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ABSTRACT

Yipin Zhou: Learning beyond-pixel mappings from Internet videos
(Under the direction of Tamara L. Berg)

Recently in the Computer Vision community, there have been significant advancements in

algorithms to recognize or localize visual contents for both images and videos, for instance, object

recognition and detection tasks. They infer the information that is directly visible within the images

or video frames (predicting what’s in the frame). While human-level visual understanding could be

much more than that, because human also have insights about the information ’beyond the frame’.

In other words, people are able to reasonably infer information that is not visible from the current

scenes, such as predicting possible future events. We expect the computational models could own

the same capabilities one day.

Learning beyond-pixel mappings can be a broad concept. In this dissertation, we carefully define

and formulate the problems as specific and subdivided tasks from different aspects. Under this context,

what beyond-pixel mapping does is to infer information of broader spatial or temporal context,

or even information from other modalities like text or sound. We first present a computational

framework to learn the mappings between short event video clips and their intrinsic temporal

sequence (which one usually happens first). Then we keep exploring the follow-up direction by

directly predicting the future. Specifically we utilize generative models to predict depictions of

objects in their future state. Next, we explore a related generation task to generate video frames of

the target person with unseen poses guided by a random person. Finally, we propose a framework to

learn the mappings between input video frames and it’s counterpart in sound domain.

The main contribution of this dissertation lies in exploring beyond-pixel mappings from various

directions to add relevant knowledge to the next-generation AI platforms.
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CHAPTER 1

Introduction

Computer vision and deep learning technologies affect our daily life from smart supermarkets

to autonomous driving. This is in part thanks to the rapid development of algorithms predicting

what’s in the image/ video frame [Lin et al., 2017a, Lin et al., 2017b, He et al., 2017, Liu et al., 2016,

Redmon and Farhadi, 2017, He et al., 2016]. For example, in the Recognition task, we map the

input pixels to object labels and in the Semantic segmentation task, the model learns the mapping

between images and semantic labels which indicate the object category of each pixel. We human

could not only recognize or localize visual contents but also infer the information even if it is not

explicitly shown in the current scene. For instance, one is capable of predicting the relationship

of a group of people based on their behaviors and the surrounding environments. Or one could

make a reasonable guess what might happen next according to the current situation. In this work,

the main goal is to train computational models to learn these beyond-pixel mappings and take one

step further to the human-level visual understanding. And we narrow down this broad concept into

subdivided and specific tasks.

On the other hand, with the emergence of inexpensive video recorders for both third-person and

first-person views, cell phones with high-performance cameras as well as video sharing platforms and

social media, obtaining self-recorded videos or great number of Internet videos become much easier.

The massive amount of the data enable the learning of stronger AI frameworks. Towards this end,

we explore making use of the large-scale video data to learn ’beyond-pixel’ mappings between visual

inputs and broader temporal or spacial context as well as the counterparts from sound domain.

1.1 Related works

There have been several related works exploring temporal perception and future prediction.

[Dekel Basha et al., 2012] and [Dekel Basha et al., 2013] recover the temporal ordering of a group

of photographs with consistently moving objects using geometric methods. [Pickup et al., 2014a]

determines whether an input video is running forwards or backwards based on low-level visual
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information. [Yuen and Torralba, 2010, Kitani et al., 2012, Walker et al., 2014, Alahi et al., 2016,

Liang et al., 2019] introduce the task of predicting future trajectories of cars, pedestrian or gen-

eral objects in images or videos. While [Mathieu et al., 2015, Xue et al., 2016, Villegas et al., 2017,

Liang et al., 2017, Walker et al., 2017] predict future through pixel-level anticipation, a.k.a generat-

ing future video frames/images by utilizing generative models. The above motioned works handle

the future frame generation on human poses or general objects within a relatively short period. We

explore the future object state prediction in a long range by making use of time-lapse videos.

As discussed by [Xue et al., 2016], predicting future human motions is ambiguous for there

can be multiple possibilities, especially for the long-term prediction. Another branch of works

formulate the human motion prediction as pose transfer tasks. [Ma et al., 2017, Siarohin et al., 2018,

Balakrishnan et al., 2018] generate the depictions a target person in novel poses transferred from

a random person. [Neverova et al., 2018] generate images based on an input person image and a

surface map (dense 3D pose [Güler et al., 2018]). They present a framework that combines the

pixel-level prediction and UV texture mapping. [Liu et al., 2018] presents a method to transfer poses

from a source video to the target person. Specifically, they reconstruct a 3D model of the person

and train a generative model to produce photo-realistic frames based on images rendered with this

3D model. The work from [Chan et al., 2018] learn the mapping directly from detected poses to

generate a target person’s video under a personalized setting (train the model only using the data

from target person). This works quite well in constrained video domain where models are trained

on lab-made videos of a single person showing a large variety of poses. In this thesis, we explore

personalized motion transfer on videos obtained from the Internet (the training data can be more

flexible). With such uncontrollable settings, our models are required to generalize well to novel poses

unseen during the training.

On the other hand, mapping visual information to other non-visual modalities such as text or

sound that human could perceive is an important capability for an intelligent agent to communicate

with people comprehensively. Work from [Zhang et al., 2017] presents a synthesized audio-visual

dataset built by physics/graphics/audio engines. Fine-grained attributes (shape, material and

interactions) have been controlled for synthesis. Most related to our work, [Owens et al., 2016] and

[Chen et al., 2017] directly generate audio signals conditioned on the input video frames. Specifically,

[Owens et al., 2016] predicts hitting sound based on different materials of objects and physical

2



interactions. A dataset called Greatest Hits (human hit/scratch diverse objects using a drum stick)

has been collected for this purpose. [Chen et al., 2017] proposes two generation tasks Sound-to-Image

and Image-to-Sound networks using Generative Adversarial Network (GAN) [Goodfellow et al., 2014].

The data used to train the models shows subjects playing various musical instruments indoor with

a fixed background. Our work has a similar goal, while instead of mapping visual to sound under

constrained/experimental settings, we train neural networks to synthesize raw waveforms and handle

more diverse and challenging real-world scenarios.

1.2 Overview

In this section, we briefly introduce the outline of the dissertation. As a prerequisite of future

prediction topic, in Chapter 2, we first explore how well human and computers are able to make

predictions about temporal ordering of everyday life activities. We introduce two tasks related to

temporal ordering prediction. In the first task, given two short video snippets of an activity, the

goal is to predict their correct sequence, a.k.a, which snippets usually happen first. The second task

is based on the first, given a longer context video plus two video snippets sampled from before or

after the context video, the goal is to predict which video snippet was captured closest in time after

the context video. This task models the scenario of predicting what a person will do next. These

two tasks provide the initial step toward enabling computers to understand the temporal nature of

videos. A new dataset of ego-centric videos of everyday activities has been collected through GoPro

cameras. This dataset includes both individuals and families living in the same location and allows

us to evaluate both general models for temporal prediction and prediction models personalized to a

particular individual or environment.

As a natural follow-up, in Chapter 3, we explore predicting the future states. Specifically, we

utilize deep generative model to generate the depictions of the future state of objects (we train

computational models to learn natural object transformations from videos). We explore several

different generation tasks for modeling natural transformations. To enable the learning, we collect

time-lapse videos demonstrating four different natural state transformations. Each transformation

category includes one or multiple objects. The dataset contains 1463 high-quality time-lapse videos

with alignment annotations from Amazon Mechanical Turk (AMT) and has been released publicly.

The Figure 1.1 shows the example video frames of time-lapse videos from the dataset.

In Chapter 4, we present a similar generation task with more controllable settings. Specifically,
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Figure 1.1: Example frames from our dataset of each transformation category: Blooming, Melting,
Baking, and Rotting. In each column, time increases as you move down the column, showing how
an object transforms.

Figure 1.2: We train a personalized model for a target individual in an Internet video. This model
can synthesize the target person in novel poses (right) from the input frame (bottom left) driven by
a different individual (top left).

we introduce a computational model to transfer any desired movement from a new reference video

to the target person. We train this model only using several-minute-long video of the target person

performing some random activities as Figure 1.2 shows. Compared with previous or concurrent

works which investigate human pose transfer either under generalized settings (models trained across

various individuals/scenes) or using single person lab-recorded videos. We we explore personalized

motion transfer on videos obtained from the Internet, such as YouTube. Due to the more flexible

property of Internet data (backgrounds are non-static or the range of poses demonstrated by the

YouTuber are restricted), we break our task down into two sub tasks by proposing a two-stage

framework to synthesis foreground human and backgrounds separately.

In Chapter 5, we introduce a framework to map the visual information to raw audio signals.

While visual and audio are both important channels to achieve information and they are often
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corresponded. The models are expected to learn associations between generated natural sound and

visual inputs in the wild for various scenes and object interactions. Due to the missing of benchmark

dataset for natural sound generation, we collect a large-scale video-audio dataset with visual and

sound modalities closely related (the visual contents/objects are synchronized well with the according

sound, e.g. when we hear dog barking sound, there should be dogs shown in the frames) to make the

data ideal for the generation tasks. Our dataset is derived from AudioSet [Gemmeke et al., 2017]

which is collected for audio event recognition but not ideal for visual to sound mapping task.

The contributes introduced by this dissertation include:

1. Define beyond-pixel mappings concept and formulate the problem through various aspects

including temporal perception and future prediction, personalized motion transfer as well as mapping

visual information to other modalities.

2. Propose two novel temporal prediction tasks in video domain: video pairwise ordering and future

event prediction. Collect a new dataset of ego-centric videos of everyday life activities, including

both individuals and families living in the same location.

3. Present a new problem of modeling natural object transformations with deep generative networks

by utilizing time-lapse videos. A new dataset of 1463 time-lapse videos depicting 4 common object

transformations has been collected.

4. Demonstrate personalized motion transfer on videos from the Internet. Propose a novel two-

stage framework to synthesize people performing new movements and fuse them seamlessly with

background scenes.

5. Define a new problem of generating sounds (including human/animal and ambient sound) from

videos in the wild. Release a dataset designed for generation task containing 28109 cleaned videos

(55 hours in total) spanning 10 object categories.
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CHAPTER 2

Temporal Sequence Prediction

Given two video fragments of an single event, can we predict which moment usually happens

first and next? Understanding the natural of temporal sequence of events is fundamental for future

prediction. In this Chapter, we explore predicting temporal context beyond the frame, examining

how well humans and computers can make predictions about what usually happens first and what

will happen next during everyday activities. Such reasoning will be necessary for producing intelligent

agents that can understand what a person is doing and anticipate what they are likely to do next.

Both types of inference can help produce robots that more naturally interact with humans in our

daily lives as Figure 2.1 shows.

We introduce two tasks related to temporal prediction. In the first task, given two short video

snippets of an activity, the goal is to predict their correct temporal ordering. In the second task,

given a longer context video plus two video snippets sampled from before or after the context

video, the goal is to predict which video snippet was captured closest in time after the context

video. These simplified task models the scenario of predicting the temporal sequence and future.

The prediction has been applied on Ego-centric video domain (first person video), which has

attracted increasing attention due to the rich information contained in egocentric visual data

[Fathi et al., 2011a, Pirsiavash and Ramanan, 2012] and easier access to wearable recording devices

as well as the potential as as a form of life-blogging [Lu and Grauman, 2013]. We collect a new

dataset of ego-centric videos of everyday activities, which allows us to train both generalized and

personalized temporal sequence prediction models.

In Section 2.1, we define the two temporal prediction tasks. We describe our first person

personalized activity dataset in Section 2.2. Then we apply human experiments to understand the

relationship between temporal prediction and the length/interval of the event snippets in Section 2.3.

Next we discuss the feature representation and model structions for the learning in Section 2.4 as

well as experiments and evaluation results in Section 2.5. This work was described and published in
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Figure 2.1: If artificial intelligent agents could anticipate what will happen next under the everyday
life activity scenarios, they are able to better interact with human.

[Zhou and Berg, 2015].

2.1 Temporal Prediction Tasks

We design two tasks to evaluate temporal understanding. Our goals for designing these tasks

are two-fold: 1) we would like to create tasks that are easy to evaluate, and 2) we would like the

tasks to be answerable by people so that we can evaluate both human and computer performance.

The first task is a pairwise ordering scenario. In this task, we are given two short snippets from

an ego-centric video of an activity and asked to infer their correct temporal ordering. For example,

in Figure 2.2 the upper box shows two example snippets from the activity of "putting on clothes".

Obviously the left snippet occurs before the right snippet in temporal order. Being able to infer

the correct temporal ordering between pairs of video snippets is important since it can provide a

backbone algorithm for interpreting the temporal information of an entire video sequence or for

predicting what might occur next in a video. The second task directly evaluates our ability to make

future predictions for everyday activities. In this task, we are provided with a video showing part of

an activity plus two shorter video snippets and asked to predict which of the snippets comes next

temporally in the video. Figure 2.2 (lower box) shows an example of a person grabbing a bottle and
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Figure 2.2: Illustration of our two temporal prediction tasks for ego-centric video of everyday
activities. In the pairwise ordering task (above) the goal is to provide the correct temporal ordering
for two short snippets of video from an activity. In the future prediction task (below), given a longer
context video of an activity and two video snippets, the goal is to determine which snippet will occur
(closest in time) after the context video.

raising it toward himself. Temporal predictions should tell us that the drinking action is more likely

to occur (closest in time) after the context video than the other snippet.

These tasks have several advantages. They provide a measure of video understanding that is

complementary to standard activity recognition with tasks that do not require semantic labels,

but are easy to evaluate. They also provide quantitative measures for temporal prediction, one

challenging aspect of general scene understanding. The tasks are also designed so that we can

ask (multiple) people to perform the same tasks as the algorithms, allowing us to measure human

performance on temporal prediction. In summary, this provides an initial first step toward enabling

computers to understand the temporal nature of videos.

2.2 Dataset

We would like to take advantage of in our models is that we spend much of our daily lives

engaged in extremely repetitive activities. Every morning most of us get up, brush our teeth, take a

shower, put on clothing, make and eat breakfast, and so on throughout the day. On the other hand,

this repetitiveness is offset by the fact that each of us may perform these activities with different

variations. For example, one person might prepare cereal for breakfast while someone else may

prefer toast. Some people will use a chair to put on their shoes while others may put on their shoes
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while standing. All of these factors make for wide variation even in common everyday activities.

