
TOWARD 3D RECONSTRUCTION OF STATIC AND DYNAMIC OBJECTS

Enliang Zheng

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of

Computer Science.

Chapel Hill
2016

Approved by:

Jan-Michael Frahm

Enrique Dunn

Tamara L. Berg

Vladimir Jojic

Yaser Sheikh

©2016
Enliang Zheng

ALL RIGHTS RESERVED

ii

ABSTRACT

Enliang Zheng: Toward 3D Reconstruction of Static and Dynamic Objects
(Under the direction of Jan-Michael Frahm and Enrique Dunn)

The goal of image-based 3D reconstruction is to construct a spatial understanding of the world

from a collection of images. For applications that seek to model generic real-world scenes, it is

important that the reconstruction methods used are able to characterize both static scene elements

(e.g. trees and buildings) as well as dynamic objects (e.g. cars and pedestrians). However, due

to many inherent ambiguities in the reconstruction problem, recovering this 3D information with

accuracy, robustness, and efficiency is a considerable challenge. To advance the research frontier for

image-based 3D modeling, this dissertation focuses on three challenging problems in static scene

and dynamic object reconstruction.

We first target the problem of static scene depthmap estimation from crowd-sourced datasets

(i.e. photos collected from the Internet). While achieving high-quality depthmaps using images

taken under a controlled environment is already a difficult task, heterogeneous crowd-sourced data

presents a unique set of challenges for multi-view depth estimation, including varying illumination

and occasional occlusions. We propose a depthmap estimation method that demonstrates high

accuracy, robustness, and scalability on a large number of photos collected from the Internet.

Compared to static scene reconstruction, the problem of dynamic object reconstruction from

monocular images is fundamentally ambiguous when not imposing any additional assumptions.

This is because having only a single observation of an object is insufficient for valid 3D triangulation,

which typically requires concurrent observations of the object from multiple viewpoints. Assuming

that dynamic objects of the same class (e.g. all the pedestrians walking on a sidewalk) move in a

common path in the real world, we develop a method that estimates the 3D positions of the dynamic

iii

objects from unstructured monocular images. Experiments on both synthetic and real datasets

illustrate the solvability of the problem and the effectiveness of our approach.

Finally, we address the problem of dynamic object reconstruction from a set of unsynchronized

videos capturing the same dynamic event. This problem is of great interest because, due to the

increased availability of portable capture devices, captures using multiple unsynchronized videos

are common in the real world. To resolve the challenges that arises from non-concurrent captures

and unknown temporal overlap among video streams, we propose a self-expressive dictionary

learning framework, where the dictionary entries are defined as the collection of temporally varying

structures. Experiments demonstrate the effectiveness of this approach to the previously unsolved

problem.

iv

ACKNOWLEDGEMENTS

My deepest gratitude is to my advisors Jan-Michael Frahm and Enrique Dunn. I have been

amazingly fortunate to have advisors who gave me the guidance and encouragement when my steps

faltered, and the freedom to explore on my own.

I would also like to thank my committee members, Tamara L. Berg, Vladimir Jojic, and Yaser

Sheikh, for their feedback and advice.

Additionally, I would like to thank my labmates, as their company and discussion made my

time more fruitful and enjoyable: Philip Ammirato, Akash Bapat, Sangwoo Cho, Marc Eder, Pierre

Fite-Georgel, Yunchao Gong, Rohit Gupta, Shubham Gupta, Xufeng Han, Jared Heinly, Junpyo

Hong, Yi-Hung Jen, Dinghuang Ji, Alex Keng, Hadi Kiapour, Hyo Jin Kim, Wei Liu, Jie Lu,

Licheng Yu, Vicente Ordóñez-Román, David Perra, True Price, Rahul Raguram, Patrick Reynolds,

Johannes Schönberger, Meng Tan, Joseph Tighe, Sirion Vittayakorn, Ke Wang, Yilin Wang, Yi Xu,

and Hongsheng Yang.

I would like to thank my parents, who encouraged me to explore, learn and pursue for a PhD.

Finally, I would like to thank my wife, Lingling Zheng, for her understanding and support.

v

TABLE OF CONTENTS

LIST OF TABLES . x

LIST OF FIGURES . xi

LIST OF ABBREVIATIONS . xiii

1 Introduction . 1

1.1 Thesis Statement . 4

1.2 Outline of Contributions . 4

2 Related work . 7

2.1 Camera Parameter Estimation . 7

2.2 Static Scene Reconstruction . 8

2.2.1 Multiview Depthmap Estimation . 8

2.2.2 Robustness . 9

2.2.3 Efficiency . 10

2.2.4 Point Cloud and Mesh Generation . 11

2.3 Dynamic Object Reconstruction . 12

2.3.1 Trajectory Triangulation . 12

2.3.2 Sequencing and Synchronization . 13

2.3.3 Articulated Object Reconstruction . 13

2.3.4 Non-rigid SfM . 14

2.3.5 Single Image Reconstruction . 15

3 PatchMatch Based Joint View Selection and Depthmap Estimation . 17

3.1 Introduction . 17

vi

3.2 Joint View Selection and Depth Estimation . 19

3.2.1 PatchMatch Propagation for Stereo . 19

3.2.2 Graphical Model . 20

3.2.3 Variational Inference . 24

3.2.4 Update Schedule . 26

3.2.5 Algorithm Integration . 28

3.3 Experiments . 29

3.4 Conclusion . 35

4 Joint Object Class Sequencing and Trajectory Triangulation (JOST) . 37

4.1 Introduction . 37

4.2 Joint Object Class Sequencing and Trajectory Triangulation . 39

4.2.1 Spatial Registration . 39

4.2.2 Object Detection and Motion Tangent Estimation . 40

4.2.3 Object Class Trajectory Triangulation . 41

4.2.4 Generalized Trajectory Graph . 42

4.2.5 GMST . 45

4.2.6 Continuous Refinement . 46

4.2.7 Reconstructability Analysis . 47

4.3 Object Detector and Motion Tangent Estimation . 49

4.4 Experiments . 51

4.5 Conclusion . 56

5 Self-expressive Dictionary Learning for Dynamic 3D Reconstruction . 57

5.1 Introduction . 57

5.2 Problem and Notation . 59

5.3 Principle . 61

5.4 Method . 64

vii

5.4.1 Cost Function. 65

5.4.2 Dictionary Space Reduction in Self-representation . 65

5.4.3 Coefficient Relationships: Ψ1(W) . 66

5.4.4 Sequencing Information: Ψ2(X) . 67

5.5 Parameterization of X . 68

5.5.1 Noisy Observations . 68

5.5.2 Missing Data . 69

5.6 Optimization . 69

5.6.1 Optimize Over X . 70

5.6.2 Optimize Over W . 70

5.6.3 Initialization of the Optimization . 72

5.7 Analysis and Discussion . 74

5.7.1 Representation of Reconstruction Errors . 74

5.7.2 System Condition . 76

5.7.3 Shape Approximation Residual . 80

5.7.4 Importance of Image Sequencing . 81

5.8 Experiments . 82

5.8.1 Simulation. 82

5.8.1.1 Accuracy . 83

5.8.1.2 Data Robustness . 85

5.8.1.3 Comparison to Other Methods . 88

5.8.2 Real Datasets . 92

5.9 Conclusion and Contributions . 93

6 Discussion . 94

6.1 Future work . 94

6.1.1 Extensions to PatchMatch-based Joint View Selection and
Depthmap Estimation . 94

viii

6.1.2 Extensions to JOST . 96

6.1.3 Extensions to Dynamic Object Reconstruction from Unsynchro-
nized Videos . 97

BIBLIOGRAPHY . 99

ix

LIST OF TABLES

3.1 Algorithm of a row/column propagation for joint view selection and depth estimation. . . 28

3.2 Percentage of pixels with absolute error less than 2cm and 10cm. 30

4.1 Quantitative evaluation of JOST on synthetic data . 51

x

LIST OF FIGURES

3.1 Overview of joint view selection and depthmap estimation. 18

3.2 Illustration of three differernt PatchMatch propagation schemes. 20

3.3 Distribution of the likelihood function. 21

3.4 Graphical model of joint view selection and depthmap estimation. 23

3.5 Illustration of the update scheme for the depth and the image selection probability. 27

3.6 Comparison against the best-K planesweeping method in accuracy given dif-
ferent K. 31

3.7 Comparison against the best-K planesweeping method in accuracy and run
time given different number of planes. 31

3.8 Example depthmap output given outlier camera poses. 33

3.9 Example depthmap output on Internet collected photos, and qualitive compari-
sion againt the Goesele’s method. 34

3.10 Comparison again the Goesele’s method and the best-K planesweeping method
on the fountain dataset. 35

4.1 Example input and output of JOST. 38

4.2 Example of cross-shaped object class trajectory. 38

4.3 Illustration of the generalized minimum spanning tree (GMST). 43

4.4 Illustration of the motion tangent. 44

4.5 Illustration of the reconstructability given different weight λ. 48

4.6 Illustration of the system condition number given different weight λ. 50

4.7 Example of the object detection output and the estimated motion tangent. 51

4.8 Example output of JOST on synthetic data . 52

4.9 Example reconstruction results on two real datasets. 54

4.10 Illustration of pedestrian reconstruction results. 55

5.1 Illustration of the input for sparse reconstruction from unsynchronized videos. 58

xi

5.2 Example output of the reconstructed 3D points. 59

5.3 Illustration of the self-expressive prior. 64

5.4 Illustration of the relationship between shape weights. 67

5.5 Example of incorrect initialization.. 73

5.6 Example of different camera setups. 77

5.7 System condition given different number of consecutive captures from one camera. 79

5.8 Average residual at differernt camera frame rates. 80

5.9 Reconstruction errors without measurement noise. 84

5.10 Illustration of consecutive captures assigned to the same camera. 84

5.11 Reconstruction errors given noisy measurements. 86

5.12 Different between the hard constraint and the soft constraint parameterizations. 86

5.13 Reconstruction errors given missing data. 87

5.14 Comparision against two existing dynamic object reconstruction methods. 90

5.15 Example output of two real datasets. 91

5.16 Example output of one real dataset. 92

xii

LIST OF ABBREVIATIONS

GMST Generalized minimum spanning tree

JOST Joint object class sequencing and trajectory triangulation

MRF Markov Random Field

MVDE Multiview depthmap estimation

NCC Normalized cross correlation

NRSFM Non-rigid structure from motion

RANSAC Random sample consensus

SfM Structure from motion

xiii

CHAPTER 1: INTRODUCTION

Imagery records what the world looks like by projecting the 3D scene onto an image plane.

However, the 3D information, which depicts the geometry of real objects, is lost during this capture

process. Conversely, 3D information is key to many applications, such as augmented/virtual reality

(Ventura and Höllerer, 2008), robots and autonomous car navigation (Endres et al., 2012), image-

based rendering (Chen and Williams, 1993), and image enhancement (Zhang et al., 2014). Moreover,

as additional information to RGB (red, green, and blue) colors, 3D information is leveraged to

improve performance of many computer vision tasks such as object classfication/recognition (Gupta

et al., 2013) and human pose estimation (Shotton et al., 2011). Therefore, there is a strong desire to

recover reliable 3D information from 2D imagery.

3D information, when stored in computers, can be represented using 3D point clouds, 3D

polygon meshes, or depthmaps. A 3D point cloud is a set of data points in three-dimensional space

representing the external surface of an object, and it can be classified as either dense or sparse based

on the number of points it contains per unit surface area. A 3D polygon mesh provides additional

information in the form of the geometric topology among the 3D points. Finally, a depthmap is a

dense field of depth values indicating the distance of the observed surface relative to a camera, rather

than in a global coordinate system. In practice, different representations are adopted according to

the requirements of the specific application.

3D reconstruction from imagery, defined as a process that recovers 3D information from

2D image colors, is a traditional problem in 3D computer vision. Unlike the task of computer

graphics that renders 2D imagery from 3D geometry, the inverse process of 3D reconstruction from

imagery is more challenging since attemping to recover lost information inevitably introduces more

ambiguities. Though methods for 3D reconstruction have been widely studied and have undoubtedly

improved over the last few decades, the field still remains a viable and open area of active research.

1

This dissertation primarily focuses on the problems of dense static scene reconstruction and sparse

dynamic object reconstruction from 2D imagery.

Dense static scene reconstruction. To obtain the 3D information of a static scene, most

existing works leverage 2D correspondences and available camera parameters for 3D triangulation.

Though camera parameters can typically be estimated via structure from motion or offline calibration

methods, obtaining 2D correspondences robustly from image colors still requires further exploration.

The 2D correspondences are defined as pixels in different images that observe the same part of a 3D

scene. Under the assumption of a Lambertian surface, these 2D correspondences share the same or

similar appearances/colors, and hence they have high color consistency.

For each point in one image, finding its correspondence in another image involves searching for

candidate pixels with the best color consistency along a line defined by the 3D geometry (called an

epipolar line), and the positions of candidate pixels are determined by depth hypotheses generated

in a valid range. Once the correspondence is found, the depth of the corresponding pixel is uniquely

determined. However, estimating dense correspondences robustly is difficult since ambiguities arise

in the case of repetitive textures, homogeneous color regions, or occlusions along the epipolar line.

Recently, there has been a growing interest in using the ever-growing domain of crowd-sourced

data (i.e. Internet collected photos) for reconstruction, and the large amount of free data has inspired

many applications, such as virtual photo tours (Snavely et al., 2006) and image enhancement (Zhang

et al., 2014). With the non-controlled imagery as input, finding 2D correspondences based on colors

is more challenging due to a diversity of factors, including heterogeneous resolution and scene

illuminations, unstructured viewing geometry, scene content variability, and image registration

errors. To address these issues, it is normally assumed in the massive number of images, there are a

subset of images sharing similar image characteristics. Therefore, determining a suitable subset of

images or pixels for correspondence search becomes essential (Goesele et al., 2007).

Dense reconstruction typically has very high computational complexity, since the traditional

process involves exhaustive evaluations of a large number of depth hypotheses (Yang and Pollefeys,

2003). The increasing availability of crowd-sourced datasets has explicitly brought efficiency and

2

scalability to the forefront of application requirements. Moreover, the high complexity of a method

would impede its usage in less-powerful electronic devices such as smart phones. To this end, there

is a compelling demand to develop efficient and scalable methods for dense reconstruction.

Sparse dynamic object reconstruction. While static scene reconstruction only focuses on

static parts of a scene, it is of great interest to reconstruct the dynamic part of the scene as well.

The problem of dynamic object reconstruction specifically aims at 3D reconstruction under the

circumstance of non-concurrent image captures. To be more precise, the dynamic object is only

observed by one image at each time instance. This poses an additional challenge compared to

the problem of static scene reconstruction, since 3D triangulation becomes invalid and impossible

with the single observation, even assuming 2D correspondences among non-concurrent images are

correctly found. Given a unitary observation, it is only known that the 3D point lies somewhere

along the viewing ray determined by the 2D meansurement and the camera pose, but the depth

along the viewing ray cannot be easily computed. Primarily due to this intrinsic difficulty, the state

of the art for dynamic object reconstruction falls far behind that of static scene reconstruction.

The problem of dynamic object reconstruction is fundamentally under-constrained and requires

further assumptions. Many existing works make various assumptions on scene geometry, object

motion, capture pattern, etc. For instance, most non-rigid structure from motion (NRSFM) methods

assume the 3D shapes of deforming objects lie in a low-dimensional subspace, and hence any shape

can be represented as a linear combination of K shape bases (Bregler et al., 2000; Torresani et al.,

2008; Dai et al., 2014). Trajectory-based methods assume smooth motion of the dynamic objects

across time (Akhter et al., 2009b). When developing methods for dynamic object reconstruction, in

addition to making valid assumptions, having fewer but more general assumptions is vital to enable

the methods to work more universally and robustly in real scenarios.

One particular formulation of dynamic object reconstruction is trajectory triangulation, which

computes the trajectory of a dynamic 3D point given a set of unitary observations across time.

Under the assumption of smooth object motion and available sequencing information (i.e. the

temporal order of images being taken), existing methods can achieve accurate reconstruction results

3

(Park et al., 2010; Valmadre and Lucey, 2012). Although the assumption of smooth object motion

is typically true for real dynamic objects, in practice easily obtaining the sequencing information

and achieving high reconstruction accuracy cannot be satisfied simultaneously (Zhu et al., 2011;

Valmadre and Lucey, 2012). The sequencing information essentially captures the physical constraint

that a moving 3D point observed in two temporally close images will have a relatively small amount

of spatial movement. In effect, it is this spatial proximity that is leveraged by the existing methods

(Park et al., 2010; Valmadre and Lucey, 2012) for reconstruction. In contrast, our research focuses

on 3D reconstruction of dynamic objects given no or only partial information of the spatial/temporal

proximity.

1.1 Thesis Statement

The geometry of a scene can be recovered from uncontrolled image/video collections, through

incorporating pixel-level image association into a scalable multiview stereo framework for dense

reconstruction of static scene elements, and explicit modeling of spatio-temporal relations of

unordered observations for sparse reconstruction of dynamic scene elements.

1.2 Outline of Contributions

This dissertation contributes significantly to advance the state-of-the-art techniques for the

problems of static scene reconstruction and dynamic object reconstruction, and it builds on our

published works (Zheng et al., 2014a,b, 2015).

PatchMatch Based Joint View Selection and Depth Estimation: Chapter 3 focuses on the

problem of depthmap estimation using Internet collected photos. The non-controlled input imagery

presents practical challenges such as heterogeneous scene illuminations and unstructured viewing

geometry. Therefore, it is vital to determine a subset of images or pixels in the dataset for robust

depth estimation. Moreover, the ever-increasing number of crowd-sourced datasets have explicitly

brought efficiency and scalability to the forefront of application requirements.

4

To solve this problem, we propose a probabilistic framework for joint view selection and depth

estimation at the pixel level. Our new method obtains more complete depthmaps compared to

the state-of-the-art method for Internet collected photos (Goesele et al., 2007). To increase the

efficiency and scalability, our framework seamlessly incorporates the PatchMatch scheme (Bleyer

et al., 2011) to reduce the size of the depth hypothesis set. Also, the memory requirement of our

framework scales linearly with respect to the number of source images, as opposed to exponentially

(Strecha et al., 2006). Moreover, our method is designed to process each row or column of the

reference image independently, enabling easy parallelization and GPU implementation.

Joint Object Class Sequencing and Trajectory Triangulation: Chapter 4 targets the problem

of reconstructing the 3D positions of dynamic objects from a set of unstructured images. Each

dynamic object is observed only once in the image collection, rendering traditional approaches

for 3D triangulation for static scenes impossible. To tackle the fundamentally under-constrained

problem, we assume that all of the objects of the same class (e.g. pedestrians or cars) move in a

common path in 3D space. Then, our method estimates the 3D positions of the dynamic objects by

triangulating the trajectory formed by all the objects moving in the common path.

To the best of our knowledge, no current methods have solved this challenging problem. Our

method uses the object detection outputs as a general feature for each dynamic object, as opposed

to typical image features such as points or edges. In solving the problem, recovering the sequencing

information, which is defined as the topology of the trajectory in this specific problem (i.e. the

information of spatial proximity), is vital for trajectory triangulation. We propose to jointly estimate

the sequencing information and the 3D points, which is posed as minimizing a nonconvex function.

To this end, we propose a novel discrete-continuous optimization approach based on the generalized

minimum spanning tree (GMST).

Dynamic Object Reconstruction from Unsynchronized Videos: Chapter 5 also aims at the

problem of dynamic object reconstruction, but using unsynchronized video streams as input. To

handle this underconstrained problem, we observe that any shape at one time instance is a linear

combination of the shapes at other time instances (self-expression), under the assumption of smooth

5

object motion. The problem is then solved by learning a self-expressive dictionary, which is defined

as a collection of temporally varied structures.

The main contribution of this chapter is solving the new problem of dynamic object reconstruc-

tion without temporal order information across video streams (also called sequencing information).

This is contradictory to the existing works that strictly rely on available sequencing information

(Park et al., 2010; Valmadre and Lucey, 2012). Moreover, to the best of our knowledge, we are the

first to use the self-expression prior for dynamic object reconstruction. This prior has the potential to

be used in the traditional non-rigid structure from motion (NRSFM) problem, where most existing

methods use the assumption that any shape is a linear combination of K fixed shape bases (Dai

et al., 2014; Bregler et al., 2000). In learning the dictionary, we propose a new efficient solver based

on the alternating direction method of multipliers (ADMM) (Boyd et al., 2011).

Each of these contributions addresses the issue of 3D reconstruction from 2D imagery. Follow-

ing Chapter 2, which covers related works, the next three chapters describe each method in detail,

and Chapter 6 concludes the dissertation with potential extensions to our works and possible future

research directions.

6

CHAPTER 2: RELATED WORK

3D reconstruction from 2D imagery has been studied extensively by many researchers in the

computer vision community. In this section, we first review work on camera parameter estimation

and then survey research related to static and dynamic object reconstruction.

2.1 Camera Parameter Estimation

Camera parameters are generally considered a prerequisite for 3D reconstruction, since they

provide the geometric relationships between multiple cameras. Specifically, with this geometric

information, the mapping from a 3D point to an image pixel can be uniquely determined. Camera

parameters are seperated into two parts: the internal (intrinsic) camera parameters consist of a focal

length, principle point, skew parameter, and radial distortion that convert the normalized coordinates

to image coordiantes, and the external (extrinsic) part describes a camera’s rotation and translation

relative to a global coordinate system (Hartley and Zisserman, 2004).

Given the importance of camera parameters in computer vision tasks such as 3D reconstruction,

many works have focused on estimating camera parameters, a process also called camera calibration.

Earlier works for camera calibration required a calibration object such as a planar checkerboard to

be seen by the cameras (Sturm and Maybank, 1999; Zhang, 2000; Bouguet, 2000), which imposes a

significant constraint for practical applications. Thanks to the recent development of techniques

in structure from motion (SfM) (Snavely et al., 2006, 2008; Wu, 2013; Wilson and Snavely, 2013;

Heinly et al., 2014; Schönberger et al., 2015; Heinly et al., 2015; Heinly, 2015; Zheng and Wu,

2015), camera calibration can be achieved by simply leveraging 2D correspondences among multiple

images.

