
Department of Informatics

Learning Vision-Based Agile Flight:

From Simulation to the Real World

Dissertation submitted to the Faculty of Business,

Economics and Informatics

of the University of Zurich

to obtain the degree of

Doktor der Wissenschaften, Dr. sc.

(corresponds to Doctor of Science, PhD)

presented by

Elia Kaufmann

from Sins, Switzerland

approved in July 2022

at the request of

Prof. Dr. Davide Scaramuzza

Prof. Dr. Vijay Kumar

Prof. Dr. Wolfram Burgard

Prof. Dr. Sertac Karaman

Prof. Dr. Angela Schoellig

The Faculty of Business, Economics and Informatics of the University of Zurich hereby

authorizes the printing of this dissertation, without indicating an opinion of the views

expressed in the work.

Zurich, 20.07.2022

The Chairperson of the Doctoral Board: Prof. Dr. Thomas Fritz

Systems that strive for perfection
are the ones most sensitive to disruption.

— Sam Denby

To Nicole.

Acknowledgements

I would like to thank Prof. Davide Scaramuzza for accepting me as a PhD student and
providing me with many exciting opportunities and helpful advice over the years. It is
truly remarkable how much time Davide invests in guiding us students, all while still
allowing us freedom in our creativity and choice of projects.
I would also like to particularly thank my colleagues Antonio Loquercio and Philipp Foehn.
I collaborated with them in many projects, throughout which they not only became
colleagues, but also good friends. Both Philipp and Antonio were always open for
discussing new ideas, sharing their view on challenging problems, or giving valuable
feedback also on projects outside their field of expertise.
I would like to express my gratitude to all the current and past members, visitors, and
students who I interacted with during my journey as a PhD student at the Robotics
and Perception Group. I would like to particularly thank Leonard Bauersfeld, Yunlong
Song, Mathias Gehrig, Daniel Gehrig, Nico Messikommer, Angel Romero, Drew Hanover,
Manasi Muglikar, Giovanni Cioffi, Matthias Fässler, Davide Falanga, Henri Rebecq, Titus
Cieslewski, Jeff Delmerico, Guillermo Gallego, Dario Brescianini, Sihao Sun, Robert
Penicka, Christian Pfeiffer, Alessandro Simovic, Julien Kohler, Thomas Längle, Manuel
Sutter, Alex Barden, and Tamar Tolcachier. I also had the pleasure to work with great
students, namely Guillem Torrente, Mats Steinweg, Florian Fuchs, Selim Naji, HaoChih
Lin, Yaswanth Mummaneni, Christoph Meyer, Livio Giacomini, Mario Bonsembiante,
Jiaxu Xing, Alessandro Saviolo, Simon Muntwiler, and Moritz Zimmermann.
Furthermore, I was fortunate enough to work with great international collaborators,
namely René Ranftl, Matthias Müller, Alexey Dosovitskiy, Tim Salzmann, Markus Ryll,
and Vladlen Koltun.
I would like to thank the agencies funding my research, namely Intel, the National Centre
of Competence in Research (NCCR) Robotics, the Swiss National Science Foundation,
and the European Research Council.
I would like to thank Prof. Angela Schoellig, Prof. Sertac Karaman, Prof. Wolfram
Burgard, and Prof. Vijay Kumar for reviewing my thesis and their valuable feedback.

Personally, I thank my friends and family for their support and motivation throughout the
years and accepting my absences when deadlines came closer. In particular, I’m deeply
grateful to Nicole, for being always supportive and tolerant with me, for motivating me
to reach for the stars, and for standing by me during difficult times.

Zurich, April 2022 Elia Kaufmann

v

Abstract

Autonomous aerial vehicles have a huge industry potential, with an estimated market
value of over $80 billion US-Dollar by the year 2025 according to Forbes [8]. Already
during the last decade, commercial drones – both autonomous and remote-controlled –
have conquered new markets ranging from agriculture to transport, security, surveillance,
inspection, entertainment, and search and rescue [333, 131]. Compared to grounded
robots, aerial robots have the distinct advantage of being able to cover large distances
in short time, which is an essential capability for tasks where a quick response time is
required. In contrast to fixed-wing aerial robots, multirotors, and especially quadrotors,
combine the ability to hover in-place with mechanical simplicity, allowing to build highly
agile vehicles with a relatively simple mechanical setup. Unfortunately, this unique level
of maneuverability comes at a price: even while hovering, multirotors need to excerpt
constant mechanical power to stay airborne. This results in limited battery life and
creates the need to push autonomous drones to high speeds in order to maximize the
utility of every single battery charge [167, 22].

While human drone pilots achieve impressive maneuvering skills with their powerful
drones, commercial autonomous drones today still lack the level of agility demonstrated
by human pilots, even when being provided with the same physical specifications such
as motors and platform weight. This gap between human-level performance and the
capabilities of autonomous vision-based drones has been made obvious when comparing
professional human drone racing pilots with autonomous racing drones, as they have been
demonstrated at the Lockheed Martin AlphaPilot competition in 2019 [1, 61, 62, 92]. The
main reason for this performance gap is two-fold: (i) navigating at such high speeds raises
fundamental challenges in perception, planning, and control, as sensory readings become
unreliable due to motion blur and limited field of view, and (ii) the modeling complexity of
the system, while relatively simple around hover conditions, becomes increasingly complex
at high speeds due to difficult-to-model aerodynamic effects such as drag, interaction
between rotors, and turbulences.

Prior work on autonomous quadrotor navigation has approached the challenge of vision-
based autonomous navigation by separating the system into a sequence of independent
compute modules: perception, mapping, planning, and control. While such modularization
of the system is beneficial in terms of interpretability and allows to easily exchange modules,
it results in a substantial increase in latency from perception to action. Furthermore, the
sequential nature of the modules ignores the tight coupling between perception and action,
which results in errors being propagated from one module to the next. Apart from the
modularization of the autonomy stack, prior work on autonomous quadrotor navigation
heavily relies on control techniques such as traditional PID control [83, 78, 330], adaptive
approaches such as INDI [336, 329, 269], or model predictive control (MPC) [79, 250, 162].
While these methods have demonstrated impressive feats in controlled environments, they
require substantial amount of tuning [207], and are difficult, if not impossible, to scale to

vii

Abstract

complex dynamics models without large penalties in computation time.

This thesis investigates the deployment of machine learning approaches on a real-world
robotic system, allowing for tight coupling of perception and action. Compared to
traditional perception, planning, and control approaches, learning-based sensorimotor
policies have the distinct advantage of mapping potentially high-dimensional sensory
observation directly to control commands, while being able to cope with arbitrary complex
observations and dynamics models. These capabilities result in unique strengths of
learning-based systems: the direct mapping of observations to actions results in substan-
tially lower latency, while the possibility to combine them with arbitrary observation- and
dynamics-models allows to train such policies to cope with complex real world scenarios.

While learning-based methods have already shown impressive performance in the sim-
ulation domain, they are often believed to be too compute demanding for successful
deployment on resource-constrained platforms such as small autonomous aerial vehicles.
In this thesis, I demonstrate that such sensorimotor policies can very well be deployed on
small aerial vehicles, and in fact surpass their traditional counterparts with respect to
robustness and computational complexity. The research presented in this thesis allowed
to not only substantially surpass the previous state of the art in autonomous drone flight,
but also resulted in the first autonomous drone that outperformed a human expert pilot
in a vision-based drone race.

In summary, the contributions presented in this work aim to answer the question of

How can the capabilities of machine-learning algorithms be leveraged to push autonomous
vision-based quadrotors to a new level of agility?

The following list summarizes the contributions of this work:

• A system based on model-free reinforcement learning and real-world adaptation for
vision-based autonomous drone racing. This system allowed for the first time to
outperform a human expert pilot with a robotic system in a vision-based drone
race.

• A benchmark comparison of learning-based control policies that investigates the
performance and robustness of policies as a function of their output modality.
Notably, we compare policies that directly output low-level, single-rotor-thrusts
against policies that only output collective thrust and bodyrates.

• A method based on abstraction of sensory inputs to achieve robust transfer of
sensorimotor policies between domains, such as between simulation and the real
world. The method is then deployed in real-world tasks such as drone racing,
acrobatic flight, and high-speed flight in the wild.

• Hybrid aerodynamics models combining first principles with a data-driven residual
that models unexplained forces and torques when approaching the physical limits
of the platform. These hybrid models are deployed on tasks including accurate
simulation and online predictive control.

• A tightly integrated perception system for autonomous drone racing that allows to
detect an arbitrary number of racing gates while being robust to partial occlusion.

viii

Abstract

• A framework for agile quadrotor flight completely open-source and open-hardware.
The framework provides modular estimation, planning, and control capabilities,
and can also be used in conjunction with learning-based controllers.

ix

List of Contributions

The ∗ symbol indicates shared first authorship.

Journal Publications

• Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Müller, Vladlen
Koltun, Davide Scaramuzza, “Champion-Level Drone Racing Using Deep Reinforcement
Learning”, Nature (2023), Appendix H

• Tim Salzmann, Elia Kaufmann, Marco Pavone, Davide Scaramuzza, Markus Ryll,
“Neural-MPC: Deep Learning Model Predictive Control for Quadrotors and Agile Robotic
Platforms”, IEEE Robotics and Automation Letters (RA-L) (2022), Links: PDF

• Robert Penicka, Yunlong Song, Elia Kaufmann, Davide Scaramuzza, “Learning Minimum-
Time Flight in Cluttered Environments”, IEEE Robotics and Automation Letters (RA-L)
(2022), Links: PDF

• Philipp Foehn∗, Elia Kaufmann∗, Angel Romero, Robert Penicka, Sihao Sun, Leonard
Bauersfeld, Thomas Laengle, Yunlong Song, Antonio Loquercio, Davide Scaramuzza,
“Agilicious: Open-Source and Open-Hardware Agile Quadrotor for Vision-Based Flight”,
Science Robotics (2022), Links: Webpage, Code, Appendix K

• Sihao Sun, Angel Romero, Philipp Foehn, Elia Kaufmann, Davide Scaramuzza, “A Com-
parative Study of Nonlinear MPC and Differential-Flatness-Based Control for Quadrotor
Agile Flight”, IEEE Transactions on Robotics (TRO) (2022), Links: PDF, Video

• Antonio Loquercio∗, Elia Kaufmann∗, René Ranftl, Matthias Müller, Vladlen Koltun,
Davide Scaramuzza, “Learning High-Speed Flight in the Wild”, Science Robotics (2021),
DOI: 10.1126/scirobotics.abg5810, Links: PDF, Video, Appendix F

• Philipp Foehn∗, Dario Brescianini∗, Elia Kaufmann∗, Titus Cieslewski, Mathias Gehrig,
Manasi Muglikar, Davide Scaramuzza, “AlphaPilot: Autonomous Drone Racing”, Springer:
Autonomous Robots (2021), DOI: 10.1007/s10514-021-10011-y, Links: PDF, Video, Talk,
Appendix C

• Drew Hanover, Philipp Foehn, Sihao Sun, Elia Kaufmann, Davide Scaramuzza, “Perfor-
mance, Precision, and Payloads: Adaptive Nonlinear MPC for Quadrotors”, IEEE Robotics
and Automation Letters (RA-L) (2022), DOI: 10.1109/LRA.2021.3131690, Links: PDF,
Video

• Guillem Torrente∗, Elia Kaufmann∗, Philipp Foehn, Davide Scaramuzza, “Data-Driven
MPC for Quadrotors”, IEEE Robotics and Automation Letters (RA-L) (2021), DOI:
10.1109/LRA.2021.3061307, Links: PDF, Video, Code Appendix I

• Florian Fuchs, Yunlong Song, Elia Kaufmann, Davide Scaramuzza, Peter Duerr “Super-
Human Performance in Gran Turismo Sport Using Deep Reinforcement Learning”, IEEE
Robotics and Automation Letters (RA-L) (2020), DOI: 10.1109/LRA.2021.3064284, Links:
PDF, Video

xi

https://arxiv.org/abs/2203.07747
https://arxiv.org/abs/2203.15052
https://agilicious.dev
https://github.com/uzh-rpg/agilicious
https://arxiv.org/abs/2109.01365
https://www.youtube.com/watch?v=XpuRpKHp_Bk
http://doi.org/10.1126/scirobotics.abg5810
https://rpg.ifi.uzh.ch/docs/Loquercio21_Science.pdf
https://youtu.be/m89bNn6RFoQ
http://doi.org/10.1007/s10514-021-10011-y
http://rpg.ifi.uzh.ch/docs/AURO21_Foehn.pdf
https://youtu.be/DGjwm5PZQT8
https://youtu.be/ZIHjswKDods
http://doi.org/10.1109/LRA.2021.3131690
https://arxiv.org/abs/2109.04210
https://youtu.be/8oB1rG5iYc4
http://doi.org/10.1109/LRA.2021.3061307
https://doi.org/10.1109/LRA.2021.3061307
https://youtu.be/FHvDghUUQtc
https://github.com/uzh-rpg/data_driven_mpc
http://doi.org/10.1109/LRA.2021.3064284
https://doi.org/10.1109/LRA.2021.3064284
https://youtu.be/Zeyv1bN9v4A

List of Contributions

• Antonio Loquercio∗, Elia Kaufmann∗, René Ranftl, Alexey Dosovitskiy, Vladlen Koltun,
Davide Scaramuzza, “Deep Drone Racing: From Simulation to Reality with Domain
Randomization”, IEEE Transactions on Robotics (T-RO) (2020), (Best Paper Award
Honorable Mention), DOI: 10.1109/TRO.2019.2942989, Links: PDF, Video, Appendix D

Peer-Reviewed Conference Papers

• Elia Kaufmann, Leonard Bauersfeld, Davide Scaramuzza, “A Benchmark Comparison of
Learned Control Policies for Agile Quadrotor Flight”, IEEE International Conference on
Robotics and Automation (ICRA) (2022), Links: PDF, Video, Appendix G

• Yunlong Song, HaoChih Lin, Elia Kaufmann, Peter Duerr, Davide Scaramuzza, “Au-
tonomous Overtaking in Gran Turismo Sport Using Curriculum Reinforcement Learning”,
IEEE International Conference on Robotics and Automation (ICRA) (2021), DOI: 10.1109/I-
CRA48506.2021.9561049, Links: PDF, Video

• Yunlong Song, Mats Steinweg, Elia Kaufmann, Davide Scaramuzza, “Autonomous Drone
Racing with Deep Reinforcement Learning”, IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS) (2021), DOI: 10.1109/IROS51168.2021.9636053, Links:
PDF, Video

• Yunlong Song, Selim Naji, Elia Kaufmann, Antonio Loquercio, Davide Scaramuzza,
“Flightmare: A Flexible Quadrotor Simulator”, Conference on Robot Learning (CoRL)
(2020), Links: PDF, Video, Code

• Elia Kaufmann∗, Antonio Loquercio∗, René Ranftl, Matthias Müller, Vladlen Koltun,
Davide Scaramuzza, “Deep Drone Acrobatics”, Robotics: Science and Systems (RSS) (2020),
(Best Paper Award Finalist), DOI: 10.15607/RSS.2020.XVI.040, Links: PDF, Video,
Code Talk, Appendix E

• Leonard Bauersfeld∗, Elia Kaufmann∗, Philipp Foehn, Sihao Sun, Davide Scaramuzza,
“NeuroBEM: Hybrid Aerodynamic Quadrotor Model”, Robotics: Science and Systems (RSS)
(2021), DOI: 10.15607/RSS.2021.XVII.042, Links: PDF, Video, Code Appendix J

• Philipp Foehn∗, Dario Brescianini∗, Elia Kaufmann∗, Titus Cieslewski, Mathias
Gehrig, Manasi Muglikar, Davide Scaramuzza, “AlphaPilot: Autonomous Drone Racing”,
Robotics: Science and Systems (RSS) (2020) (Best System Paper Award), DOI:
10.15607/RSS.2020.XVI.081, Links: PDF, Video, Talk, Appendix C

• Elia Kaufmann, Mathias Gehrig, Philipp Foehn, René Ranftl, Alexey Dosovitskiy,
Vladlen Koltun, Davide Scaramuzza, “Beauty and the Beast: Optimal Methods Meet
Learning for Drone Racing”, IEEE International Conference on Robotics and Automation
(ICRA) (2019), DOI: 10.1109/ICRA.2019.8793631, Links: PDF, Video, Appendix B