While one insight is that although these factors, along with variations due to environment, may

vary from person to person, a particular person might be quite consistent in how they perform

each activity and in the locations in which they perform the activities. Therefore, along with

building general temporal prediction models, we would also like to build models for prediction that

can be personalized, either to a particular individual or to a particular environment. However,

existing ego-centric dataset [Fathi et al., 2012a, Fathi et al., 2012b, Pirsiavash and Ramanan, 2012,

Fathi et al., 2011b, Lee et al., 2012] designed for a variety of purposes, such as object recognition,

activity recognition, social interaction detection and video summarization contain only one or a few

examples of each activity performed by single subject. To enable this personalized learning, we have

collected a dataset of first person videos of everyday activities, called the First Person Personalized

Activities (FPPA) dataset, where each subject has performed every activity many times. We make

use of this dataset for evaluating temporal prediction tasks, but it could also be used for general or

personalized activity recognition.

2.2.1 Data collection

For data collection, we make use of a GoPro camera mounted on the user’s head using a head

strap. The GoPro cameras record ego-centric data simulating the wearer’s viewpoint. Each camera

captures a high-definition video at 1080p (1920x1080 resolution) with a wide field of view (133.6

degrees) at a rate of 30 frames per second.

We first provide each subject with a list of 5 daily activities (a list of activities is shown in

Table 2.1. To encourage subjects to act naturally, they are not provided with any more details.

Subjects are encouraged to film themselves completing each activity multiple times at different

locations where they would normally perform them. Video recordings were captured in the subjects

own homes or in public places (gym, lounge) that they usually visit. In total, our data is made up of

5 sets of videos. Two of the sets consist of videos from a single individual (single-subject) while 3 of

the sets consist of videos from families, i.e. two or more people living together at the same location

(family subject). We spread the data collection procedure of each set over two months to encourage

variability and to gather a large number of videos for each subject.
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Activities Avg videos/subjects Avg locations/subjects Total videos/locations

Wash hands 24.2 (19-34) 3.2 (2-7) 121 / 16
Put on shoes 22.8 (21-29) 3.0 (2-6) 114 / 15
Use fridge 26.4 (21-31) 1.6 (1-3) 132 / 8
Drink water 23.2 (16-31) 3.6 (2-7) 116 / 18
Put on clothes 21.6 (16-26) 3.4 (2-5) 108 / 17

Table 2.1: Statistics of FPPA dataset including averaged number of videos from per subject (col2),
averaged number of locations per subjects (col 3) and total number of videos and locations (col3).
The contents in brackets show the minimal to maximal numbers. The total number of video clips in
the dataset is 591.

Figure 2.3: Example frames of 5 activities from our dataset. People perform everyday activities in
various locations, and according to their own preferences, e.g. when putting on shoes people might
squat down or stand or use a chair.

2.2.2 Characteristics and statistics

The main characteristic of the FPPA dataset is that it is built to enable learning both general

and personalized models for temporal prediction. As such we collect a large number of examples

of each activity from each subject and for each location. Table 2.1 shows statistics of our dataset,

including the per subject average number of the video clips for each activity, and the average number

of locations in which each subject performed the activity. On average subjects have performed

each activity approximately 20 times. As habits vary from subject to subject, some subjects have

performed an activity in a single location while others have performed them in up to 7 different

locations. Figure 2.3 shows some example frames from activities performed by different subjects.

2.3 Human experiments

Our main goal is to give computers the ability to predict temporal information for video. Toward

this aim, we start with a straightforward pairwise ordering task. However, before we can design

even this simple task we would like to know several things: the feasibility of this task for people,
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and what specific implementation features should be used for the task, e.g. what length snippets

should we use, or how far separated in time should the snippets be so that they are still temporally

distinguishable? Therefore, we design two human experiments to gain some useful insights into the

pairwise ordering task and then configure our pairwise ordering and future prediction tasks based on

these analyses.

2.3.1 Snippet size

We design an experiment to evaluate the effect of snippet length on human perceptions of pairwise

ordering using Amazon Mechanical Turk (AMT) as our crowdsourcing platform. For each activity

we randomly pick 100 pairs of snippets from videos of the activity, where the central frame for each

snippet is selected at a random temporal position within the video. We vary snippet size as 1, 10,

30, 60, or 100 frames (snippet size 1 is a static image). For each pair of snippets we ask 3 AMT

workers to tell us which snippet should come first in temporal ordering. To limit bias, we randomly

reshuffle the left-right placement of snippets in our Turk interface, and only allow workers to see one

snippet length for a particular pair of snippets.

Figure 2.4 (left) shows the effect of snippet size on human performance. One interesting

observation is that for the "using fridge" and "drinking water" activities there is an obvious increase

in human performance between a snippet size of 1 (static image) and snippet size of 10 frames. One

reason for this could be that these activities are relatively symmetric so it may be difficult to tell

from a single frame whether the person is opening or closing the fridge, or picking up or putting

down a cup. For a video snippet, motion cues help people resolve these ambiguities.

Based on these experiments, we find that human performance for pairwise ordering increases

greatly past single frame snippets, but then levels off at about 60 frames. For length 60 frame

snippets we find that average performance across users is about 80 to 85% for all activities. Therefore,

for the rest of our human and computer experiments we use a snippet length of 60 frames.

2.3.2 Snippet interval

Our next experiment explores how the temporal distance between two snippets affects human

pairwise ordering performance. For this experiment, we keep the snippet size fixed to 60 frames,

but vary the time interval between the selected snippet pairs. In particular, for each activity we

select 100 video snippet pairs. For this sampling, we first select a random video, and a random first

snippet. Then we extract the second snippet for the pair from later in the same video with intervals
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Figure 2.4: Human performance on pairwise ordering. Left shows performance as snippet size varies.
Right shows performance as interval varies.

between center frames of 1, 60, 90, 120, or 180 frames. We limit Turker bias in the same manner as

the previous experiment.

The results of this experiment are shown in Figure 2.3 (right). Agreeing with intuition, when the

temporal offset between two snippets is extremely small (e.g., 1 frame), it is difficult for people to

predict the correct pairwise ordering between snippets. As the interval between snippets increases,

human performance also increases, but then levels off or even drops as the interval between the

snippets gets very long (e.g., 180 frames). For activities such as "putting on clothes" which have

clear steps in a relatively lengthy procedure, larger intervals tend to increase performance. For

activities like drinking water, the accuracy initially rises with larger intervals then decreases for

longer intervals. There are several potential reasons for this: (1) the most distinctive parts of the

procedure may be very short, or (2) this activity is periodic (people may repeat the sipping portion

of the action multiple times in one drinking activity). Both reasons can cause ambiguity for longer

intervals.

2.4 Approaches

2.4.1 Video snippet representation

There has been an increasing amount of work trying to understand the nature of ego-centric

video. Different from videos taken from a third person point of view, egocentric videos record not

only the inherent environment seen from the wearable device, but also the body or head motion
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of the wearer [Aghazadeh et al., 2011]. Quite a few previous works have used techniques such as,

hand detection, object detection, or motion features such as optical flow to represent ego-centric

videos [Fathi et al., 2011a, Fathi et al., 2012a, Kitani et al., 2011, Pirsiavash and Ramanan, 2012,

Ryoo and Matthies, 2013], but how to represent first person videos effectively for temporal prediction

tasks is an open question. Recently the use of features learned by deep networks have achieved

success in many different vision tasks such as object recognition and detection [Donahue et al., 2013,

Girshick et al., 2014], or activity recognition [Simonyan and Zisserman, 2014a]. In this work, we

represent video snippets using learned deep features for objects, scenes, and motion.

Object representation: For each frame of a video snippet, we extract the 4096 dimension

fc6 layer of the VGG model [Simonyan and Zisserman, 2014b], pre-trained to recognize 1000 Ima-

geNet [Deng et al., 2009] object categories. Then we apply max-pooling over a 10-frame window

around the frame to implicitly capture some temporal information about objects within the snippet.

Scene representation: For each frame of a video snippet, to model scene/environment in-

formation for video snippets, we extract the 4096 dimension fc7 layer of the Caffe reference

model [Jia et al., 2014], pre-trained on the scene-centric Places dataset [Zhou et al., 2014]. Again,

we apply max-pooling in a 10-frame window to capture temporal scene information.

Motion representation: Inspired by recent work on deep networks for activity recognition, we

re-implement the Temporal Convnet approach of [Simonyan and Zisserman, 2014a]. Their method

takes a two stream approach to activity recognition using both object and optical flow features. Our

reimplementation of their method achieves an accuracy of 78% on the UCF-101 dataset compared to

their reported result of 81%. From the optical flow portion of the Temporal Convnet, we extract the

4096 dimensional fc6 layer as our motion representation.

In our experiments, we evaluate the use of object features in isolation or combining object

features with scene or scene and motion features. For the combined features we simply concatenate

features for classification. For our experiments we use video snippets of size 60 frames. For each

snippet we uniformly sample 6 frames from the snippet, compute the above features and then do

max-pooling over each feature dimension to get the final representation.
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2.4.2 Pairwise prediction methods

We evaluate several methods for predicting pairwise temporal ordering. The first two are nearest

neighbor based methods. The intuition behind these methods is that if two video snippets have

similar appearance and motion then we can directly transfer temporal information from one video to

the other. One challenge for nearest neighbor methods is that activities can be completed at different

rates, therefore we experiment with temporal warping methods to align video snippets. Next we

present a regression method that tries to directly predict the time of a video snippet. All three of

these models attempt to estimate when a video snippet occurred within a larger activity. Given two

snippets we can then predict their pairwise ordering based on their relative estimated times. Our

final two methods are trained to directly predict pairwise ordering. Given two video snippets, A and

B, we train an SVM and a fully-connected network to predict whether or not snippet A occurred

temporally before B. For all of these methods we assume that we know what activity is occurring to

focus our efforts on the task of temporal prediction. These methods could be incorporated into a

broader system to estimate both activity recognition and temporal predictions.

NN Frac: We first represent the temporal information of all snippets as a real value computed

as the temporal position of the snippet relative to the length of the entire action. For each query

snippet, using one or more of our feature representations, we retrieve its nearest neighbor snippet

from the training set and transfer the nearest neighbor’s relative time to the query. Similarity is

measured as cosine similarity.

NN DTW: We perform nearest neighbor prediction as before, but a priori first align all training

videos for an activity temporally using Dynamic Time Warping (DWT) [Sakoe and Chiba, 1978].

DWT is a dynamic programming algorithm that keeps track of the cost of the best path of the

alignment. Here the cost function is defined as the Euclidean distance between each pair of video

snippets.

LR: We train a Linear Regression model to estimate the temporal position of a video snippet,

relative to the length of the entire activity. Inputs to the regressor are one or more of our feature

representations described in Section 2.4.1.
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SVM: We train a linear SVM model directly for the pairwise prediction task. Input to the model

are concatenated features from a pair of snippets, A and B. Output of the model is a binary prediction

∈ {1,−1} where the model predicts 1 to indicate that A temporally occurs before B and -1 to

indicate that A occurs after B. To train this model, we randomly sample pairs of snippets from

activities with intervals between the snippets ranging from 60 to 300 frames. The learning parameter

is set using cross-validation.

FcNet: Inspired by the metric network architecture introduced in [Han et al., 2015], we train a

three layer fully-connected network to predict pairwise ordering. The scenario is the same as the

SVM method, that is, we model the task as a binary classification problem. The first two layers

of this network have 512 units and use Rectified Linear Unit (ReLU) as the non-linear activation

function. The last layer has 2 output units, estimating the probability that snippet A occurs before

or after B. During training we apply mini-batch gradient decent and cross-entropy loss. We set the

learning rate to be 0.001, dropout rate 0.5, momentum 0.9, and train for 30000 iterations. The

hyper-parameters are decided using a validation set.

2.5 Experiments

2.5.1 General pairwise ordering prediction

We evaluate performance of our models on the general pairwise ordering task using a leave-one-out

strategy, training on all subjects except one and then predicting on the held out subject. Figure 2.5

(left) shows accuracy averaged over activities and subjects for each prediction method, using a

combination of all feature types. Similar to humans, the computational methods do not provide

accurate predictions when the interval between snippets is too small, but as the interval increases

performance improves. For the NN method applying DWT does not help a great deal, probably

due to the high variance of the data. Future work could consider better alignment mechanisms.

We also observe that the SVM and FcNet models trained to directly predict temporal ordering

outperform the other methods significantly. Table 2.2 shows accuracy for each activity, classifier

choice, and feature choice (for interval size 120). For some activities, optimal performance is achieved

by combining all of the features while performance in others favored the combination of object and

scene features.
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Figure 2.5: Model performance on pairwise ordering. Left shows prediction performance of general
models (trained on other subjects). Right shows personalized model performance (trained on other
videos from the same subject).

Methods Washing hands Putting on shoes Using fridge Drinking water Putting on clothes Average

NN frac(O) 0.5707 0.5257 0.5494 0.5459 0.5604 0.5504
NN frac(OS) 0.5879 0.5402 0.5468 0.5432 0.5421 0.5521
NN frac(OSM) 0.5694 0.5299 0.5884 0.4938 0.5807 0.5525

NN DTW(O) 0.5835 0.5302 0.5400 0.4709 0.5501 0.5350
NN DTW(OS) 0.5610 0.5447 0.5387 0.5335 0.5533 0.5462
NN DTW(OSM) 0.5738 0.5257 0.5884 0.4855 0.5758 0.5499

LR(O) 0.5635 0.5502 0.6296 0.5844 0.6034 0.5862
LR(OS) 0.5550 0.5853 0.6233 0.5732 0.5923 0.5858
LR(OSM) 0.5536 0.5964 0.6583 0.6039 0.5950 0.6014

SVM(O) 0.6392 0.7026 0.7351 0.6848 0.6967 0.6917
SVM(OS) 0.6609 0.7270 0.7435 0.6845 0.7044 0.7041
SVM(OSM) 0.6749 0.6945 0.7402 0.7538 0.7006 0.7128

Table 2.2: Accuracy of pairwise temporal ordering using general prediction models (trained and
tested on different subjects) for interval size 120. Here O indicates object features, S scene features,
and M motion features
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2.5.2 Personalized pairwise ordering prediction

We evaluate two types of personalized models: models personalized to a particular subject

or to a particular location. First, we evaluate personalization where we use different video clips

from a single subject for training and testing by applying the leave-one-out method. Since the

amount of personalized data is quite limited, for the FcNet, to prevent overfitting, we fine-tune the

general network using personalized data for another 25000 iterations (the hyper-parameters remain

unchanged). Figure 2.5 (right) shows averaged results across activity, subject, and interval for models

personalized to a subject. In these experiments, we see improved performance on the pairwise ordering

task compared to general prediction models trained on other subjects, indicating that the personalized

models are able to better adapt to a particular individual’s habits and daily environments. Table 2.3

shows personalized pairwise ordering accuracy for each activity type and feature combination for

interval size of 120. Unlike the general prediction model, the models achieve best performance with

the object representation based model, but for some activities incorporating additional features is

helpful. We provide several more experiments to further understand personalization. To evaluate

generalization for individuals between locations, we train models for the single subjects with different

locations in training vs testing. To evaluate generalization between people in the same location, we

train models for family-subjects with different family members in training vs. testing. And we also

evaluate the effect of training set size. Due to the limited data, for each experiment we apply the

SVM method on object, scene, and motion features (Figure 2.6 shows quantitative results). For

the individual and location experiments, accuracies are still reasonable compared to the previous

personalization experiment. For the training size experiment, we find that the amount of training

data required for accurate prediction varies, with some activities benefiting from larger training

sizes (e.g. "using fridge") and others achieving surprisingly good accuracy with only 5 samples (e.g.

