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Abstract

In many science and engineering applications, the central aim concerns the estimation
of some parameters that describe a system, using a set of samples or observations
representing a particular behavior. In most cases, such an estimation is a difficult task
due to the noise contained in the samples, demanding a treatment from probabilistic
perspectives. In particular, Bayesian estimation is a useful tool for inferring model
parameters since it includes prior knowledge to handle the uncertainty, especially in
real-life applications. For straightforward systems, it is easy to find and assess an
expression for the likelihood function. However, in non-trivial systems, the application
of any Bayesian framework is a very challenging task, because the complexity of a
model means that the associated likelihood is computationally intractable, or that it is
not even possible to determine an analytical formula for the likelihood function.

In this regard, numerical simulation-based techniques have been widely used across
the literature since they provide an alternative to the problem of applying Bayesian in-
ference with intractable likelihoods. In particular, Approximate Bayesian Computation
(ABC) allows statistical inference without using a likelihood function via an auxiliary
model that generates simulations of the system, which are somehow compared to the
observations. Recent progress in this field has included kernel methods and Hilbert
spaces to support the Bayesian inference scheme, using probability density functions
over the observed and simulated data. The estimation strategy of these densities is an
essential component during the inference process, and the selection of free parameters
not only in the density estimation but also in the general ABC-based scheme is an
increasing challenging task.

The present project aims to develop an automatic statistical inference approach
based on Hilbert space embeddings and kernel methods, taking into account both the
relevance of data in the non-parametric density estimation and the matching between
parameters and simulations spaces used in ABC techniques. In particular, the central
aim is to develop a strategy that favors the flexibility and accuracy for both supervised
and unsupervised inference scenarios, looking for an automatic scheme that encodes
relevant structures in the data and allows to tuning of the parameters used in ABC
automatically.
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Chapter 1

Introduction

1.1 Towards an automatic approximate Bayesian
computation approach

Estimation Theory is considered as one of the most attractive areas within the Infer-
ential Statistics field. In particular, Estimation Theory allows making of predictions
about some model parameters that describe a particular system, based on a set of
samples that arise from measuring some behavior on the system [45]. In most cases,
these measures are corrupted by noise that comes from various sources. Thus, the
estimation of the model parameters becomes a difficult task demanding a treatment in
probabilistic terms. To deal with such an issue, we have three different perspectives
arising from the Estimation Theory point of view: the point estimation method, the
interval estimation method, and the Bayesian estimation approach [7]. Concerning the
point estimation method, a closed mathematical expression is employed to find a single
value for each parameter to be estimated, using some particular criterion, for instance,
that the likelihood function is maximized assuming some specific distribution for the
data (like in the Maximum Likelihood Estimation method), or that the mean square
error is minimized, as is the case of least squares [5]. On the other hand, in the interval
estimation method, the aim concerns the computation of a range where the true value
of the parameters could be found with an associated probability, that is, there are
confidence intervals for the value of the model parameters [27]. Finally, from a Bayesian
estimation perspective, a probability density function for the model parameter ( known
as posterior distribution or simply posterior) stands for the probability that the model
parameters could take a particular value [6].
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Regarding the Bayesian estimation approach, previous knowledge about the model
parameters (expressed through a probability density function known as prior distri-
bution or simply prior) is required to calculate the posterior via the Bayes’ theorem,
where a likelihood function states the probability of the observed data under a given
statistical model in order to leverage the inclusion of prior knowledge into the posterior
distribution [45]. For straightforward models, to find an expression for the likelihood
function is a direct task. However, for complex systems, such as those that present
high nonlinearity or a stochastic behavior, the model complexity means that there is no
analytical formula for the likelihood function or that it is computationally intractable
and can not be evaluated in any practical amount of time, standing for a really chal-
lenging scenario to perform statistical inference using Bayesian techniques [42].

To deal with the intractability of the likelihood function, numerical simulation-
based techniques like Approximate Bayesian Computation (ABC) have been proposed,
where an approximated posterior is obtained using an auxiliary model (which is a
mathematical description of the model) in lieu of a likelihood function. The main idea
behind an ABC-based method is to assess the auxiliary model with samples drawn
from the prior distribution to compute simulated data which is compared with the
observed data in the sense of a distance function, leading a set of weights that define
an approximation of the posterior of the model parameters [43].

The number of different ABC methods that have been proposed across the literature
is so large that it would be difficult to classify them. However, two large groups could
be highlighted: the ones that work with statistics of the simulations and observations,
and those that use distribution embeddings of the observed and simulated data using
kernel functions. In the former, summary statistics (sufficient statistics) summarize
the information contained in observations and simulations before computing the dis-
tance to reduce the computational burden due to the large amount of features and/or
observations [22]. In the latter, distributions over the observed and simulated data are
embedded into a Reproducing Kernel Hilbert Space (RKHS) via a reproducing kernel,
where a comparison between probability measures supports the inference procedure [30].

Regarding the Distribution-based ABC scheme, since the probability density func-
tions of the observed and simulated data are unknown in practice (because such data
belong to the parameter space rather than a probability space), either parametric
or non-parametric approaches can be used to estimate such densities. A parametric
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estimation constrains the data to follow a particular family of distribution while a
non-parametric estimation stands for more flexible modeling where the density approx-
imation is the result of a data-driven process. The latter is preferred in this research
due to the type of models we are dealing with. In this regard, the Parzen window
estimator is one of the most popular techniques to approximate probability density
functions from data, where a kernel function is utilized to compute the probability
of a single sample based on the other ones [37]. However, it commonly assumes that
all samples have the same importance, and relevant information is not taken into
account; this is not appropriated especially in those applications with high dynamics
and stochasticity. Besides, like the number of bins in a histogram, the selection of
hyperparameters in the desired kernel function is a crucial step since they determine
the shape of the estimated density. In particular, for the Gaussian kernel (widely
used for its mathematical properties), to determine the covariance matrix is essential
because it states the statistical relationship between features of the data set.

Concerning the Hilbert embedding-based procedure for ABC, statistical inference of
the model parameters is performed using a comparison between distributions associated
to the observed and simulated data and the inference is not performed directly in the
parameter space but in the probability space [30], that is, any information about the
parameter space is taken into account to compute the posterior distribution (we refer
to this setting as unsupervised inference). This blind approach could lead to scenarios
where the uncertainty modeling via probability density functions is not enough to
understand the complexity of the system. In such a case, if additional information
about the parameters space at the input of the auxiliary model is available, it could be
included the inference procedure to obtain a more accurate estimation (we refer to this
setting as supervised inference).

The present work aims to develop an automatic statistical inference approach
based on Hilbert space embeddings and kernel methods, taking into account both the
relevance of data in the non-parametric density estimation and the matching between
parameters and simulations spaces used in ABC techniques. In particular, the central
aim is to develop a strategy that favors the flexibility and accuracy for both supervised
and unsupervised inference scenarios, looking for an automatic scheme that encodes
relevant structures in the data and allows the tuning of the parameters used in ABC
automatically.



4 Introduction

1.2 Aims

1.2.1 General aim
To develop an automatic approximate Bayesian computation approach based on Hilbert
space embeddings that allows the automatic selection of free parameters for both
supervised and unsupervised statistical inference scenarios.

1.2.2 Specific aims
1. To propose a nonparametric density estimation methodology that highlights

relevant data information in order to support the posterior estimations of ABC-
based unsupervised inference scenarios.

2. To develop an unsupervised inference approach that allows an automatic free
parameter selection in the nonparametric density estimation, in order to improve
the accuracy, precision, and flexibility of ABC-based models.

3. To propose a statistical alignment methodology that correlates dependencies
between the parameter space and the simulations space used in ABC, in order to
support the posterior estimations of ABC-based supervised inference scenarios.

4. To develop a supervised inference approach that includes information about the
parameter space and allows the automatic selection of all free parameters, in
order to improve the accuracy, precision, and flexibility of ABC-based models.

1.3 Research contributions
Bayesian statistical inference under intractability of the likelihood function is a very
challenging task. Different approaches based on Approximate Bayesian Computation
have been proposed for leading the lack or expensive assessment of a likelihood
function [42, 43, 30]. However, all these approaches rely on the use of free parameters
that have to be tuned by the user and essentially affect the accuracy of the inference.
Cross-validation or grid search can be used to find proper values for the free parameters;
nevertheless, these approaches are often too expensive in computational terms and state
problem dependent solutions [45, 7, 6]. On the other hand, in most of the ABC-based
statistical inference models, the posterior has to be computed without any information
about the relationship between the parameter space and the simulations space. In this
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regard, the development of an automatic ABC-based statistical inference approach that
can automatically find values for the free parameters based on data including supervised
and unsupervised scenarios would be an important step towards more flexible statistical
inference tasks, in systems with stochastic and dynamic properties. Furthermore, this
project would state an essential contribution to the fields of statistical inference and
kernel methods through the development of a methodology that combines Bayesian
perspectives and Hilbert embeddings seeking for more robust statistical inference
frameworks.