Structure from motion is a pipeline that targets estimating the camera parameters of the images

observing a common static scene. A typical pipeline includes the main steps of feature extraction

7

(Lowe, 2004; Rublee et al., 2011; Bay et al., 2008), inlier correspondence search (Raguram et al.,

2013), camera pose estimation (Nistér, 2003; Kneip et al., 2011; Zheng et al., 2014c; Zheng and Wu,

2015), and bundle adjustment (Agarwal et al., 2010; Wu et al., 2011). Recent works in structure

from motion have exhibited enough accuracy, efficiency, and robustness to be applicable in most

real scenarios (Snavely et al., 2006; Wu, 2013).

2.2 Static Scene Reconstruction

As a main research subject in 3D computer vision, there are a large number of works addressing

issues in static scene reconstruction. Early works mainly focus on depthmap estimation on binocular

images (Boykov et al., 2001; Sun et al., 2002; Scharstein and Szeliski, 2002; Scharstein and Pal,

2007). In these works, two images are rectified so that correspondence estimation for a pixel in

one image can be simplified to search along a single row of the other image. In contrast, multiview

depthmap estimation (MVDE) uses multiple images to reduce the ambiguities in searching for

correspondences. Moreover, the redundant information among the estimated depthmaps can be

leveraged to filter out outlier depths. This section first discusses the most related works for multiview

depthmap estimation and the associated issues such as robustness and efficiency, and then discusses

briefly the methods for generating a consistent point cloud or mesh.

2.2.1 Multiview Depthmap Estimation

Handling occlusion is important in depthmap estimation, and the first methods for addressing

occlusion emerged in two view stereo (Sun et al., 2002, 2005; Xiao et al., 2008). However, in these

methods, the occluded pixel region is only marked with unknown depth due to the unavailable

correspondence in another image.

In principle, the additional view redundancy available to MVDE can be leveraged to resolve

occlusions. Kang et al. (2001) explicitly address occlusion in multi-baseline stereo by only using

the subset of the heuristically selected overlapping cameras with the minimum matching cost.

The heuristic provides occlusion robustness as long as there is a sufficient number of unoccluded

8

views (typically 50%). Campbell et al. (2008) choose the best few depth hypotheses for each pixel,

following with an Markov random field (MRF) optimization to determine a spatially consistent

depthmap. Their method chooses source images based on spatial proximity of cameras. Strecha

et al. (2004) handle occlusion in wide-baseline multi-view stereo by including visibility within a

probabilistic model, where the depth smoothness is enforced on neighboring pixels according to

the color gradient. The work by Strecha et al. (2004) is further extended in Strecha et al. (2006)

where the depth and visibility are jointly modeled by hidden Markov random fields. In the work by

Strecha et al. (2006), the memory used for visibility configuration of each pixel is 2K , which grows

exponentially with respect to the number of input images K. Hence, the approach is limited to

very few images (three images in their evaluation). Gallup et al. (2008) present a variable-baseline

and variable-resolution framework for MVDE, exploring the attainment of pixel-specific data

associations for capture from approximately linear camera paths. While that work illustrates the

benefits of fine-grained data association strategies in multi-view stereo, it does not easily generalize

to irregularly captured datasets.

Given the redundant information among multiple depthmaps, lightweight depthmap fusion

removes outlier depths by leveraging the mutual depth consistency among multiple depthmaps.

Shen (2013) computes the depthmap for each image using PatchMatch stereo, and enforces depth

consistency over neighboring views. Hu and Mordohai (2012) follow a scheme similar to the work

by Campbell et al. (2008) but select the final depth through a process enforcing mutual consistency

across all depthmaps. These methods require the depthmaps of other views to be available, placing

less emphasis on the accuracy of the individual depthmaps.

2.2.2 Robustness

Robust stereo performance for crowd-sourced data is an ongoing research effort. Images

downloaded via keyword searches from the Internet (such as Flickr1 or Panoramio2) typically

1 https://www.flickr.com/
2 http://www.panoramio.com/

9

consist of unstructured imagery with a large portion of unrelated images. To discern a suitable

input datum for stereo, Frahm et al. (2010) use appearance clustering of a color augmented GIST

descriptor (Oliva and Torralba, 2001) along with feature-based geometric verification. In contrast,

the work by Heinly et al. (2015) discovers the relationships between images using in a streaming

paradigm that registers images to a vocabulary tree built online. However, even when the unrelated

images are purged, using the data for stereo is still challenging due to the heterogeneous capture

characteristics.

To estimate the depthmap of an image, Frahm et al. (2010) select the most related images based

on the number of sparse feature points shared in common. The depthmap is then estimated using the

heuristic K-best planesweeping algorithm (Kang et al., 2001). Due to the issues such as illumination

difference and occlusion, their estimated depthmaps are of low quality. Furukawa et al. (2010) use

structure from motion (SFM) to purge redundant imagery but retain high-resolution geometry. Their

iterative clustering merges sparse 3D points and cameras based on visibility analysis. Although

intra-cluster image partitioning is not performed, the cluster size is limited in an effort to maintain

computational efficiency. Goesele et al. (2007) address the viewpoint selection for crowd-sourced

imagery by building small-sized image clusters using the cardinality of the set of common features

among viewpoints and a parallax-based metric. This image-wide selection may not be robust to

outlier camera pose estimates. After this, images are resized to the lowest common resolution in the

cluster. Pixel depth is then computed using four images selected from the cluster based on local

color consistency.

2.2.3 Efficiency

Efficiency is an important issue in depthmap estimation. Traditional methods on large baseline

stereo generally involve exhaustive evaluations of a large number of depth hypotheses. The high

complexity of computation is not only time-consuming (Yang and Pollefeys, 2003; Strecha et al.,

2006; Gallup et al., 2007; Hu and Mordohai, 2012), but also prohibitive on less powerful devices

such as smartphones and tablets.

10

To handle these issues, the recently proposed PatchMatch technique provides an efficient

sampling scheme. Though the scheme has no strict theory or proof of its working mechanism, it has

been empirically shown that it works very well in practice. PatchMatch was originally proposed

to find approximate nearest neighbor matches between image patches in Barnes et al. (2009), and

later Bleyer et al. (2011) introduce it to solve the two-view stereo problem. PatchMatch initializes

each pixel with a random slanted plane at a random depth, then propagates high-confidence values

to neighboring pixels. The nearby and the current pixels’ slanted planes are tested, and the one

with the best cost is kept. Besse et al. (2012) combine the PatchMatch sampling scheme and belief

propagation to infer an MRF model that contains smoothness constraints. By combining guided

filter and PatchMatch, Lu et al. (2013) provide an efficient edge-aware filtering for correspondence

field estimation, which can be applied in two-view stereo. While the original PatchMatch stereo was

a sequential method, Bailer et al. (2012) parallelize the algorithm by restricting the propagations to

only horizontal and vertical directions. Our research further explores the potential of PatchMatch in

wide baseline stereo with a large hypothesis space.

2.2.4 Point Cloud and Mesh Generation

So far, we have only discussed the works focusing on depthmap estimation. Other methods aim

at generating a consistent 3D model (either point cloud or mesh) instead of depthmaps. Furukawa

and Ponce (2010) aim at reconstructing a quasi-dense point cloud by densifying the sparse 3D

points. They present an accurate patch-based multiview stereo approach that starts from a sparse set

of matched keypoints, which are repeatedly expanded until visibility constraints are invoked to filter

out false matches. Zaharescu et al. (2011) propose a mesh evolution framework based on a new

self-intersection removal algorithm.

A typical approach for 3D mesh generation is to fuse the depthmaps into a consistent model

by leveraging the redundant information across the depthmaps. Gallup et al. (2010b,a) develop

heightmap-based fusion methods that work well for planar object surfaces such as building facades.

Zach (2008) tackles the surface reconstruction task in a variational formulation. Given that all these

11

methods are volumetric-based and hence memory-inefficient, Zheng et al. (2012) instead propose

to compress the volume of interest using Haar wavelets, hence reducing the amount of memory

required. Jancosek and Pajdla (2011) propose a method that reconstructs surfaces that do not have

direct support in the input 3D points by exploiting visibility in 3D meshes. Their method has been

shown to work robustly on textureless regions.

2.3 Dynamic Object Reconstruction

The following sections outline the related works of trajectory triangulation, image sequencing,

articulated object reconstruction, non-rigid structure from motion (NRSFM), and single-view

reconstruction.

2.3.1 Trajectory Triangulation

Avidan and Shashua (2000) first coined the task of trajectory triangulation, which is defined as

reconstruction of a moving point from monocular images. That is, each dynamic point is observed

only by one camera at a time. Their method assumes the dynamic point moves along a simple

parametric trajectory, such as a straight line or a conic section. This is a rather strict constraint that

impedes their method’s application in real scenarios. In contrast, other methods (Park et al., 2010;

Valmadre and Lucey, 2012; Zhu et al., 2011; Park et al., 2015) focus on a more general model by

only assuming a smooth motion of dynamic objects.

Park et al. (2010) represent the trajectory with a linear combination of low-order discrete

cosine transform (DCT) bases, and the trajectory is triangulated by estimating the coefficients of

the linear combination. There are two fundamental limitations of their method as observed by

Valmadre and Lucey (2012). First, there is no automated scheme to determine the optimal number

(K) of DCT bases. Second, the correlation between the object trajectory and the camera motion

inherently limits the reconstruction accuracy. To overcome the first limitation, Park et al. (2015)

selectK by checking the consistency of the reconstructed trajectory in an N-cross validation scheme.

Alternatively, Valmadre and Lucey (2012) propose a new method without using DCT bases. They

12

estimate the trajectory by minimizing the trajectory’s response to a bank of high-pass filters. To

overcome the second limitation, Zhu et al. (2011) propose to incorporate the 3D structures of a

number of key frames to enhance the reconstructability. However, obtaining those key-frame 3D

structures requires manual interaction. All the methods (Park et al., 2010; Valmadre and Lucey,

2012; Zhu et al., 2011) require the sequencing information of the images, but in natural capture

setups, the availability of sequencing information and high reconstructability typically cannot be

fulfilled simultaneously (Zhu et al., 2011; Park et al., 2015).

2.3.2 Sequencing and Synchronization

Sequencing information is important in trajectory triangulation. Recently, Basha et al. (2012,

2013) target the problem of determining the temporal order of a collection of photos without

recovering the 3D structure of the dynamic scene. The method by Basha et al. (2012) relies on two

images taken from roughly the same location to eliminate the uncertainty in the sequencing. Basha

et al. (2013) later introduce a solution that leverages the known temporal order of the images within

each camera. Both of these methods assume that dynamic objects move close to a straight line

within a short time period, but in practice, points can deviate considerably from the linear motion

model, especially when the temporal discrepancy between images is large.

Video synchronization has attracted much attention in the computer vision community (Tuyte-

laars and Gool, 2004; Shrestha et al., 2010; Rao et al., 2003). Those methods have various constraints

such as camera motion, availability of sound, and number of videos.

2.3.3 Articulated Object Reconstruction

Trajectory triangulation suffers from the reconstructability problem of inaccurate reconstruction

if the camera motion is relatively small compared to the object motion (Park et al., 2015). In

the case of 3D reconstruction of articulated objects, we can enforce an additional constraint that

the distances between joint points (according to the topology) are fixed, which helps to reduce

ambiguities in reconstruction. Based on the previous work by Park et al. (2010), the authors further

13

reconstruct 3D articulated motion with the constraint that a trajectory remains at a fixed distance

with respect to its parent trajectory (Park and Sheikh, 2011). Their work shows the improvement

of the reconstructibility over their earlier approach (Park et al., 2010). However, the formulation

involves solving an NP-hard quadratic programming problem, which is intractable in the case of a

large number of input images. To conquer the limitation, Valmadre et al. (2012) develop a dynamic

programming approach that is guaranteed to solve the problem in a timely manner. As opposed

to articulated object reconstruction, our research focuses on reconstructing more general dynamic

objects.

2.3.4 Non-rigid SfM

One class of related works solve the non-rigid structure from motion (NRSFM) problem, which

targets simultaneous recovery of camera motion and 3D structure using an image sequence. These

methods typically start from a set of 2D correspondences across frames. As an important extension

of the well-known Tomasi-Kanade factorization (Tomasi and Kanade, 1992), Bregler et al. (2000)

tackle the NRSFM problem through matrix factorization, with the assumption that deforming

non-rigid objects can be represented by a linear combination of low-order shape bases. It was later

shown by Xiao et al. (2004) that utilizing only orthogonality constraints on the camera rotation is

not enough, and a basis prior is required to uniquely determine the shape bases. However, Akhter

et al. (2009a) discover that in spite of the inherent ambiguity in the shape bases, the 3D shape itself

can be uniquely recovered without ambiguity. Recently, Dai et al. (2014) have proposed a new

prior-free method that estimates the shape matrix without explicitly recovering the shape bases,

which is achieved by minimizing the rank (nuclear norm) of the shape matrix.

As a dual method to the above shape-based methods, Akhter et al. (2009b) propose the

first trajectory-based NRSFM approach, which leverages DCT bases to approximately represent

point trajectories. While shape-based approaches typically do not require sequencing information,

trajectory-based approaches completely fail if image frames are randomly shuffled (Dai et al., 2014).

14

At first glance, it seems that the NRSFM problem targets a more complete problem than the

trajectory triangulation problem since the former additionally assumes unknown camera poses.

However, these approaches assume orthographic or weak perspective camera models, and it has

been shown empirically that the extension of these methods to the projective camera model is not

straightforward (Park et al., 2010). There are works for projective non-rigid shape and motion

recovery based on tensor estimation (Hartley and Vidal, 2008; Vidal and Abretske, 2006), but this

challenging problem is still under ongoing research. Moreover, the NRSFM methods only recover

the shape of the object without absolute translation due to the inherent ambiguity arising from the

unknown shape translation and the unknown camera translation.

2.3.5 Single Image Reconstruction

While trajectory triangulation and NRSFM methods estimate 3D points from an image sequence,

other works target the problem of 3D reconstruction from a single image. Since there is only

one view of the object, the object motion, either static or dynamic, becomes irrelevant for the

reconstruction.

Some works focus on 3D reconstruction of a Manhattan world (Coughlan and Yuille, 1999),

which is defined as man-made scenes with mainly orthogonal facades. In this scenario, 3D

reconstruction from a single image can be simplified to finding the 3D lines and planes within

the scene. The work by Delage et al. (2005) uses an MRF model to identify the different planes

and edges in the scene, as well as their orientations. Then, an iterative optimization algorithm is

applied to infer the planes’ positions. Ramalingam and Brand (2013) reconstruct the 3D lines in a

Manhattan scene from a single image using linear programming that identifies a sufficient minimal

set of least-violated line connectivity constraints.

There are other approaches mainly relying on supervised learning. Hoiem et al. (2005) label

the image regions as ground, vertical, and sky with a pre-trained classifier, then “cut and fold” the

image into a pop-up model like children’s pop-up books. The method is limited to the application

of outdoor scenes containing simple ground and vertical structures. Saxena et al. (2008) propose

15

a method for computing a depthmap from a single still image by using a hierarchical multi-scale

MRF that incorporates several features. The features are manually designed, and the parameters of

the MRF model are trained using ground-truth depths. Instead of manually choosing features, Eigen

et al. (2014) recently propose to estimate the depthmap of a single image by employing two deep

network stacks: one that makes a coarse global prediction based on the entire image, and another

that refines this prediction locally. Due to the wide applicability of the topic, single depthmap

estimation using supervised learning is currently an active research topic.

16

CHAPTER 3: PATCHMATCH BASED JOINT VIEW SELECTION AND DEPTHMAP
ESTIMATION

3.1 Introduction

Multi-view depthmap estimation (MVDE) methods strive to determine a view dependent

depthfield by leveraging the local photoconsistency of a set overlapping images observing a common

scene. Applications benefiting from high quality depthmap estimates include dense 3D modeling,

classification/recognition (Shotton et al., 2011) and image based rendering (Chen and Williams,

1993). However, achieving highly accurate depthmaps is inherently difficult even for well controlled

environments where factors such as viewing geometry, image-set color constancy, and optical

distortions are rigorously measured and/or corrected. Conversely, practical challenges for robust

depthmap estimation from non-controlled input imagery (i.e. Internet collected data) include

mitigating heterogeneous resolution and scene illuminations, unstructured viewing geometry, scene

content variability and image registration errors (i.e. outliers). Moreover, the increasing availability

of crowd sourced datasets has explicitly brought efficiency and scalability to the forefront of

application requirements, while implicitly increasing the importance of data association management

when processing such large scale datasets.

The input for MVDE is commonly assumed to consist of a convergent set of images along with

reliable estimates of their pose and calibration parameters. The extracted depthmap will correspond

to the pixel-wise 3D structure hypotheses that best explain the available image observations in

terms of some measure of visual similarity with respect to a reference image. Ironically, the

potential robustness afforded by having multiple available images is compromised by the inherent

variability in pairwise photoconsistency observations. In practice, correct depth hypotheses may

provide low photoconsistency in a source image subset (e.g. occlusions or illumination aberrations),

while incorrect depth hypotheses may register high image similarity (e.g. repetitive structure or

17

E step:
Image Selection

Probability
Inference

M step:
PatchMatch

Depth
Estimation

Input Output
500 1000 1500 2000 2500 3000

200

400

600

800

1000

1200

1400

1600

1800

2000

500 1000 1500 2000 2500 3000

200

400

600

800

1000

1200

1400

1600

1800

2000

500 1000 1500 2000 2500 3000

200

400

600

800

1000

1200

1400

1600

1800

2000

500 1000 1500 2000 2500 3000

200

400

600

800

1000

1200

1400

1600

1800

2000

Source images

Reference image

Selection probability maps

Depthmap

Figure 3.1: Overview of our approach. Input imagery is used to jointly estimate a depthmap and
pixel level view associations. Blue regions in the view selection probability map indicate pixels in
the reference image lacking reliable observations in the corresponding source image.

homogeneous texture). These technical challenges render multi-view depth hypothesis evaluation as

a problem of robust model fitting, where a demarcation between inlier and outlier photoconsistency

observations is required. We tackle this implicit data association problem by addressing the question:

What aggregation subset of the source image set should be used to estimate the depth of a particular

pixel in the reference image?

We propose a probabilistic framework for depthmap estimation that jointly models pixel-level

view selection and depthmap estimation given pairwise image photoconsistency. An overview is

depicted in Figure 3.1. The corresponding graphical model is trained using EM algorithm. The

algorithm iterates between view selection by inference in the probabilistic model, and PatchMatch-

like depth sampling and propagation (Bleyer et al., 2011; Bailer et al., 2012). The insight leveraged

by our method is the spatial smoothness of the photoconsistency with respect to the good source

images given the correct depth (Strecha et al., 2006; Goesele et al., 2007). Our expectation of having

a high overlap of photoconsistent source images among neighboring pixels in the reference image,

18

leads to modeling the depth estimation problem as a Markov chain where the unobserved states

correspond to binary indicator variables for the selection probability of each source image.

We summarize the contributions and advantages of the framework as follows.

1. Accuracy: Mitigation of spurious data associations at the pixel level provides state-of-the-art

accuracy results for single depthmap estimation.

2. Efficiency: Deployment of PatchMatch sampling and propagation enables reduced computa-

tional burden as well as GPU implementation.

3. Scalability: Linear storage requirement with respect to the number of source images, as

opposed to the exponential growth in the joint view selection and depth estimation model by

Strecha et al. (2006), enables handling selection instances comprising hundreds of images.

3.2 Joint View Selection and Depth Estimation

In this section we provide an overview of our PatchMatch propagation scheme (Section 3.2.1),

describe our probabilistic graphic model (Section 3.2.2), describe our variational inference approxi-

mation to the model’s posterior probability (Section 3.2.3 and Section 3.2.4) and finalize describing

our implementation (Section 3.2.5).

3.2.1 PatchMatch Propagation for Stereo

Our algorithm uses single oriented planes instead of the multiple oriented planes (Bailer et al.,

2012), to reduce the three-dimensional search space (depth and two angles for the orientated

plane) to one dimension. We alternatively perform upward/downward propagations during the

odd iterations and perform rightward/leftward propagations during even iterations. To calculate

the depth at pixel (i, j) for the rightward propagation, only the depth at positions (i, j − 1) and

(i, j) are tested on pixel (i, j) (Figure 3.2). Likewise, only one neighbor is considered for all other

propagations. The propagation schemes of (Bleyer et al., 2011) and (Bailer et al., 2012) are shown

in Figure 3.2.

19

(i-1, j)

(i, j)(i, j-1)

(i-1, j)

(i, j)(i, j-1)

(i-1,j-1)

(i, j)(i,j-1)

(i-1,j-1)

(i+1,j-1)

Figure 3.2: The black and blue arrows show the propagation directions and the sampling schemes.
Left: Top left to bottom right propagation in (Bleyer et al., 2011). Middle: Rightward propagations
in (Bailer et al., 2012). Right: Our rightward propagation.

In case of the absence of proper depth hypotheses, we can additionally draw and test H random

depth hypotheses for each pixel during propagations. In this work, we use H = 1 and hence have 3

depth hypotheses tested per pixel in a propagation, i.e. the depths of current and the neighboring

pixel along with one random depth. Without loss of generality, we limit our discussion henceforth

to the rightward horizontal propagation.

3.2.2 Graphical Model

In our algorithm, the depth is estimated for a reference image X ref, given a set of M (unstruc-

tured) source images X1, X2, ...XM with known camera calibration parameters, which are the

output of a typical structure from motion system such as VisualSFM (Wu, 2013). We denote the

correct depth associated with each pixel l on image X ref as θl.

Photo-consistency values for the correct depth of a given pixel across a set of source images

may be incongruent for some of the source images. This may be attributed to a diversity of factors

such as occlusions, calibration errors, illumination aberration, etc. Therefore, depth estimation for a

given pixel entails the determination of which subset of source images will provide the most robust

estimate. Our model defines M binary variables Zm
l ∈ {0, 1},m = 1, 2...M for each pixel l in the

20

𝑃(𝑋𝑚|𝜃𝑙 , 𝑍𝑙
𝑚, 𝑋ref)

𝜌𝑙
𝑚

𝜏

Figure 3.3: Distribution of Equation (3.1)

reference image X ref, where Zm
l is 1 if image Xm is selected for depth estimation of pixel l, and 0

otherwise.

