que os test estat́ısticos que non a tiña en conta. Debido a
este feito, podeŕıa ser interesante estudar no futuro que sucede se os tests estat́ısticos que non inclúen a
estimación da varianza σ̂2 son estudentizados, isto é, analizar se as súas versións estudentizadas poden
mellorar os resultados obtidos no estudo de simulación en termos de potencia emṕırica. Finalmente, un
exemplo de datos reais ilustra tamén o comportamento das técnicas bootstrap propostas na práctica.

É importante subliñar que para todos os tests estat́ısticos estudados nos cales un parámetro k/kn
está implicado, a selección de dito parámetro parece ser unha cuestión clave. Esta é outra liña de in-
vestigación que debeŕıa ser tida en conta no futuro. Ademais da selección do k/kn óptimo, hai tamén
outras cuestións relacionadas cos tests de hipóteses que áında requiren máis investigación e desenvolve-
mento, como a súa extensión a modelos lineais funcionais onde a resposta sexa tamén funcional.

Caṕıtulo 6. Thresholding na regresión non–paramétrica fun-
cional

Este último caṕıtulo presenta unha ferramenta exploratoria focalizada na detección de estruturas
complexas subxacentes no modelo de regresión non–paramétrico con resposta escalar e covariable
funcional. A metodolox́ıa proposta analiza a existencia de modelos ocultos relacionados coa covariable
funcional X e/ou a resposta escalar Y mediante un procedemento threshold. Para iso, unha función
threshold axeitada debe ser elixida polo usuario segundo a estrutura que se queira detectar. Unha
criterio de validación cruzada, que permite estimar os parámetros implicados no modelo threshold,
tamén se desenvolve, e a utilidade da representación gráfica de dito criterio de validación cruzada é
estudada no caṕıtulo.

Un estudo de simulación e varias aplicacións a conxuntos de datos reais amosan a efectividade
do enfoque threshold desde un punto de vista práctico. No estudo de simulación, observouse que os
estimadores threshold e o estimador non–paramétrico estándar obteñen resultados similares en termos
do erro cadrático medio de predición, mentres que o erro cadrático medio de estimación pode ser
reducido se cada submostra detectada pola técnica threshold é estudada separadamente. Ademais,
as aplicacións a datos reais demostraron que a metodolox́ıa permite detectar algúns tipos de estru-
turas ocultas, áında que a efectividade do procedemento depende da selección da función threshold.
Lamentablemente, como seleccionar esta función threshold de forma automática e eficaz é áında unha
pregunta aberta que require máis traballo e investigación no futuro.

Algunhas cuestións computacionais. Ademais dos desenvolvementos teóricos da metodolox́ıa
presentada ao longo do manuscrito, é importante subliñar que todos os novos métodos propostos foron
implementados e aplicados a conxuntos de datos tanto simulados coma reais. Para iso, o software
estat́ıstico R foi o elixido (ver R Development Core Team, 2010, ou http://www.r-project.org), e
varias rutinas para R foron desenvolvidas para poder implementar cada unha das novas técnicas recom-
piladas neste documento. Dado que o uso de R está moi estendido entre a comunidade estat́ıstica, é
de esperar que as rutinas que se desenvolveron, e que estarán dispoñibles online, poidan ser facilmente
utilizadas por calquera outro investigador interesado na FDA.
É importante destacar tamén que, para implementar as novas técnicas introducidas nesta tese, al-
gunhas rutinas existentes foron tomadas como punto de partida. Por exemplo, as funcións relativas
ao artigo de Cardot et al. (2003c) (dispoñibles en http://www.math.univ-toulouse.fr/staph, na
sección “Softwares on line”) foron consideradas para a estimación do parámetro do modelo no caso
do modelo lineal funcional con resposta escalar, mentres que as rutinas de R correspondentes aos
métodos de estat́ıstica non–paramétricos discutidos no libro de Ferraty and Vieu (2006b) (dispoñible
en http://www.math.univ-toulouse.fr/staph/npfda) foron tidas en conta para as contribucións en
regresión non–paramétrica. Ademais, algúns paquetes espećıfico de R dedicados a FDA, como fda ou
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fda.usc (ver Ramsay et al., 2011, e Febrero-Bande and Oviedo de la Fuente, 2011, respectivamente),
serviron de referencia.
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Giné, E. and Zinn, J. (1990). Bootstrapping General Empirical Measures. Annals of Probability,
18(2):851–869.

Giraldo, R., Delicado, P., and Mateu, J. (2010a). Continuous Time–Varying Kriging for Spatial
Prediction of Functional Data: An Environmental Application. Journal of Agricultural, Biological,
and Environmental Statistics, 15(1):66–82.

Giraldo, R., Delicado, P., and Mateu, J. (2010b). Ordinary kriging for function–valued spatial data.
Environmental and Ecological Statistics, pages 1–16.

Goldsmith, J., Bobb, J., Crainiceanu, C. M., Caffo, B., and Reich, D. (2011). Penalized Functional
Regression. Journal of Computational and Graphical Statistics, 20(4):830–851.



210 BIBLIOGRAPHY

Goldsmith, J., Crainiceanu, C. M., Caffo, B., and Reich, D. (2012). Longitudinal penalized functional
regression for cognitive outcomes on neuronal tract measurements. Journal of the Royal Statistical
Society: Series C (Applied Statistics), 61(3):453–469.

