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ABSTRACT Heterogeneous cloud radio access networks (H-CRANs), proposed to boost both spectral and
energy efficiency while reducing the signaling overhead, have been regarded as a promising paradigm for
fifth-generation wireless communication systems. To reduce the network power consumption, in this paper,
we propose a joint remote radio head (RRH) activation and outage constrained coordinated beamform-
ing (CoBF) algorithm for massive multiple-input multiple-output H-CRANs. Considering the imperfect
channel state information and power consumption of fronthaul links and individual transmission power
limitations at the RRHs, the downlink network power minimization problem subject to the constraints of
specified outage probabilities at each macro user equipment (MUE) and each RRH user equipment (RUE)
is reformulated. For a given RRH activation set, we first derive a conservative convex approximation for the
outage constraints of RUEs by using semidefinite relaxation and an extended Bernstein-type inequality,
while a closed-form expression is obtained for the outage constraints of MUEs. Then, we reformulate
the nonconvex problem into a semidefinite program. Moreover, we propose a low-complexity algorithm
to perform the joint optimization of the RRH activation and robust CoBF by using the group sparse
beamforming method through the weighted `1/`2 norm reformulation, where the group sparsity patterns
of beamformers are used to guide the RRHs that can be switched off. Simulation results demonstrate that
the proposed algorithm can significantly reduce the network power consumption by 28% in the low signal-
to-interference-plus noise ratio scenario. In addition, the algorithm can approach the system performance of
the exhaustive search algorithm while having a much lower computational complexity.

INDEX TERMS Heterogeneous cloud radio access network, massive MIMO, coordinated beamforming,
semidefinite relaxation, outage probability, group sparse.

I. INTRODUCTION
With the proliferation of smart devices such as smart-
phones and tablets, cellular networks face an exponential
growth of mobile data traffic. The fifth-generation (5G)
wireless communication increasingly deploys advanced tech-
nologies that are expected to address the explosive growth
of mobile traffic and power consumption [1]–[3]. Massive
multiple-input multiple-output (MIMO) and heterogeneous

cloud radio access networks (H-CRANs) are two promis-
ing approaches to provide high capacity and energy effi-
ciency [4]–[6] while reducing the operating expenditures
of a large scale deployed macrocell base stations (MBSs)
and ultra-dense distributed remote radio heads (RRHs) [7],
[8]. In massive MIMO H-CRANs, a high-power MBS with
large-scale antenna array is used to serve the macro user
equipments (MUEs) that are relatively close to the MBS.
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And the abundant degrees of spatial freedom introduced by
massive MIMO can be utilized to alleviate intra-cell and
inter-cell interference. Additionally, the ultra-dense deployed
low-power RRHs with a few antennas are used to serve RRH
user equipments (RUEs) that are close to RRHs. Due to
extensive reuse of limited spectrum resources, the throughput
and reliability of each user can be greatly improved, particu-
larly in hot spots and inside buildings [9], [10]. Meanwhile,
mobile users can be adaptively or simultaneously served by
the RRH and/or MBS, which aim to achieve high data rates
and extensive connectivity with reduced control signaling for
handover.

In view of H-CRANs’ significant superiority in spectrum
efficiency (SE) and energy efficiency (EE), a large number of
studies explored the optimization of SE and EE in H-CRANs
in recent years. Radio resource management plays a crucial
role in achieving the benefits and arouses the primary con-
cern in H-CRANs [11]. A sum-rate maximization involving
power allocation and user association with quality of ser-
vice (QoS) constraints has been investigated in [12], where it
is modeled as a generalized Stackelberg equilibrium problem,
and a distributed algorithm has been proposed. The benefits
and challenges of utilizing resource sharing in H-CRANs
have been investigated in [13]. There, potential technologies
for achieving resource sharing are discussed. Additionally,
potential techniques, performance trade-offs and challenges
are considered in green H-CRANs [14]. Using the variational
inequality theory, Wang et al. [15] propose a distributed
power allocation algorithm that achieves the system’s ergodic
sum-rate maximization.

A massive MIMO H-CRAN is one of promising tech-
niques in 5G networks due to its ability to further boost net-
work performance [16], [17]. For instance, the study of [18]
presents a novel joint optimization of user association and
resource allocation in massive MIMO HetNets. The optimal
user-specific base station clusters and resource allocation are
formulated as a convex network utility function for maximiz-
ing the system EE, and a dual subgradient-based algorithm
is proposed. The EE problem of ON-OFF switching, user
association and power control is studied in an H-CRAN
with massive MIMO [19]. Assuming that the channel state
information (CSI) is limited, several formulations and sched-
ules have been presented for various optimization targets in
massive MIMO systems [20]–[22].

Recently, extensive beamforming designs have been stud-
ied in massive MIMO systems and H-CRANs. In [23],
both EE and the queuing delay are considered jointly in
multimedia H-CRANs, and an average weighted utility func-
tion is formulated to measure the EE performance. Moreover,
the authors propose a real-time global beamforming algo-
rithm based on the Lyapunov optimization framework to
optimize an EE-delay tradeoff. In [24], considering the QoS
constraints of users and the power constraints of RRHs for
the downlink of C-RAN, the problem of joint optimiza-
tion of the transmit beamforming, user grouping and virtual
base station clustering is formulated as a general utility

maximization problem. In addition, coordinated beamform-
ing (CoBF) algorithms based on a successive convex approx-
imation and block successive upper bound minimization are
proposed in [25] and [26], respectively. Ma et al. [27] pro-
pose a two-stage cooperative precoding transmission scheme
based on interference alignment and soft-space-reuse and
then develop an optimal power allocation strategy to max-
imize the total network capacity. A sparse beamforming
design with QoS requirements and power constraints is
investigated in [28] and [29]. In [30], to minimize the net-
work power consumption, a three-stage robust group sparse
beamforming (GSB) algorithm is proposed for the multicast
C-RAN with imperfect CSI. Hybrid beamforming for reduc-
ing power consumption and radio frequency (RF) component
cost has attracted enormous attention in recent years [31].
Several joint RRH selection and beamforming designs have
been developed to optimize the tradeoff between network
power consumption and delay in a downlink slotted C-RAN
in [32] and [33].

