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Abstract

This thesis contributes to the application of convex optimization in non-orthogonal mul-

tiple access systems. In this work, various practical constraints, such as grouping based

on their QoS requirements and imperfect channel station information have been taken

into consideration. The joint design of beamforming and power allocation in the down-

link of the NOMA MIMO multiuser system is investigated, where the users are grouped

based on their QoS requirements. The SDR is adopted to approach and showed that the

optimal solutions are always rank one using simulation results. Also, a SCA algorithm

is proposed based on the AGM inequality to perform the joint design of the beam-

forming vectors and the power allocation coefficients. Then, the research addressed the

worst-case robust beamforming design for the MISO-NOMA downlink systems by tak-

ing into account the norm-bounded channel uncertainties. The S-procedure is exploited

to reformulate the original non-convex problem into SDP form by recasting the original

non-convex constraints into LMI form. Finally, a jointly optimizing beamformer and

relay power are investigated for FD/HD cooperative NOMA with several optimization

techniques. The study covers both perfect channel state information and the bounded

imperfect channel state information. The objective is to maximize the achievable sum-

rate for users within the beam. However, the original problem formulation is not convex.

Therefore, reformulating the original problem into SDP form is required then several

algorithms are applied to find a solution for the optimization problem.
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Chapter 1

Introduction

1.1 Background

1.1.1 On The Track to Beyond 5G

The vision for the beyond 5G networks are expected to provide a wide coverage which

means that all the space-air-ground-sea communication networks will be harmonizing

to provide a global-wide coverage. Also, the entire spectrum in addition to mmWave,

THz, sub-6 GHz and optical frequency bands should be examined to reach an extremely

high data rate. Machine learning (ML) and artificial intelligent (AI) will be applied in

order to improve the coming generation networks as well as allow for wider applications.

These are considered as the main highlighted view for the next-generation networks be-

yond the 5G networks [1].

To achieve the frontier of 1 Tbps in a beyond 5G networks as a peak data rate,

different categories should be triggered which allow these networks to reach extreme

24



Chapter 1. Introduction 25

capacity. A number of enablers at the spectrum, infrastructure and algorithms which

includes protocols as well are vital to grasp the planed broadband connectivity goals

such as supporting broadband connectivity at railway with speeds likely 1000 km/h and

reach a peak data rate up to the Tbps range. Reducing complexity, higher reliability

and lower latencies can be realized by improving coding, modulation and waveforms [2].

As the researchers in [2] emphasized that in order to achieve the targeted

aims for the beyond 5G networks, should be several enablers applied in different level

of the network. These enablers include the infrastructure level based on the evolution of

massive multiple-input multiple-output (MIMO), intelligent reflecting surfaces (IRS),

and integrated access and backhaul. Also, the designer should include revolutions at

the protocol/algorithmic level, waveform, non-orthogonal multiple access (NOMA) and

rate splitting and machine learning-aided algorithms.

1.1.2 Multiple Access Techniques for Beyond 5G

1.1.2.1 Wireless Standardization Overview

A limited number of users were to be able to connect for a wireless communication

network, for example, in the period between 1957-1967 the Swedish Mobile Telephone

System was able to provide connectivity for 125 users to their network [3]. The first

generation of wireless networks was implemented in 1980 based on analogue frequency

modulation which prevents to apply of error correction codes to the communication

system, for this reason, the speech quality was poor. In order to beat the struggles

of the first generation networks, the global system of mobile communications (GSM)

which considered a second-generation (2G) of communication networks implemented

based on digital radio frequency and Time-division multiple access (TDMA) as mul-
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tiple access techniques. Moreover, it was the first type of wireless networks provided

data service such as short message service (SMS). Shortly, several digital standards

developed, such as the advanced mobile phone system (D-AMPS) and IS-95 known as

cdmaOne which evolved to the cdma2000 system. The cdma2000 consider as the first

standardization for multi-carrier Code-division multiple access (MC-CDMA) system [4].

Within a decade higher data rate transmission was able to be provided by de-

veloping the third-generation (3G) networks, that was matured from CDMA to wide-

band CDMA (WCDMA). Then, the demand of data rate was extremely increased

for that, different industrial standardization partner such as 3G partnership project’s

(3GPP), IEEE 802.11 and IEEE 802.16 had transformed to multi-carrier solutions using

orthogonal frequency-division multiplexing (OFDM) and Orthogonal frequency-division

multiple access (OFDMA) to overcome the high data throughput demand in fourth-

generation (4G) wireless networks [5]. The most effective feature of a multi-carrier

system is the flexibility has been provided such as adaptive modulation and coding

(AMC) which allow the system to provide different services according to the required

quality of service (QoS) [3].

In the past five years, both researchers and industrial communities turned

towards evolving the standards of 5G cellular network systems. The aim of the interna-

tional telecommunication union (ITU) is to complete the whole specifications phases of

the 5G standards by the end of 2020 [6]. On the other hand, directed by the extremely

accelerated expansion of the wireless capacity needs to be enforced by advanced mul-

timedia applications such as virtual reality and high definition video. Also, developing

Internet of Things (IoT) devices and tactile internet resulting in challenges to support

the traffic of the large-scale heterogeneous data for the 5G and beyond networks [7].
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To overcome the high data rate traffic demands several key enablers should be applied

such as a sophisticated MA that has naturally evolved over cellular wireless network

generations [8].

In the physical layer, the MA technology considered as a fundamental concept

that has matured over the past years for the wireless generations history [9]. The

MA technology used for the 1G was frequency division multiple access (FDMA), after

that in the 2G TDMA was applied which is based on digital modulation [10]. Then,

Qualcomm suggested a CDMA that turned out to be a dominant technology for 3G

networks [11]. However, The throughput of data rate was limited in 3G so, in order

to enhance the speed of the achievable data rate, OFDMA endorsed in 4G broadband

cellular networks [12]. FDMA, TDMA, and OFDMA can be classified as orthogonal

multiple access (OMA) since the same time/frequency resource block (RB) can be

dedicated only to a single user [7].

1.1.2.2 Recent Multiple Access Techniques

Recently the industrial communities developers have been drawn their attention to uti-

lizing the resource block efficiently. This could be done by enabling NOMA on the

resource block either by applying the code-domain, spatial-domain or power-domain

[3]. There are several proposed outstanding techniques that represent code-domain

NOMA such as sparse code multiple access (SCMA), interleave division multiple access

(IDMA), low-density spreading (LDS) and pattern division multiple access (PDMA)

[13]. Spatial-domain can utilize the resource block by constructing the channel impulse

responses (CIRs) in order to distinguish between users this MA technique is called

space division multiple access (SDMA) [14]. For the power-domain NOMA which has

proposed to be used on 5G networks [15].
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The basic concept of power-domain NOMA can be explained as follows; firstly

is to impose superposition coding (SC) at the transmitter side then, a successive in-

terference cancellation (SIC) at the receiver side. This technique is used to guarantee

service for multiple users utilizing the same time/frequency RB with different QoS re-

quirements [3]. Moreover, combining the power-domain NOMA with the existing MA

paradigms is more likely because it utilizes the new dimension of the power domain [13].

For simplicity in this research, the term NOMA will be referred to as the power-domain

NOMA.
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1.2 Motivation and Contributions

Motivated by the fundamental work which established the concept of NOMA (see [16–

18] and the reference therein), [19] and [20] systematically evaluated the performance

of NOMA in downlink and uplink, respectively. Triggered by the unique benefits of

multi-antenna systems, the application of the multiple-input multiple-output (MIMO)

technique to NOMA has been addressed, e.g., [21–23]. Very recently, [24] proposed a

minorization-maximization algorithm to maximize the downlink sum-rate, where the

transmit signals of each user is multiplied with a complex precoding vector. Consider-

ing the multiuser system where users transmit different numbers of data streams based

on their distances away from the BS, [25] solved a minimum power beamforming prob-

lem by firstly obtaining the optimal power allocation for given beamforming vectors

and then finding beamforming vectors using an iterative algorithm. In our previous

work [26], we proposed a mutual information algorithm to design beamforming vectors,

in which power allocation only depends on the distances between users and the BS.

As an enhanced version of conventional MIMO, [27] proposed a massive-MIMO-NOMA

downlink transmission protocol in the presence of limited feedback. The concept of

NOMA is evaluated through simulation for full channel state information at the trans-

mitter (CSIT) in the uplink [28] and downlink [29], where the throughput of the system

is shown to be on average always better than OMA when considering a fully defined

cellular system evaluation. A general framework for multiple-input-multiple-output

(MIMO) NOMA system has been developed for both the downlink and the uplink in

[30]. The downlink system performance throughput gains are evaluated In [31] by in-

corporating a complete simulation of an LTE cellular system (3GPP). Kim et. al. [32]

developed an optimization problem that finds the power allocation coefficients for a

broadcast MIMO NOMA system with N base-station antennas serving simultaneous

users.
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The assumption of perfect channel state information (CSI) at the transmitter

is assumed for most beamforming designs [24]. But, this might not be always valid

for practical scenarios because of channel estimation and quantization errors. So, it

is important to consider the channel uncertainties particularly in the beamforming

design for NOMA networks. In [33], a robust NOMA scheme for the MISO channel

to maximize the worst-case achievable sum-rate with a total transmit power constraint

has been investigated with developing clustering criteria. However, in [34] study the

NOMA scheme applied between all users with a spectrum sharing between all users in

the cell. The target in [34] is to tackle the power minimization problem based on a

worst-case optimization framework to provide the required quality of service for each

user.

In Chapter 3, we focus on the employment of NOMA in the downlink chan-

nel of a MIMO multiuser system. In this system, we study a new scenario where the

users are divided into two groups based on their quality of service (QoS) requirements.

Specifically, the users in Group 1 expect to be served with the best efforts, while the

users in Group 2 require to reach their own target rates. As such, our work stands as a

significant advancement over the existing studies where user grouping is based on their

location information. For this scenario, we maximize the sum rate of the users in Group

1 under the constraint of guaranteeing that the users in Group 2 achieve their target

rates. Due to its nonconvexity, we first introduce the semidefinite relaxation (SDR)

approach [35] to linearize the quadratic form of beamforming vectors. Then a succes-

sive convex approximation (SCA) [36] is proposed based on the arithmetic-geometric

mean (AGM) inequality to jointly design beamforming matrices and power allocation.

Furthermore, the simulation results show a pivotal property that the SDR approach is

always tight. An important conclusion is reached that our proposed algorithm outper-

forms the existing ones in the literature. We also examine the impact of the average

signal-to-noise ratio (SNR), the number of antennas at the BS, and the number of users
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on the convergence speed of our proposed algorithm.

The objective in Chapter 4 is to maximize the minimum of received signal-to-

interference-plus-noise ratios (SINRs) of users, which is not convex in terms of beam-

forming vectors. The formulated optimization problem is not convex so, to solve the

challengeable problem, we first formulate an equivalent optimization problem based

on SDP. By applying a rank one relaxation and a linear matrix inequality (LMI) the

S-Procedure can be used, which leads to exploiting the bisection algorithm in order to

obtain the robust optimal beamforming solution. Finally, simulation results are pro-

vided to demonstrate the effectiveness of the proposed robust design.

In Chapter 5, a jointly optimizing beamformer and relay power are studied

for FD/HD cooperative NOMA with several optimization techniques. The study cov-

ers both perfect channel state information and the bounded imperfect channel state

information. The objective is to maximize the achievable sum-rate for users within the

beam. However, the original problem formulation is not convex. Therefore, reformulat-

ing the original problem into SDP form is required then several algorithms are applied

to find a solution for the optimization problem.
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1.3 Related Works

As a promising technique that provides superior spectrum efficiency in 5G wireless

networks, NOMA has received increasing attention from both academia and industrial

communities [37,38]. Particularly, NOMA is a multi-user multiplexing scheme that re-

alizes multiple access in the power domain. This makes it fundamentally different from

the conventional orthogonal multiple access (OMA) schemes, such as TDMA, FDMA,

and CDMA, as well as some code-domain non-orthogonal schemes, such as SCMA [39].

With the use of NOMA, the base station (BS) is able to serve multiple users at the same

time, frequency, space, and spreading code but at different power levels, which achieves

more efficient use of spectrum. Notably, NOMA allocates more power to users with

poorer channel quality or ensures some users achieve their target rates, thus striking a

balance between network throughput and user fairness.

To realize the benefits of NOMA, successive interference cancellation (SIC)

[40] has often been adopted by some users such that they can remove the interference

and decode the desired signals in a successive manner. There are several significant

and attractive features of NOMA; one of them is the low complexity design and com-

patibility with other existing MA [15]. Also, power allocation in NOMA provides a

reasonable trade-off between system throughput and user fairness. Moreover, the spec-

trum efficiency from NOMA shows a remarkable difference compared to convectional

OMA techniques [41]. In this section, an overview of the recent work of NOMA will be

provided in several aspects of the wireless networks.
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1.3.1 Non-orthogonal Multiple Access

For the typical OMA techniques, the receivers can easily detect the users’ signals based

on allocating a unique RB for each user either this RB could be a time, frequency, code

or a mixed formation like OFDMA. The gain from orthogonality for the RBs which

are provided to the users is to eliminate the interference based on theoretical signal

processing concepts [42]. Yet, there is a restriction on the number of users are allowed

to be served uses OMA techniques, for this reason, conventional OMA will not be able

to provide the required demand for 5G networks devices [43].

There have been conducted wide academic researches efforts for NOMA with

a single antenna system on both performance analysis and optimization of the overall

NOMA systems. These studies cover downlink/uplink scenarios, power allocation and

user fairness. In [41] the power-domain NOMA idea was proposed for cellular future

radio access networks by superposing two user signals in the downlink then, implements

SIC at the receiver. Results of that study showed improvement on both throughputs of

the cell-edge user and overall capacity. the system performance was appraised in [31,44]

that considered several design features such as scheduling, error propagation and multi-

user pairing. Then, Ding et al. [45] inspected the performance of the downlink NOMA

cellular scenario by using random users. Their results demonstrated a significant per-

formance in ergodic sum rates compared to conventional OMA.

A different benchmark was introduced by Xu et al. [46] based on the infor-

mation theory aspect to investigate the performance of NOMA over traditional OMA.

The benchmark is to compare the individual achievable rate rather than considering

only the sum rate which was shown significant outperformance for NOMA over OMA
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especially when there is a considerable difference between the channel of users. By

taking fairness of the user into account with different channel state information (CSI)

criteria such as instantaneous CSI and average CSI, power allocation techniques were

examined to assure fairness between users in downlink NOMA system[47].

The transmission of the uplink NOMA scenario was suggested by [48] where

the number of users is limited for each sub-carrier in order to maintain complexity at the

receiver. Further, for the seek of maximization the total sum-rate of the user’s power

allocation algorithm was proposed which achieved a bit error rate close to the single-

user condition. In addition to that, for enhancing multi-user detector performance the

study in [49] proposed an iterative multiuser detection and decoding. A user-pairing for

uplink NOMA transmission was suggested in [50] based on the suboptimal algorithm

in order to reduce implementing complexity for NOMA.

1.3.2 NOMA in Multiple-Antenna systems

MIMO antenna concept was been applied to NOMA systems in [51, 52] which shows

significant enhancement of the ergodic capacity and data rate throughput of the users.

In this study [53], according to two types of transmission priority multicast beamform-

ing can be formed by imposing MIMO NOMA. A zero-forcing (ZF) beamforming was

used to mitigate inter-cluster interference, then a total transmission power beamforming

was minimized in order to formulate the optimal power allocation closed form. Signal

alignment idea was enforced in [54] to design different MIMO NOMA uplink/downlink

framework. Stochastic geometry was applied to formulate a closed-form so, the perfor-

mance of this framework was assessed.
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Also, pre-coding and detection strategies were proposed in [55] so, can com-

pletely make a difference between the users’ channel gains. That proposed algorithm

allowed NOMA to be applied for MIMO NOMA even in very smiler channel gain con-

ditions especially for IoT devices. Increasing the sum capacity was the goal of the

proposed NOMA beamforming scheme in [32]. Where each beam consists of multi-

users, they were clustered based on the difference between their channels and with a

high correlation among the users. Power allocation of the suggested system was assured

enhancing the sum capacity.

