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Abstract
In this paper, fast and efficient discrete sine transformation (DST) algorithms are presented based on the factorization
of sparse, scaled orthogonal, rotation, rotation-reflection, and butterfly matrices. These algorithms are completely
recursive and solely based on DST I-IV. The presented algorithms have low arithmetic cost compared to the known
fast DST algorithms. Furthermore, the language of signal flow graph representation of digital structures is used to
describe these efficient and recursive DST algorithms having (n−1) points signal flow graph for DST-I and n points
signal flow graphs for DST II-IV.

1 INTRODUCTION
Applications of Fast Fourier Transform (FFT) have spread to a very diverse field in applied mathematics and

electrical engineering and even the origin of the FFT goes back to analysis of the rotation of Helium molecule [9].
By now J. Dongarra and F. Sullivan have categorized FFT as one of the top 10 algorithms of the computer age
which had the greatest influence on the development and practice of science and engineering in the 20th century.
FFT is used to compute Discrete Fourier Transform (DFT) and its inverse efficiently. On the other hand DFT imple-
mentation algorithms employ FFT so FFT and DFT are sometimes used interchangeably. Discrete Sine Transform
(DST) is a Fourier-related transform similar to the DFT, but using a purely real matrix. Among applications of
the DFT; sine and cosine waves of the DFT with different frequencies are used to classify the traffic monitoring
sites into different seasonal patterns [35], DST has been identified as the method which generates better results
for noise estimation as compared with Discrete Cosine Transform (DCT) and the DFT [10], discrete fractional
sine transform has identified as the method for generating fingerprint templates with high recognition accuracy
[49], DCT, DEST, and DFT can be approximated to the Karhunen Loeve Transformation (KLT) and the connec-
tion of KLT to the color image compression [6, 22, 31, 32], DST can be used to analyze image reconstruction
via signal transition through a square-optical fiber lenses [47], spectral interference and additive wideband noise
on the accuracy of the normalized frequency estimator can be investigated through discrete-time sine-wave [1], to
mention a few. Together with the above, the engagement of DCT and DST in image processing, signal process-
ing, finger print enhancement, quick response code (QR code), and multimode interface can also be seen in e.g.,
[2, 7, 11, 12, 16, 18, 19, 20, 21, 23, 24, 29, 30, 39, 40, 43, 44, 45].

The family of DFT consists of eight versions (I-VIII) of DCT and DST and these versions appear depending on
odd or even type and also with respect to different Neumann and Dirichlet boundary conditions [6, 25, 34, 40].
Though there are eight versions, depending on applications in transform coding and digital filtering of signals, we
consider DCT and DST matrices as varying from I to IV types. Let us consider four orthogonal types of DST having



superscripts to denote the type of DST and a subscript to denote the order of DST in the matrix form;

DST − I : SI
n−1 =

√
2
n

[
sin ( j+1)(k+1)π

n

]n−2

j, k=0
,

DST − II : SII
n =

√
2
n

[
εn( j+1) sin ( j+1)(2k+1)π

2n

]n−1

j, k=0

DST − III : SIII
n =

√
2
n

[
εn(k+1) sin (2 j+1)(k+1)π

2n

]n−1

j, k=0
,

DST − IV : SIV
n =

√
2
n

[
sin (2 j+1)(2k+1)π

4n

]n−1

j, k=0

(1)

where εn(0) = εn(n) = 1√
2
, εn( j) = 1 for j ∈ {1,2, · · · ,n−1} and n≥ 2 is an even integer. Among DST I-IV trans-

formations, SI
n−1 and SIV

n were introduced in [15, 14] and SII
n and its inverse SIII

n were introduced in [20] into digital
signal processing. DST-II is a complementary or alternative transform to DCT-II which is used in transform coding.
Like DFT and DCT, these DST matrices hold linearity, convolution-multiplication, and shift properties.

