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Abstract

We propose a data-efficient Gaussian process-based Bayesian approach to the semi-
supervised learning problem on graphs. The proposed model shows extremely
competitive performance when compared to the state-of-the-art graph neural net-
works on semi-supervised learning benchmark experiments, and outperforms the
neural networks in active learning experiments where labels are scarce. Further-
more, the model does not require a validation data set for early stopping to control
over-fitting. Our model can be viewed as an instance of empirical distribution
regression weighted locally by network connectivity. We further motivate the intu-
itive construction of the model with a Bayesian linear model interpretation where
the node features are filtered by an operator related to the graph Laplacian. The
method can be easily implemented by adapting off-the-shelf scalable variational
inference algorithms for Gaussian processes.

1 Introduction

Data sets with network and graph structures that describe the relationships between the data points
(nodes) are abundant in the real world. Examples of such data sets include friendship graphs on social
networks, citation networks of academic papers, web graphs and many others. The relational graphs
often provide rich information in addition to the node features that can be exploited to build better
predictive models of the node labels, which can be costly to collect. In scenarios where there are not
enough resources to collect sufficient labels, it is important to design data-efficient models that can
generalize well with few training labels. The class of learning problems where a relational graph of
the data points is available is referred to as graph-based semi-supervised learning in the literature
[7, 47].

Many of the successful graph-based semi-supervised learning models are based on graph Laplacian
regularization or learning embeddings of the nodes. While these models have been widely adopted,
their predictive performance leaves room for improvement. More recently, powerful graph neural
networks that surpass Laplacian and embedding based methods in predictive performance have
become popular. However, neural network models require relatively larger number of labels to
prevent over-fitting and work well. We discuss the existing models for graph-based semi-supervised
learning in detail in Section 4.

We propose a new Gaussian process model for graph-based semi-supervised learning problems that
can generalize well with few labels, bridging the gap between the simpler models and the more data
intensive graph neural networks. The proposed model is also competitive with graph neural networks
in settings where there are sufficient labelled data. While posterior inference for the proposed model
is intractable for classification problems, scalable variational inducing point approximation method
for Gaussian processes can be directly applied to perform inference. Despite the potentially large
number of inducing points that need to be optimized, the model is protected from over-fitting by the
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variational lower bound, and does not require a validation data set for early stopping. We refer to the
proposed model as the graph Gaussian process (GGP).

2 Background

In this section, we briefly review key concepts in Gaussian processes and the relevant variational
approximation technique. Additionally, we review the graph Laplacian, which is relevant to the
alternative view of the model that we describe in Section 3.1. This section also introduces the notation
used across the paper.

2.1 Gaussian Processes

A Gaussian process f(x) (GP) is an infinite collection of random variables, of which any finite subset
is jointly Gaussian distributed. Consequently, a GP is completely specified by its mean function m(x)
and covariance kernel function kθ(x,x′), where x,x′ ∈ X denote the possible inputs that index
the GP and θ is a set of hyper-parameters parameterizing the kernel function. We denote the GP as
follows

f(x) ∼ GP
(
m(x), kθ(x,x

′)
)
. (1)

GPs are widely used as priors on functions in the Bayesian machine learning literatures because
of their wide support, posterior consistency, tractable posterior in certain settings and many other
good properties. Combined with a suitable likelihood function as specified in Equation 2, one can
construct a regression or classification model that probabilistically accounts for uncertainties and
control over-fitting through Bayesian smoothing. However, if the likelihood is non-Gaussian, such as
in the case of classification, inferring the posterior process is analytically intractable and requires
approximations. The GP is connected to the observed data via the likelihood function