• Elia Kaufmann∗, Antonio Loquercio∗, René Ranftl, Alexey Dosovitskiy, Vladlen Koltun,
Davide Scaramuzza, “Deep Drone Racing: Learning Agile Flight in Dynamic Environments”,
Conference on Robot Learning (CoRL) (2018) (Best System Paper Award), Links: PDF,
Video, Appendix A

• Titus Cieslewski, Elia Kaufmann, Davide Scaramuzza, “Rapid Exploration with Multi-
Rotors: A Frontier Selection Method for High-Speed Flight”, IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (2017), (Best Search and Rescue
Robotics Paper Award Finalist), DOI: 10.1109/IROS.2017.8206030, Links: PDF, Video,
Appendix L

xii

http://doi.org/10.1109/TRO.2019.2942989
https://doi.org/10.1109/TRO.2019.2942989
https://youtu.be/vdxB89lgZhQ
https://rpg.ifi.uzh.ch/docs/ICRA22_Kaufmann.pdf
https://youtu.be/zqdfVq2uWUA
http://doi.org/10.1109/ICRA48506.2021.9561049
http://doi.org/10.1109/ICRA48506.2021.9561049
https://doi.org/10.1109/ICRA48506.2021.9561049
https://youtu.be/e8TVPv4D4O0
http://doi.org/10.1109/IROS51168.2021.9636053
https://doi.org/10.1109/IROS51168.2021.9636053
https://youtu.be/Hebpmadjqn8
https://arxiv.org/abs/2009.00563
https://youtu.be/m9Mx1BCNGFU
https://github.com/uzh-rpg/flightmare
http://doi.org/10.15607/RSS.2020.XVI.040
https://doi.org/10.15607/RSS.2020.XVI.040
https://youtu.be/2N_wKXQ6MXA
https://github.com/uzh-rpg/deep_drone_acrobatics
https://youtu.be/r4zzdFw87CY
http://doi.org/10.15607/RSS.2021.XVII.042
https://doi.org/10.15607/RSS.2021.XVII.042
https://www.youtube.com/watch?v=Nze1wlfmzTQ
http://rpg.ifi.uzh.ch/NeuroBEM.html
http://doi.org/10.15607/RSS.2020.XVI.081
http://rpg.ifi.uzh.ch/docs/AURO21_Foehn.pdf
https://youtu.be/DGjwm5PZQT8
https://youtu.be/ZIHjswKDods
http://doi.org/10.1109/ICRA.2019.8793631
https://doi.org/10.1109/ICRA.2019.8793631
https://youtu.be/UuQvijZcUSc
https://arxiv.org/abs/1806.08548
https://youtu.be/8RILnqPxo1s
http://doi.org/10.1109/IROS.2017.8206030
https://doi.org/10.1109/IROS.2017.8206030
https://youtu.be/54s6gGZLpJo

List of Contributions

Awards

• Robotics: Science and Systems (RSS) 2020, Best System Paper Award for
Paper C and invitation to publish in Springer: Autonomous Robots.

• IEEE Transactions on Robotics, 2020, King-Sun Fu Memorial Best Paper
Award (Honorable Mention) for Paper D

• Robotics: Science and Systems (RSS) 2020, Best Paper Award (Honorable
Mention) for Paper E

• AlphaPilot Challenge, 2019, organized by Lockheed Martin and the Drone Racing
League, 2nd Place out of 430 participants worldwide with the approach
presented in Paper C.

• IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
2018 in the Autonomous Drone Racing (ADR) challenge, Winner 1st Place with
the approach presented in Paper B.

• Conference on Robot Learning (CoRL) 2018, Best System Paper Award, for
Paper A and invitation to publish in IEEE Transactions on Robotics.

• IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2017,
Best Search and Rescue Robotics Paper Award (Honorable Mention), for
Paper L.

Open-source Software

• Agilicious Flightstack: Paper K
available at https:agilicious.dev

• Learning High-Speed Flight in the Wild: Paper F
available at https://github.com/uzh-rpg/agile_autonomy

• Deep Drone Acrobatics: Paper E
available at https://github.com/uzh-rpg/deep_drone_acrobatics

• Deep Drone Racing: Paper D
available at https://github.com/uzh-rpg/sim2real_drone_racing

• Data-Driven MPC for Quadrotors: Paper I
available at https://github.com/uzh-rpg/data_driven_mpc

xiii

https:agilicious.dev
https://github.com/uzh-rpg/agile_autonomy
https://github.com/uzh-rpg/deep_drone_acrobatics
https://github.com/uzh-rpg/sim2real_drone_racing
https://github.com/uzh-rpg/data_driven_mpc

Contents

Acknowledgements v

Abstract vii

List of Contributions xi

1 Introduction 1

1.1 Motivation . 4

1.1.1 Advantages . 6

1.1.2 Challenges . 8

1.2 Related Work . 10

1.2.1 Autonomous Navigation: External Sensing 11

1.2.2 Autonomous Navigation: Onboard Sensing and Computation . . . 11

1.2.3 Data-Driven Dynamics Models . 14

1.2.4 Simulation . 16

1.2.5 Hardware Platforms . 19

1.2.6 Simulation-to-Reality Transfer . 19

1.2.7 Autonomous Drone Racing . 20

2 Contributions 23

2.1 Tight Coupling of Learning-Based Perception and Optimal Planning and
Control . 25

2.1.1 Paper A: Deep Drone Racing: Learning Agile Flight in Dynamic
Environments . 26

2.1.2 Paper B: Beauty and the Beast: Optimal Methods Meet Learning
for Drone Racing . 27

2.1.3 Paper C: AlphaPilot: Autonomous Drone Racing 28

2.2 Simulation-to-Reality Transfer for Agile Drone Flight 29

2.2.1 Paper D: Deep Drone Racing: From Simulation to Reality with
Domain Randomization . 30

2.2.2 Paper E: Deep Drone Acrobatics 31

2.2.3 Paper F: Learning High-Speed Flight in the Wild 32

2.2.4 Paper G: A Benchmark Comparison of Learned Control Policies
for Agile Quadrotor Flight . 34

2.2.5 Paper H: Champion-Level Performance in Drone Racing using Deep
Reinforcement Learning . 35

2.3 Data-Driven Dynamics Models . 36

2.3.1 Paper I: Data-Driven MPC for Quadrotors 37

2.3.2 Paper J: NeuroBEM: Hybrid Aerodynamic Quadrotor Model . . . 38

xv

Contents

2.4 Additional Contributions . 39

2.4.1 Paper K: Agilicious: Open-Source and Open-Hardware Agile
Quadrotor for Vision-Based Flight 40

2.4.2 Paper L: Rapid Exploration with Multi-Rotors: A Frontier Selection
Method for High-Speed Flight . 41

3 Future Directions 43

A Deep Drone Racing: Learning Agile Flight in Dynamic Environments 45

A.1 Introduction . 47

A.2 Related Work . 48

A.3 Method . 49

A.3.1 Training procedure . 50

A.4 Experiments in Simulation . 51

A.4.1 Comparison to end-to-end learning approach 51

A.4.2 Performance on a complex track 52

A.4.3 Generalization to dynamic environments 53

A.5 Experiments in the Physical World . 54

A.5.1 Experiments on a race track . 55

A.6 Discussion . 56

B Beauty and the Beast: Optimal Methods Meet Learning for Drone
Racing 59

B.1 Introduction . 61

B.2 Related Work . 62

B.3 Methodology . 63

B.3.1 Notation and Frame Convention 64

B.3.2 Perception System . 64

B.3.3 Mapping System . 66

B.3.4 Planning and Control System . 67

B.4 Experimental Setup . 68

B.4.1 Simulation . 68

B.4.2 Physical System . 69

B.5 Results . 69

B.5.1 Simulation . 69

B.5.2 Physical System . 70

B.6 Conclusion . 71

C AlphaPilot: Autonomous Drone Racing 73

C.1 Introduction . 75

C.1.1 Motivation . 75

C.1.2 Related Work . 75

C.1.3 Contribution . 77

C.2 AlphaPilot Race Format and Drone . 77

C.2.1 Race Format . 77

C.2.2 Drone Specifications . 78

C.2.3 Drone Model . 78

xvi

Contents

C.3 System Overview . 79

C.3.1 Perception . 79

C.3.2 State Estimation . 80

C.3.3 Planning and Control . 80

C.3.4 Software Architecture . 80

C.4 Gate Detection . 81

C.4.1 Stage 1: Predicting Corner Maps and Part Affinity Fields 82

C.4.2 Stage 2: Corner Association . 83

C.4.3 Training Data . 84

C.4.4 Network Architecture and Deployment 84

C.5 State Estimation . 84

C.5.1 Measurement Modalities . 86

C.6 Path Planning . 87

C.6.1 Time-Optimal Motion Primitive 88

C.6.2 Sampling-Based Receding Horizon Path Planning 88

C.6.3 Path Parameterization . 89

C.7 Control . 90

C.7.1 Position Control . 90

C.7.2 Attitude Control . 91

C.8 Results . 91

C.8.1 Gate Detection . 92

C.8.2 State Estimation . 93

C.8.3 Planning and Control . 93

C.9 Discussion and Conclusion . 94

D Deep Drone Racing: From Simulation to Reality with Domain Ran-
domization 95

D.1 Introduction . 97

D.2 Related Work . 98

D.2.1 Data-driven Algorithms for Autonomous Navigation 99

D.2.2 Drone Racing . 99

D.2.3 Transfer from Simulation to Reality 100

D.3 Method . 100

D.3.1 Training Procedure . 101

D.3.2 Trajectory Generation . 104

D.4 Experiments . 106

D.4.1 Experimental Setup . 106

D.4.2 Experiments in Simulation . 107

D.4.3 Analysis of Accuracy and Efficiency 111

D.4.4 Experiments in the Real World . 112

D.4.5 Simulation to Real World Transfer 116

D.5 Discussion and Conclusion . 118

xvii

Contents

E Deep Drone Acrobatics 121
E.1 Introduction . 123
E.2 Related Work . 124
E.3 Overview . 125
E.4 Method . 126

E.4.1 Reference Trajectories . 127
E.4.2 Privileged Expert . 128
E.4.3 Learning . 129
E.4.4 Sensorimotor Controller . 131
E.4.5 Implementation Details . 133

E.5 Experiments . 134
E.5.1 Experimental Setup . 134
E.5.2 Experiments in Simulation . 135
E.5.3 Deployment in the Physical World 136

E.6 Conclusion . 137

F Learning High-Speed Flight in the Wild 139
F.1 Introduction . 141
F.2 Results . 144

F.2.1 High-Speed Flight in the Wild . 144
F.2.2 Controlled Experiments . 148
F.2.3 Computational Cost . 151
F.2.4 The Effect of Latency and Sensor Noise 152

F.3 Discussion . 154
F.4 Materials and Methods . 155

F.4.1 The Privileged Expert . 157
F.4.2 The Student Policy . 158
F.4.3 Training Environments . 161
F.4.4 Method Validation . 161

F.5 Experimental Platform . 162
F.6 Computational Complexity . 164
F.7 Rotational Dynamics . 164
F.8 Metropolis-Hastings Sampling . 165

G A Benchmark Comparison of Learned Control Policies for Agile
Quadrotor Flight 169
G.1 Introduction . 171
G.2 Related Work . 172
G.3 Quadrotor Dynamics . 174

G.3.1 Notation . 174
G.3.2 Quadrotor Dynamics . 174

G.4 Methodology . 175
G.4.1 Observations, Actions, and Rewards 176
G.4.2 Policy Learning . 177
G.4.3 Training Details . 178

G.5 Experiments . 178
G.5.1 Simulation Experiments . 178

xviii

Contents

G.5.2 Real World Experiments . 182
G.6 Conclusion . 182
G.7 Supplementary Material . 182

G.7.1 MPC Baselines . 182
G.7.2 Ablation Studies . 183
G.7.3 Tracking Performance . 186
G.7.4 Reference Trajectories . 186

H Champion-Level Drone Racing using Deep Reinforcement Learning 191
H.1 Introduction . 193
H.2 Results . 197
H.3 Methods . 200

H.3.1 Quadrotor Simulation . 200

I Data-Driven MPC for Quadrotors 211
I.1 Introduction . 213
I.2 Related Work . 215
I.3 Methodology . 216

I.3.1 Notation . 216
I.3.2 Nominal Quadrotor Dynamics Model 217
I.3.3 Gaussian Process-Augmented Dynamics 217
I.3.4 MPC Formulation . 218
I.3.5 Practical Implementation . 219
I.3.6 Data Collection and Model Learning 220

I.4 Experiments and Results . 220
I.4.1 Experimental Setup . 220
I.4.2 Experiments in Simulation . 222
I.4.3 Experiments in the Real World . 224

I.5 Conclusion . 226

J NeuroBEM: Hybrid Aerodynamic Quadrotor Model 229
J.1 Introduction . 231
J.2 Related Work . 233
J.3 Quadrotor Model . 234

J.3.1 Notation . 234
J.3.2 Quadrotor Dynamics . 235
J.3.3 Rotor Model: Quadratic . 235
J.3.4 Rotor Model: BEM . 236
J.3.5 Learned Residual Dynamics . 241

J.4 Experimental Setup . 241
J.4.1 Data Collection . 241
J.4.2 Quadrotor Platform . 242
J.4.3 Control System . 242
J.4.4 Simulator Extension . 243

J.5 Experiments and Results . 243
J.5.1 Experimental Setup . 243
J.5.2 Comparison of Predictive Performance 244

xix

Contents

J.5.3 Closed-Loop Comparison . 246
J.6 Discussion . 247
J.7 Conclusion . 249

K Agilicious: Open-Source and Open-Hardware Agile Quadrotor for
Vision-Based Flight 251
K.1 Introduction . 253
K.2 Results . 259

K.2.1 Agile Flight in a Tracking Arena 259
K.2.2 Hardware in the Loop Simulation 261
K.2.3 Vision-based Agile Flight with Onboard Sensing and Computation 263

K.3 Discussion . 267
K.4 Materials and Methods . 269

K.4.1 Compute Hardware . 269
K.4.2 Flight Hardware . 271
K.4.3 The Agilicious Flight Stack Software 272

L Rapid Exploration with Multi-Rotors: A Frontier Selection Method for
High-Speed Flight 277
L.1 Introduction . 279
L.2 Related work . 280
L.3 Flight velocity for optimal energy use . 281
L.4 Methodology . 283
L.5 Experiments . 285

L.5.1 Simulation . 285
L.5.2 Real World Experiments . 288
L.5.3 Measurements . 288

L.6 Results . 290
L.6.1 Simulation . 290
L.6.2 Real World Experiments . 292

L.7 Conclusion . 294

Bibliography 295

Curriculum Vitae 325

xx

1 Introduction

This thesis presents novel methods for modeling, planning, and control for autonomous,
vision-based quadrotor vehicles. Focusing on real-world applications, all approaches
presented in this thesis are designed to be deployed on compute-constrained small aerial
vehicles. Such focus necessarily restricts the set of applicable algorithms, demands co-
design of software and hardware, and requires exploiting specialized compute components,
as strict real-time constraints have to be satisfied. Deploying algorithms on high-speed
autonomous machines necessitates a high level of robustness to account for the unavoidable
mismatch between simulation and the real robotic system. The approaches presented
in this thesis aim to close the gap between the impressive piloting skills demonstrated
by human drone pilots and their autonomous counterparts. While this feat has recently
been achieved with the help of highly accurate external tracking systems [91], achieving
the same performance with only onboard sensing and computation remained unsolved.

As it allows for simple and objective comparison to human expert pilots, one recurring
demonstrator used in this work is the task of drone racing. Drone racing is an emerging
sport where pilots race against each other with remote-controlled quadrotors while being
provided a first-person-view (FPV) video stream from a camera mounted on the drone.
The level of performance demonstrated even by non-professional human pilots made the
gap between small autonomous aerial systems and human pilots obvious, with the human
pilot at the 2019 AlphaPilot challenge outracing the fastest autonomous team by a factor
of two [61]. As of the year 2017, at the start of this thesis, this performance gap between
autonomous agents and human pilots exceeded one order of magnitude. By the end of
this thesis, human pilots have first been outraced by a fully autonomous vision-based
quadrotor.