Chapter 2

Background

This chapter provides a brief introduction to the fundamental ideas behind Approxi-
mate Bayesian Computation (ABC). It introduces the straightforward ABC method
based on rejection and summary statistics and describes the usage of kernel methods
and Hilbert embeddings in the context of ABC. A short review about Hilbert spaces
and metrics over distributions is also given. The chapter also presents the related work
concerning the most significant ABC methods proposed in the state-of-the-art.

2.1 Bayesian inference under intractable likelihoods
From a Bayesian perspective, entire knowledge about a vector of model parameters
θ∈Θ is completely expressed through the posterior distribution p(θ|y), where y∈X
stands for the observed data. Therefore, a likelihood function p(y|θ) updates beliefs
about the model parameters, as expressed in a prior distribution p(θ), according to
Bayes’ theorem:

p(θ|y) = p(y|θ)p(θ)∫
Θ

p(y|θ)p(θ)dθ
. (2.1)

The posterior distribution contains all necessary information for analysis of the
model, from predictive inference and model checking to decision making and beyond [38].

In practice, the complexity of a model, especially in those cases that involve nonlin-
earity or stochasticity, means that the calculation of the posterior as in equation 2.1
can not be performed due to two main reasons: 1) the mathematical expressions for
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the likelihood function and/or the prior distribution lead to such complex calculations
that there is no way to obtain a posterior in close form and it is just accessible through
its samples using a numerical method; 2) the assessment of the likelihood function
used to obtain samples from the posterior is computationally intractable and it can
not be performed numerically in any amount of time. Under this situation, neither
exact nor sampled posterior can be obtained using a Bayesian approach.

To face any of these challenging scenarios, a simple option is to fit a different
model that is less complex and more amenable in terms of mathematical and statistical
computations. However, this could be performed at the expense of wrong or less
realistic conclusions about the phenomenon that is being analyzed. A more elegant
alternative concerns an approximation for the desired model maintaining realism under
some approximation error. In this sense, several alternatives have emerged as “free-
likelihood” techniques and approximate Bayesian computation is a particular case of
them.

2.2 ABC fundamentals
Approximate Bayesian computation was originally introduced as a solution for per-
forming statistical inference in the field of molecular biology where systems with
high dynamics and stochasticity are typically found. The first ABC algorithm was
proposed by authors [33] who studied the demographic history of the Y chromosome.
However, the use of ABC techniques has influenced several research areas like systems
biology [23], climate analysis [20], ecological modeling [14], and nuclear imaging [13],
just to mention some of them. The fundamental idea behind an ABC framework is to
replace the calculation of the likelihood function with an idea of how likely it is that
the desired model could have produced the observations, using a set of simulated data
generated from an auxiliary model [43]. These simulations are then compared with the
observed data in order to find an approximation of the posterior distribution of the
model parameters, that is, instead of finding a value for the model parameters such
that a particular function is minimized (as is the case of least squares), the goal of
ABC is to estimate the posterior distribution of those parameters [11].

The most straightforward ABC approach can be summarized in the skecth shown
in figure 2.1. The idea behind this framework, known as ABC rejection, is remarkably
simple: a set of candidates {θnvζ(θ)}N

n=1, drawn from the desired prior distribution ζ(θ),
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is employed to assess an auxiliary model M:Θ→X , which stands for the mathematical
description of the system under analysis, in order to generate simulated data {xn∈X }N

n=1.
Therefore, each simulation is compared with the observed data in the sense of a
distance d:X×X →R+ and a small threshold ξ, that is, if the distance is less than ξ, the
corresponding prior sample is selected to follow the posterior distribution; otherwise
it is rejected [46]. Typically, it is difficult to apply a distance directly on X due to a
large number of samples and features in real data. In such a case, some strategies use
a mapping s=ϑ(x) before calculating the distance, where s∈S is a feature space and
ϑ:X →S [22].

Fig. 2.1 A sketch representing the ABC rejection algorithm.

In practice, the simplicity of the previous approach leads to some drawbacks regard-
ing a given inference task. For instance, the selection of a proper distance (according to
the problem) to compare observations and simulations, the value of a suitable threshold
to accept or reject candidates, the selection of sufficient summary statistics to extract
information properly from data, among others [46]. As a consequence, more complex
algorithms based on sampling methods have been proposed in the last years, e. g.,
the ABC MCMC algorithm that uses Markov chains and Monte Carlo simulation to
find better approximations for the posterior of the model parameters [25]. A more
detailed description about these methods can be found in [43, 38] and references therein.

Recently, Park et al. [30] proposed to use Hilbert space embeddings in the context
of ABC using kernels functions as an alternative to summary statistics. Figure 2.2
summarizes this novel approach. In particular, both simulated and observed data
are considered to follow probability distributions {xnvPXn}N

n=1 and yvPY , which are
embedded into a Reproducing Kernel Hilbert Space (RKHS) of functions H generated
by a characteristic kernel k(·, ·) (see section 2.3 for more details). Therefore, a distance
between probability distributions dH:H×H→R+ supports the computation of a similarity
kernel κ(PXn , PY ) that assigns a weight wn to each prior sample:
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Fig. 2.2 A sketch representing Hilbert embeddings in the context of ABC.

wn = κ(PXn , PY )
N∑

n=1
κ(PXn , PY )

. (2.2)

A frequently used similarity kernel over probability measures takes the form [30]:

κ(d2
H(PXn , PY ); ϵ) = exp

(
− d2

H(PXn , PY )
ϵ

)
, (2.3)

where ϵ∈R+ is a small threshold.

The application of equations 2.2 and 2.3 over simulations results in a weighted sample
set Ψ={θn, wn}N

n=1 that can be used to approximate the posterior p(θ|y) via empirical
posterior estimation or a kernel density estimator. Algorithm 1 presents the main steps
to perform ABC based on Hilbert embeddings, where δ(a − b) is the Delta function.

Algorithm 1 ABC based on Hilbert embeddings
Input: Observed data: yvPY , prior: ζ(θ), threshold ϵ, distance parameters.
Output: Posterior estimation: p̂(θ|y)=∑N

i=1 wnδ(θ − θn).
1: for n = 1, · · · , N do
2: θnvζ(θ) ◃ Draw a candidate θn from the prior.
3: xn = M(θn); xnvPXn ◃ Draw a sample from the model.
4: w̃n = κ(dH(PXn , PY ); ϵ) ◃ Compute the n-th weight value.
5: end for
6: wn = w̃n/

∑N
n=1 w̃n ◃ Normalize weights
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2.3 Hilbert spaces and metrics over distributions
An inner product space H (the largest and most inclusive space of vectors equipped
with ⟨·, ·⟩ as inner product) that has an orthonormal set of basis {βk}∞

k=1 is known
as a Pre-Hilbert space [1]. A vector x in H can be spanned by the basis as a linear
combination:

x =
∞∑

k=1
akβk, (2.4)

where the scalars ak are the coefficients of the representation.

The squared norm between two vectors xn=∑n
k=1 akβk and xm=∑m

k=1 akβk, with
m > n in H, can be defined using the inner product as:

||xn − xm||22 = ⟨xn − xm, xn − xm⟩

=
〈

m∑
k=n+1

akβk ,
m∑

k=n+1
akβk

〉

=
m∑

k=n+1
a2

k. (2.5)

When the coefficients ak are defined such that the following conditions are satisfied:
1) ∑n

k=1 a2
k < ∞; 2) ∑m

k=n+1 a2
k → 0 as both n, m → ∞; then, a sequence of vectors

{xk}∞
k=1 so defined is a Cauchy sequence. Namely, a vector x can be expressed via the

basis {βk}∞
k=1 if, an only if, x is a linear combination of such basis and the coefficients

of the representation are square summable [24].

Definition. An inner product space H is complete if every Cauchy sequence of vectors
selected from the space H converges to a limit in H. A complete inner product space is
called a Hilbert space.

