3,125 research outputs found

    The Progress, Challenges, and Perspectives of Directed Greybox Fuzzing

    Full text link
    Most greybox fuzzing tools are coverage-guided as code coverage is strongly correlated with bug coverage. However, since most covered codes may not contain bugs, blindly extending code coverage is less efficient, especially for corner cases. Unlike coverage-guided greybox fuzzers who extend code coverage in an undirected manner, a directed greybox fuzzer spends most of its time allocation on reaching specific targets (e.g., the bug-prone zone) without wasting resources stressing unrelated parts. Thus, directed greybox fuzzing (DGF) is particularly suitable for scenarios such as patch testing, bug reproduction, and specialist bug hunting. This paper studies DGF from a broader view, which takes into account not only the location-directed type that targets specific code parts, but also the behaviour-directed type that aims to expose abnormal program behaviours. Herein, the first in-depth study of DGF is made based on the investigation of 32 state-of-the-art fuzzers (78% were published after 2019) that are closely related to DGF. A thorough assessment of the collected tools is conducted so as to systemise recent progress in this field. Finally, it summarises the challenges and provides perspectives for future research.Comment: 16 pages, 4 figure

    Easier Parallel Programming with Provably-Efficient Runtime Schedulers

    Get PDF
    Over the past decade processor manufacturers have pivoted from increasing uniprocessor performance to multicore architectures. However, utilizing this computational power has proved challenging for software developers. Many concurrency platforms and languages have emerged to address parallel programming challenges, yet writing correct and performant parallel code retains a reputation of being one of the hardest tasks a programmer can undertake. This dissertation will study how runtime scheduling systems can be used to make parallel programming easier. We address the difficulty in writing parallel data structures, automatically finding shared memory bugs, and reproducing non-deterministic synchronization bugs. Each of the systems presented depends on a novel runtime system which provides strong theoretical performance guarantees and performs well in practice

    OSCAR. A Noise Injection Framework for Testing Concurrent Software

    Get PDF
    “Moore’s Law” is a well-known observable phenomenon in computer science that describes a visible yearly pattern in processor’s die increase. Even though it has held true for the last 57 years, thermal limitations on how much a processor’s core frequencies can be increased, have led to physical limitations to their performance scaling. The industry has since then shifted towards multicore architectures, which offer much better and scalable performance, while in turn forcing programmers to adopt the concurrent programming paradigm when designing new software, if they wish to make use of this added performance. The use of this paradigm comes with the unfortunate downside of the sudden appearance of a plethora of additional errors in their programs, stemming directly from their (poor) use of concurrency techniques. Furthermore, these concurrent programs themselves are notoriously hard to design and to verify their correctness, with researchers continuously developing new, more effective and effi- cient methods of doing so. Noise injection, the theme of this dissertation, is one such method. It relies on the “probe effect” — the observable shift in the behaviour of concurrent programs upon the introduction of noise into their routines. The abandonment of ConTest, a popular proprietary and closed-source noise injection framework, for testing concurrent software written using the Java programming language, has left a void in the availability of noise injection frameworks for this programming language. To mitigate this void, this dissertation proposes OSCAR — a novel open-source noise injection framework for the Java programming language, relying on static bytecode instrumentation for injecting noise. OSCAR will provide a free and well-documented noise injection tool for research, pedagogical and industry usage. Additionally, we propose a novel taxonomy for categorizing new and existing noise injection heuristics, together with a new method for generating and analysing concurrent software traces, based on string comparison metrics. After noising programs from the IBM Concurrent Benchmark with different heuristics, we observed that OSCAR is highly effective in increasing the coverage of the interleaving space, and that the different heuristics provide diverse trade-offs on the cost and benefit (time/coverage) of the noise injection process.Resumo A “Lei de Moore” é um fenómeno, bem conhecido na área das ciências da computação, que descreve um padrão evidente no aumento anual da densidade de transístores num processador. Mesmo mantendo-se válido nos últimos 57 anos, o aumento do desempenho dos processadores continua garrotado pelas limitações térmicas inerentes `a subida da sua frequência de funciona- mento. Desde então, a industria transitou para arquiteturas multi núcleo, com significativamente melhor e mais escalável desempenho, mas obrigando os programadores a adotar o paradigma de programação concorrente ao desenhar os seus novos programas, para poderem aproveitar o desempenho adicional que advém do seu uso. O uso deste paradigma, no entanto, traz consigo, por consequência, a introdução de uma panóplia de novos erros nos programas, decorrentes diretamente da utilização (inadequada) de técnicas de programação concorrente. Adicionalmente, estes programas concorrentes são conhecidos por serem consideravelmente mais difíceis de desenhar e de validar, quanto ao seu correto funcionamento, incentivando investi- gadores ao desenvolvimento de novos métodos mais eficientes e eficazes de o fazerem. A injeção de ruído, o tema principal desta dissertação, é um destes métodos. Esta baseia-se no “efeito sonda” (do inglês “probe effect”) — caracterizado por uma mudança de comportamento observável em programas concorrentes, ao terem ruído introduzido nas suas rotinas. Com o abandono do Con- Test, uma framework popular, proprietária e de código fechado, de análise dinâmica de programas concorrentes através de injecção de ruído, escritos com recurso `a linguagem de programação Java, viu-se surgir um vazio na oferta de framework de injeção de ruído, para esta mesma linguagem. Para mitigar este vazio, esta dissertação propõe o OSCAR — uma nova framework de injeção de ruído, de código-aberto, para a linguagem de programação Java, que utiliza manipulação estática de bytecode para realizar a introdução de ruído. O OSCAR pretende oferecer uma ferramenta livre e bem documentada de injeção de ruído para fins de investigação, pedagógicos ou até para a indústria. Adicionalmente, a dissertação propõe uma nova taxonomia para categorizar os dife- rentes tipos de heurísticas de injecção de ruídos novos e existentes, juntamente com um método para gerar e analisar traces de programas concorrentes, com base em métricas de comparação de strings. Após inserir ruído em programas do IBM Concurrent Benchmark, com diversas heurísticas, ob- servámos que o OSCAR consegue aumentar significativamente a dimensão da cobertura do espaço de estados de programas concorrentes. Adicionalmente, verificou-se que diferentes heurísticas produzem um leque variado de prós e contras, especialmente em termos de eficácia versus eficiência