We first define the likelihood function. We denote the color patch centered at pixel l in the

reference image as X ref
l . Given a pixel l and its correct depth θl in the reference image X ref, a color

patch Xm
l on source image m can be determined through homography warping (Shen, 2013). If

Zm
l = 1, the probability that the observed color patch Xm

l is color-consistent with X ref
l should be

high. We use NCC (normalized cross correlation) to compare the two color patches Xm
l and X ref

l as

a robust proxy to single pixel comparisons, and denote the NCC measurement as ρml . In the case

when Zm
l = 0, Xm

l has arbitrary colors due to factors such as occlusion or calibration errors, so the

probability of observing Xm
l is unrelated to X ref

l and considered uniformly distributed. Therefore

we propose the following likelihood function

P (Xm
l |Zm

l , θl, X
ref
l)=

1
NA
e−

(1−ρml)2

2σ2 if Zm
l = 1

1
N
U if Zm

l = 0,

(3.1)

21

where A equals to
∫ 1

−1
exp{− (1−ρ)2

2σ2 }dρ and N is a constant. Note that NCC value ranges in

[−1, 1] and equals 1 with the best color consistency. Consistent with our intuition, a color patch

Xm
l with high NCC value ρml has high probability P (Xm

l |Zm
l = 1, θl, X

ref
l). U is the uniform

distribution in the range [−1, 1] with probability density 0.5. Note that NCC computation is affine

invariant and multiple pairs of color patches can generate the same NCC value. To simplify the

analysis without affecting depthmap quality, Equation (3.1) assumes the number of color patches

Xm
l that can generate any specific NCC value is the same and equals to N . Since only the ratio

P (Xm
l |Zm

l = 1, θl, X
ref
l)/P (Xm

l |Zm
l = 0, θl, X

ref
l) matters in the model inference discussed in

Section 3.2.3 and Section 3.2.4, we can safely ignore the constant N in Equation (3.1).

In Equation (3.1) σ is the parameter determining the suitability of an image based on NCC

measurement ρml . As seen in Figure 3.3, a soft threshold τ is determined by σ. If ρml is larger than

τ , it is more likely that image m is selected, and vice versa. Since X ref
l is observed for each pixel,

P (Xm
l |Zm

l , θl, X
ref
l) is simply denoted as P (Xm

l |Zm
l , θl) in the rest of the paper.

The depths of nearby pixels are considered independent, while the pairwise smoothness is put

on the nearby selection variables along the current propagation direction (Figure 3.4) through the

transition probabilities:

P (Zm
l |Zm

l−1) =
(

γ 1−γ
1−γ γ

)
. (3.2)

Setting γ close to 1 encourages neighboring pixels to have similar selection preference for source

images Xm. To enable parallel computation, we only enforce pairwise constraint on the pixels

of the same row in the horizontal propagations. Note Figure 3.4 only shows one row of selection

variables for each of the source images.

Finding the optimal selection Z and depth θ given all the imagesX equates to computing the

maximum of the posterior probability (MAP) P (Z,θ|X). The Bayesian approach firstly computes

the joint probability based on the graphical model (Figure 3.4) and normalizes over P (X). The

22

𝑍2
1 𝑍𝐿

1

𝑍1
2 𝑍2

2 𝑍𝐿−1
2 𝑍𝐿

2

𝑍1
𝑀 𝑍2

𝑀 𝑍𝐿−1
𝑀 𝑍𝐿

𝑀

𝑋1
1 𝑋2

1 𝑋𝐿−1
1 𝑋𝐿

1

𝑋2
2 𝑋𝐿−1

2 𝑋𝐿
2

𝑋1
𝑀 𝑋2

𝑀 𝑋𝐿−1
𝑀 𝑋𝐿

𝑀

… …

𝜃1 𝜃2 𝜃𝐿−1 𝜃𝐿

𝑍𝐿−1
1 𝑍1

1

𝑋1
2

Figure 3.4: The graphical model. θl is the depth of pixel l. Zm
l is the selection of image m at pixel l.

Xm
l is the observation (colors) on the source image m given depth θl.

joint probability is

P (X,θ,Z) =
M∏
m=1

[P (Zm
1)

L∏
l=2

P (Zm
l |Zm

l−1)
L∏
l=1

P (Xm
l |Zm

l , θl)]
L∏
l=1

P (θl), (3.3)

where L is the number of pixels along the propagation direction of the reference image. We use an

uninformative uniform distribution for prior P (Zm
1) as well as depth prior P (θl) since we have no

preference without observations. However, computing P (X) is intractable as it requires to sum

over all possible values of Z and θ.

We interleave pixel level inference of image selection probability with fixed depth, and depth

updating with fixed image selection probability. Our approach is a variant of the generalized

EM (GEM) (Neal and Hinton, 1998). Similarly to the work by Neal and Hinton (1998), we use

variational inference theory to justify our algorithm.

23

3.2.3 Variational Inference

Variational inference selects a member of a restricted family of distributions q(Z,θ) to ap-

proximate the true posterior distribution P (Z,θ|X), in the sense that the KL divergence between

these two is minimized (Bishop, 2006). The restriction is imposed purely to achieve tractability.

The real posterior distribution is over the set of unobserved variables θ = {θl|l = 1, ..., L} and

Z = {Zm|m = 1, ...,M}, where Zm = {Zm
1 , Z

m
2 , ..., Z

m
L } is a chain in the graph. We put restric-

tions on the family of distributions q(Z,θ), assuming that it is factorizable into a set of distributions

(Bishop, 2006):

q(Z,θ) =
∏M

m=1
qm(Zm)

∏L

l=1
ql(θl). (3.4)

For tractability, we further constrain each ql(θl), l = 1, 2, ..., L to the family of Kronecker delta

functions:

ql(θl) = δ(θl = θ∗l) =

1, if θl = θ∗l

0, otherwise
(3.5)

where θ∗l is a parameter to be estimated. This assumption is in contrast to most other works (Strecha

et al., 2004, 2006; Sun et al., 2002, 2005), which discretize the depth as a means to recover the

whole posterior distribution of the depth. Once the distribution ql(θl) is determined, θl is set to θ∗l to

maximize the approximate posterior distribution Equation (3.4), so θ∗l is actually the final estimated

depth. Conversely, the depths θ can be considered as parameters shared by different chains instead

of as variables. This assumption seamlessly combines the PatchMatch sampling scheme in the

graphic model inference.

The variational method seeks to find a member qopt(Z,θ)=
∏M

m=1 q
opt
m (Zm)

∏L
l=1 q

opt
l (θl) from

the family q(Z,θ), minimizing the KL divergence between q(Z,θ) and P (Z,θ|X) under the

constraint that qm(Zm),m = 1, ...M are normalized (ql(θl) is guaranteed to be normalized as it is

24

constrained to be a Kronecker delta function):

minimize
q(Z,θ)

KL(q(Z,θ)||P (Z,θ|X))

subject to
∑

Zm
qm(Zm) = 1, m = 1, . . . ,M.

(3.6)

Note the optimization is performed over distributions, but not over variables. To optimize over

qm(Zm), the standard solution (Bishop, 2006) is log (qm(Zm)) = E\m[log (P (X,θ,Z))] + const,

where E\m is the expectation of log (P (X,θ,Z)) taken over all variables not in qm(Zm) (Bishop,

2006). Then we have

qopt
m (Zm) ∝ Ψ(Zm)

∏L

l=1
P (Xm

l |Zm
l , θl = θ∗l), (3.7)

where Ψ(Zm)=P (Zm
1)
∏l=L

l=2 P (Zm
l |Zm

l−1). The right side of Equation (3.7) has form of joint

probability of a Hidden Markov Chain with fixed transition probability from Equation (3.2) and

fixed emission probability Equation (3.1). The probability of each hidden variable q(Zm
l) can be

efficiently inferred by forward-backward algorithm (Bishop, 2006). See Section 3.2.4 for more

details. This corresponds to the E step of the GEM algorithm.

To optimize over ql(θl) we seek an optimal parameter θopt
l for the distribution ql(θl) that

minimizes Equation (3.6). Suppressing the terms not involving θl gives

θopt
l = argmax

θ∗l

M∑
m=1

q(Zm
l =1) lnP (Xm

l |Zm
l =1, θl=θ∗l). (3.8)

By substituting Equation (3.1) into Equation (3.8), we get

θopt
l = argmin

θ∗l

∑M

m=1
q(Zm

l = 1)(1− ρml)2, (3.9)

where ρml is a function of θ∗l . To find θopt
l in the above equation, 3 depth hypotheses sampled based

on PatchMatch are tested, and the one that maximizes Equation (3.9) is assigned to the parameter

of the distribution ql(θl). This step is the M step of the GEM algorithm. Note that the righthand

25

side of Equation (3.9) is a weighted sum of (1 − ρml)2 with weight equal to the image selection

probability. Hence, a small value of q(Zm
l = 1), designating image m as not favorable, contributes

less in evaluating the parameter θ∗l .

Improvement: Equation (3.9) is computationally expensive for hundreds of source images.

Based on Equation (3.9), it is unnecessary to compute ρml if the corresponding image selection

probability q(Zm
l = 1) is very small. Hence, we propose a Monte Carlo based approximation

(Bishop, 2006). Rewriting Equation (3.9) as

θopt
l = argmin

θ∗l

∑M

m=1
P (m)(1− ρml)2 (3.10)

where the new distribution P (m) =
q(Zml =1)∑M
m=1 q(Z

m
l =1)

can be deemed as the probability of image m

being the best for depth estimation of pixel l. We draw samples based on the distribution P (m) to

obtain a subset S, then

θopt
l = argmin

θ∗l

1

|S|
∑

m∈S
(1− ρml)2. (3.11)

Empirically, 15 samples suffice to attain good results.

Both distributions qopt
m (Z) and qopt

l (θl) are coupled. The computation of θ∗l requires q(Zm
l) to

be known (Equation (3.9)), but to infer q(Zm
l) in Equation (3.7), we need θ∗l available. The next

subsection introduces the update scheme that computes the distributions iteratively.

3.2.4 Update Schedule

The common way to compute approximate distributions is coordinate descent optimization

method. Namely, one distribution is optimized while other distributions remain fixed. Choosing

which distribution to optimize over in each step is arbitrary or scheduled based on application, but

it always decreases the cost function in Equation (3.6). We choose to interleave updates of ql(θl)

and qm(Zm) as it is able to quickly propagate the correct depth into nearby pixels. For clarity, our

explanations below use one chain and omit the image index m for each variable.

26

Step 1

… … … …

 Step 2

… … … …

Step 3

… … … …

… … … …

New Iter.

Step 1

Figure 3.5: Update schedule. See text for more details.

For more details on Hidden Markov Chain inference, we refer the reader to text (Bishop, 2006).

The forward-backward algorithm is used to infer the probability of hidden variables Zl.

q(Zl) =
1

A
α(Zl)β(Zl), (3.12)

where A is the normalization factor. α(Zl) and β(Zl) are the forward and backward message for

variable Zl computed using the following Equations,

α(Zl) = p(Xl|Zl, θl)
∑
Zl−1

α(Zl−1)P (Zl|Zl−1), (3.13)

β(Zl) =
∑
Zl+1

β(Zl+1)P (Xl+1|Zl+1, θl+1)P (Zl+1|Zl). (3.14)

Both the forward and backward messages are computed recursively (e.g. α(Zl) is computed using

α(Zl−1)). In Figure 3.5, the variables covered in red area and blue area contribute to the forward

and backward messages respectively.

We perform the following update schedule as is shown in Figure 3.5. In step 1, compute q(Zl)

using Equation (3.12), (3.13) and (3.14) for each source image (i.e. q(Zm
l),m = 1...M). In step 2,

update the depth from θoldl to θnewl using Equation (3.9) or Equation (3.11). In step 3, with θnewl ,

27

Input: All images, depthMap (randomly initialized or from previous propagation)
Output: Updated depthMap
m – image index, l – pixel index

Eq. Step
For l = L to 1

For m = 1 to M
Compute backward message βml (3.14) 1

For l = 1 to L
For m = 1 to M

Compute forward message αml (3.13) 1
Compute q(Zml) (3.12) 1

Draw depth hypotheses by PatchMatch
Estimate θ∗l for ql(θl) (3.9 or 3.11) 2
For m = 1 to M

Recompute forward message αml (3.13) 3

Table 3.1: The algorithm of a row/column propagation.

we recompute forward message α(Zl), which is further used to compute α(Zl+1) recursively in

Equation (3.13). Next we start at variable Zl+1 with the same process until reaching the end of

the row in the image. Before the update process, the backward message for each variable can be

computed recursively (Equation (3.14)) and stored in memory.

3.2.5 Algorithm Integration

We now describe the computational framework implementing our depth estimation and view

selection formulation. The depthmap is initialized with random values within the depth range. Al-

ternatively, sparse 3D measurements may be included within our initialization. Next, the rightward,

downward, leftward and upward propagations are applied in sequence. Each propagation (except

in the first iteration) uses the depth results of the former propagation. Within each propagation,

updates of the depth and the selection probability are interleaved as described in Section 3.2.4. After

two or three sweeps, each containing the four direction propagations, the depthmap reaches a stable

state. Convergence may alternatively be verified through tracking the number of modified depth

estimates up to a threshold. As each row is independent from other rows given our graphical model

and processed in exactly the same way during one propagation, it can be easily parallelized for

28

leveraging GPUs. We describe the algorithm for processing one row within rightward propagation

in Table 3.1.

Discussion. The estimation of the exact image-wide MAP for our graphical model would

require a Hidden Markov Random Field (MRF) formulation instead of our Hidden Markov Chain

approximation. Our choice of using propagation direction specific chain models was driven by

computational efficiency/tractability. The proposed framework enables us to easily interleave

the propagation with hidden variable inference while fostering implementation parallelism. The

enforcement of smoothness constraints on the hidden variables enables non-oscillating behavior

of our evolving depth estimates. Our PatchMatch based framework has linear computational and

storage complexity with respect to to input data size while being independent of the size of the

depth search space. Namely, since the number of tested depth hypotheses (3 for each propagation)

is small and constant, the computation complexity of our method is O(WHM), where W , H , and

M are the width, height and number of images. Methods using complete hypotheses search, (e.g.

Sun et al. (2002); Strecha et al. (2006)), require O(WHMD) computations, where D is the size of

hypotheses space normally reaching up to thousands of hypotheses.

3.3 Experiments

We evaluate the accuracy of our method on standard ground truth benchmarks and highlight

our robustness on multiple crowd sourced datasets. In both evaluation scenarios we juxtapose our

results with current state-of-the-art methods. We implemented our method in CUDA and executed

on a Nvidia GTX-Titan GPU. For all experiments, the total number multi-directional propagations

is set to 3 and we use σ = 0.45 in the likelihood function (Equation (3.1)) and γ = 0.999 in the

transition probabilities (Equation (3.2)).

Ground truth evaluation. We evaluated on the Strecha datasets (Fountain-P11 and Herzjesu-

P9) presented in Strecha et al. (2008) as they include ground truth 3D structure measurements. We

use all dataset images full resolution, set the NCC patch size to 15 by 15 and approximate the depth

range from sparse 3D points. We measure pixel-wise depth errors as our goal is to generate a single

29

2cm 10cm 2 cm 10cm
Error fountain-P11 Herzjesu-P9
Ours 0.732 0.911 0.619 0.833

Ours(P) 0.769 0.929 0.650 0.844
LC (Hu and Mordohai, 2012) 0.754 0.930 0.649 0.848

FUR (Furukawa and Ponce, 2010) 0.731 0.838 0.646 0.836
ZAH (Zaharescu et al., 2011) 0.712 0.832 0.220 0.501
TYL (Tylecek and Sara, 2010) 0.732 0.822 0.658 0.852

JAN (Jancosek and Pajdla, 2011) 0.824 0.973 0.739 0.923

Table 3.2: The percentage of pixels with absolute error less than 2cm and 10cm. Entries Ours(P)
and Ours denote our results with and without postprocessing. Reported values are from the work by
Hu and Mordohai (2012).

depthmap instead of one consistent 3D scene model. We calculate the number of pixels with the

depth error less than 2cm and 10cm from the ground truth and compare with (Hu and Mordohai,

2012; Furukawa and Ponce, 2010; Zaharescu et al., 2011; Tylecek and Sara, 2010; Jancosek and

Pajdla, 2011). All the pixels with accessible ground truth depth are evaluated to convey both the

accuracy and the completeness of the estimated depthmaps. We omit evaluation of the dataset’s two

extremal views as done by Hu and Mordohai (2012).

We use slanted planes of single orientation instead of fronto-parallel planes. The single

dominant orientation direction can be estimated by projecting sparse 3D points onto the ground

plane as described in Gallup et al. (2007). We further apply two optional depthmap refinement

schemes to increase the final accuracy. Our basic depth refinement uses a smaller NCC patch (5x5),

while eliminating random depth sampling, during an additional propagation sweep. We then use

deterministic fine-grain sampling (20 hypotheses) in the depth neighborhood (±1 cm.) of each

pixel’s depth estimate as proposed in Shen (2013). Finally, a median filter of size 9x9 is applied to

each raw depthmap. Table 3.2 shows our method is comparable to the state-of-the-art methods. Note

the results of Hu and Mordohai (2012); Tylecek and Sara (2010); Jancosek and Pajdla (2011) are

obtained through multi-depthmap fusion, while our method directly estimates individual depthmaps.

Advantages of pixel level view selection. Figure 3.6 shows our comparison to the occlusion-

robust best-K planesweeping method (Kang et al., 2001), where for a given depth hypothesis, the

cost is the average of the best K costs, with K being predefined. When K is set to the number of

30

1 2 3 4 5 6 7 8 9 10
0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

K

A
c
c
u

ra
c
y

 Our (P)

Best K (10 source images)

Best K (2 source images)

(b)(a)

(a)

(b)

Ground truth

(d)

(d)

(c)

(c)

(e)

(e)

Figure 3.6: Left: Comparison against best-K aggregation. Right: Raw depthmap output of a partially
occluded subregion with results for different dataset-aggregation combinations.

50 100 150 200 250 300 350 400 450 500
0

43.2
50

100

150

number of planes

R
u

n
n

in
g

 t
im

e
 (

s
e

c
)

50 100 150 200 250 300 350 400 450 500
0.2

0.4

0.6

0.8

A
c
c
u

ra
c
y

accuracy

time(Our (P))

time(PLA)

Figure 3.7: Fountain dataset performance. Left: Average running time. Right: Percentage of pixels
given different thresholds. PLA is the planesweep algorithm with all source images and K=3, while
GOS is the method by Goesele et al. (2007).

31

source images, it degenerates to the basic planesweeping algorithm that computes the cost using all

source images. As opposed to our method with dynamic weights of images used for depth recovery,

this method has a worse ability to handle occlusion. We compute depthmaps of the fountain-P11 data

with varying K and otherwise fixed parameters, using 2000 planes. The percentage of pixels within

2cm difference from the ground truth is taken as a measure of the error. We run the planesweeping

using two different dataset types. In the first case all 10 source images are used. Alternatively, we

use the neighboring left and the right images. Figure 3.6 shows our results outperform all fixed

aggregation schemes and illustrates the raw depthmap output of a partially occluded subregion.

Run times for our method are compared with an optimized GPU planesweeping code. Figure 3.7

shows the linear dependence of computation time to the number of planes as well the diminishing

accuracy improvements provided by increasing the search space resolution. Our PatchMatch

sampling and propagation scheme only requires depth range specification, foregoing explicit search

space discretization.

Robustness to noisy SfM estimates. The advantage of pixel-level view selection across the

entire dataset is highlighted in Figure 3.8, where we compare our results for corrupted SFM

estimates against those obtained using the approach by Goesele et al. (2007). Figure 3.8 depicts

Alexander Nevsky Cathedral in Sofia having indistinguishable structure in the tower structure

(i.e. view invariant appearance due to structural symmetry). A set of 136 images, comprised of

two mutually exclusive subsets observing the front or back, was fed into VisualSFM (Wu, 2013)

yielding a corrupted 3D model where symmetric structure is fused along with the disjoint camera

clusters. The approach by Goesele et al. (2007) initially selects a global subset of 20 images based

on the corrupted SFM estimates and select independently for each pixel’s depth estimation a fixed

number (typically 4) of images from the global subset (similar to using K-best aggregation with

K=4). If the global subset is unbalanced or is contaminated by corrupted estimates the completeness

of the model is compromised, as shown in Figure 3.8 where the background dome is missing. We

consider the entire dataset and implicitly mitigate such outliers. Moreover, we re-executed the code

by Goesele et al. (2007) with manually filtered camera poses and indeed achieved correct results.

32

0

5

10

15

20

25

30

35

Figure 3.8: Top: Front and back of Alexander Nevsky Cathedral and estimated 3D model. Bottom:
original image, depthmap of our method and the method by Goesele et al. (2007) with wrong and
correct camera poses.

Robustness to varying capture characteristics. We tested our algorithm on Internet photo

collections (IPC) downloaded from the Flickr for six different scenes: Paris Triumphal Arch (195

images), Brandenburg Gate (300 images), Notre Dame de Paris (300 images), Great Buddha (212

images), Mt. Rushmore (206 images) and Berlin Cathedral (500 images). In order to control GPU

memory, we optionally resize imagery to no more than 1024 pixels for each dimension. Camera

poses were calculated using VisualSFM (Wu, 2013). The average run time for Berlin Cathedral is

98.3 secs/image. For illustration, sky region pixels are masked out using the method in Derek Hoiem

(2005) as post-processing. To compare with the method by Goesele et al. (2007), we run the author’s

code 1 on the same dataset with default parameters except for setting the matching window size

to the same as ours (7x7). The results shown in Figure 3.9 illustrate that, while both approaches

are robust to wide variations in illumination, scale and scene occlusions across the datasets, our

approach tends to provide increased completeness of depthmap estimates. We attribute this to our

more flexible view selection framework. In contrast to the method by Goesele et al. (2007), we

avoid making initial hard image discriminations through an initial global image subset.

1 http://www.gris.informatik.tu-darmstadt.de/projects/multiview-environment/

33

4

5

6

7

8

9

10

11

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

12.5

13

13.5

14

14.5

15

15.5

16

16.5

17

 15

20

25

30

35

40

0

2

4

6

8

10

12

14

16

4

4.5

5

5.5

6

6.5

7

7.5

8

 45

 40

42

44

46

48

50

52

54

56

58

60

62

0

5

10

15

20

25

30

35

40

30

32

34

36

38

40

42

44

46

48

50

35

40

45

50

40

42

44

46

48

40

44

45

46

47

48

49

50

 2

36

38

41

42

43

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

4

4.5

5

5.5

6

6.5

7

7.5

8

2

3

4

5

6

7

8

Figure 3.9: Each image triplet depicts a reference image along with our and Goesele’s ((Goesele
et al., 2007)) depthmap output (Best viewed in color).