The aforementioned studies primarily focus on radio
resource management and various beamforming designs to
optimize SE and EE with QoS and hardware component con-
straints in H-CRANs. However, considering the high com-
plexity of CoBF due to a large scale of antennas at MBS and
a considerable number of RRHs, CoBF is costly in practical
massive MIMO H-CRANs. Furthermore, the lack of existing
studies of the joint RRH activation and outage constrained
beamforming makes the system design much more challeng-
ing. Motivated by the above, we investigate a massive MIMO
H-CRAN with the outage constraints of RUEs and MUEs.
To this end, a joint RRH activation and robust CoBF (JRAR-
CoBF) algorithm is proposed to minimize the total network
power consumption. As illustrated in Fig. 1, an H-CRAN
comprised of a large-scale antenna MBS and a considerable
number of conventional multiple-antenna RRHs is investi-
gated. The formulated total power minimization problem is
intractable because of having no closed-form expressions for
outage probability constraints. The major contributions of the
paper are summarized as follows:
• We formulate the joint RRH activation and outage con-
strained CoBF for the massive MIMO H-CRAN to min-
imize the total power consumption of the network.

• We present conservative convex approximations for
RUEs’ outage constraints. Given a selected RRH set,
the original problem is reformulated to a semidefinite
program (SDP).

• A low-complexity JRARCoBF algorithm is proposed to
address the power consumption minimization problem
in which the GSB method is utilized to assist RRH
selection. The simulation results verify the effectiveness
of the proposed algorithm.

The rest of this paper is organized as follows. Section II
describes the system model and the problem formulation.
The CoBF design with a given RRH selection is proposed
in Section III. A low-complexity JRARCoBF algorithm is
proposed in Section IV. The simulation results are illustrated
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in Section V to verify the efficacy of the proposed algorithm.
Finally, Section VI concludes the paper.
Notation:Cn,Rn andRn

++ denote the sets of n-dimensional
complex, real and positive real vectors, respectively. Cm×n

denotes the set of m × n complex matrices. Sn, Sn+ and
Hn denote the sets of n-dimensional real symmetric matri-
ces, real symmetric positive semidefinite matrices and Her-
mitian matrices, respectively. In denotes an n × n identity
matrix, while e(i) denotes the i-th unit column vector of an
appropriate dimension. (·)T , (·)H , (·)1/2 and Tr(·) denote the
transposition, Hermitian, square root and trace operators of
a matrix or vector, respectively. ‖ · ‖F and ‖ · ‖ denote the
Frobenius and Euclidean norms of a matrix and a vector,
respectively. λmax(U) denotes the maximum eigenvalue of
matrix U; vec(U) denotes a vectorization of matrix U; and
U � 0 denotes that U is a positive semidefinite matrix. Re{·}
represents taking the real part of the argument; {Wi} denotes
the set of all matrices Wi with the subscript i. CN (µ, σ 2)
denotes a complex Gaussian distribution with mean µ and
variance σ 2. CN (u,6) denotes the distribution of a circularly
symmetric complex Gaussian random vector with mean vec-
tor u and covariance matrix 6, and ∼ stands for ‘‘distributed
as’’. Pr{·}, e(·), ln(·) and E[·] denote the probability function,
the exponential function, the natural logarithmic function and
the statistical expectation operator, respectively. b·c repre-
sents rounding to the nearest integer.

FIGURE 1. An illustration of a massive MIMO H-CRAN, where the MBS is
equipped with a large number of antennas and the RRHs are equipped
with a few antennas.

II. SYSTEM MODEL AND PROBLEM FORMULATION
We consider a time-division duplex (TDD) downlink full
spectrum reuse massive MIMO H-CRAN system that con-
sists of an MBS and L RRHs as illustrated in Fig. 1.
We assume that the RRHs are deployed within the coverage
area of the MBS. The MBS and RRHs are connected to the
baseband unit (BBU) pool through the backhaul and fronthaul
links, respectively. The MBS is equipped with NM antennas,
each RRH is equippedwithNR antennas, for a typical massive

MIMO system we assume that NM is much larger than NR.
Define the set of RRHs as L = {1, · · · ,L}; they coopera-
tively serve a set of scheduled RUEs with user-centric cluster-
ing. Moreover, letM = {1, · · · ,M} be the set of MUEs that
are scheduled by theMBS, and I = {1, · · · , I } denote the set
of RUEs scheduled by RRHs. Additionally, let A denote the
set of active RRHs, and A ⊆ L, S denote the set of sleeping
RRHs, A ∪ S = L. Assume that the BBU pool performs
centralized processing of all RUE’s signals and distributes
the data of each RUE to the selected cluster of RRHs via the
fronthaul links, with each RUE being collaboratively served
by the selected cluster.

A. SIGNAL MODELS FOR MUEs AND RUEs
We consider the CoBF in RRHs the probabilistic outage
constraints for RUEs and MUEs when fixed transmit beam-
forming is deployed at the MBS by utilizing zero-forcing
(ZF) beamforming [34]. An opportunistic spatial-temporal
and location-based user scheduling is adopted by steering
the beam direction towards the scheduled users with a good
spatial separation within a certain period of time [35]. Under
the above assumption, the received signal zm at them-thMUE
is given by

zm = gH0mvms0m +
M∑
j 6=m

gH0mvjs0j

+

I∑
i=1

∑
l∈A

hH1lmwlis1i + n0m, (1)

where g0m ∈ CNM denotes the channel vector from the MBS
to the m-th MUE, vm ∈ CNM denotes the corresponding
beamforming vector, h1lm ∈ CNR denotes the channel vector
from RRH l to the m-th MUE, and wli ∈ CNR is the beam-
forming vector for RUE i at RRH l; s0m ∈ C and s1i ∈ C
denote the transmit signals for the m-th MUE, m ∈ M,
and for the i-th RUE, i ∈ I, respectively. Without loss of
generality, we assume that E[|s0m|2] = 1 and E[|s1i|2] = 1.
The term n0m is the additive white Gaussian noise (AWGN)
at MUE m with the distribution CN (0, σ 2

