
Computing and Informatics, Vol. 31, 2012, 693–709

A NEW CONCURRENT CHECKPOINT MECHANISM
FOR EMBEDED MULTI-CORE SYSTEMS

Jianwei Liao

College of Computer and Information Science

Southwest University of China

e-mail: liaojw@swu.edu.cn

Communicated by Bogdan Wiszniewski

Abstract. This paper presents a new transparent, incremental, concurrent check-
point mechanism for embedded multi-core systems. It allows the checkpointed pro-
cess (also called checkpointee) to continue running without stopping while check-
points are set to a large extent. Through tracing TLB misses to block the accesses
to target memory pages first time while dumping memory pages (the most time-
consuming step when setting a checkpoint). At that time, a kernel thread, called
checkpointer, copies the memory access target pages to the designated memory
buffer for constructing a consistent state of the checkpointee, and then resumes
the memory accesses. From the experimental results, in contrast to a traditional
concurrent checkpoint system, the proposed mechanism reduces the downtime of
the checkpointed process by more than 10.1%. Moreover, the incremental check-
pointing functionality has been implemented in this new concurrent checkpoint

mechanism as well. Compared with full checkpointing, incremental checkpointing
can reduce the checkpoint time more than 95.5% and 89.2% while the benchmark is
the matrix multiplication at the checkpoint intervals of 10 seconds and 20 seconds,
respectively.

Keywords: Concurrent checkpoint, reduced downtime, incremental checkpoint,

embedded multi-core systems

Mathematics Subject Classification 2010: 68N25: Operating system, 68M25:
Reliability, testing and fault tolerance

694 J. Liao

1 INTRODUCTION

The industry trends of shrinking device geometries, lower voltages and higher fre-
quencies in modern processors and devices are expected to increase the rate of
transient hardware faults. Despite the number of those faults is not high as that
of software faults, they may collapse the operating system and make the whole sys-
tem go to crash with very high probability [1, 2]. The operating systems should
be reliable to recover the critical applications from such kinds of system crashes by
resorting to various fault-tolerant techniques.

Embedded systems are always used in the long-time running cases; for the
purpose of providing the high availability for some critical applications, check-
point/restart mechanism is always used for saving the running state of the target
process. Before saving the state of the checkpointed process, also called check-
pointee, the conventional checkpoint/restart systems have to stop the checkpointed
process for getting its consistent state. In other words, the checkpointee cannot
keep running or providing service while setting the checkpoint, and that period is
referred to as downtime in this paper.

However, a major part of the applications in the embedded systems are the inter-
active or real-time applications, which need rigid timing restrictions, such as a finish
time and a response time; the downtime required while using traditional checkpoint
mechanisms to set a checkpoint for them is always too long to be accepted. We
have proposed a new concurrent checkpoint mechanism for real-time and interactive
processes in our previous work [3], which employs tracking TLB misses to block the
memory accesses until the target pages are copied to the designated memory buffer
during setting the checkpoint. It allows the execution of the checkpointee to over-
lap with the dumping of memory address space without operating on page table.
Moreover, it employs two buffers to store the whole address space and the original
copies of the accessed pages, then it constructs the image file of the checkpointee by
using the contents in these two buffers.

In order to reduce the checkpoint overhead and improve the usage of memory,
based on our previous work (which uses two memory buffers and only supports full
checkpointing [3]), this paper will propose and implement an improved Transparent,
Incremental, Concurrent checkpoint mechanism with a small memory buffer called
TIC-CKPT. While TIC-CKPT sets the checkpoints for the checkpointed process,
the checkpointee keeps running until the occurrence of TLB miss triggered by the
first access to the target page, then the checkpointer kernel thread first copies the
memory access target page to the designated memory buffer, and then unblocks
checkpointee’s memory access request. Before dumping memory pages to the non-
volatile storage, the checkpointer checks whether those pages are in the designated
buffer or not. If they are in the buffer, the original pages in the designated buffer
will be used to construct a consistent state of the checkpointed process; otherwise,
dumping them to the nonvolatile storage directly. Moreover, for the purpose of re-
ducing the checkpoint time, TIC-CKPT supports incremental checkpointing, which
means only the dirty pages after the previous checkpoint are saved to the nonvolatile

Checkpoint System for Embedded Multi-Core Systems 695

storage. As a result, the checkpoint time can be reduced to a great extent. Besides,
TIC-CKPT only needs a small memory buffer to store the original copies of the ac-
cessed target pages during setting the checkpoint; it is suitable for memory-limited
embedded systems to build fault-tolerant operating systems.

