
Improving Scalability of Application-Level Checkpoint-Recovery by Reducing Checkpoint Sizes1

Improving Scalability of Application-Level
Checkpoint-Recovery by Reducing Check-
point Sizes

Iván Cores, Gabriel Rodŕıguez, Maŕıa J. Mart́ın, Patricia González
and Roberto R. Osorio

Computer Architecture Group
University of A Coruña, Spain

ivan.coresg@udc.es

Abstract The execution times of large-scale parallel applications on

nowadays multi/many-core systems are usually longer than the mean time

between failures. Therefore, parallel applications must tolerate hardware

failures to ensure that not all computation done is lost on machine failures.

Checkpointing and rollback recovery is one of the most popular techniques

to implement fault-tolerant applications. However, checkpointing paral-

lel applications is expensive in terms of computing time, network utiliza-

tion and storage resources. Thus, current checkpoint-recovery techniques

should minimize these costs in order to be useful for large scale systems.

In this paper three different and complementary techniques to reduce the

size of the checkpoints generated by application-level checkpointing are

proposed and implemented. Detailed experimental results obtained on

a multicore cluster show the effectiveness of the proposed methods to

reduce checkpointing cost.

§1 Introduction
High-performance computing (HPC) systems tend to increase their num-

ber of processors from year to year. Capello et al. 3) and Schroeder et al. 37) state

that failure rates depend mostly on system size and are roughly proportional to

the number of processors in a system. Thus, fault-tolerance techniques need to

be applied to parallel applications running in HPC environments to guarantee

computation progress.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Universidade da Coruña

https://core.ac.uk/display/199450281?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Iván Cores, Gabriel Rodŕıguez, Maŕıa J. Mart́ın, Patricia González and Roberto R. Osorio

Many methods for achieving fault tolerance in parallel applications exist

in the literature, checkpoint-recovery 7) being the most popular. It periodically

saves the computation state to stable storage, so that the application execution

can be resumed by restoring such state. The overhead of saving checkpoints

to disk is the main performance cost in checkpoint-recovery methods. This

cost could become prohibitive for parallel applications running on large-scale

facilities 3, 38), where the I/O bandwidths do not increase as quickly as their

computational capability 17, 29) and the checkpoint frequency must be increased

to manage the higher failure rate.

There are two fundamental approaches to checkpointing: system-level

checkpointing (SLC), implemented at the operating system level, and application-

level checkpointing (ALC), where the application program saves and restores its

own state. In SLC the whole state of the processes (program counter, regis-

ters and memory) is saved to stable storage. The most important advantage

of this approach is its transparency. However, it has two important drawbacks.

First, storing the whole application state will have a higher associated cost than

storing just necessary data. Second, it is inherently non-portable. We say a

checkpointing technique is portable if it allows the use of state files to recover

the state of a failed process on a different machine, potentially binary incom-

patible or using different operating systems or libraries. The basic condition

that has to be fulfilled in order to achieve potential portability is not to store

any low-level data along with the process state. Therefore, all SLC approa-

ches are not portable. Application-level checkpointing, on the other hand, is

able to obtain better performance by storing only necessary data. Additionally,

it enables both data portability, by storing data using portable representation

formats, and communication-layer independence, by implementing the solution

at a higher level of abstraction. The drawback is the need for analyses of the

application code in order to identify the state that needs to be stored.

This work proposes and evaluates different techniques to reduce check-

point file sizes and, thus, the computational and I/O cost of checkpointing in

ALC approaches. It’s main contributions are:

• A hash-based implementation of incremental checkpointing for ALC ap-

proaches, which includes the elimination of regions of memory that con-

tain only zeros with no additional computational cost.

• A simple compression algorithm specially designed for checkpoint files.

• An experimental comparison of SLC and ALC when using different check-

Improving Scalability of Application-Level Checkpoint-Recovery by Reducing Checkpoint Sizes3

pointing optimization techniques.

We believe that ALC implementations will be needed to guarantee scal-

able solutions on large-scale architectures. Additionally, the advent of the Cloud

makes potential portability of ALC methods a valuable feature. The rest of the

paper is organized as follows. Section 2 describes related work. Section 3 pro-

poses three different and complementary techniques to optimize the checkpoint

sizes in ALC solutions: live variable analysis to avoid storing dead variables;

incremental checkpointing and zero-blocks exclusion to store only modified data

and to avoid storing null elements; and data compression to remove redundant

information. Section 4 explains the implementation details of those techniques

on an ALC tool. Section 5 evaluates the performance of the proposed methods.

Finally, Section 6 concludes the paper.

§2 Related Work
Although checkpoint/restart is the most common solution to endow sci-

entific applications with fault tolerance, its cost in terms of computing time,

network utilization or storage resources can be a limitation for large scale sys-

tems. There exist in the literature a number of techniques to optimize the cost

of checkpointing.

Checkpoint file size is the most important factor in determining check-

pointing performance. As such, the reduction of the amount of stored state is

one of the usual goals of checkpoint optimizations. However, most of the tech-

niques described in the bibliography are applied to SLC approaches, since ALC

solutions are less general, and they already achieve smaller checkpoint files. Nev-

ertheless, in order to be useful for today large scale systems, ALC approaches

will also need to minimize checkpoint file sizes. In this paper, different strategies

to reduce checkpoint file sizes in ALC are proposed.

Incremental checkpointing is one of the most popular techniques to re-

duce checkpoint file sizes. This approach generates two types of checkpoints: full

and incremental. Full checkpoints contain all the data that are to be stored. In-

cremental checkpoints store only the data that have changed since the previous

one. The restart process starts from the most recent full checkpoint, and then

orderly applies the changes reflected in the subsequent incremental ones. A num-

ber of approaches can be found in the bibliography to implement incremental

checkpoint in SLC. One of them is to use the virtual memory page protection

mechanism to track changed memory pages 34). Another option is to use a

4 Iván Cores, Gabriel Rodŕıguez, Maŕıa J. Mart́ın, Patricia González and Roberto R. Osorio

kernel-level memory management module that employs a page table dirty bit

scheme 12). Both solutions require memory protection support from the under-

lying hardware along with support from the OS to be able to handle page-fault

exceptions. This feature, although very common, is not universally available.

An alternative to page-based checkpoint is hash-based checkpoint 1), which uses

a secure hash function to obtain a unique identifier for each variable-sized block

of application memory to be written into state files. This value is stored and

used to detect changes in memory blocks. In this paper this technique is adapted

for ALC solutions. Using an application-level approach the number of memory

blocks to be checked at runtime is reduced, which minimizes the size of the hash

tables to be calculated and stored, improving the overhead. Additionally, in our

approach the size of the generated checkpoint files is further reduced through

the elimination of those memory blocks that contain only zeros.