Intra-beam superposition coding was suggested by [56] where a pre-coding ma-

trix is managed according to an open loop-type random beamforming. That, controlling

criteria provide efficient feedback size information from the user side. Experimental tri-

als for MIMO NOMA systems were operated in order to examine the MIMO NOMA

with real scenarios [57]. This study was conducted two main practical experiments the

first one 2× 2 MIMO with open-loop and the second trial was 4× 2 with closed-loop.

1.3.3 NOMA and Cooperative Transmission

Involving NOMA in cooperative communication studies have been started in [58–60].

Cooperative NOMA achieved the same diversity order of regular OMA, yet cooperative

NOMA enhances the performance of spectral efficiency for the system. In [58] NOMA

downlink cooperative cellular system supported by a half-duplex (HD) amplify-and-

forward relay was suggested. Several mathematical tool analyses used to investigate

the performance such as the outage performance derived. Another architecture of co-

operative MIMO was investigated in [59], where receivers were equipped by MIMO

antenna and used maximal ratio combining (MRC). By optimizing the power alloca-

tion coefficients it will result in developing the performance of cooperative NOMA as
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identified in [60].

Relay selection (RS) criteria impacted on cooperative NOMA in [61], the study

investigated and compared two different types of RS max-min and two-stage scheme.

Where the two-stage scheme performed better in outage probability and achieved op-

timal diversity order. In addition to that, two relaying protocols amplify-and-forward

(AF) and decode-and-forward (DF) were studied based on different QoS for the users in

[62]. Also, the study achieved closed-form expressions to investigate the performance of

the system. Improving cooperative NOMA transmission can be done through different

approaches such as simultaneous wireless information and power transfer (SWIPT),

full-duplex (FD) and cognitive radio (CR) as discussed in [63].

An energy harvesting relay effected in cooperative NOMA was studied in [64]

with fixed power allocation and cognitive radio. Characterization tools were used to

investigate the performance of the energy harvesting relay. In terms of coordinated mul-

tipoint (CoMP) system studies, opportunistic and joint-transmission (JT) approaches

were investigated by finding sum-rate and the outage performance in [65].
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1.4 Dissertation Organization

The rest of this thesis is organized as follows. Chapter 2 introduces some background

concepts such as basic principles of NOMA and convex optimization. Chapter 3 inves-

tigates the joint design of beamforming and power allocation in the downlink of the

NOMA MIMO multiuser system based on QoS requirements. Chapter 4 studies the

worst-case robust beamforming design for the MISO-NOMA downlink systems by tak-

ing into account the norm-bounded channel uncertainties. Chapter 5 examines jointly

optimizing beamformer and relay power for FD/HD cooperative NOMA with several

optimization techniques. The study covers both perfect channel state information and

the bounded imperfect channel state information. Chapter 6 concludes the thesis and

discusses future research directions.

Notations: Vectors and matrices are denoted by lower-case and upper-case

boldface symbols, respectively. (·)H denotes the Hermitian transpose. Tr (·) denotes

the trace operation. Rank (·) denotes the rank, and ‖ · ‖ denotes the Euclidean norm,

and | · | denotes the absolute value.
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Background Information

2.1 Power Domain Non Orthogonal Multiple Ac-

cess

2.1.1 Basics of NOMA

A comprehensive illustration for downlink and uplink NOMA transmission schemes are

shown in Fig. 2.1, also it shows the basic downlink cooperative NOMA scheme as well.

There are two fundamental techniques that power domain NOMA relaying on; SC and

SIC. For downlink NOMA, all users’ messages are combined through the SC technique

and the channel gains of the users are ordered either ascending or descending order.

In NOMA, the users with poorer channel condition which are allocated by more power

considering the other stronger channel gain users signals as a noise then they decode

their messages. On the other hand, the users with stronger channel gain condition they

are able to decode the poorer users signals then eliminate them by evoking SIC.

39
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For the uplink scenario, different users receive a controlling signal from the

Bs in order to assign the power allocation. After that, several users transmute their

signals according to the assigned resource block. Then, the BS applies SIC to decode

users information with respect to either ascending or descending decoding order.

Figure 2.1: Basic NOMA transmission schemes [3].

2.1.2 Advantages of NOMA Systems

NOMA system shows several advantages in different communication aspects such as

high bandwidth efficiency, where multiple users can be allowed to share the same re-

source block wither it is time or frequency, which contributes to improving the overall

system throughput [41]. In term of fairness in NOMA, it allocates more power for the

poor user. Therefore, NOMA is able to maintain a reasonable trade-off between the

fairness within the users according to their throughput [3]. Also, there more practical

techniques of guaranteeing fairness for NOMA like the intelligent power allocation poli-



Chapter 2. Background Information 41

cies in [47] and [66].

Also, ultra-high connectivity is provided from the NOMA system to overcome the high

demand for IoT devices in 5G networks [67]. Since the resource block can be utilized

by multiple users in NOMA it is a dynamic approach to handle the connectivity task

for IoT devices. While in conventional multiple access techniques the same number

of resource blocks are required in order to serve the same number of devices [68]. In

addition to these advantages, NOMA has a flexible and lower-complexity design in

comparison to the other proposed multiple access techniques for beyond 5G networks

such as SCMA [3].

2.1.3 NOMA in Multi-Antenna Systems

There are two main configurations to impose MIMO for the NOMA system; the first

technique is depicted in Fig. 2.2 where each beamformer is assigned to a dedicated user,

therefore, the QoS can be achieved by computing the weights for each beamformer ini-

tiated by the most required QoS with a predefined order [3]. This technique is called

NOMA with spatial multiplexing (NOMA-SM) since the aim of this scheme is to en-

hance the throughput by expanding the spatial multiplexing gain employing multiple

antennas at both ends between the transmitters and receivers [15]. The attainable rate

is investigated in [52], where NOMA-SM based on assumption that it is a consolidation

of MIMO and NOMA. With a highly rich scattering surrounding the attainable rate of

MIMO channels gains linearly with the minimum of the numbers of transmitting and

receiving antennas.

The second setup in order to apply MIMO-NOMA as shown in Fig. 2.3 is

called the cluster-based beamformer. Where each beamformer contains multiple users

assembling a cluster so, to utilize the power domain NOMA is applied in each individual
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Figure 2.2: Beamforming MIMO-NOMA technique [3].

cluster. This structure enhances the SINR therefore, it improves the spectral efficiency.

A high correlation among users spatial channels within the cluster is a condition that

must be satisfied in order to apply NOMA efficiently.

Figure 2.3: Downlink broadcast channel in a NOMA system [3].

On top of employing a powerful transmitter and detector precoder, it turns
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feasible to assure that the beamformer link to the specific cluster is orthogonal to the

channel vectors of the users in other clusters. So, the intercluster interference can be

correctly cancelled [15]. One of the methodologies that can be used to eliminate the

intercluster interference is a ZF as it introduced in [53] as a two-stage beamformer ap-

proach.

2.1.4 Cooperative NOMA Transmission

The download cooperative NOMA schematic is described in Fig. 2.1. The essential

scheme of the cooperative NOMA is to deal with the strong user in the NOMA system

as a DF relay intended for providing an aide to the weak user since it decodes its mes-

sage in the first place. A classical transmission scheme for cooperative NOMA is consist

of two stages, direct link transmission and cooperative link transmission. Accordingly,

there are two different copies through diverse channels received by the weak user [15].

the relay forwards decoded message in two different strategies which are HF or FD as

will be explained later in Chapter 5.

There are various advantages of cooperative NOMA that can be achieved.

The first gain point is approach system integration since SIC is applied by the strong

user so it is reasonable to regard employing DF protocol to the users required to be

supported in the cell edge as a practical example. The second advantage is to improve

the fairness because as an important detail for cooperative NOMA about the reliability

of weak user with bad channel conditions naturally enhanced. The third point is to get

a higher diversity gain that is considered as a powerful way to control the multi-path

fading [3].
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2.2 Convex Optimization

There are three main mathematical disciplines by combining them they will be form-

ing called convex optimization which are; optimization, convex analysis and numerical

computation. Furthermore, convex optimization considers as a powerful tool in engi-

neering since it provides efficient and solid solutions for several practical engineering

problems. Implementing convex optimization has been noted from different engineering

area such as control, signal processing, communication [69,70], networks, circuit design,

information theory and computer science. Also, can be applied in economics, statistics

and structural design [71].

An enormous representations of layout engineering problem can be a modelled

as constrained optimization problems, based on the form:

min f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

(2.1)

where x is a vector of variables, and f0 is the cost function, fi is the inequality constraint

function and hi is equality constraint function. Normally, kind of this problem could

be extremely difficult to solve specifically when there are many variables of x.There

are different causes for this dilemma to find a solutions for this type of problems. One

reason is to find a feasible point x that satisfy all constraints could be difficult to get

it. Also, a capricious standard of using stopping criteria in commonplace optimization

algorithms. Besides to these struggles, the convergence rates by these algorithms are

low.
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A solid explanation of the theories, applications and algorithms for convex

optimization is well explained in [72–74]. In the following sections, there will be a

highlighted explanation for the main concepts that will be used in this research to

achieve a feasible solution for the proposed problems.

2.2.1 Quasiconvex Functions

As an advantage of a quasiconvex function that the iterations can be minimized from

convex optimization problems [71]. A function f : Rn → R is defined as a quasiconvex

where the domain of this function and all its α-sublevel sets defined as

Sα = {x ∈ dom f | f(x) ≤ α} (2.2)

are convex for each one of α see Fig.2.4.

Figure 2.4: Clarification of a quasiconvex function.

There are several notes regarding quasiconvex functions:
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• If f is convex function, so it is accordingly a quasiconvex function as well see

Fig.2.5.

• Quasiconvex functions could have ‘locally flat’ areas.

• f is quasiconcave if −f is quasiconvex, especially, superlevel sets {x | f(x) ≥ α}

are convex.

• A quasilinear function is termed for functions is quasiconvex and quasiconcave at

the same time.

Figure 2.5: Links between different functions sets [69].

There are a few listed examples for quasiconvex, quasiconcave and quasilinear functions

[69,71]:

• f(x) =
√

(|x|) is quasiconvex on R.

• f(x) = e−x is quasilinear on R.

• f(x) = log(x) is quasilinear on R++.

• Ceiling function:

dxe = inf{z ∈ Z | z ≥ x},
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is lower semi-continuous, nonconvex but it is quasiconvex and quasiconcave so it

is quasilinear.

• Linear-fractional function

f(x) =
aTx + b

cTx + d
,

is quasiconvex on {x | cTx + d > 0}. It could be demonstrated that a linear-

fractional function is also quasiconcave, thus it is quasilinear.

• f(X) = rank(X) is a quasiconcave on on Sn+.

• f(x) =
‖x−a‖2
‖x−b‖2

is quasiconvex on the halfspace {x | ‖x− a‖2 ≤ ‖x− b‖2}.

2.2.2 Semi-definite Relaxation

Semidefinite relaxation (SDR) is a robust and computationally efficient approxima-

tion approach, where has been applied on a wide wireless communications and signal

processing optimization problems to realize an approximate solution to a non-convex

problem that is very significant. SDR can be imposed specifically for numerous non-

convex quadratically constrained quadratic programs (QCQPs) problems. For example,

the real-valued homogeneous QCQP is written as follows:

min
x∈R2

xTCx

s.t. xTAix Di bi i = 1, . . . ,m.

(2.3)

“Di” means either “≤”, “≥” or “=”. C and Ai ∈ Sn, where Sn stands for the set of all

real symmetric n × n matrices; and bi ∈ R. The first important stage in inferring an

SDR of (2.3) is to look at both the objective function and constraints are linear in the
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matrix xTx where

xTCx = Tr(xTCx) = Tr(CxTx) and

xTAix = Tr(xTAix) = Tr(Aix
Tx).

So, by proposing a new variable X = xTx where, X is a rank one symmetric positive

semidefinite (PSD) matrix. Then, an equivalent representation of (2.3):

min
X∈Sn

Tr(CX)

s.t. Tr(AiX) Dibi i = 1, . . . ,m,

X < 0

rank(X) = 1.

(2.4)

At this step the problem (2.3) converts to a convex problem except the rank one con-

straint rank(X) = 1. So, the following relaxed formulation:

min
X∈Sn

Tr(CX)

s.t. Tr(AiX) Dibi i = 1, . . . ,m,

X < 0.

(2.5)

Problem (2.5) is recognized as a SDR of (2.3) and the outcome of this relaxed formula-

tion is can be solved by using the convex optimization toolbox CVX in the MATLAB. .

Then, the algorithm returns a solution that is optimal for the original problem. More-

over, when m ≤ 2 there will be a rank(X∗) ≤ 1 at any time that (2.5) is feasible [75].

As an extension of QCQP a separable QCQPs form:
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min
x1,...,xk∈Cn

k∑
i=1

xHi Cixi

s.t.
k∑
l=1

xHl Ai,lxl Di bi i = 1, . . . ,m.

(2.6)

This problem (2.6) is used in downlink transmit beamforming optimization problems

[76]. Also, can be rewritten in SDR form:

min
X1,...,Xk∈Hn

k∑
i=1

Tr(XiCi)

s.t.
k∑
l=1

Tr(XiAi,l) Di bi i = 1, . . . ,m,

X1 < 0, . . . ,Xk < 0.

(2.7)

Next, as prove in [77] a solution {X∗i }ki=1 occurs when ranks fulfil

k∑
i=1

rank(X∗i )
2 ≤ m.

2.2.3 S-procedure

S-procedure or S-lemma as it is termed as well, it is introduced a useful way to transform

many quadratic constraints into a linear matrix inequality (LMI) constraint. In fact,

it turns multiple quadratic constraints into a single semidefinite matrix inequality with

an additional unknown nonnegative parameter. Lately, this mathematical technique

has been applied in robust transmit beamforming in MIMO wireless communications

especially, in imperfect channel state information (CSI) environments [78].

S-procedure is stated as following [69]:
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Let A1, A2 ∈ Hn, b1 , b2 ∈ Cn, h1, h2 ∈ R. The following implication

xHA1x + 2Re{bH1 x}+ h1 ≤ 0︸ ︷︷ ︸
2.8a

⇒ xHA2x + 2Re{bH2 x}+ h2 ≤ 0︸ ︷︷ ︸
2.8b

(2.8)

i.e.,
{
x ∈ Hn

∣∣xHA1x + 2Re{bH1 x}+ h1 ≤ 0
}
⊆
{
x ∈ Hn

∣∣xHA2x + 2Re{bH2 x}+ h2 ≤ 0
}

,

holds true if and only if there exists a λ ≥ 0 such that

 A2 b2

bH2 h2

 � λ

 A1 b1

bH1 h1

 (2.9)

provided that there exists a point x̂ with x̂HA1x̂ + 2Re{bH1 x̂}+ h1 < 0.

An other clarification for S-procedure, that is crucial in how to basically ad-

dress S-procedure. Presume that there exists a point x̂ fulfilling x̂HA1x̂+2Re{bH1 x̂}+

h1 < 0. The statement, that the second-order inequality (2.8b) is true for all x fulfilling

the second-order inequality (2.8a), is true if and only if (2.9) is true for some λ ≥ 0.

It is worth to mention that opposing to the semidefinite matrix inequality given by

the Schur complement, the correspondent semidefinite matrix inequality given by (2.9)

never involves x. It is only puts in an additional unknown variable λ under nonnegative

constraint in the redefined optimization problem [69].