This paper focuses on the design and implementation of TIC-CKPT, which
brings about a little limited impact on the runtime overhead of the target appli-
cations while setting full checkpoints and incremental checkpoints. The paper is
organized as follows: Section 2 introduces the background knowledge and related
work. The design and implementation of TIC-CKPT are described in Section 3.
Section 4 presents the experimental results in evaluating the performance of TIC-
CKPT. Finally, we present concluding remarks and the directions of future work.

2 BACKGROUND AND RELATED WORK

2.1 Traditional Checkpointing

Many of system-level checkpoint/restart systems have been implemented. BLCR [4]
is a typical checkpoint/restart module for the Linux kernel developed and maintained
by Berkeley Lab (USA); it supports x86, ARM and PPC systems running Linux 2.6.x
kernels. Kernel-based Checkpoint/Restart System [5] is an active project issued by
Oren Laadan; it is a kernel-based checkpoint/restart system for the Linux kernel.
In fact, most of the traditional checkpoint systems [6, 7] including those mentioned
above, need to stop the checkpointed process to ensure the consistent state of the
checkpointee during setting the checkpoints.

2.2 Checkpointing Optimization

For the purpose of satisfying the strict timing requirements of real-time or interactive
processes while making the checkpoints for them, several checkpoint optimization
techniques have been proposed to decrease the checkpoint time. In the traditional
checkpoint mechanisms, reducing the checkpoint time means the downtime of the
checkpointed process can be reduced as well. Decreasing the content that needed
to be saved to the nonvolatile storage is the main direction to reduce the check-
point time, such as diskless checkpointing [8]. Moreover, incremental checkpointing
is a well-known technique to reduce the checkpoint time for some long-time run-
ning processes which need multiple checkpoints during their lifetime. For example,
space-efficient page-level incremental checkpointing [9] and other incremental check-
pointing methods [10, 11] have been proposed successively. The core idea of the
incremental checkpoint mechanism is to save the modified pages (i.e. dirty pages) in
address space of the checkpointed process from the previous checkpoint. Compared
with the number of all pages in the checkpointee’s address space, the number of the
modified pages is always smaller. Consequently, the downtime of the checkpointee
while setting a checkpoint is also decreased.

696 J. Liao

2.3 Concurrent Checkpointing

However, the optimized techniques mentioned in Section 2.2 are solutions to the
symptoms but not to the causes; they cannot reduce the downtime of the check-
pointee fundamentally. As shown in our previous work [3], dumping memory ad-
dress is responsible for the major part of the checkpoint time. If the execution of the
checkpointee can overlap with the dumping memory address space, the downtime of
the checkpointee due to setting the checkpoint can be decreased to a great extent
in theory; this is motivation of the concurrent checkpoint mechanisms.

As a matter of fact, the concept of concurrent checkpointing in this paper is
not a new theory. K. Li and J. S. Plank [12] proposed a low-latency, concurrent
checkpoint system for parallel programs called the Concurrent Low-Latency (CLL)
checkpoint system, which aims at overlapping the execution of the checkpointee with
the dumping of memory address space, distinct from traditional checkpoint systems;
the CLL checkpoint system works as follows:

1. Stop the checkpointed process.

2. Save the values of registers, thread information et cetera to the nonvolatile
storage; although they did not mention that TLB entries should to be flushed,
this operation should be done before the 3rd step.

3. Turn off all the access right bits in checkpointee’s page table; then resume the
checkpointee.

4. Copy the memory address space to a designated memory buffer concurrently
with a kernel thread (called Copier). After copying a page, turn on the corre-
sponding access bit. During the Copier copies the memory pages, the modified
page fault handler blocks the write accesses, and invokes the Copier to copy the
original target page to memory buffer first, then switch on the access right bit
of the corresponding page table entry.

5. After the Copier saves the whole address space, another kernel thread called
Writer stores the data in the memory buffer to the nonvolatile storage to form
an image file which contains the original copies of the write target pages.

CLL checkpoint system works quite like copy-on-write technique; it allows set-
ting checkpoints concurrently with the execution of the checkpointee, interrupts the
checkpointee only for small, fixed amounts of time, and is transparent to the check-
pointee. The original pages in the memory buffer will be used to construct the
consistent state of the checkpointed process. Needless to say, CLL is quite suitable
to set the checkpoints for real-time and interactive processes in embedded systems.
However, the CLL checkpoint system needs too many extra memory accesses for set-
ting and restoring all access right bits in the page table, which weaken the benefit
brought by this kind of concurrent checkpointing directly. In addition, CLL con-
current checkpoint mechanism does not support incremental checkpointing, which
is suitable for setting multiple checkpoints for the long-time running applications
with quite short checkpoint time.

