64 research outputs found

    Design and operation of mesh-restorable WDM networks

    Get PDF
    The explosive growth of Web-related services over the Internet is bringing millions of new users online, thus creating a growing demand for bandwidth. Wavelength Division Multiplexed (WDM) networks, employing wavelength routing has emerged as the dominant technology to satisfy this growing demand for bandwidth. As the amount of traffic carried is larger, any single failure can be catastrophic. Survivability becomes indispensable in such networks. Therefore, it is imperative to design networks that can quickly and efficiently recover from failures.;In this dissertation, we explore the design and operation of survivable optical networks. We study several survivability paradigms for surviving single link failures. A restoration model is developed based on a combination of these paradigms. We propose an optimal design and upgrade scheme for WDM backbone networks. We formulate an integer programming-based design problem to minimize the total facility cost. This framework provides a cost effective way of upgrading the network by identifying how much resources to budget at each stage of network evolution. This results in significant cost reductions for the network service provider.;As part of network operation, we capture multiple operational phases in survivable network operation as a single integer programming formulation. This common framework incorporates service disruption and includes a service differentiation model based on lightpath protection. However, the complexity of the optimization problem makes the formulation applicable only for network provisioning and o2ine reconfiguration. The direct use of such methods for online reconfiguration remains limited to small networks with few tens of wavelengths. We develop a heuristic algorithm based on LP relaxation technique for fast, near optimal, online reconfiguration. Since the ILP variables are relaxed, we provide a way to derive a feasible solution from the relaxed problem. Most of the current approaches assume centralized information. They do not scale well as they rely on per-flow information. This motivates the need for developing dynamic algorithms based on partial information. The partial information we use can be easily obtained from traffic engineering extensions to routing protocols. Finally, the performance of partial information routing algorithms is compared through simulation studies

    Priority based dynamic lightpath allocation in WDM networks.

    Get PDF
    Internet development generates new bandwidth requirement every day. Optical networks employing WDM (wavelength division multiplexing) technology can provide high capacity, low error rate and low delay. They are considered to be future backbone networks. Since WDM networks usually operate in a high speed, network failure (such as fiber cut), even for a short term, can cause huge data lost. So design robust WDM network to survive faults is a crucial issue in WDM networks. This thesis introduces a new and efficient MILP (Mixed Integer Linear Programming) formulation to solve dynamic lightpath allocation problem in survivable WDM networks, using both shared and dedicated path protection. The formulation defines multiple levels of service to further improve resource utilization. Dijkstra\u27s shortest path algorithm is used to pre-compute up to 3 alternative routes between any node pair, so as to limit the lightpath routing problem within up to 3 routes instead of whole network-wide. This way can shorten the solution time of MILP formulation; make it acceptable for practical size network. Extensive experiments carried out on a number of networks show this new MILP formulation can improve performance and is feasible for real-life network. Source: Masters Abstracts International, Volume: 43-01, page: 0249. Adviser: Arunita Jaekel. Thesis (M.Sc.)--University of Windsor (Canada), 2004

    Survivable mesh-network design & optimization to support multiple QoP service classes

    Get PDF
    Every second, vast amounts of data are transferred over communication systems around the world, and as a result, the demands on optical infrastructures are extending beyond the traditional, ring-based architecture. The range of content and services available from the Internet is increasing, and network operations are constantly under pressure to expand their optical networks in order to keep pace with the ever increasing demand for higher speed and more reliable links

    Designing Survivable Wavelength Division Multiplexing (WDM) Mesh Networks

    Get PDF
    This thesis focuses on the survivable routing problem in WDM mesh networks where the objective is to minimize the total number of wavelengths used for establishing working and protection paths in the WDM networks. The past studies for survivable routing suffers from the scalability problem when the number of nodes/links or connection requests grow in the network. In this thesis, a novel path based shared protection framework namely Inter-Group Shared protection (I-GSP) is proposed where the traffic matrix can be divided into multiple protection groups (PGs) based on specific grouping policy. Optimization is performed on these PGs such that sharing of protection wavelengths is considered not only inside a PG, but between the PGs. Simulation results show that I-GSP based integer linear programming model, namely, ILP-II solves the networks in a reasonable amount of time for which a regular integer linear programming formulation, namely, ILP-I becomes computationally intractable. For most of the cases the gap between the optimal solution and the ILP-II ranges between (2-16)%. The proposed ILP-II model yields a scalable solution for the capacity planning in the survivable optical networks based on the proposed I-GSP protection architecture

    Differentiated quality-of-recovery and quality-of-protection in survivable WDM mesh networks