"putting on clothes").

Finally, as mentioned above, pairwise ordering can be used a backbone algorithm for inferring

the temporal information of an entire video sequence. To demonstrate this potential, we reshuffle

the video sequence of an activity and use our personalized regression model to predict a temporal

value for each frame. Then we reorder the frames based on predicted time. Results are visualized

in Figure 2.7 where the colorbar shows the reordering of original time (ground truth) information

(black=start in original video, white=end), with sampling of reordered keyframes below.
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Methods Washing hands Putting on shoes Using fridge Drinking water Putting on clothes Average

NN frac(O) 0.7398 0.7043 0.7491 0.6602 0.7659 0.7239
NN frac(OS) 0.7417 0.7142 0.7626 0.6671 0.7774 0.7326
NN frac(OSM) 0.7304 0.6867 0.7782 0.6934 0.7806 0.7339

NN DTW(O) 0.7547 0.7138 0.7369 0.6616 0.7703 0.7280
NN DTW(OS) 0.7534 0.7010 0.7525 0.6681 0.7784 0.7307
NN DTW(OSM) 0.7288 0.6841 0.7705 0.6942 0.7731 0.7302

LR(O) 0.7118 0.7551 0.8029 0.7233 0.7773 0.7541
LR(OS) 0.6903 0.7425 0.7784 0.6911 0.7567 0.7318
LR(OSM) 0.6872 0.7235 0.8018 0.7248 0.7528 0.7380

SVM(O) 0.7548 0.7822 0.8136 0.8275 0.8187 0.7994
SVM(OS) 0.7526 0.7583 0.8208 0.8264 0.8184 0.7953
SVM(OSM) 0.7142 0.7433 0.8214 0.8568 0.8129 0.7897

Table 2.3: Accuracy of pairwise temporal ordering using personalized prediction models (trained
and tested on different videos from the same subject) for interval size 120. Here O indicates object
features, S scene features, and M motion features

Figure 2.6: Additional personalization experiments for pairwise ordering. Top left shows performance
for same person, different locations. Top right shows performance for different people, same location,
and bottom left evaluates performance as training set size varies.
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Figure 2.7: Inferring temporal information for an entire video sequence. Colorbar indicates the
reordering of original time information (black=start, white=end).

2.5.3 Future prediction task

Next we design the future prediction task where we are provided with a 3 second context video,

C, of an activity and two video snippets, A and B, and we are asked to predict which will occur

(soonest in time) after C. A is sampled from soon after the context video (randomly selected, but no

more than 3 seconds in the future) and B is randomly sampled, either from further in the future or

from the time period prior to C. A correct prediction will predict snippet A as happening next.

Computer prediction: Given an algorithm to predict pairwise orderings between snippets, it is

straightforward to extend this algorithm to the future prediction task. We compute all pairwise

orderings between A, B, and C, and then select the snippet that is most likely to follow after C

in temporal order. For these experiments we use combined object, scene, and motion features

(Figure 2.8 shows examples).

Human prediction: We also evaluate how well humans can make future predictions when provided

with a longer context video. In particular, we show 3 AMT workers the context video plus the
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Figure 2.8: Visualization results of computer-based future prediction. Text within red borders are
the pairwise ordering results generated by our method. Right shows algorithm proposed future
prediction (red border) and ground truth (green border).

Activities LRg LRp SVMg SVMp Human

Wash hands 0.5750 0.7050 0.6350 0.7550 0.7816
Put on shoes 0.5700 0.7500 0.7000 0.7250 0.8733
Use fridge 0.6250 0.6800 0.6100 0.7100 0.9284
Drink water 0.5850 0.6700 0.6500 0.7300 0.8717
Put on clothes 0.6350 0.7950 0.7100 0.8350 0.8866
Average 0.5980 0.7200 0.6630 0.7510 0.8686

Table 2.4: Future prediction task accuracy by computational methods and people, where ’g’ indicates
general model, and ’p’ personalized model.
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Figure 2.9: Left is the pairwise ordering accuracy of subset of UCF101 dataset. Note that video clips in
UCF101 are very short for some actions, the largest interval is only 90. Right is the forward/backward
classification accuracy of our method and Flow-Words method in [Pickup et al., 2014b] testing on
our dataset

two video snippets and ask the worker to identify which will follow soonest in time after the video.

Table 2.4 shows accuracies of human and computer predictions. Personalized models outperform the

general models significantly, achieving an average accuracy of 75%. Human performance on this

task is also quite good (87%). We also want to understand how well algorithms can perform on the

future prediction given snippets from two different videos. Here we first ask humans to perform the

future prediction task and then select data with high inter-subject agreement. On this data, using

the human predictions as ground truth, the general SVM and FcNet models achieve 66.22% and

66.99% accuracy respectively.

2.5.4 Additional experiments

Pairwise ordering on UCF101: For comparison, we also evaluate our pairwise ordering task on

a subset of a wildly used third person action recognition dataset, UCF101. We select 10 categories

of action with reasonably long duration and non-repetitive movements. Each category contains more

than 100 video clips. In this experiment we evaluate our SVM method and keep other settings

(snippet size, feature) the same as our previous experiments. We run 3 train/test splits provided by

the UCF official project webpage. Figure 2.9 (left) shows performance. We see that for third person

activity videos, our method can achieve even better performance than for first person videos.

Arrow of time: Finally, we use our pairwise ordering method as a backbone to evaluate the task

proposed by [Pickup et al., 2014b] on our dataset. The goal is to tell whether a video is runing
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forward or backward. We implement their FlowWords classification method which is based on a

SIFT-like descriptor and linear SVM. For specific information and parameter settings, please refer to

their work. Predicting the temporal direction of video clips can be solved by our pairwise ordering

predictions. Our method achieves comparable performance on this task. For each testing video clip,

we sample all its snippet pairs with interval 90 and 120 along the video and apply our general SVM

model to classify the ordering, then we do majority vote to decide the flow direction of the video.

Figure 2.9 (right) shows the average accuracy for Flow-Words and our method.

2.6 Conclusions

We have introduced two tasks for evaluating temporal understanding of ego-centric videos

of everyday activities: pairwise ordering and future prediction. We have evaluated both human

performance on these tasks and computational models under general and personalized training

scenarios. We find that models trained directly on the pairwise ordering task outperform models

trained to predict the time at which a video snippet occurred. We also find that personalized

models significantly outperform general models, suggesting that to build an accurate predictor for

an individual, we should capture data specific to that person.
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CHAPTER 3

Future object state prediction

Based on life-long observations of physical, chemical, and biologic phenomena in the natural world,

humans can often easily picture in their minds what an object will look like in the future. But, what

about computers? In this paper we seek to learn computational models of how the world works through

observation. In particular, we explore the use of generative models to create depictions of objects at

future times. To enable this learning, we collect time-lapse videos demonstrating four different natural

state transformations: melting, blooming, baking, and rotting. Several of these transformations

are applicable to a variety of objects. We train models for each transformation - irrespective of

the object undergoing the transformation - under the assumption that these transformations have

shared underlying physical properties that can be learned. Future prediction has been explored in

previous works for generating the next frame or next few frames of a video [Srivastava et al., 2015,

Mathieu et al., 2015, Ranzato et al., 2014]. Our focus, in comparison, is to model general natural

object transformations and to model future prediction at a longer time scale (minutes to days) than

previous approaches.

We explore several different generation tasks for modeling natural transformations. The first

task is to generate the future state depiction of an object from a single image of the object. Here the

input is a frame depicting an object at time t, and output is a generated depiction of the object at

time t+k, where k is specified as a conditional label input to the network. For this task we explore

two auto-encoder based architectures. The first architecture is a baseline algorithm built from a

standard auto-encoder framework. The second architecture is a generative adversarial network where

in addition to the baseline auto-encoder, a discriminator network is added to encourage more realistic

outputs. For our second and third future prediction tasks, we introduce different ways of encoding

time in the generation process. We propose a two-stack model (second task) that the input is two

images of an object at time t and t+m and the model learns to generate a future image according

to the implicit time gap between the input images (ie generate a prediction of the object at time
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Rotting: 185 Melting: 453 Baking: 242 Blooming: 583

Strawberry: 35 Ice cream: 128 Cookies: 55 Flower: 583
Watermelon: 9 Chocolate: 18 Bread: 57
Tomato: 25 Butter: 9 Pizza: 59
Banana: 26 Snow: 54 Cake: 48
Apple: 23 Wax: 60 Other: 23
Peach: 8 Ice: 184
Other: 59

Table 3.1: Statistics of our transformation categories. Some categories contain multiple objects (e.g.
ice cream, chocolate, etc melting) while others apply only to a specific object (e.g. flowers blooming).
Values indicate the total number of videos collected for each category.

t+2m). These models are trained on images with varying time gaps. In our last prediction task, our

goal is to recursively generate the future states of an object given a single input image of the object.

For this task, we use a recurrent neural network to recursively generate future depictions. For each

of the described future generation tasks, we also explore the effectiveness of pre-training on a large

set of images, followed by fine-tuning on time-lapse data for improving performance.

We first describe the time-lapse dataset and the data collection in Section 3.1. In Section 3.2, we

discuss three future generation tasks we mentioned above and the training approaches. Finally, we

provide both qualitative and quantitative evaluation results as well as the human experiments in

Section 3.3.

3.1 Time-lapse video dataset

Given the high-level goal of understanding temporal transformations of objects, we require a

collection of videos showing temporal state changes. Therefore, we collect a large set of object-centric

timelapse videos from the web. Timelapse videos are ideal for our purposes since they are designed

to show an entire transformation (or a portion of a transformation) within a short period of time.

3.1.1 Data collection

We observe that time-lapse photography is quite popular due to the relative ease of data collection.

A search on YouTube for "time lapse" results in over 11 million results. Anyone with a personal

camera, GoPro, or even a cell phone can capture a simple time-lapse video and many people post

and publicly share these videos on the web. We collect our object-based time-lapse video dataset by

directly querying keywords through the YouTube API. For this paper, we query 4 state transformation

categories: Blooming, Melting, Baking and Rotting, combined with various object categories. This
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results in a dataset of more than 5000 videos. This dataset could be extended to a wider variety of

transformations or to more complex multi-object transformations, but as a first step we focus on

these 4 as our initial goal set of transformations for learning.

For ease of learning, ideally these videos should be object-centric with a static camera capturing

an entire object transformation. However, many videos in the initial data collection stage do not

meet these requirements. Therefore, we clean the data using AMT as a crowdsourcing platform.

Each video is examined by 3 Turkers who are asked questions related to video quality. Videos that

are not timelapse, contain severe camera motion or are not consistent with the query labels are

removed. We also manually adjust parts of the videos which are playing backwards (a technique

used in some time-lapse videos), contain more than one round of the specified transformation, and

remove irrelevant prolog/epilog. Finally our resulting dataset contains 1463 high quality object based

timelapse videos. Table 3.1 shows the statistics of transformation categories and their respective

object counts. Figure 1.1 (Section 1.2) shows example frames of each transformation category.

3.1.2 Transformation degree annotation

To learn natural transformation models of objects from videos, we need to first label the degree

of transformation throughout the videos. In language, people use text labels to describe different

states, for instance, fresh vs rotted apple. However, the transformation from one state to another

is really a continuous evolution. Therefore, we represent the degree of transformation with a real

number, assigning the start state a value of 0 (not at all rotten) and the end state (completely

rotten) a value of 1. To annotate objects from different videos we could naively assign the first frame

a value of 0 and the last frame a value of 1, interpolating in between. However, we observe that

some time-lapse videos may not depict entire transformations, resulting in poor alignments.

Therefore, we design a labeling task for people to assign degrees of transformation to videos.

Directly estimating a real value for frames turns out to be impractical as people may have different

conceptions of transformation degree. Instead our interface displays reference frames of an object

category-transformation and asks Turkers to align frames from a target video to the reference frames

according to degree of transformation. Specifically, for each object category transformation pair we

select 5 reference frames from a reference video showing: transformation degree values of 0, 0.25, 0.5,

0.75, and 1. Then, for the rest of the videos in that object-transformation category, we ask Turkers

to select frames visually displaying the same degree of transformation as the reference frames. If the
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Figure 3.1: Model architectures of three generation tasks: (a) Pairwise generator; (b) Two stack
generator; (c) Recurrent generator.

displayed video does not depict an entire transformation, Turkers may align less than 5 frames with

the reference. Each target video is aligned by 3 Turkers and the median of their responses is used as

annotation labels(linearly interpolating degrees between labeled target frames). This provides us

with consistent annotations of transformation degree between videos.

3.2 Future state generation

Our goal is to generate depictions of the future state of objects. In this work, we explore

frameworks for 3 temporal prediction tasks. In the first task (Section 3.2.1), called pairwise

generation, we input an object-centric frame and the model generates an image showing the future

state of this object. Here the degree of the future state transformation - how far in the future

we want the depiction to show - is controlled by a conditional term in the model. In the second

task (Section 3.2.2) we have two inputs to the model: two frames from the same video showing a

state transformation at two points in time. The goal of this model is to generate a third image

that continues the trend of the transformation depicted by the first and second input. We call this

"two stack" generation. In the third task (Section 3.2.3), called "recurrent generation", the input

is a single frame and the goal is to recursively generate images that exhibit future degrees of the

transformation in a recurrent model framework.

