93 research outputs found

    An Efficient Approach of Optic Disc Normalization and Segmentation for Glaucoma Detection

    Get PDF
    Glaucoma is considered as one of the major eye disease which will lead to vision loss if it is not diagnosed at a right time. Hence it is required to recognize the stage of the disease as early as possible. The earlier methods called Intra ocular pressure(IOP) and Visual Field Test have a disadvantage of requirement of special equipment which will be available in only specialized hospitals and provide low accuracy. In this paper effective method called Sparse Dissimilarity Constrained Coding (SDC) have been used where it considers optic disc and cup called cup to disc ratio (CDR). In this approach the optic disc is localized and segmented which is followed by cup segmentation. From which the area of optic disc and optic cup is obtained. The method gives accurate CDR results and it is well suited for more population. From the obtained ratio the stage of the disease can be well predicted and suitable treatment required can be suggested. The retinal fundus images that are used for the method will be easily available in almost all the hospitals and medical centers for comparing the result with the reference CDR ratios. The method provides efficient and reliable result compared to the manual method. Hence the proposed method is an effective approach for glaucoma detection

    Similarity regularized sparse group lasso for cup to disc ratio computation

    Full text link
    © 2017 Optical Society of America. Automatic cup to disc ratio (CDR) computation from color fundus images has shown to be promising for glaucoma detection. Over the past decade, many algorithms have been proposed. In this paper, we first review the recent work in the area and then present a novel similarity-regularized sparse group lasso method for automated CDR estimation. The proposed method reconstructs the testing disc image based on a set of reference disc images by integrating the similarity between testing and the reference disc images with the sparse group lasso constraints. The reconstruction coefficients are then used to estimate the CDR of the testing image. The proposed method has been validated using 650 images with manually annotated CDRs. Experimental results show an average CDR error of 0.0616 and a correlation coefficient of 0.7, outperforming other methods. The areas under curve in the diagnostic test reach 0.843 and 0.837 when manual and automatically segmented discs are used respectively, better than other methods as well

    A Polar Map Based Approach Using Retinal Fundus Images for Glaucoma Detection

    Get PDF
    Cup-to-disc ratio is commonly used as an important parameter for glaucoma screening, involving segmentation of the optic cup on fundus images. We propose a novel polar map representation of the optic disc, using a combination of supervised and unsupervised cup segmentation techniques, for detection of glaucoma. Instead of performing hard thresholding on the segmentation output to extract the cup, we consider the cup confidence scores inside the disc to construct a polar map, and extract sector-wise features for learning a glaucoma risk probability (GRP) for the image. We compare the performance of GRP vis-à-vis the cup-to-disc ratio (CDR). On an evaluation dataset of 100 images from the publicly available RIM-ONE database, our method achieves 82% sensitivity at 84% specificity, and 96% sensitivity at 60% specificity (AUC of 0.8964). Experiments indicate that the polar map based method can provide a more discriminatory glaucoma risk probability score compared to CDR

    A novel equalization scheme for the selective enhancement of optical disc and cup regions and background suppression in fundus imagery

    Get PDF
    The ratio of the diameters of Optic Cup (OC) and Optic Disc (OD), termed as ‘Cup to Disc Ratio’ (CDR), derived from the fundus imagery is a popular biomarker used for the diagnosis of glaucoma. Demarcation of OC and OD either manually or through automated image processing algorithms is error prone because of poor grey level contrast and their vague boundaries. A dedicated equalization which simultaneously compresses the dynamic range of the background and stretches the range of ODis proposed in this paper. Unlike the conventional GHE, in the proposed equalization, the original histogram is inverted and weighted nonlinearly before computing the Cumulative Probability Density (CPD). The equalization scheme is compared with Adaptive Histogram Equalization (AHE), Global Histogram Equalization (GHE) and Contrast Limited Adaptive Histogram Equalization (CLAHE) in terms of the difference between the mean grey levels of OD and the background, using a quantitative metric known as Contrast Improvement Index (CII). The CII exhibited by CLAHE, GHE and the proposed scheme are 1.1977 ± 0.0326, 1.0862 ± 0.0304 and 1.3312 ± 0.0486, respectively.The proposed method is observed to be superior to CLAHE, GHE and AHE and it can be employed in Computerized Clinical Decision Support Systems (CCDSS) to improve the accuracy of localizing the OD and the computation of CDR

    Segmentation of optic disc in retinal images for glaucoma diagnosis by saliency level set with enhanced active contour model

    Get PDF
    Glaucoma is an ophthalmic disease which is among the chief causes of visual impairment across the globe. The clarity of the optic disc (OD) is crucial for recognizing glaucoma. Since existing methods are unable to successfully integrate multi-view information derived from shape and appearance to precisely explain OD for segmentation, this paper proposes a saliency-based level set with an enhanced active contour method (SL-EACM), a modified locally statistical active contour model, and entropy-based optical disc localization. The significant contributions are that i) the SL-EACM is introduced to address the often noticed problem of intensity inhomogeneity brought on by defects in imaging equipment or fluctuations in lighting; ii) to prevent the integrity of the OD structures from being compromised by pathological alterations and artery blockage, local image probability data is included from a multi-dimensional feature space around the region of interest in the model; and iii) the model incorporates prior shape information into the technique, for enhancing the accuracy in identifying the OD structures from surrounding regions. Public databases such as CHASE_DB, DRIONS-DB, and Drishti-GS are used to evaluate the proposed model. The findings from numerous trials demonstrate that the proposed model outperforms state-of-the-art approaches in terms of qualitative and quantitative outcomes

    IMPROVED AUTOMATIC DETECTION OF GLAUCOMA USING CUP-TO-DISK RATIO AND HYBRID CLASSIFIERS.

    Get PDF
    Glaucoma is one of the most complicated disorder in human eye that causes permanent vision loss gradually if not detect in early stage. It can damage the optic nerve without any symptoms and warnings. Different automated glaucoma detection systems were developed for analyzing glaucoma at early stage but lacked good accuracy of detection. This paper proposes a novel automated glaucoma detection system which effectively process with digital colour fundus images using hybrid classifiers. The proposed system concentrates on both Cup-to Disk Ratio (CDR) and different features to improve the accuracy of glaucoma. Morphological Hough Transform Algorithm (MHTA) is designed for optic disc segmentation. Intensity based elliptic curve method is used for separation of optic cup effectively. Further feature extraction and CDR value can be estimated. Finally, classification is performed with combination of Naive Bayes Classifier and K Nearest Neighbour (KNN). The proposed system is evaluated by using High Resolution Fundus (HRF) database which outperforms the earlier methods in literature in various performance metrics
    • …
    corecore