0m).
In downlink massive MIMO systems, ZF beamforming is

able to completely alleviate the interference between MUEs,
potentially performing almost as well as dirty paper cod-
ing (DPC). It is assumed that the channel at the powerful
MBS is perfectly known. We concentrate on adopting the ZF
beamforming, the beamforming matrix V is expressed as

V = GH
(
GGH

)−1
= [v1, v2, · · · , vM ] , (2)

whereG = [g01, g02, · · · , g0M ] denotes the channel matrix
from the MBS to all MUEs, and vm accounts for a column
vector of V. With ZF beamforming at the MBS, the interfer-
ence across different MUEs is completely eliminated. There-
fore we have

zm = gH0mvms0m +
I∑
i=1

∑
l∈A

hH1lmwlis1i + n0m. (3)
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Thus, the signal-to-interference-plus-noise ratio (SINR) of
the m-th MUE can be expressed as

SINR(MUE)
m =

∣∣gH0mvm∣∣2
I∑
i=1

∑
l∈A

∣∣h1lmwH
li

∣∣2 + σ 2
0m

. (4)

The signal observed by each RUE is the superposition of
signals from all RRHs and the MBS; thus, the received signal
yi ∈ C at i-th RUE is given by

yi =
∑
l∈A

hH0liwlis1i +
∑
k 6=i

∑
l∈A

hH0liwlks1k

+

M∑
m=1

gH1ivms0m + n1i, (5)

where h0li ∈ CNR denotes the channel vector from the l-th
RRH to i-th RUE, g1i ∈ CNM denotes the channel vector from
the MBS to the i-th RUE, and n1i is the AWGN at RUE i with
the distribution CN (0, σ 2

1i). From (5), the SINR of the i-th
RUE can be expressed as

SINR(RUE)
i =

∑
l∈A

∣∣hH0liwli
∣∣2

∑
k 6=i

∑
l∈A

∣∣hH0liwlk
∣∣2 + M∑

m=1

∣∣gH1ivm∣∣2 + σ 2
1i

. (6)

As each RRH has a maximum transmit power constraint,
the beamforming vector satisfies the following constraint
condition:

I∑
i=1

‖wli‖
2
≤ Pl, ∀l ∈ A, (7)

where Pl denotes the maximum transmission power of the
l-th RRH. For simplicity, we assume that the transmit power
is unconstrained at the powerful MBS.

B. POWER CONSUMPTION MODEL
In this section, we adopt the network power consumption
model that includes transmit power consumption and circuit
power consumption. Specifically, the total transmit power
consumption can be written as

PT =
∑
l∈A

I∑
i=1

1
ηl
‖wli‖

2, (8)

where ηl denotes the efficiency of the power amplifier (PA)
of the l-th RRH. The circuit power consumption includes
the transport link power consumption and the circuit power
consumption of the antenna that depends on the mode of
RRH. Therefore, the total circuit power consumption is given
by [33]

PC =
∑
l∈A

Pal +
∑
l∈S

Psl + Polt, (9)

where Polt represents the optical line terminal (OLT) power
consumption of fronthaul links, and Psl and P

a
l denote the cir-

cuit power of antenna in the sleep and active modes, respec-
tively. Thus, the total power consumption of the network can
be represented as

P (A,w) =
∑
l∈A

I∑
i=1

1
ηl
‖wli‖

2
+

∑
l∈A

Pcl +
∑
l∈S

Psl + Polt,

(10)

where w =
[
wT
11, · · · ,w

T
L1, · · · ,w

T
1I , · · · ,w

T
LI

]T . Let(
Pal − P

s
l

)
and

∑
l∈L P

s
l + Polt be constants. Then, the total

network power consumption can be written as

P (A,w) =
∑
l∈A

(
I∑
i=1

1
ηl
‖wli‖

2
+ Pcl

)
+ c, (11)

where c is a constant representing
∑

l∈L P
s
l + Polt, and

Pcl = Pal − Psl denotes the circuit power difference between
the active and sleep modes of the l-th RRH.

C. PROBLEM FORMULATION
We assume that the perfect CSI about the channels among
MBS and MUEs and the channels among MBS and RUEs
is available at the powerful MBS, while the RRHs have
imperfect CSI about the channels among RRHs and RUEs.
Specifically, we assume that RRHs can obtain the partial CSI
of RUEs through imperfect channel estimation and know only
the channel statistical information ofMUEs due to poor chan-
nel conditions from MUEs to RRHs. Therefore, the actual
channels of RUEs andMUEs at RRHs can bemodeled by [30]

h0li = ĥ0li + e0li, (12)

h1lm ∼ CN (0,C1lm) , (13)

where ĥ0li ∈ CNR denotes the estimated channel vector and is
known to RRH, while e0li ∈ CNR denotes the estimated error.
e0li is modeled by

e0li ∼ CN (0,C0li) , (14)

where the covariance matrix C0li is positive definite. Thus,
the joint RRH activation and CoBF with outage constraints is
formulated as follows:

min
A,w

P (A,w) (15a)

s.t. Pr
(
SINR(MUE)

m ≥ βm

)
≥ 1− θm, ∀m ∈M, (15b)

Pr
(
SINR(RUE)i ≥ γi

)
≥ 1− ρi, ∀i ∈ I, (15c)

I∑
i=1

‖wli‖
2
≤ Pl, ∀l ∈ A, (15d)

where βm and γi denote the target SINR of the m-th MUE
and the i-th RUE, respectively, while θm and ρi denote the
corresponding outage probabilities of the m-th MUE and the
i-th RUE, respectively.
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From the network power consumption model in (11),
we know that there are two approaches that can reduce the
total power consumption: one is to reduce the transmit power
consumption, and the other is to shut down some RRHs
and the associated transport links. Unfortunately, the two
approaches are in conflict over the same time-frequency
resource. Specifically, reducing the transmit power will result
in the need to activate more RRHs to achieve a higher beam-
forming gain to meet the QoS requirements. However, acti-
vating more RRHs will increase the power consumption of
circuit and transport links. Consequently, we need to explore
the tradeoff between the two approaches; a joint design of
RRH activation and coordinated transmit beamforming is
an appropriate approach to solving the power consumption
minimization problem of (15).