3.2.1 Pairwise generation

In this task, we input a frame and generate an image showing the future state. We model the

task using an autoencoder style convolutional neural network. The model architecture is shown in
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Figure 3.1(a), where the input and output size are 64x64 with 3 channels and encoding and decoding

parts are symmetric. Both encoding and decoding parts consists of 4 convolution/deconvolution layers

with the kernel size 5x5 and a stride of 2, meaning that at each layer the height and width of the output

feature map decreases/increases by a factor of 2 with 64, 128, 256, 512/512, 256, 128, 64 channels

respectively. Each conv/deconv layer, except the last layer, is followed by a batch normalization

operation [Ioffe and Szegedy, 2015] and ReLU activation function [Nair and Hinton, 2010]. For the

last layer we use Tanh as the activation function. The size of the hidden variable z (center) is 512.

We represent the conditional term encoding the degree of elapsed time between the input and output

as a 4 dimensional one-hot vector, representing 4 possible degrees. This is connected with a linear

layer (512) and concatenated with z to adjust the degree of the future depiction. Below we describe

experiments with different loss functions and training approaches for this network.

p_mse: As a baseline, we use pixel-wised mean square error(p_mse) between prediction output

and ground truth as the loss function. Previous image generation works [Srivastava et al., 2015,

Mathieu et al., 2015, Ranzato et al., 2014, Pathak et al., 2016] postulate that pixel-wised l2 criterion

is one cause of output generation blurriness. We also observe this effect in the outputs produced by

this baseline model.

p_mse+adv: Following the success of recent image generation works[Goodfellow et al., 2014,

Radford et al., 2015], which make use of generative adversarial networks (GANs) to generate better

quality images, we explore the use of this network architecture for temporal generation. For their

original purpose, these networks generate images from randomly sampled noise. Here, we use a GAN

to generate future images from an image of an object at the current time. Specifically, we use the

baseline autoencoder previously described and incorporate an adversarial loss in combination with

the pixel-wise MSE. During training this means that in addition to the auto-encoder, called the

generator (G), we also train a binary CNN classifier, called the discriminator (D). The discriminator

takes as input, the output of the generator and is trained to classify images as real or fake (i.e.

generated). These two networks are adversaries because G is trying to generate images that can fool

D into thinking they are real, and D is trying to determine if the images generated by G are real.

Adding D helps to train a better generator G that produces more realistic future state images. The
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architecture of D is the same as the encoder of G, except that the last output is a scalar and connect

with sigmoid function. D also incorporates the conditional term by connecting a one-hot vector with

a linear layer and reshaping to the same size as the input image then concatenating in the third

dimension. The output of D is a probability, which will be large if the input is a real image and

small if the input is a generated image. For this framework, the loss is formulated as a combination

of the MSE and adversarial loss:

LG = Lp_mse + λadv ∗ Ladv (3.1)

where Lp_mse is the mean square error loss, where x is the input image, c is the conditional term,

G(.) is the output of the generation model, and y is the ground truth future image at time = current

time + c.

Lp_mse = |y −G(x, c)|2 (3.2)

And, Ladv is a binary cross-entropy loss with α = 1 that penalizes if the generated image does not

look like a real image. D[.] is the scalar probability output by the discriminator.

Ladv = −α log(D[G(x, c), c])− (1− α) log(1−D[G(x, c), c]) (3.3)

During training, the binary cross-entropy loss is used to train D on both real and generated images.

For details of jointly training adversarial structures, please refer to [Goodfellow et al., 2014].

p_g_mse+adv: Inspired by [Mathieu et al., 2015], where they introduce gradient based l1 or l2

loss to sharpen generated images. We also evaluate a loss function that is a combination of pixel-wise

MSE, gradient based MSE, and adversarial loss:

LG = Lp_mse + Lg_mse + λadv ∗ Ladv (3.4)

where Lg_mse represents mean square error in the gradient domain defined as:

Lg_mse = (gx[y]− gx[G(x, c)])2 + (gy[y]− gy[G(x, c)])2 (3.5)
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gx[.] and gy[.] are the gradient operations along the x and y axis of images. We could apply different

weights to Lp_mse and Lg_mse, but in this work we simply weight them equally.

p_g_mse+adv+ft: Since we have limited training data for each transformation, we investigate

the use of pre-training for improving generation quality. In this method we use the same loss function

as the last method, but instead of training the adversarial network from scratch, training proceeds

in two stages. The first stage is a reconstruction stage where we train the generation model using

random static images for the reconstruction task. Here the goal is for the output image to match

the input image as well as possible even though passing through a bottleneck during generation. In

the second stage, the fine-tuning stage, we fine-tune the network for the temporal generation task

using our timelapse data. By first pre-training for the reconstruction task, we expect the network

to obtain a good initialization, capturing a representation that will be useful for kick-starting the

temporal generation fine-tuning.

3.2.2 Two stack generation

In this scenario, we want to generate an image that shows the future state of an object given two

input images showing the object in two stages of its transformation. The output should continue

the transformation pattern demonstrated in the input images, i.e. if the input images depict the

object at time t and t+m, then the output should depict the object at time t+2m. We design the

generation model using two stacks in the encoding part of the model as shown in Fig. 3.1(b). The

structures of the two stacks are the same and are also identical to the encoding part of the pairwise

generation model. The hidden variables z1 and z2 are both 512 dimensions, and are concatenated

together and fed into the decoding part, which is also the same as the previous pairwise generation

model. The two stacks are sequential, trained independently without shared weights.

Given the blurry results of the baseline for pairwise generation, here we only use three methods

p_mse+adv, p_g_mse+adv, and p_g_mse+adv+ft. The structure of the discriminator is

the same. For the fine-tuning method, during the reconstruction training, we make the two inputs

the same static image. The optimization procedures are the same as for the pairwise generation

task, but we do not have conditional term here (since time for the future generation is implicitly

specified by the input images).
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3.2.3 Recurrent generation

In this scenario, we would like to recursively generate future images of an object given only a

single image of its current temporal state. In particular, we use a recurrent neural network framework

for generation where each time step generates an image of the object at a fixed degree interval

in the future. This model structure is shown in Fig. 3.1(c). After hidden variable z, we add a

LSTM[Hochreiter and Schmidhuber, 1997] layer. For each time step, the LSTM layer takes both

z and the output from the previous time step as inputs and sends a 512 dimension vector to the

decoder. The structure of the encoder and decoder are the same as in the previous scenarios, where

the decoding portions for each time slot share the same weights.

We evaluate three loss functions in this network: p_mse+adv, p_g_mse+adv as well as

p_g_mse+adv+ft. The structure of the discriminator is again the same without the conditional

term (as in the two-stack model). For fine-tuning, during reconstruction training, we train the model

to recurrently output the same static image as the input at each time step.

3.3 Experiments

In this section, we discuss the training process and parameter settings for all experiments

(Sec 3.3.1). Then, we describe dataset pre-processing and augmentation (Sec 3.3.2). Finally, we

discuss quantitative and qualitative analysis of results for: pairwise generation (Sec 3.3.3), two-stack

generation (Sec 3.3.4), and recurrent generation (Sec 3.3.5) as well as the human experiments and

the visualization results (Sec 3.3.6).

3.3.1 Training and parameter settings

Unless otherwise specified training and parameter setting details are applied to all models. During

training, we apply Adam Stochastic Optimization[Kingma and Ba, 2014] with learning rate 0.0002

and minibatch of size 64. In the loss functions where we combine mean square error loss with

adversarial loss (as in equation 3.1), we set the weight of the adversarial loss to λadv = 0.2 for all

experiments.

3.3.2 Dataset preprocessing and augmentation

Timelapse dataset: Some of the collected videos depict more than one object or the object is

not located in the center of the frames. In order to help the model concentrate on learning the

transformation itself rather object localization, for each video in the dataset, we obtain a cropped

version of the frames centered on the main object. We randomly split the videos into training and
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testing sets in a ratio of 0.85 : 0.15. Then, we sample frame pairs (for pairwise generation) or groups

of frames (for two-stack and recurrent generation) from the training and testing videos. Frames are

resized to 64x64 for generation. To prevent overfitting, we also perform data augmentation training

pairs or groups by incorporating frame crops and left-right flipping.

Reconstruction dataset: This dataset contains static images used to pre-train our models on

reconstruction tasks. Initially, we tried training only on objects depicted in the timelapse videos and

observed performance improvement. However, collecting images of specific object categories is a

tedious task at large-scale. Therefore, we also tried pre-training on random images (scene images

or images of random objects) and found that the results were competitive. This implies that the

content of the images is not as important as encouraging the networks to learn how to reconstruct

arbitrary input images well. We randomly download 50101 images from ImageNet[Deng et al., 2009]

as our reconstruction dataset. The advantage of this strategy is that we are able to use the same

group of images for every transformation model and task.

3.3.3 Pairwise generation results

In the pairwise generation task, we input an image of an object and the model outputs depiction

of the future state of the object, where the degree of transformation is controlled by a conditional

term. The conditional term is a 4 dimensional one-hot vector which indicates whether the predicted

output should be 0, 0.25, 0.5 or 0.75 degrees in the future from the input frame. We sample frame

pairs from timelapse videos based on annotated degree value intervals. A 0 degree interval means

that the input and output training images are identical. We consider 0 degree pairs as auxiliary

pairs, useful for two reasons: 1) They help augment the training data with video frames (which

display different properties from still images), and 2) The prediction quality of image reconstruction

is highly correlated with the quality of future generation. Pairs from 0 degree transformations can

be easily be evaluated in terms of reconstruction quality since the prediction should ideally exactly

match the ground truth image. Predictions for future degree transformations are somewhat more

subjective. For example, from a bud the resulting generated bloom may look like a perfectly valid

flower, but may not match the exact flower shape that this particular bud grew into (an example is

shown in Figure. 3.2 row 1).

We train pairwise generation models separately for each of the 4 transformation categories using
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Figure 3.2: Pairwise generation results for: Blooming (rows 1-3), Melting (rows 4-5), Baking
(rows 6-7) and Rotting (rows 8-9). Input(a), p_mse(b), p_mse+adv(c), p_g_mse+adv(d),
p_g_mse+adv+ft(e), Ground truth frames(f). Black frames in the ground truth indicate video did
not depict transformation that far in the future.

p_mse, p_mse+adv and p_g_mse+adv methods, trained for 12500 iterations on timelapse

data from scratch. For the p_g_mse+adv+ft method, the models are first trained on the

reconstruction dataset for 5000 iterations with the conditional term fixed as ‘0 degree’ and then

fine-tuned on timelapse data for another 5500 iterations. We observe that the fine-tuning training

converges faster than training from scratch (example results with 3 different degree conditional terms

in Figure 3.2). We observe that the baseline suffers from a high degree of blurriness. Incorporating

other terms into the loss function improves results, as does pre-training with fine-tuning. Table. 3.2

(cols 2-4) shows evaluations of pairwise-generation reconstruction. For evaluation, we compute the

Peak Signal to Noise Ratio(PSNR), Structural Similarity Index(SSIM) and Mean Square Error

(MSE) values between the output and ground truth. We can see that incorporating gradient loss

slightly improves results while pre-training further improves performance. This agrees with the

qualitative visual results.
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Pairwise Two stack Recurrent

PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM MSE

p_mse+adv 17.0409 0.5576 0.0227 17.7425 0.5970 0.0185 17.2758 0.5747 0.0211
p_g_mse+adv 17.0660 0.5720 0.0224 17.9157 0.6122 0.0177 17.2951 0.5749 0.0214
p_g_mse+adv+ft 17.4784 0.6036 0.0207 18.6812 0.6566 0.0153 18.3357 0.6283 0.0166

Table 3.2: Quantitative evaluation of: Pairwise generation, Two stack generation, and Recurrent
tasks. For PSNR and SSIM larger is better, while for MSE lower is better.

Figure 3.3: Two stack generation results for Blooming (a), Melting (b), Baking (c) and Rotting (d).
For each we show the two input frames (col 1-2), and results for: p_mse+adv (col 3), p_g_mse+adv
(col 4), p_g_mse+adv+ft (col 5) and ground truth (col 6)

3.3.4 Two stack generation results

For two stack generation, the model generates an image showing the future state of an object

given two input depictions at different stages of transformation. As training data, we sample frame

triples from videos with neighboring frame degree intervals: 0, 0.1, 0.2, 0.3, 0.4, and 0.5. We train

two stack generation models for each of the 4 transformation categories, trained for 12500 iterations

for the p_mse+adv and p_g_mse+adv methods. For the p_g_mse+adv+ft method, the

models are first pre-trained on the reconstruction dataset for 4000 iterations and then fine-tuned on

timelapse data for 6500 iterations (Figure. 3.3 shows example prediction results). We observe that

p_g_mse+adv+ft generates improved results in terms of both image quality and future state

prediction accuracy. We further evaluate the reconstruction accuracy off these models in Table. 3.2

(cols 5-7). Furthermore, in this task we expect that the models can not only predict the future state,
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Figure 3.4: Two stack generation with varying time between input images. For each example we
show: the two input images (col 1-2), p_mse+adv (col 3), p_g_mse+adv (col 4), p_g_mse+adv+ft
(col 5) and ground truth (col 6). The models are able to vary their outputs depending on elapsed
time between inputs.

Pairwise Two stack Recurrent

BL ADV Grad Ft ADV Grad Ft ADV Grad Ft

Blooming 0.1320 0.2300 0.2880 0.3500 0.3080 0.3240 0.3680 0.3320 0.2860 0.3820
Melting 0.1680 0.2520 0.2760 0.3040 0.3400 0.3120 0.3480 0.3180 0.3220 0.3600
Baking 0.1620 0.2600 0.2840 0.2940 0.3120 0.3200 0.3680 0.2780 0.3540 0.3680
Rotting 0.1340 0.2020 0.2580 0.4060 0.3040 0.2640 0.4320 0.2940 0.2900 0.4160
Average 0.1490 0.2360 0.2765 0.3385 0.3160 0.3050 0.3790 0.3055 0.3130 0.3815

Table 3.3: Human evaluation results: BL stands for p_mse method, ADV (p_mse+adv),
Grad(p_g_mse+adv) and Ft(p_g_mse+adv+ft)

but also learn to generate the correct time interval based on the input images. Figure. 3.4 shows

input images with different amounts of elapsed time. We can see that the models are able to vary

how far in the future to generate based on the input image interval.

3.3.5 Recurrent generation results

For our recurrent generation task, we want to train a model to generate multiple future states

of an object given a single input frame. Due to limited data we recursively generate 4 time steps.

During training, we sample groups of frames from timelapse videos. Each group contains 5 frames,

the first being the input, and the rests having 0, 0.1, 0.2, 0.3 degree intervals from the input. As in

the previous tasks, the reconstruction outputs are used for quantitative evaluation.