Checkpoint System for Embedded Multi-Core Systems 697

3 DESIGN AND IMPLEMENTATION OF TIC-CKPT

In this section, we present the design and implementation of TIC-CKPT, which does
not require extra page table operations and supports the incremental checkpointing.
Because the algorithms of the full checkpointing and incremental checkpointing are
quite different, their algorithms are presented in Sections 3.1 and 3.2 separately.

3.1 TIC-CKPT Algorithm

The algorithm of the full checkpoint mechanism is shown in Figure 1, where check-
pointer stands for the kernel thread that sets the checkpoint and works in privileged
mode; buffer B is a designated memory buffer to save the values of registers, infor-
mation of the thread et cetera and the copies of memory access target pages during
saving address space.

Fig. 1. TIC-CKPT architecture

Unlike the CLL checkpoint mechanism, TIC-CKPT works as follows:

1. Stop the checkpointed process by sending a “stop” signal.

2. Copy the values of registers and thread information to the designated buffer B
rather than nonvolatile storage for decreasing the stop time of the checkpointed
process.

3. Set the checkpoint flag to indicate that a checkpoint is being set now, and
invalidate TLB entries.

4. Resume the checkpointee by sending a “continue” signal.

698 J. Liao

5. Save memory address space to the nonvolatile storage; meanwhile, if there is
an access request to the target memory page first time during saving of the
memory address space, since the TLB handler was modified to support concur-
rent checkpointing, that access request will be blocked until the original tar-
get page has been copied to buffer B; finally, the memory access proceeds as
usual.

While copying the address space to the nonvolatile storage, the checkpointer
scans the virtual memory areas of the checkpointee’s address space, gets the vir-
tual address of every page, and checks whether the virtual address of the page
is in buffer B or not. If not, then this page is saved to the nonvolatile storage
directly. If the virtual address is in buffer B, that means there were memory
accesses to this page after the starting of dumping memory address space, then
the copy of the original page in buffer B will be moved to the nonvolatile storage.
Therefore, only a quite small memory buffer is employed to store a list and the
copies of the accessed pages rather than a big memory buffer for saving a copy
of the whole address space; this property enables the TIC-CKPT to be applied
in memory-limited embedded systems.

6. Clear the checkpoint flag after the checkpointee’s address space is saved to the
nonvolatile storage to represent the checkpointing is completed; an image file
containing a consistent state of the checkpointee is constructed and saved into
the nonvolatile storage.

Because both write and read requests to memory pages can be captured by
tracing TLBmisses [6, 13], before copying memory address space of the checkpointee,
TLB should be invalidated (i.e. flushed), and as a result, every write or read to a page
for the first time will cause a TLB miss. If the checkpoint flag is set, then the read or
write request cannot be fulfilled until the original target page is copied to buffer B.
It is different from the traditional concurrent checkpoint mechanism, there are no
extra memory accesses brought by the operations on the page table.

In TIC-CKPT, saving memory address space is being processed concurrently
with the execution of the checkpointed process to a great extent. Thus, it is necessary
to block the checkpointee when copying the original access target page to buffer B
before the first access request to that page. According to the locality of reference,
compared with the number of pages in the whole address space, the number of
original copies of the accessed target pages is much smaller.

Compared with copying the pages of the address space to memory buffer tem-
porarily, dumping the pages to nonvolatile storage directly takes much longer time;
in addition, before saving every page, TIC-CKPT has to check whether the page in
memory address space is in buffer B or not (in Section 4.2, we will see TIC-CKPT
needs much more time to set a checkpoint than non-concurrent checkpoint mecha-
nism does); thus in order to manage buffer B much more effectively, PageList is
introduced to reflect the pages in address space which were accessed after the start
of saving the address space. Each node of the PageList contains the virtual address
of a page and the corresponding page structure pointer as shown in Figure 2.

Checkpoint System for Embedded Multi-Core Systems 699

Fig. 2. PageList data structure

If there is a write operation to a page which has been saving to the nonvolatile
storage, then the page saved to disk might be dirty. In order to prevent such
exceptions, a Read-Copy Update lock is used while saving a page to nonvolatile
storage.