Among different mathematical techniques used to derive fast algorithms for discrete cosine and sine transfor-
mations, the polynomial arithmetic technique (see e.g. [27, 41]) and the matrix factorization technique (see e.g.
[6, 28, 48, 37, 38, 46]) can be seen as the dominant techniques. Apart from these two main techniques some other
authors (see e.g. [17, 26]) have used different techniques like displacement approach and polynomial division in ma-
trix form to derive factorizations for DCT and DST. Efficient algorithms for DCT or DST of radix-2 length n require
about 2 n log2n flops. Such a DCT or DST algorithm generates a factorization of these matrices having sparse and
non-orthogonal matrices. Thus, if the factorization for DCT or DST does not preserve orthogonality the resulting
DCT or DST algorithms lead to inferior numerical stability (see e.g. [42]). The matrix factorization for DST I in
[48] used the results in [8] to decompose DST I into DCT and DST. Also the decomposition for DCT II in [46] is
a slightly different version of the result in [8]. Though one can find orthogonal matrix factorization for DCT and
DST in [46], the resulting algorithms in [46] are not completely recursive and hence do not lead to simple recursive
algorithms. An alternative factorization for DCT I-IV in [38] and DST I-IV in [37] can be seen in [6, 28] but the
factorizations in the latter papers are not solely dependent on DCT I-IV or DST I-IV. Moreover [6] has used the
same factorization for DST-II and DST-IV as in [46]. However one can use these [6, 46] results to derive recursive,
stable and radix-2 algorithms as stated in [28, 37, 38].

In electrical engineering, control theory, system engineering, theoretical computer science, etc. signal flow graphs
represent realizations of systems as electronic devices. The objective here is to build a device to implement or realize
algebraic operations used in sparse and orthogonal factorization of fast and recursive DST I-IV algorithms. Based
on the factorization of DFT, DCT, and DST matrices one can design signal flow graphs such as: 8-point signal flow
graphs on various fast DCT and DST algorithms having sparse and/or orthogonal factorization in [6], signal flow
graphs for forward and backward modified DCT implementations with n = 12 and also with mix-radix decomposi-
tion of n = 12 in [3], fast DST-VII and DCT-II algorithms based signal flow graphs for 2n+1 points and n(2n+1)
points DCT-II in [33], signal flow graphs representation of the direct 2-D DCT-II and 2-D DST-II computation and
their inverses for 16× 16,8× 16,4× 16,16× 8, and 16× 4 block sizes in [5], signal flow graphs of the coordinate
rotation digital computer-based n points DCT-II, DCT-III and DST-II, DST-III in [13], signal flow graphs based
Jacob rotation for n/2 points DCT-IV and modified DCT-IV in [4], and signal flow graphs based on hybrid jacket-
Hadamard matrix for n points DCT-II, DST-II, and DFT-II in [23]. However, there is no paper on signal flow graphs
based on fast and completely recursive DST I-IV algorithms having sparse, scaled orthogonal factorization, rotation,
rotation-reflection matrix factorizations and especially the generalization of n points signal flow graphs covering all
DST matrices of types I to IV. Hence in this paper we modify the sparse and orthogonal factorizations of stable DST
I-IV algorithms proposed in [36, 37] to derive fast (compared to known algorithms), efficient, and completely recur-



sive sole algorithms based on DST I-IV having sparse, scaled orthogonal, rotation, rotation-reflections matrices and
to discuss the arithmetic complexity of these fast DST I-IV algorithms. Furthermore, the paper presents generalized
n−1 points signal flow graph for DST-I and n points signal flow graphs for DST II-IV based on the recursive DST
I-IV algorithms.

In section 2 we modify the factorizations derived in [37] to express fast, efficient, and completely recursive sole
algorithms for DST I-IV having scaled orthogonal, sparse, rotation, rotation-reflection, and butterfly matrices. Next,
in section 3, we derive a number of additions and multiplications required to compute these fast and efficient DST
I-IV algorithms and illustrate the numerical results based on that. In section 4, we develop and then generalize signal
flow graphs for n−1 points DST-I algorithm and n points DST II-IV algorithms.

