769 research outputs found

    A Generic Checkpoint-Restart Mechanism for Virtual Machines

    Full text link
    It is common today to deploy complex software inside a virtual machine (VM). Snapshots provide rapid deployment, migration between hosts, dependability (fault tolerance), and security (insulating a guest VM from the host). Yet, for each virtual machine, the code for snapshots is laboriously developed on a per-VM basis. This work demonstrates a generic checkpoint-restart mechanism for virtual machines. The mechanism is based on a plugin on top of an unmodified user-space checkpoint-restart package, DMTCP. Checkpoint-restart is demonstrated for three virtual machines: Lguest, user-space QEMU, and KVM/QEMU. The plugins for Lguest and KVM/QEMU require just 200 lines of code. The Lguest kernel driver API is augmented by 40 lines of code. DMTCP checkpoints user-space QEMU without any new code. KVM/QEMU, user-space QEMU, and DMTCP need no modification. The design benefits from other DMTCP features and plugins. Experiments demonstrate checkpoint and restart in 0.2 seconds using forked checkpointing, mmap-based fast-restart, and incremental Btrfs-based snapshots

    Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

    Get PDF
    The rollback operation is a fundamental building block to support the correct execution of a speculative Time Warp-based Parallel Discrete Event Simulation. In the literature, several solutions to reduce the execution cost of this operation have been proposed, either based on the creation of a checkpoint of previous simulation state images, or on the execution of negative copies of simulation events which are able to undo the updates on the state. In this paper, we explore the practical design and implementation of a state recoverability technique which allows to restore a previous simulation state either relying on checkpointing or on the reverse execution of the state updates occurred while processing events in forward mode. Differently from other proposals, we address the issue of executing backward updates in a fully-transparent and event granularity-independent way, by relying on static software instrumentation (targeting the x86 architecture and Linux systems) to generate at runtime reverse update code blocks (not to be confused with reverse events, proper of the reverse computing approach). These are able to undo the effects of a forward execution while minimizing the cost of the undo operation. We also present experimental results related to our implementation, which is released as free software and fully integrated into the open source ROOT-Sim (ROme OpTimistic Simulator) package. The experimental data support the viability and effectiveness of our proposal

    A New Concurrent Checkpoint Mechanism for Embeded Multi-Core Systems

    Get PDF
    his paper presents a new transparent, incremental, concurrent checkpoint mechanism for embedded multi-core systems. It allows the checkpointed process (also called checkpointee) to continue running without stopping while checkpoints are set to a large extent. Through tracing TLB misses to block the accesses to target memory pages first time while dumping memory pages (the most time-consuming step when setting a checkpoint). At that time, a kernel thread, called checkpointer, copies the memory access target pages to the designated memory buffer for constructing a consistent state of the checkpointee, and then resumes the memory accesses. From the experimental results, in contrast to a traditional concurrent checkpoint system, the proposed mechanism reduces the downtime of the checkpointed process by more than 10.1 %. Moreover, the incremental checkpointing functionality has been implemented in this new concurrent checkpoint mechanism as well. Compared with full checkpointing, incremental checkpointing can reduce the checkpoint time more than 95.5 % and 89.2 % while the benchmark is the matrix multiplication at the checkpoint intervals of 10 seconds and 20 seconds, respectively

    Autonomic State Management for Optimistic Simulation Platforms

    Get PDF
    We present the design and implementation of an autonomic state manager (ASM) tailored for integration within optimistic parallel discrete event simulation (PDES) environments based on the C programming language and the executable and linkable format (ELF), and developed for execution on x8664 architectures. With ASM, the state of any logical process (LP), namely the individual (concurrent) simulation unit being part of the simulation model, is allowed to be scattered on dynamically allocated memory chunks managed via standard API (e.g., malloc/free). Also, the application programmer is not required to provide any serialization/deserialization module in order to take a checkpoint of the LP state, or to restore it in case a causality error occurs during the optimistic run, or to provide indications on which portions of the state are updated by event processing, so to allow incremental checkpointing. All these tasks are handled by ASM in a fully transparent manner via (A) runtime identification (with chunk-level granularity) of the memory map associated with the LP state, and (B) runtime tracking of the memory updates occurring within chunks belonging to the dynamic memory map. The co-existence of the incremental and non-incremental log/restore modes is achieved via dual versions of the same application code, transparently generated by ASM via compile/link time facilities. Also, the dynamic selection of the best suited log/restore mode is actuated by ASM on the basis of an innovative modeling/optimization approach which takes into account stability of each operating mode with respect to variations of the model/environmental execution parameters