yn | f(xn) ∼ p(yn|f(xn)) ∀n ∈ {1, . . . , N}. (2)
The positive definite kernel function kθ(x,x′) : X ×X −→ R is a key component of GP that specifies
the covariance of f(x) a priori. While kθ(x,x′) is typically directly specified, any kernel function
can be expressed as the inner product of features maps 〈φ(x), φ(x′)〉H in the Hilbert space H.
The dependency of the feature map on θ is implicitly assumed for conciseness. The feature map
φ(x) : X −→ H projects x into a typically high-dimensional (possibly infinite) feature space such
that linear models in the feature space can model the target variable y effectively. Therefore, GP can
equivalently be formulated as

f(x) = φ(x)Tw, (3)
where w is assigned a multivariate Gaussian prior distribution and marginalized. In this paper, we
assume the index set to be X = RD×1 without loss of generality.

For a detailed review of the GP and the kernel functions, please refer to [45].

2.1.1 Scalable Variational Inference for GP

Despite the flexibility of the GP prior, there are two major drawbacks that plague the model. First,
if the likelihood function in Equation 2 is non-Gaussian, posterior inference cannot be computed
analytically. Secondly, the computational complexity of the inference algorithm is O(N3) where N
is the number of training data points, rendering the model inapplicable to large data sets.

Fortunately, modern variational inference provides a solution to both problems by introducing a
set of M inducing points Z = [z1, . . . , zM ]T, where zm ∈ RD×1. The inducing points, which are
variational parameters, index a set of random variables u = [f(z1), . . . , f(zM )]T that is a subset of
the GP function f(x). Through conditioning and assuming m(x) is zero, the conditional GP can be
expressed as

f(x) | u ∼ GP(kT
zxK−1

zz u, kθ(x,x)− kT
zxK−1

zz kzx) (4)
where kzx = [kθ(z1,x), . . . , kθ(zM ,x)] and [Kzz]ij = kθ(zi, zj). Naturally, p(u) = N (0,Kzz).
The variational posterior distribution of u, q(u) is assumed to be a multivariate Gaussian distribution
with mean m and covariance matrix S. Following the standard derivation of variational inference,
the Evidence Lower Bound (ELBO) objective function is

L(θ,Z,m,S) =

N∑
n=1

Eq(f(xn))[log p(yn|f(xn))]−KL[q(u)||p(u)]. (5)
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The variational distribution q(f(xn)) can be easily derived from the conditional GP in Equation 4
and q(u), and its expectation can be approximated effectively using 1-dimensional quadratures. We
refer the readers to [30] for detailed derivations and results.

2.2 The Graph Laplacian

Given adjacency matrix A ∈ {0, 1}N×N of an undirected binary graph G = (V, E) without self-loop,
the corresponding graph Laplacian is defined as

L = D−A, (6)

where D is the N × N diagonal node degree matrix. The graph Laplacian can be viewed as an
operator on the space of functions g : V −→ R indexed by the graph’s nodes such that

Lg(n) =
∑

v∈Ne(n)

[g(n)− g(v)], (7)

where Ne(n) is the set containing neighbours of node n. Intuitively, applying the Laplacian operator
to the function g results in a function that quantifies the variability of g around the nodes in the graph.

The Laplacian’s spectrum encodes the geometric properties of the graph that are useful in crafting
graph filters and kernels [37, 43, 4, 9]. As the Laplacian matrix is real symmetric and diagonalizable,
its eigen-decomposition exists. We denote the decomposition as

L = UΛUT, (8)

where the columns of U ∈ RN×N are the eigenfunctions of L and the diagonal Λ ∈ RN×N contains
the corresponding eigenvalues. Therefore, the Laplacian operator can also be viewed as a filter on
function g re-expressed using the eigenfunction basis. Regularization can be achieved by directly
manipulating the eigenvalues of the system [39]. We refer the readers to [4, 37, 9] for comprehensive
reviews of the graph Laplacian and its spectrum.

