10 research outputs found

    Automatic Synchronization of Multi-User Photo Galleries

    Full text link
    In this paper we address the issue of photo galleries synchronization, where pictures related to the same event are collected by different users. Existing solutions to address the problem are usually based on unrealistic assumptions, like time consistency across photo galleries, and often heavily rely on heuristics, limiting therefore the applicability to real-world scenarios. We propose a solution that achieves better generalization performance for the synchronization task compared to the available literature. The method is characterized by three stages: at first, deep convolutional neural network features are used to assess the visual similarity among the photos; then, pairs of similar photos are detected across different galleries and used to construct a graph; eventually, a probabilistic graphical model is used to estimate the temporal offset of each pair of galleries, by traversing the minimum spanning tree extracted from this graph. The experimental evaluation is conducted on four publicly available datasets covering different types of events, demonstrating the strength of our proposed method. A thorough discussion of the obtained results is provided for a critical assessment of the quality in synchronization.Comment: ACCEPTED to IEEE Transactions on Multimedi

    Deep Multimodal Feature Encoding for Video Ordering

    Get PDF
    True understanding of videos comes from a joint analysis of all its modalities: the video frames, the audio track, and any accompanying text such as closed captions. We present a way to learn a compact multimodal feature representation that encodes all these modalities. Our model parameters are learned through a proxy task of inferring the temporal ordering of a set of unordered videos in a timeline. To this end, we create a new multimodal dataset for temporal ordering that consists of approximately 30K scenes (2-6 clips per scene) based on the "Large Scale Movie Description Challenge". We analyze and evaluate the individual and joint modalities on three challenging tasks: (i) inferring the temporal ordering of a set of videos; and (ii) action recognition. We demonstrate empirically that multimodal representations are indeed complementary, and can play a key role in improving the performance of many applications.Comment: IEEE International Conference on Computer Vision (ICCV) Workshop on Large Scale Holistic Video Understanding. The datasets and code are available at https://github.com/vivoutlaw/tcb

    Self-supervised Face Representation Learning

    Get PDF
    This thesis investigates fine-tuning deep face features in a self-supervised manner for discriminative face representation learning, wherein we develop methods to automatically generate pseudo-labels for training a neural network. Most importantly solving this problem helps us to advance the state-of-the-art in representation learning and can be beneficial to a variety of practical downstream tasks. Fortunately, there is a vast amount of videos on the internet that can be used by machines to learn an effective representation. We present methods that can learn a strong face representation from large-scale data be the form of images or video. However, while learning a good representation using a deep learning algorithm requires a large-scale dataset with manually curated labels, we propose self-supervised approaches to generate pseudo-labels utilizing the temporal structure of the video data and similarity constraints to get supervision from the data itself. We aim to learn a representation that exhibits small distances between samples from the same person, and large inter-person distances in feature space. Using metric learning one could achieve that as it is comprised of a pull-term, pulling data points from the same class closer, and a push-term, pushing data points from a different class further away. Metric learning for improving feature quality is useful but requires some form of external supervision to provide labels for the same or different pairs. In the case of face clustering in TV series, we may obtain this supervision from tracks and other cues. The tracking acts as a form of high precision clustering (grouping detections within a shot) and is used to automatically generate positive and negative pairs of face images. Inspired from that we propose two variants of discriminative approaches: Track-supervised Siamese network (TSiam) and Self-supervised Siamese network (SSiam). In TSiam, we utilize the tracking supervision to obtain the pair, additional we include negative training pairs for singleton tracks -- tracks that are not temporally co-occurring. As supervision from tracking may not always be available, to enable the use of metric learning without any supervision we propose an effective approach SSiam that can generate the required pairs automatically during training. In SSiam, we leverage dynamic generation of positive and negative pairs based on sorting distances (i.e. ranking) on a subset of frames and do not have to only rely on video/track based supervision. Next, we present a method namely Clustering-based Contrastive Learning (CCL), a new clustering-based representation learning approach that utilizes automatically discovered partitions obtained from a clustering algorithm (FINCH) as weak supervision along with inherent video constraints to learn discriminative face features. As annotating datasets is costly and difficult, using label-free and weak supervision obtained from a clustering algorithm as a proxy learning task is promising. Through our analysis, we show that creating positive and negative training pairs using clustering predictions help to improve the performance for video face clustering. We then propose a method face grouping on graphs (FGG), a method for unsupervised fine-tuning of deep face feature representations. We utilize a graph structure with positive and negative edges over a set of face-tracks based on their temporal structure of the video data and similarity-based constraints. Using graph neural networks, the features communicate over the edges allowing each track\u27s feature to exchange information with its neighbors, and thus push each representation in a direction in feature space that groups all representations of the same person together and separates representations of a different person. Having developed these methods to generate weak-labels for face representation learning, next we propose to learn compact yet effective representation for describing face tracks in videos into compact descriptors, that can complement previous methods towards learning a more powerful face representation. Specifically, we propose Temporal Compact Bilinear Pooling (TCBP) to encode the temporal segments in videos into a compact descriptor. TCBP possesses the ability to capture interactions between each element of the feature representation with one-another over a long-range temporal context. We integrated our previous methods TSiam, SSiam and CCL with TCBP and demonstrated that TCBP has excellent capabilities in learning a strong face representation. We further show TCBP has exceptional transfer abilities to applications such as multimodal video clip representation that jointly encodes images, audio, video and text, and video classification. All of these contributions are demonstrated on benchmark video clustering datasets: The Big Bang Theory, Buffy the Vampire Slayer and Harry Potter 1. We provide extensive evaluations on these datasets achieving a significant boost in performance over the base features, and in comparison to the state-of-the-art results