34

(b)

1 2 3 4 5 6 7 8 9 10

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

threshold (cm)

p
e

rc
e

n
ta

g
e

 o
f

p
ix

e
l

Our (P)

GOS

PLA

(b)

Figure 3.10: Fountain dataset performance.Percentage of pixels given different thresholds. PLA is
the planesweep algorithm with all source images and K=3, while GOS is the method by Goesele
et al. (2007).

To quantitatively compare the accuracy of our results with the work by Goesele et al. (2007),

in the absence of ground truth geometry for crowd source datasets, we revisit the accuracy of

both methods in the Strecha Fountain dataset. The method by Goesele et al. (2007) rejects outlier

depth estimates based on the NCC values and the viewing angles. Hence, we only compare the

accuracy of the reliable pixels as classified by Goesele et al. (2007) (comprising 75.4% of total

image pixels). Figure 3.10 shows our approach outperforming both the method in Goesele et al.

(2007) and planesweep for high accuracy thresholds. We expect the same accuracy ranking to carry

over to the crowd sourced data results.

3.4 Conclusion

We have presented an efficient and effective joint solution to the view selection and depth

estimation problem in multi-view stereo. Our solution relies on estimating a selection probability of

each source image at the pixel level. The selection probability encodes the existence of contingency

issues such as occlusions, specular aberrations and calibration errors. Moreover, by automatically

determining reference image data associations with respect to a general source image dataset, we can

35

encompass a larger range input imagery while increasing overall system robustness. Our approach

has also extended the PatchMatch algorithm to encompass robust multi-view depth estimation

within a probabilistic framework. Reported results achieve state-of-the-art accuracy in ground truth

benchmarking while enabling robust operation in crowd-sourced datasets.

36

CHAPTER 4: JOINT OBJECT CLASS SEQUENCING AND TRAJECTORY
TRIANGULATION (JOST)

4.1 Introduction

Techniques of 3D reconstruction from crowd-sourced imagery have developed rapidly over

the past decade (Agarwal et al., 2011; Frahm et al., 2010; Zheng et al., 2014a; Heinly et al., 2015).

Despite these advances, the state-of-the-art methods only target the static parts of a scene, treating

the dynamic elements as hindrances to reconstruction. Since dynamic objects are typically the

major focus of real-life images, recovering their 3D information enables applications such as better

scene visualizations and dynamic event analysis. Therefore, it is of great interest to reconstruct

these dynamic objects.

In this chapter, we propose a method to estimate the 3D positions of dynamic objects of the

same class moving in a common path given a set of unstructured images as input. Figure 4.1a shows

example input images in a dateset that captures pedestrians walking on a sidewalk. We assume no

temporal correlation among the images, and that no two images observe the same dynamic object

instance. The main challenge of the reconstruction problem resides in recovering 3D positions given

noncurrent captures (or even single observations) of the dynamic objects, which invalidates the use

of traditional 3D triangulation. The only constraint available for our problem is the fact that all

observed instances of an object class move along a possibly diverging path in the 3D scene, which

we define as an object class trajectory. Figure 4.2 shows one example of object class trajectory.

In this chapter, we define the spatial ordering of the objects along the trajectory as sequencing

information. If the trajectory is modeled as a graph, this information can also be regarded as

the topology of the trajectory (see Figure 4.2 for an example of a cross-shaped trajectory). This

sequencing information captures the spatial proximity of the dynamic objects in 3D space, and

therefore triangulating the object class trajectory necessarily involves learning a trajectory topology.

37

(a) (b)

Figure 4.1: Left: Tree images of the pedestrian dataset and the output of structure from motion.
Right: Estimated 3D positions of two pedestrians that are captured in the image. Note we only
reconstruct one 3D position for each dynamic object instance instead of a dense 3D model. For
visualization purposes, a general mesh model is inserted into each estimated position.

Figure 4.2: Example of cross-shaped object class trajectory. The circles of different colors represent
object instances of the same object class in the path. Note the topology of the trajectory is tree-
structured. Each image only observes one or a few object instances, and we use all the observations
to recover the object class trajectory.

38

To recover the object class trajectory, our method simultaneously determines the sequencing

information of the objects and their 3D positions on the path, which we call joint object class

sequencing and trajectory triangulation (JOST). We leverage all the observations on different images

to recover the object class trajectory, which in turn provides an estimate for the 3D positions of the

dynamic objects in each image (see Figure 4.1b).

4.2 Joint Object Class Sequencing and Trajectory Triangulation

We now detail our method for joint object class sequencing and trajectory triangulation from

unstructured images. Our method includes three steps:

1. Spatially register the cameras to a common 3D coordinate system using structure from motion

(SfM).

2. Detect object instances and estimate motion tangents from input imagery as the 2D observa-

tions of the dynamic objects.

3. Leverage the observations of the object instances to simultaneously

(a) determine the sequencing information of the objects along a trajectory (i.e., the topology

of the trajectory), and

(b) triangulate the geometry of the corresponding object class trajectory.

While we exploit known methods to solve for camera registration, object detection, and motion

tangents in the images, our main contribution is an algorithm for tackling challenge 3. To this end,

we model our problem as a nonconvex optimization problem, and develop a novel solver involving a

step of discrete optimization followed by another step of continuous refinement. Next, we introduce

our system in detail.

4.2.1 Spatial Registration

The goal of the initial spatial registration in our method is to establish camera registration in

a common coordinate system. Given that in all our datasets a fair portion of the images contains

39

static background structures, we use the publicly available structure from motion tool VisualSFM

(Wu, 2013) to register all the cameras. See Figure 4.1a for an example.

The obtained camera registration determines the camera center C̃j of the j-th camera. With

known camera parameters, each pixel in a camera defines a viewing ray with direction r in the 3D

scene space. For our object class trajectory, we are only interested in the ray direction ri associated

with the object instance i of the desired class (for simplicity we refer to them as objects), where

i = 1, . . . , N , and N is the total number of detected objects over all frames. The ray Xi(ti) in the

3D space represents a 1D subspace on which the imaged object has to lie and is described by

Xi(ti) = Ci + tiri, (4.1)

where ti ≥ 0 is the positive distance from the camera center Ci along the ray Xi(ti). In the

following, we implicitly assume the condition ti ≥ 0. We denote the camera center associated with

an object instance i as Ci with Ci = C̃j , where C̃j is the center of the camera j in which the object

instance i is detected. This means if more than one object is detected in camera j, there will be

multiple Ci with identical positions. Once we obtain the value for ti, the object position can be

uniquely determined.

4.2.2 Object Detection and Motion Tangent Estimation

Our proposed method leverages object detection techniques to determine the 2D observations

of the dynamic objects. We identify one 2D position of each detected object on the image by the

center of the detection bounding box. These object detections provide us the viewing rays where

the dynamic objects are placed.

To robustly perform joint object class sequencing and trajectory triangulation, our proposed

method also uses the motion tangent of each object, which is defined as the moving direction of

the dynamic object in the 3D space. The problem of motion tangent estimation has been solved for

40

videos (Zhao et al., 2003), but in the absence of temporal coherence among the images, our method

needs to estimate the motion tangent based on a single image.

The particular choice of object detection and motion tangent estimation methods depends on

the specific object class and the scenes. We discuss our choices in Section 4.3, and for now we

assume we have at our disposal the 2D observation defining the ray Xi(ti), as well as a coarse

estimate of the motion tangent di for each object i.

4.2.3 Object Class Trajectory Triangulation

Assuming known viewing rays Xi(ti) and the motion tangent di, we now define the object

class trajectory estimation problem before delving into our data representation and our estimation

framework. For ease of description, we directly leverage the viewing rays Xi(ti) of the detected

objects i and thereby implicitly use the camera parameters and the 2D observations.

For a particular class of objects, an object class trajectory describes a path taken by the dynamic

objects of the desired class through the 3D scene. Each observation (object detection) is a sample of

the point on the trajectory. Since there are only a finite number of observations of objects along

the path, we only sample a discrete set of 3D points on the path, and the combination of piecewise

linear functions between the true object positions X∗i represents the object class trajectory.

An important principle for obtaining an object class trajectory is that sampling along a path

results in a collection of spatially adjacent points. A trajectory should therefore connect all observed

points in such a way that total (spatial) traversal between the points is minimized. We formulate this

as a minimization of the following cost function:

min
p

∑
(i,j)∈p

‖X∗i −X∗j‖2
2. (4.2)

here p defines the topology spanning the path with minimum cost, given as a list of adjacency

relationships between all the points X∗i , i = 1, . . . , N .

While the trajectory above is based on the ground truth 3D object positions X∗i , we can only

observe the rays Xi(ti). To recover the object class trajectory, we also need to determine the

41

position of each object i along its viewing ray Xi(ti). We propose to find the adjacency relation by

optimizing over variables t = [t1, . . . , tN] and p jointly as

min
p,t

∑
(i,j)∈p

‖Xi(ti)−Xj(tj)‖2
2. (4.3)

To robustly recover both t and p simultaneously, we further leverage the information of motion

tangent. The direction of the local trajectory should be the same or similar to the motion tangent

of the dynamic objects. Given the motion tangents di estimated from the images, we can further

constrain the trajectory, obtaining an optimization problem:

min
p,t

∑
(i,j)∈p

‖di,j × (Xi(ti)−Xj(tj))‖2
2 + λ‖Xi(ti)−Xj(tj)‖2

2, (4.4)

where the operator × is the vector cross product, and λ is a positive weight (discussed at length in

Section 4.2.7). The direction di,j is selected from di and dj as the motion tangent that is closest to

the 3D motion direction Xi(ti)−Xj(tj). More details about computation of di,j will be illustrated in

Section 4.2.6. The first cost term in Equation (4.4) adds the penalization if the local direction of the

recovered trajectory deviates from the motion tangent. The optimization procedure simultaneously

determines both the adjacency p and the object positions through t.

Optimization of the non-convex function in Equation (4.4) is inherently difficult. To achieve

this, we propose a new discrete-continuous optimization strategy using a generalized minimum

spanning tree (GMST).

4.2.4 Generalized Trajectory Graph

To determine the object class trajectory, we conceptually have to choose for each ray Xi(ti) the

3D point, and simultaneously determine the adjacency p representing the adjacency relations of

the rays Xi(ti), which defines the topology of the object class trajectory. Our discrete-continuous

optimization strategy first uses a generalized minimum spanning tree (GMST) to find the adjacency

list p, and followed by a convex optimization over t with p being fixed.

42

(b) Multi-partite graph instance (c) Estimated 3D trajectory

3D Point Hypotheses

Viewing Rays Cameras
(a) Discretization of viewing ray(a) Discretization of viewing ray (b) Multi-partite graph instance (c) Estimated 3D trajectory

3D Point Hypotheses

Viewing Rays Cameras
(a) Discretization of viewing ray (b) Multi-partite graph instance(b) Multi-partite graph instance (c) Estimated 3D trajectory

3D Point Hypotheses

Viewing Rays Cameras
(a) Discretization of viewing ray (c) Estimated 3D trajectory

Figure 4.3: Illustration of GMST. See the text for more details.

In the discrete optimization step, we map the continuous problem of finding the 3D point along

each ray to a discrete problem of selecting a 3D point out of a set of discrete 3D points (see Figure

4.3a). Using this formulation, we determine one 3D point along each ray and the adjacency p

by computing the GMST on an undirected multipartite graph G(V , E) (Myung et al., 1995). This

allows us to simultaneously determine the topology and the discrete 3D object positions.

An undirected multipartite graph is a graph G(V , E) whose vertices are partitioned intoN partite

sets {V1, . . . , VN} with the number of partite sets |Vi| = k, while fulfilling V = V1 ∪ V2 ∪ · · · ∪ VN

and Vo ∩ Vp = ∅,∀o 6= p, with o, p ∈ {1, . . . , N}. The multipartite graph G(V , E) has only edges

between the different partite sets of vertices Vo, and all edge costs are non-negative (see Figure 4.3b

for an example). Next, we will explain on how we define the graph G(V , E) based on Equation 4.4.

Each ray Xi(ti) defines a one dimensional constraint on the 3D position of the object. We

discretize the ray to obtain a discrete set of potential depth estimates. This leads to a finite set of

possible 3D positions along the ray (see Figure 4.3a for an illustration), defining a finite set of 3D

point hypotheses {X̂o
i | o = 1, . . . , k}, where k is the number of the discrete hypotheses along the

ray. In our representation, each 3D point X̂o
i establishes a node V o

i in the graph. The set of nodes

{V o
i | o = 1, . . . , k} related to the ray Xi(ti) of object i defines a partite set of nodes Vi in the graph

G(V , E). Given that no nodes within a group have any connecting edges, the resulting multipartite

graph will contain no edges between the different depth hypotheses of object i.

43

i j
𝒅𝒊 𝒅𝒋

𝒅𝒊,𝒋

Viewing ray i

Viewing ray j

(a)

Viewing ray i

Viewing ray j

3D point hypotheses

Edge 1

Edge 2

Edge 3

(b)

u

v

𝑛1 𝑛2 𝑛3

(c)

Figure 4.4: In Figure 4.4a, the black nodes shows the real positions of dynamic objects. The red
vector represents the direction associated with each object. In the shown example, di,j equals di.

We now define the edge cost of the multipartite graph based on Equation (4.4). The multipartite

graph only has edges between the nodes from different partite sets. We define the edge direction

di,j between any two nodes V o
i and V p

j in the partite set i and partite set j, respectively, as the

consistency of the 3D motion with the motion tangents di or dj (see Section 4.2.2). This definition

comes from the intuition that the edge direction should be compliant with the motion tangent

observed in the images. Given the motion of two objects i and j, and their respective motion

tangents di and dj , it is clear that the edge direction between the points X̂o
i and X̂p

j (associated with

the nodes V o
i and V p

j) should be close to at least one of the motion tangents di and dj . Therefore,

we define the edge cost e(V o
i , V

p
j) of the edge between the nodes V o

i and V p
j as

e(V o
i , V

p
j) = min(‖di × (X̂o

i − X̂p
j)‖2

2, ‖dj × (X̂o
i − X̂p

j)‖2
2) + λ‖X̂o

i − X̂p
j‖2

2. (4.5)

If only considering the first term in Equation (4.5), edges with 3D motion directions that are

approximately parallel to di or dj have lower cost than those are at an angle to both di and dj . For

instance, Edge 1 and Edge 3 in Figure 4.4b have a relatively lower cost than Edge 2 because Edge 1

is parallel to dj and Edge 3 is parallel to di.

44

4.2.5 GMST

A generalized minimum spanning tree (GMST) on the graph G(V , E) is a tree of minimal

cost that spans exactly one node from each partite set Vi. The GMST problem degenerates to a

typical minimum spanning tree problem (Cormen et al., 2009) if each of the partite sets contains

only one node. For our proposed graph, it means a GMST includes exactly one hypothesized 3D

point from each observation. Furthermore, a GMST prefers the edge e(V o
i , V

p
j) that has a small

cost and is compliant with the motion tangents in the images, as those edges have lower edge cost.

Accordingly, a GMST is our desired solution for estimating the object class trajectory. Note that

if we sample an infinite number of 3D points along each viewing ray, the corresponding GMST

problem is equivalent to the original formulation in Equation (4.4).

The multipartite graph defined above contains a large number of edges, which increases the

complexity of computing the GMST. We use a deterministic method introduced by Ferreira et al.

(2012) to remove the redundant edges that are guaranteed not to be included in the GMST. We show

a specific toy example in Figure 4.4c to illustrate the method. If the cost of edge (u, v) is larger

than any cost of the 6 edges (u, nl) and (v, nl), l = 1, 2, 3, the edge (u, v) is safe to be removed.

A simple proof is that if edge (u, v) exists in the computed GMST, we could remove edge (u, v)

and replace it with one of the 6 edges to obtain a new GMST with lower cost. Therefore, edge

(u, v) can not be present in the GMST. Moreover, it is plausible to explore other ways to remove

edges based on given prior information. For instance, if it is known the pairwise neighboring 3D

objects are close in 3D space, we can safely remove the edges that connect two spatially distant

point hypotheses by applying a predefined threshold.

The GMST problem was first introduced by Myung et al. (1995) and has been extensively

studied in the past two decades (Myung et al., 1995; Dror et al., 2000; Feremans et al., 2002; Oncan

et al., 2008; Ferreira et al., 2012) due to its wide applications in telecommunications, agriculture

watering, and facility distribution design (Myung et al., 1995; Dror et al., 2000). Unlike the

minimum spanning tree (MST) problem, which can be solved in polynomial time, finding the

45

GMST is proved to be NP-hard (Myung et al., 1995). Myung et al. (Myung et al., 1995) and

Feremans et al. (Feremans et al., 2002) propose several integer programming formulations for the

GMST problem. However, those methods provide no guarantee of efficiency, especially when

the problem scale is large. The computational challenge of the GMST problem has led to the

development of metaheuristics (Oncan et al., 2008; Ferreira et al., 2012) that search the hypothesis

space and are empirically shown to be effective.

We exploit the state-of-the-art GRASP-based approach proposed by Ferreira et al. (Ferreira

et al., 2012). GRASP (Greedy Randomized Adaptive Search Procedure) is a metaheuristic that

consists of iterations comprising two phases: 1) solution construction and 2) solution improvement

through local search. Ferreira et al. (2012) propose a method that considers several solution

construction algorithms, a local search procedure, and two additional mechanisms: path-relinking

and iterative local search. We refer readers to their paper (Ferreira et al., 2012) for more details.

4.2.6 Continuous Refinement

The output of GMST computation is the estimation of the 3D points (denoted as X̂i for object

i) and the adjacency topology p of the object class trajectory. Then, di,j is chosen to be one of di

and dj that has smaller angle to the vector X̂i − X̂j ,

di,j = argmax
d∈{di,dj}

(|d · (X̂i − X̂j)|), (4.6)

where operator · is the vector dot product. We fix the adjacency p given by the GMST and continue

with a final continuous refinement step for the 3D object position, through a convex program

optimization over variable t

min
t

∑
(i,j)∈p

‖di,j × (Xi(ti)−Xj(tj))‖2
2 + λ‖Xi(ti)−Xj(tj)‖2

2. (4.7)

46

4.2.7 Reconstructability Analysis

Now, we analyze the reconstructability of the proposed method. That is, we determine under

which conditions the solution of Equation (4.4) generates accurate 3D points. The direct analysis of

Eq (4.4) is difficult, since it needs to determine in which situation the adjacency p with minimum

cost, out of NN−2 possible adjacencies (Wikipedia, 2014), corresponds to the real object class

trajectory. However, we find that having the motion tangent constraint reduces the possibility of

finding the incorrect adjacency p. Hence, we focus on the reconstructability of the continuous

method in Equation (4.7) given the adjacency p.

Assume we already know the ground truth 3D point X∗i of object i, i = 1, . . . , N . Given that

X∗i is present on the viewing ray Xi, we move the camera center Ci to X∗i along the ray Xi(t) in

direction ri. Then any point on the line that passes through X∗i and has ray direction ri can be

represented as Xi(si) = X∗i + siri, where si is the signed distance along the viewing ray (not the

positive distance as defined by the ti). Then Equation (4.7) can be reformulated as

min
s

∑
(i,j)∈p

‖di,j × (Xi(si)−Xj(sj))‖2
2 + λ‖Xi(si)−Xj(sj)‖2

2, (4.8)

where s = [s1, . . . , sN]. Though si is signed distance and ti is positive distance, minimizing

Equation (4.7) and Equation (4.8) still output the same 3D point positions, as long as the computed

3D points in Equation (4.8) are in front of the camera centers. We will see that this is normally

true, since the computed 3D points are typically close to their ground truth position if the system is

well-conditioned.

We denote the solution of Equation (4.8) as sopt. The true 3D points are ideally reconstructed

if sopt = 0, since Xi(0) equals to X∗i given sopt = 0. More specifically, sopt equals the signed

Euclidean distance between the 3D points produced by Equation (4.7) and the ground truth X∗i .

Therefore, ‖sopt‖ is the Euclidean error of the estimated 3D points by Equation 4.7. In the remainder

of this section, we further analyze in which situations ‖sopt‖ is small to better understand the quality

of the estimated 3D points.

47

𝐗𝑖
∗

𝐗𝑘
∗

𝐫𝑖

𝐝𝑖,𝑘

𝐫𝑖-(𝐫𝑖 ∙ 𝐝𝑖,𝑘) 𝐝𝑖,𝑘

(a) λ = 0

𝐗𝑖
∗

𝐗𝑘
∗

𝐝𝑖,𝑘

(𝟏 + λ)𝐫𝑖-(𝐫𝑖 ∙ 𝐝𝑖,𝑘) 𝐝𝑖,𝑘 (𝟏 + λ)𝐫𝑖

(b) λ > 0

Figure 4.5: Plot of Equation (4.10) with λ = 0 and λ > 0.

The minimum value of Equation (4.8) is achieved at the point where the first derivative relative

to s equals 0. This produces a linear equation system Asopt = b, where the ith row and jth column

of matrix A is

Aij =

[(ri · di,j)di,j − (1 + λ)ri] · rj if i 6= j and (i, j) ∈ p

0, if i 6= j and (i, j) /∈ p∑
(i,k)∈p [1 + λ− (ri · di,k)2] if i = j.

(4.9)

The ith element of vector b is

bi =
∑

(i,k)∈p
(X∗k −X∗i) · [(1 + λ)ri − (ri · di,k)di,k]. (4.10)

Next, we explain that if the adjacency p is correctly found, the reconstructabililty of the object

class trajectory mainly depends on the condition number of the linear system defined by A. With

careful observation, we can see Equation (4.9) and Equation (4.10) have the following interesting

properties:

1. If b is 0, sopt equals 0, which means the solution of Equation (4.7) recovers the ground truth

3D points. There are a few situations where b equals 0. (1) In the case of a static object

48

X∗i = X∗k, b equals 0 based on Equation (4.10). (2) Careful observation reveals that if λ is

set to 0, in Equation (4.10) the vector (1 + λ)ri − (di,k · ri)di,k is perpendicular to vector

X∗i −X∗k (Figure 4.5a), hence bi = 0. However, we will show that with λ = 0, the linear

system As = b is unstable due to the high condition number of matrix A. (3) Furthermore,

when λ increases from 0, the two vectors slowly deviate from being perpendicular, as shown

in Figure 4.5b. Therefore, bi is likely to be small if λ is close to 0.