Pushing an autonomous quadrotor to high speeds while only relying on onboard sensing
and computation is extremely difficult and raises fundamental challenges in robotics
regarding perception, planning, and control [366]. These challenges arise from the fact
that sensory readings become unreliable due to motion blur, the limited field of view of
the onboard camera necessitates tight coupling of perception and action, and real-time
constraints become ever-more strict the higher the speed of the platform. Furthermore,
the modeling complexity of the system, while relatively simple around hover conditions,
becomes increasingly complex at high speeds due to difficult-to-model aerodynamic effects
such as drag, interaction between rotors, and turbulences.

1

Chapter 1. Introduction

Figure 1.1 – An autonomous quadrotor traveling at high speeds during an autonomous drone
race. Drone racing is an emerging sport where pilots race against each other with remote-controlled
quadrotors while being provided a first-person-view (FPV) video stream from a camera mounted
on the drone. As it allows for simple and objective comparison to human expert pilots, drone
racing is used as a recurring demonstrator in this work.

Data-driven approaches have the potential to overcome many of these challenges, but
come with their own set of obstacles, such as: requiring large amounts of training data,
limited interpretability of the predictions, and the tendency of learning-based approaches
to overfit to their training domain, rendering transfer between domains challenging.

Prior work on autonomous quadrotor navigation has approached the challenge of vision-
based autonomous navigation by separating the system into a sequence of independent
compute modules [50, 295, 218, 311, 170, 303]: perception, mapping, planning, and
control (Figure 1.3). While such modularization of the system is beneficial in terms of
interpretability and allows to easily exchange modules, it induces a substantial increase
in latency from perception to action. Furthermore, the sequential nature of the modules
ignores the tight coupling between perception and action, which causes errors being
propagated from one module to the next. Prior work on autonomous quadrotor navigation
heavily relies on control techniques such as PID control [83, 78, 330], adaptive approaches
such as INDI [336, 329, 269], or model predictive control (MPC) [79, 250, 162]. While
these methods have demonstrated impressive feats in controlled environments [83, 91,
250, 330, 329], they require substantial amount of tuning [207], and are difficult, if not
impossible, to scale to complex dynamics models without high cost in computation time.

This thesis investigates the integration of learning-based approaches into a real-world
robotic system, allowing for tight coupling of perception and action. Compared to
traditional perception, planning, and control approaches, learning-based sensorimotor
policies have the distinct advantage of mapping potentially high-dimensional sensory
observations directly to control commands, while being able to cope with arbitrary complex
observation- and dynamics models. Although learning-based methods have already shown
impressive performance in the simulation domain [230, 316, 353], these demonstrators
have circumvented one of the fundamental challenges of real-world robotics: imperfect
perception. Apart from this restriction to simulation-based demonstrators, learning-based

2

Figure 1.2 – A vision-based quadrotor developed in this work, navigating autonomously in the
forest. The quadrotor can navigate towards given waypoints at speeds up to 40 kmh−1, without
the need to build an accurate 3D map of its surroundings. This capability is enabled by deploying
a machine-learning approach directly on the quadrotor: a deep neural network is fed observations
from an onboard camera, an estimate of the platform state, and a reference direction to compute
a collision-free receding-horizon trajectory. Employing such a data-driven methodology allows to
achieve a low-latency perception-action loop while maintaining robustness to sensor noise.

methods are often believed to be too compute demanding for successful deployment on
resource-constrained platforms such as small autonomous aerial vehicles. In this thesis, I
demonstrate that such sensorimotor policies can very well be deployed on small aerial
vehicles, and in fact outperform their traditional counterparts with respect to robustness
and peak performance, resulting in the first autonomous drone that achieves speeds
of 40 kmh−1 in cluttered environments such as forests (Figure 1.2), and outperforms a
human expert pilot in a vision-based drone race.

Even though machine learning appears to trump expert knowledge in some domains [154],
I want to emphasize that in my experience, learning-based algorithms do not make
traditional robotics knowledge or hardware design obsolete. In fact, the exact opposite
seems to be true: the most capable systems that I have worked on throughout my journey
as a Ph.D. student were the ones where an elegant combination of data-driven approaches,
traditional algorithms, and careful hardware design has been achieved. One example of
this interplay of traditional robotics techniques and novel learning-based methods is deep
reinforcement learning: Control policies can be trained via deep reinforcement learning
without in-depth understanding of the physics governing the quadrotor platform. However,
to design a learning environment that allows successful simulation-to-reality transfer
requires the capability to accurately model the physical system, which in turn necessitates
a deep understanding of the robotic system. Similarly, system-oriented hardware design is
an integral part of designing autonomous robots. The co-design of software and hardware
greatly benefits the capability of the final robot, and simply optimizing sensor choice and
sensor placement can often result in an entirely different problem to be solved.

The contributions presented in this thesis are grouped into three topics. Each topic is
discussed in its own part of the thesis. In the first part, I present methodologies to tightly

3

Chapter 1. Introduction

couple perception and action in the context of high-speed autonomous flight. These
methods combine learning-based perception with traditional planning and control and
are demonstrated on the task of autonomous drone racing. In the second part, I propose
approaches to efficiently transfer learning-based sensorimotor policies between domains,
for example between simulation and the real world. I demonstrate how the choice of
input and output representation of a learning-based policy impacts its performance
and robustness when exposed to variations in the observations and dynamics. These
experiments are conducted on a set of tasks such as high-speed navigation in cluttered
environments, acrobatic flight, and drone racing. Finally, I present methods to perform
data-driven modeling of quadrotor vehicles and its application for accurate simulation,
real-time predictive control, and real-world adaptation of learning-based policies trained
via deep reinforcement learning.

All topics address the fundamental research question of this work - How can the capabilities
of machine-learning algorithms be leveraged to push autonomous vision-based quadrotors
to a new level of agility? - from a different perspective but with the same objective:
creating autonomous drones that can navigate at the level of professional human pilots.

This thesis is structured in the form of a collection of papers. An introductory section that
highlights the concepts and ideas of each paper is followed by self-contained publications
in the appendix. Section 1.1 states and motivates the research objectives of this work.
Section 1.2 connects this research to prior work. Chapter 2 presents the contributions of
the papers in the appendix and illustrates their connections with respect to each other.
Finally, Chapter 3 highlights possible future research directions.

1.1 Motivation

Autonomous aerial vehicles have a huge industry potential, with an estimated market
value of over $80 billion US-Dollar by the year 2025 according to Forbes [8]. Already
during the last decade, commercial drones – both autonomous and remote-controlled –
have conquered new markets ranging from agriculture to transport, security, surveillance,
inspection, entertainment, and search and rescue [333, 131]. Compared to grounded
robots, aerial robots have the distinct advantage of being able to cover large distances
in short time, which is an essential capability for tasks where a quick response time is
required. In contrast to fixed-wing aerial robots, multirotors, and especially quadrotors,
combine the ability to hover in-place with mechanical simplicity, allowing to build highly
agile vehicles with a relatively simple mechanical setup. Unfortunately, this unique level
of maneuverability comes at a price: even while hovering, multirotors need to excerpt
constant mechanical power to stay airborne. This results in limited battery life and
creates the need to push autonomous drones to high speeds in order to maximize the
utility of every single battery charge [167, 22]. The desired level of agility is impressively
demonstrated by professional human drone pilots, who manage to navigate through
complex environments and pass through small openings even while traveling at high
speeds.

4

1.1. Motivation

Figure 1.3 – Prior work on autonomous quadrotor flight has approached the task of vision-based
flight by separating the system into a sequence of independent compute modules consisting of
perception, mapping, planning, and control. While such modularization of the system is beneficial
in terms of interpretability, enables engineering teams to work on multiple modules in parallel, and
allows to easily exchange modules, it results in a substantial increase in latency from perception
to action. Additionally, the sequential nature of the modules ignores the tight coupling between
perception and action, which causes errors being propagated from one module to the next.

Despite progress in recent years, today’s autonomous drones are still far from the per-
formance demonstrated by human operators. Two main factors have blocked progress
towards human-level performance in autonomous drone flight: (i) the hardship to effec-
tively perceive the robot’s surroundings and (ii) the difficulty to capture an accurate model
of the platform. Both challenges emerge from the high speeds and extreme accelerations
experienced during agile flight.

Prior work on autonomous quadrotor flight has approached the task of vision-based flight
by separating the system into a sequence of independent compute modules consisting
of perception, mapping, planning, and control, as illustrated in Figure 1.3. While such
modularization of the system is beneficial in terms of interpretability, enables engineering
teams to work on multiple modules in parallel, and allows to easily exchange modules,
it results in a substantial increase in latency from perception to action. Furthermore,
the sequential nature of the modules ignores the tight coupling between perception and
action, which results in errors being propagated from one module to the next. Finally,
current approaches require to make simplifying assumptions about the robot dynamics
and observation models to maintain real-time capability. These assumptions constrain the
maximum achievable agility of the robot, as both dynamics models as well as observation
models become increasingly erroneous the higher the platform speed.

In contrast to the traditional approach that divides the autonomy pipeline in a sequence
of independent modules, recent learning-based approaches instead propose to replace
parts of – or even the entire – pipeline with data-driven approaches that potentially
directly map from sensory observation to command. Such approaches come with a set of
advantages but also challenges, which are discussed in the next part.

5

Chapter 1. Introduction

Figure 1.4 – All sensory information in the real world is corrupted by noise and sensor-specific
failure modes. This figure illustrates simulated and real-world sensory data recorded from an
RGB camera (top row), and a depth camera (bottom row). In the real world, data from the
RGB camera is corrupted by motion blur and limited dynamic range. The information from the
depth sensor suffers from missing information along the boundaries of objects due to occlusion.
Data-driven approaches allow to be robust to such failure cases without compromising agility by
training specifically on such corrupted data.

1.1.1 Advantages

Data-driven methods represent a holistic approach for tight coupling of perception and
action, as they can directly process high-dimensional perception input. As such, enhancing,
or even replacing, parts of the robotic cycle with data-driven components potentially
offers substantial improvements with respect to peak performance, required compute
power, and robustness to imperfect sensing and modeling.

Representational Capacity. Compared to traditional planning and control approaches,
learning-based policies, trained via imitation learning or reinforcement learning, have
greater flexibility in terms of input representations and underlying dynamics models.
They can map potentially high-dimensional sensory observations such as images and IMU
readings to control commands, without the need to feed the image information through a
sequence of modules such as mapping, planning, and control. Furthermore, due to their
universal approximation capabilities, policies represented by deep neural networks can be
designed to operate with arbitrary complex underlying dynamics models: a policy trained
via deep reinforcement learning does not require differentiable dynamics, and a policy
trained via behavioural cloning can imitate an arbitrary complex algorithm that might
even not run in real time. This is in stark contrast to state of the art model-based planning
and control, which either requires to make simplifying assumptions of the dynamics to
be run in real-time, or resorts to sampling-based approaches, which greatly increase the
computation time.

6

1.1. Motivation

Figure 1.5 – Neural network-based approaches can be efficiently computed on specialized
hardware such as graphics processing units (GPUs), tensor processing units (TPUs), or even
field programmable gate arrays (FPGAs). Examples of such hardware accelerators include the
NVIDIA Jetson TX2 (A), which contains a built-in GPU; the Intel Movidius Neural Compute
Stick (B), which contains a specialized vision processing unit optimized for neural network
inference; the Google Coral board (C), which contains an integrated TPU; and the TySOM
development board (D) combining an FPGA with an ARM Cortex processor.

Robustness to Imperfect Perception. The perfect sensor on a mobile robot does not
exist. Be it an RGB camera mounted on a quadrotor, or an IMU mounted on a ground
robot, all sensors exhibit their distinct failure modes. In traditional robotics, these failure
modes are typically modeled using Gaussian noise. While being an effective approach that
can be elegantly combined with optimal estimation approaches such as Kalman filters, the
Gaussian noise assumption makes an oversimplification to the sensor’s error characteristics,
which ultimately results in degraded performance when the system is pushed to its limits.
In contrast, data-driven approaches can be trained on such corrupted sensory observation,
either from scratch or by fine-tuning on limited real-world data. Since the failure modes
of sensors generally have a systematic nature, sensorimotor policies can learn to account
for them by identifying the regularities in the data, resulting in robust policies that can
be deployed in the real world. I made use of this property of learning-based approaches
to train deep sensorimotor policies that can perform acrobatics (Paper E) or high-speed
flight in unknown, unstructured environments (Paper F).

Low Latency. High-speed navigation in previously unknown environment requires a
fast perception-action loop. Traditional methods that separate the autonomy stack into a
sequence of modules generally suffer from high latency, as these modules are executed
in sequence, which results in compound latency. In contrast, data-driven approaches
can directly map raw sensory observations to navigation commands, shortcutting the
sequential stack of modules typical to the traditional approaches. This direct mapping
allows for substantially faster execution times and lower latency, as shown in Paper F.
The effect of reduced latency of learning-based approaches is magnified for deep neural
network-based approaches, which can be efficiently computed on graphics processing units
or other specialized hardware such as field programmable gate arrays (FPGAs) or tensor
processing units (TPUs), as illustrated in Figure 1.5.

7

Chapter 1. Introduction

1.1.2 Challenges

Although learning-based systems have promising capabilities compared to traditional
methods for autonomous navigation, they also come with several new challenges that
need to be resolved in order to exploit their full potential. The most prominent challenge
arises from the sample complexity of these methods. Without access to a sufficiently large
and diverse dataset, neural network-based approaches tend to overfit to their training
dataset, leading to poor performance when deployed in a test scenario. However, even
when a sufficiently large training set is available, transferring data-driven algorithms
between domains is known to be hard and requires careful consideration regarding input
and output modalities, training strategy, and network architecture.

Training Data. Learning-based approaches require a substantial amount of data to be
trained. In the case of imitation learning, generating a sufficient amount of high-quality
labeled data is a tedious and time-consuming process, often requiring manual labeling
by a human expert. Conversely, reinforcement learning does not require such labeled
training samples, but requires even more extensive interaction with the robot to be trained.
To overcome these challenges, the community has shifted towards training data-driven
approaches entirely in simulation. Simulation is fast, cheap, and safe. It allows to generate
data using multiple simulated platforms in parallel, crashes do not require to repair a
physical robot and no human operator is in danger by operating a partially trained policy
on a real platform. However, training a sensorimotor policy in simulation and deploying
it in the real world requires to bridge the simulation-to-reality gap, a challenge laid out
in the next paragraph.

I have tackled the problem of training data generation by focusing on training policies
entirely in simulation (Paper E, Paper D, Paper F, Paper G). Furthermore, I contributed
towards ongoing efforts to improve the accuracy of quadrotor aerodynamics simulation (Pa-
per J) in order to facilitate simulation-to-reality transfer of even the most agile control
policies (Paper H).

Domain Transfer. Due to the high sample complexity of learning-based policies,
they are often trained in simulation, which then requires transferring the policy from
simulation to the real world. This transfer between domains is known to be hard and is
typically approached by increasing the simulation fidelity [337, 23], by randomization of
dynamics [234, 12] or rendering properties [298, 341] at training time, or by abstraction of
the policy inputs [172, 209]. Apart from simulation enhancements and input abstractions,
also the choice of action space of the learned policy itself can facilitate transfer. Policies
that generate high-level commands, such as desired linear velocity or future waypoints [209],
have a reduced simulation-to-reality gap, as they abstract the task of flying by relying on
an existing underlying control stack. However, while facilitating transfer, such abstractions
also constrain the maneuverability of the platform [169].

Enabling domain transfer for deep sensorimotor policies is one of the defining subjects
of this thesis. I propose to tackle the problem by leveraging abstractions of the sensory
inputs (Paper E, Paper F), to perform real-world adaptation of the policy using limited
data from the test domain (Paper H), and to optimize the action space of the policy to

8

1.1. Motivation

Figure 1.6 – Training sensorimotor policies typically requires large and diverse datasets for
training. Generating such datasets in the real world is a tedious process, often requiring human
experts to annotate data. Generating such data in simulation is an appealing alternative, as it
allows to generate virtually unlimited data without the need for manual annotation. However,
training sensorimotor policies in simulation requires to bridge the simulation-to-reality gap, as
even the most versatile and accurate simulators cannot exactly reproduce data observed on the
real robot.

maximize robustness without compromising agility (Paper G).