3.2 Incremental Checkpointing

As mentioned in Section 2.2, incremental checkpointing is a widely used technique
to reduce the checkpoint time. It saves the dirty pages after the previous checkpoint;
there are two kinds of methods to keep track of the dirty pages. The first mechanism
is using dirty bit. After setting a checkpoint, all the writable pages are cleaned as
non-dirty. While the process writes the pages, the operating system will set the dirty
bits in the corresponding page table entries. In other words, we can discern which
pages are modified since the previous checkpoint by traversing the page table, then
save the modified pages to the nonvolatile storage. The other mechanism is called
bookkeeping [6]; it sets all writable pages as read-only after a checkpoint. There
must be a page fault exception when the page has been written. Then, the modified
page fault handler inserts the address of corresponding page to a designated data
structure, such as a list. At last, the incremental checkpoint mechanism just needs
to save the pages whose addresses are in the designated data structure.

Both mechanisms mentioned above require operating on the page table. In TIC-
CKPT, incremental checkpointing is also supported; it provides a mechanism such as
bookkeeping to track the dirty pages but without any extra operations on the page
table. TIC-CKPT tracks the dirty pages by resorting to TLB modification misses
(i.e. write violations). As mentioned before, both write and read accesses cause the
TLB misses; in order to distinguish them, and track the write target pages only,
the modified TLB handler clears the read/write bit of the page table entry before
loading it into TLB for the first time. Therefore, a write access to that ‘read-only’
page leads to a page fault exception; then the virtual address of that page will be
inserted into the designated data structure called Address List shown in Figure 3.
After that, page fault handler works as normal and calls TLB handler to load the
corresponding page table entry again with the original read/write bit. While setting
incremental checkpoint, it iterates the Address List to obtain the virtual addresses of

700 J. Liao

the dirty pages after the previous checkpoint, then saves the corresponding physical
pages to the nonvolatile storage. At last, an incremental checkpointing image file is
formed which only contains a small part of pages in checkpointee’s address space.

Fig. 3. Incremental checkpointing algorithm

For all incremental checkpoints, the checkpointer should save the snapshot of
the values of registers and the thread information. Since we have discussed such
operations in the last subsection, there is no illustration thereof in Figure 3. Quite
unlike full checkpointing workflow discussed in Section 3.1, incremental checkpoint-
ing needs to invalidate all TLB entries before the ending of setting a checkpoint. In
other words, invalidating TLB entries should be the last step to set an incremen-
tal checkpoint, and the motivation is to support tracking dirty pages for the next
incremental checkpoint.

3.3 Implementation

TIC-CKPT is implemented as a Linux module in Linux kernel 2.6.28 with 16 new
source files, more than 5 000 LOCs. The target architecture is SH4 platform [14].
There are 200 lines of source code modification in the TLB handler (the file is
named tlb-sh4.c). In addition, there is an eight line patch that involves two files
of the Linux kernel. Though we did not discuss the design and implementation of
the restart mechanism in this paper, this functionality has been also implemented
to verify the checkpoint functionality.

Li’s proposed CLL checkpoint system is a typical concurrent checkpoint system,
for the comparison experiments, we have implemented this checkpoint system in the
Linux kernel for the SH4 architecture, but we need to declare this again although it
has been mentioned in Section 2.3; the experimental Linux version of CLL concurrent
checkpoint system assumes all memory write requests are legal. We admit that we
can use two page tables to ensure the illegal write request cannot write the read-
only memory page; however, not only the degrade of concurrency due to much more
comparison should be processed, but also numerous of modifications in Linux kernel
internals.

Checkpoint System for Embedded Multi-Core Systems 701

Moreover, since there are no traditional system-level checkpoint implementa-
tions that target on the SH4 architecture, we have also implemented a traditional
checkpoint system for the SH4 architecture, which we called the non-concurrent
checkpoint system.

In Section 3.1, we used the checkpoint flag to show whether the process is being
checkpointed or not. In order to reduce the overhead of reading value of check-
point flag from a global variable, we have defined a checkpoint bit to indicate the
checkpoint is being set or not, employing an unused bit in the memory management
control register on the SH4 architecture. Please note that after the checkpointing,
we did not validate the TLB because on the SH4 architecture, invalidating TLB
just means an operation that flushes all TLB entries rather than disabling the TLB.
Maybe calling it flushing all TLB entries is much more proper, but in the program-
mer manual [14], this operation is named invalidating TLB, thus we use this term
in this paper.