3 Graph Gaussian Processes

Given a data set of size N with D-dimensional features X = [x1, . . . ,xN ]T, a symmetric binary
adjacency matrix A ∈ {0, 1}N×N that represents the relational graph of the data points and labels
for a subset of the data points, Yo = [y1, . . . , yO], with each yi ∈ {1, . . . ,K}, we seek to predict the
unobserved labels of the remaining data points YU = [yO+1, . . . yN ]. We denote the set of all labels
as Y = YO ∪ YU .

The GGP specifies the conditional distribution pθ(Y|X,A), and predicts YU via the predictive
distribution pθ(YU |YO,X,A). The joint model is specified as the product of the conditionally
independent likelihood p(yn|hn) and the GGP prior pθ(h|X,A) with hyper-parameters θ. The latent
likelihood parameter vector h ∈ RN×1 is defined in the next paragraph.

First, the model factorizes as

pθ(Y,h|X,A) = pθ(h|X,A)

N∏
n=1

p(yn|hn), (9)

where for the multi-class classification problem that we are interested in, p(yn | hn) is given by the
robust-max likelihood [30, 16, 23, 21, 20].

Next, we construct the GGP prior from a Gaussian process distributed latent function f(x) : RD×1 −→
R, f(x) ∼ GP

(
0, kθ(x,x

′)
)
, where the key assumption is that the likelihood parameter hn for data

point n is an average of the values of f over its 1-hop neighbourhood Ne(n) as given by A:

hn =
f(xn) +

∑
l∈Ne(n) f(xl)

1 +Dn
(10)

where Ne(n) = {l : l ∈ {1, . . . , N},Anl = 1}, Dn = |Ne(n)|. We further motivate this key
assumption in Section 3.1.
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As f(x) has a zero mean function, the GGP prior can be succinctly expressed as a multivariate
Gaussian random field

pθ(h|X,A) = N (0,PKXXPT), (11)

where P = (I + D)−1(I + A) and [KXX]ij = kθ(xi,xj). A suitable kernel function kθ(xi,xj) for
the task at hand can be chosen from the suite of well-studied existing kernels, such as those described
in [13]. We refer to the chosen kernel function as the base kernel of the GGP. The P matrix is
sometimes known as the random-walk matrix in the literatures [9]. A graphical model representation
of the proposed model is shown in Figure 1.

Figure 1: The figure depicts a relational graph (left) and the corresponding GGP represented as a
graphical model (right). The thick circle represents a set of fully connected nodes.

The covariance structure specified in Equation 11 is equivalent to the pairwise covariance

Cov(hm, hn) =
1

(1 +Dm)(1 +Dn)

∑
i∈{m∪Ne(m)}

∑
j∈{n∪Ne(n)}

kθ(xi,xj)

= 〈 1

1 +Dm

∑
i∈{m∪Ne(m)}

φ(xi),
1

1 +Dn

∑
j∈{n∪Ne(n)}

φ(xj)〉H (12)

where φ(·) is the feature map that corresponds to the base kernel kθ(·, ·). Equation 12 can be viewed
as the inner product between the empirical kernel mean embeddings that correspond to the bags of
node features observed in the 1-hop neighborhood sub-graphs of node m and n, relating the proposed
model to the Gaussian process distribution regression model presented in e.g. [15].

More specifically, we can view the GGP as a distribution classification model for the labelled bags
of node features {({xi|i ∈ {n ∪Ne(n)}}, yn)}On=1, such that the unobserved distribution Pn that
generates {xi|i ∈ {n ∪Ne(n)}} is summarized by its empirical kernel mean embedding

µ̂n =
1

1 +Dn

∑
j∈{n∪Ne(n)}

φ(xj). (13)

The prior on h can equivalently be expressed as h ∼ GP(0, 〈µ̂m, µ̂n〉H). For detailed reviews of the
kernel mean embedding and distribution regression models, we refer the readers to [32] and [41]
respectively.