Hilbert spaces can be either finite or infinite-dimensional vector spaces. The latter,
for instance, are the foundation of continuous-time signal processing [32]. Another
useful Hilbert space is the Reproducing Kernel Hilbert Space (RKHS). An RKHS is a
special Hilbert space associated with a non-negative definite kernel function κ such
that it reproduces (via a inner product) each function f in the space [1]. Let H be
a Hilbert space of real-valued functions defined on a set X , equipped with an inner
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product ⟨· , ·⟩ and a real-valued bivariate function κ:X×X →R+. The function κ(x, x′)
is said to be non-negative definite if for any finite set {xn}N

n=1 ⊂ X and any not all
zero real numbers {αn}N

n=1, the following condition is satisfied:

N∑
i=1

N∑
j=1

αiαjκ(xi, xj) ≥ 0. (2.6)

Theorem (Moore-Aronszajn). For any non-negative definite function κ(x, x′),
there exists a uniquely determined (and possible infinite-dimensional) Hilbert space H
consisting of functions on X such that:

(1) ∀x∈X , κ(·, x)∈H

(2) ∀x∈X , ∀f∈H, f(x)=⟨f , κ(·, x)⟩H.

From condition (1) it is easy to infer that each element in the input space is mapped
onto a function in the RKHS generated by the selected reproducing kernel κ. On
the other hand, the condition (2) is known as the reproducing property of κ(x, x′) in
X . Namely, if the non-linear mapping function φ:X →H is defined as φ(x)=κ(·, x), it
follows that

⟨φ(x) , φ(x′)⟩H = ⟨κ(·, x) , κ(·, x′)⟩ = κ(x, x′). (2.7)

As a consequence, φ(x)=κ(·, x) defines completely and uniquely the RKHS associated
with the kernel κ.

A valuable conclusion concerning the last decade of research in statistics states that
it is possible to define distances between probability distributions via the expected
value and the concept of norm in an RKHS [41]. Let PX be a probability distribution
associated to a random variable XvPX . Define the embedding µ[·] of PX into the
RKHS H as [40]:

µ[PX ] := EX [κ(x, ·)], (2.8)

where EX stands for the expected value operator over X and the reproducing kernel
(commonly named in this case as characteristic kernel) satisfies the sufficient condition
κ(x, ·) < ∞.
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A distance between two distributions PX and PY is then defined as:

d2
H(PX , PY ) =

∣∣∣∣∣
∣∣∣∣∣ µ[PX ] − µ[PY ]

∣∣∣∣∣
∣∣∣∣∣
2

H
=
〈

µ[PX ] − µ[PY ] , µ[PX ] − µ[PY ]
〉

H
. (2.9)

Using the definition of expected value and assigning probability density functions as
f(x) and g(y) to PX and PY , respectively, the distance in equation 2.9 is rewritten as:

d2
H =

∣∣∣∣∣
∣∣∣∣∣µ[PX ]

∣∣∣∣∣
∣∣∣∣∣
2

H
− 2

〈
µ[PX ] , µ[PY ]

〉
H

+
∣∣∣∣∣
∣∣∣∣∣µ[PY ]

∣∣∣∣∣
∣∣∣∣∣
2

H

=
〈∫

k(x, ·)f(x)dx ,
∫

k(x′, ·)f(x′)dx′
〉

H
− 2

〈∫
k(x, ·)f(x)dx ,

∫
k(y, ·)g(y)dy

〉
H

+
〈∫

k(y, ·)g(y)dy ,
∫

k(y′, ·)g(y′)dy′
〉

H

=
∫ ∫

⟨k(x, ·) , k(x′, ·)⟩H f(x)f(x′)dxdx′ − 2
∫ ∫

⟨k(x, ·) , k(y, ·)⟩H f(x)g(y)dxdy

+
∫ ∫

⟨k(y, ·) , k(y′, ·)⟩H g(x)g(y′)dydy′, (2.10)

and using the reproducing property k(a, b))=⟨k(a, ·) , k(b, ·)⟩ (Moore-Aronszajn):

d2
H(PX , PY ) =

∫ ∫
k(x, x′)f(x)f(x′)dxdx′ − 2

∫ ∫
k(x, y)f(x)g(y)dxdy

+
∫ ∫

k(y, y′)g(x)g(y′)dydy′. (2.11)

2.4 Related work
Several ABC methods have been proposed in the last years in response to the increas-
ing need to perform statistical inference in situations that involve intractability of
the likelihood function. As an initial attempt, Wood [47] introduced the synthetic
likelihood ABC (SL-ABC) where an analytic expression for a synthetic likelihood
can be obtained by assuming that the summary statistics of observed and simulated
data have multivariate Gaussian distributions that can be compared using a similarity
function; the resulting artificial likelihood supports posterior sampling via a Markov
chain Monte Carlo (MCMC) approach. Although this is a quite practical idea given
the easy access to an MCMC-based algorithm, e.g., the Metropolis-Hastings sampler,
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it restricts data to follow a normal-based parametric model that could compromise the
inference quality in complex applications [38].

In lieu of using synthetic likelihoods, alternative approaches employ a known con-
ditional probability of the simulated data given a vector of parameters as auxiliary
model to perform indirect inference in the context of ABC [12, 10]. A clear example is
the well-known Indirect Score ABC (IS-ABC) proposed by Gleim and Pigorsch [16],
where a score vector concerning the partial derivatives of the log-likelihood with respect
to the vector parameters is fixed as summary statistics to select the best candidates
values whose corresponding simulated data produce a score close to zero, based on the
fact that under a Maximum Likelihood Estimator (MLE) fitted with observed data
such score vector becomes exactly zero.

With the fast spreading of kernel methods over several research areas, recent ap-
proximate inference techniques have introduced kernel in the context of ABC. The
first kernel-based ABC framework, the Kernel-ABC (K-ABC) introduced by Nak-
agome et al. [29], concerns the estimation of a conditional mean embedding operator
mapping from the summary statistics space to the parameter space. Essentially, a
regression function represents the embedding of the posterior distribution in the form
of a weighted sum of feature maps associated with a kernel over summary statistics
that produces an RKHS. Although the use of kernel functions stands for a more general
representation in a nonlinear way, the need for proper and sufficient summary statistics
in the K-ABC method is still a remarkable drawback. In this regard, the K2-ABC
algorithm proposed by Park et al. [30] was introduced as a free-summary statistics
approach as explained in section 2.2. In particular, empirical approximations for the
distributions associated to the observed and simulated data support the calculation
of a distance that only depends on the characteristic kernel in an RKHS when the
Maximum Mean Discrepancy (MMD) dissimilarity criterion is employed [18]. As an
extension to K2-ABC, authors in [50] used traditional Parzen windows-based estimators
for the associated densities using a Gaussian kernel for both, the characteristic kernel
and the kernel used to estimate each density. The obtained Parzen-ABC (P-ABC) has
a more robust distance in the sense of the number of samples to perform the posterior
approximation but at the expense of more free parameters to tune. In practice, none of
the mentioned kernel-based approaches take into account the relevance of each sample
in the data-sets while computing the distance over distributions, setting an interesting
challenge for unsupervised inference scenarios regarding the improvement of distances
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in an RKHS for ABC.

Devoted to automatic frameworks for ABC, an initial attempt proposed by Fearn-
head and Prangle [15] introduced a Semi-Automatic ABC (SA-ABC) where a linear
model under a quadratic loss function leads to an optimal (and so automatic) selection
of summary statistics using simulated data; the resulting estimates for such statistics
can be used in a standard ABC approach using a euclidean distance as similarity
measure between simulated and observed data but with the remaining drawbacks dis-
cussed in section 2.2. In contrast to the automatic construction of summary statistics,
Prangle [31] focused on adapting the ABC comparison stage via a weighted Euclidean
distance designed to work in the most efficient iterative ABC algorithms based on
population Monte Carlo [39, 4, 42]. On the other hand, Meeds and Weling [26]
developed a surrogate model as synthetic likelihood to define a suitable number of
simulations for ABC using a Gaussian process-based framework. Moreover, Mitrovic et
al. [28] modeled the functional relationship between simulations and the optimal choice
of summary statistics to encode the structure of a generative model using a kernel
ridge regression for conditional distributions. However, the techniques mentioned above
require the estimation of different free parameters to approximate the posterior. As
a consequence, expensive tuning procedures as grid search and cross-validation are
carried out. Besides, the user requires a vast knowledge concerning the ABC algorithm
and the studied data to properly tune the free parameters, demanding for improved
methods concerning the automatic selection of free parameters in the overall posterior
estimation process for supervised inference scenarios.