III. OUTAGE CONSTRAINED CoBF WITH
A GIVEN ACTIVE RRH SET A
In this section, we first reformulate problem (15) with a
given active RRH by semidefinite relaxation (SDR). Then,
we convert the outage probability constraints to second-order
cones (SOCs) by applying the Bernstein-type inequality [37].
Finally, problem (15) is reformulated as an SDP and solved
by adopting off-the-shelf convex solvers.

A. PROBLEM REFORMULATION WITH A GIVEN A
Consider a given active RRH set A for problem (15), assum-
ing that there are Ls selected RRHs to be shut down in L.
Let h1m ∈ CNR(L−Ls) denote the channel vector aggregate
from the RRHs inA to them-thMUE,wi ∈ CNR(L−Ls) denote
the beamforming vector aggregate of the i-th RUE excluding
the beamforming vectors of inactive RRHs, ĥ0i denote the
channel estimation vector aggregate from the RRHs in A to
the i-th RUE, and e0i ∈ CNR(L−Ls) denote the corresponding
channel estimation error vector aggregate from the RRHs
in A to the i-th RUE. The problem with a given A can be
expressed as

min
w
P (A,w) (16a)

s.t. Pr
(
SINR(MUE)

m ≥ βm

)
≥ 1− θm,∀m ∈M, (16b)

Pr
(
SINR(RUE)i ≥ γi

)
≥ 1− ρi,∀i ∈ I, (16c)

I∑
i=1

‖wli‖
2
≤ Pl,∀l ∈ A. (16d)

The probability constraint of the m-th MUE in (16b) is a
cumulative distribution function of an exponential random
variable with parameter θm. (16b) can be rewritten as

I∑
i=1

wH
i C1mwi ≤

( 1
βm

∣∣∣gH0mvm∣∣∣2
−σ 2

0m
)
ln (1/θm), ∀m ∈M, (17)

where C1m
1
= E[h1mhH1m]. Define Ani ∈ CNR(L−Ls)×NR(L−Ls)

as a block-diagonal matrix, where its n-th main diagonal

block square matrix is INR and the remaining entries are
zeros, as such the beamforming vector from the n-th RRH
in A to the i-th RUE can be expressed as Aniwi, where
wi ∈ CNRL is the beamforming vector aggregate of the i-th
RUE including the zero vectors of inactive RRHs. Applying
SDR and substituting Wi = wiwH

i into (16) [36], we can
rewrite problem (16) as

min
{Wi}

L−Ls∑
n=1

I∑
i=1

(
1
η̄n

Tr
(
AniWiAH

ni

)
+ P̄cn

)
+ c (18a)

s.t.
I∑
i=1

Tr(C1mWi) ≤ (
1
βm

∣∣∣gH0mvm∣∣∣2 − σ 2
0m)

× ln(1/θm),∀m ∈M, (18b)
Pr
{
δH1 Qiδ1 + 2Re{rHi δ1}

+ ci≥ 0
}
≥ 1− ρi, ∀i ∈ I, (18c)

I∑
i=1

Tr
(
AniWiAH

ni

)
≤ P̄n, n=1, · · · ,L−Ls, (18d)

Wi � 0, ∀i ∈ I, (18e)

where η̄n and P̄cn are the efficiency of the PA and the circuit
power difference between the active and sleep modes of the
n-th RRH in A, respectively, and P̄n is the transmit power
constraint on the n-th RRH inA, δi ∼ CN (0, I(L−Ls)NR ). The
remaining parameters in (18) are defined as follows:

Qi
1
= C1/2

0i (
1
γi
Wi −

∑
k 6=i

Wk )C
1/2
0i , (19a)

ri
1
= C1/2

0i (
1
γi
Wi −

∑
k 6=i

Wk )ĥ0i, (19b)

ci
1
= ĥH0i(

1
γi
Wi −

∑
k 6=i

Wk )ĥ0i−
M∑
m=1

∣∣∣gH1ivm∣∣∣2−σ 2
1i, (19c)

C0i
1
= E[e0ieH0i]. (19d)

A good method for addressing (18c) is to obtain the appro-
priate convex approximations to probabilistic constraints.
Such Bernstein-type inequality proposed in [37] and [38]
can conservatively approximate the probability inequality
to make the resulting problem computationally tractable.
Specially, (18c) has the same form with the rate outage
constrained formulation in [38] except for extra inter-cell
interference. Therefore, we present a form of the Bernstein-
type inequality, as described by lemma 1.
Lemma 1: Let δ1 ∼ CN (0, I(L−Ls)NR ), Qi ∈ H(L−Ls)NR ,

ri ∈ C(L−Ls)NR , and define

f (δ1,Qi, ri)
1
= δH1 Qiδ1 + 2Re{rHi δ1}. (20)

Then, the following desirable inequality holds: ∀i ∈ I,

Pr
{
f (δ1,Qi, ri) ≥ 9(ln(1/ρi) | Qi, ri)

}
≥ 1− ρi, (21)

where 9: R++→ R is defined by

9
(
ln
(
1
/
ρi
)
| Qi, ri

) 1
= Tr (Qi)+ ln (ρi)λ+ (Qi)

−

√
2 ln

(
1
/
ρi
)√
‖Qi‖

2
F + 2 ‖ri‖2,

(22)
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where λ+(Qi) , max{λmax(−Qi), 0}. The proof of
Lemma 1 can refer to [38].

Applying the result in Lemma 1, the constraints in (18c)
can be made equivalent to 2I linear matrix inequali-
ties (LMIs) and I SOCs; the detailed derivation is provided
in Appendix A. Thus, problem (18) can be approximately
reformulated as the following SDP:

min
{Wi}
t,a

L−Ls∑
n=1

I∑
i=1

(
1
η̄n

Tr
(
AniWiAH

ni

)
+ P̄cn

)
+ c (23a)

s.t.
I∑
i=1

Tr(C1mWi) ≤ (
1
βm

∣∣∣gH0mvm∣∣∣2 − σ 2
0m)

× ln(1/θm), ∀m ∈M, (23b)(
{Wi}, t, a

)
∈ CR(A), (23c)

I∑
i=1

Tr
(
AniWiAH

ni

)
≤ P̄n, n=1, · · · ,L−Ls, (23d)

Wi � 0, ∀i ∈ I, (23e)

where CR denotes conservative approximations to the con-
straint sets with respect to (23c) and is defined by (42) in
Appendix. t ∈ RI and a ∈ RI are auxiliary variables.
Thus, the centralized solution of problem (23) can be easily
obtained by using off-the-shelf convex solvers (e.g., CVX).
Note that solutions of problem (23) may not always be of
rank one. If solutions W?

i of problem (23) are of rank one,
i.e.,W?

i = w?i
(
w?i
)H , solutions of (18) can be obtained as w?i

by rank-one decomposition. Otherwise, a rank-one approxi-
mation can be obtained by Gaussian randomization [36].