Interpretability. Designing and developing a robotic system is often an iterative task,
where algorithm hyperparameters and design decisions are refined based on experimental
data. The ability to interpret not only raw measurements from the robot, but also the
decisions taken by an algorithm are of great utility to the developer, as it allows to have
a fine-grained understanding of potential failure modes and therefore allows to efficiently
make use of experimental data. Data-driven approaches often make use of an end-to-end
paradigm, which means they directly map from sensory observations to a form of control
commands. This approach allows to learn complex mappings from sensory inputs to
commands, but comes at the cost of reduced interpretability.

I have approached this problem of interpretability in the context of autonomous drone
racing by extending the predictions of the neural network with an uncertainty component,
allowing for efficient integration into an optimal estimator (Paper B).

9

Chapter 1. Introduction

Figure 1.7 – The impressive agility of quadrotors has been demonstrated in a large body of prior
work that has heavily relied on external tracking systems or pre-built maps of the environment.
Foehn et al. [91] (A) demonstrated superhuman performance in autonomous drone racing by
computing a time-optimal quadrotor trajectory and tracking it using MPC and an external
motion capture system. Mellinger et al. [228] (C) used polynomial trajectories to perform precise
maneuvers through a set of given waypoints. Ryou et al. [296] (D) utilized data-driven approaches
to design very fast trajectories, accounting for these factors by optimizing for them during a
set of carefully selected experiments. Lupashin et al. [214] (B) leveraged an iterative learning
strategy to perform multiple flips with a quadrotor.

1.2 Related Work

This section summarizes prior work in the context of autonomous navigation of aerial
robots. To this end, related work is grouped according to the amount of information
that is required about the environment, i.e. if approaches assume the environment
to be known, make use of an external tracking system, or if no such assumptions are
made. Even though dynamics modeling is an integral part of any robotic system and
definitely an instrumental component of many approaches in the first two sections, I
dedicate a separate section to the topic of data-driven modeling to highlight its potential
impact. To improve reproducibility and lower the bar of entry for new students, a
robotics researcher needs to have access to development and testing environments, both
in simulation and in the real world. There is still substantial work required to reach
a sufficient level of reproducibility in robotics research, which I illustrate in individual
sections on existing simulators and hardware platforms. Finally, as this thesis utilizes the
recurring demonstrator of autonomous drone racing, I summarize recent progress on that
task in its own section.

10

1.2. Related Work

1.2.1 Autonomous Navigation: External Sensing

Assuming reliable access to accurate state estimation, an entire line of work has investi-
gated high-speed navigation of aerial vehicles [214, 2, 243, 240, 228, 346, 321, 234], even
reaching superhuman performance in drone racing [91]. These works are summarized
here and put into context to demonstrate the level of performance achievable assuming
perception challenges are solved.

Traditional Methods. The impressive agility of quadrotors has been demonstrated
in a large body of prior work that has either relied on external tracking systems [214,
90, 91, 228] or pre-built maps of the environment [37]. Lupashin et al. [214] proposed
iterative learning of control strategies to enable platforms to perform multiple flips.
Mellinger et al. [228] used a similar strategy to autonomously fly quadrotors through
a tilted window [228]. By switching between two controller settings, Chen et al. [48]
also demonstrated multi-flip maneuvers. Abbeel et al. [2] learned to perform a series
of acrobatic maneuvers with autonomous helicopters. Their algorithm leverages expert
pilot demonstrations to learn task-specific controllers. In [91], Foehn et al. proposed a
trajectory generation method that allows to compute time-optimal quadrotor trajectories,
which can then be tracked by a model-predictive controller. Their approach was the first
to achieve superhuman performance in autonomous drone racing, but did so by relying on
an external tracking system that provided highly accurate state estimation at a high rate.

Learning-Based Methods. One of the earliest demonstrators of learning-based ap-
proaches for real-world quadrotor control has been proposed by Hwangbo et al. [145].
They used model-free reinforcement learning to train a policy capable of maintaining
stable hover flight, even when initialized in difficult-to-recover states such as a throw by a
human operator. Molchanov et al. [234] showed training of a stabilizing quadrotor control
policy from scratch in simulation and deployment on multiple real platforms. In [322],
Song et al. trained a policy to perform autonomous drone racing. The policy directly
maps from a measurement of the platform state and the relative position of the next gate
to be passed to a control command in the form of collective thrust and bodyrates. The
policy is shown to be robust to changes in the track layout.

Summary. While these works, both traditional and learning-based, showed impressive
examples of agile flight, they focused purely on planning and control. The issues of
unreliable perception and state estimation during agile maneuvers instead were cleverly
circumvented by instrumenting the environment with sensors (such as Vicon and Op-
tiTrack) that provide near-perfect state estimation to the platform at all times or by
relying on GPS or active sensors such as LIDAR in combination with a pre-built map.

1.2.2 Autonomous Navigation: Onboard Sensing and Computation

Autonomous navigation of a drone in an unknown environment raises fundamental
robotics challenges in estimation, planning, and control. Due to their limited payload
capacity, autonomous drones often rely on vision-based state estimation in the form of
visual-inertial odometry [96, 32, 278, 75, 241]. While providing accurate estimation at

11

Chapter 1. Introduction

Figure 1.8 – Traditional approaches demonstrating fully autonomous navigation using only
onboard sensing and computation. A: Zhou et al. propose RAPTOR [374], a method for
perception-aware trajectory replanning. B,C: Falanga et al. [83] and Loianno et al. [203] both
demonstrate vision-based quadrotor flight in previously known environments. D,E,F: Approaches
that make use of substantially more onboard computation for the task of landing on a moving
platform [84] and autonomous flight in unknown environments [256, 233].

a very low weight when deployed in ideal conditions, cameras suffer from fundamental
limitations such as limited dynamic range, motion blur, and restricted field of view.
In contrast to traditional cameras, utilizing LIDAR [37] or novel sensors such as event
cameras [104] on autonomous drones [288] has the potential to overcome the limitations of
frame-based cameras. However, they are often too heavy or too expensive to be deployed
on consumer-grade products [64]. In the following, I present an overview of traditional
and learning-based methods that perform autonomous navigation while only relying on
onboard sensing and computation.

Traditional Methods. To tackle the challenges of imperfect perception when operating
with onboard sensory measurements, traditional methods have typically resorted to
a separation of the autonomy stack into individual compute modules consisting of:
perception, mapping, planning, and control. This separation paradigm of the autonomy
stack has been deployed on a large range of multirotor platforms, ranging from small-scale
quadrotors [203], over medium-sized quadrotors [373], up to large multirotor platforms [256,
233]. Some works tackle only perception and build high-quality maps from imperfect
measurements [128, 103, 303, 76, 33], while others focus on planning without considering
perception errors [39, 282, 6, 202]. Numerous systems that combine online mapping
with traditional planning algorithms have been proposed to achieve autonomous flight
in previously unknown environments [257, 261, 233, 20, 372, 295, 345, 50, 371, 149, 122,
114, 191]. Although all these approaches demonstrate successful navigation in previously
unknown environments, their maximum achieved speed when deployed in challenging
environments is below 4m s−1. Approaches that achieve higher speeds make use of active

12

1.2. Related Work

Figure 1.9 – Recent approaches investigate the usage of learning-based methodologies for
autonomous vision-based navigation. While such an approach has the potential to substantially
reduce latency and increase robustness against imperfect sensing, it requires to collect a large
and diverse dataset to train. While [112, 206, 290, 106] (A,B,D,E) collect this dataset in the
real world, Sadeghi et al. [298] (C) propose to train the navigation policy entirely in simulation
and transfer it to the real system. Kang et al. [163] (F) instead investigate how data from both
simulation and the real world can be combined. None of these systems achieved agile flight, with
the top speeds being reached staying below 2m s−1.

sensors such as LIDAR [37] or are deployed in environments with very low obstacle
density [20]. In contrast, approaches that only rely on passive sensors and are deployed
in challenging environments only achieve speeds below 4m s−1. This limitation can be
attributed mainly to two reasons, also illustrated in Figure 1.12: (i) The available onboard
compute resources do not allow to run the modularized autonomy stack at sufficient
frequency to enable high-speed flight [203]. (ii) Even though the platform carries sufficient
compute resources, the resulting robot is too heavy and therefore constraining available
operating modes to only near-hover conditions [233, 256, 114].

Both these reasons are caused by the division of the navigation task into separate compute
modules: perception, mapping, planning, and control. Such strategy leads to pipelines that
largely neglect interactions between the different stages and thus compound errors [371].
The sequential nature of these pipelines ignores the tight coupling between perception
and action and introduces additional latency, making high-speed and agile maneuvers
difficult to impossible [80]. While these issues can be mitigated to some degree by careful
hand-tuning and engineering, the divide-and-conquer principle that has been prevalent
in research on autonomous flight in unknown environments for many years imposes
fundamental limits on the speed and agility that a robotic system can achieve [204].

Learning-Based Methods. Deviating from the traditional separation approach of the
autonomy stack, recent works propose to use learning-based approaches for the task of

13

Chapter 1. Introduction

vision-based navigation [49]. These approaches train policies directly from data without
explicit mapping and planning stages [290, 112, 298, 106, 206, 163], resulting in potentially
lower latency compared to their traditional counterparts. While the policies proposed
in [290, 206] are trained by imitating a human, [298, 24] train their policy purely on
simulated data, [112, 106] train directly on real-world data, and [163] propose to combine
simulated data with few real-world samples for training. As the number of samples
required to train general navigation policies is very high, existing approaches impose
constraints on the quadrotor’s motion model, for example by constraining the platform
to planar motion [206, 106, 290, 163] and/or discrete actions [298], at the cost of reduced
maneuverability and agility.

Summary. When moving away from the assumption of perfect perception and state
estimation, the performance of autonomous aerial systems substantially drops. While this
drop in performance can be observed for both traditional and learning-based approaches,
they arise due to different reasons. In the case of traditional approaches, the main cause
for reduced performance is the large computational overhead introduced by the mapping
and planning system. This computational overhead either directly results in a reduced
maximum speed due to limited onboard computation, or it is counteracted with more
onboard compute resources, which in turn gives rise to large and heavy platforms that
are no longer capable of agile flight. For learning-based approaches, the main cause for
reduced performance is the lack of training data. Recent work has circumvented this
problem by reducing the task complexity, such as restricting the drone’s motion to planar,
near-hover motion. Although such restriction allowed to deploy data-driven approaches
on real-world systems, it did not exploit the agility of the platform.

There exists a clear need to close the performance gap between approaches leveraging
external sensing and those using only onboard sensing and computation. This thesis
contributes methodologies towards this goal and demonstrates the first approach to
perform vision-based acrobatic quadrotor flight (Paper E), advances the state of the art
for vision-based flight in the wild (Paper F), and demonstrates the first approach to
outperform a professional human pilot in a vision-based drone race (Paper H).

1.2.3 Data-Driven Dynamics Models

Modeling and system identification is an instrumental part of control. Traditionally,
dynamics models have been identified by using first-principles-based approaches. With
the advent of deep learning, a new interest into learning-based dynamics models has
emerged. By exploiting the approximation capabilities of data-driven approaches, highly
complex dynamics models can be identified purely from data.

Thanks to their ability to identify patterns in large amounts of data, deep neural networks
represent a promising approach to model complex dynamics. Recent works (Figure 1.10)
that leverage the representational power of deep networks for such modeling tasks include
small-scale ground vehicles [359] (E), aerodynamics modeling of autonomous multirotors
and helicopters [343, 277], turbulence prediction [199] (F), actuator modeling [143] (D),
and tire friction modeling of full-size race cars [326, 325] (A).

14

1.2. Related Work

Figure 1.10 – The usage of data-driven dynamics models has enabled numerous breakthroughs
in a variety of robotics domains. Spielberg et al. [326, 325] (A), Hewing et al. [130, 157] (C), and
Williams et al. [359] (E) used learning-based dynamics models for high-speed autonomous driving.
Mehndiratta et al. [224] (B) employed Gaussian processes for estimating wind disturbances.
Hwangbo et al. [143] (D) leveraged a neural-network-based model of the actuators to transfer a
control policy for legged locomotion from simulation to the real world. Li et al. [199] (F) predict
turbulence using a neural network model.

While deep neural networks are highly versatile function approximators, they require
large and diverse datasets for training, which renders them suboptimal in settings where
only few data is available. Gaussian processes in contrast represent a nonparametric
approach that is especially well suited for situations where only little data is available and
that directly provides a measure of model uncertainty. As a result, there exists already a
substantial body of work that utilizes Gaussian processes for system modeling, including
race cars [130, 157] (C) and quadrotros [224, 42, 65] (B).

Summary. Using a dynamics model in a robotic context includes two fundamental use
cases: (i) using the model for simulation, and (ii) using the model for control. The salient
difference between these two use cases is their real-time requirement; while simulation can
potentially run at a fraction of real-time, a control loop running on a mobile robot has to
maintain strict real-time constraints. I have investigated both use cases in the context
of high-speed quadrotor flight. In Paper I, I propose the usage of Gaussian processes to
model residual aerodynamic effects and directly use such residual model in a predictive
controller. In Paper J, I increase the residual model complexity by replacing the Gaussian
processes with a deep neural network. This model achieves substantially higher accuracy,
at the cost of real-time capability. Both approaches make use of a residual model, i.e.
the data-driven model only complements an existing model instead of learning the full
dynamics from data. Such an approach has shown to achieve better generalization to
unseen maneuvers.

15

Chapter 1. Introduction

1.2.4 Simulation

Simulators are invaluable tools for the robotics researcher. They allow developing and
testing algorithms in a safe and inexpensive manner, without having to worry about the
time-consuming and expensive process of dealing with real-world hardware. The ideal
simulator is: (i) fast, to collect a large amount of data with limited time and compute;
(ii) physically-accurate, to represent the dynamics of the real world with high-fidelity; and
(iii) photo-realistic, to minimize the discrepancy between simulated and real-world sensors’
observations. Realizing the potential of simulators, there has been large interest in the
robotics community to push for better simulation environments that would accelerate
research by not only providing researchers more powerful tools for experimentation, but
also creating new widely accepted benchmarks, where robotic algorithms can be tested
and evaluated in a controlled and repeatable setting.

For quadrotor simulation, there exists a variety of available alternatives [102, 265, 320, 309,
342, 117, 183], illustrated in Figure 1.11, each focusing on a different use case. While [309,
117] provide near-photorealistic rendering by interfacing with state-of-the-art game engines
such as Unity or Unreal Engine, [342] focuses on efficient physics simulation, allowing fast
training of control policies using deep reinforcement learning. Both RotorS [102] (A) and
Hector [183] are popular Micro Aerial Vehicle (MAV) simulators built on Gazebo [182],
which is a general robotic simulation platform and often used with the popular Robot
Operating System (ROS). Hector is a collection of open-source modules and is primarily
used for autonomous mapping and navigation with rescue robots. RotorS provides several
multi-rotor helicopter models such as the AscTec Hummingbird, Pelican, and Firefly.
These Gazebo-based simulators have the capability of accessing multiple high-performance
physics engines and simulating various sensors, ranging from laser range finders to RGB
cameras. Nevertheless, Gazebo has limited rendering capabilities and is not designed for
efficient parallel dynamics simulation, which makes it difficult to develop learning-based
systems.

FlightGoggles [117] (D) is a photo-realistic sensor simulator for perception-driven robotic
vehicles. FlightGoggles consists of two separate components: a photo-realistic rendering
engine built on Unity and a quadrotor dynamics simulation implemented in C++. In
addition, it also provides an interface with real-world vehicles and actors in a motion
capture system. FlightGoggles is very useful for rendering camera images given trajectories
and inertial measurements from flying vehicles in real-world, in which the collected
dataset [13] is used for testing vision-based algorithms.

Both AirSim 1 [309] (B) and CARLA [70] (C) are open-source photo-realistic simulators
for autonomous vehicles built on Unreal Engine. CARLA is mainly made for autonomous
driving research and only provides the dynamics of ground vehicles. Conversely, AirSim
offers an interface to configure multiple vehicle models for quadrotors and supports
hardware-in-the-loop (HITL) as well as software-in-the-loop (SITL) with flight controllers
such as PX4. The vehicle is defined as a rigid body whose dynamics model is simulated
using NVIDIA’s physics engine PhysX, a popular physics engine used by the large majority
of today’s video games. However, this physics engine is not specialized for quadrotors

1AirSim also has an experimental Unity release.