Another means to reduce checkpoint file sizes is data compression. This

technique has been implemented, for instance, in the ickp checkpointer 32), Er-

rMgr 15) and the CATCH compiler 20). In ickp, a predictive algorithm is presented

that offers very low overhead, but only performs well with some highly com-

pressible sources, as it often produces data expansion. ErrMgr uses DEFLATE

(gzip) 16) and shows results mainly for highly-compressible data. For less com-

pressible data, the overhead offsets any compression benefit. In CATCH, the

general purpose LZW 16) algorithm is used, which typically offers slightly worse

performance than DEFLATE with similar overhead. CATCH also uses a heuris-

tic algorithm to determine the optimal places, in terms of checkpoint size, to

insert checkpoints. Based on particular features observed in checkpoint files, a

new and faster compression algorithm is also proposed in this paper. This new

algorithm addresses the trade-off between compression efficiency and overhead.

Memory exclusion is another powerful approach for reducing the size of

checkpoint files in SLC approaches. Plank et al. 30) proposed a compiler-assisted

solution to automate the memory exclusion process. The user is responsible

for inserting EXCLUDE HERE directives which are translated by the compiler into

include bytes() and exclude bytes() function calls after analyzing the data

flow of the program. Directive placement is critical to checkpoint size savings and

performance. In this paper we propose a method based in live variable analysis

to select only relevant variables in ALC. The inclusion approach avoids the

complex memory patterns that appear in exclusion-based approaches, which may

improve runtime performance. This solution does not require manual placement

Improving Scalability of Application-Level Checkpoint-Recovery by Reducing Checkpoint Sizes5

of a directive to mark analysis points, since these are optimally detected by an

interprocedural analysis.

All the techniques mentioned so far focus on reducing checkpoint file

sizes. Another way to optimize the computational and I/O cost of checkpoint-

ing is to avoid the storage of checkpoint files in a parallel file system. Plank et al.

proposed to replace stable storage with memory and processor redundancy 33).

Recent works 4, 5, 13, 43) have adapted the technique, known as diskless checkpoint-

ing, to contemporary architectures. The main drawback of diskless checkpoint-

ing are its large memory requirements. As such, this scheme is only adequate

for applications with a relatively small memory footprint at checkpoint. Other

recent solutions focus on the use of non-volatile memory technology, like solid-

state disks (SSDs) to keep checkpoint data 21). SSDs offer excellent read/write

throughput when compared to secondary storage and thus they can help to re-

duce disk I/O load. Moody et al. propose a multi-level checkpoint system that

writes checkpoints to RAM, Flash, or disk on the compute nodes in addition to

the parallel file system 23).

Other works focus on minimizing the network and file system contention

caused by the parallel checkpointing by reducing the number of simultaneous

checkpoints. Norman et al. identify at compile-time recovery lines formed by

staggered checkpoint calls so that the concurrent writing of checkpoint files is

minimized at run-time 28). In 18) the data layout of the checkpoint files are rear-

ranged to reduce the number of files serviced by each I/O server. Additionally,

the write operations of concurrent checkpoints are serialized on each computer

node to further improve the checkpointing performance.

Accelerators have been also considered for reducing checkpointing over-

head 9, 11). Mainly, these works focus on computing hash functions using GPUs.

Whereas significant speed-ups are obtained, hash calculation is not a bottleneck

in the checkpointing process. Data compression is an interesting target for hard-

ware accelerators that we intend to explore as future work. Up to the present

moment, we have not found any implementation in the literature.

As shown above, there are multiple and non-exclusive alternatives to

reduce the overhead associated to checkpoint-recovery. We think that parallel

jobs will need to combine several of these techniques in order to scale in future

HPC platforms.

Finally, some researches are currently evaluating the applicability of

other fault-tolerance mechanisms such as process replication 10, 6), proactive mi-

6 Iván Cores, Gabriel Rodŕıguez, Maŕıa J. Mart́ın, Patricia González and Roberto R. Osorio

gration 42) or algorithmic-based fault-tolerance 2).

§3 Checkpoint Size Optimization on Application-
Level Checkpointing

The basic difference between SLC and ALC, in terms of state file size

optimizations, surges from the fact that SLC sees the application memory as a

single continuum, while ALC distinguishes a disperse set of contiguous memory

blocks. Each block contains memory allocated to one or more variables, depend-

ing on the aliasing relationships of the application data. The following sections

deal with the utilization of different checkpoint size optimization solutions into

an application-level approach.

3.1 Live variable analysis
The knowledge of application code and memory in ALC can be used

to select those variables that are live during the creation of state files, avoiding

storage of dead variables. Depending on the considered application, applying

this technique can significantly reduce checkpoint file sizes.

The identification of these variables can be performed at compile time

through a standard live variable analysis. A variable x is said to be live at a

given statement s in a program if there is a control flow path from s to a use of

x that contains no definition of x prior to its use. The set LVin of live variables

at a statement s can be calculated using the following expression:

LVin(s) = (LVout(s)−DEF (s)) ∪ USE(s) (1)

where LVout(s) is the set of live variables after executing statement s, and

USE(s) and DEF (s) are the sets of variables used and defined by s, respec-

tively. The live variable analysis should take into account interprocedural data

flow.

Checkpoints in application-level approaches are usually triggered by an

explicit call to a checkpoint function in the application code. This guarantees

that checkpoints are not performed during a library or system call, which may

have internal state unknown to the checkpointer, but rather inside user-level

code. In this way, checkpoint callsites are limited and known at compile time,

which allows for the live variable analysis to be bounded and not span the whole

application code. For each checkpoint callsite ci, it is only necessary to store the

set of variables which are live when the control flow enters the callsite, LVin(ci).

Improving Scalability of Application-Level Checkpoint-Recovery by Reducing Checkpoint Sizes7

3.2 Incremental checkpointing and zero-blocks exclusion
The most popular technique for checkpoint file size reduction in SLC

approaches is incremental checkpointing. This technique involves creating two

different types of checkpoints: full and incremental. Full checkpoints contain

all the application data. Incremental checkpoints only contain data that has

changed since the last checkpoint. Usually, a fixed number of incremental check-

points is created in between two full ones. During a restart, the state is restored

by using the most recent full checkpoint file, and applying, in an ordered manner,

all the differences before resuming the execution.

As mentioned in Section 2, there exist in the literature different solu-

tions to implement incremental checkpointing in SLC approaches. They can be

mainly classified into hash-based 1, 25) or page-based 12, 34, 8, 31, 41). In ALC it

is not recommendable to track changes to memory blocks using a page-based

method, as array variables do not necessarily start at page boundaries. Evaluat-

ing memory changes for each array as a whole is also inadvisable, following the

locality principle. The best compromise is to divide array variables into chunks

of memory of a previously specified size and control changes into these chunks

using a secure hash function. The calculated hash value for each chunk is stored

in memory and used for comparison when creating incremental checkpoints.