According to the solution of problem (18), we know that
the problem in (15) is solved by searching over all possible
permutations of A that leads to an exponential increase in
complexity as the RRH number increases. In order to reduce
the computational complexity, we will develop an efficient
algorithm to solve the problem (15) in Section IV.

IV. JOINT RRH ACTIVATION AND
ROBUST CoBF ALGORITHM
In this section, we first propose a weighted group sparsity
inducing normwith respect to the beamforming vector assem-
blage w to relax the objective function in (15) for the pur-
pose of making the problem tractable. Then, we reformulate
the problem (15) as an SDP, and apply the Bernstein-type
inequality to solve the outage probability constraints. Finally,
we present a RRH priority sorting scheme and proposed a
binary search-based joint RRH activation and robust CoBF
algorithm.

A. GSB REFORMULATION
Assuming that some RRHs are shut down, the correspond-
ing beamforming vectors will be zeros, resulting in a group
sparse structure of the aggregated beamforming vector.

First, we rewrite the sparse beamforming vector as

w̃l =

[
wT
l1, · · · ,w

T
lI

]T
∈ CNRI , (24)

w =
[
w̃T
1 , · · · , w̃

T
L

]T
∈ CNRIL . (25)

The RRH l will be shut down if
∥∥w̃l

∥∥
2 = 0. Therefore,

we can adopt the mixed `1/`2-norm to induce group-sparsity
for w by utilizing the group sparse structure of the optimal
aggregated beamforming vector. Accordingly, by introduc-
ing convex relaxation of (11) [33], the approximate sparse
beamforming vector can be obtained by solving the mini-
mization problem of the weighted group-sparsity inducing
norm given by

min
w

2
L∑
l=1

√
Pcl
ηl

∥∥w̃l
∥∥
2 + c

 (26a)

s.t. Pr
(
SINR(MUE)

m ≥ βm

)
≥ 1− θm, ∀m ∈M, (26b)

Pr
(
SINR(RUE)i ≥ γi

)
≥ 1− ρi, ∀i ∈ I, (26c)

I∑
i=1

∥∥w̃l
∥∥2 ≤ Pl, ∀l ∈ L, (26d)

Problem (26) has the same constraint expressions as prob-
lem (16), other than the active RRH set. In view of this,
we will follow the same approach to solve the problem.
Define Ali ∈ CNRL×NRL as a block-diagonal matrix, and
its l-th main diagonal block square matrix is INR and the
remaining entries are zeros, so that the beamforming vector
from the l-th RRH in L to the i-th RUE can be expressed as
Aliwi. In addition, all the channel vector aggregates of MUEs
and RUEs and the corresponding channel estimation vector
aggregates include zero vectors of inactive RRHs. Applying
SDR by substituting Wi = wiwH

i [36] into problem (26)
yields

min
{Wi}

2
L∑
l=1

√√√√Pcl
ηl

I∑
i=1

Tr
(
AliWiAH

li

)
+ c

 (27a)

s.t.
I∑
i=1

Tr(C1mWi) ≤ (
1
βm

∣∣∣gH0mvm∣∣∣2 − σ 2
0m)

× ln(1/θm), ∀m ∈M, (27b)

Pr
{
δH1 Qiδ1 + 2Re{rHi δ1}

+ ci≥ 0
}
≥ 1− ρi, ∀i ∈ I, (27c)

I∑
i=1

Tr
(
AliWiAH

li

)
≤ Pl, ∀l ∈ L, (27d)

Wi � 0, ∀i ∈ I, (27e)

where δ1 ∼ CN (0, ILNR ) and Qi ∈ HLNR . Similarly,
the extended form of the Bernstein-type inequality is applied
to handle (27c). Using the result in Lemma 1, the problem in
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(27) is approximated as

min
{Wi}
t,a

2
L∑
l=1

√√√√Pcl
ηl

I∑
i=1

Tr
(
AliWiAH

li

)
+ c

 (28a)

s.t.
I∑
i=1

Tr(C1mWi) ≤ (
1
βm

∣∣∣gH0mvm∣∣∣2 − σ 2
0m)

× ln(1/θm), ∀m ∈M, (28b)(
{Wi}, t, a

)
∈ CR(L), (28c)

I∑
i=1

Tr
(
AliWiAH

li

)
≤ Pl, ∀l ∈ L, (28d)

Wi � 0, ∀i ∈ I, (28e)

where CR is defined by (42) in Appendix A denotes conser-
vative approximations to the constraint sets with respect to
(27c). t ∈ RI and a ∈ RI are auxiliary variables. Similarly,
we can use off-the-shelf convex solvers (e.g., CVX) to obtain
the centralized solution of problem (28).