2 EFFICIENT AND RECURSIVE DST ALGORITHMS HAVING SPARSE, SCALED ORTHOG-
ONAL, AND ROTATIONAL-REFLECTION FACTORS
This section presents fast, efficient, and completely recursive DST algorithms solely defined via DST I-IV hav-

ing sparse, scaled orthogonal, rotational, and rotational-reflection factors by modifying radix-2, recursive, and stable
DST I-IV algorithms having sparse and orthogonal factors introduced in [37]. The purpose of this is to significantly
reduce the number of multiplications required to compute DST I-IV algorithms compared to the known fast, effi-
cient, and stable DST algorithms having sparse factorizations.

By applying the permutation matrix to each sine transform matrix and using the trigonometric addition, comple-
mentary, and supplementary identities, one can derive the orthogonal matrix factorization for DST I-IV as in [37].

In the following we state the collection of sparse and orthogonal matrices which are frequently used in this pa-
per. For a given vector x ∈ Rn, let us introduce an involution matrix Ĩn by

Ĩn x = [xn−1,xn−2, · · · ,x0]
T ,

a diagonal matrix Dn by

Dn x =

{
[x0,−x1,x2,−x3, · · · ,xn−1,−xn−1]

T even n,
[x0,−x1,x2,−x3, · · · ,−xn−1,xn−1]

T odd n

and, for n≥ 3 an even-odd permutation matrix Pn by

Pn x =

{
[x0,x2, · · · ,xn−2,x1,x3, · · · ,xn−1]

T even n,
[x0,x2, · · · ,xn−1,x1,x3, · · · ,xn−2]

T odd n.

For even integer n≥ 4, we introduce sparse and orthogonal matrices:

Ĥn−1 =
1√
2

 I n
2−1 Ĩ n

2−1√
2

I n
2−1 −Ĩ n

2−1

 , Hn =
1√
2

 I n
2

Ĩ n
2

I n
2

−Ĩ n
2

 ,

Vn =


1

1√
2

[
I n

2−1 −I n
2−1

−I n
2−1 −I n

2−1

]
−1


[

Ĩ n
2

D n
2

]
,



and also a rotational-reflection matrix:

Qn =

[
D n

2

I n
2

] diag S n
2

(
diagC n

2

)
Ĩ n

2

−Ĩ n
2

(
diagC n

2

)
diag

(
Ĩ n

2
S n

2

)

=



sin π

4n cos π

4n
−sin 3π

4n −cos 3π

4n
. . . . . .

−sin (n−1)π
4n −cos (n−1)π

4n
−cos (n−1)π

4n sin (n−1)π
4n

. . . . . .
−cos 3π

4n sin 3π

4n
−cos π

4n sin π

4n


,

where

C n
2
=

[
cos

(2k+1)π
4n

] n
2−1

k=0
and S n

2
=

[
sin

(2k+1)π
4n

] n
2−1

k=0
.

2.1 Stable, recursive, radix-2 DST I-IV algorithms having sparse and orthogonal factors
Before developing DST matrix factorization based on fast, efficient, and completely recursive DST I-IV al-

gorithms, let us state stable, simple, recursive, radix-2 DST I-IV algorithms having sparse and orthogonal factors
derived in [37].

The algorithms for DST I-IV are stated in order SII
n , SIV

n , SIII
n and SI

n−1 respectively.

In [37], orthogonal factorizations for types II and IV of discrete sine transform matrices are given by

SII
n = PT

n

[
SIV

n
2

0
0 SII

n
2

]
Hn and SIV

n = PT
n Vn

[
SII

n
2

0
0 SII

n
2

]
Qn

Thus, the recursive algorithms for DST-II and DST-IV can be stated via algorithms (2.1) and (2.2) respectively.

Algorithm 2.1. sin2(n)

Input: n = 2t(t ≥ 1), n1 =
n
2 .

1. If n = 2, then

S2 := 1√
2

[
1 1
1 −1

]
.

2. If n≥ 4, then
M1 := sin4(n1) ,

M2 := sin2(n1) ,

S2 :=PT
n (blkdiag(M1,M2))Hn.

Output: S2 = SII
n .

Algorithm 2.2. sin4(n)

Input: n = 2t(t ≥ 1), n1 =
n
2 .