When working with real scientific applications it is well known that

quite often many elements of the arrays are null, resulting in memory blocks

that contain only zeros. Therefore, a possible optimization to further reduce

the checkpoint file size is to avoid storage of those zero-blocks. In addition to

control the changes into memory blocks, the hash function may also be used

to detect zero-blocks. When a zero-block is detected, a small marker is saved

into the checkpoint file to indicate that the block is null, instead of dumping its

contents. During restart this marker is identified and the target memory is filled

with zeros, which recovers the original state at a negligible cost in terms of both

performance and disk usage.

The idea of not storing zero-blocks has a certain similarity to the tech-

nique used in the SLC tool Berkeley Lab’s Checkpoint/Restart (BLCR) Li-

brary 19) to exclude zero pages, that is, those that have never been touched and

logically contain all zeros.

3.3 Data compression
Checkpoint files may contain redundant information that can be removed

8 Iván Cores, Gabriel Rodŕıguez, Maŕıa J. Mart́ın, Patricia González and Roberto R. Osorio

by means of data compression. Efficient compression algorithms such a LZMA

and DEFLATE 16) can find hidden patterns in data and thus reduce the total size

of the files. However, highly-efficient compression requires large computational

resources. Whereas DEFLATE (zlib), uses less than 1MB of RAM, the more

advanced LZMA (7-zip) would require up to 4 GB and be 1 or 2 orders of

magnitude slower.

Hence, a fast compression algorithm is proposed in this work that ad-

dresses the trade-off between compression efficiency and overhead. We use the

well-known technique of substituting repeated chains of bytes by special codes

that mark the position of the chain and its length.

A string of bytes is processed sequentially. For each incoming byte, a

match within the last 16 processed bytes is sought. The aim is finding the longest

possible chain of matches, avoiding encoding each byte individually. Those bytes

for which a match cannot be found, are known as literals. The compressed stream

consists of a description of the literals, and the position and size of the matched

chains. Additionally, entropy coding is applied, using shorter codes for the most

common descriptors.

Figure 1 shows an example of the encoding process, where alphabet

letters are used instead of numeric 8-bit values. A 16-byte buffer keeps the last

processed bytes. A new incoming byte is compared with the content of the

buffer, producing a 16-bit mask. The buffer is then updated by shifting-in the

new byte. In Figure 1 we can see that 2 literals (’k’ and ’l’) are found first. Next,

there are 3 candidate positions that match ’a’ and ’b’. The length of the match

keeps growing, but only 1 candidate remains. A logic AND between the current

mask and the previous one is a simple way of detecting the end of the matching

string. In the example, a new match starts, but it could also be a literal. Note

that the length of the matches is not limited to the size of the buffer.

The number of literals (2) and their values are encoded, together with

the size of the matching string (5) and its position (12 bytes from the starting

point). The way in which those values are encoded was guided by the analysis

of many gigabytes of data.

Essentially, an 8-bit token is built by combining the number of literals

(up to 15 in a row) and the size of the match (from 1 to 16), as these values show

strong correlation. Escape codes are used for longer chains of literals or matches.

The tokens are then compressed using static Huffman codes 14). The literals are

not compressed, as they exhibit high entropy. And, finally, the positions are

Improving Scalability of Application-Level Checkpoint-Recovery by Reducing Checkpoint Sizes9

k ,
l ,
a 1 1 1 ,
b ,
c 0 ,
d 0 ,
e ,
h 0 1 ,
j ,

efab cabc defg abhj 0000 0000 0000 0000 no match 1 literal
fabc abcd efga bhjk 0000 0000 0000 0000 no match 2 literals
abca bcde fgab hjkl 00 0000 00 0 0000 new match 2 literals
bcab cdef gabh jkla 1001 0000 0010 0000 2 matches 2 literals
cabc defg abhj klab 1001 0000 00 0 0000 3 matches 2 literals
abcd efga bhjk labc 001 0000 0000 0000 4 matches 2 literals
bcde fgab hjkl abcd 0001 0000 0000 0000 5 matches 2 literals
cdef gabh jkla bcde 000 000 0000 0000 new match 0 literals
defg abhj klab cdeh 0000 0001 0000 0000 2 matches 0 literals

 16-byte buffer new comparison mask match evolution

Fig. 1 Example of pattern matching for data compression

compressed using a semi-adaptive scheme.

In the example in Figure 1, the inputs from ’k’ to ’e’ would be encoded

as: (2,5) + k + l + 12. The resulting bit pattern could be: 111111110100000

KKKKKKKK LLLLLLLL 111100. Hence, 7 bytes would be encoded using 37

bits instead of 56, a 34% gain.

Compared to general purpose algorithms, this proposal allows fast par-

allel search instead of using iterative search guided by hash keys. Focusing on

just the nearest 16 values performs well as matches separated by large distances

are not as common in checkpoints as they are in text files. In general, the most

common patterns are: runs of values, and repeated exponents in floating point

arrays.

Also, we use static Huffman codes combined with simple adaptability.

Static means that the codes are the same for all the files, assuming that they all

have the same statistical distribution of positions and lengths. We have found

that this is a reasonable assumption for checkpoint files, contrarily to the general

case. Using fixed, static codes is significantly faster than using dynamic ones

and enables building optimized decoders.

§4 Implementation
The three techniques described in Section 3 have been implemented on

CPPC 36), an open-source checkpointing tool available under GPL license from

http://cppc.des.udc.es.

4.1 CPPC overview
CPPC is an application-level checkpointing tool focused on the insertion

of fault tolerance into long-running message-passing applications. It is designed

10Iván Cores, Gabriel Rodŕıguez, Maŕıa J. Mart́ın, Patricia González and Roberto R. Osorio

Fault-Tolerant
Parallel Application

Fig. 2 Integration of a parallel application with the CPPC framework

with a special focus on portability: it uses portable code and protocols, and

generates portable checkpoint files, allowing for execution restart on different

architectures and/or operating systems.

CPPC appears to the user as a compiler tool and a runtime library. The

integration between the application and the CPPC framework is automatically

performed by the CPPC compiler, a source-to-source tool that converts an ap-

plication code into an equivalent version with added checkpointing capabilities.

The global process is depicted in Figure 2. At compile time, the CPPC compiler

instruments the code by inserting calls to the CPPC library. At runtime, the ap-

plication will send petitions to the CPPC controller. From the structural point

of view, the controller consists of three basic layers: a facade, that keeps track

of the state to be stored when the next checkpoint is reached; the checkpointing

layer, which gathers, manages and puts together all data to be stored into the

state files; and a writing layer which decouples the other two layers from the spe-

cific file format used for state storage. Currently CPPC writes checkpoint files

using the 5th version of the Hierarchical Data Format (HDF5) 39), a data format

and associated library for the portable transfer of graphical and numerical data

between computers.