Chapter 3

An improved ABC approach for
unsupervised inference scenarios

This chapter presents a general way to highlight relevant information from observa-
tions and simulations concerning the nonparametric density estimation procedure for
improving posterior estimations in unsupervised inference scenarios. It focuses on
the automatic selection of free parameters when approximating such densities to sup-
port the comparison between probability measures of observed and simulated data in
Hilbert embedding-based ABC. The chapter introduces a general distance to compare
distributions in a reproducing kernel Hilbert space and discusses how other distances
can be obtained from it as particular cases. It suggests that extracting relevant infor-
mation from simulations and observations improves the posterior approximation in
those unsupervised inference tasks where no information about the model parameter is
directly included in the overall ABC procedure.

3.1 Learning from data to compare distributions
As it was explained in section 2.3, a distance between probability distributions can be
evaluated in a RKHS using their associated probability density functions. Typically, in
a practical ABC inference task, there is no idea about the analytic expressions for such
densities and they can be accessed only through a pair of independent and identically
distributed sets Xn={xi∈Rd}Qx

i=1 and Y ={yi∈Rd}Qy

j=1, for simulated and observed data
of size Qx and Qy, respectively, where {XnvPXn}N

n=1 and Y vPY . In this research, the
following general kernel-based density estimators are proposed:
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f̂n(x) =
Qx∑
i=1

αiKHp
i
(x, xi);

Qx∑
m=1

αm = 1, (3.1)

ĝ(y) =
Qy∑
j=1

βjKHq
j
(y, yj);

Qy∑
m=1

βm = 1, (3.2)

where {αi∈[0, 1]}Qx
i=1 and {βj∈[0, 1]}Qy

j=1 are representation weights and f̂n and ĝ are
the approximated densities associated with PXn and PY , respectively. Moreover, KH

stands for the multivariate Gaussian kernel with covariance matrix H∈Rd×d. Although
various kernel functions can be tested, the Gaussian function is preferred since it aims at
finding densities with universal approximating ability, not to mention its mathematical
tractability [32].

Using a multivariate Gaussian kernel with covariance matrix HK as characteristic
kernel and substituting 3.1 and 3.2 in equation 2.11 it follows that (see Appendix A):

d2
H(PXn , PY ) =

Qx∑
i=1

Qx∑
j=1

αiαjKHX
(xi, xj) − 2

Qx∑
i=1

Qy∑
j=1

αiβjKHXY
(xi, yj)

+
Qy∑
i=1

Qy∑
j=1

βiβjKHY
(yi, yj). (3.3)

where

HX=HK+Hp
i +Hp

j , HXY =HK+Hp
i +Hq

j , HY =HK+Hq
i +Hq

j .

The expression in 3.3 aims to highlight relevant information from data in two
different ways when comparing distributions: 1) by weighting the sample sets using
a sparse representation that find relevant data structures via a sparse Hilbert space
embedding distance; 2) by adapting the covariance matrices according to relevant data
structures contained in the sample sets through an adaptive Hilbert space embedding
distance. Complete description about these approaches and its usage in the context of
ABC is provided in the following sections.

3.1.1 Sparse Hilbert space embedding distance
An initial idea arising from equation 3.3 aims to highlight representative informa-
tion contained in both distributions to be compared by means of a set of weighting
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coefficients. In particular, the probability density functions are estimated using rele-
vant samples through sparseness in the weights such that few elements in α∈[0, 1]Qx

and β∈[0, 1]Qy are nonzero. In this regard, the covariance matrices are fixed as
Hp

i =HP , ∀i=1, 2, . . . , Qx, and Hq
j =HQ, ∀j=1, 2, . . . , Qy leading to the following com-

pact form of the Sparse Hilbert Space Embedding Distance (SHSED):

d2
SHSED(PXn , PY ) = α⊤A(HX)α + β⊤B(HY )β − 2α⊤L(HXY )β (3.4)

where HX=HK + 2HP , HY =HK + 2HQ, and HXY =HK + HP + HQ. Moreover,
A(HX)∈RQx×Qx , B(HY )∈RQy×Qy , and L(HXY )∈RQx×Qy stand for kernel matrices hold-
ing elements aij=KHX

(xi, xj), bij=KHY
(yi, yj), and ℓij=KHXY

(xi, yj), respectively.

To find the weighting coefficients, a constrained quadratic optimization problem
based on an Integrated Squared Error (ISE), ε(α)=

∫
X

(f(x)−f̂(x))2dx, is proposed as
follows [8]:

argmin
α

ε(α) = α⊤A(2HP )α− 2
Qx

α⊤A(HP )1

s.t. ||α||1 = 1
αi ≥ 0, ∀i = 1, 2, . . . , Qx.

(3.5)

The nonlinear problem in 3.5 can be solved using a Sequential Minimal Optimization
(SMO) algorithm. In particular, a forward constrained regression approach is utilized
that stands for a fast sparse kernel density estimation [21]. Finally, the β weights can
be found by solving an analogous optimization problem based on ε(β).

3.1.2 Adaptive Hilbert space embedding distance
Concerning the extraction of relevant information from data to compare distributions,
another attractive approach emerge from the idea to adaptively select the covariance
matrix of the kernel used to estimate the probability density functions. In particular,
each sample in the observed and simulated data has the same contribution in the sense
of the weighting coefficients by fixing αi=1/Qx, ∀i=1, 2, . . . , Qx and βj=1/Qy, ∀j=
1, 2, . . . , Qy, leading to the following compact form of the Adaptive Hilbert Space
Embedding Distance (AHSED):

d2
AHSED(PXn , PY ) = 1

Q2
x

1⊤
Qx

A(HX)1Qx + 1
Q2

y

1⊤
Qy

B(HY )1Qy − 2
QxQy

1⊤
Qx

L(HXY )1Qy , (3.6)
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where the kernel matrices A(HX), B(HY ), and L(HXY ) are the same sizes as in 3.4 but
whose elements aij, bij, and ℓij stand for more revealing similarity calculations by
using covariance HX=HK + Hp

i + Hp
j , HY =HK + Hq

i + Hq
j , and HXY =HK + Hp

i + Hq
j ,

respectively. Moreover, 1D∈RD is the all-ones vector of size D.

To achieve a more robust comparison approach, a Bayesian-based inference method-
ology can be used where the minimization of the Bayes risk coefficient (under a
particular loss function) leads to a closed form for computing each covariance matrix.
In particular, a likelihood function p(xi|Hp

i )=1/(Qx − 1)∑Qx

t=1,t ̸=i KHp
i
(xi − xt) and an

inverse Wishart prior Hp
i vW−1(r, C) can be used to obtain the Bayes estimator, Ĥp

i ,
by solving an optimization problem based on the Bayes risk R(Hp

i )=E[L(Ĥp
i , Hp

i )] [49]:

argmin
Hp

i

R(Hp
i ) =

∫
H

L(Ĥp
i , Hp

i )p(Hp
i |xi)dHp

i (3.7)

where H is the space of positive definite matrices, L(Ĥp
i , Hp

i ) represents a desired
loss function, and p(Hp

i |xi) stands for the posterior distribution of Hp
i . It is easy

to demonstrate that under both quadratic and entropy-based loss functions, the
optimization problem in 3.7 has the following close form solutions [49]:

Ĥp
i

∣∣∣
quad

= 1
r − d

Qx∑
t=1
t̸=i

∣∣∣(xi−xt)⊤(xi−xt) + C
∣∣∣− r+1

2
[
(xi−xt)⊤(xi−xt) + C

]
Qx∑
t=1
t̸=i

∣∣∣(xi−xt)⊤(xi−xt) + C
∣∣∣− r+1

2

, (3.8)

Ĥp
i

∣∣∣
ent

= 1
r + 1



Qx∑
t=1
t̸=i

∣∣∣(xi−xt)⊤(xi−xt) + C
∣∣∣− r+1

2
[
(xi−xt)⊤(xi−xt) + C

]−1

Qx∑
t=1
t̸=i

∣∣∣(xi−xt)⊤(xi−xt) + C
∣∣∣− r+1

2



−1

, (3.9)

where C∈Rd×d and r∈R ≥ d stand for the scale matrix and the degrees of freedom
associated to the inverse Wishart prior distribution, respectively. A suitable choice
for these hyperparameters concerns r=(Qx)2/(d+4) and the sample covariance matrix
C=1/Qx

∑Qx
t=1(xt − x̄)(xt − x̄)⊤, x̄=1/Qx

∑Qx
t=1 xt [49]. In turn, the Bayes estimators
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for matrices Ĥq
j can be found by solving an analogous optimization problem based on

R(Hq
j ).