1. If n = 2, then

S4 :=
[

sin π

8 cos π

8
cos π

8 −sin π

8

]
.

2. If n≥ 4, then
M1 := sin2(n1) ,

M2 := sin2(n1) ,

L :=Vn (blkdiag(M1,M2))Qn,

S4 :=PT
n L.

Output: S4 = SIV
n .

The transpose of DST-II is DST-III. Thus DST-III algorithm can be computed via algorithm (2.1). Observe that
this algorithm executes recursively with DST-II and DST-IV algorithms.

Algorithm 2.3. sin3(n)

Input: n = 2t(t ≥ 1), n1 =
n
2 .

1. If n = 2, then

S3 := 1√
2

[
1 1
1 −1

]
.

2. If n≥ 4, then
M1 := sin4(n1) ,

M2 := sin3(n1) ,

S3 :=HT
n (blkdiag(M1,M2))Pn.

Output: S3 = SIII
n .

Following [37], orthogonal factorizations for type I discrete sine transform matrix is given by

SI
n−1 = PT

n−1

[
CIII

n
2

0
0 CI

n
2−1

]
Ĥn−1

Thus, the recursive algorithm for DST-I can be stated via algorithm (2.4). Note that this algorithm runs recursively
with DST II-IV algorithms.

Algorithm 2.4. sin1(n−1)

Input: n = 2t(t ≥ 1), n1 =
n
2 .

1. If n = 2, then
S1 := 1.

2. If n≥ 4, then
M1 := sin3(n1) ,

M2 := sin1(n1−1) ,

S1 :=PT
n−1 (blkdiag(M1,M2)) Ĥn−1.

Output: S1 = SI
n.



2.2 Efficient and completely recursive DST I-IV algorithms
In this section, we present fast, efficient, and completely recursive DST I-IV (say NDST I-IV) algorithms using

DST I-IV algorithms stated via 2.1, 2.2, 2.3, and 2.4 i.e. we introduce DST I-IV algorithms having sparse, scaled
orthogonal, rotational, rotational-reflection factors so that DST I-IV are orthogonal w. r. t. the scale factor 1√

n .

In order to reduce number of multiplications, we move the factor 1√
2

in Hn, Ĥn−1, and Vn without changing the
rotation-reflection matrix Qn so that we compute

√
n SII

n ,
√

n SIV
n ,
√

n SIII
n , and

√
n SI

n−1 respectively. Let us state the
corresponding new algorithms via nsin2(n), nsin4(n), nsin3(n), and nsin1(n−1) respectively.

Algorithm 2.5. nsin2(n)

Input: n = 2t(t ≥ 1), n1 =
n
2 .

1. If n = 2, then

MS2 :=
[

1 1
1 −1

]
.

2. If n≥ 4, then
M1 :=nsin4(n1) ,

M2 :=nsin2(n1) ,

MS2 :=PT
n (blkdiag(M1,M2))

(√
2 Hn

)
.

Output: MS2 =
√

n SII
n .

Algorithm 2.6. nsin4(n)

Input: n = 2t(t ≥ 1), n1 =
n
2 .

1. If n = 2, then

MS4 :=
√

2
[

sin π

8 cos π

8
cos π

8 −sin π

8

]
.

2. If n≥ 4, then
M1 :=nsin2(n1) ,

M2 :=nsin2(n1) ,

L :=
(√

2Vn

)
(blkdiag(M1,M2))Qn,

MS4 :=PT
n L.

Output: MS4 =
√

n SIV
n .

The fast, efficient, and completely recursive DST-III algorithm can be computed using the DST-II so that it runs
recursively with nsin2(n) and nsin4(n) algorithms.

Algorithm 2.7. nsin3(n)

Input: n = 2t(t ≥ 1), n1 =
n
2 .

1. If n = 2, then

MS3 :=
[

1 1
1 −1

]
.



2. If n≥ 4, then
M1 :=nsin4(n1) ,

M2 :=nsin3(n1) ,

MS3 :=
(√

2 HT
n

)
(blkdiag(M1,M2))Pn.

Output: MS3 =
√

n SIII
n .