One main assumption of the 1-hop neighbourhood averaging mechanism is homophily - i.e., nodes
with similar covariates are more likely to form connections with each others [17]. The assumption
allows us to approximately treat the node covariates from a 1-hop neighbourhood as samples drawn
from the same data distribution, in order to model them using distribution regression. While it is
perfectly reasonable to consider multi-hops neighbourhood averaging, the homophily assumption
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starts to break down if we consider 2-hop neighbours which are not directly connected. Nevertheless,
it is interesting to explore non-naive ways to account for multi-hop neighbours in the future, such
as stacking 1-hop averaging graph GPs in a structure similar to that of the deep Gaussian processes
[10, 34], or having multiple latent GPs for neighbours of different hops that are summed up in the
likelihood functions.

3.1 An Alternative View of GGP

In this section, we present an alternative formulation of the GGP, which results in an intuitive
interpretation of the model. The alternative formulation views the GGP as a Bayesian linear model on
feature maps of the nodes that have been transformed by a function related to the graph Laplacian L.

As we reviewed in Section 2.1, the kernel matrix KXX in Equation 11 can be written as the product
of feature map matrix ΦXΦT

X where row n of ΦX corresponds to the feature maps of node n,
φ(xn) = [φn1, . . . , φnQ]T. Therefore, the covariance matrix in Equation 11, PΦXΦT

XPT, can be
viewed as the product of the transformed feature maps

Φ̂X = PΦX = (I + D)−1DΦX + (I + D)−1(I− L)ΦX. (14)

where L is the graph Laplacian matrix as defined in Equation 6. Isolating the transformed feature
maps for node n (i.e., row n of Φ̂X) gives

φ̂(xn) =
Dn

1 +Dn
φ(xn) +

1

1 +Dn
[(I− L)ΦX]Tn, (15)

where Dn is the degree of node n and [·]n denotes row n of a matrix. The proposed GGP model is
equivalent to a supervised Bayesian linear classification model with a feature pre-processing step
that follows from the expression in Equation 15. For isolated nodes (Dn = 0), the expression in
Equation 15 leaves the node feature maps unchanged (φ̂ = φ).

The (I − L) term in Equation 15 can be viewed as a spectral filter U(I − Λ)UT, where U and
Λ are the eigenmatrix and eigenvalues of the Laplacian as defined in Section 2.2. For connected
nodes, the expression results in new features that are weighted averages of the original features and
features transformed by the spectral filter. The alternative formulation opens up opportunities to
design other spectral filters with different regularization properties, such as those described in [39],
that can replace the (I − L) expression in Equation 15. We leave the exploration of this research
direction to future work.

In addition, it is well-known that many graphs and networks observed in the real world follow the
power-law node degree distributions [17], implying that there are a handful of nodes with very large
degrees (known as hubs) and many with relatively small numbers of connections. The nodes with
few connections (small Dn) are likely to be connected to one of the handful of heavily connected
nodes, and their transformed node feature maps are highly influenced by the features of the hub nodes.
On the other hand, individual neighbours of the hub nodes have relatively small impact on the hub
nodes because of the large number of neighbours that the hubs are connected to. This highlights the
asymmetric outsize influence of hubs in the proposed GGP model, such that a mis-labelled hub node
may result in a more significant drop in the model’s accuracy compared to a mis-labelled node with
much lower degree of connections.

3.2 Variational Inference with Inducing Points

Posterior inference for the GGP is analytically intractable because of the non-conjugate likelihood.
We approximate the posterior of the GGP using a variational inference algorithm with inducing
points similar to the inter-domain inference algorithm presented in [42]. Implementing the GGP
with its variational inference algorithm amounts to implementing a new kernel function that follows
Equation 12 in the GPflow Python package.1

We introduce a set of M inducing random variables u = [f(z1), . . . , f(zM )]T indexed by inducing
points {zm}Mm=1 in the same domain as the GP function f(x) ∼ GP

(
0, kθ(x,x

′)
)
. As a result, the

1https://github.com/markvdw/GPflow-inter-domain
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inter-domain covariance between hn and f(zm) is

