Driven by a large number of potential applications in areas like
bioinformatics, information retrieval and social network analysis, the problem
setting of inferring relations between pairs of data objects has recently been
investigated quite intensively in the machine learning community. To this end,
current approaches typically consider datasets containing crisp relations, so
that standard classification methods can be adopted. However, relations between
objects like similarities and preferences are often expressed in a graded
manner in real-world applications. A general kernel-based framework for
learning relations from data is introduced here. It extends existing approaches
because both crisp and graded relations are considered, and it unifies existing
approaches because different types of graded relations can be modeled,
including symmetric and reciprocal relations. This framework establishes
important links between recent developments in fuzzy set theory and machine
learning. Its usefulness is demonstrated through various experiments on
synthetic and real-world data.Comment: This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version may no
longer be accessibl