4.2 Live variable analysis
The live variable analysis explained in Section 3.1 is one of the code

transformations performed by the CPPC compiler.

When dealing with calls to precompiled procedures located in external

libraries, the default behavior is to assume all parameters to be of input type.

As such, all function parameters will be included in the set LVin(sp), being sp

the analyzed procedure call.

Improving Scalability of Application-Level Checkpoint-Recovery by Reducing Checkpoint Sizes11

Since the proposed procedure is entirely performed at compile time, it

adds no overhead during checkpoint operation. In this way, this technique can

always improves the efficiency of checkpointing, regardless of the actual reduction

obtained in checkpoint file sizes.

4.3 Incremental checkpointing and zero-blocks exclusion
Hash functions are used to detect both changes in memory blocks from

previous checkpoints and zero-blocks that can be excluded in the next check-

point.

For the implementation, CPPC divides array variables into blocks of

memory. The size of these memory blocks may have a great impact on the

performance of both techniques. CPPC allows the user to choose the size to be

used for each particular application. A block size of 8K elements is selected by

default when the user does not specify any size. It experimentally proved to be

a good compromise value.

CPPC also calculates the hash value of each memory block. The choice

of the hash function impacts the correctness, since many hash functions present

a significant probability of collisions, that is, situations where two different mem-

ory blocks are assigned the same hash value. In order to achieve reliable oper-

ation, secure hash functions should be used 26). The implementation in CPPC

allows the user to choose between different secure hash functions, such as MD5

or SHA. The MD5 function is selected by default.

In order to detect zero-blocks the calculated hash values are compared

to the known hash value of a zero-block. To detect changes in the memory

blocks, the hash values calculated in previous checkpoints have to be stored to

be compared with the new ones. In our implementation, the hash codes are

stored into main memory rather than in disk to improve the performance of the

technique.

Only the modified blocks with non-zero elements will be stored in the

checkpoint file. The construction of an incremental checkpoint is depicted in

Figure 3(a). In order to enable full data recovery during restart, some meta-

information needs to be stored together with the checkpoint data. Specifically,

an identifier is stored in the checkpoint file for each modified memory block,

including modified zero-blocks. This identifier indicates the original position of

the block in memory relative to the start of the array. The high-order bit of the

identifier is used to mark the zero-blocks that are not included in the checkpoint

12Iván Cores, Gabriel Rodŕıguez, Maŕıa J. Mart́ın, Patricia González and Roberto R. Osorio

Memory of array A

Checkpoint 1
(Full)

HDD

Memory of array A

0 1 2 3 4 5 6

60 1 2

7

7 9 ...

9 ...8

0 1 2 6 7 9 ...

...

Data block Empty block

Continue
execution

Checkpoint 2
(Incremental)

HDD
52 3 4 6

Block modified
since last ckpt.

3 4 5

H-0 H-1 H-2

H-0 H-1

H-6 H-7 H-9

H-6*H-7 H-9H-3*H-4*H-5*H-2*

0
H-0

Block id

Hash value

8

H-3 H-4 H-5 H-8

H-8

Mark of
empty block

(a) Construction of an incremental checkpoint

Checkpoint 1
(Full)

HDD

Memory of array A

60 1 2 7 9 ...

0 1 2 6 7 9 ...

Data block Empty block

Checkpoint 2 (Incremental)
HDD

52 3 4 6

Overwritten block

3 4 5

Step 1

Step 2

...
Restart

8

Mark of
empty block

(b) Restart from an incremental checkpoint

Fig. 3 Depiction of the incremental checkpointing technique

file but should be restored during recovery. CPPC uses an integer array called

Block ID to store the meta-information. The size overhead of storing this array

can be calculated as:

Overhead = HDF5 labels + sizeof(Block ID) (2)

where HDF5 labels is the number of bytes used by HDF5 to store information

about the Block Id array (148 if the number of elements of Block ID is zero

and 892 in any other case). The size of the array of identifiers can be calculated

as:

sizeof(Block ID) = 4 bytes× (#MBlocks) (3)

where #MBlocks is the number of modified blocks. Thus, the overhead varies

between 148 and 892+(4×#TBlocks) bytes, being #TBlocks the total number

of memory blocks of the application userspace.

In addition to the checkpointing mechanism, the restart mechanism

when using incremental checkpointing also varies. The process of restarting from

incremental checkpoints is shown in Figure 3(b). The last available full check-

point is restored first, and the updates contained in each incremental checkpoint

are then applied in an ordered manner.

Improving Scalability of Application-Level Checkpoint-Recovery by Reducing Checkpoint Sizes13

Checkpoint
data

HDF5
checkpoint file

HDF5
compressed file

Writing Layer

HDF5 core
driver

Compression Write Stable
StorageReadDecompression

16-bit int []
float []

double[]
uchar[]

32-bit int []
32-bit int []

double []
uchar []
uchar []

Operations in memory

Fig. 4 Integration of the compression process in the CPPC writing layer

4.4 Data compression
To compress the checkpoint files, the CPPC writing layer seen in Sec-

tion 4.1 must be extended. The HDF5 library provides users with different file

drivers which map the logical HDF5 address space to different types of storage.

In the current CPPC version the default file driver (SEC2 driver) is used to

dump the HDF5 data directly to stable storage. This driver was substituted by

the HDF5 core driver which constructs the HDF5 file in memory.

The checkpoint and recovery processes using compressed files are shown

in Figure 4. In order to perform the compression step without storing temporary

data to the process local disk first, the HDF5 File Image Operations available

since HDF5 v1.8.9 are used. These are a set of functions that allow to work with

HDF5 files directly in memory. Disk I/O is not required when files are opened,

created, read from, or written to. Once the state file is committed to memory,

the compression routine is invoked. Afterwards, the compressed data are stored

into stable storage. The decompression process is the reverse: the compressed

file is read from stable storage to local memory, data are decompressed, and

finally the HDF5 is read in place. Note that if compression is disabled, the

HDF5 checkpoint file in memory is directly stored into stable storage without

compression.

Compression speed is crucial in order to minimize the introduced over-

head. In this sense, platform-specific optimizations, such as SIMD instructions,

play an important role. Then, the following optimizations are possible: fitting

the buffer into one 128-bit register or two 64-bit ones; and performing 16 com-

parisons with 1 or 2 instructions that produce a 16-bit mask. SIMD instructions

are primarily intended to accelerate multimedia processing, and they are com-

monplace in modern architectures. However, as they are not standardized, the

optimized code is not portable. Hence, plain ANSI C code was developed to-

14Iván Cores, Gabriel Rodŕıguez, Maŕıa J. Mart́ın, Patricia González and Roberto R. Osorio

gether with optimized code for x86 and Itanium platforms. At compile time,

directives will select which code will be used.