16

1.2. Related Work

Figure 1.11 – There already exists a wide range of simulators suitable to develop and test
autonomous navigation algorithms. While some of them come with relatively accurate dynamics
modeling [102] (A), others are tailored for high photorealism [309, 70] (B, C), or efficient
training of reinforcement learning agents [320] (F). FlightGoggles [117] (D) is a photo-realistic
sensor simulator for perception-driven robotic vehicles. An interesting alternative is proposed
by [265] (E), a versatile simulator that unifies efficient physics simulation using the Bullet physics
engine with realistic rendering, and standardized interfaces for reinforcement learning. I have
contributed to build Flightmare [320] (F), a simulator which offers accurate dynamics modeling,
efficient training routines for machine learning tasks, and offers photorealistic rendering by
interfacing to Unity, a state-of-the-art game engine.

(or robots), and it is tightly coupled with the rendering engine to allow simulating
environment dynamics. Because of this rigid connection between rendering and physics
simulation, AirSim can achieve only limited simulation speeds. This limitation makes it
difficult to apply the simulator to challenging model-free reinforcement learning tasks.

An interesting alternative is proposed in [265] (E), which proposes a versatile simulator that
unifies efficient physics simulation using the Bullet physics engine with realistic rendering,
and standardized interfaces for reinforcement learning. Apart from the aforementioned
simulators, there are many more existing simulators that have been widely adopted by
other research communities. For example, MuJoCo [342] has been widely used by the
reinforcement learning community for benchmark comparisons. Similarly, RaiSim [144]
is a physics engine for robotics and AI research written in C++, that supports massive
parallel dynamics simulation. However, both simulators do not support complex 3D
environments and photo-realistic image rendering. Sim4CV [244] is a photo-realistic
simulator but made solely for computer vision applications.

Summary. One of the main limitations of current quadrotor simulators is their rigid
nature. The trade-off between accuracy and speed has always been in the hands of the
simulator developers, not of the end-users. However, this paradigm leaves some questions

17

Chapter 1. Introduction

Future Research

Onboard Compute Capability

A
g
il
it
y

Ours
DJI

Crazyflie

Parrot

Skydio

MIT

GRASP

FLA

ASL

Research Platform / Open

Proprietary Platform / Closed

MRS

Figure 1.12 – A qualitative comparison of different available consumer and research platforms
with respect to available onboard compute capability and agility. The open-source frameworks
FLA [233], ASL [297], and MRS [14] have relatively large weight and low agility. The DJI [69],
Skydio [317], and Parrot [300] are closed-source commercial products that are not intended
for research purposes. The Crazyflie [109] does not allow for sufficient onboard compute or
sensing, while the MIT [13] and GRASP [203] platforms are not available open-source. Finally,
the Agilicious (“Ours”) platform to which I contributed during my Ph.D., provides agile flight
performance, onboard GPU-accelerated compute capabilities, as well as open-source and open-
hardware availability.

open: What if we want to dynamically change the underlying physics model? What if we
want to actively trade-off photo-realism for speed? During my Ph.D., I have contributed
to a novel quadrotor simulator, called Flightmare [320] (F), that is specifically designed
to put the speed vs. accuracy trade-off in the hands of the users. Flightmare is composed
of two main blocks: a rendering engine, based on Unity [153], and a physics model. These
blocks are completely decoupled and can run independently from each other. Besides, each
block is flexible by design. Indeed, the rendering block can be used within a wide range of
3D realistic environments and generate visual information from low to high photo-realism.
With minimal additional computational costs, it is also possible to simulate sensor noise,
e.g. motion-blur, environment dynamics, e.g. wind, and lens distortions [153]. Similarly,
the physics block offers full control to the user in terms of the desired robot dynamics and
associated sensing. Depending on the application, the users can easily switch between a
basic (noise-free) quadrotor model and a more advanced rigid-body dynamics, including
friction and rotor drag, or directly use the real platform dynamics like [117]. Inertial
sensing and motor encoders, which directly depend on the physics model, can also be
noise-free or include different degrees of noise [102, 183].

18

1.2. Related Work

1.2.5 Hardware Platforms

Agile flight comes with ever-increasing engineering challenges since performing faster
maneuvers with an autonomous system requires more capable algorithms, specialized
hardware, and proficiency in system integration. As a result, only a small number
of research groups have undertaken the significant overhead of hardware and software
engineering, and have developed the expertise and resources to design quadrotor platforms
that fulfill the requirements on weight, sensing, and computational budget necessary
for autonomous agile flight. The platforms and software stacks developed by research
groups [226, 203, 233, 297, 78, 256, 14, 126], illustrated in Figure 1.12, vary strongly
in their choice of hardware and software tools. This is expected, as optimizing a robot
with respect to different tasks based on individual experience in a closed-source research
environment leads to a fragmentation of the research community. For example, even
though many research groups use the Robot Operating System middleware to accelerate
development, publications are often difficult to reproduce or verify since they build on a
plethora of previous implementations of the authoring research group. In the worst case,
building on an imperfect or even faulty closed-source foundation can lead to wrong or
non-reproducible conclusions, slowing down research progress.

To break this vicious cycle and to democratize research on fast autonomous flight, the
robotics community needs an open-source and open-hardware quadrotor platform that
provides the versatility and performance needed for a wide range of agile flight tasks.
Such an open and agile platform does not yet exist, which is why I contributed throughout
my Ph.D. to a novel quadrotor platform, called Agilicious.

1.2.6 Simulation-to-Reality Transfer

The hardship to generate data in the real world led the research community to embrace
the idea of simulation-to-reality transfer: training a data-driven sensorimotor policy
entirely in simulation and transferring it to the real robot. Compared to data collection
in the real world, simulation is especially appealing due to its ability to generate data
faster, cheaper, safer, and more informative than real-world experimentation. Prior work
on simulation-to-reality transfer has studied challenging real-world robotic problems
related to grasping [341, 118, 362, 34, 148, 294, 299, 281], in-hand manipulation [5], and
navigation [298, 247, 267].

Methodologies to facilitate simulation-to-reality transfer include domain randomization of
visual features [341, 148, 298], abstraction of the policy inputs [247], or generative models
to translate simulated images into realistic ones [281]. OpenAI et al. [5] achieved complex
real-world in-hand manipulation by training a policy purely in simulation using domain
randomization on physics properties such as gravity vector, inertia values, and friction
coefficients. Peng et al. [267] investigate adaptation using real-world reference data for
efficient simulation to reality transfer of locomotion policies. Similarly, Smith et al. [319]
investigate fine-tuning of locomotion policies using data obtained from the real robot.
Finally, Kumar et al. [186] condition the policy on a latent encoding that characterizes
dynamics properties of the robot that is trained in simulation.

19

Chapter 1. Introduction

Figure 1.13 – Prior work on simulation-to-reality transfer has studied challenging real-world
problems related to legged locomotion (A), navigation (B, D), grasping (E, F), in-hand manipu-
lation (C).

Although all these works achieve successful simulation-to-reality transfer, none of them
considered the challenge of high-speed navigation. In my thesis, I extend the methodologies
of domain randomization, abstraction, and real-world adaptation to the challenge of agile
drone flight and validate them on the task of drone racing (Paper D, Paper H), acrobatic
flight (Paper E), and high-speed flight in the wild (Paper F).

1.2.7 Autonomous Drone Racing

Autonomous drone racing has gained a lot of attention from the research community [235,
217] in recent years and is a recurrent demonstrator in this thesis. This focus is due to the
fact that autonomous racing presents unique opportunities and challenges in designing
algorithms and hardware that can operate at the limits of perception, planning, and
control.

Early works investigating the challenge of autonomous drone racing include Jung et
al. [155, 156] (Figure 1.14A), who consider the problem of autonomous drone navigation
in a previously unseen track. They use line-of-sight guidance combined with a deep-
learning-based gate detector. As a consequence, the next gate to be traversed has to
be in view at all times. Müller et al. [246] (Figure 1.14B) instead proposed to directly
train an end-to-end policy that maps from image observations to control commands.
While this approach has been successfully deployed in simulation, it was never tested
on a real drone platform. Organized during the 2019 NeurIPS conference, the Game
of Drones competition [217] (Figure 1.14D) considered the task of autonomous drone
racing in the photorealistic simulator AirSim [309]. This competition resulted in in-
creased interest in drone racing by the research community and new approaches and

20

1.2. Related Work

Figure 1.14 – Autonomous drone racing has received a lot of attention from the research
community. Notable works investigating autonomous drone racing in the real world include
Jung et al. [156] (A), Li et al. [197] (E), and De Wagter et al. [62] (F), who proposed the
winning approach to the 2019 AlphaPilot challenge. Prior work also investigates the task of drone
racing in the simulation domain [246, 121] (B, C), including the simulation-only Game of Drones
competition [217] (D).

baselines being proposed, such as the optimization-based trajectory generation approach
of Han et al. [121] (Figure 1.14C).

The largest competition about autonomous drone racing held to date was the 2019
AlphaPilot competition organized by Lockheed Martin and the Drone Racing League.
Over 400 international teams participated in the competition, with the best eight teams
proceeding to the finals, where races with real drone platforms were held. The winning
approach of this competition, proposed by De Wagter et al. [62] (Figure 1.14F) demon-
strated speeds up to 10m s−1, but was still clearly outperformed by a human pilot who
managed to fly the same race track in just half the time.

In this thesis, I present approaches and methodologies to push the level of performance of
autonomous racing drones to human-level performance, as demonstrated in Paper H. This
demonstrator builds on methodologies developed and insights obtained in my prior works,
including the identification of a suitable control modality (Paper G), accurate modeling
of the platform physics (Paper J), and robust perception of racing gates (Paper C).

21

2 Contributions

This chapter summarizes the key contributions of the papers that are reprinted in the
appendix. It further highlights the connections between the individual results and refers
to related work.

In total, this research has been published in five journal publications (two in Science
Robotics, one in Springer: Autonomous Robots, two in IEEE Robotics and Automation
Letters) and six peer-reviewed conference publications. A complete list of all publications
can be found on page xi.

These works led to several research awards and open-source software.

Awards:

• Robotics: Science and Systems (RSS) 2020, Best System Paper Award for
Paper C and invitation to publish in Springer: Autonomous Robots.

• IEEE Transactions on Robotics, 2020, King-Sun Fu Memorial Best Paper
Award (Honorable Mention) for Paper D

• Robotics: Science and Systems (RSS) 2020, Best Paper Award (Honorable
Mention) for Paper E

• AlphaPilot Challenge, 2019, organized by Lockheed Martin and the Drone Racing
League, 2nd Place out of 430 participants worldwide with the approach
presented in Paper C.

• IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
2018 in the Autonomous Drone Racing (ADR) challenge, Winner 1st Place with
the approach presented in Paper B.

• Conference on Robot Learning (CoRL) 2018, Best System Paper Award, for
Paper A and invitation to publish in IEEE Transactions on Robotics.

• IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2017,
Best Search and Rescue Robotics Paper Award (Honorable Mention), for
Paper L.

23

Chapter 2. Contributions

Software:

• Agilicious Flightstack: Paper K
available at https:agilicious.dev

• Learning High-Speed Flight in the Wild: Paper F
available at https://github.com/uzh-rpg/agile_autonomy

• Deep Drone Acrobatics: Paper E
available at https://github.com/uzh-rpg/deep_drone_acrobatics

• Deep Drone Racing: Paper D
available at https://github.com/uzh-rpg/sim2real_drone_racing

• Data-Driven MPC for Quadrotors: Paper I
available at https://github.com/uzh-rpg/data_driven_mpc

Media Coverage:

• The New York Times on Paper C: A.I. Is Flying Drones (Very, Very Slowly)
Article available at this Link.

• Forbes on Paper F: This Hotshot AI Drone Can Speed Through Complex Environ-
ments Thanks To New Kind Of Virtual Training
Article available at this Link.

• WIRED coverage about Paper A: Drones Just Learned to Fly Solo
Article available at this Link.

• Der Spiegel on Paper E: Akrobatische Drohnen
Article available at this Link.

• IEEE Spectrum on Paper E: AI-Powered Drone Learns Extreme Acrobatics
Article available at this Link.

• Tech Xplore on Paper F: Flying high-speed drones into the unknown with AI
Article available at this Link.

• Focus Online on Paper F: Geschulte Drohnen sausen ins Unbekannte
Article available at this Link.

• Metro UK on Paper F: Artificial intelligence means drones can dodge through
forests at 25mph
Article available at this Link.

• Robohub on Paper E: Drones learn acrobatics by themselves
Article available at this Link.

24

https:agilicious.dev
https://github.com/uzh-rpg/agile_autonomy
https://github.com/uzh-rpg/deep_drone_acrobatics
https://github.com/uzh-rpg/sim2real_drone_racing
https://github.com/uzh-rpg/data_driven_mpc
https://www.nytimes.com/2019/03/26/technology/alphapilot-ai-drone-racing.html
https://www.forbes.com/sites/davidhambling/2021/10/25/omniscient-master-teaches-ai-drone-real-flying-skills-in-virtual-world/?sh=42ea8d05320c
https://www.wired.com/story/watch-out-pro-racers-these-drones-just-learned-to-fly-solo/
https://rpg.ifi.uzh.ch/media/RSS_2020_Der_Spiegel.pdf
https://spectrum.ieee.org/ai-powered-drone-extreme-acrobatics
https://techxplore.com/news/2021-10-high-speed-drones-unknown-ai.html
https://www.focus.de/wissen/natur/geschulte-drohnen-sausen-ins-unbekannte_id_24317031.html
https://metro.co.uk/2021/10/11/artificial-intelligence-means-drones-can-fly-through-a-forest-at-25mph-15399832/
https://robohub.org/drones-learn-acrobatics-by-themselves/

2.1. Tight Coupling of Learning-Based Perception and Optimal Planning
and Control

2.1 Tight Coupling of Learning-Based Perception and Op-

timal Planning and Control

In this part of the thesis, I consider the challenge of effectively interfacing learning-based
perception with traditional planning and control stacks. While fully learned sensorimotor
policies have potentially superior capabilities in terms of compute requirements and
latency compared to such hybrid approaches, for many industry applications fully learned
systems are not well suited due to their limited interpretability and verifiability.

Combining data-driven perception with traditional planning and control requires to find
suitable intermediate representations that are appropriate for learning and integrate
well with state-of-the-art planning and control frameworks. Prior work in the context
of autonomous navigation proposed intermediate representations in the form of high-
level velocity commands [206, 298]. Such intermediate representation can be readily
integrated into an existing planning and control system, but excessively constrains the
maneuverability of the platform.

The demonstrator considered in this part of the thesis is autonomous drone racing. In
autonomous drone racing, we assume having access to an approximate estimate of the
race track layout. The drone is then tasked with navigating through the track as fast
as possible, while only relying on onboard sensory observations such as images and
measurements from accelerometers and gyroscopes. While there already exist approaches
that combine a learned perception system with a classical control stack [156, 206, 298,
106], none of these do either fully exploit the dynamical capabilities of quadrotors or use
the network predictions also for state estimation.

This thesis contributes to addressing the challenges of effective combination of data-
driven perception with optimal planning and control via intermediate representations.
In Paper A, I propose to use receding-horizon waypoints in combination with efficient
state-to-state trajectory generation. Paper B extends this methodology to arbitrary race
track layouts by replacing the receding-horizon waypoint formulation with a probabilistic
relative pose prediction of the next gate. Finally, Paper C addresses cases where multiple
gates are visible by directly performing prediction in the image plane.

25

Chapter 2. Contributions

Figure 2.1 – By combining a convolutional neural network with state-of-the-art trajectory
generation and control methods, our vision-based, autonomous quadrotor is able to successfully
navigate a race track with moving gates with high agility.