4 EXPERIMENTS AND EVALUATION

4.1 Experimental Platform and Benchmarks

In order to evaluate the performance of our proposed TIC-CKPT, we used a multi-
ple core SH4 board as our experimental platform, called SH-4A [15]. It is a 32-bit
RISC microprocessor that is upward compatible with the SH-1, SH-2, SH-3, and
SH-4 microcomputers at instruction set code level. SH-4A has a quad-core CPU,
each core with maximum operating frequency of 600MHz, 128MB of memory, 4 in-
struction TLB entries, 64 unified TLB entries with full-associative configuration and
1 000BaseTx Ethernet. Network file system (4×160GB, 7 200 rpm SATA hard disks
equipped on the server side) has been adopted as persistent storage to save the root
file system and the checkpointed image.

Before presenting the experimental results in this section, we will introduce
the benchmarks used in evaluation experiments: Matrix multiplication (MAT), the
matrix size, such as 256, means there are 256×256 elements in this matrix, the type
of the element is double precision floating-point format; Pattern Matching (PM),
means finding a place where one string exists within a string text file, using the
KMP algorithm; Bubble Sorts (SORT), a typical stable sort algorithm; Fast Fourier
Transforms (FFT), an efficient algorithm to compute the discrete Fourier transform
(DFT) and its inverse; The Joseph Problem Algorithm (JPA), a well-known recursive
algorithm. Moreover, a light-weight real-time benchmark called rt-benchmark [16],
which runs simple real-time task periodically, is adopted to measure the longest
stopped times by using different checkpoint mechanisms to set one checkpoint.

4.2 Overhead: Checkpoint Time

Figure 4 indicates the comparison of checkpoint times by using three checkpoint
systems mentioned in Section 3.3 to set one checkpoint. We can see that checkpoint

702 J. Liao

times by using both TIC-CKPT and CLL checkpoint systems are almost 20% longer
than when using non-concurrent checkpoint system.

 0

 20

 40

 60

 80

 100

 120

 140

64(154KB) 128(446KB) 256(1,603KB) 512(6,217KB)

C
he

ck
po

in
t T

im
e(

m
s)

Matrix Size

Non−Concurrent
CLL
TIC−CKPT

Fig. 4. Checkpoint time

Both TIC-CKPT and CLL checkpoint mechanisms check whether the pages are
in the designated buffer or not before saving a page. Moreover, other operations
such as invalidating TLB entries take up a part of the checkpoint time. Fortunately,
the focus of our work is to allow the setting of the checkpoint and running of the
checkpointed process to take place concurrently; therefore, although the checkpoint
times introduced by TIC-CKPT and CLL are longer than in non-concurrent check-
point system, the absolute stop time of the checkpointed process is much less. Such
information will be presented in Section 4.3.

In addition, since the CLL checkpoint system sets all access right bits of the page
table entries to be read-only before dumping memory and restores them after saving
a page to non-volatile storage, it takes around 2% more time to set a checkpoint
than TIC-CKPT.

4.3 Reduced Downtime

In order to illustrate TIC-CKPT performs better than the CLL concurrent check-
point system in reducing the downtime of the checkpointed processes, the metric
called Percentage of Reduced Downtime (PRDT) is used to evaluate the reduced
downtime while using various checkpoint systems to set the checkpoints. Let us de-
fine the downtime while using non-concurrent checkpointing to set a checkpoint as
DTnon, and the downtime while using concurrent checkpointing to set a checkpoint
as DTcon, then the percentage of reduced time is defined as:

PRDT = (DTnon −DTcon)/DTnon . (1)

In comparison with the non-concurrent checkpoint system, TIC-CKPT reduces
47.37–89.82% of the downtime of the checkpointed process when the benchmark

Checkpoint System for Embedded Multi-Core Systems 703

is matrix multiplication with different sizes. In addition, compared with the CLL
checkpoint system, TIC-CKPT reduces the downtime of the checkpointed processes
by more than 10.1% on our experimental benchmarks. Detailed results are shown
in Figure 5.

