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beamforming with Individual Power Constraints
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Abstract—This paper deals with the multiple relay selection
problem in two-hop wireless cooperative networks with individual
power constraints at the relays. In particular, it addresses
the problem of selecting the best subset of K cooperative
nodes and their corresponding beamforming weights so that
the signal-to-noise ratio (SNR) is maximized at the destination.
This problem is computationally demanding and requires an
exhaustive search over all the possible combinations. In order to
reduce the complexity, a new sub-optimal method is proposed.
This technique exhibits a near-optimal performance with a
computational burden that is far less than the one needed in the
combinatorial search. The proposed method is based on the use of
the l1-norm squared and the Charnes-Cooper transformation and
naturally leads to a semidefinite programming relaxation with
an affordable computational cost. Contrary to other approaches
in the literature, the technique exposed herein is based on the
knowledge of the second-order statistics of the channels and the
relays are not limited to cooperate with full power.

Index Terms—Wireless relay network, multiple relay selection,
distributed beamforming, sparsity-promoting norms, semidefinite
relaxation, combinatorial optimization.

I. INTRODUCTION

As it is well-known, relay systems increase the spatial di-
versity and the reliability of wireless communications systems.
The simplest relay network consists of a single source and N
relays that cooperate to send to a destination node the message
transmitted by the source. Relay communications systems can
be classified taking into account how the relays process the in-
formation received from the source node. The most popular co-
operative schemes available in the wireless relay literature are:
amplify-and-forward (AF), decode-and-forward [1], compress-
and-forward and coded-cooperation [2]. Nonetheless, amplify-
and-forward has attracted special interest due to its simplicity.
In this context, distributed relay beamforming, also known as
cooperative beamforming, has been shown to be a powerful
technique which provides power efficiency and is able to
increase the communications reliability. In general terms, in
distributed beamforming the relays cooperate acting as virtual
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antenna and adjust their transmission weights to form a beam
to the destination. Since each relay multiplies its received
signal by a complex weight and retransmits it, the beam-
forming weights have to be determined according to some
optimality criterion. Different beamforming approaches have
been considered in the literature [3]. One such criteria is the
minimization of the total transmitted power subject to a given
constraint on the quality of service at the receiver. The second
approach is the maximization of the received SNR subject to
certain power constraints, i.e., individual power constraints in
each relay or on the total power transmitted by the relays. Due
to the fact that relay nodes have particular constraints on the
battery lifetimes, individual power constraints in each relay are
of practical interest. It is worth noting that the optimal solution
of this maximization problem results in relay powers which
do not correspond, in general, to their maximum allowable
values, i.e., to achieve the maximum SNR at the receiver, the
relays may not use their maximum allowable power.

In the conventional cooperation strategies exposed above,
all the relays cooperate in relaying the signals. This is the
optimal strategy from the point of view of the end-to-end
performance. Nevertheless, in practical scenarios, the benefits
of the cooperation could be offset by the cost of the cooper-
ation and the consumption of additional system resources. In
many cases, it is impractical or even unfeasible to activate all
(or many) relays (see the references [4]–[9]). For instance, in
many practical situations the number of potential cooperating
nodes could be large, e.g., in device-to-device communication
networks or in wireless sensor networks, and the benefits
of the cooperation with all the relays can be outweighed
by the costs of the cooperation. These costs include the
signaling overhead and the efforts needed to maintain the
synchronization between all the nodes [4]–[7]. In this context,
by considering relay selection, the overall processing in the
network can be simplified achieving a significant reduction in
the implementation complexity [4], [6]–[9].

There exist a vast literature devoted to relay selection. Most
of these schemes are based on single relay selection, i.e., only
one of the relay nodes can be selected to cooperate in the
retransmission, e.g. [10] and [11]. Nevertheless, in adverse
environments, transmitting over a single relay may not be
sufficient to achieve the desired performance at the destination.
This has motivated the generalization of this idea, allowing
more than one node to cooperate. Multiple relay selection
for a single source-destination pair has attracted attention in
some references [9], [12]–[14]. In all these approaches, for
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simplicity, the relays are not allowed to adjust their transmit
power arbitrarily, i.e., each relay has only two choices: to
cooperate with full power or not to cooperate at all. In [9],
the authors propose several SNR-suboptimal multiple relay
selection techniques based on some ordering functions. In
[13], Laneman et al. proposed a Decode-and-Forward protocol
that allow the relays to cooperate if the channel between the
source and the relays, the so-called backward channel, exceeds
a fixed threshold. On the contrary, the scheme proposed in
[12] is based on the full Channel State Information (CSI) of
the backward and the forward channels of each relay. Therein
two different problems have been tackled: the minimization
of the end-to-end error performance under a total power
constraint, and the dual problem, the minimization of the
total power consumption constrained to a maximum error
probability. These problems fall within the class of the so-
called 0-1 Knapsack problems and are solved by taking use
of several greedy algorithms. A similar approach was proposed
for cognitive relay networks in [14].

This paper deals with problem of multiple relay selection for
distributed beamforming under individual power constraints
at the relay nodes. In particular, it addresses the problem
of finding the best subset of cooperative nodes, and their
beamformer weights, so that the SNR is maximized at the
destination. The selection of the best subset of K nodes out
of a set of N potential relays with individual relay power
constraints is a NP-hard problem which requires an exhaustive
search over all the possible sparsity patterns. In order to reduce
the computational burden, this paper proposes a sub-optimal
method which exhibits a performance which is very close
to the SNR-optimal multiple relay scheme with a reduced
complexity. The proposed method is based on the knowledge
of the second-order statistics of the CSI and in contrast to
other approaches in the relay selection literature [9], [12]–[14],
in the technique proposed herein, the relays are not limited
to cooperate only with full power. Interestingly enough, this
optimization leads to results in which the powers of the
selected set of relays do not correspond to the maximum
allowable values. The proposed algorithm is based on the
Charnes-Cooper transformation and the l1-norm squared [15],
a surrogate of the l0-norm which enforces zeros in the re-
lay powers, and naturally yields a semidefinite programming
problem (SDP).