2.2.3.1 Proof of S-procedure

In order to prove the S-procedure where, (2.8) and (2.9) are strong substitute each

other let A1, A2, Q1 and Q2 ∈ Sn, b1, b2 ∈ Rn, h1, h2 ∈ R. Consider the following

inequality system

λ ≥ 0, λQ1 + Q2 � 0. (2.10)
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This equation can also be rewritten as following

F(λ) = λF + G � 0, (2.11)

where

F = DIAG(−1,−Q1) ∈ Sn+1,G = DIAG(0,−Q2) ∈ Sn+1. (2.12)

Also, consider the following system

Z
∆
=

 z aT

a X

 � 0,Tr(GZ) > 0,Tr(FZ) = 0. (2.13)

Note that (2.11) and (2.13) are strong alternatives. Then, substitute (2.12) into (2.13)

brings in

X � 0,Tr(XQ2) < 0,Tr(XQ1) ≤ 0. (2.14)

Then, (2.14) can be expressed as

xTQ2x < 0, xTQ1x ≤ 0, x ∈ Rn. (2.15)

So, the result that (2.10) and (2.15) must be strong alternatives, provided that

F given in (2.12) is indefinite by

n∑
i=1

υiFi � 0⇒
n∑
i=1

υiFi = 0. (2.16)

When the assumption of Q1 must have a negative eigenvalue at least holds true, strong

alternatives occurs between (2.10) and (2.15). Let Q1 and Q2 be partitioned in the
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following forms

Q1 =

 A1 b1

bT1 h2

 , Q2 = −

 A2 b2

bT2 h2

 . (2.17)

Substituting (2.17) into (2.10) brings on

 A2 b2

bT2 h2

 � λ

 A1 b1

bT1 h1

 , λ ≥ 0. (2.18)

Furthermore, it can be demonstrated (see Remark 2.2.1) that


xTA1x + 2bT1 x + h1 ≤ 0

xTA2x + 2bT2 x + h2 > 0

where x ∈ Rn−1, (2.19)

and (2.15) are feasibility equivalent, As long as the assumption of Q1 must have a

negative eigenvalue at least holds true, particularly, there exists an x̂ such that

x̂TA1x̂ + 2bT1 x̂ + h1 < 0. (2.20)

So, (2.19) and (2.18) are strong alternatives under the premise (2.20). Furthermore,

the infeasibility of (2.19) implies that the following implication is true:

xTA1x + 2bT1 x + h1 ≤ 0⇒ xTA2x + 2bT2 x + h2 ≤ 0. (2.21)

Especially, the system given by (2.21) remains true if and only if there exists a λ

satisfying the system given by (2.18) provided that (2.20) is true. By this the proof of

the S-procedure is completed.

Remark 2.2.1 (Proof the feasibility equivalence of (2.15) and (2.19))
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Replacing (2.17) and x = (v, w) ∈ Rn into (2.15) becomes


q1(ṽ)

∆
= ṽTA1ṽ + 2bT1 ṽ + h1 ≤ 0

q2(ṽ)
∆
= ṽTA2ṽ + 2bT2 ṽ + h2 > 0

ifw 6= 0 and ṽ = v/w, (2.22a)


vTA1v ≤ 0

vTA2v > 0

if w = 0. (2.22b)

So, (2.15) is feasible, if and only if either (2.22a) or (2.22b) is feasible.

Replacing ṽ in (2.22a) with x = x̂ + tv ∈ Rn−1 becomes

q1(x) = q1(x̂) + t2vTA1v + 2t(A1x̂ + b1)Tv

≤ q1(x̂) + 2t(A1x̂ + b1)Tv (by (2.22b)),

(2.23)

q2(x) = q2(x̂) + t2vTA2v + 2t(A2x̂ + b2)Tv. (2.24)

Suppose that (A1x̂ + b1)Tv 6= 0. By letting t→ ±∞ in both (2.23) and (2.24) (depend-

ing on the sign of (A1x̂ + b1)Tv), through applying (2.22b) to (2.24), It can be derived

that


xTA1x + 2bT1 x + h1 ≤ 0

xTA2x + 2bT2 x + h2 > 0

(2.25)

must be feasible if (2.22b) under the assumption (2.20). Also, when (A1x̂ + b1)Tv = 0,

(2.23) reduces to q1(x) ≤ q1(x̂) < 0. So, (2.22a) is feasible for this case. Accordingly,

the proof that (2.19) is feasible if and only if (2.15) is feasible, provided that (2.20) is

true [69].



Chapter 3

Joint Beamforming and Power

Allocation Design in Downlink

Non-Orthogonal Multiple Access

Systems

3.1 Introduction

In this part the joint design of beamforming and power allocation in the downlink

of the NOMA MIMO multiuser system, where the users are grouped based on their

QoS requirements. The problem formulation where the sum rate of the users who

expect to be served with the best efforts is maximized under the rate constraints of

the users with strict QoS requirements and the maximum transmit power constraint

at the BS. SDR approach is proposed to solve the non-convex optimization problem

and SCA has intended an algorithm based on the AGM inequality to perform the joint

54
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design of the beamforming vectors and the power allocation coefficients. Simulation

results are presented to show the performance advantage of the proposed algorithm over

existing algorithms and the impact of system parameters on the convergence speed of

the proposed algorithm.

3.2 System Model and Problem Formulation

We consider a downlink wireless broadcast channel in a MIMO multiuser system, as

illustrated in Fig. 3.1, where an M -antenna base station (BS) serves several single-

antenna users simultaneously. In this system, we consider the employment of NOMA

to improve spectrum efficiency. We assume that the fading coefficients keep invariant

during the channel coherence time and the channel state information (CSI) is known

at the BS.

User 11

User 12

User k2User k1

1 M

Base station

User K2

User K1

Figure 3.1: Downlink broadcast channel in a NOMA system.



Chapter 3. Joint Beamforming and PA Design in DL NOMA MIMO Systems 56

In this work, we address a new scenario where the users in this system are

divided into two groups, depending upon their QoS requirements. Group 1 contains the

users that expect to be served with the best efforts, e.g., the users which are downloading

with flexible delay-tolerant tasks. Differently, Group 2 contains the users that need a

target rate such that they can carry out phone calls or other types of real-time tasks.

Without loss of generality, we assume that each group has K users. We denote user

k1, k ∈ {1, · · · , K}, as the users in Group 1 and denote user k2 as the users in Group

2. We also assume that user k1 and user k2 are randomly paired. We further assume

that the number of antennas at the BS is no less than the number of user pairs, i.e.,

M ≥ K. Finally, we clarify that it is not necessary to order users according to their

channel conditions in this work since the order of SIC is only determined by their QoS

requirements.

We now formulate the problem to be tackled in the considered system. As per

the rules of NOMA, we first express the information bearing vector, s ∈ CK×1, as

s =
[√

a1s11+
√
b1s12, · · · ,

√
aKsK1+

√
bKsK2

]T
, (3.1)

where sk1 is the signal intended to user k1, sk2 is the signal intended to user k2, the

allocated power to user k1 is ak, and the allocated power to user k2 is bk. Here, the

allocated power needs to satisfy the condition that ak + bk = 1, ∀k.

An M×K beamforming matrix P is adopted at the BS to facilitate multiuser

broadcasting. Mathematically, we express P as P = [p1, · · · ,pK ], where pk is the

beamforming vector designed for the k-th user pair, containing user k1 and user k2.

Suppose that user k1 expects to be served with the best efforts. To achieve this, the

beamforming matrix is designed to guarantee that user k1 receives no interference from

other user pairs. Motivated by this, zero-forcing (ZF) beamforming can be applied by

leveraging the available CSI at the BS. Moreover, we note that user k2 has a strict QoS
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requirement. This implies that user k2 can be treated as a primary user in cognitive

radio networks and thus, it is important to ensure that the interference temperature

experienced by user k2 is carefully controlled. It follows that the beamforming matrix

needs to be designed such that user k2 receives no interference from other user pairs. To

fulfill the aforementioned requirements, we define a new M×(K−1) matrix G̃k, where

G̃k = [g1, · · · ,gk−1,gk+1, · · · ,gK ], and gk ∈ CM is the Rayleigh fading channel vector

from BS to user k1. As such, G̃k contains the channel vectors from the BS to all users

in Group 1, except for those from the BS to user k1. We decompose the beamforming

vector pk as pk = Ukqk, where Uk is normalized and lies in the null space of G̃k, and

qk aims to improve the rates of users in Group 1 and guarantee the users in Group 2

to reach the target rate.

Based on the definition of Uk and G̃k, we confirm that Uk lies in the null

space of G̃k. Applying the singular value decomposition, we decompose G̃k as

G̃k =

[
A

(K−1)
k ,A

(M−K+1)
k

]
DkB

H
k , (3.2)

where A
(K−1)
k is the first K−1 left eigenvectors of G̃k, which form an orthogonal basis of

G̃k, and A
(M−K+1)
k corresponding the zero eigenvalues represents the last M −K+1 left

eigenvectors of G̃k, which form an orthogonal basis of the null space of G̃k. Therefore,

Uk is given by Uk = A
(M−K+1)
k .

We assume that the SIC is employed at user k1 to remove the interference

caused by sk2. Under this assumption, sk2 can be correctly decoded and completely

cancelled at user k1 if the actual rate of sk2 is larger than or equal to its target rate at

user k1. With the aid of ZF beamforming, the received signal at user k1, yk1, is written

as

yk1 =
√
akg

H
k Ukqksk1 + nk1, (3.3)



Chapter 3. Joint Beamforming and PA Design in DL NOMA MIMO Systems 58

where nk1 ∼ CN (0, σ2
k1) denotes the circularly symmetric complex Gaussian noise at

user k1 with zero mean and variance σ2
k1. Based on (3.3), the SNR of the desired

message at user k1 is obtained as

SNRk1 = ak
∣∣g̃Hk Ukqk

∣∣2 , (3.4)

where g̃k = gk/σk1 for all k.

We next focus on user k2. We note that neither the inter-beam interference

nor the intra-beam interference can be completely canceled at user k2. As such, the

received signal at user k2, yk2, is written as

yk2 =
√
bkh

H
k Ukqksk2 +

√
akh

H
k Ukqksk1

+
∑
i 6=k

hHk Uiqi

(√
aisi1 +

√
bisi2

)
+ nk2, (3.5)

where hk ∈ CM×1 is the Rayleigh fading channel vector from the BS to user k2 and

nk2 ∼ CN (0, σ2
k2) denotes the circularly symmetric complex Gaussian noise at user k2

with zero mean and variance σ2
k2. It is seen from (3.5) that the first item in the right-

hand side is the desired signal at user k2 and the remaining items are the received

interference and noise. Based on (3.5), the decoded signal-to-interference-plus-noise

ratio (SINR) of user k2 is obtained as

SINRk2 =
bk|h̃Hk Ukqk|2

ak|h̃Hk Ukqk|2 +
∑

i 6=k |h̃Hk Uiqi|2 + 1
, (3.6)

where h̃k = hk/σk2. In addition, using (3.3) and (3.5), the decoded SINR of user k2 at

user k1 is obtained as

SINRk2 =
bk|g̃Hk Ukqk|2

ak|g̃Hk Ukqk|2 + 1
. (3.7)

In the considered system, the strict QoS requirement of user k2 is demanded

not only at its own receiver, but also at the other user within the same user pair,

i.e., user k1, for the purpose of SIC. Therefore, both the allocated power and the
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designed beamforming matrix need to meet the target rate R0, i.e., log (1 + SINRk2)≥

R0 and log
(
1 + SINRk2

)
≥R0 [79]. Under this constraint, the goal of our design in the

considered system is to maximize the sum rate of the users in Group 1, since user k1

expects to be served with the best efforts. Mathematically, the optimization problem,

denoted by P1, is formulated as

P1 max
{ak,bk,qk}Kk=1

K∑
k=1

log (1 + SNRk1) (3.8a)

s. t. log (1 + SINRk2) ≥ R0, ∀k, (3.8b)

log
(
1 + SINRk2

)
≥ R0, ∀k, (3.8c)

K∑
k=1

Tr
(
qkq

H
k

)
≤ Pmax, (3.8d)

ak + bk = 1, ∀k, (3.8e)

ak ≥ 0, bk ≥ 0, ∀k, (3.8f)

where (3.8d) indicates that the BS is subject to the maximum transmit power Pmax.

It can be seen from P1 that the sum rate of the users in Group 1 and the

achievable rates of the users in Group 2 depend on {qk} and {ak}. In the following

section, we will jointly design beamforming vectors and power allocation coefficients to

solve P1.

3.3 Joint Design of Beamforming and Power Allo-

cation

In this section, we aim to solve P1 given in (3.8). To this end, we first employ the

SDR approach [35] to linearize the beamforming vectors. Then we apply the successive

convex approximation based on the AGM inequality to perform the joint design of
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beamforming vectors and power allocation coefficients.

3.3.1 Semidefinite Relaxation (SDR) Approach

We first note that the optimization problem P1 is a quadratically constrained quadratic

program and non-convex with respect to the beamforming vectors qk. Hence, in this

subsection, we introduce the SDR approach to linearize the beamforming vectors such

that for any given {ak}, the beamforming design can be reformulated as a convex

problem with linear matrix inequalities (LMIs).

Specifically, we find that both the objective function and the constraints in P1

are linear with the matrix qkq
H
k . As such, we introduce an (M −K+ 1)× (M −K+ 1)

positive semidefinite matrix, Qk, into the optimization problem to replace qkq
H
k . If Qk

is a rank-one matrix, the optimization problem with Qk is equivalent to the original

optimization problem P1. We then note that the introduced constraint Rank(Qk) = 1,

∀k, is non-convex. To address this issue, we drop this constraint to obtain the relaxed

optimization problem P2, which reads

P2 max
{ak,Qk}Kk=1

R ,
K∑
k=1

log (1 + ak Tr (GkQk)) (3.9a)

s.t. ak Tr (HkkQk) ≤ ∆1, ∀k, (3.9b)

ak Tr (GkQk) ≤ ∆2, ∀k, (3.9c)

Qk � 0, ∀k, (3.9d)

K∑
k=1

Tr (Qk) ≤ Pmax, (3.9e)

0 ≤ ak ≤ 1, ∀k, (3.9f)

where, for the sake of clarity, we apply the properties of matrix trace and define Hki =

UH
i h̃kh̃

H
k Ui and Gk = UH

k g̃kg̃
H
k Uk for i ∈ {1, · · · , K}, and
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∆1 =
1

γ
Tr (HkkQk)−

γ

γ + 1

K∑
i 6=k

Tr (HkiQi)−
γ

γ + 1
,

∆2 =
1

γ + 1
Tr (GkQk)−

γ

γ + 1
,

with γ = 2R0 − 1 being the SINR target of user k2.

By introducing a set of slack variables {sk}, P2 is equivalent to

P3 max
{ak,Qk,sk}Kk=1

K∑
k=1

log (1 + sk) (3.11a)

s.t. ak Tr (GkQk) ≥ sk,∀k, (3.11b)

(3.9b)− (3.9f).

Here we remark that for any fixed power allocation scheme, the problem P3 is concave,

and for any fixed beamforming matrices, P3 is also concave. However, it can be easily

shown that ak Tr(GkQk), as well as ak Tr(HkkQk), are concave in ak and Qk since their

Hessian matrices are negative semidefinite. Henceforth, the problem P3 is nonconvex

due to the constraints (3.9b) and (3.9c).