Finally, the fast, efficient, and completely recursive DST I algorithm can be stated as follows. Note that this
algorithm runs recursively with nsin2(n) , nsin4(n), and nsin3(n) algorithms.

Algorithm 2.8. nsin1(n−1)

Input: n = 2t(t ≥ 1), n1 =
n
2 .

1. If n = 2, then
MS1 := 1.

2. If n≥ 4, then
M1 :=nsin3(n1) ,

M2 :=nsin1(n1−1) ,

MS1 :=PT
n−1 (blkdiag(M1,M2))

(√
2Ĥn−1

)
.

Output: MS1 =
√

n SI
n−1.

2.3 Examples for computing efficient and completely recursive DST I-IV algorithms
Here we state examples for computing fast, efficient, and recursive DST I-IV algorithms having sparse, scaled

orthogonal, rotational, and rotational-reflection matrix factorizations based on DST I-IV algorithms nsin1(n− 1),
nsin2(n), nsin3(n), and nsin4(n) for n = 8. Later in section 4, we use the factorizations for DST I-IV matrices to
develop and generalize n points signal flow graphs for DST I-IV algorithms.

Example 2.9. By following algorithms (2.8), (2.5), (2.7), and (2.6), the factorization for DST-I given by:
√

8 SI
7

= PT
7

[√
2 HT

4 0
0 PT

3

]
√

2 SIV
2 0 0 0

0
√

2 SIII
2 0 0

0 0
√

2 SIII
2 0

0 0 0
√

2 SI
1

[P4 0
0
√

2 Ĥ3

]√
2 Ĥ7

(2)

where

P3 =

1 0 0
0 0 1
0 1 0

 , SI
1 = 1,

√
2 SIII

2 =

[
1 1
1 −1

]
,
√

2 SIV
2 =

√
2
[

sin π

8 cos π

8
cos π

8 −sin π

8

]

√
2 Ĥ3 =

 1 0 1
0
√

2 0
1 0 −1

 ,√2 Ĥ7 =

 I2 0 Ĩ2

0
√

2 0
I2 0 −Ĩ2





Example 2.10. By following algorithms (2.5) and (2.6), the factorization for DST-II given by:
√

8 SII
8

= PT
8

[
PT

4 0
0 PT

4

] [√
2V4 0
0 I4

]
√

2 SII
2 0 0 0

0
√

2 SII
2 0 0

0 0
√

2 SIV
2 0

0 0 0
√

2 SII
2


[

Q4 0
0
√

2 H4

]√
2 H8

(3)

where

√
2V4 =


0
√

2 0 0
1 0 −1 0
−1 0 −1 0

0 0 0
√

2

 , Q4 =


sin π

16 0 0 cos π

16
0 −sin 3π

16 −cos 3π

16 0
0 −cos 3π

16 sin 3π

16 0
−cos π

16 0 0 sin π

16


Example 2.11. By following algorithms (2.5), (2.6) and (2.7), the factorization for DST-III given by:

√
8 SIII

8

=
√

2 HT
8

[
PT

4 0
0 I4

] [√
2V4 0
0

√
2 HT

4

]
√

2 SII
2 0 0 0

0
√

2 SII
2 0 0

0 0
√

2 SIV
2 0

0 0 0
√

2 SIII
2


[

Q4 0
0 P4

]
P8

(4)

Example 2.12. By following algorithms (2.5) and (2.6), the factorization for DST-IV given by:
√

8 SIV
8

= PT
8

√
2V8

[
PT

4 0
0 PT

4

]
√

2 SIV
2 0 0 0

0
√

2 SII
2 0 0

0 0
√

2 SIV
2 0

0 0 0
√

2 SII
2


[√

2 H4 0
0

√
2 H4

]
Q8

(5)

where

√
2V8 =



0 0 0
√

2 0 0 0 0
0 0 1 0 −1 0 0 0
0 1 0 0 0 1 0 0
1 0 0 0 0 0 −1 0
0 0 −1 0 −1 0 0 0
0 −1 0 0 0 1 0 0
−1 0 0 0 0 0 −1 0