 0

 20

 40

 60

 80

 100

64 128 256 512

R
ed

uc
ed

 D
ow

nt
im

e
(%

)

Matrix Size

TIC−CKPT
CLL

Fig. 5. Percentage of reduced downtime of MAT processes

 0

 10

 20

 30

 40

 50

 60

FFT(13KB) SORT(438KB) PM(67KB) JPA(52KB)

R
ed

uc
ed

 D
ow

nt
im

e
(%

)

Benchmarks

TIC−CKPT
CLL

Fig. 6. Percentage of reduced downtime of compute-intensive processes

Some compute-intensive applications introduced in Section 4.1 are used to mea-
sure the performance of this concurrent checkpoint system. In fact, these applica-
tions keep the principle of locality in a certain degree. In Figure 6, the downtime
of checkpiontees is reduced by more than 35.29% and 41.18% while using the CLL
checkpoint system and the TIC-CKPT, respectively. Compared with the CLL check-
point system, this new concurrent checkpoint system can decrease the downtime by
more than 12.24%. It is easy to see from Figures 5 and 6 that in contrast to the CLL

704 J. Liao

checkpoint system, the proposed TIC-CKPT has much more concurrency and can
reduce much more downtime. This property is quite suitable for real-time and in-
teractive processes; although the checkpoint time may become longer, the downtime
of the checkpointee is reduced far more than that brought by the non-concurrent
checkpoint systems.

Checkpoint System Downtime Execution Time Real Runtime
[msec] [msec] [msec]

Non-Concurrent 46.3 7.3 53.6
CLL 10.6 7.3 17.9
TIC-CKPT 9.7 7.3 17

Table 1. Setting a checkpoint for real-time benchmark

In addition, a real-time benchmark called rt-benchmark has been chosen to
show TIC-CKPT can get much concurrency and meet the time constraint better
than others. The downtime while setting a checkpoint for it with three checkpoint
systems are reported in Table 1, where Execution Time means the average interval
between the finish time and the expected scheduled time without any checkpoints;
Real Runtime means the average interval between the finish time and the expected
scheduled time while one checkpoint was set. This table shows that TIC-CKPT in-
troduces the shortest downtime, that means with the proper deadline configuration
for rt-benchmark, for instance, 17.5ms in our experiments; then the task can com-
plete before deadline even though a checkpoint has been set by using TIC-CKPT
with quite high probability1. On the contrary, while using CLL and traditional
checkpoint mechanisms to set a checkpoint, the task misses the deadline with high
probability. In addition, if we set 19 ms as the deadline, based on our experimental
data (the maximum of Execution Time we got is 8.8ms), the task can complete
before the deadline while using TIC-CKPT to set one checkpoint; however, while
using CLL to set a checkpoint, the task might miss the deadline.

4.4 Incremental Checkpointing

We used the number of copied pages as performance parameters to evaluate the in-
cremental checkpointing in TIC-CKPT. It is very clear, while the number of copied
pages is becoming smaller, the time needed for setting a checkpoint is much shorter.
The benchmark we used is matrix multiplication (the matrix size is 1 024, the aver-
age execution time on our experimental platform is more than 300 seconds since the
experimental board SH-4A cannot support the double precision directly, all compu-
tation is emulated by software), time intervals for each checkpointing are 10 seconds
and 20 seconds. The numbers of the saved pages while setting full checkpoints and
incremental checkpoints are shown in Figures 7 and 8.

1 Depends on when the scheduler chooses the task to run.

Checkpoint System for Embedded Multi-Core Systems 705

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

 8,000

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 S

av
ed

 P
ag

es

Checkpoint Sequence

Full Checkpoint
Incremental Checkpoint

Fig. 7. Numbers of copied pages (10 seconds)

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

 8,000

1 2 3 4 5 6 7 8

N
um

be
r

of
 S

av
ed

 P
ag

es

Checkpoint Sequence

Full Checkpoint
Incremental Checkpoint

Fig. 8. Numbers of copied pages (20 seconds)

Except the first checkpoint, incremental checkpointing reduces the number of
copied pages by more than 98.7% and 97.4% while the intervals between two check-
points are 10 seconds and 20 seconds, respectively. As a matter of fact, after the
initialization of two input matrices, matrix multiplication overwrites only the me-
mory area belonging to the output matrix. Because the number of modified pages
after the previous checkpoint is only a very small part of the whole address space,
in contrast to the full checkpointing, the number of pages saved to the nonvolatile
storage while using incremental checkpoint mechanism is much smaller than when
using the full checkpoint mechanism.

Moreover, we have measured the checkpoint time for setting a full checkpoint
and the second incremental checkpoint; the results are shown in Table 2. We can
see from the table, compared with full checkpointing, incremental checkpointing

706 J. Liao

reduces the checkpoint time by more than 89.2% when the time slice between two
incremental checkpoints is 20 seconds, respectively; this is because the number of
saved memory pages by using incremental checkpointing is much smaller than the
number of saved pages by using full checkpointing.

