88 research outputs found

    Sparse multiple relay selection for network beamforming with individual power constraints using semidefinite relaxation

    Get PDF
    This paper deals with the multiple relay selection problem in two-hop wireless cooperative networks with individual power constraints at the relays. In particular, it addresses the problem of selecting the best subset of K cooperative nodes and their corresponding beamforming weights so that the signal-to-noise ratio (SNR) is maximized at the destination. This problem is computationally demanding and requires an exhaustive search over all the possible combinations. In order to reduce the complexity, a new suboptimal method is proposed. This technique exhibits a near-optimal performance with a computational burden that is far less than the one needed in the combinatorial search. The proposed method is based on the use of the l1-norm squared and the Charnes-Cooper transformation and naturally leads to a semidefinite programming relaxation with an affordable computational cost. Contrary to other approaches in the literature, the technique exposed herein is based on the knowledge of the second-order statistics of the channels and the relays are not limited to cooperate with full power.Peer ReviewedPostprint (author's final draft

    Joint RRH Activation and Robust Coordinated Beamforming for Massive MIMO Heterogeneous Cloud Radio Access Networks

    Get PDF

    Efficient power control framework for small-cell heterogeneous networks

    Get PDF
    Heterogeneous networks are rapidly emerging as one of the key enablers of beyond fifth-generation (5G) wireless networks. It is gradually becoming clear to the network operators that existing cellular networks may not be able to support the traffic demands of the future. Thus, there is an upsurge in the interest of efficiently deploying small-cell networks for accommodating a growing number of user equipment (UEs). This work further extends the state-of-the-art by proposing an optimization framework for reducing the power consumption of small-cell base stations (BSs). Specifically, a novel algorithm has been proposed which dynamically switches off the redundant small-cell BSs based on the traffic demands of the network. Due to the dynamicity of the formulated problem, a new UE admission control policy has been presented when the problem becomes infeasible to solve. To validate the effectiveness of the proposed solution, the simulation results are compared with conventional techniques. It is shown that the proposed power control solution outperforms the conventional approaches both in terms of accommodating more UEs and reducing power consumption.publishe
    • …
    corecore