Note that CPPC creates a checkpoint file per process, each one con-

taining a subset of the total data to be stored. The different checkpoint files

are simultaneously compressed in the different processes. Thus, compression is

implicitly performed in parallel, and its overhead is expected to decrease when

increasing the number of processes.

§5 Experimental Results
This section assesses the impact of the described optimization techniques

in the size of the checkpoint files and in the execution time overheads. A multi-

core cluster, Pluton, was used to evaluate our proposal. It consists of 16 nodes,

each one of them powered by two Intel Xeon E5620 quad-core CPUs with 16

GB of RAM. The cluster nodes are connected through an Infiniband network.

The front-end is powered by one Intel Xeon E5502 quad-core CPU with 4 GB

of RAM. The connection between the front-end and the execution nodes is an

Infiniband network too. The working directory used for storing checkpoints files

is connected to the cluster by a Gigabit Ethernet network and it consists of disks

of 2 TB configured in RAID 6.

The application testbed was comprised of the eight applications in the

MPI version of the NAS Parallel Benchmarks v3.1 27) (NPB from now on). These

are well-known and widespread applications that provide a de-facto test suite.

Out of the NPB suite, the biggest problem size that would fit the available mem-

ory was selected for each application. As such, the BT, LU and SP benchmarks

were run using class B; the rest were run using class C. All the experiments

were executed using 16 and 32-36 processes (32 processes for all the applications

except for BT and SP as they require a square number of processes).

The experiments can be divided into two blocks. The first block ana-

lyzes the checkpoint size reductions obtained through the use of the proposed

techniques. The second block evaluates the execution overhead caused by the

computation of the hash functions and data compression, and the restart over-

head caused by the restart mechanism in the incremental technique and data

decompression.

5.1 Checkpoint file sizes
The reduction in checkpoint file size is the main goal of the techniques

Improving Scalability of Application-Level Checkpoint-Recovery by Reducing Checkpoint Sizes15

Table 1 Baseline checkpoint sizes (in MB) per process

16 processes 32-36 processes

NPB SLC ALC Base SLC ALC Base

BT 97.45 31.36 83.61 17.50
CG 153.05 85.85 114.50 43.30
EP 67.42 1.18 67.42 1.18
FT 514.93 256.14 290.93 128.14
IS 210.50 144.13 138.57 72.13
LU 81.03 14.78 74.86 8.54
MG 288.56 222.32 181.00 114.70
SP 99.00 32.81 86.08 19.87

BT CG EP FT IS LU MG SP

0

10

20

30

40

50

60

70

80

90

100

ALC Base Comp LiveVar LiveVar Comp Full Full Comp Incr Incr Comp

Benchmark

N
or

m
al

iz
ed

 c
he

ck
p o

in
t

si
ze

 (
%

)

Fig. 5 Checkpoint sizes per process for 16 processes normalized with respect to the ALC

base case (see Table 1)

BT CG EP FT IS LU MG SP

0

10

20

30

40

50

60

70

80

90

100

ALC Base Comp LiveVar LiveVar Comp Full Full Comp Incr Incr Comp

Benchmark

N
or

m
al

iz
ed

 c
he

ck
p o

in
t

si
ze

 (
%

)

Fig. 6 Checkpoint sizes per process for 32-36 processes normalized with respect to the ALC

base case (see Table 1)

16Iván Cores, Gabriel Rodŕıguez, Maŕıa J. Mart́ın, Patricia González and Roberto R. Osorio

described in this work. Table 1 allows to compare the baseline checkpoint sizes

per process in the Pluton cluster. The first column (SLC) shows results for an

SLC approach, the CKPT 40) checkpoint library was used. The second column

(ALC Base) shows results for an ALC approach without applying any optimiza-

tion technique, that is, all user variables are stored in the checkpoint file. As can

be seen, ALC obtains better results than the SLC approach and its checkpoint

files can be further reduced using the optimization techniques proposed in this

work. Additionally, the size of the checkpoint files per process decreases more

significantly for ALC approaches, which helps obtain scalable fault tolerance.

Figures 5 and 6 show normalized checkpoint file sizes with respect to the ALC

base case when using the live variable analysis (LiveVar) and the incremental

checkpointing and zero-blocks exclusion techniques proposed in this paper. Sev-

eral incremental checkpoints (Incr) are created after a full checkpoint (Full).

However, since their sizes are similar, only the first one is shown in the figures.

The live variable analysis significantly reduces checkpoint file sizes for

CG (56% reduction) and FT (25%). It can be concluded that this technique

may have great influence on reducing file sizes for certain applications and, as

it introduces overhead only at compile time, no application can be adversely

affected by its use.

The incremental checkpointing and zero-blocks exclusion technique achi-

eves important file size reductions for almost all the applications. Note that this

technique was applied in addition to the live variable analysis. Thus, reductions

achieved in the full checkpoint relative to the live variable technique are only

due to the elimination of zero-blocks. These reductions vary with the size of the

memory block. Figures 5 and 6 show results for the default value of 8K elements

per block. Reductions with respect to the ALC base case range from 3% (BT)

to 65% (CG) for the full checkpoint and from 12% (BT) to 98% (CG) for the

incremental checkpoints.

The results of compressing the checkpoints are also shown in Figures

5 and 6 (ALC Base Comp, Live Var Comp, Full Comp, Inc Comp). On aver-

age, size reductions of 20% and 25% are achieved for 16 and 32-36 processes,

respectively. For some benchmarks, like IS (Integer Sort), it is easy to discern

why compression performs better for 32 processes: sorting removes entropy,

helping the compressor to find repeated patterns. For other benchmarks the

underlying reason may not be so obvious. There are also important differences

among benchmarks, as some of them, like FT, are hardly compressible. Also,

Improving Scalability of Application-Level Checkpoint-Recovery by Reducing Checkpoint Sizes17

Table 2 Baseline checkpoint latency (in s)

16 proc. 32-36 proc.

NPB ALC Base ALC Base

BT 5.29 6.65
CG 14.38 15.33
EP 0.25 0.30
FT 37.67 38.56
IS 21.90 21.93
LU 2.56 2.69
MG 34.92 35.64
SP 5.71 7.08

Table 3 Baseline restart times (in s)

16 proc. 32-36 proc.

NPB ALC Base ALC Base

BT 4.52 5.63
CG 12.23 12.88
EP 0.19 0.36
FT 36.54 36.39
IS 20.53 20.49
LU 2.15 2.46
MG 31.69 32.56
SP 4.73 6.38

incremental checkpoints are generally less compressible than the others, as much

of the redundant data have been removed from the first checkpoint to the incre-

mental ones. Comparatively, DEFLATE and LZMA would offer an additional

7-10% gain, but with large overhead, as will be discussed in Section 5.2.