3.2 An enhanced ABC for unsupervised inference
Once the comparison between the probability distributions of simulated and observed
data has been improved via the so called distances SHSED and AHSED, an enhanced
ABC for supervised inference scenarios can be obtained by introducing such distances
into the general Hilbert embedding-based ABC scheme. Algorithm 2 summarizes the
proposed unsupervised ABC method.

Algorithm 2 ABC based on SHSED/AHSED

Input: Observed data: {y(j)vPY }Qy

j=1, prior: ζ(θ), threshold: ϵ, distance parameters,
bandwidth: σθ∈R+.

Output: Posterior estimation: p̂(θ|y).
1: for n = 1, · · · , N do
2: θn v ζ(θ) ◃ Draw a solution θn from the prior.
3: xn v p(x|θn); {x(i)

n vPXn}Qx
i=1 ◃ Draw a sample from the model.

4: w̃n = κG(d2
H(PXn , PY ); ϵ) ◃ Compute the n-weight using SHSED or AHSED.

5: end for
6: wn = w̃n/

∑N
n=1 w̃n ◃ Normalize the weights

7: p̂(θ|y) = ∑N
n=1 wnκG(de(θ, θn); σθ), ◃ Parzen-based posterior approximation.

3.3 Results
To evaluate the performance of the proposed unsupervised ABC framework, two
statistical inference task are considered: a toy problem that comprises a Poisson
mixture model and a nonlinear ecological dynamic system termed the Ricker model [47].
As benchmark, the straightforward ABC Rejection and two state-of-the-art ABC
methods based on HSE are studied. The former, Maximum Mean Discrepancy (MMD)-
based ABC [30], uses empirical density approximations: f̂(xi) = 1/Qx

∑Qx
j=1 δ(xi−xj),

ĝ(yi) = 1/Qy
∑Qy

j=1 δ(yi−yj), being δ(·) the Dirac delta function. The latter, Parzen-
based ABC [50], uses traditional Parzen window estimators as follows: f̂(xi) =
1/Qx

∑Qx
j=1 κG(de(xi, xj); σX), ĝ(yi) = 1/Qy

∑Qy

j=1 κG(de(yi, yj); σY ), where κG(de(·, ·); σ)
is a Gaussian kernel with covariance H=σI, being I∈Rd×d an identity matrix. Both
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methods lead to different distances that can be directly incorporated into the fourth
line in algorithm 2 taking into account their corresponding distance parameters. On
the other hand, as quantitative assessment, the following relative error is used:

Eθ(z) = 100 × ||θ(z)−∑N
n=1 wnθ̂(z)

n ||
||θ(z)||

, (3.10)

where θ(z) is the value of the z-th target parameter and θ̂(z)
n is the n-th ABC-based

approximation with weight wn.

3.3.1 Inference for a Poisson mixture model
Initially, a finite mixture of Poisson distributions is considered as follows:

p(x|λ, π) =
C∑

c=1
πc

exp(−λc)λx
c

x! , (3.11)

where π = {πc}C
c=1 are the mixing coefficients holding the condition ∑C

c=1 πc = 1,
λ = {λc}C

c=1 are the number of average events for each Poisson density (λ1<λ2<· · ·<λC),
and C is the number of components [44].

For concrete testing, the aim is to estimate the posterior p(π|λ, x), with C = 2
and λ ∈ {1, 8}. In particular, a Dirichlet distribution is imposed over π as prior
distribution [44], that is, πvDirichlet(1, 1). Initially, ten samples for π are generated
from the prior, then, 50 observations are computed for each of them using the model.
Figure 3.1 shows the obtained inference results by fixing σX=σY =0.33 and σK=2.154
(selected manually). Notice that the same bandwidths hold for matrices HX , HY ,

and HK in SHSED-ABC due to the unidimensional properties of data. As seen, the
proposed SHSED extracts relevant information from simulations when suitable values
for σX and σY are selected. In fact, Figure 3.1b shows how sample π6 is the farthest
from the true values of π but its associated simulation x6 in Figure 3.1a is the closest
from the observed data; nevertheless, Figure 3.1c shows that the introduced sparse
approach assigns a high value for the distance, leading to a low weight. On the other
hand, the proposed SHSED approach assigned high weights to the samples π3, π4,

and π5, which exihibit close distance values to the true parameters in π but distant
dependencies with simulations x3, x4, and x5 concerning the observed data.

Now, to test the robustness of the ABC-based estimations regarding the number of
simulations, an observed dataset holding 50 (scalar) samples drawn from the Poisson
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mixture model is formed, with π ∈ {0.3, 0.7}. Afterwards, to generate the simulated
data, 50 samples are drawn from the model to compute the posterior. This procedure
is repeated 100 times. The number of simulations (N) is increased from 10 to 300 using
a step size of 10. For the ABC rejection, the Euclidean distance with ϵ=10 was fixed to
compare the observed and simulated data; this threshold was defined empirically. For
the MMD, the Parzen, and the SHSED-based ABC methods, a soft threshold value of
ϵ = 0.158 was used.

Figures 3.1d and 3.1e show the error bar curves of the posterior distribution for the
mixing coefficients. As seen, the SHSED improves the posterior estimation leading to
the lowest errors and deviations for σX = σY = 0.406 (fixed using grid-search). See how
the sparse-based weighting procedure favors the identification of relevant structures in
an RKHS before computing the dependencies between observed and simulated data
within an ABC framework. Additionally, note that for low kernel bandwidth values in
3.5, the SHSED approach converges to the MMD and Parzen-based ones, since the
weights α and β become closer to 1/Qx and 1/Qy, respectively.
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Fig. 3.1 Poisson mixture model results. (a) Euclidean distance between the observed
and simulated data. (b) Euclidean distance between candidates sampled from the prior
and the true values of the parameters. (c) Different distances based on HSE between
distributions associated with the observed and simulated data. (d),(e) Relative error
bar curves for the posterior of the mixing coefficients: π1 and π2 respectively.
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3.3.2 Inference in an ecological non-linear Ricker map
This nonlinear ecological dynamic system can be modeled using a discrete differential
equation as follows [17]:

ln(M (t)) = ln(r)+ln(M (t−1))−M (t−1)+e(t) (3.12)

where M (t)∈R is the size of some animal population at time t, e(t)vN (0, σ2
e), being

σe∈R+ the standard deviation of the innovations, and ln(r) is related to the growth
rate parameter of the model (r∈R+). Additionally, the observation y is a time series
drawn from a Poisson distribution as yvPoisson(φM (t)), with y∈N, where φ is a scale
parameter [19]. Thus, the Ricker model is completely parametrized by θ=[ln(r), φ, σe].

In this experiment, 50 samples from the model are drawn with θ = [3.8, 10, 0.3]
by fixing the following priors [17]: ln(r)vN (4, 0.5); φvX 2(10); σevinvgamma(3, 1.3).
Figure 3.2 shows the observed data. See how infering the model parameters from
this data is a quite challenging task due to high variability concerning the stochastic
property of the scaled Ricker map [47].
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Fig. 3.2 Observed data to perform inference in the scaled Ricker map.

Regarding the free parameter selection, the threshold for the ABC rejection approach
was fixed empirically as ϵ=75, while for the MMD, Parzen and, SHSED ABC, the sim-
ilarity kernel parameter was selected as ϵ=0.158. Besides, the values σX=σY =0.0158
were employed to compute the sparse weights for simulations and observations in
SHSED-ABC and the characteristic kernel width was treated as σK=2.5.
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Fig. 3.3 Ricker model results. Left column: Different ABC-based estimated posteriors
for {ln r, φ, σe} with σθ = {0.253, 2.190, 0.082}, respectively. Right column: Relative
error boxplots for the posterior of the Ricker model parameters: ln r, φ, and σe,
respectively.
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According to the results in Figures 3.3a, 3.3c, and 3.3e the MMD-based posteriors
are almost identical to the ones obtained by the Parzen-based approach. Furthermore,
notice how the posterior distribution for ln(r) and σe parameters obtained using the
proposed SHSED has their maximum closer to the true value in comparison to the
benchmarks, and the rejection-based ABC has the worst performance. In the case of φ,
it can be seen that the results obtained by the SHSED are close enough to the other
ABC techniques based on HSED.