    Learning Beyond-pixel Mappings from Internet Videos

    Get PDF
    Recently in the Computer Vision community, there have been significant advancements in algorithms to recognize or localize visual contents for both images and videos, for instance, object recognition and detection tasks. They infer the information that is directly visible within the images or video frames (predicting what’s in the frame). While human-level visual understanding could be much more than that, because human also have insights about the information ’beyond the frame’. In other words, people are able to reasonably infer information that is not visible from the current scenes, such as predicting possible future events. We expect the computational models could own the same capabilities one day. Learning beyond-pixel mappings can be a broad concept. In this dissertation, we carefully define and formulate the problems as specific and subdivided tasks from different aspects. Under this context, what beyond-pixel mapping does is to infer information of broader spatial or temporal context, or even information from other modalities like text or sound. We first present a computational framework to learn the mappings between short event video clips and their intrinsic temporal sequence (which one usually happens first). Then we keep exploring the follow-up direction by directly predicting the future. Specifically we utilize generative models to predict depictions of objects in their future state. Next, we explore a related generation task to generate video frames of the target person with unseen poses guided by a random person. Finally, we propose a framework to learn the mappings between input video frames and it’s counterpart in sound domain. The main contribution of this dissertation lies in exploring beyond-pixel mappings from various directions to add relevant knowledge to the next-generation AI platforms.Doctor of Philosoph