2.1.1 Paper A: Deep Drone Racing: Learning Agile Flight in Dynamic

Environments

Elia Kaufmann∗, Antonio Loquercio∗, Rene Ranftl, Alexey Dosovitskiy, Vladlen Koltun, and

Davide Scaramuzza. “Deep Drone Racing: Learning Agile Flight in Dynamic Environments”. In:

Conf. on Robotics Learning (CoRL). 2018, Best System Paper Award

Autonomous agile flight brings up fundamental challenges in robotics, such as coping with
unreliable state estimation, reacting optimally to dynamically changing environments,
and coupling perception and action in real time under severe resource constraints. I have
investigated these challenges in the context of autonomous, vision-based drone racing in
dynamic environments. The approach presented in this work combines a convolutional
neural network (CNN) with a state-of-the-art path-planning and control system. The
CNN directly maps raw images into a robust representation in the form of a waypoint and
desired speed. This information is then used by an efficient trajectory generation method
to produce state-to-state minimum-jerk trajectories that are tracked by a cascaded control
pipeline. The method is demonstrated in autonomous agile flight scenarios, in which a
vision-based quadrotor traverses drone-racing tracks with possibly moving gates. The
method does not require any explicit map of the environment and runs fully onboard.

My contribution to this work includes the conceptualization, development, and implemen-
tation of the data generation procedure, the choice of intermediate representation in the
form of state-to-state trajectories, the design of the hardware platform, the integration
of the state estimation, and the evaluation of the approach in both simulation and in
real-world experiments.

Supplementary Video: https://youtu.be/8RILnqPxo1s

26

https://youtu.be/8RILnqPxo1s

2.1. Tight Coupling of Learning-Based Perception and Optimal Planning
and Control

Figure 2.2 – Our quadrotor flies through an indoor track. Our approach uses optimal filtering
to incorporate estimates from a deep perception system. It can race a new track after a single
demonstration.

2.1.2 Paper B: Beauty and the Beast: Optimal Methods Meet Learn-

ing for Drone Racing

Elia Kaufmann, Mathias Gehrig, Philipp Foehn, René Ranftl, Alexey Dosovitskiy, Vladlen

Koltun, and Davide Scaramuzza. “Beauty and the Beast: Optimal Methods Meet Learning

for Drone Racing”. In: IEEE Int. Conf. Robot. Autom. (ICRA) (2019), pp. 690–696. doi:

10.1109/ICRA.2019.8793631, This approach won the 2018 IROS Autonomous Drone

Race.

In this paper, I present a system for autonomous, vision-based drone racing combining a
learned perception system with model predictive control that can be deployed on novel
track layouts after only a single demonstration flight. Our approach represents the global
track layout with coarse gate locations, which can be easily estimated from a single
demonstration flight. At test time, a convolutional network predicts the poses of the
closest gates along with their uncertainty. These predictions are incorporated by an
extended Kalman filter to maintain optimal maximum-a-posteriori estimates of gate
locations. This allows the framework to cope with misleading high-variance estimates
that could stem from poor observability or lack of visible gates. Given the estimated gate
poses, we use model predictive control to quickly and accurately navigate through the
track. We conduct extensive experiments in the physical world, demonstrating agile and
robust flight through complex and diverse previously-unseen race tracks. The presented
approach was used to win the IROS 2018 Autonomous Drone Race Competition, outracing
the second-placing team by a factor of two.

My contribution to this work includes the design of the network architecture and training
loss formulation, implementation of the data generation procedure, development of the
simulation environment, design of the hardware setup, and the experimental evaluation
in simulation and the real world.

Supplementary Video: https://youtu.be/UuQvijZcUSc

27

https://doi.org/10.1109/ICRA.2019.8793631
https://youtu.be/UuQvijZcUSc

Chapter 2. Contributions

Figure 2.3 – Our AlphaPilot drone waiting on the start podium to autonomously race through
the gates ahead.

2.1.3 Paper C: AlphaPilot: Autonomous Drone Racing

Philipp Foehn∗, Dario Brescianini∗, Elia Kaufmann∗, Titus Cieslewski, Mathias Gehrig, Manasi

Muglikar, and Davide Scaramuzza. “AlphaPilot: Autonomous Drone Racing”. In: Robotics: Sci-

ence and Systems (RSS) (2020), Best System Paper Award, 2nd Place at 2019 AlphaPilot

Competition

In this paper, I present a novel system for autonomous, vision-based drone racing
combining learned data abstraction, non-linear filtering, and time-optimal trajectory
planning. The system has successfully been deployed at the first autonomous drone racing
world championship: the 2019 AlphaPilot Challenge. Contrary to traditional drone racing
systems, which only detect the next gate, our approach makes use of any visible gate and
takes advantage of multiple, simultaneous gate detections to compensate for drift in the
state estimate and build a global map of the gates. The global map and drift-compensated
state estimate allow the drone to navigate through the race course even when the gates
are not immediately visible and further enable to plan a near time-optimal path through
the race course in real time based on approximate drone dynamics. The proposed system
has been demonstrated to successfully guide the drone through tight race courses reaching
speeds up to 8m/s and ranked second at the 2019 AlphaPilot Challenge.

My contribution to this work includes the conceptualization, development, and imple-
mentation of the perception system to detect racing gates in RGB images. I furthermore
contributed to the entire code base, including the adaption of the VIO frontend to account
for camera occlusions. I performed tests with the physical platform to identify system
parameters such as delay, inertia, drag, and thrust curves.

Supplementary Video: https://youtu.be/DGjwm5PZQT8

28

https://youtu.be/DGjwm5PZQT8

2.2. Simulation-to-Reality Transfer for Agile Drone Flight

2.2 Simulation-to-Reality Transfer for Agile Drone Flight

Even though learning-based sensorimotor policies are a promising approach to push
the limits of agile drone flight, training such policies is reliant on a substantial labeled
dataset. Obtaining such data in the real world can either be done by instrumenting the
environment and using an automated data generation strategy, or by crowd-sourcing
human annotators. However, while instrumenting of the environment requires expensive
hardware, crowd-sourcing human annotators is often impossible, as the labelling process
itself requires expert knowledge when considering quadrotor flight at the limits of handling.

The hardship of obtaining high-quality, potentially labeled, data from real-world systems
has led the robotics community to investigate approaches that perform data collection
entirely in simulation. While this shift to simulated data allows for virtually unlimited
labeled data generation, it comes with its own particular challenges. The most prominent
arises when a policy trained in simulation is deployed on a real robot. Due to the
distribution shift between simulated data and real-world data, the policy is deployed on
out-of-distribution data, potentially with catastrophic consequences.

Prior work investigates approaches to facilitate transfer of sensorimotor policies from
simulation to the real world by using randomization [341, 148, 5], abstraction [247],
and adaptation [186, 319]. Although these approaches achieve successful transfer in
their domains, no prior work investigated simulation-to-reality transfer for high-speed
navigation.

The contributions presented in this thesis investigate the challenge of simulation-to-reality
transfer in the context of high-speed flight. I investigate how domain randomization
and abstraction of visual features enables successful transfer of sensorimotor policies
for high-speed drone flight. I apply the methodologies on multiple complex navigation
tasks, including autonomous drone racing (Paper D), acrobatic flight (Paper E), and
high-speed flight in the wild (Paper F). By extending the transfer studies from the policy
observation space to the action space, I identify in Paper G the optimal action space for
agile flight that combines robust transferability with high agility. Finally, I combine the
insights from these transfer studies with a novel methodology to real-world fine-tuning and
demonstrate the first approach to vision-based autonomous drone racing that outperforms
a professional human pilot in a drone race (Paper H).

29

Chapter 2. Contributions

Figure 2.4 – The perception block of our system, represented by a convolutional neural network
(CNN), is trained only with non-photorealistic simulation data. Due to the abundance of such
data, generated with domain randomization, the trained CNN can be deployed on a physical
quadrotor without any fine-tuning.

2.2.1 Paper D: Deep Drone Racing: From Simulation to Reality with

Domain Randomization

Antonio Loquercio∗, Elia Kaufmann∗, René Ranftl, Alexey Dosovitskiy, Vladlen Koltun, and

Davide Scaramuzza. “Deep Drone Racing: From Simulation to Reality with Domain Randomiza-

tion”. In: IEEE Trans. Robot. 36.1 (2019), pp. 1–14. doi: 10.1109/TRO.2019.2942989, Best

Paper Award Honorable Mention

Dynamically changing environments, unreliable state estimation, and operation under
severe resource constraints are fundamental challenges that limit the deployment of small
autonomous drones. I have addressed these challenges in the context of autonomous,
vision-based drone racing in dynamic environments. A racing drone must traverse a track
with possibly moving gates at high speed. The approach presented in this work combines
a convolutional neural network (CNN) with a state-of-the-art path-planning and control
system. Instead of relying on tedious real-world data collection, this work investigates the
feasibility of training the perception system entirely in simulation and transferring it to
the real robot. The resulting modular system is both platform- and domain-independent:
it is trained in simulation and deployed on a physical quadrotor without any fine-tuning.
The abundance of simulated data, generated via domain randomization, makes the system
robust to changes of illumination and gate appearance.

My contribution to this work includes the conceptualization, development, and implemen-
tation of the data generation procedure, the choice of intermediate representation in the
form of state-to-state trajectories, the design of the hardware platform, the integration
of the state estimation, and the evaluation of the approach in both simulation and in
real-world experiments.

Supplementary Video: https://youtu.be/vdxB89lgZhQ

30

https://doi.org/10.1109/TRO.2019.2942989
https://youtu.be/vdxB89lgZhQ

2.2. Simulation-to-Reality Transfer for Agile Drone Flight

Figure 2.5 – A quadrotor performs a Barrel Roll (left), a Power Loop (middle), and a Matty
Flip (right). We safely train acrobatic controllers in simulation and deploy them with no fine-
tuning (zero-shot transfer) on physical quadrotors. The approach uses only onboard sensing and
computation. No external motion tracking was used.

2.2.2 Paper E: Deep Drone Acrobatics

Elia Kaufmann∗, Antonio Loquercio∗, René Ranftl, Matthias Müller, Vladlen Koltun, and Davide

Scaramuzza. “Deep Drone Acrobatics”. In: Robotics: Science and Systems (RSS). 2020, Best

Paper Award Finalist

Performing acrobatic maneuvers with quadrotors is extremely challenging. Acrobatic
flight requires high thrust and extreme angular accelerations that push the platform
to its physical limits. In this work, I show that data-driven approaches can not only
be used in combination with traditional planning and control, but instead can directly
map from sensory observations to low-level commands. Specifially, I propose to train
a sensorimotor policy that enables an autonomous quadrotor to fly extreme acrobatic
maneuvers with only onboard sensing and computation. The policy is trained entirely
in simulation by leveraging demonstrations from an optimal controller that has access
to privileged information. I show that successful policy transfer to a real robot can be
achieved by using appropriate abstractions of the visual input. This approach enables a
physical quadrotor to fly maneuvers such as the Power Loop, the Barrel Roll, and the
Matty Flip, during which it incurs accelerations of up to 3g.

My contribution to this work includes the design of the training objective, implementation
of the training procedure, generation of the reference maneuvers, implementation of the
system on the real robot, and the evaluation of the approach in both simulation and in
real-world experiments.

Supplementary Video: https://youtu.be/2N_wKXQ6MXA

31

https://youtu.be/2N_wKXQ6MXA

Chapter 2. Contributions

Figure 2.6 – Deployment of the proposed approach in a challenging real-world scenario featuring
snow-covered branches. The sensorimotor policy was trained entirely in simulation and has access
to only onboard sensing and computation.

2.2.3 Paper F: Learning High-Speed Flight in the Wild

Antonio Loquercio∗, Elia Kaufmann∗, René Ranftl, Matthias Müller, Vladlen Koltun, and Davide

Scaramuzza. “Learning High-Speed Flight in the Wild”. In: Science Robotics. 2021

In this work, I extend the methodologies presented in Paper E to one of the grand
challenges of robotics [366]: navigation in previously unknown environments with only
onboard sensing and computation. To date, only expert human pilots have truly mastered
that task and are able to navigate at high speeds through unknown, cluttered environments.
In contrast, autonomous operation with onboard sensing and computation has been limited
to low speeds. State-of-the-art methods generally separate the navigation problem into
subtasks: sensing, mapping, and planning. While this approach has proven successful at
low speeds, the separation it builds upon can be problematic for high-speed navigation
in cluttered environments. Indeed, the subtasks are executed sequentially, leading to
increased latency and a compounding of errors through the pipeline. In this work, I propose
an end-to-end approach that can autonomously fly quadrotors through complex natural
and man-made environments at high speeds, with purely onboard sensing and computation.
The key principle is to directly map noisy sensory observations to collision-free trajectories
in a receding-horizon fashion. This direct mapping drastically reduces latency and
increases robustness to noisy and incomplete perception. Following the approaches
presented in Paper E, this sensorimotor mapping is performed by a convolutional network
that is trained exclusively in simulation via privileged learning: imitating an expert
with access to privileged information. By simulating realistic sensor noise, the approach
achieves zero-shot transfer from simulation to challenging real-world environments that
were never experienced during training: dense forests, snow-covered terrain, derailed
trains, and collapsed buildings.

My contribution to this work includes the conceptualization and implementation of the

32

2.2. Simulation-to-Reality Transfer for Agile Drone Flight

expert policy in simulation, desing of the simulation and data generation procedure,
identification of suitable input modalities, implementation of realistic noise in the depth
input, implementation of the reactive planning baseline, integration of the system on
the real robot, and the evaluation of the approach in both simulation and in real-world
experiments.

Supplementary Video: https://youtu.be/m89bNn6RFoQ

Figure 2.7 – Deployment of the proposed approach in a set of challenging environments. All
environments are previously unknown. The reader is encouraged to watch the supplementary
video to better understand the speed and agility of the proposed approach.

33

https://youtu.be/m89bNn6RFoQ

Chapter 2. Contributions

SRT

πSRT Delay

ẋ = f(x)

τiot

∆t = 1ms

LV

πLV Delay

Ctrlẋ = f(x) PD

v

ωz

τi

ot

x ∆t = 1ms

IMU

CTBR

πCTBR Delay

ẋ = f(x) PD

c

ω

τi

ot

∆t = 1ms

IMU

Figure 2.8 – In this paper, we compare three different classes of control policies for the task
of agile quadrotor flight. From left to right: policies specifying desired linear velocities (LV)
(they rely on a control stack that maps the output velocities to individual rotor thrusts), policies
commanding collective thrust and bodyrates (CTBR) (they rely on a low-level controller that
maps the output bodyrates to individual rotor thrusts), policies directly outputting single-rotor
thrust (SRT).

2.2.4 Paper G: A Benchmark Comparison of Learned Control Policies

for Agile Quadrotor Flight

Elia Kaufmann, Leonard Bauersfeld, and Davide Scaramuzza. “A Benchmark Comparison of

Learned Control Policies for Agile Quadrotor Flight”. In: 2022 International Conference on

Robotics and Automation (ICRA). IEEE. 2022

Quadrotors are highly nonlinear dynamical systems that require carefully tuned controllers
to be pushed to their physical limits. Recently, learning-based control policies have been
proposed for quadrotors, as they would potentially allow learning direct mappings from
high-dimensional raw sensory observations to actions. Due to sample inefficiency, training
such learned controllers on the real platform is impractical or even impossible. Training in
simulation is attractive but requires to transfer policies between domains, which demands
trained policies to be robust to such domain gap. In this work, I make two contributions:
(i) I perform the first benchmark comparison of existing learned control policies for agile
quadrotor flight and show that training a control policy that commands body-rates and
thrust results in more robust sim-to-real transfer compared to a policy that directly
specifies individual rotor thrusts, (ii) I demonstrate for the first time that such a control
policy trained via deep reinforcement learning can control a quadrotor in real-world
experiments at speeds over 45km/h.

My contribution to this work includes the implementation of the training environment,
integration and tuning of the reinforcement learning algorithm for the task of high-speed
trajectory tracking, generation of the reference maneuvers, design and implementation of
domain randomization of dynamics properties, integration of the system on the real robot,
and the evaluation of the approach in both simulation and in real-world experiments.

Supplementary Video: https://youtu.be/zqdfVq2uWUA

34

https://youtu.be/zqdfVq2uWUA

2.2. Simulation-to-Reality Transfer for Agile Drone Flight

Figure 2.9 – In this work, I present a novel approach for autonomous drone racing that only relies
on onboard sensory observations and onboard computation. The approach combines model-free
reinforcement learning with residual models identified from real data to achieve champion-level
performance on the task of vision-based drone racing.