We train the models separately for the 4 transformation categories. The models for the

p_mse+adv and p_g_mse+adv methods are trained for 8500 iterations on timelapse data

from scratch. For the p_g_mse+adv+ft method, models are pre-trained on the reconstruction

dataset for 5000 iterations then fine-tuned for another 5500 iterations. Figure. 3.5 shows prediction

results (outputs of 2nd, 3rd and 4th time steps) of the three methods. Table. 3.2 (cols 8-10) shows

the reconstruction evaluation.
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Figure 3.5: Recurrent generation results for: Blooming (rows 1-2), Melting (rows 3-4), Baking (rows
5-6) and Rotting (rows 7-8). Input(a), p_mse+adv(b), p_g_mse+adv(c), p_g_mse+adv+ft(d),
Ground truth frames(e).
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3.3.6 Additional experiments

Human Evaluations: As previously described, object future state prediction is sometimes not

well defined. Many different possible futures may be considered reasonable to a human observer.

Therefore, we design human experiments to judge the quality of our generated future states. For

each transformation category and generation task, we randomly pick 500 test cases. Human subjects

are shown one (or two for two stack generation) input image and future images generated by each

method (randomly sorted to avoid biases in human selection). Subjects are asked to choose the

image that most reasonably shows the future object state.

Results are shown in Table 3.3, where numbers indicate the fraction of cases where humans

selected results from each method as the best future prediction. For pairwise generation (cols 2-5),

the p_g_mse+adv+ft method achieves the most human preferences, while the baseline performs

worst by a large margin. For both two stack generation (cols 6-8) and recurrent generation (cols

9-11), p_mse+adv and p_g_mse+adv are competitive, but again making use of pre-training

plus fine-tuning obtains largest number of human preferences.

Image retrieval: We also add a simple retrieval experiment on Pairwise generation results using

pixelwise similarity. We count retrievals within reasonable distance (20% of video length) to

the ground truth as correct, achieving average accuracies on top-1/5 of p_mse+adv:0.68/0.94;

p_g_mse+adv: 0.72/0.95; and p_g_mse+adv+ft: 0.90/0.98.

Visualizations: Object state transformations often lead to physical changes in the shape of an

object. To further understand what our models have learned, we provide some simple visualizations

of motion features computed on generated images. Visualizations are computed on results of the

p_g_mse+adv+ft recurrent model since we want to show the temporal trends of the learned

transformations. For each testing case, we compute 3 optical flow maps in the x and y directions

between the input image and the second, third, and fourth generated images. We cluster each using

kmeans (k=4). Then, for each cluster, we average the optical flow maps in the x and y directions.

Figure. 3.6 shows the flow visualization: (a) is the x axis flow for the blooming transformation.

From the visualization we observe the trend of the object growing spatially. (b) shows the y axis

flows for the melting transformation, showing the object shrinking in the y direction. (c) shows
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Figure 3.6: Visualization results of learned transformations: x axis flows of blooming (a), y axis
flows of melting (b), y axis flows of baking (c) and y axis flows of rotting (d)

baking, consistent with the object inflating up and down. For rotting (d), we observe that the upper

part of the object inflates with mold or shrinks due to dehydration.

3.4 Conclusions

In this work, we have collected a new dataset of timelapse videos depicting temporal object

transformations. Using this dataset, we have trained effective methods to generate one or multiple

future object states. We evaluate each prediction task under a number of different loss functions

and show improvements using adversarial networks and pre-training. Finally, we provide human

evaluations and visualizations of the learned models. Future work includes applying our methods to

additional single-object transformations and to more complex transformations involving multiple

objects.
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CHAPTER 4

Personalized motion transfer

In this chapter, we develop computational methods for imitating human movements. In par-

ticular, we train a model using one several-minute-long video of a target person and can then

transfer any desired movement from a new reference video to the target person (maintaining ap-

pearance) as Figure 1.2 (Section 1.2) shows. Previous work [Ma et al., 2017, Siarohin et al., 2018,

Balakrishnan et al., 2018, Chan et al., 2018] investigates human pose transfer either under general-

ized settings (models trained across various individuals/scenes) or using single person lab-recorded

videos. In this work, we explore personalized motion transfer on videos obtained from the Internet,

such as YouTube. With such data pre-recorded in uncontrolled ways, our models are required to

generalize well to novel poses, as we cannot ask a person on YouTube to demonstrate the entire

range of poses we might want to generate. We show example frames of the Internet videos used as

training data in Figure 4.1.

We formulate the motion transfer problem as a pose guided image translation task. Specifically,

given an input frame (from the target person) and a desired pose, our model synthesizes the output

as the target person in that new pose. Because our goal is to develop a general method that can

handle unconstrained target videos from the Internet, which may contain moving background objects

or unstable camera motions, we break our task down into two pieces that deal with the foreground

(person) and background separately. In particular, our model is composed of two stages: the human

synthesis stage which extracts body segments of the target person and then generates a photo-realistic

image of the target in a new pose; and a fusion stage which combines the generated person with the

extracted background scene. The latter fusion stage helps to remove small artifacts introduced from

the human generation stage as well as adding shadows/reflections due to the interaction between the

person and the scene. In addition, because we separate foreground and background processing, a side

benefit of our method is the ability to place the generated person on a new background (something

that cannot be achieved with whole frame generation methods). To obtain high-quality synthesis
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Figure 4.1: Example frames of personal videos from YouTube (from left to right are: Video_01 to
Video_08).

results, we also apply temporal smoothing to generate temporally coherent movements and use hand,

foot, and face landmarks to enhance local body details. We describe our method in Section 4.1.

To evaluate the effectiveness of the proposed method, we conduct both numerical evaluations and

human experiments on generated results in Section 4.2.

4.1 Approach

We formulate the personalized motion transfer task as follows. Given an input frame Iin and a

reference frame Iref of size H×W , as well as their associated human poses Pin and Pref , we would

like to learn a mapping F that generates an output frame Iout with the reference pose transferred to

the target person in the input frame:

Iout = F(Iin, Pin, Pref ) (4.1)

where Iout retains the same human appearance and background scene as Iin while rendering with

the reference pose, Pref . During training, we sample random frame pairs from a personal video as

our training data (Iin, Iref ).

We treat the human body part segments from Iin as tangram pieces1 which are placed on

a composition image according to the layout of reference pose, Pref . A similar step is used in

[Balakrishnan et al., 2018]. This provides us with a good initial image on top of which we apply the

human synthesis part of our method. The body part transform process is illustrated in Fig. 4.2 and

1A dissection puzzle consisting of fixed number of pieces to form various shape by translation and rotation.
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Figure 4.2: Body parts transformation. STN aligns the body parts of Iin with target pose Pref ,
producing body segments represented as a 3D volume T .

described in detail in Section 4.1.1.

Figure 4.3 shows the architecture of our two-stage model. The human synthesis stage (a) takes

the transformed body parts as input and produces a foreground body image, filling the “holes”

between transformed segments and adjusting details (e.g., angle of face) to produce a photo-realistic

image of the target person in the reference pose (Section 4.1.3). In the second stage, a fusion network

(b) takes the generated foreground and a fixed background image as inputs and generates the final

synthesized output Iout (Section 4.1.4). The fusion network combines the foreground and background,

fixing discontinuous foreground boundaries and adding important details such as shadows. We design

special training techniques and loss functions as discussed in Section 4.1.5.

4.1.1 Human body part transformation

For each frame pair (Iin, Iref ), we first apply a human body parsing algorithm [Fang et al., 2018]

on Iin as illustrated in Fig. 4.2, where Hin is the human parsing map and ⊗ represents element-wise

multiplication. The person from the input frame is segmented into 10 body parts (head, torso,

left/right upper arms, left/right lower arms, left/right upper legs, left/right lower legs). We also

employ the AlphaPose [Fang et al., 2017] pose estimation algorithm to detect 2D poses, (Pin, Pref ),

in both input and reference frames.

Given the pose estimates, we connect line segments between pairs of key points for each of
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the ten body parts. Based on the corresponding line segments in Pin and Pref , we compute affine

transformation matrices {Mi ∈ R2×3}i=1,...,10 which define the transformation to align each body

part in Iin with the pose in reference frame Pref . This transformation helps normalize the body

part rotation and scaling between two images (the reference person may appear smaller or larger

than the target person). A spatial transformer network [Jaderberg et al., 2015], which applies image

warping operations including translation, scale, and rotation, is used to transform input frame

body parts according to transformation matrices Mi and generate reference-aligned body segments

T ∈ RH×W×(3×10) (Figure 4.2).

4.1.2 Pose map representation

Previous works [Ma et al., 2017, Siarohin et al., 2018] represent pose information as keypoint

maps. We find that this can cause ’broken limbs’ (missing or disconnected body parts) when

synthesizing foreground human body. In our work, we alleviate this issue by encoding the position,

orientation and size of each body part as Gaussian smoothed heat map parameterized by a solid

circle or rectangle, as illustrated by Pref in Figure 4.3. The shape parameters (radius, height, width,

etc.) are estimated from the associated key points.

Enhancing local details: Besides filling holes between transformed body parts, the human

synthesis model is also expected to correct the orientation of head/feet/hands since errors on

these important body parts can severely degrade the perceptual quality of results. Thus, in

addition to the original 10 body parts, we also add facial, hand and foot landmarks detected by

OpenPose [Cao et al., 2017, Simon et al., 2017]2, and encode them in the Gaussian smoothed heat

map format. In summary, we represent the reference pose map as a 3D volume Pref ∈ RH×W×(10+5),

with the first 10 channels representing limbs/trunk and the last 5 channels representing facial,

left/right hands, left/right feet landmarks.

Temporal smoothing: What we have described so far focuses on image-based frame-to-frame

translation. Since our input pose maps are characterized by 2D spatial information, there exists

2We use AlphaPose [Fang et al., 2017] as our main detection algorithm because of its robust performance, and
use OpenPose [Cao et al., 2017] to gather additional face, hand, and foot key points which are unavailable from
AlphaPose.
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Figure 4.3: Two-stage motion transfer framework. (a) The human synthesis network takes transformed
body parts T as input to synthesize human image Ĩout on a green background, simplifying foreground
Hbi

gen extraction. Pref represents the aggregated pose maps. (b) The fusion network takes the
combined foreground image Ĩout and fixed background B as input and synthesizes the final output
frame Iout.

ambiguity when inferring the underlying body configuration in the 3D world. Such uncertainty

leads to non-smooth video outputs or temporal flickering. To enforce smooth change across the

generated frames, we introduce temporal smoothing through the inputs of our model. We include the

previous K reference poses as model inputs. Specifically, we stack P t−k+1
ref , ..., P t

ref along the pose

map channel where P t
ref denotes the current reference pose detected from Itref . Now the stacked

pose map Pref has (10 + 5)K channels.

4.1.3 Human synthesis network

The human synthesis network generates the foreground person in the reference pose given the

transformed body parts T and the pose map Pref (Section 4.1.2). To train the synthesis network,

we convert the body parsing map Href for reference image Iref [Fang et al., 2018] to a binary mask

Hbi
ref , and extract only the foreground human region Ĩref = Iref ⊗Hbi

ref as training supervision. Of

course, the parsed mask will not always be perfect due to algorithmic limitations. Artifacts such as

broken limbs will be refined by the fusion network (Section 4.1.4). Note that to avoid distraction by

background clutters, the synthesis network is trained to generate human body on a green background

with Chroma key compositing as shown in Figure 4.3 (a). This uniform background can simplify

foreground extraction so that we can directly obtain the foreground mask Hbi
gen of the generated

frame Ĩout for later processing. As discussed in Section 4.1.2, the human synthesis net adjusts

important pose details, such as head/feet orientations, as exemplified in Fig. 4.4 (a).
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4.1.4 Fusion network

The fusion network is used to combine the generated human foreground image Ĩout with a

fixed background image B to generate the final output Iout. The background image is obtained

by averaging all the frames in the personal video after masking out the foreground with human

segmentation results [Fang et al., 2018]. B might contain artifacts such as blurriness due to moving

objects or small camera motions that will be refined by the fusion network.

As shown in Fig. 4.3 (b), the fusion network takes the combined foreground/background frame

Icomb and the stacked pose map Pref as inputs. The combined frame Icomb is given by:

Icomb = Hbi
gen ⊗ Ĩout + (1−Hbi

gen)⊗B (4.2)

where Hbi
gen is the foreground mask for the generated human frame Ĩout. We apply these “cut and

paste” operations to explicitly define the layering order of the human and background for better

blending results.

We use the reference frame Iref as supervision for training the fusion network. Besides blending

the human with the background scene, the fusion network helps refine the human (foreground) and

fills in broken limbs introduced in the previous stage as demonstrates by the example in Fig. 4.4(b).

The example in Fig. 4.4(c) shows the network’s ability to add appropriate shadows for interactions

between human and scene. In particular, on the left side, we show two frames Icomb and Iout. In the

zoomed-in regions on the right, we observe that the fusion network has removed artifacts from the

estimated background B and added shadows consistent with the lighting and person’s position.

4.1.5 Loss functions

In order to synthesize frames at high resolution, we utilize a pix2pixHD-style [Wang et al., 2018]

framework to train the model in a multi-scale manner. The human synthesis network and fusion

network share the same architecture as well as the same loss functions. As usual, G denotes the

generator and D denotes the discriminator. We use I to represent input frames Iin or Icomb, x to

represent predicted results Ĩout or Iout, y to represent supervision (ground truth) Ĩref or Iref , and p

to represent the reference pose maps Pref . So we have x = G(I, p). We employ several losses in our

model:
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Figure 4.4: (a) The foreground synthesis net adjusts the body segments (left) to obtain correct face
orientation (right). (b) The fusion net fills in the background and fixes broken limbs (e.g., arms)
produced by the synthesis net. (c) The combined frame Icomb and fusion net output Iout (left), with
their zoomed-in regions (right).

Relativistic average LSGAN loss Lrela: The traditional LSGAN [Mao et al., 2017] losses based

on our task can be formatted as:

min
D
LLSGAN (D) =

1

2
Ey,p[(D(y, p)− 1)2]+

1

2
Ex,p[(D(x, p))2]

min
G
LLSGAN (G) =

1

2
Ex,p[(D(x, p)− 1)2]

(4.3)

To make training more stable, we make the LSGAN framework relativistic [Jolicoeur-Martineau, 2018].