3.3.2 SCA based on AGM Inequality

In view of the nonconvexity of P3, we now consider the suboptimal design of the power

allocation coefficients ak and the beamforming matrices Qk under the constraints given

by (3.9b) and (3.9c). It is noted that the functions in the left-hand side of (3.9b)

and (3.9c) are concave while functions in the right-hand side of (3.9b) and (3.9c) are

linear. To resolve (3.9b) and (3.9c) by their structure, we apply the AGM inequality

to approximate the concave function by a convex function. Specifically, the AGM

inequality says that 2xy ≤ x2 + y2 holds true for any two positive numbers x and y

with the equality holds true if and only if x = y.
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Thus we define two quadratic functions as

µ (ak,Qk) ,
1

2

(
a2
k + (Tr (HkkQk))

2) , (3.12)

ν (ak,Qk) ,
1

2

(
a2
k + (Tr (GkQk))

2) . (3.13)

Note that ak Tr (HkkQk)≤µ (ak,Qk) and ak Tr (GkQk) ≤ ν (ak,Qk), while both µ (ak,Qk)

and ν (ak,Qk) are convex with respect to ak and Qk. Hence, (3.9b) and (3.9c) can be

conservatively guaranteed by two convex constraints µ (ak,Qk) ≤ ∆1 and ν (ak,Qk) ≤

∆2.

However, there is a gap between ak Tr (HkkQk) and µ (ak,Qk), also between

ak Tr (GkQk) and ν (ak,Qk). In order to reduce the approximation gaps, we introduce

a series of factors, cki, where k = 1, · · · , K and i = 1, 2, as follows

2ak Tr (HkkQk) ≤ (akck1)2 +

(
Tr (HkkQk)

ck1

)2

, (3.14a)

2ak Tr (GkQk) ≤ (akck2)2 +

(
Tr (GkQk)

ck2

)2

, (3.14b)

where the equalities hold true if and only if

ck1 =

√
Tr(HkkQk)

ak
and ck2 =

√
Tr(GkQk)

ak
, ∀k. (3.15)

With proper choice of cki, the conservatism of the approximation to (3.9b) and (3.9c)

by (3.14) can thus be reduced.

With the AGM inequality based constraints (3.14), the optimization problem
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Algorithm 1 Proposed AGM Algorithm

1: Initialize c
(1)
k1 = c

(1)
k2 = 1,∀k, R(0) = −∞, ε = 1

2: Set iteration index t = 1
3: while ε ≥ 0.01 do
4: Update {Q(t)

k , a
(t)
k } with c

(t)
k1 and c

(t)
k2 by solving (3.16);

5: Update the sum rate of users in Group 1, R(t) by (3.9a);

6: Update c
(t+1)
k1 and c

(t+1)
k2 based on (3.17);

7: Update ε =
(
R(t) −R(t−1)

)
/R(t−1);

8: t := t+ 1;
9: end while
10: Output {Q(t−1)

k , a
(t−1)
k }

P3 is then conservatively approximated by

P4 max
{ak,Qk,sk}

K∑
k=1

log (1 + sk) (3.16a)

s.t. ak Tr (GkQk) ≥ sk, ∀k, (3.16b)

(akck1)2 +

(
Tr (HkkQk)

ck1

)2

≤2∆1,∀k, (3.16c)

(akck2)2 +

(
Tr (GkQk)

ck2

)2

≤ 2∆2,∀k, (3.16d)

(3.9d)− (3.9f),

which is a convex problem for any fixed factors cki, and thus can be solved by off-the-

shelf solvers, e.g., CVX [80].

By applying the idea of SCA [36], we iteratively approximate the feasible set

of P3 by updating cki in P4 with

c
(t+1)
k1 =

√√√√Tr(HkkQ
(t)
k )

a
(t)
k

, c
(t+1)
k2 =

√√√√Tr(GkQ
(t)
k )

a
(t)
k

, (3.17)

where t is the iteration index. The iteration process to P3, called AGM Algorithm, is

then detailed in Algorithm 1.

The proposed AGM algorithm in this work continuously decreases the gap

between the reformed optimization problem and the original optimization problem.
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Specifically, this decrease is achieved by iteratively updating ck1 and ck2, ∀k, until the

sum rate of the users in Group 1 converges. We can draw the following lemma, whose

proof is omitted due to the space limits.

Lemma 1 Every limit point of the sequence generated by Algorithm 1 is a stationary

point of problem P2.

We remark that qkq
H
k is relaxed to a positive semidefinite matrix Qk in P4

by the SDR technique. However, the optimal solution of Qk to P4 is not guaranteed

to be of rank one, which mandates the use of the Gaussian randomization procedure or

the rank-one approximation [35].
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Table 3.1: Sum Rate of Users in Group 2 (bps)

SNR 10 dB 20 dB 30 dB 40 dB 50 dB

Required QoS 1.0521 1.0521 1.0521 1.0521 1.0521
AGM 1.0526 1.0540 1.0557 1.0571 1.0573
AO 1.0523 1.0521 1.0521 1.0521 1.0521

Unjoint 0.8439 0.9816 1.0357 1.0541 1.0601

3.4 Simulation Results

In this section, we present Monte Carlo simulation results to evaluate the performance

of the proposed joint beamforming and power allocation design, referred to as the AGM

algorithm, in the downlink channel of a NOMA-based MIMO multiuser system. To this

end, we generate the entries of gk and hk using the independent circularly symmetric

complex Gaussian distribution with zero mean and unit variance. Moreover, we assume

the total transmit power at the BS is normalized to unity, i.e., Pmax = 1 watt. Without

loss of generality, we further assume that the noise level at users is the same, i.e.,

σ2
k1 = σ2

k2 = σ2, ∀k. Accordingly, the SNR used in this section refers to the average

SNR which is defined as SNR = Pmax/σ
2. The target SINR requirement of the users in

Group 2 is set to be 0.2, i.e., γ = 0.2.

3.4.1 Sum Rate of Users

Fig. 3.2 depicts the sum rate of the users in Group 1 versus SNR. In this figure, we

compare our proposed AGM algorithm to the alternating optimization (AO) algorithm,

the unjoint algorithm [81], and the OMA algorithm. Here, the AO algorithm updates

the beamforming matrix with fixed allocated power and updates the allocated power

with the fixed beamforming matrix alternatively, while the unjoint algorithm adopts the

ZF beamforming and allocates power accordingly to reach the target rate. From Fig. 3.2,
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Figure 3.2: Comparison of the sum rate of the users in Group 1 versus SNR with M = 6
and K = 4.

we observe that the proposed design achieves a significant performance advantage over

other algorithms, especially in the high SNR regime. This is due to the joint design of

the beamforming matrix and power allocation in our proposed algorithm.

We then compare the sum rate of the users in Group 2 of different algorithms

in Table 3.1. It can be clearly observed that our proposed algorithm achieves a higher

sum rate than both the AO algorithm and the unjoint algorithm. Moreover, we observe

that our algorithm always guarantees the required QoS requirement over the whole

SNR regime, while the unjoint algorithm does not. Both observations demonstrate the

benefits of our proposed algorithm for the users in Group 2 relative to the existing

algorithms.
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Figure 3.3: Sum rate of the users in Group 1 versus the iteration index for different
SNRs with M = 6 and K = 4.

3.4.2 Convergency Property

Figs. 3.3 and 3.4 depict the convergence of the AGM algorithm versus the iteration

index, which allows us to examine the impact of system parameters on the convergence

rate of our proposed algorithm. From Fig. 3.3, we observe that the convergence rate of

our proposed AGM algorithm becomes lower when the SNR increases. This is due to the

fact that the gap between ak and Tr (GkQk) and the gap between ak and Tr (HkkQk)

increase when the noise level decreases. From Fig. 3.4, we observe that the convergence

rate of the AGM algorithm becomes lower when M−K increase. This is because there

are (M−K+1)2 independent variables in each of the K beamforming matrices to be

optimized.
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Figure 3.4: Sum rate of the users in Group 1 versus the iteration index for different
values of K and M with SNR = 20 dB.

3.4.3 Rank Results

Fig. 3.5 depicts the ratio between the largest eigenvalue and the second largest eigen-

value of the optimal beamforming matrix, denoted byRλ, versus the number of antennas

for 2, 000 independent Rayleigh channel realizations. Due to the quadratic form of Qk in

(3.16c) and (3.16d), as well as the nonlinear objective function, the rank one optimality

of P4 can not be drawn directly by applying the lemma in [82]. This makes the rank

analysis very challenging and thus motivates us to use simulation results to demonstrate

the rank of the obtained solution. It can be seen from Fig. 3.5, that if problem P4 is

feasible, then it always yields a sufficiently large Rλ, implying that the AGM algorithm

admits a rank-one optimal solution {Qk} when it converges in all simulation cases.



Chapter 3. Joint Beamforming and PA Design in DL NOMA MIMO Systems 69

3.5

M

10
6

10
7

10
8

10
9

10
10

10
11

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5

R
λ

Figure 3.5: The ratio between the largest eigenvalue and the second largest eigenvalue
of the optimal beamforming matrix versus the number of antennas with K = 2.
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3.5 Summary

The joint design of beamforming and power allocation in the downlink of the NOMA

MIMO multiuser system is investigated, where the users are grouped based on their

QoS requirements. For the sake of practicality, the problem is formulated where the

sum rate of the users who expect to be served with the best efforts is maximized un-

der the rate constraints of the users with strict QoS requirements and the maximum

transmit power constraint at the BS. We then eliminated the inter-beam interference

by applying the ZF beamforming. To solve the non-convex optimization problem, the

SDR is adopted to approach and showed that the optimal solutions are always rank one

using simulation results. Also, a SCA algorithm is proposed based on the AGM inequal-

ity to perform the joint design of the beamforming vectors and the power allocation

coefficients. Simulation results were presented to show the performance advantage of

our proposed algorithm over existing algorithms and the impact of system parameters

on the convergence speed of our proposed algorithm



Chapter 4

Maximizing SINR for

Non-Orthogonal Multiple Access

With Bounded Channel

Uncertainties

4.1 Introduction

In this chapter the worst-case robust beamforming design for the MISO-NOMA down-

link systems by taking into account the norm-bounded channel uncertainties are inves-

tigated. The objective is to balance the users SINRs with the constraints of the total

transmit power of the other users and the received interference power at the users.

However, the original robust problem formulation is not convex due to the imperfect

CSI. The S-procedure is exploited to reformulate the original non-convex problem into

the SDP form by recasting the original non-convex constraints into the LMI form.

71
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4.2 System Model and Problem Formulation

The system model is based on multiple-input single-output (MISO-NOMA) downlink

systems, where the base station is equipped with M antennas and sends different mes-

sages to K users denoted as U1, U2, . . . , UK . Each user is equipped with a single antenna.

The channel between the BS and the kth user Uk is denoted by hk and wk represents

the corresponding beamforming vector of the kth user Uk. The received signal at Uk is

given by

yk = hHk wksk +
∑
m 6=k

hHk wmsm + nk,∀k (4.1)

where sk denotes the symbol intended for Uk and nk ∼ CN (0, σ2
k) represents a

zero-mean additive white Gaussian noise with variance represents a zero-mean additive

white Gaussian noise with variance σ2
k. The power of the symbol skis assumed to be

unity, i.e. E
[
|sk|2

]
= 1. In practical scenarios, there are difficulties to have perfect

CSI at the transmitter due to channel estimation and quantization errors. Therefore,

we consider a robust beamforming design to overcome these channel uncertainties. In

particular, we incorporate norm bounded channel uncertainties in the design as

hk = ĥk + ∆ĥ,
∥∥∥∆ĥ

∥∥∥
2

=
∥∥∥hk − ĥk

∥∥∥
2
≤ ε, (4.2)

where ĥk,∆ĥ and ε ≥ 0 denote the estimate of hk,the norm-bounded channel

estimation error and the channel estimation error bound, respectively.

In NOMA scheme, user multiplexing is performed in power domain and the

SIC approach is employed at receivers to separate signals between different users. In
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this scheme, users are sorted based on the norm of their channels, i.e.,
∥∥∥ĥ1

∥∥∥
2
≤
∥∥∥ĥ2

∥∥∥
2
≤

. . . ≤
∥∥∥ĥK∥∥∥

2
where the channels have been ordered inversely with the path loss ,for

example, the kth user locates to the closest distance to the Bs decodes the signals

intended for the users from U1 to Uk−1 through SIC approach whereas the signals

intended for the rest of the users i.e., (Uk+1, . . . , UK) are treated as the interference at

the kth user. Based on this SIC approach, the lth user can detect and remove the kth

users signals for 1 ≤ k ≤ l. Hence, the signal at lth the user after removing the first

k − 1 users signals to detect kth user is represented as

ykl = hHl wksk +
k−1∑
m=1

∆ĥlwmsm

+
K∑

m=k+1

hHl wmsm + nk,∀k, l ∈ {k, k + 1, . . . K} (4.3)

where the first term is the desired signal to detect sk and the second term is

due to imperfect CSI at the receivers during the SIC process. Due to the channel uncer-

tainties, the signals intended for the users U1, . . . , Uk−1 cannot be completely removed

by the lth user. The third term is the interference introduced by the signals intended

to the users Uk+1, . . . , UK . According to the NOMA scheme, the lth user should be able

to detect all kth (k < l) user signals.

yll = hHl wlsl +
l−1∑
m=1

∆ĥlwmsm +
K∑

m=l+1

hHl wmsm + nl.

∀k, l ∈ {k, k + 1, . . . K} (4.4)
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The instantaneous received SINR at the lth user can be expressed as

SINRl
l=

hH
l wlw

H
l hl

l−1∑
m=1

∆ĥH
l wmwH

m∆ĥl+
K∑

m=l+1

hH
l wmwH

mhl+σ2
l

. (4.5)

4.3 Proposed Optimization Methods

The SINR basically determines the quality of service (QoS) of the users. Therefore,

robust SINR maximization has been investigated by incorporating channel uncertainties

to assure the required SINR at each user. The worst-case SINR of each user is considered

in this study and the optimization problem is formulated as follow:

P1 max min
‖∆ĥl‖

2
≤ε

SINRl
l, (4.6a)

s.t. min
‖∆ĥi‖

2
≤ε

( min
i∈{l+1,...,K}

SINRi
l) ≥ γmini ,∀i (4.6b)

K∑
l=1

‖wl‖2 ≤ PT , (4.6c)

considering in the problem formulation a minimum required SINRs for the remaining

users in the cell (4.6b) and limited by transmitted power PT . This problem P1 is

not convex in fact it’s quasi-convex. In order to solve this quasi-convex problem, by

employing the classical bisection method [72]. Based on the above idea, first, recast

P1 in the epigraph form by introducing a new variable t ≥ 0, where t is an auxiliary

variable for scaling the SINR. Also, the solution of P1 can ensure the perfect case under
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the assumption of perfect CSI is assumed.

P2 max t, (4.7a)

s.t. min
‖∆ĥl‖

2
≤ε

SINRl
l ≥ t,∀l (4.7b)

min
‖∆ĥi‖

2
≤ε

( min
i∈{l+1,...,K}

SINRi
l) ≥ γmini ,∀i (4.7c)

K∑
l=1

‖wl‖2 ≤ PT . (4.7d)

Given a set of target SINR levels γ = [γmini , . . . , γK ] with γmini = (2R
min
i − 1)

denoting the target minimum required SINR to achieve a target rate of the ith user,

where i = l+ 1, . . . , K. The equivalent transformations of (4.7c) can be obtained as $il

as follows: 

min
‖∆ĥl+1‖

2
≤ε
γmini (

i−1∑
m=1

∆hHl+1wmwH
m∆ĥl+1+

K∑
m=i+1

hHl+1wmwH
mhl+1 + σ2

l+1) ≤ hHl+1wl+1w
H
l+1hl+1

...

min
‖∆ĥK‖

2
≤ε
γmini (

i−1∑
m=1

∆hHKwmwH
m∆ĥK

+
K∑

m=i+1

hHKwmwH
mhK + σ2

K) ≤ hHKwKwH
KhK

⇔ min
‖∆ĥi‖

2
≤ε

(
i−1∑
m=1

∆hHi wmwH
m∆ĥi +

K∑
m=i+1

hHi wmwH
mhi

+ σ2
i ) ≤

1

γmini

(hHi wiw
H
i hi)

∆
= $i. (4.8)

The problem formulation in (4.7) still not convex and the optimal solution

cannot be obtained directly. To tackle this issue, we introduce a new matrix variable

Wl = wlw
H
l and reformulate the original robust problem in (4.7) into the following
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form:

P3 max
Wl∈CM×M

t, (4.9a)

s.t. min
‖∆ĥl‖

2
≤ε

hH
l Wlhl

l−1∑
m=1

∆ĥH
l Wm∆ĥl+

K∑
m=l+1

hH
l Wmhl+σ2

l

≥ t,∀l (4.9b)

$il,∀i = l + 1, . . . , K (4.9c)

K∑
l=1

Tr(Wl) ≤ PT , (4.9d)

Wl � 0,∀l, (4.9e)

rank(Wl) = 1.∀l (4.9f)

To incorporate the channel uncertainties in the robust optimization frame-

work, we exploit the following S-procedure Lemma 1 to convert the non-convex con-

straint into LMI form.