0 0 0 0 0 0 0
√

2





Q8 =



sin π

32 0 0 0 0 0 0 cos π

32
0 −sin 3π

32 0 0 0 0 −cos 3π

32
0 0 sin 5π

32 0 0 cos 5π

32 0 0
0 0 0 −sin 7π

32 −cos 7π

32 0 0 0
0 0 0 −cos 7π

32 sin 7π

32 0 0 0
0 0 −cos 5π

32 0 0 sin 5π

32 0 0
0 −cos 3π

32 0 0 0 0 sin 3π

32 0
−cos π

32 0 0 0 0 0 0 sin π

32


3 ARITHMETIC COMPLEXITY OF COMPUTING FAST, EFFICIENT, AND COMPLETELY

RECURSIVE DST I-IV ALGORITHMS HAVING SPARSE AND SCALED ORTHOGONAL
FACTORS
The number of additions and multiplications required to compute DST I-IV algorithms via nsin1(n−1), nsin2(n),

nsin3(n), nsin4(n) are considered in this section. The number of additions and multiplications required to compute,
say length n, DST-II algorithm (nsin2(n)) are denoted by #a(NDST-II,n) and #m(NDST-II,n) respectively. Note
that the multiplication of ±1 and permutations are not counted. At the end of the section we illustrate numerical
results based on the number of additions and multiplication required to compute these DST I-IV algorithms.

3.1 Arithmetic complexity of DST I-IV algorithms
Here we address the arithmetic cost of computing fast, efficient, and recursive DST I-IV algorithms having

sparse, scaled orthogonal, rotational, and rotational-reflection factors. The complexity of computing these DST I-
IV algorithms are expressed first by calculating the arithmetic complexity of DST-II algorithm and then using it to
compute the complexity of DST-IV, DST-III and DST-I algorithms respectively.

Lemma 3.1. Let n = 2t (t ≥ 2) be given. If DST-II algorithm (nsin2(n)) is computed using algorithms (2.5) and
(2.6) then the arithmetic cost of computing length n DST-II algorithm is given by

#a(NDST-II,n) =
4
3

nt− 8
9

n− 1
9
(−1)t +1,

#m(NDST-II,n) =
2
3

nt +
2
9

n+
7
9
(−1)t −1. (6)

Proof. From algorithms (2.5) and (2.6)

#a(NDST-II,n) = #a
(

NDST-II,
n
2

)
+#a

(
NDST-IV,

n
2

)
+#a

(√
2 Hn

)
#a (NDST-IV,n) = #a

(√
2Vn

)
+2 ·#a

(
NDST-II,

n
2

)
+#a(Qn) (7)

Referring the structures of Hn, Vn, and Qn

#a
(√

2 Hn

)
= n, #m

(√
2 Hn

)
= 0

#a
(√

2Vn

)
= n−2, #m

(√
2Vn

)
= 2

#a(Qn) = n, #m(Qn) = 2n (8)

Thus
#a(NDST-II,n) = #a

(
NDST-II,

n
2

)
+2 ·#a

(
NDST-II,

n
4

)
+2n−2



Since n = 2t we can obtain the second order linear difference equation with respect to t

#a(NDST-II,2t)−#a
(
NDST-II,2t−1)−2 ·#a

(
NDST-II,2t−2)= 2t+1−2.

Solving the above under the initial conditions #a(NDST-II,2) = 2 and
#a(NDST-II,4) = 8, one can obtain

#a(NDST-II,2t) =
4
3

nt− 8
9

n− 1
9
(−1)t +1.

Also using initial conditions #m(NDST-II,2) = 0 and #m(NDST-II,4) = 6, one can derive the analogous result for
the number of multiplications as

#m(NDST-II,2t) =
2
3

nt +
2
9

n+
7
9
(−1)t −1.