Lastly, to test the stability of the inference, the procedure to approximate the
posterior of the model parameters concerning the relative error assessment was repeated
100 times. Obtained results in Figures 3.3b, 3.3d, and 3.3f reveal how the proposed
SHSED reaches the lowest uncertainty for the ln(r) and φ inferences. In the case of σe,
since the true value is small (σe = 0.3), little changes in the posterior shape produce a
substantial change in the expected value; hence, relevant changes in the index error are
gathered. Remarkably, the lowest uncertainty for σe is related to the ABC rejection
method due to the smoother form of the posterior in comparison to the other HSED
methods; nonetheless, SHSED achieves the best overall performance (see Figure 3.4).
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Fig. 3.4 Overall performance of the different ABC methods in terms of the mean
relative error.



Chapter 4

An automatic ABC approach for
supervised inference scenarios

This chapter provides mathematical foundations for achieving an automatic ABC-based
statistical inference approach for supervised tasks. It shows how information about
the parameter space can be included as a reference in the ABC procedure to define
similarities over simulations using a metric learning-based statistical alignment. It
also describes a local linear embedding-based framework to introduce the concept of
neighborhood in the context of ABC for highlighting relevant samples in the posterior
estimation. As a result, the chapter presents a novel ABC algorithm that does not
require the tunning of any free parameter seeking for a quite competitive method
compared to other non-automatic state-of-the-art ABC techniques.

4.1 Initial remarks
As it was mentioned in previous chapters, the ABC framework based on Hilbert em-
bedding as introduced by Park et al. [30] only works for unsupervised inference in the
sense that decisions about samples in the parameter space (posterior approximations)
are made in terms of comparisons over the simulation space. This approach is somehow
blinded and does not take into account information related to parameter candidates
directly into the ABC procedure. As a consequence, the quality of the posterior
estimations strongly relies on a proper tuning procedure of the free parameters lead-
ing to expensive and/or time-consuming routines like cross-validation or grid search [38].

Inspired by the idea of including relevant information contained in the parameter
space into the ABC procedure, a two stage-based methodology is introduced in this
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research according to the illustrative diagram shown in figure 4.1. Highlighted in light
blue, a first stage comprises the matching between similarities defined over candidates
in the parameter space and mappings of simulated data as defined by ϑ:X →S in the
feature space S. This strategy aims to set the notion of similarity over simulated
and observed data as close as possible to the idea of likeness over prior samples via
a statistical alignment methodology that learns a distance dS :S×S→R+. Then, in a
second stage (indicated in light orange), a novel way to compute the posterior weights
uses a similarity kernel that is a function of the learned distance to highlight relevant
samples into the posterior distribution. In particular, the assigned posterior weights are
calculated by means of a truncated representation that searches for the optimal number
of nearest neighbors according to the detection of local relationships over samples in
Θ. The resulting ABC algorithm has a potential advantage: the two additional stages
introduce additional information into the ABC framework that can be used to select
all the free parameters yielding to an automatic ABC method.

Match

Fig. 4.1 A sketch for the proposed automatic ABC method.

4.2 Proposal fundamentals

4.2.1 Aligning the parameter and simulation spaces in ABC
To avoid the influence of the ϵ value and the kernel parameters while computing the
ABC-based posterior as in equation 2.3, an automatic statistical alignment approach
for enhancing and automating the inference task is introduced. The aim of such an
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alignment is to include the information contained in the candidates {θn}N
n=1 to improve

the comparison stage carried out over simulations and observations. Let Ψ={θn, xn}N
n=1

be the set of N candidates θn∈RPvζ(θ) drawn from the desired prior distribution ζ(θ)
and their corresponding simulations xn∈RQvp(x|θ). Further, let the kernel function
κθ:Θ×Θ→R+ be a similarity measure between candidates in Θ, that define the kernel
matrix Kθ ∈ RN×N holding elements:

κθ(θn, θn′) =

exp(−d2
Θ(θn, θn′)), θn ∈ Ωn′

0, otherwise,
(4.1)

where Ωn′ is a set holding the M -nearest neighbors of θn′ in the sense of the distance
dΘ:Θ×Θ→R+ (see section 4.2.2).

In this research, to avoid large variations among components of θn, the Mahalanobis
distance is employed as follows:

d2
Θ(θn, θn′)=(θn−θn′)TΣ−1

Θ (θn−θn′), (4.2)

where ΣΘ ∈ RP ×P is the sample covariance matrix of {θn}N
n=1.

Concerning the feature space S, the similarity assessment is computed via the
kernel κs:S×S→R+ to build the matrix Ks ∈ RN×N holding elements:

κs(ϑ(xn), ϑ(xn′))=exp(−d2
S(ϑ(xn), ϑ(xn′))), (4.3)

where d2
S :S×S→R+ and ϑ:Y→S is a feature mapping. To perform the pairwise com-

parison between simulations in S, a Mahalanobis distance is introduced as [3]:

d2
S(ϑ(xn), ϑ(xn′)) = (ϑ(xn)−ϑ(xn′))⊤AA⊤(ϑ(xn)−ϑ(xn′)), (4.4)

where Σ−1
S =AA⊤ stands for the inverse covariance matrix of ϑ(xn)∈RD and A∈RD×d.

In this sense, the information concerning the similarity over candidates in Θ, represented
via Kθ, is used to state the notion of similarity over simulations and observation in
S, represented via Ks (see figure 4.1). The statistical alignment between two kernel
matrices has been studied from the Metric Learning perspective where the most popular
approach is the Centered Kernel Alignment (CKA) [48]. In particular, the following
CKA-based measure between the above kernel matrices is employed [9]:
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ρ̂(Kθ, Ks) = ⟨K̄θ, K̄s⟩F√
⟨K̄θK̄θ⟩F⟨K̄sK̄s⟩F

, (4.5)

where K̄ stands for the centered kernel as K̄ = ĨKĨ, being Ĩ=I−1⊤1/N the empirical
centering matrix, I∈RN×N is the identity matrix, and 1∈RN is the all-ones vector.
Moreover, the notation ⟨·, ·⟩F represents the matrix-based Frobenius norm. In equation
4.5, ρ̂(·, ·) is a data driven estimator that aims to quantify the similarity between the
parameter space and the feature space. To find the projection matrix A, the following
optimization problem can be solved:

Â = arg max
A

log (ρ̂(Ks(A), Kθ)) , (4.6)

where the logarithm function is used for mathematical convenience. The optimization
problem in 4.6 can be solved using a gradient descent-based approach [3].

4.2.2 Revealing local relationships over parameter samples
Setting the ϵ value to find the posterior weights in equation 2.3 is a crucial step. De-
pending on the distance output values, a particular choice for ϵ could produce a peaked
posterior when just a few number of weights have larger values or lead to a posterior
similar to the prior distribution in the limit condition when wn→1/N, ∀n=1, 2, . . . , N .
In this regard, the truncated representation to define similarities over the parameter
space introduced in equation 4.1 sets an alternative path to avoid the influence of ϵ via
the concept of neighborhood. The central aim concerns the selection of a number M∈N
of nearest neighbors that reveals representative prior samples into the posterior. The
M -value could be fixed manually after an exhaustive search based on cross-validation.
However, that would change one problem by another.

In this research, an automatic technique based on Locally Linear Embedding (LLE)
and graph theory, the Local Neighborhood Selection (LNS) algorithm introduced by
Álvarez et al. [2], facilitates the selection of the optimal number of nearest neighbors.
The idea behind LNS is to define a suitable number of neighbors for each sample
in the data set taking into account the structure of the manifold. In particular, it
computes the neighborhood as the balance between a neighborhood found by the
Euclidean distance and a neighborhood found by the geodesic distance based on the
principle that when the region around a point is linear and dense, the Euclidean and
geodesic distances obtain a similar set of nearest neighbors for each sample; otherwise,
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the Euclidean distance will detect short connections while the geodesic distance will
identify the right neighbors of each sample [2]. For a better illustration, figure 4.2
shows the nearest neighbors for a particular sample in the manifold (filled bullet) using
both the Euclidean and the geodesic distance. Notice how the Euclidean distance
selects neighbors that do not follow the structure of the manifold while the geodesic
distance understands the actual structure of the samples leading to a proper selection
of the nearest neighbors.

(a) (b)

Fig. 4.2 Neighborhoods of a sample according to different distances. (a) Euclidean
distance. (b) Geodesic distance. Source: [2].