    Data-driven 3D Reconstruction and View Synthesis of Dynamic Scene Elements

    Get PDF
    Our world is filled with living beings and other dynamic elements. It is important to record dynamic things and events for the sake of education, archeology, and culture inheritance. From vintage to modern times, people have recorded dynamic scene elements in different ways, from sequences of cave paintings to frames of motion pictures. This thesis focuses on two key computer vision techniques by which dynamic element representation moves beyond video capture: towards 3D reconstruction and view synthesis. Although previous methods on these two aspects have been adopted to model and represent static scene elements, dynamic scene elements present unique and difficult challenges for the tasks. This thesis focuses on three types of dynamic scene elements, namely 1) dynamic texture with static shape, 2) dynamic shapes with static texture, and 3) dynamic illumination of static scenes. Two research aspects will be explored to represent and visualize them: dynamic 3D reconstruction and dynamic view synthesis. Dynamic 3D reconstruction aims to recover the 3D geometry of dynamic objects and, by modeling the objects’ movements, bring 3D reconstructions to life. Dynamic view synthesis, on the other hand, summarizes or predicts the dynamic appearance change of dynamic objects – for example, the daytime-to-nighttime illumination of a building or the future movements of a rigid body. We first target the problem of reconstructing dynamic textures of objects that have (approximately) fixed 3D shape but time-varying appearance. Examples of such objects include waterfalls, fountains, and electronic billboards. Since the appearance of dynamic-textured objects can be random and complicated, estimating the 3D geometry of these objects from 2D images/video requires novel tools beyond the appearance-based point correspondence methods of traditional 3D computer vision. To perform this 3D reconstruction, we introduce a method that simultaneously 1) segments dynamically textured scene objects in the input images and 2) reconstructs the 3D geometry of the entire scene, assuming a static 3D shape for the dynamically textured objects. Compared to dynamic textures, the appearance change of dynamic shapes is due to physically defined motions like rigid body movements. In these cases, assumptions can be made about the object’s motion constraints in order to identify corresponding points on the object at different timepoints. For example, two points on a rigid object have constant distance between them in the 3D space, no matter how the object moves. Based on this assumption of local rigidity, we propose a robust method to correctly identify point correspondences of two images viewing the same moving object from different viewpoints and at different times. Dense 3D geometry could be obtained from the computed point correspondences. We apply this method on unsynchronized video streams, and observe that the number of inlier correspondences found by this method can be used as indicator for frame alignment among the different streams. To model dynamic scene appearance caused by illumination changes, we propose a framework to find a sequence of images that have similar geometric composition as a single reference image and also show a smooth transition in illumination throughout the day. These images could be registered to visualize patterns of illumination change from a single viewpoint. The final topic of this thesis involves predicting the movements of dynamic shapes in the image domain. Towards this end, we propose deep neural network architectures to predict future views of dynamic motions, such as rigid body movements and flowers blooming. Instead of predicting image pixels from the network, my methods predict pixel offsets and iteratively synthesize future views.Doctor of Philosoph

    TOWARD 3D RECONSTRUCTION OF STATIC AND DYNAMIC OBJECTS

    Get PDF
    The goal of image-based 3D reconstruction is to construct a spatial understanding of the world from a collection of images. For applications that seek to model generic real-world scenes, it is important that the reconstruction methods used are able to characterize both static scene elements (e.g. trees and buildings) as well as dynamic objects (e.g. cars and pedestrians). However, due to many inherent ambiguities in the reconstruction problem, recovering this 3D information with accuracy, robustness, and efficiency is a considerable challenge. To advance the research frontier for image-based 3D modeling, this dissertation focuses on three challenging problems in static scene and dynamic object reconstruction. We first target the problem of static scene depthmap estimation from crowd-sourced datasets (i.e. photos collected from the Internet). While achieving high-quality depthmaps using images taken under a controlled environment is already a difficult task, heterogeneous crowd-sourced data presents a unique set of challenges for multi-view depth estimation, including varying illumination and occasional occlusions. We propose a depthmap estimation method that demonstrates high accuracy, robustness, and scalability on a large number of photos collected from the Internet. Compared to static scene reconstruction, the problem of dynamic object reconstruction from monocular images is fundamentally ambiguous when not imposing any additional assumptions. This is because having only a single observation of an object is insufficient for valid 3D triangulation, which typically requires concurrent observations of the object from multiple viewpoints. Assuming that dynamic objects of the same class (e.g. all the pedestrians walking on a sidewalk) move in a common path in the real world, we develop a method that estimates the 3D positions of the dynamic objects from unstructured monocular images. Experiments on both synthetic and real datasets illustrate the solvability of the problem and the effectiveness of our approach. Finally, we address the problem of dynamic object reconstruction from a set of unsynchronized videos capturing the same dynamic event. This problem is of great interest because, due to the increased availability of portable capture devices, captures using multiple unsynchronized videos are common in the real world. To resolve the challenges that arises from non-concurrent captures and unknown temporal overlap among video streams, we propose a self-expressive dictionary learning framework, where the dictionary entries are defined as the collection of temporally varying structures. Experiments demonstrate the effectiveness of this approach to the previously unsolved problem.Doctor of Philosoph
    corecore