Checkpoint Interval Full Checkpoint Incremental Checkpoint
[msec] [msec]

Interval (10 seconds) 621.4 38
Interval (20 seconds) 621.4 67

Table 2. Time for setting a full and an incremental checkpoint for MAT (1 024× 1 024)

The experimental results in this section also show that while the time becomes
longer, the number of copied pages is becoming bigger. It is obvious that checkpoint
interval is the key parameter to incremental checkpointing; while the interval is
bigger than a threshold, incremental checkpointing might not perform better than
full checkpointing. Fortunately, for the purpose of saving the latest state of the
running process, it is unacceptable that full checkpointing techniques do not make
a checkpoint until a major part of memory pages has been modified. In general,
the time interval for setting incremental checkpoints could be the same as that for
setting full checkpoints.

4.5 Restart Mechanism

All three checkpoint systems employed in the evaluation experiments have the same
restart mechanism for restoring the checkpointed process from the full checkpoint
images. Therefore, we present the restart time from full checkpoint by using TIC-
CKPT only in this section. Besides, the restart time from incremental checkpoints
by using TIC-CKPT is presented in this section as well.

Figure 9 shows the restart times by using the full checkpoint and incremental
checkpoints. In the figure, X axis represents the time point for setting checkpoints
(for example, while TIC-CKPT makes an incremental checkpoint per 10 seconds,
‘50’ means there are 4 incremental checkpoint image files and 1 full checkpoint
image file) then the restarting should reload the latest state from all 5 checkpoint
image files. We can conclude from the experimental results that it takes much more
time when restarting from several incremental checkpoint image files compared with
restarting from one full checkpoint image only, because in the case of restarting with
the incremental checkpoints, not only the incremental checkpoint image files, but
also the full checkpoint image file should be opened and read by the kernel thread
to restore the latest and consistent state of the checkpointed process.

In addition, another problem with the incremental checkpointing is the occu-
pation of disk space for storing the checkpoint image files [17]. Therefore, a full
checkpoint after several incremental checkpoints should be employed to release the
disk space occupied by incremental checkpoint image files and avoid the unaccept-
able restart time.

Checkpoint System for Embedded Multi-Core Systems 707

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

10 20 30 40 50 60 70 80 90 100 110

R
es

ta
rt

 T
im

e
(s

ec
)

Time Point for Setting Checkpoints (sec)

Incremental Checkpoint (10 sec)
Incremental Checkpoint (20 sec)
Full Checkpoint

Fig. 9. Restart overhead

5 CONCLUSIONS

A new system-level, transparent, concurrent checkpoint mechanism for multi-core
embedded systems called TIC-CKPT has been designed, implemented and evaluated
in this paper. This mechanism allows the checkpointed process to keep running while
setting the checkpoints for it to a certain degree without any extra operations on
the page table and extra hardware. Much more exactly, the most time-consuming
step of setting a checkpoint (i.e. dumping address space) is overlapping with the
running of the checkpointed process. In addition, in order to reduce the checkpoint
time for setting checkpoints for long-time running processes which may need multiple
checkpoints during their life time, incremental checkpointing has also been proposed
and implemented in TIC-CKPT.

The experimental results show that in contrast to non-concurrent checkpoint, for
our selected benchmarks, the downtime of the checkpointed process can be reduced
by 50–90%. In addition, compared with the CLL checkpoint system proposed by
Kai Li et al., the downtime can be reduced by around 10.1%. For this reason, TIC-
CKPT is suitable for real-time and interactive processes which have stringent timing
requirements, such as a finish time or a response time. Besides, from the results
of experiments on incremental checkpointing, except for the first checkpoint for
the benchmark of matrix multiplication, incremental checkpointing in TIC-CKPT
can reduce the checkpoint time by more than 95.5% and 89.2%, while the time
slices between two checkpoints are 10 seconds and 20 seconds, respectively. Though
restarting from incremental checkpoints takes longer time, we can obtain more be-
nefits from incremental checkpointing because of the many checkpoints during the
execution of the applications, but the restarting is rare. In general, setting a full
checkpoint after several incremental checkpoints is employed to release the disk
space occupied by incremental checkpoint files and avoid the unacceptable restart
time.

708 J. Liao

Although TLB misses and loads are transparent to IA-32 and IA-64 platforms,
some other architectures, such as MIPS and SuperH, can employ TIC-CKPT me-
chanism since the loading of page table entries to TLB is handled by the operating
system; Sparc and Power PC have hashed page tables that act as extended TLBs, so
every TLB miss causes a fault, which is handled by the operating system. Therefore,
TIC-CKPT can also be implemented in the operating systems targeted for these
architectures with some minor modifications by tracing the hashed page tables. The
current implementation of TIC-CKPT only supports single process applications, it
cannot set the checkpoints for the multi-process applications. We need to complete
this checkpoint system to support checkpointing the multi-process and multi-thread
applications in the near future.

