14 research outputs found

    Divide and Fuse: A Re-ranking Approach for Person Re-identification

    Full text link
    As re-ranking is a necessary procedure to boost person re-identification (re-ID) performance on large-scale datasets, the diversity of feature becomes crucial to person reID for its importance both on designing pedestrian descriptions and re-ranking based on feature fusion. However, in many circumstances, only one type of pedestrian feature is available. In this paper, we propose a "Divide and use" re-ranking framework for person re-ID. It exploits the diversity from different parts of a high-dimensional feature vector for fusion-based re-ranking, while no other features are accessible. Specifically, given an image, the extracted feature is divided into sub-features. Then the contextual information of each sub-feature is iteratively encoded into a new feature. Finally, the new features from the same image are fused into one vector for re-ranking. Experimental results on two person re-ID benchmarks demonstrate the effectiveness of the proposed framework. Especially, our method outperforms the state-of-the-art on the Market-1501 dataset.Comment: Accepted by BMVC201

    A Pose-Sensitive Embedding for Person Re-Identification with Expanded Cross Neighborhood Re-Ranking

    Full text link
    Person re identification is a challenging retrieval task that requires matching a person's acquired image across non overlapping camera views. In this paper we propose an effective approach that incorporates both the fine and coarse pose information of the person to learn a discriminative embedding. In contrast to the recent direction of explicitly modeling body parts or correcting for misalignment based on these, we show that a rather straightforward inclusion of acquired camera view and/or the detected joint locations into a convolutional neural network helps to learn a very effective representation. To increase retrieval performance, re-ranking techniques based on computed distances have recently gained much attention. We propose a new unsupervised and automatic re-ranking framework that achieves state-of-the-art re-ranking performance. We show that in contrast to the current state-of-the-art re-ranking methods our approach does not require to compute new rank lists for each image pair (e.g., based on reciprocal neighbors) and performs well by using simple direct rank list based comparison or even by just using the already computed euclidean distances between the images. We show that both our learned representation and our re-ranking method achieve state-of-the-art performance on a number of challenging surveillance image and video datasets. The code is available online at: https://github.com/pse-ecn/pose-sensitive-embeddingComment: CVPR 2018: v2 (fixes, added new results on PRW dataset

    Unsupervised Graph-based Rank Aggregation for Improved Retrieval

    Full text link
    This paper presents a robust and comprehensive graph-based rank aggregation approach, used to combine results of isolated ranker models in retrieval tasks. The method follows an unsupervised scheme, which is independent of how the isolated ranks are formulated. Our approach is able to combine arbitrary models, defined in terms of different ranking criteria, such as those based on textual, image or hybrid content representations. We reformulate the ad-hoc retrieval problem as a document retrieval based on fusion graphs, which we propose as a new unified representation model capable of merging multiple ranks and expressing inter-relationships of retrieval results automatically. By doing so, we claim that the retrieval system can benefit from learning the manifold structure of datasets, thus leading to more effective results. Another contribution is that our graph-based aggregation formulation, unlike existing approaches, allows for encapsulating contextual information encoded from multiple ranks, which can be directly used for ranking, without further computations and post-processing steps over the graphs. Based on the graphs, a novel similarity retrieval score is formulated using an efficient computation of minimum common subgraphs. Finally, another benefit over existing approaches is the absence of hyperparameters. A comprehensive experimental evaluation was conducted considering diverse well-known public datasets, composed of textual, image, and multimodal documents. Performed experiments demonstrate that our method reaches top performance, yielding better effectiveness scores than state-of-the-art baseline methods and promoting large gains over the rankers being fused, thus demonstrating the successful capability of the proposal in representing queries based on a unified graph-based model of rank fusions

    Image-to-Image Retrieval by Learning Similarity between Scene Graphs

    Full text link
    As a scene graph compactly summarizes the high-level content of an image in a structured and symbolic manner, the similarity between scene graphs of two images reflects the relevance of their contents. Based on this idea, we propose a novel approach for image-to-image retrieval using scene graph similarity measured by graph neural networks. In our approach, graph neural networks are trained to predict the proxy image relevance measure, computed from human-annotated captions using a pre-trained sentence similarity model. We collect and publish the dataset for image relevance measured by human annotators to evaluate retrieval algorithms. The collected dataset shows that our method agrees well with the human perception of image similarity than other competitive baselines.Comment: Accepted to AAAI 202

    Enhancing vehicle re-identification via synthetic training datasets and re-ranking based on video-clips information

    Full text link
    Vehicle re-identification (ReID) aims to find a specific vehicle identity across multiple non-overlapping cameras. The main challenge of this task is the large intra-class and small inter-class variability of vehicles appearance, sometimes related with large viewpoint variations, illumination changes or different camera resolutions. To tackle these problems, we proposed a vehicle ReID system based on ensembling deep learning features and adding different post-processing techniques. In this paper, we improve that proposal by: incorporating large-scale synthetic datasets in the training step; performing an exhaustive ablation study showing and analyzing the influence of synthetic content in ReID datasets, in particular CityFlow-ReID and VeRi-776; and extending post-processing by including different approaches to the use of gallery video-clips of the target vehicles in the re-ranking step. Additionally, we present an evaluation framework in order to evaluate CityFlow-ReID: as this dataset has not public ground truth annotations, AI City Challenge provided an on-line evaluation service which is no more available; our evaluation framework allows researchers to keep on evaluating the performance of their systems in the CityFlow-ReID datasetOpen Access funding provided thanks to the CRUE-CSIC agreement with Springer Natur

    Unifying Person and Vehicle Re-Identification

    Get PDF
    Person and vehicle re-identification (re-ID) are important challenges for the analysis of the burgeoning collection of urban surveillance videos. To efficiently evaluate such videos, which are populated with both vehicles and pedestrians, it would be preferable to have one unified framework with effective performance across both domains. Unfortunately, due to the contrasting composition of humans and vehicles, no architecture has yet been established that can adequately perform both tasks. We release a Person and Vehicle Unified Data Set (PVUD) comprising of both pedestrians and vehicles from popular existing re-ID data sets, in order to better model the data that we would expect to find in the real world. We exploit the generalisation ability of metric learning to propose a re-ID framework that can learn to re-identify humans and vehicles simultaneously. We design our network, MidTriNet, to harness the power of mid-level features to develop better representations for the re-ID tasks. We help the system to handle mixed data by appending unification terms with additional hard negative and hard positive mining to MidTriNet. We attain comparable accuracy training on PVUD to training on the comprising data sets separately, supporting the system's generalisation power. To further demonstrate the effectiveness of our framework, we also obtain results better than, or competitive with, the state-of-the-art on each of the Market-1501, CUHK03, VehicleID and VeRi data sets
    corecore