533 research outputs found

    Minimizing Communication in Linear Algebra

    Full text link
    In 1981 Hong and Kung proved a lower bound on the amount of communication needed to perform dense, matrix-multiplication using the conventional O(n3)O(n^3) algorithm, where the input matrices were too large to fit in the small, fast memory. In 2004 Irony, Toledo and Tiskin gave a new proof of this result and extended it to the parallel case. In both cases the lower bound may be expressed as Ω\Omega(#arithmetic operations / M\sqrt{M}), where M is the size of the fast memory (or local memory in the parallel case). Here we generalize these results to a much wider variety of algorithms, including LU factorization, Cholesky factorization, LDLTLDL^T factorization, QR factorization, algorithms for eigenvalues and singular values, i.e., essentially all direct methods of linear algebra. The proof works for dense or sparse matrices, and for sequential or parallel algorithms. In addition to lower bounds on the amount of data moved (bandwidth) we get lower bounds on the number of messages required to move it (latency). We illustrate how to extend our lower bound technique to compositions of linear algebra operations (like computing powers of a matrix), to decide whether it is enough to call a sequence of simpler optimal algorithms (like matrix multiplication) to minimize communication, or if we can do better. We give examples of both. We also show how to extend our lower bounds to certain graph theoretic problems. We point out recently designed algorithms for dense LU, Cholesky, QR, eigenvalue and the SVD problems that attain these lower bounds; implementations of LU and QR show large speedups over conventional linear algebra algorithms in standard libraries like LAPACK and ScaLAPACK. Many open problems remain.Comment: 27 pages, 2 table

    Domain Decomposition Based High Performance Parallel Computing\ud

    Get PDF
    The study deals with the parallelization of finite element based Navier-Stokes codes using domain decomposition and state-ofart sparse direct solvers. There has been significant improvement in the performance of sparse direct solvers. Parallel sparse direct solvers are not found to exhibit good scalability. Hence, the parallelization of sparse direct solvers is done using domain decomposition techniques. A highly efficient sparse direct solver PARDISO is used in this study. The scalability of both Newton and modified Newton algorithms are tested

    Taking advantage of hybrid systems for sparse direct solvers via task-based runtimes

    Get PDF
    The ongoing hardware evolution exhibits an escalation in the number, as well as in the heterogeneity, of computing resources. The pressure to maintain reasonable levels of performance and portability forces application developers to leave the traditional programming paradigms and explore alternative solutions. PaStiX is a parallel sparse direct solver, based on a dynamic scheduler for modern hierarchical manycore architectures. In this paper, we study the benefits and limits of replacing the highly specialized internal scheduler of the PaStiX solver with two generic runtime systems: PaRSEC and StarPU. The tasks graph of the factorization step is made available to the two runtimes, providing them the opportunity to process and optimize its traversal in order to maximize the algorithm efficiency for the targeted hardware platform. A comparative study of the performance of the PaStiX solver on top of its native internal scheduler, PaRSEC, and StarPU frameworks, on different execution environments, is performed. The analysis highlights that these generic task-based runtimes achieve comparable results to the application-optimized embedded scheduler on homogeneous platforms. Furthermore, they are able to significantly speed up the solver on heterogeneous environments by taking advantage of the accelerators while hiding the complexity of their efficient manipulation from the programmer.Comment: Heterogeneity in Computing Workshop (2014

    Performance Improvements of Common Sparse Numerical Linear Algebra Computations

    Get PDF
    Manufacturers of computer hardware are able to continuously sustain an unprecedented pace of progress in computing speed of their products, partially due to increased clock rates but also because of ever more complicated chip designs. With new processor families appearing every few years, it is increasingly harder to achieve high performance rates in sparse matrix computations. This research proposes new methods for sparse matrix factorizations and applies in an iterative code generalizations of known concepts from related disciplines. The proposed solutions and extensions are implemented in ways that tend to deliver efficiency while retaining ease of use of existing solutions. The implementations are thoroughly timed and analyzed using a commonly accepted set of test matrices. The tests were conducted on modern processors that seem to have gained an appreciable level of popularity and are fairly representative for a wider range of processor types that are available on the market now or in the near future. The new factorization technique formally introduced in the early chapters is later on proven to be quite competitive with state of the art software currently available. Although not totally superior in all cases (as probably no single approach could possibly be), the new factorization algorithm exhibits a few promising features. In addition, an all-embracing optimization effort is applied to an iterative algorithm that stands out for its robustness. This also gives satisfactory results on the tested computing platforms in terms of performance improvement. The same set of test matrices is used to enable an easy comparison between both investigated techniques, even though they are customarily treated separately in the literature. Possible extensions of the presented work are discussed. They range from easily conceivable merging with existing solutions to rather more evolved schemes dependent on hard to predict progress in theoretical and algorithmic research

    LU factorization with panel rank revealing pivoting and its communication avoiding version

    Get PDF
    We present the LU decomposition with panel rank revealing pivoting (LU_PRRP), an LU factorization algorithm based on strong rank revealing QR panel factorization. LU_PRRP is more stable than Gaussian elimination with partial pivoting (GEPP). Our extensive numerical experiments show that the new factorization scheme is as numerically stable as GEPP in practice, but it is more resistant to pathological cases and easily solves the Wilkinson matrix and the Foster matrix. We also present CALU_PRRP, a communication avoiding version of LU_PRRP that minimizes communication. CALU_PRRP is based on tournament pivoting, with the selection of the pivots at each step of the tournament being performed via strong rank revealing QR factorization. CALU_PRRP is more stable than CALU, the communication avoiding version of GEPP. CALU_PRRP is also more stable in practice and is resistant to pathological cases on which GEPP and CALU fail.Comment: No. RR-7867 (2012

    A bibliography on parallel and vector numerical algorithms

    Get PDF
    This is a bibliography of numerical methods. It also includes a number of other references on machine architecture, programming language, and other topics of interest to scientific computing. Certain conference proceedings and anthologies which have been published in book form are listed also

    High Performance Reconfigurable Computing for Linear Algebra: Design and Performance Analysis

    Get PDF
    Field Programmable Gate Arrays (FPGAs) enable powerful performance acceleration for scientific computations because of their intrinsic parallelism, pipeline ability, and flexible architecture. This dissertation explores the computational power of FPGAs for an important scientific application: linear algebra. First of all, optimized linear algebra subroutines are presented based on enhancements to both algorithms and hardware architectures. Compared to microprocessors, these routines achieve significant speedup. Second, computing with mixed-precision data on FPGAs is proposed for higher performance. Experimental analysis shows that mixed-precision algorithms on FPGAs can achieve the high performance of using lower-precision data while keeping higher-precision accuracy for finding solutions of linear equations. Third, an execution time model is built for reconfigurable computers (RC), which plays an important role in performance analysis and optimal resource utilization of FPGAs. The accuracy and efficiency of parallel computing performance models often depend on mean maximum computations. Despite significant prior work, there have been no sufficient mathematical tools for this important calculation. This work presents an Effective Mean Maximum Approximation method, which is more general, accurate, and efficient than previous methods. Together, these research results help address how to make linear algebra applications perform better on high performance reconfigurable computing architectures
    • …
    corecore