The LNS algorithm can be summarized as follows [2]:

1. Compute the Euclidean distance DE for all points in Θ.

2. Construct the minimal connected neighborhood graph G of the given data set Θ
by the k-nearest neighbors method with kmin, initializing kmin = 1. Check the
full connectivity of the graph by using the Breadth-first search (BFS) [35]. If the
graph is not full connected, update kmin = kmin + 1 and start again this step.

3. Compute the geodesic distance DG over G by using Dijistra’s algorithm [35].

4. Define kmax = N2/(kminNE), where NE is the number of edges in G and N the
number of samples in Θ.

5. Set the vector ks = [kmin + 1, ..., kmax], with ks ∈ RB. The vector ks contains
the possible values of k for every θi.
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6. For each θi define the sets ηηη
(c)
D and ηηη

(c)
DG

, with c = 1, ..., B. Each element in
ηηη

(c)
D and ηηη

(c)
DG

corresponds to the ksc nearest neighbors θj of θi (j = 1, ..., ksc)
according to DE and DG respectively.

7. Calculate the linearity conservation matrix V of size N×B, which analyzes the
similarity of the neighborhoods obtained by DE and DG, taking into account
the patch size. Each element of V can be computed as, Vic = |{ηηη

(c)
D ∩ ηηη

(c)
DG

}|/ksc ,
where |·| calculates the cardinality of a set and {·} the complement.

8. Initially, for each θi define the set kkko = ∅. Verify the equality Vic = min {vi},
where vi is a row vector of V of size 1×B. If the equality is fulfilled update
kkko = kkko ∪ ksc .

9. Define ki for each θi as ki = max {kkko}.

10. Smooth ki to obtain similar properties in near neighborhoods according to
ki = (ki + kηηη1) / (ki + 1), where kηηη is a vector of size 1 × ki, with the sizes of the
neighborhoods of each element in ηηη (set with the θj nearest neighbors of θi using
Euclidean distance, with j = 1, .., ki), and 1 is a column vector of size ki × 1.

11. Store all the values ki in the vector k.

12. Remove the outliers in k (see [34]), and replace them by the average of the
elements in k, which were not identified as outliers.

13. Each element in k contains the number of nearest neighbors ki for each θi.

Finally, to accomplish a global representation of the manifold, the M -value is fixed as
M=median(k).

4.3 An automatic metric learning-based ABC for
supervised scenarios

Once the statistical alignment between the spaces of parameters and features is
completely automated by means of the CKA-based Metric Learning approach and
the LNS algorithm, the distance d2

S :S×S→R+ is properly learned (see equation 4.3).
Namely, the projection matrix A defines the notion of similarity over the feature space
of simulations and observations as close as possible to the idea of similarity over prior
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candidates in the parameter space. Thereby, for the sake of neighborhood preservation,
a weighted sample set Ψ={(θn, wn)}N

n=1 can be form by fixing:

wn= κE(z, zn)
N∑

n=1
κE(z, zn)

(4.7)

being κE:Rd×Rd→R a simmilarity kernel defined as:

κE(z, zn) =

exp(−||z − zn||22), zn ∈ Υ
0, otherwise,

(4.8)

where Υ is a set holding the M -nearest neighbors of z=ϑ(y)⊤Â in the sense of the
Euclidean distance.

The previous setting results in an Automatic Metric Learning-based ABC, named
AML-ABC, that can be summarizes in algorithm 3.

Algorithm 3 AML-ABC algorithm
Input: Observed data: y, prior: ζ(θ), mapping: ϑ, M -nearest neighbors, width: σθ.
Output: Posterior estimation: p̂(θ|y).
Metric learning stage:

1: Ψ
′=
{
(θ′

n, x
′
n)
}N

n=1
; θ

′
n v ζ(θ), x

′
n v p(x|θ′

n) ◃ Draw training data.
2: Â = arg maxA log (ρ̂(Ks(A), Kθ)) ◃ Compute CKA based on ϑ, M, θ

′
n, and x

′
n.

Inference stage:
3: Ψ={(θn, xn)}N

n=1 ; θn v ζ(θ), xn v p(x|θn) ◃ Draw simulated data.
4: z=ϑ(y)TÂ ◃ Project features of observed data
5: for n = 1, · · · , N do
6: zn=ϑ(xn)TÂ ◃ Project features of simulated data
7: w̃n = κE(z, zn) ◃ Compute the n-th weight value.
8: end for
9: wn = w̃n/

∑N
n=1 w̃n ◃ Normalize the weights

10: p̂(θ|y)=∑N
n=1 wnκG(de(θ, θn; σθ)) ◃ Compute the posterior.
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4.4 Results
To test the AML-ABC performance, two experiments are considered following [30].
Firstly, a toy problem concerning synthetic data from a mixture of uniform distribu-
tions is studied, where the central aim is to approximate the posterior of the mixing
coefficients. In a second experiment, inference for a real insect population is analyzed
using Nicholson’s classic blowfly data; the inference problem comprises the posterior
approximation of six model parameters given the real observed data. For comparison
purposes, the K2-ABC method is selected as the benchmark in the mixture model
due to its nice performance over other methods [30]. On the other hand, the K-ABC,
IS-ABC, SA-ABC, and Synthetic Likelihood ABC are selected as a benchmark for the
Nicholson’s experiment.

4.4.1 Inference for a uniform mixture model
In this case, a mixture of uniform distributions is studied as:

p(x|π) =
C∑

c=1
πcU (c−1, c), (4.9)

where π={πc}C
c=1 are the mixing coefficients holding ∑C

c=1 πc=1, and C is the number
of components. Moreover, U (a, b) stands for the uniform distribution with boundary
parameters a and b.

In particular, the aim is to estimate the posterior p(π|y) for C=5, given syn-
thetic observations y drawn from the mixture with true parameters (target): π∗=
{0.25, 0.04, 0.33, 0.04, 0.34}. For concrete testing, N=1000 samples from a symmetric
Dirichlet prior were drawn,πvDirichlet(1), and then used the mixture model to form
the simulated data by drawing 400 observations for each prior candidate. Moreover, a
histogram with 10 bins is utilized as feature mapping in AML-ABC, while the kernel
widths in K2-ABC were fixed as γ=0.1, ϵ=0.001 [30]. As quantitative assessment, the
Euclidean distance E=||π∗−π̂||2 was selected, where π̂ is the expected value of the
posterior using the weights {wn}N

n=1 obtained by using each method.

Since this is a controlled experiment with known parameters π∗, the best possible
performance of the AML-ABC can be found by running the inference stage with
w̃n=κE(π∗, πn) in Algorithm 3. This approach is referred to as Best. The previous



4.4 Results 35

setting is equivalent to think that the CKA between Kθ and Ks is perfect (Kθ=Ks).
Figure 4.3 shows the Best performance along with K2-ABC and AML-ABC results
over the uniform mixture problem. In Figure 4.3a, the expected value of the posterior
computed for all methods is close to the target. In particular, the obtained index
errors were: EBest=0.030, EK2-ABC= 0.063, and EAML-ABC=0.064. These results show
that the AML-ABC is a competitive estimator to K2-ABC with a significant advantage
concerning the automatic selection of free parameters. In addition, to provide a better
understanding of the AML-ABC efectiveness, Figure 4.3b provides the weights for the
M=5 nearest neighbors needed to compute the posteriors. As noted, the majority of
the simulations found via the LNS algorithm match the selected candidates using the
Best approach, even though the target values were never introduced in the AML-ABC
inference procedure.
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Fig. 4.3 Uniform mixture model results. (a) Estimated mean posterior of mixing
coefficients using various methods (b) Weights of the 5 nearest neighbors in AML-ABC.

4.4.2 Inference in a real blowfly data-set
In this real dataset experiment, the problem concerns inferring the dynamics of an adult
blowfly population as introduced in [47]. Mathematically, the population dynamics are
modeled via a discretized differential equation of the form:

Nt+1=PNt−τ exp
(

−Nt−τ

N0

)
et + Nt exp(−δϵt), (4.10)

where Nt+1 denotes the observation time at t+1 which is determined by the time-lagged
observations Nt and Nt−τ ; et and ϵt stand for Gamma distributed noise etvG(1/σ2

p, σ2
p)

and ϵtvG(1/σ2
d, σ2

d).