Cov(hn, f(zm)) =
1

Dn + 1

[
kθ(xn, zm) +

∑
l∈Ne(n)

kθ(xl, zm)
]
. (16)

Additionally, we introduce a multivariate Gaussian variational distribution q(u) = N (m,SST) for
the inducing random variables with variational parameters m ∈ RM×1 and the lower triangular
S ∈ RM×M . Through Gaussian conditioning, q(u) results in the variational Gaussian distribution
q(h) that is of our interest. The variational parameters m,S, {zm}Mm=1 and the kernel hyper-
parameters θ are then jointly fitted by maximizing the ELBO function in Equation 5.

3.3 Computational Complexity

The computational complexity of the inference algorithm isO(|Yo|M2). In the experiments, we chose
M to be the number of labelled nodes in the graph |Yo|, which is small relative to the total number of
nodes. Computing the covariance function in Equation 12 incurs a computational cost of O(D2

max)
per labelled node, where Dmax is the maximum node degree. In practice, the computational cost
of computing the covariance function is small because of the sparse property of graphs typically
observed in the real-world [17].

4 Related Work

Graph-based learning problems have been studied extensively by researchers from both machine
learning and signal processing communities, leading to many models and algorithms that are well-
summarized in review papers [4, 35, 37].

Gaussian process-based models that operate on graphs have previously been developed in the closely
related relational learning discipline, resulting in the mixed graph Gaussian process (XGP) [38] and
relational Gaussian process (RGP) [8]. Additionally, the renowned Label Propagation (LP)[48] model
can also be viewed as a GP with its covariance structure specified by the graph Laplacian matrix [49].
The GGP differs from the previously proposed GP models in that the local neighbourhood structures
of the graph and the node features are directly used in the specification of the covariance function,
resulting in a simple model that is highly effective.

Models based on Laplacian regularization that restrict the node labels to vary smoothly over graphs
have also been proposed previously. The LP model can be viewed as an instance under this framework.
Other Laplacian regularization based models include the deep semi-supervised embedding [44] and
the manifold regularization [3] models. As shown in the experimental results in Table 1, the predictive
performance of these models fall short of other more sophisticated models.

Additionally, models that extract embeddings of nodes and local sub-graphs which can be used for
predictions have also been proposed by multiple authors. These models include DeepWalk [33],
node2vec [19], planetoid [46] and many others. The proposed GGP is related to the embedding
based models in that it can be viewed as a GP classifer that takes empirical kernel mean embeddings
extracted from the 1-hop neighbourhood sub-graphs as inputs to predict node labels.

Finally, many geometric deep learning models that operate on graphs have been proposed and
shown to be successful in graph-based semi-supervised learning problems. The earlier models
including [26, 36, 18] are inspired by the recurrent neural networks. On the other hand, convolution
neural networks that learn convolutional filters in the graph Laplacian spectral domain have been
demonstrated to perform well. These models include the spectral CNN [5], DCNN [1], ChebNet
[12] and GCN [25]. Neural networks that operate on the graph spectral domain are limited by the
graph-specific Fourier basis. The more recently proposed MoNet [31] addressed the graph-specific
limitation of spectral graph neural networks. The idea of filtering in graph spectral domain is a
powerful one that has also been explored in the kernel literatures [39, 43]. We draw parallels between
our proposed model and the spectral filtering approaches in Section 3.1, where we view the GGP as a
standard GP classifier operating on feature maps that have been transformed through a filter that can
be related to the graph spectral domain.

Our work has also been inspired by literatures in Gaussian processes that mix GPs via an additive
function, such as [6, 14, 42].
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5 Experiments

We present two sets of experiments to benchmark the predictive performance of the GGP against
existing models under two different settings. In Section 5.1, we demonstrate that the GGP is a viable
and extremely competitive alternative to the graph convolutional neural network (GCN) in settings
where there are sufficient labelled data points. In Section 5.2, we test the models in an active learning
experimental setup, and show that the GGP outperforms the baseline models when there are few
training labels.