B. JOINT RRH ACTIVATION AND
OUTAGE-CONSTRAINED CoBF
1) RRH PRIORITY
After obtaining the approximately optimal sparse beam-
former w?i in problem (28), the next step is to select the
active RRHs. Clearly, (26a) implies that the RRHs with larger
Pcl and lower PA efficiency should be shut down preferen-
tially. Additionally, most existing studies propose that the
transmit antennas with smaller coefficients should have a
higher priority to be shut down by applying the ideal case
of group sparsity inducing normminimization [39]. However,
a smaller transmit coefficient priority would result in shutting
down RRHs with good channel conditions inappropriately,
and a greater transmit power would be consumed by the rest
of active RRHs in order to ensure the QoS. Therefore, it is
reasonable to consider the channel gain of RRHs; the summed
channel gain of RRH l is defined by κl =

∑I
i=1 ‖hli‖

2.
Intuitively, from the perspective of the broadcast channel
capacity, an RRH with lower κl will have a higher priority
for being shut down to avoid inefficient power consump-
tion. Consequently, considering the above factors compre-
hensively, a mixed priority function is defined as following

ωl =

√
κlηl

Pcl

(
I∑
i

∥∥Aliw?i
∥∥
2

)
, (29)

whereωl denotes the priority parameter of RRH l; the smaller
ωl is, the higher the priority of the corresponding RRH to be
shut down. To describe the selection strategy clearly, we sort
RRHs in the ascending order of ω̄l : ω̄1 ≤ ω̄2 ≤ · · · ≤ ω̄L .
After RRHs sorting, we define w̄`i ∈ CNR as the beam-
forming vector for RUE i at the `-th priority RRH, define
h̄1`m as the channel vector from the `-th priority RRH to the
m-th MUE, and define ¯O0`ih and ē0`i as the channel estimation
vector and the corresponding channel estimation error vector
from the `-th priority RRH to the i-th RUE, respectively.

2) RECONSTITUTION OF VECTORS
Assume that there are the first ` highest priority RRHs to be
shut down, and the corresponding active RRH set is denoted
by A`; then, we have A ∈ {A0, · · · ,A`, · · · ,AL} and
A0 = L. Additionally, AL = ∅. If A = A`, we restructure
the aggregated beamforming vector, the aggregated channel
estimation vector, and the channel estimation error vector for
the RRHs to the i-th RUE as

wi =

[
w̄T
(`+1)i, · · · , w̄

T
Li

]T
∈ CNR(L−`), (30a)

h1m = [h̄T1(`+1)m, · · · , h̄
T
1Lm] ∈ CNR(L−`)I , (30b)

ĥ0i = [ ¯̂hT0(`+1)i, · · · ,
¯̂hT0Li]

T
∈ CNR(L−`), (30c)

e0i = [ēT0(`+1)i, · · · , ē
T
0Li]

T
∈ CNR(L−`). (30d)

Then, we can obtain the approximate minimum total net-
work power consumption by solving the problem (23).

3) BINARY SEARCH-BASED SCHEME
Based on the ascending order ω̄1 ≤ ω̄2 ≤ · · · ≤ ω̄L ,
we adopt a binary search-based JRARCoBF algorithm to
minimize the power consumption and obtain the associ-
ated active RRH set and beamforming vectors. Specifi-
cally, the proposed JRARCoBF algorithm is summarized in
Algorithm 1.

Algorithm 1 Proposed JRARCoBF Algorithm
1: Solve the problem (28):

1) If it is feasible, outputW?
i , ∀i ∈ I and the associated

beamforming vector w?i , calculating the priority
parameter ωl for each RRH according to (29), and
sort them in ascending order ω̄1 ≤ ω̄2 ≤ · · · ≤ ω̄L ;

2) Else, go to End;
2: Set ` = 0, `low = 0, `up = L;
3: Repeat; Set `← b (`low+ `up)/2c; Solve the problem

(23) with A = A`:;
1) If it is feasible, set `up = `;
2) Else, set `low = `;

4: Until `up − `low = 1, obtain `? = `low and the optimal
active RRH set A`?;

5: LetA = A`? , solve the problem (23), outputW?
i , ∀i ∈ I

and the associated beamformers w?i
6: End

C. COMPLEXITY ANALYSIS
The computation cost of Algorithm 1 is primarily due to
solving problem (23) and problem (28), which are the same
convex problem with different dimensionality of variables.
The convex problemswith only SOC constraints and LMI can
be solved by using the interior-point method (IPM) [40], [41].
To analyze the computational complexity of the proposed
algorithm, a review of the basic elements of complexity
analysis of IPMs is summarized in the sequel. Consider the
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following conic optimization problem:

min
x∈Rn

νT x (31a)

s.t.
n∑
i=1

xiA
j
i + Bj ∈ Skj+ for j = 1, · · · , ι, (31b)

Tjx− bj ∈ Kkj for j = ι+ 1, · · · , τ . (31c)

where ν ∈ Rn, Aj
i, Bj ∈ Skj for i = 1, · · · , n and

j = 1, · · · , ι, Tj ∈ Rkj×n and bj ∈ Rkj for j = ι +

1, · · · , τ , and Kkj is an SOC of dimension kj, i.e., Kk
={

x ∈ Rk
| xk ≥

√
x21 + · · · + x

2
k−1

}
. We note that the linear

constraint aT x − b ≥ 0 is equivalent to the LMI constraint
aT x − b ∈ R+ = S1+, and thus can be transformed into the
form (31b). As noted in [38], the complexity of a generic IPM
for solving (31) consists of two parts:

1) OUTER ITERATION COMPLEXITY
For a given ε > 0, the required number of iterations to reach
an ε-optimal solution of (31) is on the order of√

� (K) · ln(1/ε), (32)

where � (K) =
∑ι

j=1 kj + 2(τ − ι) is a barrier parameter

related to the cone K. K =
∏ι

j=1 S
kj
+ ×

∏τ
j=ι+1Kkj denotes

the geometric complexity of the conic constraints in (31c).

2) INNER ITERATION COMPLEXITY
The search direction is found by solving n̄ linear equations
for n̄ unknown variables in each inner iteration. The compu-
tational cost is primarily composed of the formation of the
corresponding n̄×n̄ coefficient matrix H̄ of n̄ linear equations
and the factorization of the coefficient matrix H̄. The order of
the computational cost of forming the coefficient matrix H̄ for
(31) is given by

Cform = n̄
ι∑

j=1

k3j + n̄
2

ι∑
j=1

k2j︸ ︷︷ ︸
due to (31b)

+ n̄
τ∑

j=ι+1

k2j︸ ︷︷ ︸
due to (31c)

, (33a)

and the order of the computational cost of factorizing the
coefficient matrix H̄ for (31) is given by

Cfact = n̄3. (34a)

Therefore, the order of the computational cost for each inner
iteration is Cform + Cfact. By combining the computational
costs of the outer and inner iterations, the order of the com-
putational cost of a generic IPM for solving (31) can be
expressed as√