    Get PDF
    In the modern telecommunication business, there is a need to provide different Quality-of-Recovery (QoR) and Quality-of-Protection (QoP) classes in order to accommodate as many customers as possible, and to optimize the protection capacity cost. Prevalent protection methods to provide specific QoS related to protection are based on pre-defined shape protection structures (topologies), e.g., p -cycles and p -trees. Although some of these protection patterns are known to provide a good trade-off among the different protection parameters, their shapes can limit their deployment in some specific network conditions, e.g., a constrained link spare capacity budget and traffic distribution. In this thesis, we propose to re-think the design process of protection schemes in survivable WDM networks by adopting a hew design approach where the shapes of the protection structures are decided based on the targeted QoR and QoP guarantees, and not the reverse. We focus on the degree of pre-configuration of the protection topologies, and use fully and partially pre-cross connected p -structures, and dynamically cross connected p -structures. In QoR differentiation, we develop different approaches for pre-configuring the protection capacity in order to strike different balances between the protection cost and the availability requirements in the network; while in the QoP differentiation, we focus on the shaping of the protection structures to provide different grades of protection including single and dual-link failure protection. The new research directions proposed and developed in this thesis are intended to help network operators to effectively support different Quality-of-Recovery and Quality-of-Protection classes. All new ideas have been translated into mathematical models for which we propose practical and efficient design methods in order to optimize the inherent cost to the different designs of protection schemes. Furthermore, we establish a quantitative relation between the degree of pre-configuration of the protection structures and their costs in terms of protection capacity. Our most significant contributions are the design and development of Pre-Configured Protection Structure (p-structure) and Pre-Configured Protection Extended-Tree (p -etree) based schemes. Thanks to the column generation modeling and solution approaches, we propose a new design approach of protection schemes where we deploy just enough protection to provide different quality of recovery and protection classe

    Survivability aspects of future optical backbone networks

    Get PDF
    In huidige glasvezelnetwerken kan een enkele vezel een gigantische hoeveelheid data dragen, ruwweg het equivalent van 25 miljoen gelijktijdige telefoongesprekken. Hierdoor zullen netwerkstoringen, zoals breuken van een glasvezelkabel, de communicatie van een groot aantal eindgebruikers verstoren. Netwerkoperatoren kiezen er dan ook voor om hun netwerk zo te bouwen dat zulke grote storingen automatisch opgevangen worden. Dit proefschrift spitst zich toe op twee aspecten rond de overleefbaarheid in toekomstige optische netwerken. De eerste doelstelling die beoogd wordt is het tot stand brengen vanrobuuste dataverbindingen over meerdere netwerken. Door voldoende betrouwbare verbindingen tot stand te brengen over een infrastructuur die niet door een enkele entiteit wordt beheerd kan men bv. weredwijd Internettelevisie van hoge kwaliteit aanbieden. De bestudeerde oplossing heeft niet enkel tot doel om deze zeer betrouwbare verbinding te berekenen, maar ook om dit te bewerkstelligen met een minimum aan gebruikte netwerkcapaciteit. De tweede doelstelling was om een antwoord te formuleren om de vraag hoe het toepassen van optische schakelsystemen gebaseerd op herconfigureerbare optische multiplexers een impact heeft op de overleefbaarheid van een optisch netwerk. Bij lagere volumes hebben optisch geschakelde netwerken weinig voordeel van dergelijke gesofistikeerde methoden. Elektronisch geschakelde netwerken vertonen geen afhankelijkheid van het datavolume en hebben altijd baat bij optimalisatie

    Resilient network design: Challenges and future directions

    Get PDF
    This paper highlights the complexity and challenges of providing reliable services in the evolving communications infrastructure. The hurdles in providing end-to-end availability guarantees are discussed and research problems identified. Avenues for overcoming some of the challenges examined are presented. This includes the use of a highly available network spine embedded in a physical network together with efficient crosslayer mapping to offer survivability and differentiation of traffic into classes of resilience. © 2013 Springer Science+Business Media New York

    Optimization Methods for Optical Long-Haul and Access Networks

    Get PDF
    Optical communications based on fiber optics and the associated technologies have seen remarkable progress over the past two decades. Widespread deployment of optical fiber has been witnessed in backbone and metro networks as well as access segments connecting to customer premises and homes. Designing and developing a reliable, robust and efficient end-to-end optical communication system have thus emerged as topics of utmost importance both to researchers and network operators. To fulfill these requirements, various problems have surfaced and received attention, such as network planning, capacity placement, traffic grooming, traffic scheduling, and bandwidth allocation. The optimal network design aims at addressing (one or more of) these problems based on some optimization objectives. In this thesis, we consider two of the most important problems in optical networks; namely the survivability in optical long-haul networks and the problem of bandwidth allocation and scheduling in optical access networks. For the former, we present efficient and accurate models for availability-aware design and service provisioning in p-cycle based survivable networks. We also derive optimization models for survivable network design based on p-trail, a more general protection structure, and compare its performance with p-cycles. Indeed, major cost savings can be obtained when the optical access and long-haul subnetworks become closer to each other by means of consolidation of access and metro networks. As this distance between long-haul and access networks reduces, and the need and expectations from passive optical access networks (PONs) soar, it becomes crucial to efficiently manage bandwidth in the access while providing the desired level of service availability in the long-haul backbone. We therefore address in this thesis the problem of bandwidth management and scheduling in passive optical networks; we design efficient joint and non-joint scheduling and bandwidth allocation methods for multichannel PON as well as next generation 10Gbps Ethernet PON (10G-EPON) while addressing the problem of coexistence between 10G-EPONs and multichannel PONs