5.1 Semi-supervised Classification on Graphs

The semi-supervised classification experiments in this section exactly replicate the experimental setup
in [25], where the GCN is known to perform well. The three benchmark data sets, as described in
Table 2, are citation networks with bag-of-words (BOW) features, and the prediction targets are the
topics of the scientific papers in the citation networks.

The experimental results are presented in Table 1, and show that the predictive performance of the
proposed GGP is competitive with the GCN and MoNet [31] (another deep learning model), and
superior to the other baseline models. While the GCN outperforms the proposed model by small
margins on the test sets with 1, 000 data points, it is important to note that the GCN had access to 500
additional labelled data points for early stopping. As the GGP does not require early stopping, the
additional labelled data points can instead be directly used to train the model to significantly improve
the predictive performance. To demonstrate this advantage, we report another set of results for a GGP
trained using the 500 additional data points in Table 1, in the row labelled as ‘GGP-X’. The boost in
the predictive performances shows that the GGP can better exploit the available labelled data to make
predictions.

The GGP base kernel of choice is the 3rd degree polynomial kernel, which is known to work well
with high-dimensional BOW features [45]. We re-weighed the BOW features using the popular term
frequency-inverse document frequency (TFIDF) technique [40]. The variational parameters and the
hyper-parameters were jointly optimized using the ADAM optimizer [24]. The baseline models that
we compared to are the ones that were also presented and compared to in [25] and [31].

Cora Citeseer Pubmed
GGP 80.9% 69.7% 77.1%
GGP-X 84.7% 75.6% 82.4%
GCN[25] 81.5% 70.3% 79.0%
DCNN[1] 76.8% - 73.0%
MoNet[31] 81.7% - 78.8%
DeepWalk[33] 67.2% 43.2% 65.3%
Planetoid[46] 75.7% 64.7% 77.2%
ICA[27] 75.1% 69.1% 73.9%
LP[48] 68.0% 45.3% 63.0%
SemiEmb[44] 59.0% 59.6% 71.1%
ManiReg[3] 59.5% 60.1% 70.7%

Table 1: This table shows the test classification accuracies of the semi-supervised learning experiments
described in Section 5.1. The test sets consist of 1, 000 data points. The GGP accuracies are averaged
over 10 random restarts. The results for DCNN and MoNet are copied from [31] while the results for
the other models are from [25]. Please refer to Section 5.1 for discussions of the results.

Type Nnodes Nedges Nlabel_cat. Dfeatures Label Rate
Cora Citation 2, 708 5, 429 7 1, 433 0.052
Citeseer Citation 3, 327 4, 732 6 3, 703 0.036
Pubmed Citation 19, 717 44, 338 3 500 0.003

Table 2: A summary of the benchmark data sets for the semi-supervised classification experiment.
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5.2 Active Learning on Graphs

Active learning is a domain that faces the same challenges as semi-supervised learning where labels
are scarce and expensive to obtain [47]. In active learning, a subset of unlabelled data points are
selected sequentially to be queried according to an acquisition function, with the goal of maximizing
the accuracy of the predictive model using significantly fewer labels than would be required if the
labelled set were sampled uniformly at random [2]. A motivating example of this problem scenario is
in the medical setting where the time of human experts is precious, and the machines must aim to
make the best use of the time. Therefore, having a data efficient predictive model that can generalize
well with few labels is of critical importance in addition to having a good acquisition function.

In this section, we leverage GGP as the semi-supervised classification model of active learner in
graph-based active learning problem [47, 28, 11, 22, 29]. The GGP is paired with the proven Σ-
optimal (SOPT) acquisition function to form an active learner [28]. The SOPT acquisition function is
model agnostic in that it only requires the Laplacian matrix of the observed graph and the indices
of the labelled nodes in order to identify the next node to query, such that the predictive accuracy
of the active learner is maximally increased. The main goal of the active learning experiments is to
demonstrate that the GGP can learn better than both the GCN and the Label Propagation model (LP)
[48] with very few labelled data points.