5.2 Checkpoint latency
The checkpoint latency is defined as the ellapsed time between the call

to the checkpointing function and the return of control to the application. Ta-

ble 2 shows the baseline checkpoint latency obtained for the different NPB ap-

plications for 16 and 32-36 processes. Note that the increase in the number of

processes does not have a great influence in the latency times, since a shared

filesystem is used and the total amount of data to be dumped remains almost

constant. All tables and graphs in this section and the next one display the

average data of at least 10 executions.

As regards the incremental checkpointing, some extra time is spent in

the computation of the hash functions and the inspections needed. The hash

function selected for these experiments was MD5. From the results shown in Fig-

ures 7 and 8, it can be observed that the overhead introduced by the incremental

checkpointing technique is hidden by the gain obtained from the reduction in

checkpoint size. Results for the creation of the full checkpoint in the incremen-

tal technique also allow to assess the obtained gain when solely applying the

zero-blocks exclusion.

Data compression also allows reducing checkpointing latency in virtu-

ally all the tests. The main exception is FT, which contains poorly-compressible

data. This gain is possible by the combination of two factors. Firstly, compres-

sion allows a significant size reduction, as seen in Section 5.1. Consequently,

storage overhead is proportionally reduced. Secondly, compression speed is 85-

18Iván Cores, Gabriel Rodŕıguez, Maŕıa J. Mart́ın, Patricia González and Roberto R. Osorio

ALC Base Comp LiveVar LiveVar Comp Full Full Comp Incr Incr CompCompression

BT CG EP FT IS LU MG SP

0

20

40

60

80

100

120

Benchmark

N
or

m
al

iz
ed

 c
he

ck
p o

in
t

la
te

nc
y

(%
)

Fig. 7 Checkpoint latency for 16 processes normalized with respect to the ALC base case

(see Table 2)

ALC Base Comp LiveVar LiveVar Comp Full Full Comp Incr Incr CompCompression

BT CG EP FT IS LU MG SP

0

20

40

60

80

100

120

Benchmark

N
or

m
al

iz
ed

 c
he

ck
p o

in
t

la
te

nc
y

(%
)

Fig. 8 Checkpoint latency for 32-36 processes normalized with respect to the ALC base case

(see Table 2)

Improving Scalability of Application-Level Checkpoint-Recovery by Reducing Checkpoint Sizes19

90 MB/s on average. That is close to the maximum bandwidth of the Gigabit

network on which the testbed storage system is based upon. Therefore, our

compression system adds very little overhead to checkpointing, 7% on average

(the compression overhead is labeled as Compression in the Figures). In com-

parison, DEFLATE and LZMA are, respectively, 3 and 12 times slower, which

makes them impractical alternatives (the gain does not compensate the overhead

introduced by the compression).

Although the compression algorithm proposed in this work has been

applied to an ALC approach, it could equally be applied to SLC. We have

experimentally tested that it is also viable for compressing SLC checkpoint files

as, unlike the DFLATE and LZMA algorithms, it is fast enough to provide a

performance benefit. Nevertheless, compressing SLC checkpoint files will be

always computationally more expensive than compressing ALC ones due to the

significantly larger sizes. Additionally, the resulting compressed files will be also

larger than their ALC counterparts. Thus, starting from ALC checkpointing

files will be always a better solution.

As can be seen by comparing Figures 7 and 8, compression overhead

drops as the number of processes is increased. This is due to the fact that the

total compression workload is shared by more processors. Hence, checkpoint

compression in large scale supercomputers will allow to reduce the volume of

stored data with almost negligible overhead.

In general, all the proposed techniques perform better than the ALC base

approach. In some cases the reduction in latency can be as high as 92−97% (IS

or CG).

CPPC can be configured so that the checkpoint file is created in parallel

with the execution of the application by creating new threads 35). Thus, the ap-

plication execution does not need to be stalled until the checkpoints are created,

and the latencies may be hidden.

5.3 Restart overhead
Baseline restart times are shown in Table 3. Measured restart times

include the read of the checkpoint files and the restart of the application up to

the point where the checkpoint was dumped. Write buffers were flushed before

each execution to avoid the effect of page cache and to guarantee that checkpoint

files are read from disk.

Columns labeled Full in Figures 9 and 10 show the restart overhead

20Iván Cores, Gabriel Rodŕıguez, Maŕıa J. Mart́ın, Patricia González and Roberto R. Osorio

ALC Base Comp LiveVar LiveVar Comp Full Full Comp Incr Incr CompDecompression

BT CG EP FT IS LU MG SP

0

50

100

150

200

250

300

Benchmark

N
or

m
al

iz
ed

 r
es

ta
rt

 t
im

e
(%

)

Fig. 9 Restart times for 16 processes normalized with respect to the ALC base case (see

Table 3)

ALC Base Comp LiveVar LiveVar Comp Full Full Comp Incr Incr CompDecompression

BT CG EP FT IS LU MG SP

0

50

100

150

200

250

300

Benchmark

N
or

m
al

iz
ed

 r
es

ta
rt

 t
im

e
(%

)

Fig. 10 Restart times for 32-36 processes normalized with respect to the ALC base case (see

Table 3)

Improving Scalability of Application-Level Checkpoint-Recovery by Reducing Checkpoint Sizes21

when there are no incremental checkpoint files, but just the full one. These

correspond to the overhead when applying only the zero-blocks exclusion, which

is always less than the overhead of the base approach.

The incremental checkpointing technique presents a higher restart over-

head compared to the others. This is due to a larger volume of data being moved

and read, which can be calculated as the sum of the incremental and full check-

point file sizes. In these experiments two incremental checkpoints were created

after a full one.

Compression has also a positive impact in restart overhead. As data

decompression is very fast, the restart process benefits of data reduction with

a minimal decompression overhead (see Decompression in the Figures). On

average, a 20-25% time saving is achieved. When restarting from incremental

checkpoints, the overhead is large, and the benefits of compression are more

noticeable.

Due to the high influence that the read of the checkpoint files can have

on the performance of the restart operation, recent studies are focused on re-

ducing this impact. A post-checkpointing tracking mechanism is presented in 22)

to reduce restart latency by overlapping application recovery with the retrieval

of checkpoint files. In the case of incremental approaches, the number of in-

cremental checkpoints has great influence in the restart overhead. There exist

studies 24) that provide a model to determine the optimal number of incremental

checkpoints between two consecutive full checkpoints. A possible approach to

reduce the restart overhead would be to merge the full checkpoint file and the

incremental ones into a single file at the checkpoint server before a restart is

required 1). Nevertheless, It must be considered that the main object of this

work is accelerating checkpoints storage, which is performed several times per

execution. Contrarily, restart is a secondary target, as it may never be necessary.

§6 Concluding Remarks
This work has analyzed different alternatives to reduce the size of the

checkpoint files generated by ALC approaches: live variable analysis, zero-blocks

elimination, incremental checkpointing and data compression. These techniques

have been implemented in an ALC tool, CPPC, obtaining important file size

and checkpoint latency reductions.