    Learning vision-based agile flight: From simulation to the real world

    Get PDF

    Quantitative Verification and Synthesis of Resilient Networks

    Get PDF

    DALiuGE: A Graph Execution Framework for Harnessing the Astronomical Data Deluge

    Full text link
    The Data Activated Liu Graph Engine - DALiuGE - is an execution framework for processing large astronomical datasets at a scale required by the Square Kilometre Array Phase 1 (SKA1). It includes an interface for expressing complex data reduction pipelines consisting of both data sets and algorithmic components and an implementation run-time to execute such pipelines on distributed resources. By mapping the logical view of a pipeline to its physical realisation, DALiuGE separates the concerns of multiple stakeholders, allowing them to collectively optimise large-scale data processing solutions in a coherent manner. The execution in DALiuGE is data-activated, where each individual data item autonomously triggers the processing on itself. Such decentralisation also makes the execution framework very scalable and flexible, supporting pipeline sizes ranging from less than ten tasks running on a laptop to tens of millions of concurrent tasks on the second fastest supercomputer in the world. DALiuGE has been used in production for reducing interferometry data sets from the Karl E. Jansky Very Large Array and the Mingantu Ultrawide Spectral Radioheliograph; and is being developed as the execution framework prototype for the Science Data Processor (SDP) consortium of the Square Kilometre Array (SKA) telescope. This paper presents a technical overview of DALiuGE and discusses case studies from the CHILES and MUSER projects that use DALiuGE to execute production pipelines. In a companion paper, we provide in-depth analysis of DALiuGE's scalability to very large numbers of tasks on two supercomputing facilities.Comment: 31 pages, 12 figures, currently under review by Astronomy and Computin

    Context-aware counter abstraction

    Get PDF
    The trend towards multi-core computing has made concurrent software an important target of computer-aided verification. Unfortunately, Model Checkers for such software suffer tremendously from combinatorial state space explosion. We show how to apply counter abstraction to real-world concurrent programs to factor out redundancy due to thread replication. The traditional global state representation as a vector of local states is replaced by a vector of thread counters, one per local state. In practice, straightforward implementations of this idea are unfavorably sensitive to the number of local states. We present a novel symbolic exploration algorithm that avoids this problem by carefully scheduling which counters to track at any moment during the search. We have carried out experiments on Boolean programs, an abstraction promoted by the success of the Slam project. The experiments give evidence of the applicability of our method to realistic programs, and of the often huge savings obtained in comparison to plain symbolic state space exploration, and to exploration optimized by partial-order methods. To our knowledge, our tool marks the first implementation of counter abstraction to programs with non-trivial local state spaces, resulting in a Model Checker for concurrent Boolean programs that promises true scalabilit

    Multiversioning hardware transactional memory for fail-operational multithreaded applications

    Get PDF
    Modern safety-critical embedded applications like autonomous driving need to be fail-operational, while high performance and low power consumption are demanded simultaneously. The prevalent fault tolerance mechanisms suffer from disadvantages: Some (e.g. triple modular redundancy) require a substantial amount of duplication, resulting in high hardware costs and power consumption. Others, like lockstep, require supplementary checkpointing mechanisms to recover from errors. Further approaches (e.g. software-based process-level redundancy) cannot handle the indeterminism caused by multithreaded execution. This paper presents a novel approach for fail-operational systems using hardware transactional memory for embedded systems. The hardware transactional memory is extended to support multiple versions, enabling redundant atomic operations and recovery in case of an error. In our FPGA-based evaluation, we executed the PARSEC benchmark suite with fault tolerance on 12 cores. The evaluation shows that multiversioning can successfully recover from all transient errors with an overhead comparable to fault tolerance mechanisms without recovery
    corecore