González-Manteiga, W., González-Rodŕıguez, G., Mart́ınez-Calvo, A., and Garćıa-Portugués, E.
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Härdle, W. and Marron, J. S. (1990). Semiparametric comparison of regression curves. Annals of
Statistics, 18(1):63–89.
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Jácome, M. A. and Iglesias-Pérez, M. C. (2008). Presmoothed estimation with left–truncated and
right–censored data. Comunications in Statistics – Theory and Methods, 37(18):2964–2983.

James, G. (2011). Sparse functional data analysis. In Ferraty, F. and Romain, Y., editors, The Oxford
Handbook of Functional Data Analysis, Oxford Handbooks in Mathematics, pages 298–324. Oxford
University Press, Oxford.



BIBLIOGRAPHY 213

James, G. M. (2002). Generalized Linear Models with Functional Predictors. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 64(3):411–432.

James, G. M. and Hastie, T. J. (2001). Functional Linear Discriminant Analysis for Irregularly Sampled
Curves. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(3):533–550.

James, G. M., Hastie, T. J., and Sugar, C. A. (2000). Principal component models for sparse functional
data. Biometrika, 87(3):587–602.

James, G. M. and Sood, A. (2006). Performing hypothesis tests on the shape of functional data.
Computational Statistics & Data Analysis, 50(7):1774–1792.

James, G. M. and Sugar, C. A. (2003). Clustering for Sparsely Sampled Functional Data. Journal of
the American Statistical Association, 98(462):397–408.

Jank, W. and Shmueli, G. (2006). Functional Data Analysis in Electronic Commerce Research. Sta-
tistical Science, 21(2):155–166.

Janssen, P., Swanepoel, J., and Veraverbeke, N. (2001). Efficiency of linear regression estimators based
on presmoothing. Communications in Statistics – Theory and Methods, 30(10):2079–2097.

Kawasaki, Y. and Ando, T. (2004). Functional data analysis of the dynamics of yield curves. In
Antoch, J., editor, COMPSTAT 2004 – Proceedings in Computational Statistics. 16th Symposium
Held in Prague, Czech Republic, 2004, pages 1285–1292, Heidelberg. Physica–Verlag.

Kemperman, J. H. B. (1987). The median of a finite measure on a Banach space. In Dodge, Y., editor,
Statistical Data Analysis Based on the L1–Norm and Related Methods, pages 217–230, Amsterdam.
North–Holland.

Kim, K., Sentürk, D., and Li, R. (2011). Recent history functional linear models for sparse longitudinal
data. Journal of Statistical Planning and Inference, 141(4):1554–1566.

Kneip, A. and Engel, J. (1995). Model Estimation in Nonlinear Regression Under Shape Invariance.
Annals of Statistics, 23(2):551–570.

Kneip, A. and Gasser, T. (1988). Convergence and Consistency Results for Self–Modeling Nonlinear
Regression. Annals of Statistics, 16(1):82–112.

Kneip, A. and Gasser, T. (1992). Statistical Tools to Analyze Data Representing a Sample of Curves.
Annals of Statistics, 20(3):1266–1305.

Kneip, A., Li, X., MacGibbon, K. B., and Ramsay, J. O. (2000). Curve Registration by Local Regres-
sion. Canadian Journal of Statistics, 28(1):19–29.

Kneip, A. and Sarda, P. (2011). Factor models and variable selection in high–dimensional regression
analysis. Annals of Statistics, 39(5):2410–2447.

Kneip, A., Sickles, R. C., and Song, W. (2004). Functional data analysis and mixed effect models. In
Antoch, J., editor, COMPSTAT 2004 – Proceedings in Computational Statistics. 16th Symposium
Held in Prague, Czech Republic, 2004, pages 315–326, Heidelberg. Physica–Verlag.

Kneip, A. and Utikal, K. J. (2001). Inference for Density Families Using Functional Principal Compo-
nent Analysis. Journal of the American Statistical Association, 96(454):519–542.

Kokoszka, P., Maslova, I., Sojka, J., and Zhu, L. (2008). Testing for lack of dependence in the functional
linear model. Canadian Journal of Statistics, 36(2):207–222.

Kosorok, M. R. (2008). Introduction to Empirical Processes and Semiparametric Inference. Springer
Series in Statistics. Springer, New York.



214 BIBLIOGRAPHY

Laha, R. G. and Rohatgi, V. K. (1979). Probability Theory. Wiley Series in Probability and Statistics.
Wiley, New York.

Laukaitis, A. (2008). Functional data analysis for cash flow and transactions intensity continuous–time
prediction using Hilbert–valued autoregressive processes. European Journal of Operational Research,
185(3):1607–1614.

Laukaitis, A. and Rackauskas, A. (2002). Functional data analysis of payment systems. Nonlinear
Analysis: Modelling and Control, 7(2):53–68.

Leardi, R., editor (2003). Nature–inspired methods in chemometrics: genetic algorithms and artificial
neural networks. Data Handling in Science and Technology. Elsevier Science, New York.

Ledoux, M. and Talagrand, M. (1988). Un critère sur les petites boules dans le théorème limite central.
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