36 An automatic ABC approach for supervised inference scenarios

In this problem, the aim is to estimate the posterior of the model parameters
θ={P, N0, σd, σp, τ, δ} given observed data concerning a time series of 180 obser-
vations1. The following Log-normal distributions are used for setting priors over
θ [26]: log P v N (2, 22), log N0 v N (6, 1), log σd v N (−0.5, 1), log σp v N (−0.5, 1),
log τ v N (2.7, 1), log δ v N (−1, 0.42). Figure 4.4 shows the observed data. Inferring
the model parameters in this blowfly data-set is a very challenging task since the
system dynamics can easily move from stable to chaotic regimes: a small change in
any of the model parameters could produce a tremendous change in the trajectory of
the system [26, 47]. This states an interesting scenario to test the performance and
robustness of the AML-ABC.
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Fig. 4.4 Observations to perform inference in the real blowfly data-set.

For concrete testing, concerning the AML-ABC settings, N=5000 samples were
drawn from the prior to form the simulated data by drawing 180 observations for each
prior candidate using the model as in equation 4.10. Besides, as feature mapping,
the custom 10 statistics in this kind of data were selected as: the log of the mean
of all 25% quantiles of {Nt/1000}180

t=1 (four statistics), the mean of 25% quantiles of
the first-order derivatives of {Nt/1000}180

t=1 (four statistics) and the maximal peaks
of smoothed {Nt}180

t=1 using two different thresholds (two statatistics) [30]. Moreover,
the Euclidean distance E =||ϑ(y)−ϑ(xn|θ̂)||2 was selected as quantitative assessment,
where xn|θ̂ is a simulation from the model given the expected value of the posterior
using each method. Namely, due to fluctuations produced by ϵt and et, 100 simulation
for each method were computed using the expected value and then the median and
standard deviation for E provide the performance of each method [30].

1Available on the supplementary materials of [47].
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Fig. 4.5 Non-linear ecological dynamic system results. (a)-(f) Prior distribution (solid
line) and AML-ABC-based posterior estimation (dashed line) of model parameters in
the log-space. (g) Some realizations from the model using the expected value of the
parameters found via AML-ABC.

Figures 4.5a to 4.5f show the prior and posterior approximation for each parameter
fixing σθ according to [36]. Notice how the proposed AML-ABC updates the beliefs
about the model parameters leading to more concentrated posteriors. In the case of
log σp, two modes reflect different intervals with probable values for driving the noise
realization associated with egg production in the blowfly population. However, there is
a predominant mode that states higher probabilities for this parameter. Furthermore,
Figure 4.5g shows the closest and farthest simulation to the observed data from 100 real-
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ization used to compute E , showing that the obtained posteriors lead to a stable regime.

Table 4.1 Performance of different ABC schemes over the blowfly dataset.

Method median(E )±std(E )
Kernel ABC [29] 5.2 ± 3.0

Indirect score ABC [16] 2.1 ± 1.8
Semi-Automatic ABC [15] 1.9 ± 1.2

Synthetic Likelihood ABC [47] 1.7 ± 1.3
K2-ABC [30] 1.0 ± 0.8
AML-ABC 1.2 ± 0.4

Finally, Table 4.1 shows the performance of AML-ABC compared to different
ABC-based methods tested on the blowfly dataset by authors in [30], where clearly the
AML-ABC is a quite competitive approach to K2-ABC.



Chapter 5

Final remarks

5.1 Conclusions
Unsupervised inference scenarios. An enhanced methodology for performing
statistical inference using a Hilbert embedding-based ABC framework was proposed.
In particular, two novel distances to compare distributions associated with two random
variables in an RKHS were introduced: one of them highlights relevant information
through sparse estimations of the densities (SHSED) while the other reveals informa-
tion via an adaptive computation of similarities in an RHKS (AHSED). To test the
introduced approach, two statistical inference tasks were studied: a Poisson mixture
model and a nonlinear ecological dynamic system concerning a scaled Ricker map.
Attained results demonstrated how the proposed SHSED-based ABC outperforms
other state-of-the-art ABC-based inference approaches, including the well-known ABC
rejection. In synthesis, the posterior quality estimation can be improved when en-
hanced distances that reveal relevant information from simulations and observations
are introduced in the context of ABC.

Supervised inference scenarios. A novel automatic enhancement of the well-
known ABC algorithm devoted to Bayesian inference was developed, called AML-ABC.
In particular, a Metric Learning approach based on a CKA methodology to quantify
the matching between parameter and simulation spaces was introduced. Particularly,
a Mahalanobis distance learned through CKA and graph theory is employed to reveal
local relationships among parameter and simulation samples. Notably, the AML-ABC
does not require the tuning of any free parameter. Obtained results on a synthetic
data-set and a real-world ecological system show how the introduced AML-ABC is a
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competitive approach compared to other non-automatic state-of-the-art ABC methods.
In conclusion, it is possible to obtain an automatic version of an ABC approach when
additional criteria are introduced such that optimization routines lead to a suitable
selection of free parameters, preventing expensive tuning procedures like grid search or
cross-validation.

5.2 Future work
Concerning the unsupervised inference setting, future work includes the development
of an automatic selection of the RKHS regarding the input data dynamics (optimal
selection of the characteristic kernel). Moreover, applying ABC approaches using HSE
for multivariate data is a research line of interest. On the other hand, regarding the
proposed inference approach for supervised scenarios, some potential lines of research
include the extension of AML-ABC for other multi-dimensional applications, the
development of an adaptive selection of the number of nearest neighbors to calculate
the distance between observed and simulated data, besides the median criterion, and
the inclusion of other dissimilarity measures, besides the Mahalanobis distance, to deal
with complex and/or noisy data.
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Appendix A

Derivation of the general distance
over distributions in an RHKS

Let {xi∈Rd}Qx
i=1vPX and {yi∈Rd}Qy

j=1vPY be a pair of independent and identically
distributed sample sets drawn from probability distributions PX and PY , respectively.
Let the associated probability density function f(x) and g(y) have the following forms:

f(x) =
Qx∑
i=1

αiKHp
i
(x, xi);

Qx∑
m=1

αm = 1, (A.1)

g(y) =
Qy∑
j=1

βjKHq
j
(y, yj);

Qy∑
m=1

βm = 1, (A.2)

where {αi∈[0, 1]}Qx
i=1 and {βj∈[0, 1]}Qy

j=1 are representation weights. Moreover, KH(·, ·)
stands for the multivariate Gaussian kernel with covariance matrix H∈Rd×d as:

KHk
(z, z′) = 1

(2π)d/2|H|1/2 exp
(

−(z − z′)⊤H−1(z − z′)
2

)
(A.3)

Using a multivariate Gaussian kernel with covariance matrix HK as characteristic
kernel and substituting 3.1 and 3.2 in equation 2.11 we obtain:
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d2
H(PX , PY ) =

Qx∑
i=1

Qx∑
j=1

αiαj

∫ ∫
KHK

(x, x′)KHp
i
(x, xi)KHp

j
(x′, xj)dxdx′

− 2
Qx∑
i=1

Qy∑
j=1

αiβj

∫ ∫
KHK

(x, y)KHp
i
(x, xi)KHq

j
(y, yj)dxdy

+
Qy∑
i=1

Qy∑
j=1

βiβj

∫ ∫
KHK

(y, y′)KHq
i
(y, yi)KHq

j
(y′, yj)dydy′. (A.4)

From the fact that the integral of the product of two Gaussians is exactly evaluated
as the value of the Gaussian computed at the difference of the arguments and whose
covariance is the sum of the covariance of the two original Gaussian functions, because
the Gaussian maintains the functional form under convolution [32] (page 75), it follows
that:

d2
H(PX , PY ) =

Qx∑
i=1

Qx∑
j=1

αiαj

∫
KHK+Hp

i
(x′, xi)KHp

j
(x′, xj)dx′

− 2
Qx∑
i=1

Qy∑
j=1

αiβj

∫
KHK+Hp

i
(y, xi)KHq

j
(y, yj)dy

+
Qy∑
i=1

Qy∑
j=1

βiβj

∫
KHK+Hq

i
(y, yi)KHq

j
(y′, yj)dy′. (A.5)

Finally, applying again the convolution properties of the Gaussian in equation A.5:

d2
H(PXn , PY ) =

Qx∑
i=1

Qx∑
j=1

αiαjKHX
(xi, xj) − 2

Qx∑
i=1

Qy∑
j=1

αiβjKHXY
(xi, yj)

+
Qy∑
i=1

Qy∑
j=1

βiβjKHY
(yi, yj). (A.6)

where

HX=HK+Hp
i +Hp

j , HXY =HK+Hp
i +Hq

j , HY =HK+Hq
i +Hq

j . Q.E.D.
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