Here, the main idea is that D estimates the probability that the input is real while G increases the

probability that fake data is real. [Jolicoeur-Martineau, 2018] argues that it is necessary for G to also

decrease the probability that real data is real.We also apply a gradient penalty [Gulrajani et al., 2017]
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term in D. Define µ(.) as the mean operation, and the relativistic average LSGAN becomes:

min
D
Lrela(D) =

1

2
Ex,y,p[(D(y, p)− µ(D(x, p))− 1)2]+

1

2
Ex,y,p[(D(x, p)− µ(D(y, p)))2]+

wGPEx̂,p[(‖ 5x̂,pD( ˆx, p) ‖2 −1)2]

min
G
Lrela(G) =

1

2
Ex,y,p[(D(x, p)− µ(D(y, p))− 1)2]+

1

2
Ex,y,p[(D(y, p)− µ(D(x, p))2]

(4.4)

where wGP is the weight for the gradient penalty term.

Feature matching loss LFM : We use the feature matching loss from [Wang et al., 2018]. Specif-

ically, we minimize the distance of the features extracted from different layers of D between real and

synthesized frames:

LFM = Ex,y,p

M∑
i=1

1

Ni
[‖ Di(y, p)−Di(x, p) ‖1] (4.5)

where M is the number of layers in D, Ni is the number of elements in each layer, and Di denotes

the ith layer of D.

Perceptual loss LV GG: We utilize the intermediate representations of VGG19 pre-trained on

ImageNet classification. We use ϕ(.) to represent the VGG network and the perceptual loss is

computed as:

LV GG = Ex,y

M∑
i=1

1

Ni
[‖ ϕi(y)− ϕi(x) ‖1] (4.6)

where ϕi represents ith layer of the VGG network with Ni elements and M is the number of layers.

Semantic layout and pose feature losses LSP : We apply this loss in order to encourage the

model to synthesize frames with similar pose and human semantic layouts as ground truth. We use

a pre-trained model from [Nie et al., 2018] which jointly performs human semantic parsing and pose

estimation. We extract intermediate representations from the pose encoder and parsing encoder,

resulting in feature vectors in R256×256×64. We use φp to denote the pose encoding network and φs
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to represent the semantic parsing encoding network. Then, the loss can be formatted as:

LSP =Ex,y[‖ φp(y)− φp(x) ‖1]+

wSEx,y[‖ φs(y)− φs(x) ‖1],
(4.7)

where wS is the weight for the semantic parsing loss.

Finally, we linearly combine all losses as:

L =wrelaLrela + wFMLFM + wV GGLV GG + wSPLSP (4.8)

where w’s represent the weights for each loss term.

4.2 Experiments

In this section, we introduce training and inference data (Section 4.2.1) as well as the model

architectures and training details (Section 4.2.2), show qualitative visualizations (Section 4.2.3), and

present numerical and human evaluations (Section 4.2.4 and Section 4.2.5).

4.2.1 Dataset

To study personalized motion transfer on Internet videos, we collect 8 videos from YouTube

ranging from 4 to 12 minutes. Figure 4.1 shows some example frames for each video. These personal

videos include dancing videos and dancing tutorial videos. For each video, we train a personalized

model.

We also collect pose reference videos from different people which are used to drive our personalized

motion generation. 16 short videos are downloaded from YouTube including various dance types

such as break-dance, shuffle dance and ballet, as well as Taichi martial art which has very different

motion style from the target personal videos. All video URLs are provided in the supplementary

material.

4.2.2 Model and training details

The human synthesis network and fusion network use the same architecture. For each we

apply a multi-scale generator and discriminator. Specifically, we train the model under two scales:

256×256 and 512×512. We use g and G = (g, g̃) to refer to their generators respectively. g̃ means

the additional convolution layers and residual blocks stacked with the start and end of g, and

jointly trained to form G. We also use a two-scale discriminator for lower resolution prediction and
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three-scale for higher resolution. Due to GPU memory limitation, we make the number of activation

maps of each layer half of the original model [Wang et al., 2018]. During training, we apply Adam

Stochastic Optimization [Kingma and Ba, 2014] with learning rate 0.0002 and batch size 4.

We set K=3 for reference pose maps Pref , i.e., stacking the previous two and the current

reference poses as network inputs to encourage temporal smoothness. We set the weight of the

gradient penalty term wGP=10 and wS=0.01 in Eq. 4.7. The linear combination weights in Eq. 4.8

are wrela=1, wFM=10, wV GG=10 and wSP=10.

We train one model for each personal video, sampled at 30 FPS. We split each video into training

and testing sequences by ratio of 0.85:0.15 (there is no overlap between the training and testing sets)

and randomly sample 20,000/2,000 (Iin, Iref ) frame pairs from the training/testing sub-sequence.

This testing set is used for quantitative evaluation because of the availability of ground truth Iout

(which is from the same person as Iref ).

4.2.3 Qualitative results

We visualize the generated results from our model for testing and inference. For each personal

video we randomly sample testing pairs that have never been seen by the model during training.

In addition to using unseen frames from an input video to drive motion transfer, we can also drive

motions of the target person using novel reference videos. Here there is no ground truth to compare

with, but we can evaluate results using human experiments. For each reference frame from a new

video, we select Iin from the personal video with the shortest normalized pose keypoint distance to

the reference pose.

We show synthesized results from our method as well as other approaches. We utilize pix2pixHD

[Wang et al., 2018] as one baseline. This model learns a mapping directly from pose Pref to frame

Iout. We use the loss functions and model structure from [Wang et al., 2018], but reduce the number

of activation maps in each layer by half (as in our model). We also evaluate the Posewarp model

from [Balakrishnan et al., 2018] as another baseline. Finally, we evaluate a simplified variant of

our model Ours-baseline that has the same two-stage model architecture but trained without

supervision on the human synthesis result Ĩout. For the baseline Posewarp method, we generate

256×256 resolution frames as in [Balakrishnan et al., 2018], while results from the others are at

512×512 resolution. We show examples of both testing (Iref and Iout of the same person) and

inference (Iref and Iout of different persons) results in Figure 4.5 and Figure 4.6 respectively. We
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Figure 4.5: Generation results on testing set of four methods from the first to fourth row: Posewarp,
pix2pixHD, Ours-baseline, Ours. Row 5 shows the zoomed-in regions and the last row shows the
reference frames, which are also the ground truth outputs.
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Figure 4.6: Inference generation results: we show two sets (column 1-3 and column 4-6 ) of generation
results from our model. For each set, the first two columns are the synthesized results and the last
column is a sequence of reference frames from a different video.

compare the proposed method with competing methods on the testing set and show motion transfer

from novel reference videos to any of our training videos on the inference set.

Compared with single-stage models which learn direct mapping between poses and video frames,

our two-stage model divides this process into easier sub-tasks. This improves generation quality

for both foreground and background, and reduces blending artifacts between synthesized human

and background scene as Figure 4.7 shows. In this work, the human synthesis and fusion networks

are jointly trained while retaining their own respective supervision. One advantage is that the

intermediate human generation can be utilized to place the generated individual on new backgrounds.

In Figure 4.8, we show several examples where the generated foregrounds have been composited on

other scenes from the Internet. We apply simple Gaussian blur on the boundary of the foreground

to alleviate border effects and more advanced blending techniques could be used to further improve

visual quality.
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Figure 4.7: Comparison between results generated by single-stage pix2pixHD (left) and our two-stage
model (right).

Figure 4.8: Combine generated foreground person with different scenes.
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MSE PSNR SSIM
pix2pixHD [Wang et al., 2018] 702.5714 20.9388 0.7947
Posewarp [Balakrishnan et al., 2018] 744.3939 20.6992 0.7663
Ours-baseline 664.7313 21.2318 0.8064
Ours 642.9080 21.3286 0.8115

Table 4.1: Evaluation of whole frame synthesis results on testing set.

MSE PSNR SSIM
pix2pixHD [Wang et al., 2018] 191.5246 25.7823 0.9314
Posewarp [Balakrishnan et al., 2018] 191.1796 25.8334 0.9264
Ours-baseline 176.9530 26.0477 0.9338
Ours 171.3259 26.1752 0.9352

Table 4.2: Evaluation of foreground synthesis results on testing set.

4.2.4 Numerical evaluation

We quantitatively evaluate testing results of the proposed method and other approaches with

metrics Mean Square Error (MSE), PSNR, and SSIM averaged over all personal videos. The results

for the whole frames and foreground (human) regions are reported in Table 4.1 and 4.2, respectively.

Our method achieves the best synthesis quality in MSE, PSNR, and SSIM for both full-frame and

foreground-only evaluations. The Posewarp method achieves relatively high errors in whole frame

evaluation because the moving background in some videos violates the static background assumption

of the method (background synthesized through hole-filling on the input frame).

To measure the temporal coherence of generated frames, we calculate the difference between

all consecutive generated frame pairs (Itout−It−1
out ) from the testing results, and measure the MSE

against the ground truth difference frame. This simple metric can be regarded as a rough surrogate

to optical flow difference. As can be seen from the results averaged over all the input videos in

Table 4.3, both our full model and ours-baseline achieve competitive temporal coherence on the

synthesized results.

Whole frame Foreground
pix2pixHD [Wang et al., 2018] 225.7470 103.5557
Posewarp [Balakrishnan et al., 2018] 220.8329 103.4395
Ours-baseline 219.5680 98.9921
Ours 217.8404 99.5027

Table 4.3: The MSE of difference frame on testing set.

51



Figure 4.9: Relationship between pose distance to training samples and generation quality. The
highlighted frame pair with magenta and yellow color (left is generated and right is ground truth)
have the same pose distance with training sample but different SSIM scores due to the subtitle
occasionally observed in the background of the yellow frame. The frame pair of green and red color
have similar generation quality although in training the model has only seen similar poses as the
green one but not the red one.

Generalization to unseen reference poses, e.g. to transfer ballet motion to a target person whom

has only been observed to perform hip-hop dancing, is critical for our personal model as it is trained

with an Internet video with only a few minutes covering a limited portion of human pose space.

Figure 4.9 shows the relationship between the “novelty” of reference poses and the SSIM generation

quality. Specifically, we compute the normalized keypoints distance between the reference pose and

all training poses, and take the average of the top 10 nearest distances as the value in x axis. The

testing results from 3 personal videos are plotted as colored dots in Figure 4.9. We observe that

even for poses very different from training (large x axis), our model’s performance remains stable.

Most outliers in Figure 4.9 come from unexpected ground truth such as frames in the video prologue

with very dark color.
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pix2pixHD Posewarp Ours-baseline Ours
Q1 14.70% 17.59% 25.98% 41.73%
Q2 13.39% 21.00% 25.20% 40.42%
Q3 17.85% 22.83% 23.36% 35.96%
Q4 19.42% 22.05% 28.87% 29.66%
Q5 14.17% 19.69% 25.98% 40.16%

Table 4.4: Human rating percentages over different methods on complete body (Q1); clearest face
(Q2); isolated foreground and background (Q3); temporal stability (Q4); and overall quality (Q5).

4.2.5 Human evaluation

Finally, we also measure the human perceptual quality of generated results, especially for motion

transferred from novel videos to a target person, where there exists no ground truth for comparison.

Therefore, we conduct a human subjective test to measure motion transfer quality.

In these experiments, we compare videos generated with our proposed method, our simplified

baseline model, Posewarp, and pix2pixHD by conducting a forced-choice task on Amazon Mechanical

Turk (AMT). We show Turkers videos generated by each of the four methods with random order.

Turkers are provided with five questions and asked to select one video as the answer to each question.

The questions are related to: 1) the most complete human body (least missing body parts or broken

limbs); 2) the clearest face; 3) the most isolated human and scene (the foreground and background

are not mixed together); 4) the most temporally stable video (least jitters); 5) the most overall

visual appealingness. For each question, we show instructional examples to help the Turker better

understand the task. Three different Turkers are asked to label each group of videos for each question,

and their selections are aggregated across tasks as the final result. We show the selection rate of the

four methods averaged over the 8 personalized models in Table 4.4. We can see that consistent with

our previous quantitative ground truth based measurements, the human evaluation also favors our

proposed method on all the five questions. In particular, our proposed method achieves much better

performance on body completeness, face clarity, foreground/background separation, and the overall

visual appearance. For temporal stability, both our full model and baseline model outperform the

existing methods.

4.3 Conclusions

In this chapter, we introduced a model for personalized motion transfer on Internet videos. Our

model consists of two parts: a human synthesis network and a fusion network. The former synthesizes
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a human foreground based on pose-transformed body parts. The latter fuses the person with a

background scene and further refines the synthesis details. The evaluation shows that our method

can generate personal videos of new motion with visually appealing quality and fewer artifacts than

existing methods. Future directions include handling online videos with drastic camera motion (with

background significantly changing from frame to frame) and motion transfer using incomplete or

partially observed body parts.
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CHAPTER 5

Visual to sound

The visual and auditory senses are arguably the most important channels through which humans

perceive their surrounding environments, and they are often entertwined. From life-long observations

of the natural world, people are able to learn the association between vision and sound. For instance,

when seeing a flash of lightning in the sky, one might cover their ears subconsciously, knowing that

the crack of thunder is coming next. Alternatively, hearing leaves rustling in the wind might conjure

up a picture of a peaceful forest scene.

In this chapter, we explore whether computational models can learn the relationship between

visuals and sound. Models of this relationship could be fundamental for many applications such

as combining videos with automatically generated ambient sound to enhance the experience of

immersion in virtual reality; adding sound effects to videos automatically to reduce tedious manual

sound editing work; Or enabling equal accessibility by associating sound with visual information

for people with visual impairments (allowing them to “see” the world through sound). While all of

these tasks require powerful high-level inference and reasoning ability, in this work we take a first

step toward this goal, narrowing down the task to generating audio for video based on the viewable

content.

Specifically, we train models to directly predict raw audio signals (waveform samples) from input

videos. The models are expected to learn associations between generated sound and visual inputs for

various scenes and object interactions. Existing works [Owens et al., 2016, Chen et al., 2017] handle

visual to sound task under experimental settings. In our work, we deal with generating natural

sound from videos collected in the wild.

To enable learning, we introduce a dataset that is derived from AudioSet [Gemmeke et al., 2017].

AudioSet is a dataset collected for audio event recognition but not ideal for our task because many

of videos and audios are loosely related; the target sound might be covered by other sounds (like

music); and the dataset contains some mis-classified videos. All of these sources of noise tend to
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deter the models from learning the correct mapping from video to audio. To alleviate these issues,

we clean a subset of the data, including sounds of humans/animals and other natural sounds, by

verifying the presence of the target objects for both videos and audios respectively (at 2 second

intervals) to make them suitable for the generation task (Section 5.1).