Lemma 1 S-procedure [83]

Let fk(x), k = 1, 2,, be defined as

fk(x) = xHAkx + 2<{bHk x}+ ck, (4.10)

where Ak = AH
k ∈ Cn×n,bk = Cn and ck ∈ R. The implication f1(x) ≥ 0 =⇒ f2(x)

holds if and only if there exists α ≥ 0 such that A2 b2

bH2 c2

− α
 A1 b1

bH1 c1

 � 0, (4.11)

provided there exists a point x̃ with f1(x̃) > 0.
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By applying S-procedure the constraints (4.9b) and (4.9c) are derived as

∆ĥH
l I︸︷︷︸

A1

∆ĥl − ε2︸︷︷︸
c1

≤ 0, (4.12)

⇒ ∆ĥH
l (

K∑
m6=l

Wm−
Wl

t
)︸ ︷︷ ︸

A2

∆ĥl

+ 2Re{ĥH
l

(
−Wl

t
+

K∑
m=l+1

Wm

)
︸ ︷︷ ︸

b2

∆ĥl}

+ ĥH
l (

K∑
m=l+1

Wm −
Wl

t
)ĥl + tσ2

l︸ ︷︷ ︸
c2

≤ 0. (4.13)

To clarify how the S-procedure has been applied equations 4.12 and 4.13 are

mapped by underbrace to the variables which are mentioned in Lemma 1 equation

4.11. Then, the constraint (4.9b) can be reformulated with λl ≥ 0 as the following

semidefinite constraint as follow

Cl = λlI+
Wl

t
−

K∑
m 6=l

Wm (Wl

t
−

K∑
m=l+1

Wm)ĥl

ĥHl (Wl

t
−

K∑
m=l+1

Wm) ĥHl (Wl

t
−

K∑
m=l+1

Wm)ĥl − υl

 � 0, (4.14)

where υl = tσ2
l + λlε

2. The reformulation for the constraint (4.9c) can be

written as
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Dil = λiI+
Wi

γi
−

K∑
m6=i

Wm (Wi

γi
−

K∑
m=i+1

Wm)ĥi

ĥHi (Wi

γi
−

K∑
m=i+1

Wm) ĥHi (Wi

γi
−

K∑
m=i+1

Wm)ĥi − υi

 � 0, (4.15)

where υi = γmini σ2
i + λiε

2. As a result, combine (4.14) and (4.15) the equivalent formu-

lation of the original optimization problem (4.7) becomes:

P4 max
Wl∈M×M

λl≥0
λil≥0

t,

s.t.



Cl � 0,

Dil � 0,

K∑
l=1

Tr(Wl) ≤ PT ,

Wl � 0,

rank(Wl) = 1.∀l

(4.16)

Despite of that the constraints have been reformulated into SDP form, the problem is

still not convex due to the rank-1 constraints on the beamforming matrices and also

the dependence of with other variables [34]. To prove the fact the problem (4.16) exists

a rank-one solution,the following Proposition 1 is given in the Appendix B, by using

the Proposition 1 the following Lemma 2 about exist of rank one.

Lemma 2 Provided the problem in (4.16) is feasible, there always exists a rank-one

optimal solution W∗
l .

Now, an algorithm to solve the optimization problem (4.16) is proposed in Algorithm

2. This algorithm is based on bisection search it is described as follows
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Algorithm 2 Proposed algorithm design for NOMA beamforming using bisection search.

Input: hl hi γ
min
i PT ε

Input: tLB tUB ε
1: while tUB − tLB ≤ ε do
2: Update t = (tLB + tUB)/2;
3: Calculate Wl with the constraints in (4.16), by solving the convex problem;
4: if feasible then
5: W∗

l = Wl; SINRmax = t
6: Update tLB = t
7: else
8: Update tUB = t
9: end if
10: end while
11: Extract the beamforming solution wl from Wl by matrix decomposition.
Output: SINRmax and w∗l

In line 4 of Algorithm 2, it requires discovering the feasibility of a convex

SDP problem, this can be done by checking if there exist any feasible solution of the

SDP. After the algorithm converges, if the final beamforming solution is a rank-1, then

it is guaranteed to be optimal. But if the beamforming solution is not a tank-1 the

randomization method will be used that achieves the largest t.

4.4 Simulation Result

To evaluate the performance of the proposed robust beamforming approach, A single-

cell downlink transmission is considered where a multi-antenna BS serves randomly

distributed single antenna users within a one-kilometre radius. In the simulations, it

is assumed that the BS is equipped with four antennas (M = 4) and it serves four

users (K = 4). The channel coefficients between the BS and the users are generated

as hl = χl

√
d−βl where χl ∼ CN (0, I),β = 2 is the path-loss exponent and dk is the

distance between Ul and the BS.
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Fig. 4.1 shows a comparison of different channel estimation error bound versus

the transmitted power from the Bs. The noise power is assumed to be σ2
l = 0 dB. The

dash-dot curves represent the case with error bound imperfect channel estimation (ICSI)

NOMA, while the solid curves represent the perfect CSI (PCSI) NOMA case. One can

observe that the PCSI NOMA achieves a very high performance compares to the ICSI

NOMA. However, achieving a perfect CSI condition is very difficult to get it. Fig. 4.1

demonstrates the performance of several errors bound and as the bound increased the

achieved rate decreased because the SINR for the user will be decreased as well.
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Figure 4.1: Achievable rate for maximized SINR user under different transmitting power
with several channel estimation error bound.

In Fig. 4.2 provides the impact of RTh on the PCSI NOMA and the ICSI

NOMA in order to guarantee minimum rate constraint for other users. As shown there

will be a gap as this rate is increased. Fig. 4.3 plots the effect of changing the antenna

configuration at the Bs. It can be observed for the PCSI NOMA there will be a slight
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Figure 4.2: Achievable rate for maximized SINR user under different transmitting power
and different minimum targeted rate for the other users in the cell RTh number of users
in the cell

effect as the number of antennas are increased in the low transmission power. However,

for the ICSI there will be a noticeable gap as the number of antennas are decreased at

the Bs. In Fig. 4.4 shows as the number decreased in the cell the maximized user SINR

will be increased for both PCSI and ICSI. Moreover, as the number increased in the

cell the performance of the system will be close especially at high transmitted power.
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4.5 Summary

This chapter has addressed the worst-case robust beamforming design for the MISO-

NOMA downlink systems by taking into account the norm-bounded channel uncertain-

ties. The objective was to balance the users SINRs with the constraints of the total

transmit power of the other users and the received interference power at the users.

However, the original robust problem formulation is not convex due to the imperfect

CSI. To tackle the non-convexity with this challenge, the S-procedure is exploited to

reformulate the original non-convex problem into the SDP form by recasting the orig-

inal non-convex constraints into the LMI form. A bisection based algorithm has been

devised to obtain robust beamforming solutions with rank relaxation.



Chapter 5

Maximizing Sum Rate for FD/HD

Cooperative NOMA System with

Jointly Optimizing Beamformer and

Relay Power

5.1 Introduction

In this chapter, a jointly optimizing beamformer and relay power are studied for FD/HD

cooperative NOMA with several optimization techniques. The study covers both perfect

channel state information and the bounded imperfect channel state information. The

objective is to maximize the achievable sum-rate for users within the beam. However,

the original problem formulation is not convex. Therefore, reformulating the original

problem into SDP form is required then several algorithms are applied to find a solution

for the optimization problem.

84
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5.2 System Model and Problem Formulation

The system model of a cooperative non-orthogonal multiple access is described as fol-

lowing: The BS is equipped with multiple antennas wherein the cell there are two users

far and near users. The far user is assisted by the near user via sending another copy

of its signal. This can be implemented by Half-Duplex (HD) or Full-Duplex (FD) sce-

narios. This study considers different set-ups such as includes maximum ratio combing

(MRC) at the weak user terminal. Furthermore, imperfect channel state information is

investigated as well in the formulated optimization problem.

In Fig. 5.1, it shows a two-user with FD cooperative NOMA system, which

consists of a transmitter i.e. Bs equipped with M antennas, a near user and a cell-edge

user. Each user is equipped with a single transmitter antenna and a single receiver

antenna. The near user acts as a DF relay to transmit information to the cell-edge user.

For the FD scenario there is an effect of self-interference SI on the system performance

due to time-varying channels and carrier offsets [84]. The residual SI channel hR can

be modelled as independent identically distributed (i.i.d) Gaussian random entries [85].

The cell-edge user is either received his signal from the relay only or take the

advantage of MRC to merge the direct link signals from the Bs based on the assumption

that both signals can be fully resolved at the cell-edge user as shown in Fig. 5.2. The

achievable sum rate of the FD NOMA system is given by:

R = log2(1 + SINRFD
2 )︸ ︷︷ ︸

Achievable rate for the near user

+ min{log2(1 + SINR2,FD
1 ), log2(1 + SNRR)︸ ︷︷ ︸

Achievable rate for the cell−edge user

} (5.1)

If MRC is processed at the cell-edge user the achievable sum rate of the system
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Figure 5.1: The downlink FD cooperative NOMA system mode.

Figure 5.2: The downlink FD cooperative NOMA system mode with MRC at the weak
user terminal.

will be:

R = log2(1 + SINRFD
2 ) + min{log2(1 + SINR2,FD

1
), log2(1 + SNRR + SINRFD

1 )}. (5.2)

It is assumed that the resolvability of the signals i.e. by introducing a processing delay
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to combine the signals received from the terminal user UE2 and the BS by MRC [86,87].

Where, SINR2,FD
1

is the received signal-to-interference-plus-noise-ratio at the near user

to detect the cell-edge user message x1. x1 and x2 are the i.i.d. information bearing

signal for two users with normalized power, i.e., E|x1|2 = E|x2|2 = 1.

SINR2,FD
1

=
ρ2h

H
2 w1w

H
1 h2

ρ2hH
2 w2wH

2 h2+ρ2|hR|2PR+1
. (5.3)

After using the SIC technique, the received SINR at the near user to detect its own

information can be shown as

SINRFD
2 =

ρ2h
H
2 w2w

H
2 h2

ρ2|hR|2PR + 1
. (5.4)

hn ∈ CM×1 where n = 1, 2 is the channel coefficient between the transmitter

and the users, w1 and w2 are the corresponding transmit beamforming, PR is the trans-

mit power to forward information at the relay and ρn = 1/σ2
n where nn ∼ CN (0, σ2

n).

The SNR from the cooperative link is

SNRR = ρ1,R|h3|2PR. (5.5)

Where, ρ1,R = 1/σ2
1,R n1,R ∼ CN (0, σ2

1,R) and h3 ∈ C is the channel coefficient

between the relay and the cell-edge user. If the system mode in Fig. 5.2 SINR for the

cell-edge user should be considered as following:

SINRFD
1 =

ρ1h
H
1 w1w

H
1 h1

ρ1hH
1 w2wH

2 h1+1
. (5.6)
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The other mode for the cooperative is HD mode which is depicted in Fig. 5.3,

so the transmission occurs in two time slots.

Figure 5.3: The downlink HD cooperative NOMA system mode.

The achievable sum rate of the HD NOMA system is given by:

R =
1

2
log2(1 + SNRHD

2 ) +
1

2
min{log2(1 + SINR2,HD

1
), log2(1 + SNRR)}. (5.7)

If MRC is processed at the cell-edge user as shown in Fig. 5.4 the achievable sum rate

of the system will be:

R =
1

2
log2(1 + SNRHD

2 ) +
1

2
min{log2(1 + SINR2,HD

1
), log2(1 + SNRR + SINRHD

1 )}.

(5.8)

Where,

SINR2,HD
1

=
ρ2h

H
2 w1w

H
1 h2

ρ2hH
2 w2wH

2 h2+1
. (5.9)
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When SIC is applied, the received SNR at the near user is

SINRHD
2 =ρ2h

H
2 w2w

H
2 h2, (5.10)

and SINR for the cell-edge user should be

SINRHD
1 =

ρ1h
H
1 w1w

H
1 h1

ρ1hH
1 w2wH

2 h1+1
. (5.11)

Figure 5.4: The downlink HD cooperative NOMA system mode with MRC at the weak
user terminal.

The target is to maximize the sum-rate of the system by optimizing the beam-

forming together with the power of the relay for FD/HD cooperative NOMA. Taking

into account several scenarios such as with MRC and without MRC under perfect CSI

and imperfect CSI conditions. While guaranteeing the minimum required target rate of

the cell-edge user and the successful decoding rate for the near user. So, the formulation

of the problem is expressed as follows:
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P1 : max R (5.12a)

s.t. SINR2 ≥γ2, (5.12b)

SINR2
1
≥ γ1, (5.12c)

SNRR ≥ γ1, (5.12d)

R2
1 ≥ Rmin, (5.12e)

‖w1‖2 + ‖w2‖2 ≤ Pmax, (5.12f)

PR ≤ PRmax , (5.12g)

where γ2,γ1 are the needed SINR for the near user and the cell-edge user,

Rmin, Pmax and PRmax indicate the minimum required target rate, maximum available

transmit power,and maximum available transmit power from the relay consecutively.

It’s worth noting that as highlighted in [88], the proposed two-user for coop-

erative NOMA scheme can be expanded to a multi-user scenario by using the matching

theory [89]. Especially, by applying one-to-one matching, 2K users can be divided into

K groups, and two users are paired in each group.
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5.3 Proposed Optimization Methods

5.3.1 FD/HD Cooperative NOMA Under Perfect CSI Condi-

tions

5.3.1.1 FD Cooperative NOMA with MRC and without MRC

Problem P1 is not convex caused by fractional and coupling variables. In order to solve

the non-convexity of the problem transforming the problem to a amenable one, then

propose an efficient iterative algorithm is required. After defining positive semidefinite

(PSD) matrices, H = hhH and Wn = wnw
H
n , there are three proposed way to transform

this problem will be discussed in this research.

P2 : max
t,γ2,γ1,W1,W2,PR

t (5.13a)

s.t. log2(1 + γ2) + log2(1 + γ1) ≥ t (5.13b)

ρ2Tr(H2W2)− γ2(ρ2|h3|2PR + 1) ≥ 0, (5.13c)

ρ2Tr(H2W1)− γ1ρ2Tr(H2W2)− γ1(ρ2|h3|2PR + 1) ≥ 0, (5.13d)

ρ1,R|h3|2PR ≥ γ1, (5.13e)

ρ2Tr(H2W1)− δFDρ2Tr(H2W2)− δFDρ2|h3|2PR ≥ δFD, (5.13f)

Tr(W1 + W2) ≤ Pmax, (5.13g)

PR ≤ PRmax , (5.13h)

rank(Wn) = 1. (5.13i)

Where δFD = 2Rmin−1 and n = 1, 2. The following constraints are introduced in P3 in

order to include MRC to the cell-edge user into the problem formulation as following
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P3 : max
t,γ2,γ1,u1,u2,W1,W2,PR

(5.13a),

s.t. (5.13b), (5.13c), (5.13d),

u1 + u2 ≥ γ1, (5.14a)

ρ1,R|h3|2PR ≥ u1, (5.14b)

ρ1Tr(H1W1)− u2(ρ1Tr(H1W2)+1) ≥ 0 (5.14c)

(5.13f), (5.13g), (5.13h), (5.13i).