Starting with only 1 randomly selected labelled data point (i.e., node), the active learner identifies the
next data point to be labelled using the acquisition function. Once the label of the said data point
is acquired, the classification model is retrained and its test accuracy is evaluated on the remaining
unlabelled data points. In our experiments, the process is repeated until 50 labels are acquired. The
experiments are also repeated with 10 different initial labelled data points. In addition to the SOPT
acquisition function, we show the results of the same models paired with the random acquisition
function (RAND) for comparisons.

The test accuracies with different numbers of labelled data points are presented as learning curves in
Figure 2. In addition, we summarize the results numerically using the Area under the Learning Curve
(ALC) metric in Table 3. The ALC is normalized to have a maximum value of 1, which corresponds
to a hypothetical learner that can achieve 100% test accuracy with only 1 label. The results show that
the proposed GGP model is indeed more data efficient than the baselines and can outperform both the
GCN and the LP models when labelled data are scarce.

The benchmark data sets for the active learning experiments are the Cora and Citeseer data sets.
However, due to technical restriction imposed by the SOPT acquisition function, only the largest
connected sub-graph of the data set is used. The restriction reduces the number of nodes in the
Cora and Citeseer data sets to 2, 485 and 2, 120 respectively. Both of the data sets were also used as
benchmark data sets in [28].

We pre-process the BOW features with TFIDF and apply a linear kernel as the base kernel of the
GGP. All parameters are jointly optimized using the ADAM optimizer. The GCN and LP models are
trained using the settings recommended in [25] and [28] respectively.

Cora Citeseer
SOPT-GGP 0.733± 0.001 0.678± 0.002
SOPT-GCN 0.706± 0.001 0.675± 0.002
SOPT-LP 0.672± 0.001 0.638± 0.001

RAND-GGP 0.575± 0.007 0.557± 0.008
RAND-GCN 0.584± 0.011 0.533± 0.008
RAND-LP 0.424± 0.020 0.490± 0.011

Table 3: This table shows the Area under the Learning Curve (ALC) scores for the active learning
experiments. ALC refers to the area under the learning curves shown in Figure 2 normalized to
have a maximum value of 1. The ALCs are computed by averaging over 10 different initial data
points. The results show that the GGP is able to generalize better with fewer labels compared to the
baselines. ‘SOPT’ and ‘RAND’ refer to the acquisition functions used. Please refer to Section 5.2 for
discussions of the results.
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Figure 2: The sub-figures show the test accuracies from the active learning experiments (y-axis) for
the Cora (left) and Citeseer (right) data sets with different number of labelled data points (x-axis).
The results are averaged over 10 trials with different initial data points. SOPT and RAND refer to the
acquisition functions described in Section 5.2. The smaller error bars of ‘RAND-GGP’ compared
to those of ‘RAND-GCN’ demonstrate the relative robustness of the GGP models under random
shuffling of data points in the training data set. The tiny error bars of the ‘SOPT-*’ results show that
the ‘SOPT’ acquisition function is insensitive to the randomly selected initial labelled data point.
Please also refer to Table 3 for numerical summaries of the results.

6 Conclusion

We propose a Gaussian process model that is data-efficient for semi-supervised learning problems
on graphs. In the experiments, we show that the proposed model is competitive with the state-of-
the-art deep learning models, and outperforms when the number of labels is small. The proposed
model is simple, effective and can leverage modern scalable variational inference algorithm for GP
with minimal modification. In addition, the construction of our model is motivated by distribution
regression using the empirical kernel mean embeddings, and can also be viewed under the framework
of filtering in the graph spectrum. The spectral view offers a new potential research direction that can
be explored in future work.
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