� (K) · (Cform + Cfact) · ln(1/ε). (35)

Note that the variables are complex-valued in (23) and (28);
thus, the complex-valued SDPs need to be converted into
the corresponding real-valued SDPs, which are the same
problem as the former except for the doubled problem size.
For simplicity, the variables in (28) and (23) are assumed to

be real-valued. Assuming that there are Ls RRHs to be shut
down, define N = (L − Ls)NR. Then, the formula in (23) has
2I LMIs constraints of sizeN , 2I+M+L constraints of size 1,
and I SOCs constraints of size N 2

+N + 1. Additionally, let
n̄ denote the number of decision variables in problem (23);
n̄ is on the order of IN 2. Consequently, the complexity of the
IPM for solving (23) is on the order of

C(23) =
√
� (K) · (Cform + Cfact) · ln(1/ε), (by (35)) (36)

where ε denotes the predefined accuracy of the solution, and

� (K) = 2I (N + 2)+M + L, (by (32))

Cform = n̄(2I (N 3
+ 1)+M + L)

+n̄2(2I (N 2
+ 1)+M + L)

+ n̄(N 2
+ N + 1)2, (by (33a))

Cfact = n̄3. (by (34a))

Using the same method, C(28) denotes the complexity order
of the IPM of problem (28) with n̄ = I (LNR)2 and N = LNR.
It is demonstrated that the dominant complexity of the

proposed algorithm consists of two parts; the first is denoted
by C(28); the second consists of an inner iteration and an
outer iteration. The complexity order of an inner iteration
is denoted by C(23), while the maximum number of outer
iterations is logarithmic with L.

V. SIMULATION RESULTS
In this section, we use Monte Carlo simulations to
demonstrate the effectiveness of the proposed JRARCoBF
algorithm. Assume that the network coverage area is a sector
centered at an MBS with the inner angle of 120◦. MUEs
are independently and uniformly distributed within the sector
with a radius of 300 meters. RUEs are independently and
uniformly distributed within the sector of a radius between
300 meters and 500 meters. RRHs are uniformly distributed
along the arc of the radius of 400 meters. In addition,
we assume that all MUEs and RUEs have the same target
SINR, i.e., βm = γi = γ,∀m ∈M, ∀i ∈ I; the SINR outage
probabilities for all MUEs and RUEs are also identical, and
are set to θm = ρi = 0.1, ∀m ∈ M, ∀i ∈ I; the SINR
satisfaction probabilities are higher than 90%.

In the simulations, we adopt the following channel model:

g0m = 10−0(d0m)/ 20
√
ϕ0mτ0mf0m, (38a)

g1i = 10−0(d1i)/ 20
√
ϕ1iτ1mf1i, (38b)

h0li = 10−0(d0li)/ 20
√
ϕ0liτ0lif0li, (38c)

h1lm = 10−0(d1lm)/ 20
√
ϕ1lmτ1lmf1lm, (38d)

where d0m and d1i denote the distances from the MBS to
the m-th MUE and the i-th RUE, respectively; d1lm and d0li
denote the distances from the l-th RRH to the m-th MUE
and the i-th RUE, respectively. 0(d0m), 0(d1m), 0(d0li) and
0(d1lm) denote the path loss at distances d0m, d1i, d0li and
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TABLE 1. Simulation parameters.

d1lm, respectively. ϕ0m, ϕ1i, ϕ0il and ϕ1ml represent the shad-
owing coefficients; τ0m, τ1i, τ0li and τ1lm denote the antenna
gains; f0m, f1i, f0li and f1lm represent the small-scale fading
coefficients. Moreover, we assume that the MBS can obtain
an accurate CSI, that RRHs can capture the large-scale fading,
and that the CSI errors of the small-scale fading follow a com-
plex Gaussian distribution with zero mean and the identical
covariance matrix C0i = ε2INR , where ε

2 denotes the vari-
ance of CSI errors for the i-th RUE. The small-scale fading
coefficients are generated randomly according to independent
random variables following a complex Gaussian distribution.
Moreover, the remaining parameters related to the simulation
are provided in Table I. The simulation results are based on
the statistical average of 500 channel realizations, where all
the algorithms being tested yield feasible solutions. We com-
pare the proposed algorithm to a conventional robust CoBF
(RCoBF) algorithm, i.e., the RCoBF algorithm in which all
RRHs are active [42]. Furthermore, we present the perfor-
mance of the beamforming design with SINR constrained in
the case of the perfect CSI and use it as a benchmark [43],
while the respective algorithm is called the perfect CSI algo-
rithm in the remainder of the paper.

Fig. 2 shows the feasibility rates of the JRARCoBF algo-
rithm under various channel errors vs. the target SINR γ with

1These parameters are obtained from a practical energy consumption
model, as shown in [33].

FIGURE 2. The feasibility rates at various channel errors with L = 5 and
I = 5 for the JRARCoBF algorithm.

L = 5 and I = 5. It shows that the feasibility rate decreases
with an increase of the target SINR γ and the channel error.
Furthermore, the results show that the feasibility rates
improve by approximately 70% at the γ ≤ 9 dB regime.
In addition, we count the proportion of rank-one solutions
among the feasible solutions related to the results shown
in Fig. 2. Statistically, W?

i is considered a rank-one solution
if the following conditions hold:

λmax
(
W?

i

)
Tr
(
W?

k

) ≥ 0.9999, i ∈ I. (39)

Fortunately, all the feasible solutions of 500 channel realiza-
tions are of rank one, indicating that the occurrence of high-
rank solutions is very infrequent for the proposed algorithm;
hence, the algorithm is feasible in practical systems.

FIGURE 3. The actual SINR satisfaction probability at target SINR
γ = 9 dB with L = 5, I = 5 and ε2 = 0.002.