Corollary 3.2. Let n = 2t (t ≥ 2) be given. If DST-IV algorithm ((nsin4(n))) is computed using algorithms (2.5) and
(2.6) then the arithmetic cost of computing length n DST-IV algorithm is given by

#a(NDST-IV,n) =
4
3

nt− 2
9

n+
2
9
(−1)t ,

#m(NDST-IV,n) =
2
3

nt +
14
9

n− 14
9
(−1)t . (9)

Proof. The number of additions required to compute DST-IV algorithm (2.6) can be found by evaluating (7);

#a (NDST-IV,n) = #a
(√

2Vn

)
+2 ·#a

(
NDCT-II,

n
2

)
+#a(Qn)

= 2 ·#a
(

NDCT-II,
n
2

)
+2n−2.

Simplifying the above with (6) at n
2 yields

#a(NDCT-IV,n) =
4
3

nt− 2
9

n+
2
9
(−1)t .

Similarly, the number of multiplications required to compute new DST-IV algorithm can be found by evaluating (7)
with (6) at n

2 which yields

#m(NDST-IV,n) =
2
3

nt +
14
9

n− 14
9
(−1)t .

The following result is trivial because the DST-III algorithm (nsin3(n)) was stated using the DST-II algorithm
(nsin2(n)).

Corollary 3.3. Let n = 2t (t ≥ 2) be given. If DST-III algorithm (nsin3(n)) is computed using algorithms (2.5), (2.7)
and (2.6) then the arithmetic cost of computing length n DST-III algorithm is given by

#a(NDST-III,n) =
4
3

nt− 8
9

n− 1
9
(−1)t +1,

#m(NDST-III,n) =
2
3

nt +
2
9

n+
7
9
(−1)t −1. (10)



Remark 3.4. Using DST-III algorithm (2.7) and the arithmetic cost of DST-IV algorithm in corollary (3.2), it is
possible to obtain the first order linear difference equation with respect to t. By solving the said equation under
initial conditions #a(NDST-III,2) = 2 and #m(NDST-III,2) = 0 respectively, one can obtain the same results as in
corollary (3.3) for the number of additions and multiplications involving in DST-III algorithm.

Lemma 3.5. Let n = 2t (t ≥ 2) be given. If DST-I algorithm (nsin1(n− 1)) is computed using algorithms (2.8),
(2.5), (2.7) and (2.6) then the arithmetic cost of DST-I algorithms of length n−1 is given by

#a (NDST-I,n−1) =
4
3

nt− 14
9

n+
1
18

(−1)t − t +
3
2

#m (NDST-I,n−1) =
2
3

nt− 10
9

n− 7
18

(−1)t +
3
2

(11)

Proof. Referring DST-I algorithm (2.8)

#a (NDST-I,n−1) = #a
(

NDST-I,
n
2
−1
)
+#a

(
NDST-III,

n
2

)
+#a

(√
2 Ĥn−1

)
(12)

Following the structure of Ĥn−1 leads to

#a
(√

2 Ĥn−1

)
= n−2, #m

(√
2 Ĥn−1

)
= 1 (13)

Using arithmetic cost of DST-III (6) at n
2 and (13), we can rewrite (12)

#a (NDST-I,n−1) = #a
(

NDST-I,
n
2
−1
)
+

(
2n
3
(t−1)− 4n

9
+

1
9
(−1)t +1

)
+n−2

Since n = 2t the above simplifies to the first order linear difference equation with respect to t ≥ 2

#a (NDST-I,2t −1)−#a
(
NDST-I,2t−1−1

)
=

2
3

t ·2t − 1
9

2t +
1
9
(−1)t −1

Solving the above first order linear difference equation (with respect to t) using the initial condition #a (NDST-I,1) =
0, one can obtain

#a (NDST-I,2t −1) =
4
3

nt− 14
9

n+
1

18
(−1)t − t +

3
2

Also using initial condition #m(NDST-I,1)= 1, one can derive the analogous result for the number of multiplications
as

#m (NDST-I,n−1) =
2
3

nt− 10
9

n− 7
18

(−1)t +
3
2

3.2 Numerical illustration of the arithmetic cost of computing fast, efficient, and completely recur-
sive DST I-IV algorithms

The following numerical experiments are done to illustrate the number of additions and multiplications required
to compute fast, efficient, and completely recursive DST I-IV algorithms having sparse, scaled orthogonal, rotational,
and rotational-reflection factors. Matrices are used with the sizes from 8×8 to 4096×4096. These are implemented
using MATLAB version 8.3 (R2014a).