    Supporting differentiated classes of resilience in multilayer networks

    Get PDF
    Services provided over telecommunications networks typically have different resilience requirements and networks need to be able to support different levels of resilience in an efficient manner. This dissertation investigates the problem of supporting differentiated classes of resilience in multilayer networks, including the most stringent resilience class required by critical services. We incorporate an innovative technique of embedding a subnetwork, termed the spine, with comparatively higher availability values at the physical layer. The spine lays a foundation for differentiation between multiple classes of flows that can be leveraged to achieve both high resilience and differentiation. The aim of this research is mainly to explore, design, and evaluate the proposed spine concept model in multilayer networks. The dissertation has four major parts. First, we explore the spine concept through numerical analysis of simple topologies illustrating the potential benefits and the cost considerations of the spine. We develop heuristics algorithms to find suitable spines for a network based on the structural properties of the network topology. Second, an optimization problem is formulated to determine the spine. The problem encompasses estimates of link availability improvements, associated costs, and a total budget. Third, we propose a crosslayer mapping and spine-aware routing design problem with protection given mainly at the lower layer. The problem is designed to transfer lower layer differentiation capability to the upper layer network and flows. We provide two joint routing-mapping optimization formulations and evaluate their performance in a multilayer scenario. Fourth, the joint routing-mapping problem is redesigned with protection given in the upper network layer instead. This will create two isolated logical networks; one mapped to the spine and the other is mapped freely on the network. Flows are assigned a path or path-pair based on their class of resilience. This approach can provide more routing options yielding different availability levels. The joint routing-mapping design problems are formulated as Integer Linear Programming (ILP) models. The goal is to achieve a wider range of availability values across layers and high availability levels for mission-critical services without the need to use higher order protection configurations. The proposed models are evaluated with extensive numerical results using real network topologies

    Efficiency Of Using Partial Path Protection Method In Optical Wdm Mesh Networks

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2006Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2006Bu çalışmada, dalga boyu bölümlemeli çoklama yöntemine dayalı optik ağlarda oluşan bağ aksaklıklarının önüne geçebilmek ve ağın kalımlığını sağlayabilmek için, her bir ana yolun her bir bağı için bir koruyucu onarım yolu belirleyen kısmi yol koruma yöntemi kullanılarak, korumanın etkinliğinin arttırılması sağlanmıştır. Bağlantıları koruyucu yolları oluşturan bağların dalga boylarının, farklı bağlantılar için oluşturulmuş koruyucu yollar ile paylaşılmasına izin verilip verilmemesine dayalı olan, adanmış ve paylaşımlı kısmi yol koruma yöntemleri de dikkate alınarak, paylaşımlı kısmi yol koruma yönteminin, adanmış kısmi yol koruma yöntemine olan üstünlüğü belirlenmiştir. Paylaşım oranı adı verilen, aynı linkte bulunan bir kaynağı paylaşabilen, aktif yolları koruma amaçlı kurulan koruyucu yolların sayısını belirleyen terimin de, başarımı nasıl etkilediği incelenmiştir. En yüksek paylaşım oranı değerine ve kaynağa sahip paylaşımlı kısmi yol korumanın en iyi başarıma sahip olduğu gözlemlenmiştir. Etkinlik başarım ölçüleri olarak, bağlantı isteklerine göre ağda kullanılan dalga boyu-link sayısı ve bağlantı isteklerinin bloke edilme oranı göz önünde bulundurulmuştur.In this study, the increase on the efficiency of protection, which is used to avoid link failures in Optical Wavelength-Division Multiplexed Networks and to ensure survivability for these networks, is provided by using the Partial Path Protection scheme, in which a different restoration path for every link of every primary path is determined. Dedicated Partial Path Protection and Shared Partial Path Protection, which are based on allowance of sharing the wavelengths of the links, which are used on the protection paths, by protection paths are considered. It is observed that Shared Partial Path Protection outperforms the Dedicated Partial Path Protection scheme. Sharing Ratio is the number of protection paths, which share the same resource of the link for protecting the active paths against failures is also analyzed. The simulations confirm that as the value of the sharing ratio increases, the performance of the network increases. Simulation results show that the Shared Partial Path Protection with the highest Sharing Ratio value and the number of wavelengths, has the best performance. The performance metrics used in simulations are, number of wavelength-links occupied per link and blocking probability, according to the number of connection requests in the network.Yüksek LisansM.Sc
    corecore