2. Since we can not control 3D positions and there are typically small measurement errors in

dij , b does not exactly equal to 0. This can be regarded as a small disturbance of b around

0. For the linear system Asopt = b, one can think of the condition number κ(A) as being

(roughly) the rate at which the solution, sopt, will change with respect to a change in b. κ(A)

is available because it solely depends on ri, di,j and λ, but not on the ground truth 3D points

X∗. Therefore, we can estimate the reliability of the reconstructed 3D points by computing

κ(A). Moreover, we empirically found that the condition number of matrix A is inversely

related to λ. The condition number shown in Figure 4.6 is computed using 100 random

cameras, and averaged over 200 trials. We can see κ(A) is large if λ is close to 0 and drops

dramatically with small λ. Then, κ(A) decreases monotonically and slowly as λ increases.

In our experiments, we choose λ = 1
15

as a balance of having good chance of small b without

decreasing the stability of the linear system.

In conclusion, given the well-conditioned system and correct motion tangent di,j , we are able

to reconstruct the 3D positions close to the ground truth.

4.3 Object Detector and Motion Tangent Estimation

Before presenting our experimental evaluation, we first briefly describe the particular object

detector we use in our experiments. Single-image-based object detection is a well studied problem

in computer vision with a wide variety of methods readily available (Zhang et al., 2006; Dalal and

Triggs, 2005; Felzenszwalb et al., 2010). Similarly, there are a large number of motion tangent

49

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

1

10
2

10
3

10
4

10
5

10
6

λ

κ
(A

)

Figure 4.6: The condition number of the system κ(A) increases as λ decreases.

estimation methods in the literature (Blanz and Vetter, 2003; Gu and Kanade, 2006; Jain and

Learned-Miller, 2010; Jones and Viola, 2003).

For images containing large faces, we opt for leveraging the method that jointly determines

the face position and its motion tangent direction (Zhu and Ramanan, 2012). In our experiments,

the detection threshold is set to −0.35 to avoid false detections, as the false alarm may disturb

our algorithm. Our chosen detectors provide a motion tangent of object i that is quantized every

θ = 15◦ in the range of −90◦ and 90◦.

For cars and pedestrians with small faces in the images, we default to the deformable parts

detector (Felzenszwalb et al., 2010; Girshick et al., 2012). We used the pre-trained model with

detection threshold 0.35. The motion tangent of the pedestrians and cars are estimated using the 3D

point cloud (output of VisualSFM) of the background wall by assuming the dynamic objects move

parallel to the wall. This is normally true in Manhattan scenes. Some of the detection results are

shown in Figure 4.7.

50

Figure 4.7: Detected objects and estimated motion tangents using different detectors.

single line T junction double lines half circle sine wave cross
errorA 0.5963 1.9688 1.5169 2.3751 2.3705 3.4111
error∗A 0.4263 1.9148 1.4982 2.3340 2.3516 3.4030
errorB 0.2151 0.2126 0.7824 0.2281 0.2578 0.2251
error∗B 0.0287 0.0944 0.7692 0.1074 0.2305 0.1308

Table 4.1: The table shows the average errors. The subscript represents camera setup. The absence
of an asterisk represents the GMST algorithm output, and the asterisk is the refined output of
Equation (4.7). Notice that for the ground truth 3D points, the average distance between every pair
of nearest points equals 1.

4.4 Experiments

We evaluate our algorithm on both synthetic and real datasets. The GMST algorithm used in

our method (Ferreira et al., 2012) searches the hypothesis space, which stops iterating when either

the GMST cost is under a preset value, or the run time reaches a preset limit. For all experiments,

we only use the time limit to stop searching, given the lack of an adequate a priori approximation

of the true GMST cost for each dataset.

Synthetic datasets. Our first experiment uses synthetic data, with six different object class

trajectory shapes on a plane, including a single line path, a T-junction path, a path with two parallel

lines, a half circle path, a sine-wave-shaped path, and a cross-shaped path. To have a sense of the

51

−20

−15

−10

−5

0

5

10

15

20

−10

−5

0

5

10

−2
0
2

−10

−5

0

5

−5

0

5

10

−10

−5

0

5

2468

−10

0

10

5

10

15

0

5

10

−50510

0

5

10

15

20

5

Ground Truth

Camera Setup A

Camera Setup B

Figure 4.8: Example results for line path, T-junction path, half circle and crossed paths.

52

output errors, we normalize the 3D points so that the average distance between every pair of nearest

points equals 1.

The virtual cameras are randomly generated around the 3D object points with two different

configurations. In camera configuration A, all the camera centers stay in the same plane as the 3D

points, which is more difficult since each viewing ray may intersect the ground truth path several

times. In camera configuration B, the camera centers are set randomly off the plane, with the angle

between the viewing ray and the plane being at most 10◦ and the camera distance being 2-3 times

the length of the path.

We choose k = 100 uniformly distributed discrete 3D hypotheses Xo
i along each viewing ray

Xi in a range that contains the ground truth 3D point. The size of the range is set as 1.5 times the

length of the path. Notice that while the ground truth 3D point lie in the range for a given image,

there is no guarantee that any of the discrete hypothesis samples Xo
i will exactly match the true

depth.

Errors are measured using the Euclidean distance between the estimated 3D points and the

ground truth. We run 32 instances for each shape with randomly generated virtual cameras. The

average errors over the 32 instances for each shape category are listed in Table 4.1. We report

both the errors of the GMST output and the errors after the continuous refinement using Equation

(4.7). Table 4.1 shows our continuous refinement always improves the reconstruction accuracy

over the GMST approximation. The results demonstrate off-plane cameras yield improved results

than in-plane cameras for complex paths (e.g. crossed paths), due to the multiplicity of ray-to-path

intersections. In these cases, the GMST solution has a more complex search space and yields a

sub-optimal solution. However, the condition number of the linear system does not vary significantly

across configurations. Figure 4.8 shows the estimated 3D points overlaid onto the ground truth.

Real datasets. We evaluate our method on two image datasets registered by VisualSFM (Wu,

2013). The detection confidence threshold is set high in order to decrease the false alarm rate.

However, a very small amount of false alarms were purged manually, as they may affect the

53

(a) Reconstruction of cars and pedestrians on a street

(b) Reconstruction of people walking on a T-junction path

Figure 4.9: Two views for each of the reconstructed results.

reconstruction. We sample 100 samples along the viewing ray in the range [0, far], where far is

estimated using the model scale. The run time for each object class trajectory is set to 3 hours.

The first dataset captures random pedestrians walking on a sidewalk, plus random cars driving

on an adjacent road. It contains 135 images with 82 valid car detections and 137 valid pedestrian

detections. The scene and the reconstructed object class trajectory are shown in Figure 4.10. The

second dataset captures several people who are walking on a T-junction shaped path at the corner of

a building. It contains 47 images with 66 valid detections. Using the camera positions, we convert

the face directions into the global coordinate system to obtain the motion tangents di of the moving

people. For illustration, we construct the background static scene using CMPMVS (Jancosek and

Pajdla, 2011). The general 3D human and car mesh models are inserted into each of the estimated

3D positions. We show different views of the reconstructed results in Figure 4.9.

54

cars

Pedestrians

Figure 4.10: Top row: An aerial image showing the scene and a figure showing the cameras and
reconstructed cars and pedestrians. Bottom four rows: Four pedestrian detections (shown in yellow
rectangles) and the poses of the corresponding cameras. These four pedestrians are adjacent in the
reconstructed object class trajectory. Notice that the second and the third images are the same image
but with different detections.

55

4.5 Conclusion

We target the problem of reconstructing the 3D positions of dynamic objects from a set of

unordered images, with the assumption that the objects of the same class move in a common path in

the scene. We propose a framework of joint object class sequencing and trajectory triangulation

and solve the associated non-convex optimization problem through a new discrete-continuous

optimization scheme based on the generalized minimum spanning tree (GMST). The promising

results on synthetic and real datasets demonstrate the solvability of the difficult problem and the

effectiveness of our approach.

56

CHAPTER 5: SELF-EXPRESSIVE DICTIONARY LEARNING FOR DYNAMIC 3D
RECONSTRUCTION

5.1 Introduction

Thanks to the rapid development of mobile technology, it has become common that many

people use their own mobile cameras to capture a common event of interest, such as a concert or a

wedding. These real-life videos and photos usually have the dynamic objects as the main focus of

the scene. With the bursting growth of such crowd-sourced data, it is of interest to develop methods

of dynamic object 3D reconstruction that enables understanding and visualization of the captured

events.

In this work, we target the problem of dynamic 3D object reconstruction from multiple unsyn-

chronized videos. More specifically, the method takes as input a collection of video streams without

inter-sequence temporal information. The video streams could potentially have different, irregular,

and unknown frame rates (see Figure 5.1). As output, the method reconstructs the 3D positions of

sparse feature points at each time instance (e.g., Figure 5.2). Dynamic object reconstruction from

unsynchronized videos is a challenging problem due to various factors, such as unknown temporal

overlap among video streams, possible non-concurrent captures, and dynamic object motion. Any

of these factors impedes the valid reconstruction from traditional 3D triangulation, which relies on

the assumption of concurrent captures or a static scene.

Despite the ubiquity of uncontrolled video collections, there are currently no methods that can

successfully address our problem. Static scene reconstruction from photo collections has reached

a high level of maturity (Snavely et al., 2006; Zheng et al., 2014a; Heinly et al., 2015) thanks to

the development of structure from motion and depth estimation, but the reconstruction of dynamic

objects using videos currently falls far behind the maturity of reconstruction of static scene elements.

Existing methods of trajectory triangulation (Park et al., 2010; Valmadre and Lucey, 2012) from

57

Slow-moving
handheld camera

Dynamic object

Figure 5.1: Left: Multiple videos capture a performance. The corresponding set of independent
image streams serves as input to our method. Right: Each input video has a different sampling of a
3D point’s trajectory.

monocular image sequences inherently require temporal order information (sequencing information).

However, with independently captured videos, it is challenging to obtain this information across

videos. In Chapter 4, we propose to jointly estimate the sequencing and 3D points by solving a

generalized minimum spanning tree (GMST) problem. However, the NP-hard GMST problem

itself limits the scalability of the approach. Also in this vein, the non-rigid structure from motion

(NRSFM) problems have received extensive study over the two decades (Carlo and Takeo, 1992;

Hartley and Vidal, 2008; Dai et al., 2014), but such methods are still under further exploration,

especially if a perspective camera model is applied.

To solve the problem, we observe that, given the smooth motion of a dynamic object, any 3D

shape at one time instance can be sparsely approximated by other shapes across time. Based on

this self-expressive representation, our solution leverages the compressive sensing technique (l1

norm), and tackles the problem in a dictionary learning framework (Aharon et al., 2006; Elad and

Aharon, 2006), where the dictionary is defined by the temporally varying 3D structure. Though the

self-expression technique has been previously used in subspace clustering for motion segmentation

(Elhamifar and Vidal, 2009), and dictionary learning has been used in other applications such as

image denoising (Elad and Aharon, 2006), we are the first to explore learning a self-expressive

dictionary for the problem of dynamic object reconstruction.

The remainder of this chapter is organized as follows. After introducing the notations in Section

5.2, we begin describing foundations of our proposed approach in Section 5.3. Section 5.4 presents

58

Front
View

Side
View

Top
View

Figure 5.2: Example frame (left image) from the multiple videos capturing a performance serving
as input to our method, with overlaid structure (points), and (right three images) different views of
the reconstructed 3D points. Note our method only estimates the 3D points but no topology. The
skeleton lines are plotted for visualization purposes.

our model for dynamic object reconstruction without sequencing information, followed by the

parameterization of the 3D structure given different kinds of 2D measures in Section 5.5. Section

5.6 describes our ADMM-based optimization solver to minimize the model. Then, Section 5.7

illustrates the reconstructablity of our algorithm. We provide experimental evaluations in Section

5.8 and conclude the paper in Section 5.9.

5.2 Problem and Notation

We now describe the notations of our problem. Let I denote an aggregated set of images

obtained from N video sequences Vn, where n = 1, . . . , N . Assuming a total of F available images,

we can denote each individual image as If ∈ I, where f = 1, . . . , F . Alternatively, we can refer to

the m-th frame in the n-th video as I(n,m) ∈ Vn, where n = 1, . . . , N and m = 1, . . . , |Vn|.

We assume an a priori camera registration through structure-from-motion analysis of static

background structures within the environment (Wu, 2013). Accordingly, for each available image

If , we know the capturing camera’s pose matrix Mf = [Rf | −RfCf], along with its intrinsic

camera matrix Kf .

59

Without loss of generality, we first assume each image If captures a common set of P 3D

points {X(p,f) | p = 1, . . . , P}, and the 2D measure of each point is denoted as x(p,f). We also

assume the correspondences of image measures x(p,f) across images are available. Then for each

measure x(p,f), we can compute a viewing ray with direction by

r(p,f) = RT
fK
−1
f

x(p,f)

1

 , (5.1)

and followed by a normalization into a unit vector.

Hence, the position of the dynamic 3D point X(p,f) corresponding to x(p,f) can be described by

the distance along the viewing ray r(p,f) given by

X(p,f) = Cf + d(p,f)r(p,f), (5.2)

where d(p,f) is the unknown distance of the 3D point from the camera center.

Given F frames with each frame observing P dynamic 3D points, we denote our aggregated

observed 3D datum as

X =

X(1,1) · · · X(1,F)

...

X(P,1) · · · X(P,F)

 = [S1 · · · SF] , (5.3)

where the f -th column of the matrix X, denoted as Sf , is obtained by stacking all the P 3D points

observed in the f -th frame.

Then by defining C, r, and d as follows,

C =

[
C1 · · · CF

]
, (5.4)

60

r =

r(1,1) · · · r(1,F)

...

r(P,1) · · · r(P,F)

 , (5.5)

d =

d(1,1) · · · d(1,F)

...

d(P,1) · · · d(P,F)

 , (5.6)

Equation (5.2) for all the points can be rewritten in matrix form as

X = 1Px1 ⊗ C + (d⊗ 13x1)� r, (5.7)

where 1Px1 is a P -by-1 matrix with values equal to 1, ⊗ is the Kronecker product, and � is the

component-wise matrix product.

Our task is to recover X from the 2D measures without image sequencing information across

the videos.

5.3 Principle

The key observation driving our approach is that dynamic shape exhibits temporal coherence. In

this section, we demonstrate how this principle can be leveraged to recover local temporal ordering

with known shapes. Our proposed method will extend these ideas to situations with unknown

structures.

For our method, we assume a smooth 3D motion under the sampling provided by the videos.

Hence, we can approximate the 3D structure Sf observed in image f in terms of a linear combination

of the structures corresponding to the set of immediately preceding (Sprev) and succeeding (Snext)

frames in time. That is, we have

Sf ≈ w · Sprev + (1− w) · Snext, (5.8)

61

with 0 ≤ w ≤ 1. If our structure matrix X from Equation (5.3) was temporally ordered, which it is

not in general, the two neighboring frames would be Sf−1 and Sf+1. Clearly, such perfect temporal

order can be extracted from a single video sequence. However, the reconstructability constraints

make single-camera structure estimation ill-posed (see Section 5.7.2 for details). Hence, we rely on

inter-sequence temporal ordering information to solve the dynamic structure estimation problem.

The absence of a global temporal ordering requires us to search for temporal adjacency relations

across the different video streams having potentially different frame rates.

In the most simple scenario, the pool of candidate neighboring frames is comprised by all other

frames except f . Writing the 3D points of the current frame Sf as a linear combination of other

frames, we have

Sf = XWf , (5.9)

where Wf =
(
w(1,f), . . . , w(f−1,f), 0, w(f+1,f), . . . , w(F,f)

)T is a vector of length F representing the

coefficients for the linear combination. Note that the f -th element in Wf equals 0, since the f -th

column of X (corresponding to Sf) is not used as an element of the linear combination.

Moreover, since only a few shapes in the close temporal neighborhood of Sf are likely to

provide a good approximation, we expect the vector Wf to be sparse. Accordingly, we propose

to find the local temporal neighborhood of a shape Sf through a compressive sensing formulation

leveraging the l1 norm:

minimize
Wf

||Sf − XWf ||22 + λ||Wf ||1, (5.10)

where λ is a positive weight. Here, the l1 norm serves as an approximation of the l0 norm and favors

the attainment of sparse coefficient vectors Wf (Bach et al., 2012). Moreover, we incorporate the

desired properties of our linear combination framework (Equation (5.8)) and reformulate Equation

(5.10) as

minimize
Wf

||Sf − XWf ||22

subject to Wf · 1F×1 = 1

Wf ≥ 0.

(5.11)

62

The affine constraints of Equation (5.11) constrain the variable Wf to reside in the simplex ∆f

defined as

∆f , {Wf ∈RF s.t. Wf≥0, w(f,f) = 0 and
F∑
j=1

w(j,f) =1}. (5.12)

Despite the lack of an explicit l1-norm regularization term in Equation (5.11), as a variant of

compressive sensing, the formulation still keeps the sparsity-inducing effect (Bach et al., 2012; Chen

et al., 2014). This is true for the present problem, since we know a shape can be well represented by

temporally close shapes. A similar formulation has been used in modeling archetypal analysis for

representation learning (Chen et al., 2014). There, the authors also provide a new efficient solver

for this kind of problem.

Finally, we generalize our formulation from Equation (5.11) to include all available structure

estimates Sf , with f = 1, . . . , F , into the following equation

minimize
W

||X− XW||2F

subject to Wf ∈ ∆f , f = 1, · · · , F,
(5.13)

where || · ||F denotes the Frobenius norm and W = [W1 . . .WF] is an F × F matrix with the f -th

column equal to Wf . By construction, W has all its diagonal elements equal to zero.

As an illustration of the validity of our compressed sensing formulation, Figure 5.3 shows the

output of Equation (5.13) on a real motion capture dataset given known 3D points X. Although

image sequencing is assumed unknown, we show results in temporal order for visualization purposes.

The coefficients in W approximate a matrix having non-vanishing values only on the locations

directly above and below the main diagonal. This indicates that the 3D points Sf are a linear

combination of Sf−1 and Sf+1.

Minimizing Equation (5.11) is equivalent to finding the most related shapes to linearly represent

Sf . It is usually true that the temporally close shapes Sf−1 and Sf are most related, and therefore

local temporal information is recoverable from the non-vanishing values in X. However, if object

motion is repetitive or if the object is static for a period of time, there is no guarantee that the most

63

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

40

45

0

0.2

0.4

0.6

0.8

1

20 40

20

40

60

80

100

120

20 40

20

40

60

80

100

120

20 40

20

40

60

80

100

120

≈ X

Figure 5.3: We illustrate the output of Equation (5.13) on a real motion capture dataset “Clap1Rep”.
For easy visualization, the shortest motion capture dataset (45 frames) presented in the work by
Müller et al. (2007) is used. Each element/column in X corresponds to ground truth 3D structure.
The estimation of W through Equation (5.13) approximates the correct ordering after enforcing all
elements in the diagonal to be 0.

related shapes are the temporally closest ones. Even though this is true, the analysis in Section 5.7.3

shows that this does not cause any problem for our method in regard to 3D reconstruction.

To validate our prior of sparse representation for real motion, we quantitatively evaluate the

estimated coefficients W by minimizing Equation (5.13) on all 130 real motion capture datasets

presented in the work by Müller et al. (2007). For a shape at a given time sample, we measure the

sum of the two largest estimated coefficient values for this sample, and the frequency with which

these top two coefficients correspond to the ground truth temporally neighboring shape samples.

Given our prior, values of 1 for both measures are expected. The average values we obtain are

0.9972 and 0.9994, supporting the validity of our prior.

5.4 Method

We address the problem of estimating sparse dynamic 3D structure from a set of spatially

registered video sequences with unknown temporal overlap. Section 5.3 presented a compressive

sensing formulation leveraging the self-expressiveness of all the shapes in the context of known 3D

64

geometry. However, our goal is to estimate the unknown structure without sequencing information.

To this end, we define our dictionary as the temporally varying 3D structure and propose a compres-

sive sensing framework which poses the estimation of 3D structure as a dictionary learning problem.

We solve this problem in an iterative and alternating manner, where we optimize for 3D structure

while fixing the sparse coefficients, and vice versa. This is achieved through the optimization of a

biconvex cost function that leverages the compressed sensing formulation described in Section 5.3

and, additionally, enforces both structural dependence coherence across video streams and motion

smoothness among estimates from common video sources.

5.4.1 Cost Function

To achieve the stable estimation of both the structure X and the sequencing information W, we

extend our formulation from Equation (5.13) to the following cost function:

minimize
X,W

1

FP
||X− XW||2F + λ1Ψ1(W) + λ2Ψ2(X)

subject to Wf ∈ ∆f , f = 1, · · · , F ;

(5.14)

where Ψ1(W) and Ψ2(X) are two convex cost terms regulating the spatial relationships between 3D

observations within and across video streams. We also add the normalization term FP to cancel the

influence of number of frames and number of points per shape. Next, we describe each of the cost

terms in detail.

5.4.2 Dictionary Space Reduction in Self-representation

The first cost term in Equation (5.14) serves to find shapes in the dictionary to sparsely

represent each shape. The search space can be reduced if some elements of W are forced to be 0.

As mentioned, the diagonal elements of W are forced to be 0, since a shape is not used to represent

itself. Moreover, it is possible that if a priori knowledge of rough temporal information across

video steams is available, we can also leverage that knowledge to reduce the search space.

65

In our solution, we explicitly enforce that the shape observed by one video is not used to

represent the shape observed in the same video, because the reconstructibility analysis in Section

5.7.2 shows such estimation is ill-posed. In our implementation, enforcing this constraint is achieved

by not defining the corresponding variables in W during the optimization.

5.4.3 Coefficient Relationships: Ψ1(W)

As described in Section 5.3, a given structure Sf in frame f can be obtained from the linear

combination of the 3D shapes captured in other frames. The coefficients or weights of the linear

combination are given by the elements of the matrix W. In particular, the element in the j-th row

and f -th column of W is denoted as w(j,f), and it describes the relative contribution (weight) from

Sj in estimating Sf . Similarly, w(f,j) represents the contribution of Sf towards the 3D points in Sj .