It is important to remark that the sparse multiple relay
selection problem described in this paper does not belong
to the class of the so-called sparse recovery problems in
which a solution vector with few non-zero elements has to
be estimated and the conditions that ensure the exact recovery
of the true sparsity pattern need to be studied. The adjective
sparse herein relates to the fact that the algorithm proposed for
the selection of the relays uses a sparsity-inducing norm, the
l1-norm squared, that promotes the appearance of zeros in the
final solution and consequently performs the subset selection.

The paper is organized as follows. Section II describes
the signal model and presents the multiple relay selection
problem. The algorithm proposed for the selection of the
cooperating nodes is derived in Section III and the analysis
of its performance is shown in Section IV. Finally, some
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Fig. 1: Wireless relay network

concluding remarks are provided in Section V.
Notation: In the following, matrices and vectors are de-

noted by boldface uppercase letters and lower case letters,
respectively; For a given matrix A,AH , Tr{A}, rank(A), |A|,
‖A‖22 denote the conjugate transpose, the trace, the rank, the
element-wise absolute value and the square of the Frobenius
norm, respectively. Aij stands for the element in the ith row
and jth column of A.The kth element of a vector x is denoted
by xk. The Euclidean norm of this vector is ‖x‖2 and ‖x‖1
is the l1-norm. Finally, for a set S, |S| denotes its cardinality
and S(i) stands for the ith element of the set.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a two-hop wireless cooperative network which
consists of a source, a destination and N potential relays as
it is shown in Fig. 1. Each of the nodes of this scheme is
equipped with a single antenna. For sake of simplicity it is
assumed that due to the poor quality of the channel between
the source and the destination, there is no direct link between
them. The channel between the source and the ith relay and the
channel between the ith relay and the destination are denoted
by hi and gi, respectively.

Even though, the pioneering studies on network relay
beamforming have assumed that the instantaneous CSI is
perfectly known at the relays or at the destination node [16].
Unfortunately, this assumption is often violated in practical
scenarios. To avoid the need to know the instantaneous CSI,
the flat fading channel coefficients {hi}Ni=1 and {gi}Ni=1 can
be modeled as random values. Similar to [3], [17], [18] and
[19], in this paper it is assumed that the joint second-order
statistics of these channels are known at a central node, for
instance, at the destination node, which is the one in charge
of computing the relay weights taking into account past ob-
servations, and then distributing them to the relay nodes via a
dedicated channel. This assumption allows us to consider some
uncertainty in the channel models through introducing the
covariance matrices of the channel gains. Since the coefficients
of the channels are relatively stable in stationary environments
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and can be estimated using past observations, it is reasonable
to assume the availability of the second order statistics of the
channels.

In the scheme presented herein, we have considered a two-
step amplify-and-forward protocol for the communication be-
tween the source and the destination. During the first step (slot)
the source broadcasts the signal

√
Pss to the relays, where Ps

denotes the transmit power and s is the information symbol.
Without loss of generality it is assumed that E{|s|2} = 1. The
signal received at the ith relay is given by

xi =
√
Pshis+ ηi, (1)

where ηi denotes the additive noise at the ith relay whose
variance is known to be σ2

r . In the second step the ith relay
transmits a weighted version of its received signal. This can
be expressed as

yi = wixi. (2)

The received signal at the destination node is given by

r =
√
Ps

N∑
i=1

wihigis+

N∑
i=1

wigiηi + nd, (3)

where nd is the noise at the destination which has a known
variance σ2

d. Note that whereas the first term in (3) corresponds
to the desired signal component, the sum of the second and
the third term is the total noise received at the destination.

A. SNR maximization with individual power constraints with-
out relay selection

The aim of this subsection is to briefly describe the classical
design problem presented in [3]. The maximization of the SNR
at the destination under transmit power constraints at each
relay is given by

max
w

SNR s.t. pi ≤ Pi ∀i = 1, ..., N, (4)

where w = [w1 . . . wN ]
T is the network beamforming vector

and pi and Pi are the actual transmit power and the maximum
allowable transmit power of the ith relay, respectively. Note
that in the problem exposed above relay selection is not
considered.

The expected power of the desired signal component in the
expression (3), that is, the expected power of the first term in
the sum is given by

Pd= E


∣∣∣∣∣√Ps

N∑
i=1

wihigis

∣∣∣∣∣
2
=wHAw, (5)

where A =PsE
{

(h� g) (h� g)
H
}

. In the latter expression,
the operator � represents the Schur-Hadamard product and
h = [h1 . . . hN ]

T , g = [g1 . . . gN ]
T . This matrix can be de-

composed as a diagonal matrix plus a rank-one matrix [18]
(DPR1). Assuming that the coefficients of the backward and
the forward channels, {hi}Ni=1 and {gi}Ni=1, are statistically
independent, the (i, j)th element of A, denoted by Ai,j , can
be expressed as follows

Aij=

{
PsE{ |hi|2 }E{ |gi|2 } if i = j
PsE{hi}E{gi}E{h

∗
j}E{g

∗
j} ∀i 6= j.

(6)

Let h̄i = E{hi}, ḡi = E{gi}, αi = E{
∣∣hi − h̄i∣∣2} and

βi = E{|gi − ḡi|2}. It is straightforward to rewrite A as

A = Λ + vvH , (7)

with Λ = Psdiag( β1

∣∣h̄1

∣∣2 + α1 |ḡ1|2 + α1β1, ...,βN
∣∣h̄N ∣∣2 +

αN |ḡN |2 + αNβN ) and v =
√
Ps[h̄1ḡ1, ...,h̄N ḡN ]T .

The total noise power, denoted as Pn, is defined as

Pn=E


(

N∑
i=1

wigiηi+nd

) N∑
j=1

wjgjηj+nd

∗ . (8)

Assuming that ηi is a zero-mean additive noise and that
{ηi}Ni=1 and nd are mutually independent random variables,
then the noise power can be formulated as

Pn=wHBw + σ2
d. (9)

where

B= σ2
rdiag(E{ |g1|2 }, E{ |g2|2 }, . . . , E{ |gN |2 }). (10)

Hence, the SNR at destination node is defined as

SNR =
Pd

Pn
=

wHAw

wHBw+σ2
d

. (11)

In order to specify the power constraints at the relays in (4),
the average transmit power of the ith relay, denoted as pi, is
defined as follows

pi= E
{
|xi|2

}
|wi|2 = Dii |wi|2 , (12)

where Dii is the ith element of diagonal of the matrix D given
by

D= P s diag
(
E
{
|h1|2

}
, . . . , E{ |hN |2 }

)
+ σ2

rI. (13)

The maximization of the SNR under individual relay power
constraints exposed in (4) can be formally expressed as

max
w

wHAw

wHBw+σ2
d

s.t. Dii |wi|2≤ P i ∀i = 1, ..., N. (14)

Note that since B is diagonal and A is a diagonal plus rank-
one matrix, the phases of the optimal beamformer only depend
on the entries of the vector v defined in (7). In particular, the
phases of the optimal weights can be obtained as ∠wi = ∠vi,
where vi denotes the ith element of v.