Figure (1a) and (1b) illustrate the number of additions and multiplications required to compute DST I-IV algo-
rithms corresponding to lemma 3.1, corollary 3.2, corollary 3.3, lemma 3.5 respectively with comparison to the
n log n operations.



(a) (b)

Figure 1: (1a) Number of additions in computing DST I-IV algorithms with n log n (1b) Number of multiplications
in computing DST I-IV algorithms with n log n

4 SIGNAL FLOW GRAPHS FOR FAST, EFFICIENT, AND COMPLETELY RECURSIVE DST
I-IV ALGORITHMS
In this section we use signal flow graphs to elaborate fast, efficient, and completely recursive DST I-IV algo-

rithms having sparse, scaled orthogonal, rotation, rotation-reflection, butterfly matrices for n = 16 and use those
results to elaborate generalized n points flow graphs for these DST algorithms. Note that as stated in section 2, we
have developed DST I-IV algorithms to reduce the cost of multiplications. Hence, based on the cheap cost of multi-
plication, we can develop signal flow graphs for these DST I-Iv only by using few multipliers which is opposed to
the existing DST I-IV flow graphs.

These signal flow graphs of DST algorithms are drawn with respect to the decimation-in-frequency having the
input signal x in order and output signal y in scrambled. So for a given input signal x, this section present signal flow
graphs for output signal y =

√
nSI

n−1 x,y =
√

nSII
n x,y =

√
nSIII

n x, and y =
√

nSIV
n x. As shown in the flow graphs,

in each graph signal flows from the left to the right. However, it is possible to convert the decimation-in-frequency
DST algorithms into decimation-in-time DST algorithms applying multiplications before additions and using the
identical computation complexity (same as in section 3) as in decimation-in-frequency DST algorithms.

In each Figure from 2 until 9, multiplication with -1 is denoted by a dotted line and notations ε := 1√
2
, Ci, j := cos iπ

2 j ,

and Si, j = sin iπ
2 j for positive integers i and j are used.

4.1 Signal flow graphs for DST I-IV algorithms when n = 16
Let us state the signal flow graph for DST I-IV computed via nsin1(n−1), nsin2(n), nsin3(n), nsin4(n). Here

we draw the flow graphs for n = 16 with the help of factorizations of DST I-IV algorithms as stated in section 2.2.

Signal flow graphs for 15-point NDST-I (4SI
15) and 16-point NDST II-IV (4SII

16, 4SIII
16 , and 4SIV

16 ) algorithms are
presented via Figures 2, 3, 4, and 5.

The flow graphs for 16-point NDST II-IV algorithms stated via Figures 3, 4, and 5, the input signals x are in order



Figure 2: Flow graph for 15-point NDST-I (4SI
15)

and output signals y are in bit-reversed order. Thus in bit-reversed order, each output index is represented as a binary
number and the indices’ bits are reversed.

4.2 Generalized signal flow graphs for DST I-IV algorithms
Here we present generalized (n−1) points signal flow graph for DST-I and n points signal flow graphs for DST

II-IV based on DST algorithms stated in the section 2.2 and the flow graphs drawn in the section 4.1. The generalized
signal flow graphs for fast and completely recursive DST I-IV algorithms can be illustrated via Figures 6, 7, 8, and
9



Figure 3: Flow graph for 16-point NDST-II (4SII
16)

5 CONCLUSION
In this paper, we have provided fast, efficient, and completely recursive DST I-IV algorithms, which are solely

defined via DST I-IV, having sparse, scaled orthogonal, rotational, rotational-reflection, and butterfly matrices while
providing the corresponding arithmetic complexity of the said algorithms. Moreover, the language of signal flow
graphs is used to show the connection between factors of these DST algorithms and (n−1) points DST-I flow graph
and n points DST II-IV flow graphs.



Figure 4: Flow graph for 16-point NDST-III (4SIII
16 )
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