Alternating Algorithm

One approach is to apply the Taylor series in constraints 5.13c and 5.13d. Then the

problem P2 will be written as following:

P4 : max
t,γ2,γ1,W1,W2,PR

t (5.15a)

s.t. log2(1 + γ2) + log2(1 + γ1) ≥ t (5.15b)

ρ2Tr(H2W2)− γ(k)
2 (ρ2|h3|2P (k)

R + 1)− (ρ2|h3|2P (k)
R + 1)(γ2 − γ(k)

2 )

− γ(k)
2 ρ2|h3|2(PR − P (k)

R ) ≥ 0, (5.15c)

ρ2Tr(H2W1)− γ(k)
1 ρ2Tr(H2W

(k)
2 )− ρ2Tr(H2W

(k)
2 )(γ1 − γ(k)

1 )

− γ(k)
1 ρ2Tr(H2(W2 −W

(k)
2 ))− γ(k)

1 (ρ2|h3|2P (k)
R + 1)

− (ρ2|h3|2P (k)
R + 1)(γ1 − γ(k)

1 )− γ(k)
1 ρ2|h3|2(PR − P (k)

R ) ≥ 0, (5.15d)

ρ1,R|h3|2PR ≥ γ1, (5.15e)

ρ2Tr(H2W1)− δFDρ2Tr(H2W2)− δFDρ2|h3|2PR ≥ δFD, (5.15f)

Tr(W1 + W2) ≤ Pmax, (5.15g)

PR ≤ PRmax , (5.15h)

rank(Wn) = 1. (5.15i)
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The process of the alternating optimization algorithm is started by initializing the

values of γ
(k)
2 , γ

(k)
1 ,W

(k)
2 and P

(k)
R then update the values iteratively till the convergence

threshold is satisfied. For the MRC case Taylor series expansion is required to be

applied for (5.14c)

P5 : max
t,γ2,γ1,u1,u2,W1,W2,PR

(5.15a),

s.t. (5.15b), (5.15c), (5.15d), (5.14a), (5.14b)

ρ1Tr(H1W1)− u(k)
2 (ρ1Tr(H1W

(k)
2 ) + 1)− (ρ1Tr(H1W

(k)
2 ) + 1)(u2 − u(k)

2 )

−u(k)
2 ρ1Tr(H1(W1 −W

(k)
2 )) ≥ 0 (5.16a)

(5.15f), (5.15g), (5.15h), (5.15i).

GP Algorithm

Another way to transform the problem to convex is to use GP by introducing several

variables to the constraints 5.13c and 5.13d. Then the constraint can be redefined as

ln(ρ2Tr(H2W2)) ≥ a+ b, (5.17a)

ln(ρ2Tr(H2W1)) ≥ b+ c+ d, (5.17b)

γ2 ≤ exp(a), (5.17c)

ρ1,R|h3|2PR + 1 ≤ exp(b) (5.17d)

γ1 ≤ exp(c) (5.17e)

ρ2Tr(H2W2) ≤ exp(d), (5.17f)

where a, b, c and d are auxiliary variables. Then replace LHS for 5.17c-5.17f by their

first-order Taylor expansions based on the SCA method, which targets to iteratively
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approximate the non-convex problem by a convex one.

γ2 ≤ exp(a(k))(1 + a− a(k)), (5.18a)

ρ1,R|h3|2PR + 1 ≤ exp(b(k))(1 + b− b(k)), (5.18b)

γ1 ≤ exp(c(k))(1 + c− c(k)), (5.18c)

ρ2Tr(H2W2) ≤ exp(d(k))(1 + d− d(k)). (5.18d)

So, P2 can be reframed as the following problem based on the transformation and

approximation in 5.17 and 5.18.

P6 : max
t,γ2,γ1,W1,W2,PR

t (5.19a)

s.t. log2(1 + γ2) + log2(1 + γ1) ≥ t, (5.19b)

ln(ρ2Tr(H2W2)) ≥ a+ b, (5.19c)

ln(ρ2Tr(H2W1)) ≥ b+ c+ d, (5.19d)

ρ1,R|h3|2PR ≥ γ1, (5.19e)

ρ2Tr(H2W1)− δFDρ2Tr(H2W2)− δFDρ2|h3|2PR ≥ δFD, (5.19f)

γ2 ≤ exp(a(k))(1 + a− a(k)), (5.19g)

ρ1,R|h3|2PR + 1 ≤ exp(b(k))(1 + b− b(k)), (5.19h)

γ1 ≤ exp(c(k))(1 + c− c(k)), (5.19i)

ρ2Tr(H2W2) ≤ exp(d(k))(1 + d− d(k)), (5.19j)

Tr(W1 + W2) ≤ Pmax, (5.19k)

PR ≤ PRmax , (5.19l)

rank(Wn) = 1. (5.19m)
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Then, iteratively update the variables in 5.20, the iteration operation will stop when

the predefined standard is attained.

a(k) = ln(γ
(k)

2 ), (5.20a)

b(k) = ln(ρ1,R|h3|2P
(k)

R + 1), (5.20b)

c(k) = ln(γ
(k)

1 ), (5.20c)

d(k) = ln(ρ2Tr(H2W
(k)

2 )). (5.20d)

For MRC the constraint 5.14c can be reformulated as

ln(ρ1Tr(H1W1)) ≥ e+ f, (5.21a)

u2 ≤ exp(e), (5.21b)

ρ1Tr(H1W2) + 1 ≤ exp(f). (5.21c)

Where e and f are auxiliary variables. After that, LHS for 5.21b and 5.21c be changed

by their Taylor expansions

u2 ≤ exp(e(k))(1 + e− e(k)), (5.22a)

ρ1Tr(H1W2) + 1 ≤ exp(f (k))(1 + f − f (k)). (5.22b)

P7 : max
t,γ2,γ1,u1,u2,W1,W2,PR

(5.19a),

s.t. (5.19b), (5.19c), (5.19d), (5.14a), (5.14b)

ln(ρ1Tr(H1W1)) ≥ e+ f, (5.23a)

(5.19f), (5.19g), (5.19h), (5.19i), (5.19j),

u2 ≤ exp(e(k))(1 + e− e(k)), (5.23b)

ρ1Tr(H1W2) + 1 ≤ exp(f (k))(1 + f − f (k)), (5.23c)

(5.19k), (5.19l), (5.19m).
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Also, it is required to update the variables in 5.24 iteratively till the solution is converge

to the specific criteria

e(k) = ln(u
(k)

2 ), (5.24a)

f (k) = ln(ρ1Tr(H1W
(k)

2 ) + 1). (5.24b)
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Algorithm 3 Nested Bisection Algorithm for Jointly Optimizing Beamformer and PR.

Initialize: γ1, γ2, γ̂1, γ̂2 randomly in [0, γ
(u)
n ]

1: while
∥∥∥[γ1, γ2]T − [γ̂1, γ̂2]T

∥∥∥ ≥ ξ do

2: Set γ̂1 = γ1, γ̂2 = γ2

Initialize: γ
(u)
1 , γ

(l)
1

3: while γ
(u)
1 − γ

(l)
1 ≥ ξ do

4: γ1 =
γ
(u)
1 +γ

(l)
1

2
,

5: Solve P2,
6: if P2 gets a feasible solution then
7: γ

(l)
1 = γ1

8: else
9: γ

(u)
1 = γ1

10: end if
11: end while
Initialize: γ

(u)
2 , γ

(l)
2

12: while γ
(u)
2 − γ

(l)
2 ≥ ξ do

13: γ2 =
γ
(u)
2 +γ

(l)
2

2
,

14: Solve P2,
15: if P2 gets a feasible solution then
16: γ

(l)
2 = γ2

17: else
18: γ

(u)
2 = γ2

19: end if
20: end while
21: end while
22: Extract the beamforming solution wn from Wn by matrix decomposition.
Output: P ∗R and w∗n

Nested Bisection

When MRC is considered the NB Algorithm 3 applied according to do bisection

search by initializing γ1,γ2 and u2.
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5.3.1.2 HD Cooperative NOMA with MRC and without MRC

Regarding the HD transmission scheme, the optimization problem can be worked out

as follows:

P8 : max
t,γ2,γ1,W1,W2,PR

t (5.25a)

s.t. log2(1 + γ2) + log2(1 + γ1) ≥ 2t (5.25b)

ρ2Tr(H2W2) ≥ γ2, (5.25c)

ρ2Tr(H2W1)− γ1ρ2Tr(H2W2) ≥γ1, (5.25d)

ρ1,R|h3|2PR ≥ γ1, (5.25e)

ρ2Tr(H2W1)− δHDρ2Tr(H2W2) ≥ δHD, (5.25f)

Tr(W1 + W2) ≤ Pmax, (5.25g)

PR ≤ PRmax , (5.25h)

rank(Wn) = 1. (5.25i)

Where δHD = 22Rmin − 1 and n = 1, 2.

If MRC is included in the problem formulation there will be additional constraint added

two maintain the achievable SINR for the cell-edge user as shown next.

P9 : max
t,γ2,γ1,u1,u2,W1,W2,PR

(5.25a),

s.t. (5.25b), (5.25c), (5.25d),

u1 + u2 ≥ γ1, (5.26a)

ρ1,R|h3|2PR ≥ u1, (5.26b)

ρ1Tr(H1W1)− u2(ρ1Tr(H1W2)+1) ≥ 0 (5.26c)

(5.25f), (5.25g), (5.25h), (5.25i).
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Alternating Algorithm

When AO is applied for this problem is required to replace some constraints such as

5.25d with their Taylor series expansion. Then, the problem will be

P10 : max
t,γ2,γ1,W1,W2,PR

(5.25a),

s.t. (5.25b), (5.25c),

ρ2Tr(H2W1)− γ(k)
1 ρ2Tr(H2W

(k)
2 )− ρ2Tr(H2W

(k)
2 )(γ1 − γ(k)

1 )

−γ(k)
1 ρ2Tr(H2(W2 −W

(k)
2 )) ≥ 0, (5.27a)

(5.25e), (5.25f), (5.25g), (5.25h), (5.25i).

For MRC case also 5.26c constrain is needed to be replaced then the problem

will be

P11 : max
t,γ2,γ1,u1,u2,W1,W2,PR

(5.25a),

s.t. (5.25b), (5.25c), (5.27a), (5.26a), (5.26b)

ρ1Tr(H1W1)− u(k)
2 (ρTr(H1W

(k)
2 ) + 1)− (ρ1Tr(H1W

(k)
2 ) + 1)(u2 − u(k)

2 )

− u(k)
2 ρ1Tr(H1(W1 −W

(k)
2 )) ≥ 0 (5.28a)

(5.25f), (5.25g), (5.25h), (5.25i).

GP Algorithm

By introducing variables a, b to the constraint 5.25d. Then the problem can be redefined
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as

P12 : max
t,γ2,γ1,W1,W2,PR

(5.25a),

s.t. (5.25b), (5.25c),

ln(ρ2Tr(H2W1)) ≥ exp(a+ b), (5.29a)

γ1 ≤ exp(a(k))(1 + a− a(k)), (5.29b)

ρ2Tr(H2W2) + 1 ≤ exp(b(k))(1 + b− b(k)), (5.29c)

(5.25e), (5.25f), (5.25g), (5.25h), (5.25i).

It is required to update the variables in 5.30 iteratively till the solution is converged.

a(k) = ln(γ
(k)

1 ), (5.30a)

b(k) = ln(ρ2Tr(H2W
(k)

2 )). (5.30b)

In HD cooperative NOMA with MRC scheme, to apply GP to the problem

there will be more variables to be introduced c, d to the constraint 5.26c. Then the

problem can be redefined as

P13 : max
t,γ2,γ1,u1,u2,W1,W2,PR

(5.25a),

s.t. (5.25b), (5.25c), (5.29a), (5.29b), (5.29c),

ln(ρ1Tr(H1W1)) ≥c+ d, (5.31a)

u2 ≤ exp(c(k))(1 + c− c(k)), (5.31b)

ρ1Tr(H1W2) + 1 ≤ exp(d(k))(1 + d− d(k)), (5.31c)

(5.25f), (5.25g), (5.25h), (5.25i).

It is required to update the variables in 5.30 and iteratively till the solution is

converged.

c(k) = ln(u
(k)

2 ), (5.32a)

d(k) = ln(ρ1Tr(H1W
(k)

2 ) + 1). (5.32b)
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Nested Bisection

Also, the bisection algorithm can be applied for P8 where the search based on

the achievable SINR for the cell-edge user. On the other hand, when the MRC processed

by the cell-edge user in P9 the NB algorithm will be applied to find the solution.

Where, γ1, and u2 are the two-component conducting bisection search alternative till

the solution is converged.
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5.3.2 FD/HD Cooperative NOMA Under Imperfect CSI Con-

ditions

The deterministic error bound approach is used to model imperfect CSI. Where the

actual channel between the Bs and the terminals within the cell can be described as

shown

h1 = ĥ1 + ∆ĥ1, ∆ĥH
1 ∆ĥ1 ≤ ε2

1, (5.33a)

h2 = ĥ2 + ∆ĥ2, ∆ĥH
2 ∆ĥ2 ≤ ε2

2, (5.33b)

where ĥ1 and ĥ2 represent the estimated channels, ∆ĥ1 and ∆ĥ2 denote the uncertainty

region for the error that is bounded by ε1 and ε2 where they represent the radius of the

norm bound.
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5.3.2.1 FD Cooperative NOMA with MRC and without MRC

Then the problem will formulated as following:

P14 : max
t,γ2,γ1,W1,W2,PR

t (5.34a)

s.t. log2(1 + γ2) + log2(1 + γ1) ≥ t, (5.34b)

min
∆ĥH

2
I∆ĥ2≤ε22

−ρ2∆ĥH2
W2

γ2

∆ĥ2 − 2ρ2Re{∆ĥH2
W2

γ2

ĥ2} − ρ2ĥ
H
2

W2

γ2

ĥ2

+ ρ|h3|2PR + 1 ≤ 0, (5.34c)

min
∆ĥH

2
I∆ĥ2≤ε22

ρ2∆ĥH2 (W2 −
W1

γ1

)∆ĥ2 + 2ρ2Re{∆ĥH2 (W2 −
W1

γ1

)ĥ2}

+ ρ2ĥ
H
2 (W2 −

W1

γ1

)ĥ2 + ρ2|h3|2PR+1 ≤ 0, (5.34d)

ρ1,R|h3|2PR ≥ γ1, (5.34e)

min
∆ĥH

2
I∆ĥ2≤ε22

ρ2∆ĥH2 (δFDW2 −W1)∆ĥ2+2ρ2Re{∆ĥH2 (δFDW2 −W1)ĥ2}

+ ρ2ĥ
H
2 (δFDW2 −W1)ĥ2 + ρ2δ

FD|h3|2PR+δFD ≤ 0, (5.34f)

Tr(W1 + W2) ≤ Pmax, (5.34g)

PR ≤ PRmax , (5.34h)

rank(Wn) = 1. (5.34i)
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Moreover, when the MRC is prossessed at the cell-edge user then the problem can be

described as shown

P15 : max
t,γ2,γ1,u1,u2,W1,W2,PR

(5.34a),

s.t. (5.34b), (5.34c), (5.34d),

u1 + u2 ≥ γ1, (5.35a)

ρ1,R|h3|2PR ≥ u1, (5.35b)

min
∆ĥH

1 I∆ĥ1≤ε21
ρ1∆ĥH1 (W2 −

W1

u2

)∆ĥ1+2ρ1Re{∆ĥH1 (W2 −
W1

u2

)ĥ1}

+ ρ1ĥ
H
1 (W2 −

W1

u2

)ĥ1+1 ≤ 0, (5.35c)

(5.34f), (5.34g), (5.34h), (5.34i).