Fig. 3 shows the actual SINR satisfaction probability as
a histogram, where the target SINR γ is 9 dB and L = 5,
I = 5 and ε2 = 0.002. In this figure, the non-robust
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algorithm is defined as the case of the channel estimation
being regarded as perfect while channel estimation error still
exists. The actual SINR satisfaction probability is defined
as the probability that the minimum actual SINR for all
MUEs and RUEs is higher than the target SINR by using
the proposed algorithm. The conservatism with respect to
the actual SINR satisfaction probability for the non-robust
algorithm and the proposed algorithm is illustrated by his-
tograms and the statistical results based on all feasible chan-
nel realizations associated with the results shown in Fig. 2.
Fig. 3 shows that the actual SINR satisfaction probability of
the non-robust algorithm is less than 38%, and the average
satisfaction probability is only about 19% for all the channel
realizations, which is far from the requirement of the target
SINR satisfaction probability. This means that the non-robust
algorithm cannot satisfy the outage probability constraints
if CSI is imperfect. Additionally, we observe that the target
SINR satisfaction probability of the JRARCoBF algorithm is
indeed higher than 90% over all feasible channel realizations.

FIGURE 4. Network power consumption of various algorithms with L = 5
and I = 5.

Fig. 4 shows the network power consumption of various
algorithms vs. the target SINR γ with L = 5, I = 5
and ε2 = 0.001. Here, exhaustive search (ES) algorithm
refers to the JRARCoBF based on exhaustive search. The
figure shows that the performance of the proposed algorithm
is very close to that of the ES algorithm while having a
significantly reduced computational complexity [30]. In addi-
tion, compared with the RCoBF algorithm, the results show
that the proposed algorithm has the potential to reduce the
network power consumption by 26% in the low target SINR
requirement and by 5% in the high target SINR requirement;
this is because more RRHs need to be activated to meet
the higher QoS requirement. Furthermore, the perfect CSI
algorithm has the minimum power consumption due to extra
power needed to compensate for the performance degradation
caused by channel errors.

Fig. 5 shows the network power consumption of various
algorithms and values of channel errors vs. the target SINR

FIGURE 5. Network power consumption of various algorithms with L = 10
and I = 10.

γ with L = 10 and I = 10. Compared to the CoBF algo-
rithm, the proposed algorithm has the potential to reduce the
network power consumption by 28% in the low target SINR
requirement and 9% in the high target SINR requirement for
ε2 = 0.001 and by 26% in the low target SINR requirement
and 8% in the high target SINR requirement for ε2 = 0.002.
Moreover, additional power consumption would be needed
for the proposed robust algorithm to accommodate the outage
specification; the extra power increases gradually with the
target SINRs for MUEs and RUEs. Furthermore, the results
of Fig. 4 and Fig. 5 indicate that the proposed algorithm can
further reduce the power consumption with the increase in
the number of RRHs. Additionally, compared to ε2 = 0.001,
a slightly greater total network power consumption is needed
at ε2 = 0.002, just as expected.

FIGURE 6. The transmit power consumption of various algorithms vs. γ
with L = 10 and I = 10.

Fig. 6 and Fig. 7 depict the transmit power consumption
and the circuit power consumption of the network, respec-
tively. The figures show that the RCoBF algorithm has the
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FIGURE 7. The circuit power consumption of various algorithms with
L = 10 and I = 10.

lowest total transmit power consumption and yet the high-
est circuit power consumption. This is because the RCoBF
algorithm only tries to minimize the transmit power con-
sumption and neglects the considerable circuit power con-
sumption including the transport link and RF circuit power
consumption, so that all RRHs are activated for the maximum
beamforming gain, while resulting in the highest total circuit
power consumption.

TABLE 2. The average number of active RRHs at various target SINR γ
and channel errors.

Table 2 lists the average number of active RRHs for various
channel errors and target SINRs. The table shows that the
proposed algorithm will shut down a larger number of RRHs
with the increase in channel errors, indicating that a higher
transmit power consumption and a larger number of active
RRHs are needed to satisfy the QoS requirements and the
outage specification. The result of Table 2 is in accordance
with Fig. 6 and Fig. 7.

VI. CONCLUSION
In this paper, we present a joint RRH activation and outage-
constrained CoBF algorithm for massive MIMO H-CRANs
that aims to minimize the power consumption of the down-
link in the presence of Gaussian CSI errors. The objective
function and rate outage constraints under the RRH activation
become complex, making it difficult to offer an intuitive
solution. To overcome these difficulties, we first reformulated
the objective function with a given active RRH set A and
used an extended Bernstein-type inequality to rate outage
constraints; then, we derived the beamforming vector by
solving an SDP and presented a low-complexity JRARCoBF
algorithm. Finally, the simulation results showed that the

proposed algorithm effectively reduced the downlink network
power consumption for various values ε2 = 0.001 and 0.002,
e.g., up to 28% and 26% in a low QoS requirement and 9%
and 8% in a high QoS requirement, respectively. Compared
to the ES algorithm, the proposed algorithm performs almost
identically while accommodating certain error bounds and
having a lower complexity.

APPENDIX
CONVEX APPROXIMATION FOR OUTAGE CONSTRAINTS
In view of the fact that 9 (cf. (22)) is a monotonically
decreasing function, and its inverse mapping is well defined
as 9−1 : R → R++. By utilizing the characteristic that
e−9

−1(−ci) > 0 (where ci is defined in (19c)) and Lemma 1,
we have

Pr
{
f (δ1,Qi, ri)+ ci ≥ 0

}
≥ 1− e−9

−1(−ci), (40)

which implies that e−9
−1(−ci) > 0 is a conservative

approximation over (18c), which can be rewritten as

Tr(Qi)+ ln(ρi) · λ+(Qi)

−

√
2 ln

(
1
/
ρi
)√
‖Qi‖

2
F + 2‖ri‖2 + ci ≥ 0. (41)

According to the approach described in [38] and [44],
the convex relaxation of (41) can be expressed by

CR(A) 1=
{ (
{Wi}, t, a

)∣∣Tr(Qi)+ ln (ρi)ti + ci

−

√
2 ln

(
1
/
ρi
) ∥∥∥[ai]T∥∥∥ ≥ 0,∀i ∈ I∥∥∥∥[ vec(Qi)√

2ri

]∥∥∥∥ ≤ ai,∀i ∈ I

tiILNR +Qi � 0, ti ≥ 0,∀i ∈ I
}
, (42)

where t 1= [t1, · · · , tI ]T ∈ RI and a 1
= [a1, · · · , aI ]T ∈ RI ,

which are auxiliary variables. �
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