2.2.5 Paper H: Champion-Level Performance in Drone Racing using

Deep Reinforcement Learning

Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Müller, Vladlen Koltun, and

Davide Scaramuzza. “Champion-Level Drone Racing using Deep Reinforcement Learning”. In:

Nature (2023)

Vision-based drone racing is one of the most challenging problems for autonomous robots
owing to its enormous state space, the strict real-time requirements, and the very thin slack
for errors. By leveraging insights from Paper J and Paper G, I propose a novel approach for
training neural networks for vision-based drone racing using deep reinforcement learning.
The core of the proposed approach is a fine-tuning procedure that enables improvement
through real-world experience. Using this algorithm, the approach outperformed existing
methods for vision-based drone racing by a factor of two, and scored multiple times
against three professional drone racing pilots, including the world champions of two drone
racing leagues. This marks the first time that a computer program has defeated a human
professional in a real-world sport designed by and for humans, a feat previously thought
to be at least a decade away.

My contribution to this work includes the conceptualization, development, and imple-
mentation of the perception system to detect racing gates in RGB images, the design
and implementation of the Kalman filter, development and implementation of the re-
inforcement learning environment for the task of vision-based drone racing, the design
and implementation of the reward, the conceptualization and implementation of the
adaptation procedure for both the dynamics and observation, the implementation of the
fine-tuning stage, integration of the system on the real robot, and the evaluation of the
approach in both simulation and in real-world experiments.

35

Chapter 2. Contributions

2.3 Data-Driven Dynamics Models

Dynamics models are a core component to any simulation or state-of-the-art model-based
estimation, planning, or control algorithm. Having access to accurate dynamics models
therefore greatly benefits the performance of a robotic system.

Traditionally, dynamics models have been identified by using first-principles-based ap-
proaches. Such models are typically efficient to compute, generalize well, but provide
limited modeling accuracy. With the advent of deep learning, a new interest into learning-
based dynamics models has emerged. By exploiting the approximation capabilities of
data-driven approaches, highly complex dynamics models can be identified purely from
data.

When designing data-driven models, the application domain imposes a set of constraints
on modeling complexity, which results in different design decisions for different tasks.
As such, in this thesis two different approaches to data-driven dynamics model learning
for high-speed quadrotor flight are presented: (i) Paper I presents an approach to
aerodynamic residual model learning using Gaussian processes that is tailored for real-
time capability when deployed in the optimization loop of a model predictive controller.
(ii) Paper J proposes instead the usage of deep neural networks for dynamics modeling,
which purely maximizes for modeling accuracy at the cost of computational efficiency.
Both approaches use a data-driven approach to identify a residual dynamics model, which
is then complemented by a simple first-principle dynamics model (Paper I), or by a
state-of-the-art propeller model based on blade-element-momentum theory (Paper J).

36

2.3. Data-Driven Dynamics Models

Figure 2.10 – Our quadrotor platform reaches its physical limits at a pitch angle of 80 degrees
while performing a lemniscate trajectory in our experiments. Throughout the trajectory, the
platform reaches speeds of up to 14m s−1 and accelerations beyond 4g.

2.3.1 Paper I: Data-Driven MPC for Quadrotors

Guillem Torrente∗, Elia Kaufmann∗, Philipp Foehn, and Davide Scaramuzza. “Data-driven mpc

for quadrotors”. In: IEEE Robot. Autom. Lett. 6.2 (2021), pp. 3769–3776

Aerodynamic forces render accurate high-speed trajectory tracking with quadrotors ex-
tremely challenging. These complex aerodynamic effects become a significant disturbance
at high speeds, introducing large positional tracking errors, and are extremely difficult
to model. To fly at high speeds, feedback control must be able to account for these
aerodynamic effects in real-time. This necessitates a modeling procedure that is both
accurate and efficient to evaluate. In this work, I present an approach to model residual
aerodynamic effects using Gaussian Processes, which is incorporated into a Model Predic-
tive Controller to achieve efficient and precise real-time feedback control. The method is
verified by extensive comparison to a state-of-the-art linear drag model in synthetic and
real-world experiments at speeds of up to 50km/h and accelerations beyond 4g.

This work was done in context of the master thesis of Guillem Torrente, who I supervised.
My contribution to this work includes the conceptualization of the approach, the design
of the experiments and the reference trajectories, and the implementation of the system
on the real-world platform.

Supplementary Video: https://youtu.be/FHvDghUUQtc

37

https://youtu.be/FHvDghUUQtc

Chapter 2. Contributions

Our Approach First Principles

Learning Based

MM RM

NN

+

fprop

τprop

fres

τres

f

τ

[

Ωk,cmd

]

xk Ωk

xk−1 Ωk−1

xk−2 Ωk−2

...
...

...
...

xk−h Ωk−h

Figure 2.11 – Overview of the proposed architecture to predict aerodynamic forces and torques.
The physical modeling pipeline (upper part) consists of a motor model (MM) and a rotor model
(RM). It takes the current state xk, current motor speeds Ωk, and the motor speed command
Ωk,cmd as an input. Combined with the estimate of the residual forces and torques predicted by
the neural network (NN) using the current and past h states, the acting force f and torque τ are
calculated.

2.3.2 Paper J: NeuroBEM: Hybrid Aerodynamic Quadrotor Model

Leonard Bauersfeld∗, Elia Kaufmann∗, Philipp Foehn, Sihao Sun, and Davide Scaramuzza.

“NeuroBEM: Hybrid Aerodynamic Quadrotor Model”. In: RSS: Robotics, Science, and Systems

(2021)

Extending the methodology of Paper I, this work investigates the limits of modeling
accuracy when no real-time constraints are imposed. To this end, I propose to combine a
state-of-the-art propeller model based on blade-element-momentum theory with a residual
wrench component predicted by a deep neural network that observes a history of state
observations. The resulting hybrid approach fusing first principles and learning achieves
unprecedented accuracy in modeling quadrotors and their aerodynamic effects over the
entire performance envelope of the platform. Our hybrid approach unifies and outperforms
both first-principles blade-element momentum theory and learned residual dynamics. It
is identified and tested using autonomous-quadrotor-flight data at speeds up to 65 km/h.
The resulting model captures the aerodynamic thrust, torques, and parasitic effects with
astonishing accuracy, outperforming existing models with 50% reduced prediction errors,
and shows strong generalization capabilities beyond the training set.

This work was done in context of the master thesis of Leonard Bauersfeld, who I supervised.
My contribution to this work includes the conceptualization of the approach, the design
and implementation of the neural network that predicts residual forces and torques, and
the design and implementation of the reference maneuvers used for model identification.

Supplementary Video: https://youtu.be/Nze1wlfmzTQ

38

https://youtu.be/Nze1wlfmzTQ

2.4. Additional Contributions

Figure 2.12 – Autonomous drone racing demonstrations given at the inauguration of the
Switzerland Innovation Park (A) in March 2018 and the Scientifica event (B) in September 2021.

2.4 Additional Contributions

During my time at the Robotics and Perception Group, I contributed to some notable
projects unrelated to the main topic of the thesis. These projects include Agilicious, an
open-source and open-hardware quadrotor platform, as well as a publication on high-speed
exploration using quadrotors.

Real-World Demonstrators. Throughout my journey as a Ph.D. student, I have
participated in several public demonstrations of my research. Such live demonstrations
are one of the best ways to communicate research in an approachable way to the gen-
eral public. Additionally, it helps to push the development of robust systems that are
lightweight and repeatably perform well in real-world conditions. Notable examples
of such public demonstrations include the inauguration of the Switzerland Innovation
Park1 (Figure 2.12A) in March 2018 and the Scientifica event (Figure 2.12B) in Septem-
ber 2021. While the inauguration of the Switzerland Innovation Park hosted mostly
representatives from industry and the Swiss government, Scientifica is an event held every
two years that targets the general public and especially children and young adults. The
primary goal of Scientifica is to communicate research as well as enthusiasm for science
to visitors in an attractive and understandable way. During both events, I demonstrated
autonomous drone racing with only onboard sensing and computation on a challenging
race track to an audience of over 300 people.

1https://www.switzerland-innovation.com/zurich/

39

https://www.switzerland-innovation.com/zurich/

Chapter 2. Contributions

Simulation

Rigid Body

Dynamics

BEMModel

Motor Model

Low Level

Controller

state

RealWorld

Quadrotor

Low Level

Controller

state

5" Propeller

Brushless Motor

Carbon Fiber Frame

Nut

RealSense T265

4S LiPo Battery

Quasar Carrier Board

3D-printed Sensor Mount
Hobbywing ESC

Damper

Radix Flight Controller

3D-printed Battery Mount

3D-printed Jetson Mount Jetson TX2

Pipeline

state setpoint command
Estimator Sampler BridgeController

Logic

WaypointTrajectory Velocity Body Rates + Thrust Rotor Thrusts

User select Reference

OffHoverLandStart

Action User select

Agilicious Pilot

Figure 2.13 – Illustration of the Agilicious software and hardware design. Both software and
hardware are tailored for agile flight while featuring powerful onboard compute capabilities
through an NVIDIA Jetson TX2. As a key feature, the software of Agilicious is built in a modular
fashion, allowing rapid software prototyping in simulation and seamless transition to real-world
experiments.

2.4.1 Paper K: Agilicious: Open-Source and Open-Hardware Agile

Quadrotor for Vision-Based Flight

Philipp Foehn∗, Elia Kaufmann∗, Angel Romero, Robert Penicka, Sihao Sun, Leonard Bauersfeld,

Thomas Laengle, Yunlong Song, Antonio Loquercio, and Davide Scaramuzza. “Agilicious: Open-

Source and Open-Hardware Agile Quadrotor for Vision-Based Flight”. In: Science Robotics

(2021). under review

Agile flight comes with ever-increasing engineering challenges since performing faster
maneuvers with an autonomous system requires more capable algorithms, specialized
hardware, and proficiency in system integration. As a result, only a small number
of research groups have undertaken the significant overhead of hardware and software
engineering, and have developed the expertise and resources to design quadrotor platforms
that fulfill the requirements on weight, sensing, and computational budget necessary for
autonomous agile flight.

In this work, I present an open-source and open-hardware quadrotor platform designed
for research on agile vision-based flight. Developed over two years as a collaborative
project of multiple Ph.D. students and engineers at the Robotics and Perception Group,
the Agilicious software and hardware stack has been extensively tested in simulation
scenarios, in real-world flight tests in motion capture settings, and vision-based outdoor

40

2.4. Additional Contributions

Figure 2.14 – Illustration of the quadrotor autonomously exploring a forest. The quadrotor
reached speeds up to 2m s−1.

experiments.

My contribution to this work includes contributions to the core-library, such as an interface
for learning-based policies, a safety controller to catch the robot when an experiment fails,
the implementation of polynomial and sampled trajectories, and others. Furthermore, I
contributed key design desicions to the hardware platform, such as crash-resilient sensor
mountings, selection of the main compute board, and identification and integration of
breakout boards and the primary camera. I provided several experimental demonstrators
in the tracking arena and the real world, including acrobatic flight, high-speed flight in
the wild, and high-speed trajectory tracking.

2.4.2 Paper L: Rapid Exploration with Multi-Rotors: A Frontier Se-

lection Method for High-Speed Flight

Titus Cieslewski, Elia Kaufmann, and Davide Scaramuzza. “Rapid exploration with multi-rotors:

A frontier selection method for high speed flight”. In: IEEE/RSJ Int. Conf. Intell. Robot. Syst.

(IROS). 2017, pp. 2135–2142, Best Search and Rescue Paper Award Finalist

Exploring and mapping previously unknown environments while avoiding collisions with
obstacles is a fundamental task for autonomous robots. In scenarios where this needs to
be done rapidly, multi-rotors are a good choice for the task, as they can cover ground at
potentially very high velocities. Flying at high velocities, however, implies the ability to
rapidly plan trajectories and to react to new information quickly. In this paper, I propose
an extension to classical frontier-based exploration that facilitates exploration at high
speeds. The extension consists of a reactive mode in which the multi-rotor rapidly selects
a goal frontier from its field of view. The goal frontier is selected in a way that minimizes
the change in velocity necessary to reach it. While this approach can increase the total
path length, it significantly reduces the exploration time, since the multi-rotor can fly at
consistently higher speeds.

41

Chapter 2. Contributions

Although this work did not directly contribute to the main topic of this thesis, it allowed me
to better understand the assumptions and limitations of traditional approaches for vision-
based flight. This work was done in context of my master thesis under the supervision
of Titus Cieslewski. My contribution to this work includes the conceptualization of the
approach, its implementation in simulation and the real world, and its evaluation in
simulation and real-world experiments in the forest.

42

3 Future Directions

At the time this doctoral work started, autonomous vision-based quadrotors were mostly
research platforms that were constrained to slow, near-hover maneuvers. As of the time
this thesis is completed, the entire field of autonomous quadrotor flight has substantially
progressed, especially when considering situations where external sensing is available,
such as instrumented tracking volumes. Even though this thesis makes contributions
towards achieving the same level of agility while only relying on onboard sensing and
computation, this challenge is far from being solved. In that context, I present some
limitations of the proposed approaches and interesting avenues for future work.

Generalization. Although this thesis presents promising approaches to push the frontier
of vision-based navigation, there are still open challenges that need to be addressed. One
example of such a challenge is generalization: even though this thesis presents methods
that allow for high-speed vision-based flight in scenarios such as acrobatic flight, agile
flight in cluttered environments, and drone racing, it is not clear how these sensorimotor
policies can be efficiently transferred to novel task formulations, sensor configurations, or
physical platforms. Following the methodologies presented in this thesis, transferring to
any of these new scenarios would require to retrain the policy in simulation, or perform
adaptation using learned residual models. While the former suffers from the need to
re-identify observation models and dynamics models, the latter is restricted to policy
transfer between simulation and reality for the same task.

Possible avenues for future work to address this challenge include hierarchical learning [119]
or approaches that optimize policy parameters on a learned manifold [267].

Continual Learning. The approaches to sensorimotor policy training proposed in this
thesis are static in their nature: after the policy is trained in simulation via imitation
learning or reinforcement learning, its parameters are frozen and applied on the real robot.
In contrast, natural agents interact fundamentally different with their environment; they
continually adapt to new experience and improve their performance in a much more
dynamic fashion. Designing an artificial agent with similar capabilities would greatly
increase the utility of robots in the real world and is an interesting direction for future
work.

The adaptation method proposed in Paper H represents a first step towards this direction,
although the adaptation is still performed in an iterative fashion. Recent work has

43

Chapter 3. Future Directions

proposed methods to enable artificial agents to perform few-shot learning of new tasks
and scenarios using techniques such as adaptive learning [319, 186] or meta learning [11,
87]. These methods have shown promising results on simple manipulation and locomotion
tasks but remain to be demonstrated on complex navigation tasks such as high-speed
flight in the real world.

Autonomous Drone Racing. The approaches presented in this thesis addressing the
challenge of autonomous drone racing are limited to single-agent time trial races. To
achieve true racing behaviour, these approaches need to be extended to a multi-agent
setting, which raises novel challenges in perception, planning, and control. Regarding
perception, multiagent drone racing requires to detect opponent agents, which is a
challenging task when navigating at high speeds and when onboard observations are
subject to motion blur. The planning challenges arise from the need to design game-
theoretic strategies that involve maneuvers such as strategic blocking, which are potentially
not time-optimal but still dominant approaches when competing in a multi-agent setting.
Additionally, the limited field of view of the onboard camera renders opponents potentially
unobservable, which requires a mental model of the trajectory of opponents. Specifically,
it requires to predict the behaviour of opponents. Finally, racing simultaneously with
other drones through a race track poses new challenges in modeling and control, as
aerodynamic effects induced by other agents need to be accounted for.

I envision that many of these challenges can be addressed using deep reinforcement
learning in combination with self-play, where agents improve by competing against each
other [16, 316].

