9,012 research outputs found

    Super-Resolution in Phase Space

    Get PDF
    This work considers the problem of super-resolution. The goal is to resolve a Dirac distribution from knowledge of its discrete, low-pass, Fourier measurements. Classically, such problems have been dealt with parameter estimation methods. Recently, it has been shown that convex-optimization based formulations facilitate a continuous time solution to the super-resolution problem. Here we treat super-resolution from low-pass measurements in Phase Space. The Phase Space transformation parametrically generalizes a number of well known unitary mappings such as the Fractional Fourier, Fresnel, Laplace and Fourier transforms. Consequently, our work provides a general super- resolution strategy which is backward compatible with the usual Fourier domain result. We consider low-pass measurements of Dirac distributions in Phase Space and show that the super-resolution problem can be cast as Total Variation minimization. Remarkably, even though are setting is quite general, the bounds on the minimum separation distance of Dirac distributions is comparable to existing methods.Comment: 10 Pages, short paper in part accepted to ICASSP 201

    Iterative Time-Varying Filter Algorithm Based on Discrete Linear Chirp Transform

    Full text link
    Denoising of broadband non--stationary signals is a challenging problem in communication systems. In this paper, we introduce a time-varying filter algorithm based on the discrete linear chirp transform (DLCT), which provides local signal decomposition in terms of linear chirps. The method relies on the ability of the DLCT for providing a sparse representation to a wide class of broadband signals. The performance of the proposed algorithm is compared with the discrete fractional Fourier transform (DFrFT) filtering algorithm. Simulation results show that the DLCT algorithm provides better performance than the DFrFT algorithm and consequently achieves high quality filtering.Comment: 6 pages, conference pape

    Sampling and Super-resolution of Sparse Signals Beyond the Fourier Domain

    Full text link
    Recovering a sparse signal from its low-pass projections in the Fourier domain is a problem of broad interest in science and engineering and is commonly referred to as super-resolution. In many cases, however, Fourier domain may not be the natural choice. For example, in holography, low-pass projections of sparse signals are obtained in the Fresnel domain. Similarly, time-varying system identification relies on low-pass projections on the space of linear frequency modulated signals. In this paper, we study the recovery of sparse signals from low-pass projections in the Special Affine Fourier Transform domain (SAFT). The SAFT parametrically generalizes a number of well known unitary transformations that are used in signal processing and optics. In analogy to the Shannon's sampling framework, we specify sampling theorems for recovery of sparse signals considering three specific cases: (1) sampling with arbitrary, bandlimited kernels, (2) sampling with smooth, time-limited kernels and, (3) recovery from Gabor transform measurements linked with the SAFT domain. Our work offers a unifying perspective on the sparse sampling problem which is compatible with the Fourier, Fresnel and Fractional Fourier domain based results. In deriving our results, we introduce the SAFT series (analogous to the Fourier series) and the short time SAFT, and study convolution theorems that establish a convolution--multiplication property in the SAFT domain.Comment: 42 pages, 3 figures, manuscript under revie

    Signal Flow Graph Approach to Efficient DST I-IV Algorithms

    Get PDF
    In this paper, fast and efficient discrete sine transformation (DST) algorithms are presented based on the factorization of sparse, scaled orthogonal, rotation, rotation-reflection, and butterfly matrices. These algorithms are completely recursive and solely based on DST I-IV. The presented algorithms have low arithmetic cost compared to the known fast DST algorithms. Furthermore, the language of signal flow graph representation of digital structures is used to describe these efficient and recursive DST algorithms having (n1)(n-1) points signal flow graph for DST-I and nn points signal flow graphs for DST II-IV

    Intelligent OFDM telecommunication system. Part 2. Examples of complex and quaternion many-parameter transforms

    Get PDF
    In this paper, we propose unified mathematical forms of many-parametric complex and quaternion Fourier transforms for novel Intelligent OFDM-telecommunication systems (OFDM-TCS). Each many-parametric transform (MPT) depends on many free angle parameters. When parameters are changed in some way, the type and form of transform are changed as well. For example, MPT may be the Fourier transform for one set of parameters, wavelet transform for other parameters and other transforms for other values of parameters. The new Intelligent-OFDM-TCS uses inverse MPT for modulation at the transmitter and direct MPT for demodulation at the receiver. © 2019 IOP Publishing Ltd. All rights reserved

    ShearLab: A Rational Design of a Digital Parabolic Scaling Algorithm

    Full text link
    Multivariate problems are typically governed by anisotropic features such as edges in images. A common bracket of most of the various directional representation systems which have been proposed to deliver sparse approximations of such features is the utilization of parabolic scaling. One prominent example is the shearlet system. Our objective in this paper is three-fold: We firstly develop a digital shearlet theory which is rationally designed in the sense that it is the digitization of the existing shearlet theory for continuous data. This implicates that shearlet theory provides a unified treatment of both the continuum and digital realm. Secondly, we analyze the utilization of pseudo-polar grids and the pseudo-polar Fourier transform for digital implementations of parabolic scaling algorithms. We derive an isometric pseudo-polar Fourier transform by careful weighting of the pseudo-polar grid, allowing exploitation of its adjoint for the inverse transform. This leads to a digital implementation of the shearlet transform; an accompanying Matlab toolbox called ShearLab is provided. And, thirdly, we introduce various quantitative measures for digital parabolic scaling algorithms in general, allowing one to tune parameters and objectively improve the implementation as well as compare different directional transform implementations. The usefulness of such measures is exemplarily demonstrated for the digital shearlet transform.Comment: submitted to SIAM J. Multiscale Model. Simu
    corecore