Considering X = wwH , the problem (14) can be rewritten
as

max
X

Tr{AX}
Tr{BX}+σ2

d

s.t. Xii≤ P i/Dii ∀i = 1, ..., N

X� 0; rank(X) = 1, (15)
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where Xii denotes the ith diagonal element of X. Following
the idea of semidefinite relaxation and dropping the non-
convex rank constraint, the problem presented above can be
relaxed as follows

max
X,t

t

s.t. Tr{X(A−tB)} ≥ σ2
dt

Xii≤ P i/Dii ∀i = 1, ..., N ; X� 0. (16)

The latter problem is quasiconvex and the standard approach
is to solve it by means of a bisection search method in which
the optimal solution is obtained iteratively after solving a
sequence of (often many) semidefinite programming problems
(for further information see reference [3]).

B. Multiple relay selection for SNR optimization with individ-
ual constraints

Let us consider the joint problem of selecting the best
subset of K nodes out of the set of N potential relays and
the estimation of the weights which maximize the SNR at
the destination, subject to individual power constraints at the
relays. Mathematically, this problem can be expressed as

max
w

wHAw

wHBw+σ2
d

s.t. Dii |wi|2≤ P i ∀i = 1, ..., N

card(w) = K, (17)

where K > 0 is a given constant and card(w) = K is the
number of non-zero coefficients in the vector w. It is worth
mentioning that adding zeros in the network beamforming
vector is equivalent to selecting the best subset of relays.
Note that the k-th relay is excluded from the transmission
if the k-th component of the solution vector w is equal to
zero. The problem in (17) is a NP-hard problem and requires
an exhaustive search over all the possible

(
N
K

)
sparsity

patterns. This search is computationally unaffordable and this
fact motivates the pursuit of an efficient algorithm with a near-
optimal performance.

III. THE PROPOSED METHOD

A. Selection of the subset of relays

The problem considered in (17) is non-convex and the aim
of this subsection is to derive a convex relaxation of this
problem in order to obtain a new algorithm with a lower com-
putational complexity. The traditional way of deriving convex
approximations of cardinality-constrained problems in combi-
natorial optimization is to replace the cardinality operator by
the l1-norm [20], [21], defined as ‖w‖1 =

∑i=N
i=1 |wi|. As it

is well-known, the l1-norm is the tightest convex relaxation
of the cardinality operator [21] and has a sparsifying effect
that has long been observed in statistics and signal processing
[22]. Nonetheless, a different approach is considered in this
paper. Similar to [15] and [23], the l1-norm squared, denoted
as ‖w‖21, is considered instead of the traditional l1-norm. The
rationale behind the use of the l1-norm squared as a surrogate

of the cardinality is twofold. First, it is a sparsity-inducing
norm which encourages the appearance of null components in
the network beamforming vector and, consequently, performs
the subset selection. Second, the problem that results after
considering the l1-norm squared naturally yields a semidefinite
programming relaxation, something that is not obvious when
the l1-norm is considered instead. Therefore, let us relax the
problem presented in (17) rewriting it in terms of the l1-norm
squared

max
w

wHAw

wHBw+σ2
d

(18a)

s.t. Dii |wi|2≤ P i ∀i = 1, ..., N (18b)

‖w‖21 ≤ γ, (18c)

where γ is a positive parameter that controls the sparsity of
the beamforming vector, i.e., the number of active components
in w. Let us skip now the discussion about how to adjust the
parameter γ to properly perform the subset selection. Later, in
the following subsection, this problem will be addressed and
it will be explained how to adjust the parameter γ to obtain a
solution of (18) with only K active entries.

Unfortunately, the problem in (18) is still NP-hard and this
motivates the use of a semidefinite relaxation to handle it.
First, let us define X , ww

H ∈ H+
N , i.e., a N × N Hermitian

positive semidefinite matrix. Then, the constraint (18c) can be
rewritten as

‖w‖21 =
(∑N

i=1 |wi|
)2

= 1T
N |X|1N , (19)

where |X| denotes the element-wise absolute value of the
matrix X and 1N the all-one column vector of length N . By
substituting the l1-norm squared by its equivalent formulation
(19), the problem in (18) can be expressed as

max
X

Tr{AX}
Tr{BX}+σ2

d

s.t. Xii≤ qi ∀i = 1, ..., N

1T
N |X|1N ≤ γ; X� 0

rank (X) = 1, (20)

where qi is the ith component of the vector q defined as
q = [P1/D11, ..., PN/DNN ]T . By dropping the rank-one
constraint the following problem is obtained

max
X

Tr{AX}
Tr{BX}+σ2

d

(21a)

s.t. Xii ≤ qi ∀i = 1, ..., N (21b)

1T
N |X|1N ≤ γ; X� 0. (21c)

Unfortunately, the semidefinite relaxation does not immedi-
ately yield a semidefinite programming. Due to the fractional
structure of its objective (21a), this problem is a quasi-convex
problem in the variable X. The standard approach for solving
this type of problems in the signal processing literature is
to use a bisection search method [3], [24] in which the
solution is sequentially searched by solving a sequence of
(often many) semidefinite programming problems. A different
approach has been considered herein. The main idea is to
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reformulate the quasi-convex problem presented in (21) into a
convex semidefinite problem using a slight modification of the
conventional Charnes-Cooper transformation [25]. Consider
the following transformation of variables:

z =
1

Tr{BX}+σ2
d

, Y =
X

Tr{BX}+σ2
d

= zX. (22)