    Application-level differential checkpointing for HPC applications with dynamic datasets

    Get PDF
    High-performance computing (HPC) requires resilience techniques such as checkpointing in order to tolerate failures in supercomputers. As the number of nodes and memory in supercomputers keeps on increasing, the size of checkpoint data also increases dramatically, sometimes causing an I/O bottleneck. Differential checkpointing (dCP) aims to minimize the checkpointing overhead by only writing data differences. This is typically implemented at the memory page level, sometimes complemented with hashing algorithms. However, such a technique is unable to cope with dynamic-size datasets. In this work, we present a novel dCP implementation with a new file format that allows fragmentation of protected datasets in order to support dynamic sizes. We identify dirty data blocks using hash algorithms. In order to evaluate the dCP performance, we ported the HPC applications xPic, LULESH 2.0 and Heat2D and analyze them regarding their potential of reducing I/O with dCP and how this data reduction influences the checkpoint performance. In our experiments, we achieve reductions of up to 62% of the checkpoint time.This project has received funding from the European Unions Seventh Framework Programme (FP7/2007-2013) and the Horizon 2020 (H2020) funding framework under grant agreement no. H2020-FETHPC-754304 (DEEP-EST); and from the European Unions Horizon 2020 research and innovation programme under the LEGaTO Project (legato- project.eu), grant agreement No 780681.Peer ReviewedPostprint (author's final draft

    Improving Scalability of Application-Level Checkpoint-Recovery by Reducing Checkpoint Sizes

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in New Generation Computing. The final authenticated version is available online at: https://doi.org/10.1007/s00354-013-0302-4[Abstract] The execution times of large-scale parallel applications on nowadays multi/many-core systems are usually longer than the mean time between failures. Therefore, parallel applications must tolerate hardware failures to ensure that not all computation done is lost on machine failures. Checkpointing and rollback recovery is one of the most popular techniques to implement fault-tolerant applications. However, checkpointing parallel applications is expensive in terms of computing time, network utilization and storage resources. Thus, current checkpoint-recovery techniques should minimize these costs in order to be useful for large scale systems. In this paper three different and complementary techniques to reduce the size of the checkpoints generated by application-level checkpointing are proposed and implemented. Detailed experimental results obtained on a multicore cluster show the effectiveness of the proposed methods to reduce checkpointing cost.Ministerio de Ciencia e Innovación; TIN2010-16735Galicia. Consellería de Economía e Industria; 10PXIB105180P

    Benchmarking Memory Management Capabilities within ROOT-Sim

    Get PDF
    In parallel discrete event simulation techniques, the simulation model is partitioned into objects, concurrently executing events on different CPUs and/or multiple CPUCores. In such a context, run-time supports for logical time synchronization across the different simulation objects play a central role in determining the effectiveness of the specific parallel simulation environment. In this paper we present an experimental evaluation of the memory management capabilities offered by the ROme OpTimistic Simulator (ROOT-Sim). This is an open source parallel simulation environment transparently supporting optimistic synchronization via recoverability (based on incremental log/restore techniques) of any type of memory operation affecting the state of simulation objects, i.e., memory allocation, deallocation and update operations. The experimental study is based on a synthetic benchmark which mimics different read/write patterns inside the dynamic memory map associated with the state of simulation objects. This allows sensibility analysis of time and space effects due to the memory management subsystem while varying the type and the locality of the accesses associated with event processin

    Optimal Checkpointing for Secure Intermittently-Powered IoT Devices

    Full text link
    Energy harvesting is a promising solution to power Internet of Things (IoT) devices. Due to the intermittent nature of these energy sources, one cannot guarantee forward progress of program execution. Prior work has advocated for checkpointing the intermediate state to off-chip non-volatile memory (NVM). Encrypting checkpoints addresses the security concern, but significantly increases the checkpointing overheads. In this paper, we propose a new online checkpointing policy that judiciously determines when to checkpoint so as to minimize application time to completion while guaranteeing security. Compared to state-of-the-art checkpointing schemes that do not account for the overheads of encrypted checkpoints we improve execution time up to 1.4x.Comment: ICCAD 201
    corecore