Accordingly, a value of w(f,j) = 0 indicates the absence of any contribution from Sf to Sj , which is

desired for tempo-spatially non-proximal 3D shapes.

We note that, if Sf contributes to Sj , it means the two sets of points are highly correlated, which

further implies that Sj should reciprocally contribute to estimating Sf . We deem this reciprocal

influence within our estimation process as structural dependence coherence and develop a cost

term that contributes toward enforcing this property within the estimation of W. We encode this

relationship into our cost function as an additional term of the form

Ψ1(W) =
1

F
||W−W>||2F. (5.15)

A strict interpretation of the above formulation aims to identify symmetric matrices. In general,

the reciprocal influence between Sf and Sj does not imply symmetric contribution, as the values of

w(f,j) and w(j,f) depend on the actual 3D motion being observed. More specifically, these values

describe the linear structural dependencies between two different, but overlapping, 3-tuples of 3D

points, e.g. (Si,Sf ,Sj) and (Sf ,Sj ,Sk) as illustrated in Figure 5.4. In the toy example of Figure

5.4, it can be seen that Si and Sj are at equal distance to Sf and hence equally contribute to

66

0.5 0.5 0.25
Figure 5.4: Illustration of the triplets influencing the weights for Sf and Sj leading to an asymmetric
W. The values in the figure represent the distance between adjacent points.

it, i.e. w(i,f) = w(j,f) = 1
2
. However, in order to determine the linear combination weights for

specifying Sj , we need to consider Sf and Sk. Here, Sf is twice as far from Sj as Sk, and thus

w(f,j) = 1
3
, which is lower than w(j,f). Accordingly, we do not expect a fully symmetric weight

matrix W. However, given our expectation of a sparse coefficient matrix W, we can focus on finding

congruence between the zero-value elements of the W and W>, which Ψ1(W) effectively encodes.

Moreover, Ψ1(W) is convex, which enables its use within our biconvex optimization framework.

5.4.4 Sequencing Information: Ψ2(X)

Under the assumption of sufficiently smooth 3D motion w.r.t. the frame-rate of each video

capture, we define a 3D spatial smoothness term that penalizes large displacements among successive

frames from the same video. Therefore, we define a pairwise term over the values of X

Ψ2(X) =
1

M

N∑
n=1

|Vn|−1∑
m=1

∣∣∣∣X(n,m) −X(n,m+1)

∣∣∣∣2
2
, (5.16)

where n is the video index, m is the image index within a video, |Vn| denotes the number of

video frames within each sequence, and M =
∑N

n=1(|Vn| − 1) is a normalization factor. Note that

Ψ2(X) does not explicitly enforce ordering information across video sequences, but instead fosters

a compact 3D motion path within a sequence. Moreover, Ψ2(X) is a convex term.

However, this regularization term Ψ2(X) is a double-edged sword. Since this term minimizes

the sum-of-squared distances, if a video camera is static or has small motion, the estimated 3D

67

points are likely to be pulled towards the camera center. This typically biases the estimated 3D

points slightly away from their real positions. Therefore, we propose to first minimize Equation

(5.14) until convergence to obtain values for X and W, and then taking those values as initialization,

we further optimize the problem with weight of Ψ2(X) (i.e. λ2) set to 0.

5.5 Parameterization of X

Given accurate 2D measurements, the 3D structures X are constrained to lie on the viewing rays

defined by the 2D measures and camera poses. Therefore, we can use Equation (5.7) to represent

X. This is deemed as a hard constraint, as the points have to lie on the viewing ray. However, in

practice, the measures are typically noisy or unavailable due to, for example, inaccurate feature

detection or motion blur. Next, we discuss the parameterization of X given noisy and missing 2D

observations.

5.5.1 Noisy Observations

The parameterization using Equation (5.2) enforces the hard constraint that 3D points lie on the

viewing rays. Given that this may not be appropriate under the circumstance of noisy measurements,

we can change this hard constraint to a soft constraint by adding a regularization term into the

original Equation (5.14). Defining the objective function in Equation (5.14) as Φ(X,W), we propose

a revised version as

minimize
X,W,d

Φ(X,W) + λ3||1Px1 ⊗ C + (d⊗ 13x1)� r− X||2F

subject to Wf ∈ ∆f , f = 1, · · · , F.
(5.17)

The formulation converts the hard constraint of Equation (5.7) as a soft constraint by adding a

penalization if the 3D points deviate away from the viewing ray. The value of λ3 controls how

much a point can deviate away from the viewing ray, and it depends on the noise level of the

2D observations. A larger value should be used when the level of noise is lower. Note the new

formulation is the same to the hard constraint if the weight λ3 is set to∞. Moreover, in Equation

68

(5.17), d is an auxiliary variable solely depending on X. More details about the optimization of

Equation (5.17) are presented in Section 5.6.1.

5.5.2 Missing Data

Each 3D point, given its accurate 2D measurement, lies on the corresponding viewing ray.

Hence, the 3D point has one degree of freedom – depth along the viewing ray. However, in the

absence of 2D observations, which can happen in the case of occlusion, the 3D points are no longer

constrained by the viewing ray and thus have three degrees of freedom.

In our method, the 3D points with missing 2D observations are interpolated by the estimated

linear coefficients W. Therefore, this scheme is likely to produce larger errors if a dynamic 3D

point is not observed by multiple consecutive frames across time. In our experiments, we test the

accuracy of our algorithm under different missing-data rates.

5.6 Optimization

The biconvex function in Equation (5.14) is non-convex, but it is convex if one set of the

variables X or W is fixed. The optimization scheme employed for Eq. (5.14) alternates the opti-

mizations over X and W. We preferred this approach due to its relative simplicity over elaborate

dictionary update schemes such as K-SVD (Aharon et al., 2006). Nevertheless, since the alternating

optimization steps need to be performed until convergence, each step must be reasonably fast.

Although optimizing over X is easy, optimizing over W is relatively more difficult due to the

simplicial constraint. We find that optimizing over W with a general solver, such as CVX (Grant and

Boyd, 2014), is too slow even for a moderate number of frames F . Moreover, during our iterative

optimization, the output of the previous step can be fed into the current step for better initializaiton

(hot start), but typical general solvers, such as those based on the interior point algorithm, do not

allow for a hot start. To solve the problem with speed and scalability, we propose a new solver

based on alternating direction method of multipliers (ADMM) (Boyd et al., 2011).

69

5.6.1 Optimize Over X

If W in Equation (5.14) is fixed, the optimization over X is straightforward, as the problem is

quadratic programming without any constraint, regardless of the difficulties discussed in Section

5.5.

1. If the data are noise-free, we can substitute Equation (5.7) into Equation (5.14), and obtain a

quadratic programming problem without any constraint on the unknown variable d.

2. In the case of noisy measurements, d are dependent on X. More specifically, d(p,f) is given by

d(p,f) = (X(p,f) −Cf)
Tr(p,f), (5.18)

i.e. the projection of X(p,f) −Cf onto the viewing ray. Then, after replacing d with X, we

obtain a quadratic programming problem over unknown X.

3. For the case of missing observations, the corresponding 3D points are unknown variables.

Therefore, for a given miss rate, the problem is quadratic over some unknown variables both

in d and in X.

For the quadratic programming without constraints, the solution can be found at the zero value of

the derivative of the cost function over the unknown variables.

5.6.2 Optimize Over W

The optimization over W is more complex mainly due to the simplex constraints. By fixing the

variable X in Equation (5.14), the cost function becomes,

minimize
W

1

FP
||X− XW||2F +

λ1

F
||W−W>||22

subject to Wf ∈ ∆f , f = 1, · · · , F.
(5.19)

70

Notice that if the term ||W −W>||2F vanishes, the cost function is the same to Equation (5.13),

which can be decomposed into Equation (5.11), and optimized over Wf for each f = 1, . . . , F

independently. Advantageously, the number of variables for each subproblem is much smaller

compared to the total number of variables in W, and it can be parallelized on the level of subproblems.

Moreover, Chen et al. (2014) propose a fast solver to the optimization problem in Equation (5.11)

based on an active-set algorithm that can benefit from the solution sparsity. However, the cost term

||W−W>||2F prevents the decomposition.

In this work, we propose an ADMM algorithm that enables the decomposition. By introducing

a new auxiliary variable Z, Equation (5.19) can be rewritten as

minimize
W

1

FP
||X− XW||2F +

λ1

F
||Z− Z>||2F

subject to Wf ∈ ∆f , f = 1, · · · , F

W = Z.

(5.20)

Though this change may seem trivial, the objective function is now separated in W and Z. The

ADMM technique allows this problem to be solved approximately by first solving for W with Z

fixed, then solving for Z with W fixed, and next proceeding to update a dual variable Y (introduced

below). This three-step process is repeated until convergence. Next, we describe each step of our

ADMM-based algorithm.

In step 1, W is updated by

Wk+1 = argmin
Tf∈∆f , for1≤f≤F

1

FP
||X− XW||2F + vec(Yk)>vec(W) +

ρ

2
||W− Zk||2F, (5.21)

where the superscript k is the iteration index. Yk is the matrix of dual variables and is initialized

with 0. Note that the values of Yk and Zk are known during this step – we only optimize over the

variable W. The optimization can be decomposed into optimizing over Wf independently and in

parallel, and we employ the fast solver proposed by Chen et al. (2014).

71

In step 2, we update the auxiliary variable Z according to

Zk+1 = argmin
Z

λ1

F
||Z− Z>||2F − vec(Yk)>vec(Z) +

ρ

2
||Wk+1 − Z||2F. (5.22)

This is a quadratic programming problem in the unknown variable Z without constraint and can be

easily solved by setting the derivative of Equation (5.22) with respect to Z equal to 0.

In step 3, the dual variables Y are updated directly by

Yk+1 = Yk + ρ(Wk+1 − Zk+1). (5.23)

The three Equations (5.21), (5.22), and (5.23) iterate until the stop criterion is met. We use the stop

criterion described by Boyd et al. (2011).

5.6.3 Initialization of the Optimization

Given the non-convexity of our original cost function (Equation (5.14)), the accuracy of our

estimates is sensitive to the initialization values used by our iterative optimization. Hence, we

design a 3D structure (i.e., X) initialization mechanism aimed at enhancing the robustness and

accelerating the convergence of our biconvex framework. While our approach explicitly encodes

the absence of concurrent 2D observations, we aim to leverage the existence of nearly-incident

corresponding viewing rays as a cue for the depth initialization of a given 3D point X(p,f). To

this end, we identify for each bundle of viewing rays captured in If (i.e. associated with a given

shape structure Sf) an alternative structure instance captured at Ij that minimizes the Euclidean 3D

triangulation error across all corresponding viewing rays. In order to avoid a trivial solution arising

from the small-baseline typically associated with consecutive frames of a single video, we restrict

our search to ray bundles captured from distinct video sequences.

The position of each point X(p,f) in Sf is determined by d(p,f) as in Equation (5.2). Denoting

df = [d(1,f), . . . , d(P,f)], we can find the distance between shapes of Sf and Sj by minimizing the

72

Frame 16
Frame 89

Figure 5.5: Example of incorrect initialization. The dataset ‘hopBothLegs3hops’ (Müller et al.,
2007) has the motion of hopping forward three times. The black and blue shapes (almost overlapped)
are the incorrect initialization of the real shapes (shown in green and red) of frames 16 and 89 due
to the accidental ray intersections. This typically happens in the case of periodic motion such as
walking or jogging. In the figure, only one set of nearly intersecting rays is plotted.

following cost function over the unknown variables df and dj

{d∗f ,d∗j} = argmin
df ,dj

||Sf − Sj||22. (5.24)

This is a quadratic cost function with a closed-form solution.

We then build a symmetric distance matrix D with element D(f,j) equal to the minimum cost

of Equation (5.24). If the frames f and j are from the same video, D(f,j) is set to infinity (or

a very large number). Next, we identify many pseudo-intersection points with negative depth

(i.e. , divergent pairs of viewing rays), and set the corresponding element in D to infinity. Finally,

we determine the minimum element of each f -th row in our distance matrix D and assign the

corresponding depth values d∗f as our initialization for the definition of our 3D structure Sf .

73

The above initialization is done regardless of available measurements, since we only look for

an approximate initialization for the solver. In the case of missing data, the corresponding 3D points

in the shape are simply ignored when minimizing Equation (5.24).

The output of the initialization is typically close to the ground truth, but may fail occasionally,

as is shown in Figure 5.5. This kind of incorrect initialization may lead to poor estimation of the two

shapes if the smoothness term Φ2(X) in Equation (5.14) is not present, because these two shapes

can well represent each other. Our cost term Φ2(X) helps to pull the occasional incorrect shapes out

of local minima.

5.7 Analysis and Discussion

This section provides key insight to our algorithm for dynamic object reconstruction without

sequencing. The following statements will be illustrated in detail.

1. Interleaved 2D measures across video streams yields favorable viewing ray geometry for 3D

shape estimation.

2. High-frequency 2D observations and smooth object motion jointly validate our self-expressive

structure prior for accurate shape estimation.

3. No dependence on the availablity of sequencing information as opposed to existing approaches

(Park et al., 2010; Valmadre and Lucey, 2012).

Next, we first describe the formulation of reconstruction errors by our method, based on which the

above statements are illustrated at length in the subsequent three subsections.

5.7.1 Representation of Reconstruction Errors

Our solution computes 3D structure by minimizing the non-convex function Equation (5.14).

Since direct analysis of the non-convex function is difficult, we only analyze the problem with

the assumption that the ground truth of W, which is defined as the output of Equation (5.14)

74

given ground truth structure, is already known. Without loss of generality, we also assume the 2D

observations are noise-free.

Given that in our method λ2 is set to 0 in the end, and W is known and fixed, Equation (5.14) is

equivalent to

minimize
X

||X− XW||2F. (5.25)

From Equation (5.25), it can be seen when W is fixed, all points in a shape are computed indepen-

dently, and computing one 3D point per shape versus multiple points per shape basically follows

the same routine. Therefore, for the sake of more concise presentation, the analysis in this section

assumes only one point per shape, and the point index p for the shape is omitted.

To analyze the reconstruction error, we assume that the ground truth of the 3D points is

already known, and then analyze how much the computed structure deviates away from the ground

truth, which is deemed as reconstruction error. We denote the ground truth 3D point as X∗ =

[X∗1, · · · ,X∗f , · · · ,X∗F]. Then, any point Xf on the viewing ray that passes through X∗f can be

parameterized as

Xf = X∗f + lfrf , (5.26)

where the unknown lf is the signed distance from the ground truth along the viewing ray.

When minimizing Equation (5.25), using either Equation (5.26) or Equation (5.2) to represent

Xf in practice generates different values of df and lf , but the estimated 3D points are actually

identical. Therefore, |lf | represents the Euclidean error of our method.

Equation (5.25) is a quadratic objective function without any constraint and has a closed-form

solution. We use Equation (5.26) to represent the 3D point, and by setting the derivative of Eq. (5.25)

over variables l = [l1, . . . , lf , · · · , lF] to 0, we obtain a linear equation system denoted as

Al = b, (5.27)

75

where A is an F × F matrix with the f -th row given by

A:f = (I−W):f (I−W)Tdiag([rT1 rf , · · · , rTF rf]), (5.28)

and b is an F × 1 vector with the f -th element given by

bf = rTfX∗(I−W)(I −W)T
:f . (5.29)

In Equations (5.28) and (5.29), the subscript :f denotes the f -th row of a matrix, and I is an identity

matrix. Then the solution for l is

l = A−1b. (5.30)

As mentioned, l is the reconstruction error, which is bounded by

||l||2 = ||A−1b||2 ≤ ||A−1||2||b||2. (5.31)

In this work, we use the term reconstructability (first defined in (Park et al., 2010)) as a criterion

to characterize the reconstruction accuracy of our algorithm. In our case, in order to achieve high

reconstructability, ||A−1||2 and ||b||2 should be small. Next, we discuss ||A−1||2 and ||b||2 in detail.

5.7.2 System Condition

Based on the definition of the matrix Euclidean norm, we have

||A−1||2 = 1/σmin, (5.32)

where σmin is the smallest singular value of matrix A. With fixed W, we observe from Equation

(5.28) that A solely relies on the viewing ray directions and does not depend on the exact positions

of the 3D points X∗ along the viewing rays. Since σmin is closely related to reconstruction errors and

is determined by the camera system setup, we call it system condition. Note the system condition

76

(a)

(b)

(c)

Figure 5.6: Simulated camera setups. The blue curve is a trajectory of a 3D point obtained from
motion capture data. Figures 5.6a and 5.6b depict the camera setups of one and four slow-moving
handheld cameras. Figure 5.6c depicts a scenario where each random camera only captures one
image. Figure 5.6b and Figure 5.6c show the camera setups used in our method and (Zheng et al.,
2014b), respectively. Coordinates are in millimeters (mm).

77

introduced here is in essence very similar to the system condition number described in the works

(Valmadre and Lucey, 2012; Zheng et al., 2014b).

Since direct analysis of the system condition given viewing ray directions {r1, . . . , rF} based

on Equation (5.28) is difficult, we next use empirical simulation to demonstrate the system condition

under different camera setups.

In the experiments, we simulate scene captures close to real life. We use motion capture datasets

that sample the 3D structure of real dynamic objects at 40 Hz. Figures 5.6a and 5.6b simulate setups

of one handheld camera and multiple handheld cameras that record videos of a person walking. To

mimic small random motion in each handheld camera, the camera centers at different time instances

are Gaussian with standard deviation of 10 mm around a fixed center. We also test the case of

completely random cameras (Figure 5.6c), with each taking one photo. The 3D structure at each

time instance is projected to one of the virtual cameras to generate a set of 2D observations. For the

scenario in Figure 5.6b, we ensure no two shapes at consecutive time instances are projected into

the same video stream.

We estimate the system condition using Equation (5.32) on 500 trials with random cameras.

The average system conditions for the cases of Figures 5.6a, 5.6b, and 5.6c are 1.48e+04, 22.3, and

29.0 respectively. It is evident the setup with one handheld camera has very low reconstructability.

Note that even though the system conditions of the camera setups in Figures 5.6b and 5.6c are

favorable, in practice the important sequencing information (see Section 5.7.4) across different

cameras for these two cases is not readily available.

To illustrate the importance of cross-sequence 2D observations for our structure estimation

process (statement 1), we evaluate system condition as a function of increased temporal gaps

between cross-sequence samples. As shown in Figure 5.7a, the dynamic object is observed by one

camera for N frames, and then observed by another camera for N frames. We show empirically that

as N increases, the system condition increases monotonically (Figure 5.7b), which indicates more

unstable reconstruction and typically larger errors (see experiments in Section 5.8.1.3), even under

the assumption that W can be correctly estimated. This also illustrates that temporally consecutive

78

N N N N

(a) Observation without overlap

N

0 5 10 15

1

σmin

0

1000

2000

3000

4000

5000

6000

7000

(b) System condition

Figure 5.7: The reconstructability of the system is lower if the period of single-camera capture is
longer.

shapes observed by the same video stream should not be used to represent each other, as is done in

Section 5.4.2.

In fact, we observe that that reconstructability is closely related to the camera motion and the

object motion. Specifically, if shape Sj is the most related shape to Sf , as indicated by W, the

relative directions of viewing rays rf and rj (note we only have one point per shape in this analysis),

determine the reconstructability. If the directions of rf and rj converge, i.e. the camera motion is

relatively larger than the object motion, the reconstructability is higher. In the case of one handheld

camera, the camera motion can be much smaller than the dynamic objects, and the viewing rays

diverge, yielding low reconstructability. In contrast, if rj and rf are associated with different video

cameras, the distance between the camera centers is much larger than the motion of the object.

Hence the reconstructability is high. This observation is analogous to the classic triangulation of

static scenes, where small baselines produce inaccurate reconstruction. Note the same conclusion

was also made by Park et al. (2015), though their reconstruction algorithm is different from ours.

79

Frame rate (Hz)

120 60 30 15 10 5 1

L
o
g
1
0
o
f
r
e
s
(m

m
)

-2

-1

0

1

2

3

Figure 5.8: Average residuals res at different camera frame rates. Results are attained from 130
motion capture datasets in the work by Müller et al. (2007).

5.7.3 Shape Approximation Residual

While A depends on the viewing ray directions, which are available before reconstruction,

b relies on the actual unknown positions of the ground truth structure X∗ (Equation (5.29)). To

achieve accurate reconstruction, each value in the vector b should be close to 0.

Since in Equation (5.29), (I −W)T
:f is sparse, bf can be considered as a linear combination of

a few columns of matrix X∗(I −W) multiplied using dot product with the unit vector rf . Therefore,

the value of bf mainly relies on ||X∗(I −W)||F. Accordingly, we define the residual per point as

res =
1

PF
||X∗(I −W)||F. (5.33)

The residual res is small if all the shapes can be well represented by other shapes. It relies on speed

of object motion and the capturing frame rate. We test the residual res given motion capture data

sampled at different frame rates. Figure 5.8 shows res becomes larger as the frame rate goes down.

This fits the intuition that shapes that are tempo-spatially farther away are less correlated. This also

80

implies that our method cannot achieve accurate reconstruction from discrete images with large

temporal discrepancy.

5.7.4 Importance of Image Sequencing

The temporal order of images, i.e., image sequencing, plays an important role in dynamic object

reconstruction (Park et al., 2010; Valmadre and Lucey, 2012). The work by (Valmadre and Lucey,

2012) generalizes the method by (Park et al., 2010) in a new framework based on high-pass filters.

Here, we briefly describe the method by Valmadre and Lucey (2012) and its relation to our method,

from which it can be revealed why their methods (Park et al., 2010; Valmadre and Lucey, 2012)

require sequencing information as opposed to ours.

Assuming the object moves smoothly in the space, Valmadre and Lucey (2012) triangulate

the 3D trajectory of an 3D point by minimizing its response to a set of high-pass filters. Given a

predefined high pass filter g = [gM , . . . , g1], the trajectory is estimated by

minimize
X

||XG||2F, (5.34)

where G is defined as

G =

gM
... . . .

g1
. . . gM

.

g1

. (5.35)

Each column of G is a high-pass filter for the local region of a trajectory. From the formulation, it is

required for all the shapes (columns of X) to be ordered temporally.