By using (22), the quasi-convex problem (21) can be rewrit-
ten as the following semidefinite program (SDP)

max
Y, z

Tr{AY} (23a)

s.t. Yii≤ z qi ∀i = 1, ..., N (23b)

1T
N |Y|1N ≤ zγ (23c)

Tr{BY}+σ2
dz = 1 (23d)

Y� 0; z ≥ 0, (23e)

with z ∈ R and Y ∈ H+
N=

{
Y ∈ CNxN |Y = YH ,Y �0

}
,

under the assumption that the optimal solution, denoted by
(Y∗, z∗), has z∗ > 0. Actually, z∗ = 0 cannot be a solution
of this problem, because if z∗ = 0, then according to (23c), we
have Y∗ = 0, which violates the constraint (23d). This proves
the equivalence between the quasi-convex problem in (21) and
the SDP presented in (23). Hence, if (Y∗, z∗) is the optimal
solution of (23), then X∗= Y∗/z∗ is the optimal solution of
(21). The problem presented in (23) can be solved using the
standard interior point methods implemented in solvers such
as SeDuMi [26].

To determine the subset of selected nodes the following
procedure is considered. The non-zero elements of diagonal
Y∗ correspond the selected relays. On the contrary, the null
diagonal entries correspond to the relays that should be left
out of the transmission. Note that since the active elements of
the diagonal of Y∗ are the same than those of the matrix X∗,
then the change of variables does not need to be undone.

B. Computation of the network beamforming weights

Once the subset of K relays is selected, the network
beamforming weights which maximize the SNR have to be
computed. Due to the influence of the l1-norm squared behind
the constraint (23c), these weights cannot be directly extracted
from the solution of (23). To compute the beamformer weights
this constraint and the subset of inactive relays have to be
removed from this problem. Let us denote by S ⊆ {1, . . . , N}
the subset of K nodes selected for the retransmission and by
w̃ =

[
wS(1), ...,wS(K)

]T
the weights of the active relays. To

find the coefficients of the optimal beamforming, the following
reduced-size problem has to be solved:

max
Ỹ, z

Tr{ÃỸ} (24a)

s.t. Ỹii≤ z q̃i ∀i = 1, ...,K (24b)

Tr{B̃Ỹ}+σ2
dz = 1 (24c)

Ỹ� 0 (24d)
z ≥ 0, (24e)

where Ã and B̃ are the submatrices of A and B formed by
selecting the rows and columns which correspond to the active

relays. Note that B̃ and Ã preserve the special structure of
the original matrices, i.e., B̃ is a diagonal matrix and Ã is
DPR1 which can be decomposed as Ã = Λ̃ + ṽṽH , with
obvious definitions of Λ̃ and ṽ. In the same way, q̃i denotes
the ith entry of the vector q̃ which is obtained by removing
the inactive relays from the vector q. Note that Ỹ is a square
matrix of size K formed by the active rows and columns of
Y.

Theorem 1: At least one of the inequalities in (24b) has to
be fulfilled with equality.

Proof: See Appendix A.

Due to the semidefinite relaxation, the solution of the
problem described above may not be rank-one in general.
Interestingly, it can be proved that: i) when Ã is a diagonal
matrix the solution of the problem (24) can be computed
exactly by means of a linear programming problem (LP); ii)
when the matrix Ã is not diagonal the beamformer weights
can be extracted from the diagonal elements of the solution.
Notice that no eigendecomposition or randomization is needed
to extract the coefficients. In what follows both cases are
analyzed.

When the matrix Ã is diagonal, it is straightforward to
rewrite the problem in (24) as the following linear program-
ming problem

max
u∈RK ,z

aTu

s.t. ui≤ z q̃i ∀i = 1, ...,K

bTu+σ2
dz = 1

ui ≥ 0 ∀i = 1, ...,K; z ≥ 0, (25)

where vectors a and b contain the diagonal entries of the
matrices Ã and B̃ respectively, i. e., a = [Ã11, ..., ÃKK ]T ,
b = [B̃11, ..., B̃KK ]T and the ith entry of the vector u

is given by ui = z
∣∣wS(i)

∣∣2. Note that when Ã is a
diagonal matrix, the maximization of the SNR does not
depend on the phase of the beamforming vector. Thus,
the optimal beamformer can be directly obtained as w̃ =
[
√
u1/z, ...,

√
uK/z]

T
.

If the matrix Ã is not diagonal but fulfills the condition
exposed in the following theorem, the solution of the problem
exposed in (24) always has rank one.

Theorem 2: If the matrix Ã is not diagonal, but all the
elements of the vector ṽ are different from zero and (Ỹ∗, z∗)
is the solution of the problem in (24), then Ỹ∗ has rank one.

Proof: See Appendix B.

If the conditions exposed in the last theorem are fulfilled, w̃
can be obtained directly from the eigendecomposition of the
rank-one matrix Q = Ỹ∗/z∗. Nonetheless, the computational
cost of the eigendecomposition can be avoided as is described
next. Since the phase of the complex weights can be obtained
from ṽ by considering ∠w̃i = ∠ṽi, where w̃i and ṽi denote
the ith entries of the vectors w̃ and ṽ, respectively, then it
only remains to compute their moduli. These can be obtained
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from the elements of the diagonal of the matrix Q. Therefore,
it is straightforward showing that the ith entry of wS is given
by

w̃i =

√
Ỹ ∗ii
z∗
ej∠ṽi ∀i = 1, ...,K, (26)

If some of the entries of ṽ are zero, the optimal weights can
be obtained in a similar way. This is justified by the following
theorem.

Theorem 3: If some of the elements of ṽ are zero and
(Ỹ∗, z∗) is the solution of (24), then the ith entry of w̃ is
given by:

w̃i =


√

Ỹ ∗
ii

z∗ if ṽi = 0√
Ỹ ∗
ii

z∗ e
j∠ṽi if ṽi 6= 0.

(27)

Proof: See Appendix C.

This result can be seen as a generalization of (26) if one
assume that ∠ṽi = 0 when ṽi = 0. Notice that even if
Ã is not diagonal the entries of the vector can be directly
obtained from the solution of (24) and no randomization or
eigendecomposition is needed.

A direct consequence of the Theorems 1-3 is that at least
one of the relays has to transmit with the maximum allowable
power.