The results have shown that incremental checkpointing is very effective

in terms of checkpoint size reduction. However, global storage requirements

22Iván Cores, Gabriel Rodŕıguez, Maŕıa J. Mart́ın, Patricia González and Roberto R. Osorio

increase for this technique, as it is necessary to keep stored at least one full

checkpoint and all the associated incremental ones. Additionally, it complicates

the restart, introducing an overhead that may become important depending on

the number of incremental checkpoints and the characteristics of the network.

The results indicate that merging the checkpoint files before transferring them

to the computation nodes could significantly reduce restart times.

Data compression also obtains important reductions in checkpoint sizes.

Besides, although this technique introduces some overhead due to the com-

pression and decompression step, the fast compression algorithm proposed has

proved to be effective in reducing both checkpoint latency and restart overhead.

As regards live variable analysis and zero-block elimination techniques,

the checkpoint size reductions obtained are not as significant. However, they

decrease globally the storage demand and, as data compression, are able to

reduce the overhead of both the checkpoint file writing and the restart phase.

At present, our implementation of the live variable analysis does not perform

optimal bounds checks for pointer and array variables. This means that they

are entirely stored if they are used at any point in the re-executed code. Thus,

there is still room for future optimizations in this compilation analysis.

The reduction of the checkpoint sizes will be particularly useful for paral-

lel applications with a large number of parallel processes, where the transference

of a large amount of checkpoint data to stable storage can saturate the network

and cause a drop in application performance.

Finally, the implementation in the application-level is a key aspect of

the proposal. On one hand, it allows a more efficient implementation of the

proposed techniques. On the other hand, it does not make any assumptions

about the underlying system hardware/software characteristics, thus enabling

portable operation.

Acknowledgment This research was supported by the Ministry of

Science and Innovation of Spain (Project TIN2010-16735) and by the Galician

Goverment (Project 10PXIB105180PR).

References

1) Agarwal, S., Garg, R., and Gupta, M. S. Adaptive incremental check-
pointing for massively parallel systems. In Proceedings of the 18th Annual
International Conference on Supercomputing (ICS’04) (Saint Malo, France, 26
June–01 July 2004), ACM, New York, pp. 277–286.

Improving Scalability of Application-Level Checkpoint-Recovery by Reducing Checkpoint Sizes23

2) Bosilca, G., Delmas, R., Dongarra, J., and Langou, J. Algorithm-based
fault tolerance applied to high performance computing. J. Parallel Distrib.
Comput. 69, 4 (2009), 410–416.

3) Cappello, F. Fault tolerance in petascale/exascale systems: Current knowl-
edge, challenges and research opportunities. International Journal of High Per-
formance Computing Applications, IJHPCA 23, 3 (2009), 212–226.

4) Chen, Z., Fagg, G. E., Gabriel, E., Langou, J., Angskun, T., Bosilca,
G., and Dongarra, J. Fault tolerant high performance computing by a coding
approach. In Proceedings of the tenth ACM SIGPLAN symposium on Principles
and practice of parallel programming (New York, NY, USA, 2005), PPoPP ’05,
ACM, pp. 213–223.

5) Chiu, G.-M., and Chiu, J.-F. A new diskless checkpointing approach for mul-
tiple processor failures. IEEE Transactions on Dependable and Secure Comput-
ing 8, 4 (2011), 481–493.

6) Elliott, J., Kharbas, K., Fiala, D., Mueller, F., Ferreira, K. B., and
Engelmann, C. Combining partial redundancy and checkpointing for hpc. In
2012 IEEE 32nd International Conference on Distributed Computing Systems,
Macau, China, June 18-21, 2012 (2012), pp. 615–626.

7) Elnozahy, E., Alvisi, L., Wang, Y.-M., and Johnson, D. A survey of
rollback-recovery protocols in message-passing systems. ACM Computing Sur-
veys 34, 3 (2002), 375–408.

8) Elnozahy, E., Johnson, D., and Zwaenepoel, W. The performance of
consistent checkpointing. In Proceedings of the 11th Symposium on Reliable
Distributed Systems, 1992. (Oct. 1992), pp. 39 –47.

9) Ferreira, K. B., Riesen, R., Brightwell, R., Bridges, P. G., and
Arnold, D. libhashckpt: Hash-based incremental checkpointing using gpu’s.
In Recent Advances in the Message Passing Interface - 18th European MPI
Users’ Group Meeting, EuroMPI 2011, Santorini, Greece, September 18-21,
2011. Proceedings (2011), pp. 272–281.

10) Ferreira, K. B., Stearley, J., Laros, J. H., Oldfield, R., Pedretti,
K. T., Brightwell, R., Riesen, R., Bridges, P. G., and Arnold, D.
Evaluating the viability of process replication reliability for exascale systems. In
Conference on High Performance Computing Networking, Storage and Analysis,
SC 2011, Seattle, WA, USA, November 12-18, 2011 (2011), pp. 1–44.

11) Gharaibeh, A., Al-Kiswany, S., Gopalakrishnan, S., and Ripeanu, M.
A gpu accelerated storage system. In Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing, HPDC 2010, Chicago,
Illinois, USA, June 21-25, 2010 (2010), pp. 167–178.

12) Gioiosa, R., Sancho, J. C., Jiang, S., and Petrini, F. Transparent, in-
cremental checkpointing at kernel level: a foundation for fault tolerance for
parallel computers. In Proceedings of the ACM/IEEE SC2005 Conference on
High Performance Networking and Computing, November 12-18, 2005, Seattle,
WA, USA (2005), p. 9.

13) Gomez, L. A. B., Maruyama, N., Cappello, F., and Matsuoka, S. Dis-
tributed diskless checkpoint for large scale systems. In Proceedings of the 2010

24Iván Cores, Gabriel Rodŕıguez, Maŕıa J. Mart́ın, Patricia González and Roberto R. Osorio

10th IEEE/ACM International Conference on Cluster, Cloud and Grid Com-
puting (Washington, DC, USA, 2010), CCGRID ’10, IEEE Computer Society,
pp. 63–72.

14) Huffman, D. A. A method for the construction of minimum-redundancy codes.
In Proceedings of the Institute of Radio Engineers (September 1952), vol. 40,
pp. 1098–1101.

15) Hursey, J., and Lumsdaine, A. A composable runtime recovery policy frame-
work supporting resilient HPC applications. Tech. Rep. TR686, Indiana Uni-
versity, Bloomington, Indiana, USA, August 2010.

16) IEEE Global History Network. History of lossless data compression al-
gorithms. http://www.ieeeghn.org/wiki/index.php/History_of_Lossless_

Data_Compression_Algorithms. Last accessed October 2012.