Comparing Equation (5.34) with Equation (5.25), we can see the two equations are the same

if G equals I−W. In effect, the method by (Valmadre and Lucey, 2012) can be regarded as our

method with a predefined W. For instance, if the high pass filter is set to g = [1,−1], it is equivalent

81

(ignoring the difference at boundary) that W is set to

W =

0

1 0

1
. . .
. . .

 . (5.36)

Therefore, an alternative interpretation of their method (Valmadre and Lucey, 2012) using the

high-pass filter g = [1,−1] in terms of our theory is approximating the current shape using only the

temporally closest shape.

Another high-pass filter proposed by Valmadre and Lucey (2012) is [−1, 2,−1], which in our

case is equivalent to fixing the weights of two neighboring shapes to 0.5. In effect, their method can

be deemed as our method with predefined W.

The importance of sequencing can also be revealed from analysis of residual defined by Equation

(5.33). For the method by (Valmadre and Lucey, 2012) with predefined G, the residual will be large

if columns of X∗ are randomly shuffled. In contrast, our method leverages compressive sensing to

estimates W (instead of predefined), which automatically picks the most related shapes to produce

small residuals.

5.8 Experiments

In our experiments, we evaluate our algorithm on both synthetic and real datasets. λ1 and λ2 in

Equation (5.14) are set empirically to 0.05 and 0.1 for all the experiments. To alleviate the influence

of different camera system scales (i.e. differing the scale of X), the average distance between

camera centers is normalized to 1 before applying our method. The soft constraint parameterization

is used only in the presence of noisy measurements.

5.8.1 Simulation

We use synthetic datasets to evaluate the accuracy and robustness of our proposal, and also

compare against two state-of-the-art methods (Valmadre and Lucey, 2012; Dai et al., 2014). To

82

generate synthetic data, we use the real motion capture datasets in the work by Müller et al. (2007),

and leverage them as ground truth structure for our estimation. The whole datasets contain 130

different real motions including hopping, jogging, cartwheel, punching, etc. Each motion capture

dataset is comprised of the temporal sequences of a common set of 44 3D points in real scale, which

corresponds within our framework to ground truth structure XGT . The frame rate of the motion

datasets, i.e. the sampling rate of the real continuous motion, is 120 Hz. The length of each dataset

ranges from 45 to 701 frames, and with an average of 273 frames.

These 3D points are projected onto virtual cameras to generate input 2D measures into our

methods. We select 4 virtual cameras with a resolution of 1M and focal length of 1000, and we

position the static cameras around the centroid defined by XGT . The distance of the camera to

the centroid is approximately twice the scale of XGT , and on average the distance is 2.7 meters.

Considering the frame rate of the motion capture datasets is 120 Hz and there are 4 virtual cameras,

the average frame rate for each camera is 30 Hz. Every temporal 3D capture is randomly assigned

to each camera to build 4 disjoint image sequences. Unless otherwise mentioned, we enforce that

no temporally consecutive captures are assigned to the same image sequence.

To evaluate our method, we compute the Euclidean errors between the ground truth and the

estimated 3D points. We define the accuracy by counting the percentage of points having errors less

than thresholds of 10, 20, 30, 40, 50, and 100 mm.

5.8.1.1 Accuracy

Different frame rates. We first evaluate how the algorithm behaves under different capture

frame rates. 2D measures without noise are used to evaluate the accuracy of our method. In addition

to the original motion capture data at 120 Hz, we also downsample the data to 60 and 30 Hz, so

that each camera has frame rate of 15 and 7.5 Hz on average. As shown in Figure 5.9, the accuracy

becomes worse as the frame rate gets slower. The main reason is that the self-representation residual

is larger at lower frame rate. We notice that at a frame rate of 7.5 Hz, our method does not work

well on the quick motions with large and nonlinear shape deformation, such as hopping or arms

83

Threshold (mm)

20 40 60 80 100

P
e

rc
e

n
ta

g
e

 o
f

p
o

in
ts

0.9

0.92

0.94

0.96

0.98

1

30 Hz

15 Hz

7.5 Hz

30 Hz
∗

XXXXXXXXXXXXFrame rate
Threshold

10 20 30 40 50 100

30 0.9933 0.9975 0.9986 0.9991 0.9994 0.9998
15 0.9734 0.9850 0.9899 0.9926 0.9944 0.9979
7.5 0.9036 0.9415 0.9568 0.9655 0.9711 0.9833

30∗ (unconstrained
assignment) 0.9766 0.9905 0.9947 0.9963 0.9971 0.9990

Figure 5.9: The reconstruction accuracy given different camera frame rates. We also test the case
that the captures of object motion are randomly assigned to any of the image sequences without any
constraint. 30 Hz∗ in the figure represents the unconstrained assignment.

𝑺𝟏
𝑺𝟐 𝑺𝟑

𝑺𝟒
𝑺𝟓

Figure 5.10: Consecutive captures are assigned to the same red camera. For easy visualizations,
only one point per shape is drawn.

84

rotation. However, still more than 97% of 3D points have errors less than 5 cm, which is already

very small considering the scale of a person and the distance range of the cameras.

Local temporal information. We also quantitatively evaluate the estimated W. Using the

same two measures described in Section 5.3, we get values of 0.9902 and 0.9923, compared to

0.9972 and 0.9994 if the 3D points are given. Therefore, our method very accurately recovers the

local temporal information.

Unconstrained capture assignment. We test the case that each capture is randomly assigned

to one of the four cameras so that temporally consecutive captures could have a chance to be

assigned to the same camera, as is shown in Figure 5.10. In this specific case, shapes S1 and S5 are

used to represent S2, S3 and S4. Based on the theory in Section 5.7.3, using spatially further away

shapes to represent the current shape has larger residual and hence larger reconstruction errors, as is

validated in Figure 5.9.

5.8.1.2 Data Robustness

To evaluate the robustness of our method, we test it in the case of noisy measurements and

missing data.

Noisy measurements. We add zero-mean Gaussian noise with different standard deviations

to the 2D measurements. Considering that the focal length of the image is 1000, one pixel error

corresponds to one millimeter if the object is one meter away. We apply the soft constraint

formulation described in Section 5.5.1 and empirically set the parameter λ3 to 100. As depicted in

Figure 5.11, the quality of reconstruction degrades as the noise level increases. As λ3 increases,

the soft constraint approximates the hard constraint. We evaluate the difference of the estimated

results by the hard constraint formulation and the soft constraint formulation with different λ3, and

we show the median difference in Figure 5.12. It is apparent that as λ3 increases, the difference of

the output between the two formulations becomes smaller.

We have tested the hard constraint formulation using noisy measurements, and the overall

accuracy of the output is very similar. Though the soft constraint appears more robust in the presence

85

Threshold (mm)

20 40 60 80 100

P
e

rc
e

n
ta

g
e

 o
f

p
o

in
ts

0.2

0.4

0.6

0.8

1

σ = 1 px

σ = 2 px

σ = 3 px

σ = 4 px

σ = 5 px

PPPPPPPPPNoise
Threshold

10 20 30 40 50 100

N (0, 1) 0.9529 0.9925 0.9974 0.9987 0.9992 0.9998
N (0, 2) 0.7878 0.9568 0.9869 0.9949 0.9976 0.9997
N (0, 3) 0.6074 0.8855 0.9593 0.9828 0.9917 0.9991
N (0, 4) 0.4601 0.7941 0.9144 0.9602 0.9797 0.9980
N (0, 5) 0.3551 0.7008 0.8590 0.9287 0.9615 0.9966

Figure 5.11: The reconstruction accuracy when the 2D observations are corrupted with Gaussian
noise of different standard deviation (σ).

λ3

10
0

10
2

10
4

10
6lo

g
1

0
 o

f
M

e
d

ia
n

 d
if

fe
re

n
c

e
 (

m
m

)

-14

-12

-10

-8

-6

-4

-2

Figure 5.12: The difference of the estimated results by the hard constraint formulation in Equation
(5.7) and the soft constraint formulation in Equation (5.17) with different λ3

86

Threshold (mm)

20 40 60 80 100

P
e

rc
e

n
ta

g
e

 o
f

p
o

in
ts

0.75

0.8

0.85

0.9

0.95

1

No occlusion

Occlusion: 10%

Occlusion: 20%

Occlusion: 30%

Occlusion: 40%

Occlusion: 50%

PPPPPPPPPMiss rate
Threshold

10 20 30 40 50 100

0% 0.9933 0.9975 0.9986 0.9991 0.9994 0.9998
10% 0.9901 0.9961 0.9975 0.9982 0.9986 0.9993
20% 0.9835 0.9910 0.9936 0.9948 0.9955 0.9968
30% 0.9594 0.9740 0.9788 0.9813 0.9829 0.9868
40% 0.9074 0.9331 0.9438 0.9493 0.9529 0.9626
50% 0.7734 0.8313 0.8560 0.8703 0.8798 0.9050

Figure 5.13: The reconstruction accuracy under different percentages of occluded points.

of noise as it allows the points off the viewing ray, there is no guarantee or proof this constraint will

achieve more accurate results, as it depends on the exact motion of the objects.

Missing data. In our evaluation, we randomly set some 2D measures to be unavailable. Figure

5.13 depicts the accuracy under different percentages of missing data. We observe that under 20%

of occlusion, there is not much difference in reconstruction accuracy. Moreover, under a large

amount of 40% occlusion, our method still produces accurate results, with 94.38% of points having

errors less than 30 mm.

Our method essentially linearly interpolates the 3D points along the trajectory using estimated

W. It can still produce 3D estimates in the presence of consecutive missing observations across

time, but the accuracy in such scenarios depends on the object motion. Particularly, given large

displacement of nonlinear motion, our method is likely to produce less accurate results.

87

5.8.1.3 Comparison to Other Methods

We compare our method with a non-rigid structure from motion method (Dai et al., 2014)

and a trajectory triangulation method (Valmadre and Lucey, 2012). Both of these methods are

state-of-the-art for dynamic object reconstruction.

NRSFM method. Non-rigid structure from motion (NRSFM) recovers both the camera motion

and the dynamic structure. It is tempting to use those methods to solve our problem, since our

problem with known camera poses seems to be easier. However, most NRSFM methods work on an

orthographic or weak perspective camera model, and it is unclear of their applicability under the

perspective model. Park et al. (2010) test the NRSFM methods by Akhter et al. (2009b); Torresani

et al. (2008); Paladini et al. (2009) under a perspective camera model, but all of them fail to produce

reasonably good results. In this work, we test the state-of-the-art NRSFM method by Dai et al.

(2014).

The method by Dai et al. (2014) is based on the assumption that each non-rigid shape Xf is

a linear combination of K shape bases, and hence the shape matrix (corresponding to X in our

problem description) has low rank. After estimating the camera motion, they recover the structure

by minimizing the rank of the shape matrix, which is achieved through the minimization of the

matrix nuclear norm. Their method applies to an orthographic camera model, but can be easily

adapted to a perspective model, as described below.

Given the camera poses, we use the block matrix method proposed in the work by Dai et al.

(2014). Denoting

X# =

X(1,1) . . . X(P,1) Y(1,1) . . . Y(P,F) Z(1,1) . . . Z(P,F)

...
...

...
...

...

X(1,F) . . . X(P,F) Y(1,F) . . . Y(P,F) Z(1,1) . . . Z(P,F)

 ,

88

where X(p,f) = (X(p,f), Y(p,f), Z(p,f))
T, the shape of the object can be recovered through

minimize
X#,W

||X#||∗ + µ||1Px1 ⊗ C + (d⊗ 13x1)� r− X||F

subject to X# = L(X),

where || · ||∗ is the matrix nuclear norm, µ is a positive weight, and L is a linear operator that

reshapes X into X#.

This formulation seems attractive at first glance due to its convexity, in contrast to our non-

convex formulation. Moreover, their method is shape-based (instead of trajectory-based), and does

not require temporal information. To test the NRSFM method, we use synthetic data without noise

and the random camera configuration shown in Figure 5.6c. Unfortunately, the qualitative results in

Figure 5.14b show that it completely fails, as opposed to our method shown in Figure 5.14a.

Trajectory Triangulation Method. We also compare with the trajectory triangulation method

by Valmadre and Lucey (2012), as is described in Section 5.7.4. Since the required sequencing

information is readily available within each video stream, our test uses the simulation of one

handheld camera as shown in Figure 5.6a. The camera centers are Gaussian with 20 mm standard

deviation (σc) around a fixed point. Based on the theory in Section 5.7.2, the reconstructability

increases with larger σc. Considering that the framerate of the motion capture dataset is 120 Hz, the

camera motion with σc = 20mm is already very large compared to real handheld captures.

The method triangulates the trajectory of each dynamic point independently, and each trajectory

has one system condition given the viewing ray directions. Since the motion of the person’s head

is relatively slower than that of his legs, the corresponding system condition is lower and the

reconstructed points are more accurate, based on the theory in Section 5.7.2. The average system

condition for all the points is 2228. Figure 5.14c shows the large system condition in this camera

setup leads to significant reconstruction errors.

89

(a) Our method accurately reconstructs the 3D points (1/σmin = 7.589, err = 0.0825).

(b) The modified prior-free method (Dai et al., 2014) fails to produce reasonable results. (err = 472.9033)

(c) General trajectory prior method (Valmadre and Lucey, 2012) produces large errors due to high system condition
(1/σmin = 2228, err = 76.9700).

Figure 5.14: Qualitative comparison of our method with (Dai et al., 2014) and (Valmadre and Lucey,
2012) on the motion capture dataset ‘jog on place’ in (Müller et al., 2007). The dataset has 214
frames, with 44 points per frame (only 24 are shown for visualization purposes). The black and
red points are the ground truth and the estimated results, respectively. err is the average Euclidean
error per point.

90

… …

(a) Rothman dataset (250 frames)

… … …

(b) Juggler dataset (180 frames)

Figure 5.15: The datasets presented in (Ballan et al., 2010). The frame rate of each camera is 12.5
Hz. For each dataset, the top left two show the camera configuration, the top right describes the
temporal distribution of each image sequence (a colored grid means the camera of the same color
captures one frame at a time instance), and the bottom shows example reconstruction results.

91

Figure 5.16: Results of a person juggling. Note we reconstruct the four juggler balls in addition to
the person. The image sequence from iPhone6 and iPhone5 have frame rates of 10 Hz and 6.25 Hz
respectively

5.8.2 Real Datasets

For experiments on real image capture, we use the Juggler and Rothman datasets from (Ballan

et al., 2010). Given that the original datasets were synchronized, we sample the video frames to

avoid concurrent captures (see Figure 5.15). We do not use the datasets in the work by Basha et al.

(2012); Park et al. (2010) because they only provide images with large temporal discrepancy, and

therefore the shape residual is large (i.e. Equation (5.8) does not hold). We also capture a new

dataset of a person juggling using three iPhone6 and one iPhone5 without temporal synchronization.

We perform manual feature labeling on the input sequences and provide the obtained set of 2D

measurements as input for our estimation process. For visualization purposes, Figures 5.15 and

5.16 depict the estimated 3D geometry by connecting the estimated position of the detected joint

elements through 3D line segments.

92

5.9 Conclusion and Contributions

We have presented a method for dynamic object reconstruction from unsynchronized video

streams. We demonstrated the effectiveness of our proposed method on both real and synthetic

datasets. This is a first step towards dynamic 3D modeling in the wild.

The main contributions of our approach encompass:

1. Problem Definition. We are the first to address the problem of dynamic 3D reconstruction

using unsynchronized cross-video streams.

2. Methodology Formulation. We pose the problem in terms of a self-expressive dictionary

learning framework leveraging a novel data-adaptive local 3D interpolation model.

3. Implementation Mechanisms. We define and solve a biconvex optimization problem and

develop an efficient ADMM-based solver amenable for parallel implementation.

To the best of our knowledge, we are the first to use the self-expression prior to solve the problem of

dynamic object reconstruction. This prior has the potential to be applied in the traditional NRSFM

problems.

93

CHAPTER 6: DISCUSSION

This dissertation presents three works for the problems in static scene reconstruction and

dynamic object reconstruction. In Chapter 3, we proposed a framework of joint view selection

and depthmap estimation. The experiments on large Internet collected photos demonstrates its

efficiency and robustness. In Chapter 4 and Chapter 5, we solved the problems of dynamic object

reconstruction from unstructured images and unsyncthronized videos, respectively. In solving

these two problems, our main effort focused on 3D reconstruction without the information of

spatial/temporal proximity. We showed effectiveness of the approaches by testing on synthetic

and real datasets. In this section, we discuss the possible extensions of our works, as well as the

potential future research directions.

6.1 Future work

6.1.1 Extensions to PatchMatch-based Joint View Selection and Depthmap Estimation

Though our method in Chapter 3 significantly outperforms existing methods on Internet

collected photos (Goesele et al., 2007) and achieves the state-of-the-art accuracy on standard

datasets collected under a controlled lab environment (Strecha et al., 2008). The accuracy of the

method can be further improved by incorporating some standard techniques into our framework.

Next, we discuss each of the techniques in detail.

In our method, we use the fronto-parallel planes to warp color patches in the reference image

onto other source images to perform a color consistency check. It has been shown the plane

orientation affects the reconstruction accuracy (Gallup et al., 2007; Furukawa and Ponce, 2010).

Ideally, the plane orientation should be the same as the real surface normal, which is unknown before

reconstruction. To address this issue, we can include the surface normals as unknown variables in our

94

framework. Specifically, the unknown normal directions are propagated to the neighboring pixels in

addition to the depths (Bleyer et al., 2011). This scheme is able to further improve reconstruction

quality on the regions having large angles with the camera viewing directions (e.g. the ground), but

at the cost of increased computational complexity.

Another issue related to color patches arises if the pixels in a patch cover scenes of significantly

different depths, which typically occurs at the boundary of object surfaces. In stereo, the corre-

spondences among multiple images are found by checking the color consistency. To improve the

robustness for the color consistency measure between two pixels, current local methods (i.e. methods

having no smoothness term between neighboring pixels in the depthmap) typically compare the two

patches around the pixels. The method present in Chapter 3 applies normalized cross correlation

(NCC) as a metric to measure the color consistency, where each pixel in the patch contributes equally

to the measure. However, this is likely to produce swollen/fat boundary effect in the depthmap,

since the use of a plane for patch warping assumes all pixels in the patch lie on the same plane, and

this assumption breaks at the boundary of object surfaces. Therefore, when comparing two patches,

the pixels lying on the same estimated plane as the central pixel should be given higher weight

than other pixels. To achieve this, one heuristic but empirically effective solution is to use adaptive

weights for each pixel within the patch, with the weights both propotional to the color similarity and

the spatial proximity relative to the patch’s center on the reference image (Yoon and Kweon, 2006).

Another extension to our work is to handle cameras with small baselines. In stereo methods,

small baselines usually lead to unstable and inaccurate results (Hartley and Zisserman, 2004). Since

the large set of Internet collected photos is typically taken at certain spots of interest, it is very likely

some of the images have very small or zero baselines. Our framework in Chapter 3 selects images

based on color consistency, and the images with small baselines will generally be selected because

the color consistency is always high, regardless of the depth hypothesis. To address this issue, the

angle of two viewing rays given a depth hypothesis should be tested to prevent invalid triangulation

(Gallup et al., 2008). We can incorporate the angle value in the likelihood function, which should

convey the knowledge that if the angle of two viewing rays is very small, the corresponding source

95

image and the depth hypothesis should be deemed unreliable. In this way, the final output depth for

each pixel should have appropriate triangulation angles.

Another issue related to depth estimation comes from homogeneous color regions (i.e. image

regions lacking a textured color pattern). All existing methods based on local color consistency

checks fail on these regions. To handle this problem, I believe it is necessary to incorporate the

semantic knowledge of the scene rather than to just rely on low-level features such as colors. This

inevitably requires introducing machine learning techniques into the stereo problem. However,

incorporating camera parameters into a machine learning framework is difficult, since the testing

data and training data often have different camera parameters. Although there are many single-image

depth estimation approaches based on supervised machine learning (Hoiem et al., 2005; Saxena

et al., 2008; Eigen et al., 2014; Liu et al., 2014; Zhuo et al., 2015), still much work needs to be done

to incorporate such techniques into multiview stereo methods for more accurate depth estimation.

6.1.2 Extensions to JOST

The method presented in Chapter 4 uses object detection output as features, and the object lies

along the viewing ray passing the 2D features. However, the outlier detections may prevent the

algorithm from finding the correct object class trajectories. One way to manage this problem, as is

done in Chapter 4, is to raise the detection threshold to suppress the false alarm rate, at the cost of

increasing misdetections. Another possible way is to embed our method in a RANSAC framework

(Hartley and Zisserman, 2004) to remove outliers. Specifically, a subset of randomly sampled

detections is used to triangulate the trajectory, and count the number of remaining detections

censuses with the trajectory as inliers. Repeating this process to yield the trajectory with the largest

number of inliers. However, this scheme is computational intensive if the ratio of outliers is large,

since running trajectory triangulation given a subset of detections is time-consuming.

Efficiency is another issue for our approach. In our method, the nonconvex problem is solved

in a discrete-continuous scheme, and the discrete step involves solving a NP-hard GMST problem.

The efficiency of solving a GMST problem can be attained by reducing the complexity of the

96

multipartite graph. In a multipartite graph, there exists an edge between every two nodes in different

independent sets (partite sets). The computational complexity of finding GMST will be lowered

down if the number of edges and nodes of the graph is reduced. To achieve this, a prior knowledge,

if available, can be incorporated easily. For instance, if it is known that two specific detected objects

are farther away in 3D space, then all the edges connecting the associated two sets of nodes can be

safely removed, since these two objects are not neighboring in the object class trajectory. Moreover,

if the scene model size and the real object size is available, then the size of the detection windows

can be used to roughly estimate a tight depth range of the dynamic objects, which helps reduce the

number of nodes in the partite sets and hence the number of edges in the graph.

6.1.3 Extensions to Dynamic Object Reconstruction from Unsynchronized Videos

In Chapter 5, we obtain the 2D correspondences across images manually as input for our

approach. This step can be automated by optical flow (Brox et al., 2004) or graph match based

matching algorithms (Yan et al., 2015a,b). Moreover, optical flow can produce dense correspon-

dences so that we can reconstruct dense 3D points for the dynamic objects.

The method presented in Chapter 4 and Chapter 5 requires a static background scene present

in the image so that structure from motion can use it for camera registration. However, the crowd

sourced data may have dynamic objects as the main focus and lack the content of the background

scenes. This comes an open question of how to register cameras given non-current captures of

dynamic objects. Considering the importance and difficulity of this problem, it is an exciting future

research direction.