C. Parameter selection

A crucial part of the algorithm is the proper choice of
the parameter γ in (23c) because it performs the selection
of the subset of relays. This parameter controls the amount
of shrinkage applied to the estimates and, consequently, the
number of the active nodes in the optimal beamformer. It is
worth noting that sparser solutions are obtained when γ is
decreased. The goal of this subsection is to propose a method
based on a binary search over the parameter γ that successively
increase the sparsity of the vector w until the desired number
of relays is selected.

Recall the inequality in (18c), i.e., ‖w‖21 ≤ γ and consider
the following useful bounds on the l1-norm squared [27]

‖w‖22 ≤ ‖w‖
2
1 ≤ K ‖w‖

2
2 . (28)

This last expression connects the l1-norm squared with the
l2-norm and the desired cardinality of the vector w, which
is K. First of all, we need to determine an initial value of
the parameter γ in the binary search procedure. This value,
which is denoted by γmax, has to ensure that the obtained
solution will have, at least, K active relays. With this aim
in mind let us focus on the right side of the inequality, i.e.,
‖w‖21 ≤ K ‖w‖22. If an upper bound on l2-norm squared of
w can be determined, it can be used to compute γmax. To
obtain this bound consider the problem in (24) assuming that
all the relays are active, i.e., consider Ã = A and B̃ = B
and q̃ = q and let w(0) be the optimal beamformer obtained
from the solution of this problem. From (18c) and (28), it is

clear that γ = K
∥∥w(0)

∥∥2

2
ensures that at least K relays will

be active. This is due to the fact that by decreasing γ one is
also decreasing ‖w‖21 and, consequently, ‖w‖22. Thus, γmax =

K
∥∥w(0)

∥∥2

2
will be used as initial value in the search process.

Unfortunately, γ = γmax often enforces solutions with more
than K active entries in the solution vector. Therefore, we need
to decrease the parameter γ by considering a binary search
until a solution with the desired number of active relays is
obtained. The whole algorithm is summarized in the following
subsection. Note that this binary search requires solving the
problem in (23) for different values of γ until a solution with
the desired degree of sparsity is obtained. Nevertheless, the
number of semidefinite programming problems which needs
to be solved with this binary search is far less than in the
exhaustive search which requires solving

(
N
K

)
problems of

type (24). This fact will be further analyzed in Section IV.

D. Description of the algorithm

The whole method is summarized in Algorithm 1.

Algorithm 1 Proposed method
STEP 1) INITIALIZATION: Solve (24) assuming that all the relays
are active and obtain w(0). Initialize the values for the binary

search: γmax = K
∥∥∥w(0)

∥∥∥2

2
, γlow = 0, γ = γmax.

STEP 2) SELECTION OF THE SUBSET OF RELAYS:
while number of active relays6= K do

A) Solve (23) for the corresponding γ and determine the active
relays (non-zero entries of the diagonal of Y)
B) Compute the new value of γ as follows
if number of active relays > K then
γup = γ and γ ← (γlow + γ)/2

else
if number of active relays < K then
γlow = γ and γ ← (γup + γ)/2

end if
end if

end while

STEP 3) COMPUTATION OF THE WEIGHTS: Solve the
reduced-size problem (24) with the selected subset and extract the
weights w̃.

E. Relationship between total relay transmit power and pa-
rameter γ

To analyze this relationship let us explore the expression of
the total relay transmit power which is given by

PT =
∑i=N

i=1 |yi|
2

=
∑i=N

i=1 E
{
|xi|2

}
|wi|2 = wHDw,

(29)
where yi and the diagonal matrix D have been defined
in (2) and (13) respectively. Applying the Cauchy-Schwarz
inequality

PT = wHDw =
∥∥∥D1/2w

∥∥∥2

2
≤
∥∥∥D1/2

∥∥∥2

2
‖w‖22 . (30)
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Bearing in mind (30), the left side inequality in (28) and (18c),
it is straightforward to show

PT ≤
∥∥∥D1/2

∥∥∥2

2
‖w‖22 ≤

∥∥∥D1/2
∥∥∥2

2
‖w‖21 ≤

∥∥∥D1/2
∥∥∥2

2
γ. (31)

From this inequality one can conclude that if the parameter γ
is shrunk to promote the desired degree of sparsity, the power
transmitted by the relays PT is also decreased.

IV. NUMERICAL RESULTS

The goal of this section is to analyze the performance
of the algorithm exposed above by numerical simulations.
To solve the semidefinite problems presented in (23) and
(24), CVX [28], a MATLAB package for disciplined convex
programming, is used. Next, we describe the set of parameters
considered throughout the simulations.

The first scenario under consideration is a wireless network
composed of a source, which transmits with a power Ps =
0 dBW, a destination and N = 20 potential relays whose
individual power constraints are uniformly given by

Pi =
P

N
(in W) for i = 1, ..., N. (32)

with P = 20 W (which implies Pi = 0 dBW). The noise
variances are set to σ2

d = σ2
r = −3 dBW.

Figure 2 plots the achieved SNR as a function of the number
of selected relays K. The curves were obtained by averaging
the results of 1000 independent simulation runs. In each trial,
the means and the variances of the flat fading channels were
generated randomly as follows:

h̄i, ḡi ∼ CN (0, 1) for i = 1, ..., N
αi, βi ∼ 1

2X
2(2) for i = 1, ..., N

(33)

where X 2(2) denotes the chi-square distribution with two
degrees of freedom. The parameters h̄i, αi, ḡi and βi denote
the mean and the variance of the i-th element of h and g,
respectively, as has been exposed in (7). In each trial, the ma-
trices A, B and D have been generated according to the values
of the paramaters presented above. In particular, the matrix
A is generated following the expression (7) and B is created
according to (10), with E{|gi|2} = |ḡi|2 + βi. Regarding the
matrix D, it is formed as in (13), with E{|hi|2} =

∣∣h̄i∣∣2 +αi.
As can be seen from Figure 2, the proposed method clearly

outperforms the random selection of the relays and achieves a
performance in terms of end-to-end SNR that is very close to
that of the exhaustive search, requiring far less computational
complexity. This fact will be analyzed later.