17) Iskra, K., Romein, J. W., Yoshii, K., and Beckman, P. Zoid: I/o-
forwarding infrastructure for petascale architectures. In Proceedings of the 13th
ACM SIGPLAN Symposium on Principles and practice of parallel programming
(2008), PPoPP ’08, ACM, pp. 153–162.

18) Jin, H., Ke, T., Chen, Y., and Sun, X.-H. Checkpointing orchestration:
Toward a scalable hpc fault-tolerant environment. In 12th IEEE/ACM In-
ternational Symposium on Cluster, Cloud and Grid Computing, CCGrid 2012,
Ottawa, Canada, May 13-16, 2012 (2012), pp. 276–283.

19) Laurence Berkeley National Laboratory. Berkeley Lab Check-
point/Restart. https://ftg.lbl.gov/CheckpointRestart/. Last accessed October
2012.

20) Li, C.-C., and Fuchs, W. Catch-compiler-assisted techniques for checkpoint-
ing. In Fault-Tolerant Computing, 1990. FTCS-20. Digest of Papers., 20th
International Symposium (June 1990), pp. 74 –81.

21) Li, M., Vazhkudai, S. S., Butt, A. R., Meng, F., Ma, X., Kim, Y., Engel-
mann, C., and Shipman, G. M. Functional partitioning to optimize end-to-end
performance on many-core architectures. In Conference on High Performance
Computing Networking, Storage and Analysis, SC 2010, New Orleans, LA, USA,
November 13-19, 2010 (2010), pp. 1–12.

22) Li, Y., and Lan, Z. FREM: A fast restart mechanism for general check-
point/restart. IEEE Transactions on Computers 60, 5 (2011), 639–652.

23) Moody, A., Bronevetsky, G., Mohror, K., and de Supinski, B. R. De-
sign, modeling, and evaluation of a scalable multi-level checkpointing system. In
Conference on High Performance Computing Networking, Storage and Analysis,
SC 2010, New Orleans, LA, USA, November 13-19, 2010 (2010), pp. 1–11.

24) Naksinehaboon, N., Liu, Y., Leangsuksun, C. B., Nassar, R., Paun,
M., and Scott, S. L. Reliability-aware approach: An incremental check-
point/restart model in hpc environments. In Proceedings of the 2008 Eighth
IEEE International Symposium on Cluster Computing and the Grid (2008),
pp. 783–788.

25) Nam, H.-C., Kim, J., Hong, S., and Lee, S. Probabilistic checkpointing. In
Fault-Tolerant Computing, 1997. FTCS-27. Digest of Papers., Twenty-Seventh
Annual International Symposium on (June 1997), pp. 48 –57.

Improving Scalability of Application-Level Checkpoint-Recovery by Reducing Checkpoint Sizes25

26) Nam, H.-C., Kim, J., Hong, S. J., and Lee, S. Secure checkpointing. Journal
of Systems Architecture 48, 8-10 (2003), 237–254.

27) National Aeronautics and Space Administration. The NAS Parallel
Benchmarks. http://www.nas.nasa.gov/Software/NPB. Last accessed Oc-
tober 2012.

28) Norman, A., and Lin, C. A scalable algorithm for compiler-placed staggered
checkpointing. In Proceedings of the 23rd International Conference on Parallel
and Distributed Computing and Systems (PDCS 2011) (2012), Acta Press.

29) Oldfield, R., Arunagiri, S., Teller, P. J., Seelam, S. R., Varela, M. R.,
Riesen, R., and Roth, P. C. Modeling the impact of checkpoints on next-
generation systems. In 24th IEEE Conference on Mass Storage Systems and
Technologies (MSST 2007), 24-27 September 2007, San Diego, California, USA
(2007), pp. 30–46.

30) Plank, J., Beck, M., and Kingsley, G. Compiler-assisted memory exclusion
for fast checkpointing. IEEE Technical Committee on Operating Systems and
Application Environments 7, 4 (1995), 10–14.

31) Plank, J. S., Beck, M., Kingsley, G., and Li, K. Libckpt: Transparent
Checkpointing under Unix. In Usenix Winter Technical Conference (January
1995), pp. 213–223.

32) Plank, J. S., and Li, K. ickp: A consistent checkpointer for multicomputers.
IEEE Parallel Distrib. Technol. 2 (June 1994), 62–67.

33) Plank, J. S., Li, K., and Puening, M. A. Diskless checkpointing. IEEE
Transactions on Parallel and Distributed Systems 9, 10 (October 1998), 972–986.

34) Plank, J. S., Xu, J., and Netzer, R. H. B. Compressed differences: an
algorithm for fast incremental checkpointing. Tech. Rep. CS-95-302, University
of Tennessee, Department of Computer Science, Aug. 1995.

35) Rodŕıguez, G., Mart́ın, M. J., González, P., and Touriño, J. Analysis
of performance-impacting factors on checkpointing frameworks: the CPPC case
study. The Computer Journal 54, 11 (2011), 1821–1837.

36) Rodŕıguez, G., Mart́ın, M. J., González, P., Touriño, J., and Doallo,
R. CPPC: A compiler-assisted tool for portable checkpointing of message-
passing applications. Concurrency and Computation: Practice and Experience
22, 6 (2010), 749–766.

37) Schroeder, B., and Gibson, G. A large-scale study of failures in high-
performance computing systems. IEEE Trans. Dependable Secur. Comput. 7,
4 (Oct. 2010), 337–351.

38) Schroeder, B., and Gibson, G. A. Understanding failures in petascale com-
puters. Journal of Physics: Conference Series 78, 1 (2007), 012–022.

39) The HDF5 Group. HDF-5: Hierarchical Data Format. http://www.

hdfgroup.org/HDF5/. Last accessed October 2012.

40) Victor C. Zandy. CKPT process checkpoint library. http://pages.cs.wisc.

edu/~zandy/ckpt/. Last accessed October 2012.

41) Wang, C., Mueller, F., Engelmann, C., and Scott, S. L. Hybrid check-
pointing for mpi jobs in hpc environments. In IEEE 16th International Con-
ference on Parallel and Distributed Systems, ICPADS 2010, 8-10 Dec. 2010,
Shanghai, China (2010), pp. 524–533.

26Iván Cores, Gabriel Rodŕıguez, Maŕıa J. Mart́ın, Patricia González and Roberto R. Osorio

42) Wang, C., Mueller, F., Engelmann, C., and Scott, S. L. Proactive
process-level live migration and back migration in hpc environments. J. Parallel
Distrib. Comput. 72, 2 (Feb. 2012), 254–267.

43) Zheng, G., Ni, X., and Kalé, L. V. A scalable double in-memory check-
point and restart scheme towards exascale. In IEEE/IFIP International Con-
ference on Dependable Systems and Networks Workshops, DSN 2012, Boston,
MA, USA, June 25-28, 2012 (2012), pp. 1–6.