Acknowledgement

This work was partially supported by Scientific Research Fund for Doctor of South-
west University of China (No. SWU112025).

REFERENCES

[1] Borkar, S.: Designing Reliable Systems from Unreliable Components: The Chal-
lenges of Transistor Variability and Degradation. IEEE Micro, Vol. 25, 2005, No. 6,
pp. 10–16.

[2] Rashid, L.—Pattabiraman, K.—Gopalakrishnan, S. (Eds.): Towards Under-
standing the Effects of Intermittent Hardware Faults on Programs. Proceedings of
the 2010 International Conference on Dependable Systems and Networks Workshops
(DSNW ’10), Boston, June 2010, pp. 101–106.

[3] Liao, J.—Ishikawa, Y.: A New Concurrent Checkpoint Mechanism for Real-
Time and Interactive Processes. In Proceedings of 2010 IEEE 34th Annual Com-
puter Software and Applications Conference (Compsac ’10), Seoul (Korea), July 2010,
pp. 47–52.

[4] BLCR. Available on: https://ftg.lbl.gov/projects/CheckpointRestart/.

[5] Kernel based checkpoint/restart. Available on: https://www.linux-cr.org/.

[6] Gioiosa, R.—Petrini, F.: Transparent, Incremental Checkpointing at Kernel
Level: A Foundation for Fault Tolerance for Parallel Computers. In: Proceedings
of the 2005 ACM/IEEE Conference on Supercomputing (SC ’05), WA, USA 2005,
pp. 1–9.

[7] Wang, C.—Scott, S.-L.: Proactive Process-Level Live Migration in HPC Envi-
ronments. In: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing
(SC ’08), Texas (USA) 2008, pp. 1–12.

[8] Plank, J. S.—Li, K.—Puening, M.A.: Diskless Checkpointing. IEEE Trans. Pa-
rallel Distrib. Syst., Vol. 9, 1998, No. 10, pp. 972–986.

Checkpoint System for Embedded Multi-Core Systems 709

[9] Yi, S.—Hong, J.: Adaptive Page-Level Incremental Checkpointing Based on Ex-

pected Recovery Time. In: Proceedings of the 2006 ACM Symposium on Applied
Computing, SAC ’06, pp. 1472–1476.

[10] Naksinehaboon, N.—Scott, S. L.: Reliability-Aware Approach: An Incremental

Checkpoint/Restart Model in HPC Environments In: Proceedings of the 2008 Eighth
IEEE International Symposium on Cluster Computing and the Grid, CCGRID ’08,
pp. 783–788.

[11] Mehnert-Spahn, J.–Schoettner, M.: Incremental Checkpointing for Grids. In:
Proceedings of the Linux Symposium 2009, Canada, July 2009, pp. 201–208.

[12] Li, K.—Naughton, J. F.—Plank, J. S.: Low-Latency, Concurrent Checkpoint-
ing for Parallel Programs. IEEE Trans. Parallel Distrib. Syst., Vol. 5, 1994, No. 8,

pp. 874–879.

[13] Li, Y.—Lan, Z.: A Fast Restart Mechanism for Checkpoint/Recovery Protocols
in Networked Environments. In: Proceedings of The 38th Annual IEEE/IFIP Inter-

national Conference on Dependable Systems and Networks (DSN ’08), Alaska, USA,
June 2008, pp. 217–226.

[14] SH-4 CPU Core Architecture. Available on: http://www.shell-storm.org/papers/

files/768.pdf.

[15] SuperH RISC engine Family. Available on: http://www.renesas.com/.

[16] rt-benchmark: A light weight real-time benchmark. Availaible on: http://

nerdvar.com/prog/rt-benchmark.c.

[17] Sangho, J.—Shin, S.: Space-Efficient Page-Level Incremental Checkpointing. In:
Proceedings of the 2005 ACM Symposium on Applied Computing (SAC ’05), New
Mexico, USA, March 2005 pp. 1558–1562.

Jianwei Liao received his Ph.D. degree in computer science
from the University of Tokyo, Japan in 2012. Now he works for

the College of Computer and Information Science, Southwest
University of China. He published several articles in interna-
tional peer reviewed journals and IEEE conferences as the first
author. His research interests include dependable operating sys-
tems and parallel file systems.