To gain further insight into the approximation quality of the
solution described in this paper, Figure 3 plots the averaged
and the maximum approximation ratios as a function of the
number of selected relays. The approximation ratio is a com-
mon way to measure the quality of convex approximations in
combinatorial problems and is defined as the ratio between the
optimal SNR, obtained by computing the exhaustive search,
and the SNR obtained by the solution of the relaxed problem
w̃. Note that the approximation ratio parameter is always
greater than or equal to one and is equal to one if the relaxed
problem attains the same objective value as the optimal-SNR
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Fig. 2: SNR at the receiver as a function of the number of selected relays K
with uniform power constraints. Pi = 0 dBW, σ2

d = σ2
r = −3 dBW. Average

of the results of 1000 independent trials.
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Fig. 3: Empirical approximation ratio as a function of the number of selected
relays.

scheme. The proposed method clearly provides high quality
approximate solutions, in terms of both the averaged and the
worst case perfomance, and is close to the optimal for the all
the possible cooperative sizes.

Regarding the computational complexity, Table Ia shows the
mean number of semidefinite programming problems required
to select the appropriate number of relays during the binary
search procedure. Note that the number of iterations for each
K is always less than the total number of potential relays N .
To get further insight about the reduction of the computational
complexity, consider, for instance, the selection of the best
subset of 12 nodes out of a potential set of 20 relays. An
exhaustive search in this case requires solving 125970 SDP.
Nonetheless, the proposed technique needs to solve less than
7 SDP problems in mean (less than 6 for the selection of the
subset plus 1 for the computation of the optimal weights).
Furthermore, the worst case required the computation of 15
SDP problems which is far less than the number of SDP
needed by the exhaustive search.

In order to analyze the performance of the method for
different individual power values, Figure 4 plots the achieved
SNR versus the individual power constraints for different
values of K. In this case, the value of the uniform power
constraints presented in (32) is varied. Note that the proposed
algorithm exhibits a good performance and is close to the
optimal solution for all the possible individual power levels.

Next, we investigate the performance of the algorithm when
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K
Mean num. it.

Prop. meth.
Num. SDP
Exhaustive

2 6.35 190
3 7.08 1140
4 7.11 4845
5 6.94 15504
6 6.63 38760
7 6.46 77520
8 6.14 125970
9 6.09 167960

10 6.13 184756
11 6.09 167960
12 5.66 125970
13 5.52 77520
14 4.99 38760
15 4.96 15504
16 4.52 4845
17 4.19 1140
18 3.56 190
19 3.56 20

(a) N = 20 potential relays and uni-
form power constraints

K
Mean num. it.

prop. meth.
Num. SDP
Exhaustive

2 5.27 45
3 5.40 120
4 5.15 210
5 4.96 252
6 4.65 210
7 4.51 120
8 4.12 45
9 3.67 10

(b) N = 10 potential relays and non-
uniform power constraints

TABLE I: Mean number of SDP problems which needs to be solved during
the binary process as a function of the number of relays.
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Fig. 4: SNR measured at the receiver as a function of the individual power
constraints for different values of K

the number of potential relay nodes increases. With this aim,
we have considered a wireless cooperative network composed
of a source, which transmits with a power Ps = 0 dBW,
N potential relays, with the aforementioned uniform power
constraints and P = 10 dBW, and the noise variances σ2

d,
σ2
r are set to −3 dBW. Figure 5 shows the averaged and

the maximum approximation ratio as a function of the total
number of potential relays N when the size of the cooperative
group is fixed to K = N/7. As can be seen from Figure 5,
the described technique is close to the optimal solution for all
the network sizes and delivers high approximate solutions in
both the averaged and the worst case perfomance.
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Fig. 5: Approximation ratio as a function of the total number of potential
relays. N ∈ [14, 21, 28, 35, 42], K = N

7
and P = 10 dBW.
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Fig. 6: Empirical cumulative distribution function of the approximation ratios.
Ps = 0 dBW, N = 35, K = 5, uniform power constraints with P = 10
dBW and σ2

d = σ2
r = −3 dBW.

In order to illustrate the high performance of the algorithm,
Figure 6 shows the empirical Cumulative Distribution Function
(CDF) of the approximation ratios in the previous scenario
for the case N = 35 and K = 5. Notice that the proposed
algorithm achieves ratios that are close to the optimal value
with a high probability and clearly outperforms the random
selection of the subset of cooperative nodes.

Next, we consider a numerical example with non-uniform
power constraints. In this case the individual constraints are
set to

Pi = i
2P

N(N + 1)
(in W) for i = 1, ..., N. (34)

Notice that the sum of individual power constraints is equal
to P , as in the previous examples. For the new scenario the
number of potential relays is N = 10, the rest of parameters
are set to Ps = 3 dBW, σ2

d = σ2
r = 0 dBW and P = 20W.

The results presented below are obtained by averaging the
results of 1000 simulation runs and at each trial the matrices
A, B and D have been generated according to the procedure
described above.

Figure 7 and Table Ib show the achieved SNR and the
mean number of SDP problems which needs to be solved
as a function of the number of selected relays, respectively.
As in the uniform-constrained case, the described technique
achieves a near-optimal performance with a low computational
burden. Regarding the computational complexity, the worst-
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Fig. 7: SNR measured at the receiver as a function of the number of selected
relays K. 10 relays and non-uniform power constraints.

case scenario required 14 iterations and was obtained for
K = 6.

V. CONCLUSIONS

A new method which deals with the problem of multiple re-
lay selection under per-relay power constraints was presented
in this paper. In particular, we have addressed the joint problem
of selecting the best subset of cooperative nodes and their
corresponding beamforming weights so that the end-to-end
SNR is maximized. The optimal solution of this problem is
computationally demanding and requires an exhaustive combi-
natorial search. In order to reduce the computational burden,
this paper has proposed a sub-optimal method with a near-
optimal performance and a feasible computational complexity.
Our approach is based on the knowledge of the second-order
statistics of the CSI and the relays are not limited to cooperate
at full power.

