389 research outputs found

    Bayesian Semi-supervised Learning with Graph Gaussian Processes

    Get PDF
    We propose a data-efficient Gaussian process-based Bayesian approach to the semi-supervised learning problem on graphs. The proposed model shows extremely competitive performance when compared to the state-of-the-art graph neural networks on semi-supervised learning benchmark experiments, and outperforms the neural networks in active learning experiments where labels are scarce. Furthermore, the model does not require a validation data set for early stopping to control over-fitting. Our model can be viewed as an instance of empirical distribution regression weighted locally by network connectivity. We further motivate the intuitive construction of the model with a Bayesian linear model interpretation where the node features are filtered by an operator related to the graph Laplacian. The method can be easily implemented by adapting off-the-shelf scalable variational inference algorithms for Gaussian processes.Comment: To appear in NIPS 2018 Fixed an error in Figure 2. The previous arxiv version contains two identical sub-figure

    An automatic statistical inference approach using hilbert space embeddings and approximate bayesian computation

    Get PDF
    El tema central de este trabajo consiste en el desarrollo de un esquema automático de inferencia estadística usando embebimientos de espacios de Hilbert y métodos Kernel, teniendo en cuenta la relevancia de la información contenida en los datos durante la estimación no paramétrica de funciones de densidad de probabilidad, así como el alineamiento de los espacios de los parámetros y las simulaciones empleados en los métodos basados en computación Bayesiana Aproximada (ABC por sus siglas en inglés)

    A kernel-based framework for learning graded relations from data

    Get PDF
    Driven by a large number of potential applications in areas like bioinformatics, information retrieval and social network analysis, the problem setting of inferring relations between pairs of data objects has recently been investigated quite intensively in the machine learning community. To this end, current approaches typically consider datasets containing crisp relations, so that standard classification methods can be adopted. However, relations between objects like similarities and preferences are often expressed in a graded manner in real-world applications. A general kernel-based framework for learning relations from data is introduced here. It extends existing approaches because both crisp and graded relations are considered, and it unifies existing approaches because different types of graded relations can be modeled, including symmetric and reciprocal relations. This framework establishes important links between recent developments in fuzzy set theory and machine learning. Its usefulness is demonstrated through various experiments on synthetic and real-world data.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Statistical computation with kernels

    Get PDF
    Modern statistical inference has seen a tremendous increase in the size and complexity of models and datasets. As such, it has become reliant on advanced com- putational tools for implementation. A first canonical problem in this area is the numerical approximation of integrals of complex and expensive functions. Numerical integration is required for a variety of tasks, including prediction, model comparison and model choice. A second canonical problem is that of statistical inference for models with intractable likelihoods. These include models with intractable normal- isation constants, or models which are so complex that their likelihood cannot be evaluated, but from which data can be generated. Examples include large graphical models, as well as many models in imaging or spatial statistics. This thesis proposes to tackle these two problems using tools from the kernel methods and Bayesian non-parametrics literature. First, we analyse a well-known algorithm for numerical integration called Bayesian quadrature, and provide consis- tency and contraction rates. The algorithm is then assessed on a variety of statistical inference problems, and extended in several directions in order to reduce its compu- tational requirements. We then demonstrate how the combination of reproducing kernels with Stein’s method can lead to computational tools which can be used with unnormalised densities, including numerical integration and approximation of probability measures. We conclude by studying two minimum distance estimators derived from kernel-based statistical divergences which can be used for unnormalised and generative models. In each instance, the tractability provided by reproducing kernels and their properties allows us to provide easily-implementable algorithms whose theoretical foundations can be studied in depth
    corecore