Our model learns a mapping from video frames to audio using a video encoder plus sound

generator structure. For sound generation, we use a hierarchical recurrent neural network proposed

by [Mehri et al., 2016]. We present 3 variants to encode the visual information, which can be

combined with the sound generation network to form a complete framework (Section 5.2). To

evaluate the proposed models and the generated results, we conduct both numerical evaluations and

human experiments in Section 5.3.

5.1 Visually Engaged and Grounded AudioSet (VEGAS)

The goal of this work is to generate realistic sound based on video content and simple object

activities. Currently, we do not explicitly handle high-level visual reasoning during sound prediction.

For the training videos, we expect visual and sound are directly related (predicting dog sound when

seeing a dog) most of the time.

Most existing video datasets [Abu-El-Haija et al., 2016, Karpathy et al., 2014] include both video

and audio channels. However, they are typically intended for visual understanding tasks, thus

organized based on visual entities/events. A better choice for us is AudioSet [Gemmeke et al., 2017],

a large-scale object-centric video dataset organized based on audio events. Its ontology includes

events such as fowl, baby crying, engine sounds. Audioset consists of 10-second video clips (with

audios) from Youtube. The presence of sounds has been manually verified. But as a dataset designed

for audio event detection, AudioSet still cannot perfectly fit our needs because of the following three

reasons. First, visual and sound are not necessarily directly related. For instance, sometimes the

source of a sound may be out of frame, e.g. we may hear a dog barking while the video shows a

group of people laughing. Second, the target sound (say mew from a cat) might have been largely

covered by other noise like background music. Third, mis-classification exists.

We ran several baseline models using the original data and found that the generated sounds are

not clean and often accompanied with other noise like chaotic human chatting. To make the data

useful for our generation task, we select a subset of videos from AudioSet and further clean them.

56



5.1.1 Data collection

We select 10 categories from AudioSet (each including more than 1500 videos) for further

cleaning. The selected data includes human/animal sound as well as ambient sounds (specifically

they are: Baby crying, Human snoring, Dog, Water flowing, Fireworks, Rail transport, Printers,

Drum, Helicopter and Chainsaw). For the categories containing more data than needed, we randomly

select 3000 videos for each.

We use AMT, asking turkers to verify the presences of an object/event of interest for the video

clip in both the visual and audio modalities. If both modalities are verified we consider it a clean

video. For most of the videos, noise does not dominate for the entire videos. Therefore, to retain as

much data as possible, we segment each video into 2-second short clips for separate labeling. For

each short clip, we divide the video and audio for independent annotation.

To clean the audio modality, we ask turkers to annotate the presence of a sound from a target

object (e.g. flowing water for water flowing category). Turkers are provided with three choices: ’Yes

— the target sound is dominant over other sounds’, ’Sort of — competitive, ’No — other sounds

are dominant’. To clean the visual modality, we similarly ask turkers to annotate the presence of a

target object with three choices: ’Yes — the target objects appear all the time’, ’Sort of — appearing

partially’, ’No — the target objects do not appear or barely appear’. For each segment, we collect

annotations from 3 turkers and pick the majority as the final annotation. We reject turkers with low

accuracy to ensure annotation quality.

We remove the clips where either video and audio has been labeled as ’No’ and keep the ’Yes’

and Sort of’ labeled clips to introduce more variation in the collected data. Finally, we combine the

verified adjacent short clips to form longer videos, resulting in videos ranging from 2-10 seconds.

5.1.2 Data statistics

In total, we annotated 132,209 clips in both the visual and audio modalities, each labeled by 3

turkers, and removed 34,392 clips from the original data. After merging adjacent short clips, we

have 28,109 videos in total with an average length of 7 seconds and a total length of 55 hours. The

left table in Fig. 5.1 shows the number of videos and the average length with the standard deviation

for each category respectively. The pie chart demonstrates the distribution of lengths, showing that

the majority of videos are longer than 8 seconds. Fig. 5.2 shows some example frames with their

corresponding waveforms. We can see how sound correlates with the motion of target objects as
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Figure 5.1: Dataset statistics: the table shows the number of videos with averaged length for each
category, while the pie chart presents the distribution of video lengths.

well as scene events, such as water flowing (bottom right) where the ambient sounds are temporally

uniform. Due to the verified properties of the current dataset, we call it the Visually Engaged and

Grounded AudioSet (VEGAS).

5.2 Approaches

In this work, we formulate the task as a conditional generation problem, for which we train a

conditional generative model to synthesize raw waveform samples from an input video. Specifically,

we estimate the following conditional probability:

p(y1, y2, ..., yn|x1, x2, ..., xm) (5.1)

where x1, ..., xm represent input video frame representations and y1, ..., yn are output waveform values

which is a sequence of integers from 0 to 255 (the raw waveform samples are real values ranging from

-1 to 1, we rescale and linearly quantize them into 256 bins in our model see Section 5.2.1). Note

that typically m << n because the sampling rate of audio is much higher than that of video, thus

the audio waveform sequence is much longer than video frame sequence for a synchronized video.

We adopt an encoder-decoder architecture in model design and experiment with three variants

of this type. In general, our models consist of two parts: video encoder and sound generator. In

the following sections, we first discuss the sound generator in Sec. 5.2.1, then we talk about three

different variations of encoding visual information and the concrete systems in Sec. 5.2.2, Sec. 5.2.3
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Figure 5.2: Video frames of 4 categories from the VEGAS dataset with their corresponding waveforms.
The color of the image borders is consistent with the mark on the waveform, indicating the position
of the current frame in the whole video.

and Sec. 5.2.4.

5.2.1 Sound generator

Our goal is to directly synthesize waveform samples with a generative model. As mentioned

before, in order to obtain audios of reasonable quality (i.e., sounds natural), we adopt a high sampling

rate at 16kHz. This requirement results in extremely long sequences, which poses challenges to a

sound generator. For this purpose, we choose the recently proposed SampleRNN [Mehri et al., 2016]

as our sound generator. SampleRNN is a hierarchically structured recurrent neural network. Its

coarse-to-fine structure enables the model to generate extremely long sequences and the recurrent

structure of each layer captures the dependency between distant samples. SampleRNN has been

applied to speech synthesis and music generation tasks previously. Here we apply it to generate

natural sound for videos in the wild, which typically contain much larger variations, less structural

patterns, and more noise than speech or music data.

Specifically, Fig. 5.3(a) (upper-left corner brown box) shows the simplified overview of the

SampleRNN model. Note, this simplified illustration shows 2 tiers, but more tiers are possible (we

use 3). This model consists of multiple tiers, the fine tier (bottom layer) is a multilayer perceptron

(MLP) which takes the output from the next coarser tier (upper layer) and the previous k samples
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Figure 5.3: (a) (brown box) shows the simplified architecture of the sound generator, where the fine
tier MLP takes as input k previously generated samples and output from the coarse tier to guide
generation of new samples. (b) (green dotted box) presents the frame-to-frame structure, where we
concatenate the visual representation (the blue FC6 cuboid) with the nodes from the coarsest tier.
And (c) (red dotted box) shows the model architecture for sequence-to-sequence and flow-based
methods, we recurrently embed visual representations and use the last encoding hidden state (the
bold yellow arrow) to initialize the hidden state of the coarsest tier RNN of the sound generator.
The MLP tier of the sound generator does 256-way classification to output integers within [0, 255],
which are linearly mapped to raw waveforms [−1, 1]. The legends in the bottom-left gray dotted box
summarize the meaning of the visualization units and the letters in the end ((a)/(b)/(c)) point to
the part where the unit can be found.
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to generate a new sample. During training, the waveform samples (real numbers from -1 to 1) have

been linearly quantized to integers ranging from 0 to 255, and the MLP of the finest tier can be

considered a 256-way classification to predict one sample at each timestep (then mapped back to real

values for the final waveform). The coarser (upper) tiers are recurrent neural networks which can be

a GRU [Cho et al., 2014], LSTM [Hochreiter and Schmidhuber, 1997], or any other RNN variants,

and the nodes contain multiple waveform samples (2 in this illustration), meaning that this layer

predicts multiple samples jointly at each time step based on previous time steps and predictions

from coarser tiers. The green arrow represents the hidden state. Note that we tried using the model

from WaveNet [van den Oord et al., 2016] on the natural sound generation task, but it sometimes

failed to generate meaningful sounds for categories like dog, and was outperformed by SampleRNN

consistently for all object categories. Therefore, we did not pursue it further. Due to space limit, we

omit the technical details of SampleRNN. For more information regarding SampleRNN, please refer

to [Mehri et al., 2016].

5.2.2 Frame-to-frame method

For the video encoder component, we first propose a straight-forward frame-to-frame encoding

method. We represent the video frames as xi = V (fi), where fi is the ith frame and xi is the

corresponding representation. Here, V (.) is the operation to extract the fc6 feature of VGG19 net-

work [Simonyan and Zisserman, 2014b] which has been pre-trained on ImageNet [Deng et al., 2009]

and xi is a 4096-dimensional vector.

In this model, we encode the visual information by uniformly concatenating the frame repre-

sentation with the nodes (samples) of the coarsest tier RNN of the sound generator as shown in

Figure 5.3(b) (content in dotted green box). Due to the difference of sampling rates between the two

modalities, to maintain the alignment between them, for each xi, we duplicate it s times, so that

visual and sound sequences have the same length. Here s = ceiling[sraudio/srvideo], where sraudio is

the sampling rate of audio, srvideo is that of video. Note that we only feed the visual features into

the coarsest tier of SampleRNN because of the importance of this layer as it guides the generation

of all finer tiers as well as for computational efficiency.

5.2.3 Sequence-to-sequence method

Our second model design has a sequence to sequence type of architecture [Sutskever et al., 2014].

In this sequence-to-sequence model, the video encoder and sound generator are clearly separated,
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and connected via a bottleneck representation, which feeds encoded visual information to the sound

generator. As Fig. 5.3(c) (content in the middle red dotted box) shows, we build a recurrent neural

network to encode video features. Here the same deep feature (fc6 layer of VGG19) is used to

represent video frames as in Sec. 5.2.2. After visual encoding (i.e., deep feature extraction and

recurrent processing), we use the last hidden state from the video encoder to initialize the hidden

state of the coarsest tier RNN of the sound generator, then sound generation starts. Therefore the

sound generation task becomes:

p(y1, ..., yn|x1, ..., xm) =
n∏

i=1

p(yi|H, y1, ..., yi−1) (5.2)

where H represents the last hidden state of the video encoding RNN or equivalently the initial

hidden state of the coarsest tier RNN of the sound generator.

Unlike the frame based model mention above, where we explicitly enforce the alignment between

video frames and waveform samples. In this sequence-to-sequence model, we expect the model to

learn such alignment between the two modalities through encoding and decoding.

5.2.4 Flow-based method

Our third model further improves the visual representation to better capture the content and

motion in input videos. As motivation for this variant, we argue that motion signals in the visual

domain, even though sometimes subtle, are critical to synthesize realistic and well synchronized

sound. For instance, the barking sound should be generated at the moment when the dog opens

its month and maybe the body starts to lean forward. This requires our model to be sensitive to

activities and motion of target objects. However, the previously used VGG features are pre-trained on

object classification tasks, which typically result in features with rotation and translation invariance.

Although the VGG features are computed along consecutive video frames, which implicitly include

some motion signals, it may still fail to capture them.

Therefore, to explicitly capture the motion signal, we add an optical flow-based deep feature

to the visual encoder and call this method the flow-based method. The overall architecture of the

current method is identical to the sequence-to-sequence model (as Fig. 5.3(c) shows), which encodes

video features xi recurrently through RNN and decodes with SampleRNN. The only difference is

that here xi = cat[V (fi), F (oi)] (cat[.] indicates concatenation operation); oi is the optical flow of
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ith frame; and F(.) is the function to extract the optical flow-based deep feature.

We pre-compute optical flow between video frames using [Sun et al., 2010] and feed the flows

to the temporal ConvNets from [Simonyan and Zisserman, 2014a], which has been pre-trained on

optical flows of UCF-101 video activity dataset [Soomro et al., 2012], to get the deep feature. We

extract the fc6 layer of temporal ConvNets, a 4096-dimensional vector.

5.3 Experiments

In this section, we first introduce the model structure and training details (Sec. 5.3.1). Then,

we visualize the generated audio to qualitatively evaluate the results (Sec. 5.3.2). Quantitatively,

we report the loss values for all methods and evaluate generated results on a video retrieval task

(Sec. 5.3.3). Additionally, we also run 3 human evaluation experiments to subjectively evaluate the

results from the different proposed models (Sec. 5.3.4).

5.3.1 Model and training details

We train the 3 proposed models on each of the 10 categories of our dataset independently. All

training videos have been padded to the same length (10 secs) by duplicating and concatenating up

to the target length. We sample the videos at 15.6 FPS (156 frames for 10 seconds) and sample

the audios at approximately 16kHz, specifically 159744 times per 10 seconds. For the frame based

method, step size s is set to 1024.

Sound generator: We apply a 3-tier SampleRNN with one-layer RNN for the coarsest and second

coarsest tiers, and a MLP for the finest tier. For the finest tier, new sample generations are based

on the previous k generated samples (k = 4). We use GRU as the recurrent structure. The number

of samples included by each node from coarse to fine tiers are: 8, 2 ,1 with hidden state size of 1024

for the coarsest and second coarsest tiers.

Frame-to-frame model (Frame): To concatenate the visual feature (4096-D) with the nodes

from the coarsest tier GRU, we first expand the node (8 samples) to 4096 by applying a fully

connected operation. After combining with the visual feature, we obtain a 8192-D vector to feed

into the coarsest tier of the sound generator.

Sequence-to-sequence (Seq) & flow based model (Flow): These two models have the same

architecture. For the visual encoding recurrent neural network, we also use an one-layer-GRU
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structure with the hidden state size equal to 1024. The only difference is that for the flow based

model, the visual feature is the concatenation of the deep image feature (4096-D) and deep flow

feature (4096-D) resulting in a 8192-D vector.

We randomly select 128 videos from each category for testing, leaving the remaining videos for

training. No data augmentation has been applied. During training, we apply Adam Stochastic

Optimization [Kingma and Ba, 2014] with learning rate 0.001 and minibatch of size 128 for all

models. For our experiments we train models for each category independently. As an additional

experiment, aiming to handle multiple audio-visual objects within the same video, we also train

a multi-category model where we combine data from all categories. We show some results of the

multi-category model on videos from the Internet containing multiple interacting objects in the

supplementary video.