APPENDIX A
PROOF OF THEOREM 1

Since the maximization problem presented in (24) is convex
and feasible, the KKT conditions [24] are necessary and
sufficient conditions for the optimality. Let

(
Ỹ∗, z∗

)
be the

solution to (24), then the KKT conditions of this problem are

−Ã +

K∑
i=1

λiJi + µB̃−Φ = 0 (35a)

−
K∑
i=1

λiq̃i + µσ2
d − δ = 0 (35b)

Tr{JiỸ
∗} − z∗q̃i ≤ 0 ∀i = 1, ...,K (35c)

Tr{B̃Ỹ∗}+ σ2
dz
∗ − 1 = 0; Ỹ∗� 0; z∗≥ 0 (35d)

λi ≥ 0 ∀i; Φ� 0 (35e)

λi

[
Tr{JiỸ

∗} − z∗q̃i

]
= 0 ∀i = 1, ...,K (35f)

Tr{ΦỸ∗} = 0 (35g)
δz∗ = 0, (35h)

where Ji is a single-entry matrix, with zeros in all the entries
except for the (i, i)th element which is equal to one. The
parameters λi, µ, Φ and δ are the Lagrange multipliers
associated with the constraints (24b)-(24e) respectively.

As it was discussed in the subsection III-A, z∗ = 0 cannot
be a solution of the problem (23), and this imposes δ = 0
in the equation (35h). Consider that all the relays do not
use their maximum power in the retransmission. Taking into
account (35f), this implies λi = 0 ∀i. Consequently, as δ = 0,
λi = 0 ∀i, it is clear from (35b) that µ = 0. Bearing in mind
these values, equation (35a) can be rewritten as Φ = − Ã
which does not make sense because Φ� 0 and Ã� 0.

APPENDIX B
PROOF OF THEOREM 2

Recall the KKT conditions presented in Appendix A (35a)
- (35h). Taking into account (35g), as Φ� 0 and Ỹ∗� 0, then
it is clear that ΦỸ∗= 0. As the matrices Ỹ∗ and Φ are square
matrices of size K x K, then the Sylvester’s rank inequality
holds (Section 10.5.1 of [29])

rank(ΦỸ∗) ≥ rank(Φ)+ rank(Ỹ∗)−K. (36)

As the rank(ΦỸ∗) = 0, then

rank(Ỹ∗) ≤ K − rank(Φ). (37)

To determine the rank(Ỹ∗) we need to compute the rank(Φ).
With this aim let us recall (35a). As the matrix Ã can be
expressed in terms of the sum of diagonal matrix plus a rank-
one matrix (7) Ã = Λ̃ + ṽṽH . Then equation in (35a) can be
rewritten as [

K∑
i=1

λiJi − Λ̃ + µB̃

]
− ṽṽH = Φ. (38)

Note that the matrix
K∑
i=1

λiJi − Λ̃ + µB̃ is a diagonal matrix.

Now let us prove that the entries of this matrix are all greater
than zero. To prove that fact, consider that the ith element

of diagonal of the matrix
K∑
i=1

λiJi − Λ̃ + µB̃ is less than or

equal to zero and consider a single-entry vector si with all
the elements equal to zero except for the ith element which
is equal to one. If all the entries of the vector ṽ are different
from zero, then sHi ṽṽHsi > 0 and consequently,

sHi Φsi = sHi

[
K∑
i=1

λiJi − Λ̃ + µB̃

]
si − sHi ṽṽHsi < 0.

(39)

However, this violates Φ� 0. Therefore, Ψ =

K∑
i=1

λiJi− Λ̃ +

µB̃ � 0 because Ψ is a diagonal matrix with positive entries.
Furthermore, it follows from this statement that

rank(Ψ) = K. (40)

This result will be important in the computation of rank(Φ).
At this point let us recall the expression (38). Using
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the following result in matrix theory [29] rank(U + V) ≤
rank(U)+rank(V), it is straightforward to rewrite rank(Φ) in
terms of the next inequality

rank(Φ) ≥ rank(Ψ)−rank(ṽṽH) = K − 1 (41)

Thus, from the expressions (37) and (41) it follows that

rank(Ỹ∗) ≤ K − rank(Φ) ≤ K −K + 1. (42)

Therefore, since Ỹ∗= 0 cannot maximize the objective func-
tion (24), we can conclude that rank(Ỹ∗) = 1.

APPENDIX C
PROOF OF THEOREM 3

If some of the elements of ṽ are zero, the SDP problem
in (24) can have a solution (Ỹ∗,z∗) where the rank of Ỹ∗

is greater than one. Nevertheless, if the solution has a rank
greater than one, the rank-one solution can be recovered as it
is proved in this Appendix.

Denote by J the set of inactive components of ṽ, i. e.,
J = {l | ṽl = 0} and let (Ỹ∗,z∗) be the solution of (24).
Consider a matrix C defined as

Clk=

{
Ỹ ∗lk if l = k or l, k /∈ J
0 otherwise,

(43)

where Clk denotes the (l, k)th element of the matrix C. It
can be proved that (C,z∗) is also a feasible point of (24) that
achieves the same objective value as (Ỹ∗,z∗). To prove this,
first of all, let us decompose C as follows:

C = E + F, (44)

where E is a sparse matrix whose active components are the
entries of the diagonal corresponding to the elements of the
set J

Ell=

{
Ỹ ∗ll if l ∈ J
0 otherwise,

(45)

and F a matrix whose (l, k)th entry is given by

Flk=

{
Ỹ ∗lk if l /∈ J, k /∈ J
0 otherwise.

(46)

Recall that the aim of this appendix is to prove that even if
Ỹ∗ has a rank greater than one, the rank-one solution can
be recovered directly from Ỹ∗ and z∗ and no randomization
or eigendecomposition is needed. The following lemma is the
key point of the proof.

Lemma 1: If (Ỹ∗,z∗) is the solution of the SDP in (24), then
(C,z∗) is a feasible point which achieves the same objective
value as (Ỹ∗,z∗). Furthermore, C can be decomposed as
C = E + F, where E and F the matrices exposed above, and
F is a rank-one matrix.

Proof: See Appendix D.

The proof of the first part of the lemma is based on fact
that C differs from Ỹ∗ only at the entries given by (l, k) with
l, k ∈ J and l 6= k. Due to this fact, (C,z∗) is a feasible point
which attains the same objective function. Furthermore, since
F is a rank-one matrix, it can be decomposed as F = ffH .