Then the S-procedure which is explained in Section 2.2.3, will be applied at the con-

straints in P14 and P15 that contains uncertainty terms in order to transform these
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constraints from quadratic form to a LMI equations.

P16 : max
t,γ2,γ1,W1,W2,PR,λ1,λ2,λ3

t (5.36a)

s.t. log2(1 + γ2) + log2(1 + γ1) ≥ t, (5.36b) −ρ2
W2

γ2
− λ1I −ρ2

W2

γ2
ĥ2

−ĥH2 ρ2
W2

γ2
−ρ2ĥ

H
2

W2

γ2
ĥ2 + ρ|h3|2PR + 1 + λ1ε

2
2

 � 0, (5.36c)

 ρ2(W2 − W1

γ1
)− λ2I ρ2(W2 − W1

γ1
)ĥ2

ĥH2 ρ2(W2 − W1

γ1
) ρ2ĥ

H
2 (W2 − W1

γ1
)ĥ2 + ρ2|h3|2PR+1 + λ2ε

2
2

 � 0,

(5.36d)

ρ1,R|h3|2PR ≥ γ1, (5.36e) ρ2(δFDW2 −W1)− λ3I ρ2(δFDW2 −W1)ĥ2

ĥH2 ρ2(δFDW2 −W1) ρ2ĥ
H
2 (δFDW2 −W1)ĥ2 + ρ2|h3|2PR+1 + λ3ε

2
2

 � 0

(5.36f)

Tr(W1 + W2) ≤ Pmax, (5.36g)

PR ≤ PRmax , (5.36h)

rank(Wn) = 1. (5.36i)

Also, reformatting P15 then it will be as following:
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P17 : max
t,γ2,γ1,u1,u2,W1,W2,PR,λ1,λ2,λ3,λ4

(5.36a),

s.t. (5.36b), (5.36c), (5.36d),

u1 + u2 ≥ γ1, (5.37a)

ρ1,R|h3|2PR ≥ u1, (5.37b) ρ1(W2 − W1

u2
)− λ4I ρ1(W2 − W1

u2
)ĥ1

ĥH1 ρ1(W2 − W1

u2
) ρ1ĥ

H
1 (W2 − W1

u2
)ĥ1+1 + λ4ε

2
1

 � 0, (5.37c)

(5.36f), (5.36g), (5.36h), (5.36i).

Next, there are two different approaches to achieve a converged solution. One

approach is to apply the NB algorithm as described in Algorithm 3 or, replace the

following terms with there Taylor expansion series.

g(W2, γ2) ≈ −W
(k)
2

γ
(k)
2

−W2 −W
(k)
2

γ
(k)
2

+
W

(k)
2 (γ2 − γ(k)

2 )(
γ

(k)
2

)2 , (5.38a)

f(W1, γ1) ≈ −
W(k)

1

γ
(k)
1

−
W1 −W(k)

1

γ
(k)
1

+
W(k)

1
(γ1 − γ(k)

1
)(

γ
(k)
1

)2 , (5.38b)

y(W1, u2) ≈ −
W(k)

1

u
(k)
2

−
W1 −W(k)

1

u
(k)
2

+
W(k)

1
(u2 − u(k)

2
)(

u
(k)
2

)2 . (5.38c)
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5.3.2.2 HD Cooperative NOMA with MRC and without MRC

On the other hand, when the HD transmission scheme is applied the problem will be

P18 : max
t,γ2,γ1,W1,W2,PR

t (5.39a)

s.t. log2(1 + γ2) + log2(1 + γ1) ≥ t, (5.39b)

min
∆ĥH

2
I∆ĥ2≤ε22

−ρ2∆ĥH2 W2∆ĥ2 − 2ρ2Re{∆ĥH2 W2ĥ2} − ρ2ĥ
H
2 W2ĥ2 + γ2 ≤ 0,

(5.39c)

min
∆ĥH

2
I∆ĥ2≤ε22

ρ2∆ĥH2 (W2 −
W1

γ1

)∆ĥ2 + 2ρ2Re{∆ĥH2 (W2 −
W1

γ1

)ĥ2}

+ ρ2ĥ
H
2 (W2 −

W1

γ1

)ĥ2+1 ≤ 0, (5.39d)

ρ1,R|h3|2PR ≥ γ1, (5.39e)

min
∆ĥH

2
I∆ĥ2≤ε22

ρ2∆ĥH2 (δHDW2 −W1)∆ĥ2+2ρ2Re{∆ĥH2 (δHDW2 −W1)ĥ2}

+ ρ2ĥ
H
2 (δHDW2 −W1)ĥ2+δHD ≤ 0, (5.39f)

Tr(W1 + W2) ≤ Pmax, (5.39g)

PR ≤ PRmax , (5.39h)

rank(Wn) = 1, (5.39i)

and the problem for the MRC case will be
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P19 : max
t,γ2,γ1,u1,u2,W1,W2,PR

(5.39a),

s.t. (5.39b), (5.39c), (5.39d),

u1 + u2 ≥ γ1, (5.40a)

ρ1,R|h3|2PR ≥ u1, (5.40b)

min
∆ĥH

1 I∆ĥ1≤ε21
ρ1∆ĥH1 (W2 −

W1

u2

)∆ĥ1+2ρ1Re{∆ĥH1 (W2 −
W1

u2

)ĥ1}

+ ρ1ĥ
H
1 (W2 −

W1

u2

)ĥ1+1 ≤ 0, (5.40c)

(5.39f), (5.39g), (5.39h), (5.39i).

By applying S-procedure the problems will be reformulated as follows:

P20 : max
t,γ2,γ1,W1,W2,PR,λ1,λ2,λ3

t (5.41a)

s.t. log2(1 + γ2) + log2(1 + γ1) ≥ t, (5.41b) −ρ2W2 − λ1I −ρ2W2ĥ2

−ĥH2 ρ2W2 −ρ2ĥ
H
2 W2ĥ2 + γ2 + λ1ε

2
2

 � 0, (5.41c)

 ρ2(W2 − W1

γ1
)− λ2I ρ2(W2 − W1

γ1
)ĥ2

ĥH2 ρ2(W2 − W1

γ1
) ρ2ĥ

H
2 (W2 − W1

γ1
)ĥ2+1 + λ2ε

2
2

 � 0, (5.41d)

ρ1,R|h3|2PR ≥ γ1, (5.41e) ρ2(δHDW2 −W1)− λ3I ρ2(δHDW2 −W1)ĥ2

ĥH2 ρ2(δHDW2 −W1) ρ2ĥ
H
2 (δHDW2 −W1)ĥ2+1 + λ3ε

2
2

 � 0

(5.41f)

Tr(W1 + W2) ≤ Pmax, (5.41g)

PR ≤ PRmax , (5.41h)

rank(Wn) = 1, (5.41i)
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and

P21 : max
t,γ2,γ1,u1,u2,W1,W2,PR,λ1,λ2,λ3,λ4

(5.41a),

s.t. (5.41b), (5.41c), (5.41d),

u1 + u2 ≥ γ1, (5.42a)

ρ1,R|h3|2PR ≥ u1, (5.42b) ρ1(W2 − W1

u2
)− λ4I ρ1(W2 − W1

u2
)ĥ1

ĥH1 ρ1(W2 − W1

u2
) ρ1ĥ

H
1 (W2 − W1

u2
)ĥ1+1 + λ4ε

2
1

 � 0, (5.42c)

(5.41f), (5.41g), (5.41h), (5.41i).

Then, use the approaches explained earlier to achieve a converged solution. Which are

either NB algorithm as described in Algorithm 3 or, replace the following terms by

there Taylor expansion series in (5.38).
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5.4 Simulation Result

A single cell downlink transmission is considered where a multi-antenna BS serves ran-

domly distributed single antenna users within one kilometre radius. In the simulations,

it is assumed that the BS is equipped with two antennas (M = 2) and it serves two

users (K = 2) in the cell. The channel coefficients between the BS and the users are

generated as hn = χn
√
d−βnn where χn ∼ CN (0, I), it is assumed that the path-loss ex-

ponent β1 = 4 for the far user, β2 = 2 for the near user and dn is the distance between

Un and the BS.

In Table 5.1 the average number of iteration to achieve a solution using AO

with the minimum achievable data rate that satisfies SIC constraintRth = 0.1 Bit/s/Hz

for FD cooperative NOMA system model is presented. As the transmitted SNR or the

maximum relay power are increased the average number of iteration requires more pro-

cessing to achieve a solution. Also, this data is represented for the GP algorithm in

Table 5.2. However, this algorithm needs more computational processing to achieve

a solution comparing to AO. This table shows the computational complexity of each

algorithm where NB is more complex compared to GP and AO. In Table 5.3 Number

of rank one solution for each algorithm in the FD cooperative NOMA system model.

The achievable rate for users within the individual beam with PRmax = 0.2 W

and Rth = 0.1 Bit/s/Hz for FD cooperative NOMA system model using different

algorithms in Fig. 5.5. Where the simulation results show that there is a trade-off be-

tween using AO, GP and NB. AO provides more data rate for the near user then the

GP get a lower data rate than the NB. On the other hand, NB provides more data

rate for the far user then the GP get a lower data rate than the AO. The rate for the
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far user at different relay power level for FD cooperative NOMA in Fig. 5.6 is displayed.

In Fig. 5.7 the achievable rate for the far user at different Rth is illustrated.

The allocated power of each user within the beam for the FD cooperative NOMA sys-

tem model is depicted in Fig. 5.8 for different algorithms. Also, it is shown in Fig. 5.9

the allocated power for each user within the beam at different Rth.

Table 5.1: The average number of iteration in order to achieve a solution using AO
with Rth = 0.1 Bit/s/Hz for FD cooperative NOMA system model.

PRmax

SNR
0 5 10 15 20 25

0.001 W 3.0033 3.3246 3.1589 3.8264 4.345 6.6458
0.2 W 4.0567 5.8721 7.8604 10.2981 12.0549 17.015
1 W 5.57 8.5861 10.6438 14.511 15.5382 21.0144

Table 5.2: The average number of iteration to achieve a solution using GP with
Rth = 0.1 Bit/s/Hz for FD cooperative NOMA system model.

PRmax

SNR
0 5 10 15 20 25

0.001 W 7.6213 8.34 9.0891 9.7417 10.4934 12.2835
0.2 W 7.851 9.7649 12.7841 16.7815 17.7674 20.3871
1 W 9.4323 12.9536 15.0533 18.5908 18.3223 20.5839

Table 5.3: Number of rank one solution for each algorithm in FD cooperative NOMA
system model.

Algo
SNR

0 5 10 15 20 25

AO 300/300 300/300 300/300 300/300 300/300 300/300
GP 300/300 300/300 300/300 300/300 300/300 300/300
NB 6/300 12/300 35 /300 132 /300 233 /300 236/300
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Figure 5.5: The achievable rate for users within the beam with PRmax = 0.2 W and
Rth = 0.1 Bit/s/Hz for FD cooperative NOMA system model.
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Figure 5.6: The rate for the far user at different relay power for FD cooperative NOMA.
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Figure 5.7: The achievable rate for the far user at different Rth for FD cooperative
NOMA system model.
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Figure 5.8: The allocated power of each user within the beam for FD cooperative
NOMA system model.
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Figure 5.9: The allocated power of each user within the beam at different Rth for FD
cooperative NOMA system model.
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Then the MRC constraint is included in the problem formulation for the FD

cooperative NOMA system model. The achievable rate for users within the beam with

PRmax = 0.2 for the FD cooperative NOMA system model considering MRC at the far

user in Fig. 5.10. In Fig. 5.11 the allocated power of each user within the beam. In

Table 5.4 a comparison is conducted between the FD cooperative NOMA system model

with and without considering MRC at the weak user for the average number of iteration

to achieve a solution at PRmax = 0.2 W Rth = 0.5 Bit/s/Hz.

Also, the power of the relay for FD cooperative NOMA system with and with-

out considering MRC at the far user is compared with different algorithms in Fig. 5.12.

For the near user, the allocated power for FD cooperative NOMA system with and

without considering MRC is compared in Fig. 5.13. It shows that when the MRC is

used at the weak user the allocated power for the near user decreases as the transmit-

ted SNR level is increased. This comparison is also illustrated for the cell edge user in

Fig. 5.14.

Table 5.4: Comparing The average number of iteration to achieve a solution
PRmax = 0.2 W Rth = 0.5 Bit/s/Hz for FD cooperative NOMA system model with and
without considering MRC at the weak user.

Algo
SNR

0 5 10 15 20 25

AO MRC 5.1433 9.0067 13.27 14.1233 14.6844 11.9475
AO 3.43 5.202 7.1895 10.4479 12.0281 18.4521
GP MRC 5.926 10.2174 13.7855 14.4897 12.3907 11.539
GP 7.851 9.7649 12.7841 16.7815 17.7674 20.3871
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Figure 5.10: The achievable rate for users within the beam with PRmax = 0.2 for FD
cooperative NOMA system model considering MRC at the far user.
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Figure 5.11: The allocated power of each user within the beam for FD cooperative
NOMA system model considering MRC at the far user.
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Figure 5.12: Comparing the power of the relay for FD cooperative NOMA system with
and without considering MRC at the far user.
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Figure 5.13: Comparing the near user power for FD cooperative NOMA system with
and without considering MRC at the far user.
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Figure 5.14: Comparing the far user power for FD cooperative NOMA system with and
without considering MRC at the far user.
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For HD cooperative NOMA scheme the average number of iteration in order

to achieve a solution using AO with Rth = 0.1 Bit/s/Hz is presented in Table 5.5 at a

different level of relay power. Also, the number of rank one solution for each algorithm

in the HD cooperative NOMA system model in Table 5.7 is provided to show that the

solutions satisfy the rank one constraint in the problem formulation. In Fig. 5.15 the

achievable rate for users within the beam at PRmax = 0.2 W and Rth = 0.1 Bit/s/Hz

for HD cooperative NOMA system model is demonstrated for different algorithms.

Fig. 5.16 shows the effect of the relay power level for the cell edge user. More-

over, at different Rth rate will affect the achievable rate for far user especially when the

AO is used as it is illustrated in Fig. 5.17. The allocated power of each user within the

beam is presented in Fig. 5.18. The power allocation is affected by changing different

Rth as depicted in Fig. 5.19 when AO is used and in Fig. 5.20 when GP is applied.

Table 5.5: The average number of iteration in order to achieve a solution using AO
with Rth = 0.1 Bit/s/Hz for HD cooperative NOMA system model.

PRmax

SNR
0 5 10 15 20 25

0.001 W 2.0066 2.6176 2 2.3642 2.3733 3.0733
0.2 W 2.6667 3.64 4.4633 5.4433 6.4934 6.8586
1 W 4.18 4.87 5.8333 6.7 7.3675 8.25

Table 5.6: The average number of iteration in order to achieve a solution using GP
with Rth = 0.1 Bit/s/Hz for HD cooperative NOMA system model.

PRmax

SNR
0 5 10 15 20 25

0.001 W 6.01 6.6433 7.08 7.6424 8.457 8.9414
0.2 W 5.97 6.7033 7.2333 7.9103 8.6469 8.2967
1 W 6.05 6.7233 7.64 7.9367 7.66 8.206

In Fig. 5.21 the achievable rate for users within the beam with PRmax = 0.2

for HD cooperative NOMA system model considering MRC at the far user is illus-
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Figure 5.15: The achievable rate for users within the beam with PRmax = 0.2 W and
Rth = 0.1 Bit/s/Hz for HD cooperative NOMA system model.
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Figure 5.16: The rate for the far user at different relay power for HD cooperative
NOMA.
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Figure 5.17: The achievable rate for the far user at different Rth for HD cooperative
NOMA system model.
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Figure 5.18: The allocated power of each user within the beam for HD cooperative
NOMA system model.
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Figure 5.19: The allocated power of each user within the beam at different Rth using
AO for HD cooperative NOMA system model.
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Figure 5.20: The allocated power of each user within the beam at different Rth using
GP for HD cooperative NOMA system model.
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Table 5.7: Number of rank one solution for each algorithm in HD cooperative NOMA
system model.