5.3.2 Qualitative Visualization

We visualize the generated waveform results from the three proposed models as well as the original

audio and corresponding video frames in Fig. 5.4. Results from four categories are shown from left

to right: Dog, Fireworks, Drum, and Rail transport. The former three are synchronization-sensitive

categories, though that doesn’t mean the waveform needs to be exactly aligned with the ground

truth for good human perception. For instance in the fireworks example (second left), we show the

waveforms from Frame, Seq, Flow methods and the real audio from top to bottom. Compared to

the real audio, the Flow waveform (third) shows several extra light explosions (high peaks). When

we listen to it, these extra peaks sound like far away explosions, which reasonably fits the scene.

The Rail transport category is not that sensitive to the specific speed of the objects but some of

the videos like the depicted example have the obvious property that the amplitude of the sound is

affected by the distance of the target object (when the train approaches, the sound gets louder).

All three of our models can implicitly learn this effect. We show more qualitative results in the

supplementary video.

5.3.3 Numerical evaluation

In this section, we provide quantitative evaluations of the models.

Loss values: First we show the average cross-entropy loss (the finest layer of sound generator does

256-way classification for each sample prediction) for training and testing of Frame, Seq and Flow
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Figure 5.4: Waveforms of generated audio aligned with corresponding video key frames. From left to
right showing: Dog, Fireworks, Drum, and Rail transport categories. For each case the 4 waveforms
(from top to bottom) are from Frame, Seq, Flow methods, and the original audio. The border color
of the frames indicates which flagged position is shown and descriptions indicate what is happening
in the video at that moment.

Frame Seq Flow

Training 2.6143 2.5991 2.6037
Testing 2.7061 2.6866 2.6839

Table 5.1: Average cross-entropy loss for training and testing of 3 methods. Frame represents
frame-to-frame method; Seq means sequence-to-sequence method and Flow is flow based method.
We mark the best results in bold.

models in Table 5.1. We can see that Flow and Seq methods achieve lower training and testing loss

than Frame method, and they are competitive. Specifically Seq method has the lowest training loss

after converging, while Flow works best on testing loss.

Retrieval experiments: Since direct quantitative evaluation of waveforms is quite challenging,

we design a retrieval experiment that serves as a good proxy. Since our task is to generate audio

given visual representations, well trained models should have the capability of mapping visual

information to their corresponding correct (or reasonable) audio signal. To evaluate our models in

this direction, we design a retrieval experiment where visual features are used as queries and audio

with the maximum sampling likelihood is retrieved (we apply the trained models to map the queries

to the audio with lowest loss). Here the audios from all testing videos are combined into a database

of 1280 audios, and audio-retrieval performance is measured for each testing video.

If our models have learned a reasonable mapping, the retrieved audio should be (1) from the

same category as the query video (category-level retrieval), and more ideally (2) the exact audio

corresponding to the query video (instance-level retrieval). Note that this can be very challenging
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Frame Seq Flow

Category Top1 40.55% 44.14% 45.47%
Top5 53.59% 58.28% 60.31%

Instance Top1 4.77% 5.70% 5.94%
Top5 7.81% 9.14% 10.08%

Table 5.2: Top 1 and top 5 audio retrieval accuracy. ’Category’ measures whether the audio retrieved
is of the correct category, while ’Instance’ indicates whether the audio retrieved is an exact match to
the input video.

since videos may contain very similar contents. In Table. 5.2 we show the average top1 and top5

retrieval accuracy for category and instance retrieval. We observe that all methods are significantly

better than chance (where chance for category retrieval is 10% and for instance retrieval is 0.78%).

The flow based method achieves the best accuracy under both metrics.

5.3.4 Human Evaluation Experiments

As in image or video generation tasks, the quality of generated results can be very subjective.

For instance, sometimes even though the generated sound or waveforms might not be very similar to

the ground truth (the real sound), the generation may still sound like a reasonable match to the

video. This is especially true for ambient sound categories (e.g. water flow, printer) where the overall

pattern may be more important than the specific frequencies, etc. Thus, comparing generated sounds

with ground truth by applying distance metrics might not be the ideal way to evaluate quality. In

this section, we directly compare the sound generation results from each proposed method in three

human evaluation experiments on AMT.

Methods comparison task: This task aims to directly compare the sounds generated by the

three proposed methods in a forced-choice evaluation. For each test video, we show turkers the

video with audio generated by: the Frame, Seq and Flow methods. Turkers are posed with four

questions and asked to select the best video-audio pair for each question. Questions are related to:

1) the correctness of the generated sound (which one sounds most likely to come from the visual

contents); 2) which contains the least irritating noise; 3) which is best temporally synchronized with

the video; 4) which they prefer overall. Each question for each test video has been labeled by 3

different turkers and we aggregate their votes to get the final results.

Table 5.3 shows the average preference rate for all categories (the higher the better) on each
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Frame Seq Flow

Correctness 29.74% 34.92% 35.34%
Least noise 28.65% 35.31% 36.04%
Synchronization 28.57% 34.37% 37.06%
Overall 28.52% 34.74% 36.74%

Table 5.3: Human evaluation results in a forced-choice selection task. Here we show the average
selection rate percentage over all categories for each of 4 questions (highest selection rate for each
question marked in bold).

question. We can see that both Seq and Flow outperform Frame based method with Flow

performing best overall. Flow outperforms Seq the most on question 3 which demonstrates that

adding the deep flow feature helps with improving the temporal synchronization of visual and sound

during generation. Figure 5.5 shows the results for each category. We observe that the advantage

of the Flow method is mainly gained on categories that are sensitive to synchronization, such as

Fireworks and Drum (see question 3 and question 2 histograms).

Visual relevance task: Synchronization between video and audio can be one of the fundamental

factors to measure the realness of sound generated from videos, but synchronization tolerance can

vary between categories. For example, we easily detect discordance when a barking sound fails to

align to the correct barking motion of a dog. While for other categories like water flowing, we might

be more tolerant, and may not notice if we swapped the audio from one river to a another. Inspired

by this observation, we design a task in which each test video is combined with two audios, and ask

the turkers to pick the video-audio pair that best corresponds. One of the audios is generated from

the video, while the other is randomly chosen from another video of the same category. This task

measures whether the audio we generate is discriminative for the input video.

Table 5.4 shows the percentage of matched audios being correctly selected. Results are reported

for the sounds generated by our three methods (the first three columns) as well as the real sounds

(the last column). Each test sample is rated by three turkers. The results are consistent with

our intuition – real sounds are generally discriminative for the corresponding videos, though some

categories like helicopter or water are less discriminative. Our three methods achieve reasonable

accuracy in some categories like Dog and Fireworks (outperforming 50% chance by a large margin).

For more ambient sound categories, the discrimination task is challenging for both generated and

67



Figure 5.5: Human evaluation of forced-choice experiments for four questions broken down by
category.
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Frame Seq Flow Real

Dog 57.29% 58.85% 63.02% 75.00%
Chainsaw 56.25% 57.03% 58.07% 70.31%
Water flowing 49.22% 52.34% 52.86% 59.90%
Rail transport 53.39% 56.51% 55.47% 66.14%
Fireworks 61.98% 67.97% 68.75% 79.17%
Printer 46.09% 50.52% 47.14% 60.16%
Helicopter 51.82% 54.95% 54.17% 58.33%
Snoring 51.82% 53.65% 54.95% 63.02%
Drum 55.21% 59.38% 62.24% 73.44%
Baby crying 52.60% 57.55% 56.77% 70.57%

Average 53.56% 56.88% 57.34% 67.60%

Table 5.4: Human evaluation results: visual relevance. Rows show the selection accuracy for each
category and their average. ‘Real’ stands for using original audios.

real audio.

Real or fake determination: In this task, we would like to see whether the generated audios can

fool people into thinking that they are real. We provide instructions to the turkers that the audio

of the current video might be either real (originally belonging to this video) or fake (synthesis by

computers). The criteria of being fake can be bad synchronization or poor quality such as containing

unpleasing noise. In addition to the generated results from our proposed methods, we also include

videos with the original audio as a control. As an additional baseline, we also combine the video

with a random real audio from the same category. This baseline is rather challenging as it uses real

audios. Each evaluation is performed by 3 turkers and we aggregate the votes.

The percentages for the audios being rated as real are shown in Table 5.5 for all methods including

the baseline (Base) and the real audio. Seq and Flow methods outperform the Frame method

except for the printer category. Unsurprisingly, Base achieves decent results on categories that

are insensitive to synchronization like Printer and Snoring, but much worse than our methods on

categories sensitive to synchronization such as Dog and Drum. One of the reasons that turkers

consider some of the real cases as fake is that a few original audios might include light background

music or other noise which appears not fitting with the visual content.
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Frame Seq Flow Base Real

Dog 61.46% 64.32% 62.24% 54.69% 89.06%
Chainsaw 71.09% 73.96% 76.56% 68.23% 93.75%
Water flowing 70.83% 77.60% 81.25% 77.86% 87.50%
Rail transport 79.69% 83.33% 80.47% 74.74% 90.36%
Fireworks 76.04% 76.82% 78.39% 75.78% 94.01%
Printer 73.96% 73.44% 71.35% 75.00% 89.32%
Helicopter 71.61% 74.48% 78.13% 78.39% 91.67%
Snoring 67.71% 73.44% 73.18% 77.08% 90.63%
Drum 62.24% 64.58% 70.83% 59.64% 93.23%
Baby crying 57.29% 64.32% 61.20% 69.27% 94.79%

Average 68.69% 72.63% 73.36% 71.07% 91.43%

Table 5.5: Human evaluation results: real or fake task where people judge whether a video-audio
pair is real or generated. Percentages indicate the frequency of a pair being judged as real.

5.4 Conclusion

In this chapter, we introduced the task of generating realistic sound from videos in the wild. We

created a dataset for this purpose, sampled from the AudioSet collection, based on which we trained

three different visual-to-sound deep network variants. We also provided qualitative, quantitative and

subjective experiments to evaluate the models and the generated audio results. Evaluations show

that over 70% of the generated sound from our models can fool humans into thinking that they are

real.

Future directions include explicitly recognizing and reasoning about objects in the video during

sound generation, and reasoning beyond the pixels and temporal duration of the input frames for

more contextual generation.
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CHAPTER 6

Conclusions

In this dissertation, we have discussed learning beyond-pixel mappings from different aspects.

Specifically we formulate the problem as inferring the information of broader spacial (motion) and

temporal domain as well as predicting other modalities from visual data. We also demonstrate that

these mappings could be learned by deep convolutional neural networks from either self-recorded

videos or large-scale data from Internet. To deal with the noisy characteristic of the Internet data,

we apply careful annotation using crowd-sourcing platforms (AMT).

In order to learn the nature of the future prediction, we define the basic unit of the problem

by handling sequence prediction between two video clips in Chapter 2. We show that the simple

ordering prediction could be the backbone algorithm for the future prediction task (to predict what

will happen next, it is necessary to have the knowledge of the ordering of the daily events first.).

An ego-centric dataset of everyday-life-activity, named FPPA, has been collected to train sequence

prediction models under both generalized (models have been trained using various individuals and

scenes) and personalized settings (model have been trained using single person’s data).

In Chapter 3, we explore object future state prediction by training a deep generative model to

directly generate depictions of a specific object in it’s future state. To enable the learning, we collect

a novel time-lapse video dataset, which shows the entire or portion of object transformation process

within a short period of time, from YouTube and we provide the annotations of the degree of the

transformations. Meanwhile, we propose three tasks to model the future prediction under different

scenarios.

In Chapter 4, we discuss a similar generation task but under the motion transfer scenario.

Specifically, we propose a computational model to transfer any novel poses from a reference video

to the target person. We train the personalized model using only a single YouTube video (several

minutes long) of that person performing random activities. Then we could transfer any desired poses

to the target person. This requires our model to generalize well to novel/unseen poses. We present a
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two-stage framework to synthesize the foreground human and background scene separately, which

achieves visually appealing generation results in a relatively high resolution.

Finally, in Chapter 5, we explore whether it is feasible to directly learn the mapping between

visual input and the raw audio signals, given the observation that people perceive information from

both visual and sound channels and these two modalities are corresponded. We propose several

variations to encode the visual information and it has been jointly train with a sound generator to

generate raw waveform samples from input video frames. We also collect a benchmark video-audio

dataset for natural sound generation from the videos in the wild task. This dataset includes more

than 28000 videos spanning 10 object categories.

6.1 What’s next

Recently there have been many works exploring the relationship between visual and sound

modalities. In the task of sound localization [Arandjelović and Zisserman, 2018, Senocak et al., 2018,

Zhao et al., 2018], given the input image/video frames as well as the according sound, the model

would like to predict the region in the image where the sound is most probably generated from.

We expect to combine the localization technique with the sound generation tasks to generate/edit

sound based on the visual manipulation. Specifically, when modifying the visual contents (such as

removing/adding in some objects or moving an object closer/further), we expect the model could

learn the differences and edit the generated sound accordingly.

Including our work [Zhou et al., 2019], there are an increasing number of works which are trying

to learn the mapping between human poses and the photo-realistic video frames [Ma et al., 2017,

Siarohin et al., 2018, Balakrishnan et al., 2018, Chan et al., 2018]. We would like to perceive the

problem from a different aspect to learn the mapping between music/sound and human pose.

Specifically, given a chunk of music, can we predict a sequence of reasonable human dancing poses

which are consistent with the genre and beats of the music? Then we can see those mappings become

a more complete story that we could use music to drive the movement of a real person in the picture.

Besides exploring more applications using generative models on visual or sound and mak-

ing the generation more realistic and natural, the research topic from the opposite direction

(distinguish whether a video/an audio is real or fake.) is also indispensable. With the devel-
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opment of high performance generative models, discriminating deepfake1 videos from the real

ones on the video-sharing platforms or social media can be an increasingly important task. Re-

cent works [Wang et al., 2019, Agarwal et al., 2019, Huh et al., 2018] distinguish fake images/video

frames by learning the subtle attributes of human faces, personalized facial motion patterns or based

on camera information (EXIF data). We are also interested in providing other concrete solutions to

discriminate deepfake videos under a large-scale data setting as future works.

Back to the more fundamental problem, in our works, we utilize large-scale video data to train

carefully designed networks and we show that the networks could learn reasonable mappings from

one domain to the other. Now the question is can we say the networks understand what they have

learned? Or say if the inputs are completely different types of data (e.g. including unseen objects)

from the training data, can we still get reasonable feedback from the models? As future works, we

would like to visualize the neurons of the generation task models to get some insights about what

the network have learned. Also, we hope to reason the generative models such as combining cause

and effect relationships or even more general knowledge graphs while doing the prediction to provide

more insights about what the model has learned as well as to improve the generalization capability

of the model.

1https://en.wikipedia.org/wiki/Deepfake
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