Moreover, to the best of our knowledge, the work in Chapter 5 is the first self-representation

framework for dynamic object reconstruction. That is, each temporally varied shape can be

represented by a linear combination of a few other shapes at different time instances, given the

smooth motion of dynamic objects. This self-representation constraint has potential to be used

to solve the NRSFM problems. Compared to most of the existing works for NRSFM, where the

97

assumption that any shape is a linear combination ofK shape bases is applied, our self-representation

constraint is more intuitive and can lead to better reconstruction results.

98

BIBLIOGRAPHY

Agarwal, S., Furukawa, Y., Snavely, N., Simon, I., Curless, B., Seitz, S. M., and Szeliski, R. (2011).
Building rome in a day. Communications of the ACM.

Agarwal, S., Snavely, N., Seitz, S. M., and Szeliski, R. (2010). Bundle Adjustment in the Large. In
European Conference on Computer Vision (ECCV).

Aharon, M., Elad, M., and Bruckstein, A. (2006). SVD: An algorithm for designing overcomplete
dictionaries for sparse representation. IEEE Transactions on Signal Processing.

Akhter, I., Sheikh, Y., and Khan, S. (2009a). In defense of orthonormality constraints for nonrigid
structure from motion. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Akhter, I., Sheikh, Y., Khan, S., and Kanade, T. (2009b). Nonrigid structure from motion in
trajectory space. In NIPS.

Avidan, S. and Shashua, A. (2000). Trajectory triangulation: 3d reconstruction of moving points
from a monocular image sequence. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI).

Bach, F., Jenatton, R., Mairal, J., and Obozinski, G. (2012). Optimization with sparsity-inducing
penalties. Foundations and Trends® in Machine Learning.

Bailer, C., Finckh, M., and Lensch, H. P. A. (2012). Scale robust multi view stereo. In European
Conference on Computer Vision (ECCV).

Ballan, L., Brostow, G., Puwein, J., and Pollefeys, M. (2010). Unstructured video-based rendering:
Interactive exploration of casually captured videos. In ACM Transactions on Graphics (TOG).

Barnes, C., Shechtman, E., Finkelstein, A., and Goldman, D. B. (2009). PatchMatch: A randomized
correspondence algorithm for structural image editing. ACM Transactions on Graphics (TOG),
Proceedings of SIGGRAPH.

Basha, T., Moses, Y., and Avidan, S. (2012). Photo sequencing. In European Conference on
Computer Vision (ECCV).

Basha, T., Moses, Y., and Avidan, S. (2013). Space-time tradeoffs in photo sequencing. In IEEE
International Conference on Computer Vision (ICCV).

Bay, H., Ess, A., Tuytelaars, T., and Gool, L. V. (2008). Speeded-Up Robust Features (SURF).
Computer Vision and Image Understanding.

Besse, F., Rother, C., and Kautz, J. (2012). Pmbp: Patchmatch belief propagation for correspondence
field estimation. In British Machine Vision Conference (BMVC).

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer-Verlag New York, Inc,
NJ, USA.

99

Blanz, V. and Vetter, T. (2003). Face recognition based on fitting a 3d morphable model. IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI).

Bleyer, M., Rhemann, C., and Rother, C. (2011). Patchmatch stereo - stereo matching with slanted
support windows. In British Machine Vision Conference (BMVC).

Bouguet, J.-Y. (2000). Matlab camera calibration toolbox. http://www.vision.caltech.
edu/bouguetj/calib_doc/.

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011). Distributed optimization and
statistical learning via the alternating direction method of multipliers. Foundations and Trends®
in Machine Learning, 3(1):1–122.

Boykov, Y., Veksler, O., and Zabih, R. (2001). Fast approximate energy minimization via graph
cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI).

Bregler, C., Hertzmann, A., and Biermann, H. (2000). Recovering non-rigid 3d shape from image
streams.

Brox, T., Bruhn, A., Papenberg, N., and Weickert, J. (2004). High accuracy optical flow estimation
based on a theory for warping. In European Conference on Computer Vision (ECCV).

Campbell, N. D. F., Vogiatzis, G., Esteban, C. H., and Cipolla, R. (2008). Using multiple hypotheses
to improve depthmaps for multi-view stereo. In European Conference on Computer Vision
(ECCV).

Carlo, T. and Takeo, K. (1992). Shape and motion from image streams under orthography: a
factorization method. International Journal of Computer Vision (IJCV).

Chen, S. E. and Williams, L. (1993). View interpolation for image synthesis. In Proceedings of the
20th annual conference on Computer graphics and interactive techniques.

Chen, Y., Mairal, J., and Harchaoui, Z. (2014). Fast and Robust Archetypal Analysis for Rep-
resentation Learning. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Cormen, T. H., Stein, C., Rivest, R. L., and Leiserson, C. E. (2009). Introduction to Algorithms.
3nd edition.

Coughlan, J. M. and Yuille, A. L. (1999). Manhattan world: Compass direction from a single image
by bayesian inference. In IEEE International Conference on Computer Vision (ICCV).

Dai, Y., Li, H., and He, M. (2014). A simple prior-free method for non-rigid structure-from-motion
factorization. International Journal of Computer Vision (IJCV), 107(2):101–122.

Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

Delage, E., Lee, H., and Ng, A. Y. (2005). Automatic single-image 3d reconstructions of indoor
manhattan world scenes. In International Symposium on Robotics Research.

100

http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/

Derek Hoiem, Alexei A. Efros, M. H. (2005). Geometric context from a single image. In IEEE
International Conference on Computer Vision (ICCV).

Dror, M., Haouari, M., and Chaouachi, J. (2000). Generalized spanning trees. European Journal of
Operational Research.

Eigen, D., Puhrsch, C., and Fergus, R. (2014). Depth map prediction from a single image using a
multi-scale deep network. In Advances in Neural Information Processing Systems (NIPS).

Elad, M. and Aharon, M. (2006). Image denoising via sparse and redundant representations over
learned dictionaries. IEEE Transactions on Image Processing.

Elhamifar, E. and Vidal, R. (2009). Sparse subspace clustering. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

Endres, F., Hess, J., Engelhard, N., Sturm, J., Cremers, D., and Burgard, W. (2012). An evaluation
of the rgb-d slam system. In IEEE International Conference on Robotics and Automation
(ICRA).

Felzenszwalb, P. F., Girshick, R. B., McAllester, D., and Ramanan, D. (2010). Object detection
with discriminatively trained part based models. IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI).

Feremans, C., Labbe, M., and Laporte, G. (2002). A comparative analysis of several formulations
for the generalized minimum spanning tree problem. Networks.

Ferreira, C. S., Ochi, L. S., Parada, V., and Uchoa, E. (2012). A grasp-based approach to the
generalized minimum spanning tree problem. Expert Systems with Applications.

Frahm, J., Georgel, P., Gallup, D., Johnson, T., Raguram, R., Wu, C., Jen, Y., Dunn, E., Clipp,
B., Lazebnik, S., and Pollefeys, M. (2010). Building rome on a cloudless day. European
Conference on Computer Vision (ECCV).

Furukawa, Y., Curless, B., Seitz, S. M., and Szeliski, R. (2010). Towards Internet-scale multi-view
stereo. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Furukawa, Y. and Ponce, J. (2010). Accurate, dense, and robust multiview stereopsis. In IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI).

Gallup, D., Frahm, J.-M., Mordohai, P., and Pollefeys, M. (2008). Variable baseline/resolution
stereo. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Gallup, D., Frahm, J.-M., Mordohai, P., Yang, Q., and Pollefeys, M. (2007). Real-time plane-
sweeping stereo with multiple sweeping directions. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

Gallup, D., Frahm, J.-M., and Pollefeys, M. (2010a). A heightmap model for efficient 3d recon-
struction from street-level video. In Proceedings of the international symposium on 3D data
processing, visualization and transmission (3DPVT).

101

Gallup, D., Pollefeys, M., and Frahm, J.-M. (2010b). 3d reconstruction using an n-layer heightmap.
In German Association for Pattern Recognition (DAGM).

Girshick, R. B., Felzenszwalb, P. F., and McAllester, D. (2012). Discriminatively trained
deformable part models, release 5. http://people.cs.uchicago.edu/˜rbg/
latent-release5/.

Goesele, M., Snavely, N., Curless, B., Hoppe, H., and Seitz, S. M. (2007). Multi-view stereo for
community photo collections. In IEEE International Conference on Computer Vision (ICCV).

Grant, M. and Boyd, S. (2014). CVX: Matlab software for disciplined convex programming, version
2.1. http://cvxr.com/cvx.

Gu, L. and Kanade, T. (2006). 3d alignment of face in a single image. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Gupta, S., Arbelaez, P., and Malik, J. (2013). Perceptual organization and recognition of indoor
scenes from rgb-d images. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Hartley, R. and Vidal, R. (2008). Perspective nonrigid shape and motion recovery. In European
Conference on Computer Vision (ECCV).

Hartley, R. I. and Zisserman, A. (2004). Multiple View Geometry in Computer Vision. Cambridge
University Press, ISBN: 0521540518, second edition.

Heinly, J. (2015). Toward Efficient and Robust Large-Scale Structure-from-Motion Systems. PhD
thesis, The University of North Carolina at Chapel Hill.

Heinly, J., Dunn, E., and Frahm, J.-M. (2014). Correcting for Duplicate Scene Structure in Sparse
3D Reconstruction. In European Conference on Computer Vision (ECCV).

Heinly, J., Schönberger, J., Dunn, E., and Frahm, J.-M. (2015). Reconstructing the World* in Six
Days *(As Captured by the Yahoo 100 Million Image Dataset). IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

Hoiem, D., Efros, A. A., and Hebert, M. (2005). Automatic photo pop-up. In ACM Transactions on
Graphics (TOG), Proceedings of SIGGRAPH.

Hu, X. and Mordohai, P. (2012). Least commitment, viewpoint-based, multi-view stereo. In Pro-
ceedings of the international symposium on 3D data processing, visualization and transmission
(3DPVT).

Jain, V. and Learned-Miller, E. G. (2010). Fddb: a benchmark for face detection in unconstrained
settings. UMass Amherst Technical Report.

Jancosek, M. and Pajdla, T. (2011). Robust, accurate and weaklysupported-surfaces preserving
multi-view reconstruction. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

102

http://people.cs.uchicago.edu/~rbg/latent-release5/
http://people.cs.uchicago.edu/~rbg/latent-release5/
http://cvxr.com/cvx

Jones, M. and Viola, P. (2003). Fast multi-view face detection. Mitsubishi Electric Research Lab
TR-20003-96.

Kang, S., Szeliski, R., and Chai, J. (2001). Handling occlusions in dense multi-view stereo. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Kneip, L., Scaramuzza, D., and Siegwart, R. (2011). A novel parametrization of the perspective-
three-point problem for a direct computation of absolute camera position and orientation. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Liu, M., Salzmann, M., and He, X. (2014). Discrete-continuous depth estimation from a single
image. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Lowe, D. G. (2004). Distinctive Image features from Scale-Invariant Keypoints. International
Journal of Computer Vision (IJCV), 60(2).

Lu, J., Yang, H., Min, D., and Do, M. N. (2013). Patch match filter: Efficient edge-aware filtering
meets randomized search for fast correspondence field estimation. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Müller, M., Röder, T., Clausen, M., Eberhardt, B., Krüger, B., and Weber, A. (2007). Documentation
mocap database hdm05. Technical Report CG-2007-2, Universität Bonn.

Myung, Y., Lee, C., and Tcha, D. (1995). On the generalized minimum spanning tree problem.
Networks.

Neal, R. and Hinton, G. E. (1998). A view of the EM algorithm that justifies incremental, sparse,
and other variants. In Learning in Graphical Models.

Nistér, D. (2003). An Efficient Solution to the Five-Point Relative Pose Problem. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

Oliva, A. and Torralba, A. (2001). Modeling the shape of the scene: A holistic representation of the
spatial envelope. International Journal of Computer Vision (IJCV).

Oncan, T., Cordeau, J., and Gilbert, L. (2008). a tabu search heuristic for the generalized minimum
spanning tree problem. European Journal of Operational Research.

Paladini, M., Del Bue, A., Stosic, M., Dodig, M., Xavier, J., and Agapito, L. (2009). Factorization
for non-rigid and articulated structure using metric projections. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Park, H. and Sheikh, Y. (2011). 3d reconstruction of a smooth articulated trajectory from a
monocular image sequence. In IEEE International Conference on Computer Vision (ICCV).

Park, H. S., Shiratori, T., Matthews, I., and Sheikh, Y. (2010). 3d reconstruction of a moving point
from a series of 2d projections. In European Conference on Computer Vision (ECCV).

Park, H. S., Shiratori, T., Matthews, I., and Sheikh, Y. (2015). 3d trajectory reconstruction under
perspective projection. International Journal of Computer Vision (IJCV).

103

Raguram, R., Chum, O., Pollefeys, M., Matas, J., and Frahm, J. (2013). Usac: a universal framework
for random sample consensus. IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI).

Ramalingam, S. and Brand, M. (2013). Lifting 3d manhattan lines from a single image. In IEEE
International Conference on Computer Vision (ICCV).

Rao, C., Gritai, A., Shah, M., and Syeda-Mahmood, T. (2003). View-invariant alignment and
matching of video sequences. In IEEE International Conference on Computer Vision (ICCV).

Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. (2011). ORB: An Efficient Alternative to
SIFT or SURF. In IEEE International Conference on Computer Vision (ICCV).

Saxena, A., Chung, S. H., and Ng, A. Y. (2008). 3d depth reconstruction from a single still image.
International Journal of Computer Vision (IJCV).

Scharstein, D. and Pal, C. (2007). Learning conditional random fields for stereo. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).

Scharstein, D. and Szeliski, R. (2002). A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. International Journal of Computer Vision (IJCV).

Schönberger, J. L., Berg, A. C., and Frahm, J.-M. (2015). Paige: Pairwise image geometry encoding
for improved efficiency in structure-from-motion. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

Shen, S. (2013). Accurate multiple view 3d reconstruction using patch-based stereo for large-scale
scenes. In IEEE Transactions on Image Processing (TIP).

Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., and Blake,
A. (2011). Real-Time Human Pose Recognition in Parts from Single Depth Images. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

Shrestha, P., Barbieri, M., Weda, H., and Sekulovski, D. (2010). Synchronization of multiple camera
videos using audio-visual features. IEEE Transactions on Multimedia.

Snavely, N., Seitz, S., and Szeliski, R. (2006). Photo tourism: Exploring photo collections in 3D.
ACM Transactions on Graphics.

Snavely, N., Seitz, S. M., and Szeliski, R. (2008). Modeling the world from internet photo collections.
International Journal of Computer Vision (IJCV).

Strecha, C., Fransens, R., and Gool, L. V. (2004). Wide-baseline stereo from multiple views:
a probabilistic account. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Strecha, C., Fransens, R., and Gool, L. V. (2006). Combined depth and outlier estimation in
multi-view stereo. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

104

Strecha, C., von Hansen, W., Gool, L. V., Fua, P., and Thoennessen, U. (2008). On benchmarking
camera calibration and multi-view stereo for high resolution imagery. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Sturm, P. F. and Maybank, S. J. (1999). On plane-based camera calibration: A general algorithm,
singularities, applications. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Sun, J., Li, Y., Kang, S. B., and Shum, H.-Y. (2005). Symmetric stereo matching for occlusion
handling. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Sun, J., Shum, H.-Y., and Zheng, N.-N. (2002). Stereo matching using belief propagation. In
European Conference on Computer Vision (ECCV).

Tomasi, C. and Kanade, T. (1992). Shape and motion from image streams under orthography: a
factorization method. International Journal of Computer Vision (IJCV).

Torresani, L., Hertzmann, A., and Bregler, C. (2008). Nonrigid structure-from-motion: Estimating
shape and motion with hierarchical priors. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 30(5):878–892.

Tuytelaars, T. and Gool, L. V. (2004). Synchronizing video sequences. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Tylecek, R. and Sara, R. (2010). Refinement of surface mesh for accurate multi-view reconstruction.
International Journal of VR.

Valmadre, J. and Lucey, S. (2012). General trajectory prior for non-rigid reconstruction. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

Valmadre, J., Zhu, Y., Sridharan, S., and Lucey, S. (2012). Efficient articulated trajectory reconstruc-
tion using dynamic programming and filters. In European Conference on Computer Vision
(ECCV).

Ventura, J. and Höllerer, T. (2008). Depth compositing for augmented reality.

Vidal, R. and Abretske, D. (2006). Nonrigid shape and motion from multiple perspective views. In
European Conference on Computer Vision (ECCV).

Wikipedia (2014). Cayley’s formula. http://en.wikipedia.org/wiki/Cayley’s formula.

Wilson, K. and Snavely, N. (2013). Network principles for sfm: Disambiguating repeated structures
with local context. In IEEE International Conference on Computer Vision (ICCV).

Wu, C. (2013). Towards Linear-Time Incremental Structure from Motion. In International
Conference on 3D Vision (3DV).

Wu, C., Agarwal, S., Curless, B., and Seitz, S. M. (2011). Multicore Bundle Adjustment. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

105

Xiao, J., Chai, J., and Kanade, T. (2004). A closed-form solution to non-rigid shape and motion
recovery. In European Conference on Computer Vision (ECCV).

Xiao, J., Chen, J., Yeung, D.-Y., and Quan, L. (2008). Learning two-view stereo matching. In
European Conference on Computer Vision (ECCV).

Yan, J., Cho, M., Zha, H., Yang, X., and Chu, S. (2015a). Multi-graph matching via affinity
optimization with graduated consistency regularization. IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI).

Yan, J., Zhang, C., Zha, H., Liu, W., Yang, X., and Chu, S. M. (2015b). Discrete hyper-graph
matching.

Yang, R. and Pollefeys, M. (2003). Multi-resolution real-time stereo on commodity graphics
hardware. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Yoon, K.-J. and Kweon, I. S. (2006). Adaptive support-weight approach for correspondence search.
IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI).

Zach, C. (2008). Fast and high quality fusion of depth maps. In Proceedings of the international
symposium on 3D data processing, visualization and transmission (3DPVT).

Zaharescu, A., Boyer, E., and Horaud, R. P. (2011). Topologyadaptive mesh deformation for surface
evolution, morphing, and multi-view reconstruction. In IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI).

Zhang, C., Gao, J., Wang, O., Georgel, P., Yang, R., Davis, J., Frahm, J.-M., and Pollefeys, M.
(2014). Personal photograph enhancement using internet photo collections. IEEE Transactions
on Visualization and Computer Graphics.

Zhang, J., Marszalek, M., Lazebnik, S., and Schmid, C. (2006). Local features and kernels for
classification of texture and object categories: A comprehensive study. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI).

Zhao, W., Chellappa, R., Phillips, P. J., and Rosenfeld, A. (2003). Face recognition: a literature
survey. Acm Computing Surveys (CSUR).

Zheng, E., Dunn, E., Jojic, V., and Frahm, J. (2014a). Patchmatch based joint view selection
and depthmap estimation. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Zheng, E., Dunn, E., Raguram, R., and Frahm, J.-M. (2012). Efficient and scalable depthmap fusion.
In British Machine Vision Conference (BMVC).

Zheng, E., Ji, D., Dunn, E., and Frahm, J.-M. (2015). Sparse dynamic 3d reconstruction from
unsynchronized videos. In IEEE International Conference on Computer Vision (ICCV).

106

Zheng, E., Wang, K., Dunn, E., and Frahm, J. (2014b). Joint Object Class Sequencing and Trajectory
Triangulation (JOST). In European Conference on Computer Vision (ECCV).

Zheng, E. and Wu, C. (2015). Structure from Motion Using Structure-less Resection. In IEEE
International Conference on Computer Vision (ICCV).

Zheng, Y., Sugimoto, S., Sato, I., and Okutomi, M. (2014c). A general and simple method for
camera pose and focal length determination. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

Zhu, X. and Ramanan, D. (2012). Face detection, pose estimation, and landmark localization in the
wild. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Zhu, Y., Cox, M., and Lucey, S. (2011). 3d motion reconstruction for real-world camera motion. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Zhuo, W., Salzmann, M., He, X., and Liu, M. (2015). Indoor scene structure analysis for single
image depth estimation. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

107

	TITLE
	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Thesis Statement
	Outline of Contributions

	Related work
	Camera Parameter Estimation
	Static Scene Reconstruction
	Multiview Depthmap Estimation
	Robustness
	Efficiency
	Point Cloud and Mesh Generation

	Dynamic Object Reconstruction
	Trajectory Triangulation
	Sequencing and Synchronization
	Articulated Object Reconstruction
	Non-rigid SfM
	Single Image Reconstruction

	PatchMatch Based Joint View Selection and Depthmap Estimation
	Introduction
	Joint View Selection and Depth Estimation
	PatchMatch Propagation for Stereo
	Graphical Model
	Variational Inference
	Update Schedule
	Algorithm Integration

	Experiments
	Conclusion

	Joint Object Class Sequencing and Trajectory Triangulation (JOST)
	Introduction
	Joint Object Class Sequencing and Trajectory Triangulation
	Spatial Registration
	Object Detection and Motion Tangent Estimation
	Object Class Trajectory Triangulation
	Generalized Trajectory Graph
	GMST
	Continuous Refinement
	Reconstructability Analysis

	Object Detector and Motion Tangent Estimation
	Experiments
	Conclusion

	Self-expressive Dictionary Learning for Dynamic 3D Reconstruction
	Introduction
	Problem and Notation
	Principle
	Method
	Cost Function
	Dictionary Space Reduction in Self-representation
	Coefficient Relationships: psiallT
	Sequencing Information: psiallX

	Parameterization of paramallX
	Noisy Observations
	Missing Data

	Optimization
	Optimize Over optimizeoverallX
	Optimize Over optimizeoverallT
	Initialization of the Optimization

	Analysis and Discussion
	Representation of Reconstruction Errors
	System Condition
	Shape Approximation Residual
	Importance of Image Sequencing

	Experiments
	Simulation
	Accuracy
	Data Robustness
	Comparison to Other Methods

	Real Datasets

	Conclusion and Contributions

	Discussion
	Future work
	Extensions to PatchMatch-based Joint View Selection and Depthmap Estimation
	Extensions to JOST
	Extensions to Dynamic Object Reconstruction from Unsynchronized Videos

	BIBLIOGRAPHY