Algo
SNR

0 5 10 15 20 25

AO 300/300 300/300 300/300 300/300 300/300 300/300
GP 300/300 300/300 300/300 300/300 300/300 300/300
Bisection 299/300 299/300 300/300 300/300 300/300 298/300

trated. The comparison of the average number of iteration to achieve a solution

PRmax = 0.2 W Rth = 0.5 Bit/s/Hz for HD cooperative NOMA system model with and

without considering MRC at the weak user in Table 5.8. Also, Fig. 5.22 compares the

power of the relay when the far user applies the MRC and without applying MRC. In

addition to that, Fig. 5.23 and Fig. 5.24 compare the allocated power within the beam

for the near and far user respectively.

Table 5.8: Comparing The average number of iteration to achieve a solution
PRmax = 0.2 W Rth = 0.5 Bit/s/Hz for HD cooperative NOMA system model with and
without considering MRC at the weak user.

Algo
SNR

0 5 10 15 20 25

AO MRC 3.7667 5.34 6.0367 6.3046 6.8538 7.2791
AO 2.0367 2.3933 3.4100 4.7409 5.8006 6.7871
GP MRC 5.926 10.2174 13.7855 14.4897 12.3907 11.539
GP 5.7855 6.4752 7.2182 7.6863 8.096 8.2848
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Figure 5.21: The achievable rate for users within the beam with PRmax = 0.2 for HD
cooperative NOMA system model considering MRC at the far user.
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Figure 5.22: Comparing the power of the relay for HD cooperative NOMA system with
and without considering MRC at the far user.
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Figure 5.23: Comparing the near user power for HD cooperative NOMA system with
and without considering MRC at the far user.
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Figure 5.24: Comparing the far user power for HD cooperative NOMA system with
and without considering MRC at the far user.
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5.5 Conclusion

In this paper, a jointly optimizing beamformer and relay power are investigated for

FD/HD cooperative NOMA with several optimization techniques. The study covers

both perfect channel state information and the bounded imperfect channel state in-

formation. The objective is to maximize the achievable sum-rate for users within the

beam. However, the original problem formulation is not convex. Therefore, reformulat-

ing the original problem into SDP form is required then several algorithms are applied

to find a solution for the optimization problem.



Chapter 6

Conclusions and Directions for

Future Work

6.1 Summary

This thesis focuses on applying convex optimization in non-orthogonal multiple access

systems. NOMA is an essential enabling technology for the beyond of 5G wireless

networks to meet the heterogeneous demands on low latency, high reliability, massive

connectivity, improved fairness and high throughput. In this work, various practical

constraints, such as grouping based on their QoS requirements and imperfect channel

station information have been taken into consideration.

In Chapter 3 the joint design of beamforming and power allocation in the

downlink of the NOMA MIMO multiuser system is investigated, where the users are

grouped based on their QoS requirements. For the sake of practicality, the problem is

formulated where the sum rate of the users who expect to be served with the best efforts

127
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is maximized under the rate constraints of the users with strict QoS requirements and

the maximum transmit power constraint at the BS. We then eliminated the inter-beam

interference by applying the ZF beamforming. To solve the non-convex optimization

problem, the SDR is adopted to approach and showed that the optimal solutions are

always rank one using simulation results. Also, a SCA algorithm is proposed based

on the AGM inequality to perform the joint design of the beamforming vectors and

the power allocation coefficients. Simulation results were presented to show the perfor-

mance advantage of our proposed algorithm over existing algorithms and the impact of

system parameters on the convergence speed of our proposed algorithm.

Chapter 4 has addressed the worst-case robust beamforming design for the

MISO-NOMA downlink systems by taking into account the norm-bounded channel un-

certainties. The objective was to balance the users SINRs with the constraints of the

total transmit power of the other users and the received interference power at the users.

However, the original robust problem formulation is not convex due to the imperfect

CSI. To tackle the non-convexity with this challenge, the S-procedure is exploited to

reformulate the original non-convex problem into the SDP form by recasting the orig-

inal non-convex constraints into the LMI form. A bisection based algorithm has been

devised to obtain robust beamforming solutions with rank relaxation.

In Chapter 5 a jointly optimizing beamformer and relay power are investi-

gated for FD/HD cooperative NOMA with several optimization techniques. The study

covers both perfect channel state information and the bounded imperfect channel state

information. The objective is to maximize the achievable sum-rate for users within the

beam. However, the original problem formulation is not convex therefore, reformulating

the original problem into SDP form is required then several algorithms are applied to
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approach the solution for the optimization problem.

6.2 Conclusions

• Applying AGM algorithm performs better convergency over other algorithms such

as GP and AO as it is shown in Chapter 3.

• There is a performance advantage of the joint design of the beamforming vec-

tors and the power allocation for the NOMA MIMO multiuser system as can be

realized in Chapter 3.

• The deterministic error bound which has been applied in Chapter 4 and Chapter 5

shows a reliable lower bound for the performance of the MISO NOMA system.

• There is a trade-off between FD and HD in cooperative NOMA systems in the

achievable rate performance as it is demonstrated in Chapter 5 that can be applied

in a hybrid system.

• Processing MRC at the cell edge user in HD cooperative NOMA system performs

better sum rate over applying MRC for FD system.
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6.3 Future Works

6.3.1 Extensions of Current Works

In this part, the possible extensions of the works in this thesis are suggested as following.

• Investigate the performance analysis for the manual pairing in Chapter 3 and

examine how it will affect the system.

• Apply the deterministic error bound for imperfect channel state information to the

NOMA MIMO multiuser system that grouped based on their QoS in Chapter 3.

• To add multiple base stations to the system model in Chapter 3 and Chapter 4.

This will add to the problem formulation several objective functions such as en-

ergy efficiency of the system model and the sum-rate of the overall all users in

multiple cells.

• Use the probabilistic approach model for the imperfect channel state information

to compare it with the deterministic approach which has been used in Chapter 4

and Chapter 5. This requires calculating the outage probability for the proposed

system model in this thesis, then add them to the constraint of the problem for-

mulation to be optimized.

• The proposed two-user scenario for cooperative NOMA FD/HD schemes in Chap-

ter 5 can be expanded to a multi-user scenario by using the matching theory [89].

Especially, by applying one-to-one matching, 2K users can be divided into K

groups, and two users are paired in each group.
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Figure 6.1: 6G performance requirements [1].

6.3.2 Promising Future Directions

Some promising future directions for the research to achieve the 6G performance metric

requirements in Fig. 6.1 are presented as follows:

• Applying stochastic convex optimization for advance NOMA systems such as

BackCom-NOMA [90], hybrid SIC [91, 92] and NOMA-MEC [93]. Since stochas-

tic optimization is a very effective tool in machine learning episcopally when it is

combined with multiple objective optimizations [94].

• Machine learning for NOMA systems, where machine learning is considered as

one of the key technologies for the upcoming wireless networks. By observing

the environment and data then the machine learns to decide the optimal solu-
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tion as it is applied for CR-NOMA [95]. Where, a deep reinforcement learning

approach, termed deep deterministic policy gradient (DDPG), is applied to the

studied long-term throughput maximization problem.
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Appendix A

A.1 S-lemma

S-lemma is an alternative method to represent the S-procedure, which can be proven

via strong duality. It is stated as following,

S-lemma: Let Q1, Q2 ∈ Sn and assume that yTQ1y > 0 for some vector y ∈ Rn.

Then, the implication

zTQ1z ≥ 0⇒ zTQ2z ≥ 0 (A.1)

is valid if and only if

Q2 � λQ1 for some λ ≥ 0. (A.2)

Where,

Q1 = −

 A1 b1

bT1 h2

 , Q2 = −

 A2 b2

bT2 h2

 , (A.3)

and Ai, bi and hi are the corresponding parameters mentioned in the S-procedure.

Then the implication including the two quadratic inequalities in (2.21) accords to (A.1)

with z = (x,1); the assumption x̂TA1x̂ + 2bT1 x̂ + h1 > 0 corresponds to yTQ1y > 0

with y = (x̂, 1); the LMI given by (2.18) corresponds to (A.2).

Proof: To prove the sufficient condition (A.2)⇒ (A.1). Caused by Q2−λQ1 �
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0 for some λ ≥ 0 and zTQ1z ≥ 0, then

zT (Q2 − λQ1)z ≥ 0 and zTQ1z ≥ 0⇒ zTQ2z ≥ λzTQ1z ≥ 0. (A.4)

Subsequently, the sufficient condition is proved.

Next, to prove the sufficient condition (A.1) ⇒ (A.2). So, look at the coming convex

problem:

s? = max
s,λ∈R

s (A.5a)

s.t. Q2 − λQ1 � sIn, (A.5b)

λ ≥ 0. (A.5c)

If s? ≥ 0 then the statement of (A.2) is true. Thus, it satisfies to demonstrate that s? is

nonnegative, provided that zTQ1z ≥ 0⇒ zTQ2z ≥ 0 holds true. As there occurs some

vector y ∈ Rn such that yTQ1y > 0, the matrix Q1 must have a positive eigenvalue.

As an illustration, there exists a > 0 and v ∈ Rn with ‖v‖2 so Av = av. Then,

vT (Q2 − λQ1)v = vTQ2v − λa ≤ vTQ2v, from (A.5b) s ≤ vTQ2v, imposing that the

optimal value of (A.5) is bounded above s? <∞.

Since (A.5) is convex and satisfies Slater’s condition strong duality holds true.

So the optimal value s? of problem (A.6) which is also feasible as well

s? = min
X∈Sn

Tr(Q2X) (A.6a)

s.t. Tr(Q1X) ≥ 0, (A.6b)

Tr(X) = 1, (A.6c)

X � 0. (A.6d)

Let X? = DDT be an optimal solution to problem (A.6) Then, the identified constraint

(A.6b) and the optimal value can be written as

0 ≤ Tr(Q1X
?) = Tr(DQ1D

T ), (A.7a)

s? = Tr(Q2X
?) = Tr(DQ2D

T ). (A.7b)

Assuming s? < 0 and K = DQ1D
Tand P = DQ2D

T , so Tr(K) ≥ 0 and Tr(P) = s?.
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Giving by Lemma3, there exists a vector x such that

xTKx = (Dx)TQ1(Dx) ≥ 0 and xTPx = (Dx)TQ2(Dx) < 0,

which contradicts the assumption zTQ1z ≥ 0⇒ zTQ2z ≥ 0 where z = Dx. Therefore,

s? ≥ 0 and the proof of S-lemma is complete [69].

Lemma 3 Let K,P ∈ Sn with Tr(K) ≥ 0 and Tr(P) < 0. Then, there exists a vector

xinRn such that xTKx ≥ 0 and xTPx < 0.

Proof: Let K = UΛUT where Uis an orthogonal matrix and Λ = Diag(λ1, . . . , λn)

is a diagonal matrix formed by its eigenvalues. Let w ∈ Rn be a discrete random vector

with i.i.d. entries taking on values of 1 or −1 with equal probability (1/2). Then,

(Uw)TK(Uw) = (Uw)TUΛUT (Uw) = wTΛw = Tr(K) < 0 (A.8)

(Uw)TP(Uw) = wT (UTPU)w (A.9)

Taking expectation of the quadratic function of w in (A.9) yields

E{(Uw)TP(Uw)} = Tr(UTPU E{wwT}) = Tr(P) ≥ 0, (A.10)

where E{wwT} = In. By (A.8) and (A.10), there exists at least one vector w ∈ Rn

such that (Uw)TK(Uw) < 0 and (Uw)TP(Uw) ≥ 0, i.e., there exists an x = Uw such

that xTKx ≥ 0 and xTPx < 0.
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Proposition 1 If a block Hermition matrix B =

 B1 B2

B3 B4

 � 0 then the main

diagonal matrices B1 and B4 must be positive definite (PSD) matrices [96].

PROOF of Lemma 2

To prove (4.16) is a rank(1), the Karush-Kuhn-Tucker (KKT) conditions are examined.

First, let Yl ∈ CM×M ,Tl,Til ∈ C(M+1)×(M+1) and , µlµt ∈ R+ denote the dual variable

of the constraints in (4.16), respectively. Then, the Lagrangian dual function of (4.16)

can be written as

L(t,Wl, λl,Tl, λil,Til, µl, µt) = −t +
∑
l

Tr(TlCl)

+
∑
il

Tr(TilDil)− µt(Tr(
∑
l

Wl)− PT )

+
∑
l

Tr(YlWl) +
∑
l

Tr(Wl), (B.1)
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let A1 =

 λlI 0

0 −λlε2 − σ2
l

 ,

A2 =

 −
l∑

m=1

Wm 0

0 0

 , and Hl =

[
I hl

]
. then

L(t,Wl, λl,Tl, λil,Til, µl, µt) = −t +
∑
l

Tr(TlA1)

+
∑
l

Tr(TlH
H
l (

Wl

t
−

K∑
m=l+1

Wm)Hl) +
∑
l

Tr(TlA2)

∑
il

Tr(TilDil)− µt(Tr(
∑
l

Wl)− PT ) +
∑
l

Tr(YlWl)

+
∑
l

Tr(Wl). (B.2)

The following KKT conditions hold for (4.16)

∂L
∂Wl

= 0, (B.3)

⇒
l−1∑
j=l

HH
l Tj(

1

t
− 1)Hl −

K∑
j=l+1

Tj − µt + Yl + I = 0, (B.4)

YlWl = 0, (B.5)

Tl(A1 + HH
l (

Wl

t
−

K∑
m=l+1

Wm)Hl + A2), (B.6)

µt(Tr(
∑
l

Wl)− PT ) = 0. (B.7)

by pre-multiplying (B.4) by Wl, i.e,

HH
l Tj

Wl

t
Hl = Wl(

l−1∑
j=l

HH
l TjHl +

K∑
j=l+1

Tj − I), (B.8)

then the rank relation can be written as following

rank(Wl) =rank[Wl(
l−1∑
j=l

HH
l TjHl +

K∑
j=l+1

Tj − I)], (B.9)

= rank(WlH
H
l TlHl), (B.10)

≤ min
{

rank(HH
l TlHl), rank(Wl)

}
. (B.11)
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Based on (B.11), it is required to show rank(HH
l TlHl) ≤ 1 if rank(Wl) ≤ 1 is claimed.

The following equations and Proposition 1 should be considered:

[ I 0 ]HH
l = I, [ I 0 ]A1 = λl(Hl − [ 0M hl ]),

[ I 0 ]A2 = −
l∑

m=1

Wm(Hl − [ 0M hl ]). (B.12)

Then pre-multiply [ I 0 ] and post-multiply HH
l by (B.6), respectively,and

applying the equalities in (B.12):

λl(Hl − [ 0M hl ])TlH
H
l −

l∑
m=1

Wm(Hl

− [ 0M hl ])TlH
H
l + (

Wl

t
−

K∑
m=l+1

Wm)HlTlH
H
l = 0

⇒ (λlI−
K∑

m=l+1

Wm + (
Wl

t
−

K∑
m=l+1

Wm))HlTlH
H
l

= (λlI−
l∑

m=1

Wm)[ 0M hl ]TlH
H
l . (B.13)
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By applying Proposition 1 to (4.14), (λlI + (Wl

t
−

K∑
m=l+1

Wm)−
l∑

m=1

Wm) � 0

and is nonsingular; thus, multiplying by a nonsingular matrix will not change the matrix

rank. Thus the following rank relation holds:

rank(HlTlH
H
l ) = rank((λlI−

l∑
m=1

Wm)[ 0M hl ]TlH
H
l )

≤ rank([ 0M hl ]) ≤ 1. (B.14)

This completes the proof of Lemma 2 there always exists a rank-one optimal solution

W∗
l
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