Consider H , hh
H

, where h is a vector whose lth entry is
given by

hl=

{ √
Ỹ ∗ll if l ∈ J

fl otherwise,
(47)

where fl denotes the lth element of f . Following an analysis
similar to the proof of Lemma1 it is straightforward showing
that (H,z∗) is a feasible point that achieves the same objective
value as (Ỹ∗,z∗). The key point of this proof is that H
differs from Ỹ∗ only at the entries given by (l, k) with
l, k ∈ J and l 6= k. Bearing in mind that fact and since H is
rank one, the optimal beamformer can be recovered from the
eigendecomposition of H/z∗, i. e., w̃ = h/

√
z∗. Thus, the

optimal weights can be obtained as

w̃l=

{ √
Ỹ ∗
ll

z∗ if l ∈ J
fl√
z∗ otherwise.

(48)

Notice that the moduli of the diagonal entries of F (46)
not belonging to J can be directly extracted from Ỹ∗. As

a consequence, |fl| =
√
Ỹ ∗ll for l /∈ J . It only remains

to compute the phases and they can be obtained from the
components of ṽ. Therefore, the next result is obtained:

w̃l=


√

Ỹ ∗
ll

z∗ if l ∈ J√
Ỹ ∗
ll

z∗ e
j∠ṽl otherwise,

(49)

where ṽl denotes the lth element of ṽ. This concludes the
proof of the theorem.

APPENDIX D

PROOF OF LEMMA 1
To prove the first part of the lemma, i.e., to prove that

(C,z∗) is a feasible point that achieves the same objective
value as (Ỹ∗,z∗) we need to show that:

1) Tr{ÃỸ∗} =Tr{ÃC}
2) Cii = Ỹ ∗ii≤ z∗ q̃i ∀i = 1, ...,K
3) Tr{B̃Ỹ∗}+ σ2

dz
∗ =Tr{B̃C}+ σ2

dz
∗ = 1

4) C� 0

Let us analyze it point by point:
1) Tr{ÃỸ∗} =Tr{ÃC} implies Tr{Ã(Ỹ∗−C)} =0.

Considering (7), this can be rewritten as fol-
lows Tr{(Λ̃+ṽṽH)(Ỹ∗−C)} =Tr{(Λ̃(Ỹ∗−C)} +
Tr{ṽṽH(Ỹ∗−C)} = 0. The matrix Ỹ∗−C has
all null entries except for the elements (l, k)th and
(k, l)th ∀k, l ∈ J with k 6= l. And it is straightforward to
show that Tr{(Λ̃(Ỹ∗−C)} =0 and Tr{ṽṽH(Ỹ∗−C)}
=0.

2) The diagonals of the matrices Ỹ∗ and C have the same
elements and then Cii = Ỹ ∗ii , then it is straightforward
to show the inequality.

3) B̃ is diagonal and the diagonals of Ỹ∗ and C have the
same elements. Thus, Tr{B̃Ỹ∗} = Tr{B̃C}, and then
this point is proved.

4) Recall (44), C = E + F. Since E is a diagonal matrix
and the elements of the diagonal are zero or positive,
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then E� 0. Furthermore, F is obtained by putting to
zero the rows and the columns of Ỹ∗ which correspond
to the inactive components of ṽ. Since all the principal
minors of the semidefinite matrix Ỹ∗ are also semidefi-
nite. Then, F� 0 and as the sum of semidefinite matrices
is also semidefinite, we obtain C = E + F� 0.

Once it has been proved that (C,z∗) is feasible solution,
we need to prove that F is a rank-one matrix. With this aim
in mind, let us define the following variables:
• F̆ is the matrix constructed by deleting the lth row and

the lth column of F ∀l ∈ J.
• Λ̆ is the diagonal matrix formed by deleting the lth row

and the lth column of Λ̃∀l ∈ J.
• B̆ is the diagonal matrix formed by deleting the lth row

and the lth column of B̃∀l ∈ J.
• v̆ is the vector constructed by deleting lth element of ṽ
∀l ∈ J.

Notice that F̆, Λ̆ and B̆ are square matrices of size K−|J |
and v1 is a vector of length K − |J |. It can be shown that F
is rank one because F̆ is rank one. With this end in mind, let
us rewrite the objective function presented in (24a) in terms
of F̆ and v̆. Using the point 1 exposed above and the equality
in (44), the objective function can be rewritten as

Tr{ÃỸ∗} = Tr{ÃC} = Tr{Ã(E + F)} =Tr{ÃE}+Tr{ÃF}
=Tr{ÃE}+Tr{(Λ̆ + v̆v̆H)F̆}. (50)

The second line in (50) follows from the fact the matrix F
has zeros in the rows and the columns corresponding to the
elements of the set J . As a consequence, it is straightforward
to show that Tr{ÃF} = Tr{(Λ̆+v̆v̆H)F} =Tr{(Λ̆+v̆v̆H)F̆}.
In the same way, the constraint (24c) can be rewritten in
terms of F̆. Consider the point 3 exposed above, then it is
straightforward to show that

Tr{B̃Ỹ∗}+σ2
dz
∗ = Tr{B̃C}+σ2

dz
∗

= Tr{B̃E}+Tr{B̆F̆}+ σ2
dz
∗. (51)

Thus, the constraint (24c) can be expressed as

Tr{B̃E}+Tr{B̆F̆}+ σ2
dz
∗ = 1. (52)

Based on the analysis above and since (C,z∗), with
C = E + F, is a feasible solution of (24), then F̆ can be
obtained as the solution of the next problem

max
F̆

Tr{ÃE}+Tr{(Λ̆ + v̆v̆H)F̆} (53a)

s.t. F̆ii + EΘ(i)Θ(i)≤ z∗ q̃i ∀i ∈ 1, ...,K− |J | (53b)

Tr{B̃E}+Tr{B̆F̆}+ σ2
dz
∗ = 1 (53c)

F̆� 0 , (53d)

where Θ denotes the set of active components, i.e., Θ =
{l | ṽl 6= 0} and Θ(i) the ith element of the set Θ. Following
an analysis similar to the one exposed in the proof of Theorem
2, we can show that since all the coefficients of v̆ differ
from zero, then F̆ has rank one. Since F can be directly
reconstructed from F̆ by adding some columns and rows of
zeros and adding zero rows and zero columns does not change
the rank of the matrix, the desired result is obtained.
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