44

A Deep Drone Racing: Learning Agile

Flight in Dynamic Environments

The version presented here is reprinted, with permission, from:

Elia Kaufmann∗, Antonio Loquercio∗, Rene Ranftl, Alexey Dosovitskiy, Vladlen Koltun,
and Davide Scaramuzza. “Deep Drone Racing: Learning Agile Flight in Dynamic
Environments”. In: Conf. on Robotics Learning (CoRL). 2018

45

Appendix A. Deep Drone Racing: Learning Agile Flight in Dynamic
Environments

Deep Drone Racing: Learning Agile Flight

in Dynamic Environments

Elia Kaufmann∗, Antonio Loquercio∗, René Ranftl, Alexey Dosovitskiy,

Vladlen Koltun, Davide Scaramuzza

Abstract — Autonomous agile flight brings up fundamental chal-
lenges in robotics, such as coping with unreliable state estimation,
reacting optimally to dynamically changing environments, and coupling
perception and action in real time under severe resource constraints. In
this paper, we consider these challenges in the context of autonomous,
vision-based drone racing in dynamic environments. Our approach
combines a convolutional neural network (CNN) with a state-of-the-
art path-planning and control system. The CNN directly maps raw
images into a robust representation in the form of a waypoint and
desired speed. This information is then used by the planner to generate
a short, minimum-jerk trajectory segment and corresponding motor
commands to reach the desired goal. We demonstrate our method in
autonomous agile flight scenarios, in which a vision-based quadrotor
traverses drone-racing tracks with possibly moving gates. Our method
does not require any explicit map of the environment and runs fully
onboard. We extensively test the precision and robustness of the ap-
proach in simulation and in the physical world. We also evaluate our
method against state-of-the-art navigation approaches and professional
human drone pilots.

46

A.1. Introduction

A.1 Introduction

Drone racing has become a popular televised sport with high-profile international com-
petitions. In a drone race, each vehicle is controlled by a human pilot, who receives a
first-person-view live stream from an onboard camera and flies the drone via a radio
transmitter. Human drone pilots need years of training to master the advanced navigation
and control skills that are required to be successful in international competitions. Such
skills would also be valuable to autonomous systems that must quickly and safely fly
through complex environments, in applications such as disaster response, aerial delivery,
and inspection of complex structures.

We imagine that in the near future fully autonomous racing drones will compete against
human pilots. However, developing a fully autonomous racing drone is difficult due to
challenges that span dynamics modeling, onboard perception, localization and mapping,
trajectory generation, and optimal control.

(a) (b) (c)

Figure A.1 – By combining a convolutional neural network with state-of-the-art trajectory
generation and control methods, our vision-based, autonomous quadrotor is able to successfully
navigate a race track with moving gates with high agility.

A racing drone must complete a track in the shortest amount of time. One way to
approach this problem is to accurately track a precomputed global trajectory passing
through all gates. However, this requires highly accurate state estimation. Simultaneous
Localization and Mapping (SLAM) systems [41] can provide accurate pose estimates
against a previously-generated, globally-consistent map. These approaches may fail, how-
ever, when localizing against a map that was created in significantly different conditions,
or during periods of high acceleration (because of motion blur and loss of feature tracking).
Additionally, enforcing global consistency leads to increased computational demands and
significant difficulties in coping with dynamic environments. Indeed, SLAM methods
enable navigation only in a predominantly-static world, where waypoints and (optionally)
collision-free trajectories can be statically defined. In contrast, drone races (and related
applications of flying robots) can include moving gates and dynamic obstacles.

In this paper, we take a step towards autonomous, vision-based drone racing in dynamic
environments. Our proposed approach is driven by the insight that methods relying on
global state estimates in the form of robot poses are problematic due to the inherent
difficulties of pose estimation at high speed along with inability to adequately cope with
dynamic environments. As an alternative, we propose a hybrid system that combines
the perceptual awareness of a convolutional neural network (CNN) with the speed and
accuracy of a state-of-the-art trajectory generation and tracking pipeline. Our method
does not require an explicit map of the environment. The CNN interprets the scene,

47

Appendix A. Deep Drone Racing: Learning Agile Flight in Dynamic
Environments

extracts information from a raw image, and maps it to a robust representation in the
form of a waypoint and desired speed. This information is then used by the planning
module to generate a short trajectory segment and corresponding motor commands to
reach the desired local goal specified by the waypoint. The resulting approach combines
the advantages of both worlds: the perceptual awareness and simplicity of CNNs and
the precision offered by state-of-the-art controllers. The approach is both powerful and
extremely lightweight: all computations run fully onboard.

Our experiments, performed in simulation and on a physical quadrotor, show that the
proposed approach yields an integrated perception and control system that is able to
cope with highly dynamic environments and severe occlusions, while being compact and
efficient enough to be executed entirely onboard. The presented approach can perform
complex navigation tasks, such as seeking a moving gate or racing through a track, with
higher robustness and precision than state-of-the-art, highly engineered systems.

A.2 Related Work

Pushing a robotic platform to high speeds poses a set of fundamental problems. Motion
blur, challenging lighting conditions, and perceptual aliasing can cause severe drifts in
any state estimation system. Additionally, state-of-the-art state estimation pipelines may
require expensive sensors [37], have high computational costs [248], or be subject to drift
due to the use of compressed maps [216]. Therefore, real-time performance is generally
hindered when operating with resource constrained platforms, such as small quadrotors.
This makes it extremely difficult to fully exploit the properties of popular minimum-snap
or minimum-jerk trajectories [227, 242] for small, agile quadrotors using only onboard
sensing and computing. Moreover, state-of-the-art state estimation methods are designed
for a predominantly-static world, where no dynamic changes to the environment, or to
the track to follow, occur.

In order to cope with dynamic environments, it is necessary to develop methods that
tightly couple the perception and action loops. For the specific case of drone racing, this
entails the capability to look for the target (the next gate) and localize relative to this
while maintaining visual contact with it [83, 302]. However, traditional, handcrafted gate
detectors quickly become unreliable in the presence of occlusions, partial visibility, and
motion blur. The classical solution to this problem is visual servoing, where a robot is
given a set of target locations in the form of reference images [335]. However, visual
servoing only works well when the difference between the current and the reference images
is small (which cannot be guaranteed at high speed) and is not robust to occlusions and
motion blur.

An alternative solution consists of deriving actions directly from images using end-to-end
trainable machine learning systems [283, 298, 159, 71, 156]. While being independent of
any global map and position estimate, these methods are not directly applicable to our
specific problem due to their high computational complexity [298], their low maximum
speed [156] or the inherent difficulties of generalizing to 3D motions [283, 71]. Furthermore,
the optimal output representation for learning-based algorithms that couple perception

48

A.3. Method

and control is an open question. Known output representations range from predicting
discrete navigation commands [178, 206]— which enables high robustness but leads to
low agility—to direct control [159]—which can lead to highly agile control, but suffers
from high sample complexity.

Taking the best of both worlds, this paper combines the benefits of agile trajectories with
the ability of deep neural networks to learn highly expressive perception models, which
are able to reason on high-dimensional, raw sensory inputs. The result is an algorithm
that enables a resource-constrained, vision-based quadrotor to navigate a race track with
possibly moving gates with high agility. While the supervision to train our neural network
comes from global trajectory methods, the learned policy only operates on raw perceptual
input, i.e., images, without requiring any information about the system’s global state. In
addition, the “learner” acquires an ability that the “teacher” it imitates does not posses:
it can cope with dynamic environments.

A.3 Method

We address the problem of robust, agile flight of a quadrotor in a dynamic environment.
Our approach makes use of two subsystems: perception and control. The perception
system uses a Convolutional Neural Network (CNN) to predict a goal direction in local
image coordinates, together with a desired navigation speed, from a single image from
a forward-facing camera. The control system then uses these outputs to generate a
minimum jerk trajectory [242] that is tracked by a low-level controller [77]. In what
follows we describe the subsystems in more detail.

Perception system The goal of the perception system is to analyze the image and
provide the flight direction to the control system. We implement the perception system
by a convolutional network. The network takes as input a 300 × 200 RGB image,
captured from the onboard camera, and outputs a tuple {~x, v}, where ~x ∈ [−1, 1]2 is a
two-dimensional vector that encodes the direction to the new goal in normalized image
coordinates and v ∈ [0, 1] is a normalized desired speed to approach it. To allow for
onboard computing, we employ the efficient ResNet-based architecture of Loquercio et
al. [206] (see the supplement for details). With our hardware setup, the network can
process roughly 10 frames per second onboard. The system is trained by imitating an
automatically computed expert policy, as explained in Section A.3.1.

Control system Given the tuple {~x, v}, the control system generates low-level control
commands. To convert the goal position ~x from two-dimensional normalized image
coordinates to three-dimensional local frame coordinates, we back-project the image
coordinates ~x along the camera projection ray and derive the goal point at a depth equal
to the prediction horizon d (see Figure A.2). We found setting d proportional to the
normalized platform speed v predicted by the network to work well. The desired quadrotor
speed vdes is computed by rescaling the predicted normalized speed v by a user-specified
maximum speed vmax: vdes = vmax · v. This way, with a single trained network, the

49

Appendix A. Deep Drone Racing: Learning Agile Flight in Dynamic
Environments

~pc

~v

~pc′

d

~pg

ts
tg

Figure A.2 – Notation used for the control system.

user can control the aggressiveness of flight by varying the maximum speed. Once pg in
the quadrotor’s body frame and vdes are available, a state interception trajectory ts is
computed to reach the goal position (see Figure A.2). Since we run all computations
onboard, we use computationally efficient minimum jerk trajectories [242] to generate
ts. To track ts, i.e., to compute the low-level control commands, we deploy the control
scheme proposed by Faessler et al. [77].

A.3.1 Training procedure

We train the perception system with imitation learning, using automatically generated
globally optimal trajectories as a source of supervision. To generate these trajectories,
we make the assumption that at training time the location of each gate of the race
track, expressed in a common reference frame, is known. Additionally, we assume that
at training time the quadrotor has access to accurate state estimates with respect to
this reference frame. Note however that at test time no privileged information is needed
and the quadrotor relies on image data only. The overall training setup is illustrated in
Figure A.2.

Expert policy. We first compute a global trajectory tg that passes through all gates of
the track, using the minimum-snap trajectory implementation from [227]. To generate
training data for the perception network, we implement an expert policy that follows
the reference trajectory. Given a quadrotor position ~pc ∈ R3, we compute the closest
point ~pc′ ∈ R3 on the global reference trajectory. The desired position ~pg ∈ R3 is defined
as the point on the global reference trajectory, whose distance from ~pc is equal to the
prediction horizon d ∈ R. We project the desired position ~pg onto the image plane of the
forward facing camera to generate the ground truth normalized image coordinates ~xg
corresponding to the goal direction. The desired speed vg is defined as the speed of the
reference trajectory at ~pc′ normalized by the maximum speed achieved along tg.

Data collection. To train the network, we collect a dataset of state estimates and
corresponding camera images. Using the global reference trajectory, we evaluate the
expert policy on each of these samples and use the result as the ground truth for training.
An important property of this training procedure is that it is agnostic to how exactly
the training dataset is collected. The network is not directly imitating the demonstrated
behavior, and therefore the performance of the learned policy is not upper-bounded by

50

A.4. Experiments in Simulation

the performance of the provided demonstrations.

We use this flexibility to select the most suitable data collection method when training
in simulation and in the real world. The key consideration here is how to deal with
the domain shift between training and test time. (In our scenario, this domain shift
mainly manifest itself when the quadrotor flies far from the reference trajectory tg.) In
simulation, we employed a variant of DAgger [289], which uses the expert policy to recover
whenever the learned policy deviates far from the reference trajectory. Repeating the
same procedure in the real world would be infeasible: allowing a partially trained network
to control a UAV would pose a high risk of crashing and breaking the platform. Instead,
we manually carried the quadrotor through the track and ensured a sufficient coverage of
off-trajectory positions.

Loss function. We train the network with a weighted MSE loss on point and velocity
predictions:

L = ‖~x− ~xg‖2 + γ(v − vg)
2, (A.1)

where ~xg denotes the groundtruth image coordinates and vg denotes the groundtruth
speed. By cross-validation, we found the optimal weight to be γ = 0.1, even though the
performance was mostly insensitive to this parameter (see the supplement for details).

Dynamic environments. The described training data generation procedure is limited
to static environments, since the trajectory generation method is unable to take the
changing geometry into account. How can we use it to train a perception system that
would be able to cope with dynamic environments? Our key observation is that training
on multiple static environments (for instance with varying gate positions) is sufficient to
operate in dynamic environments at test time. We collect data from a variety of layouts,
generated by slightly moving the gates from their initial position. We generate a global
reference trajectory for each layout and train a network jointly on all of these. This
simple approach supports generalization to dynamic tracks, with the additional benefit of
improving the robustness of the system.

A.4 Experiments in Simulation

We perform an extensive evaluation, both in simulation and on a physical system and
compare our approach to a set of state-of-the-art baselines. We first present experiments
in a controlled, simulated environment. The aim of these experiments is to get a sense
of the capabilities of the presented approach, and compare to a direct end-to-end deep
learning approach that regresses body rates based on image data. We use RotorS [102]
and Gazebo for all simulation experiments.

A.4.1 Comparison to end-to-end learning approach

In our first scenario, we use a small track that consists of four gates in a planar configuration
with a total length of 43 meters (Figure A.3a). We use this track to compare the

51

Appendix A. Deep Drone Racing: Learning Agile Flight in Dynamic
Environments

(a) (b)

Figure A.3 – Illustration of the small (a) and large (b) simulated tracks. The small track
consists of 4 gates placed in a planar configuration and spans a total length of 43 meters. The
large track consists of 8 gates placed at different heights and spans a total length of 116 meters.

performance to a naive deep learning baseline that directly regresses body rates from
raw images. Ground truth body rates for the baseline were provided by generating a
minimum snap reference trajectory through all gates and then tracking it with a low-level
controller [77].

While our approach was always able to successfully complete the track, the naive baseline
could never pass through more than one gate. Training on more data (35K samples, as
compared to 5K samples used by our method) did not noticeably improve the performance
of the baseline. In contrast to previous work [246], we believe that end-to-end learning of
low-level controls is suboptimal for the task of drone navigation when operating in the
real world. Indeed, the network has to learn the basic notion of stability from scratch in
order to control an unstable platform such as a quadrotor [251]. This leads to high sample
complexity, and gives no mathematical guarantees on the platforms stability. Additionally,
the network is constrained by computation time. In order to guarantee stable control, the
baseline network would have to produce control commands at a higher frequency than the
camera images arrive and process them at a rate that is computationally infeasible with
existing onboard hardware. In contrast, our approach can benefit from years of study
in the field of control theory [133]. Because stability is handled by a classic controller,
the network can focus on the main task of robust navigation, which leads to high sample
efficiency. Additionally, because the network does not need to ensure the stability of
the platform, it can process images at a lower rate than the low-level controller, which
enables onboard computation.

Given its inability to complete even this simple track, we do not conduct any further
experiments with the direct end-to-end regression baseline.

A.4.2 Performance on a complex track

In order to explore the capabilities of our approach of performing high-speed racing, we
conduct a second set of experiments on a larger and more complex track (Figure A.3b)
with 8 gates and a length of 116 meters. The quantitative evaluation is conducted in
terms of average task completion rate over five runs initialized with different random
seeds. For one run, the task completion metric linearly increases with each passed gate
while 100% task completion is achieved if the quadrotor is able to successfully complete
five consecutive laps without crashing. As baseline, we use a pure feedforward setting by

52

A.4. Experiments in Simulation

Performance on Static Track

7 8 9 10 11 12

Max. Speed [m/s]

0

50

100

T
a

s
k
 C

o
m

p
le

ti
o

n
 [

%
]

Ours

VIO Baseline

(a)

Analysis of Success Threshold

1 2 3 4 5

Success Threshold [# Laps]

Ours

VIO Baseline

(b)

Performance on Dynamic Track

0 100 200 300

Rel. Gate Movement [%]

Ours

VIO Baseline

(c)

Figure A.4 – a) Results of simulation experiments on the large track with static gates for different
maximum speeds. Task completion rate measures the fraction of gates that were successfully
completed without crashing. For each speed 10 runs were performed. A task completion rate of
100% is achieved if the drone can complete five consecutive laps without crashing. b) Analysis
of the influence of the choice of success threshold. The experimental setting is the same as in
Figure A.4a, but the performance is reported for a fixed maximum speed of 10m s−1 and different
success thresholds. The y-axis is shared with Figure A.4a. c) Result of our approach when flying
through a simulated track with moving gates. Every gate independently moves with a sinusoidal
pattern whose amplitude is equal to its base size (1.3m) times the indicated multiplier. For each
amplitude 10 runs were performed. As for the static gate experiment, a task completion rate of
100% is achieved if the drone can complete five consecutive laps without crashing. The y-axis is
shared with Figure A.4a. The reader is encouraged to watch the supplementary video to better
understand the experimental setup and task difficulty.

following the global trajectory tg using visual inertial odometry [97].

The results of this experiment are shown in Figure A.4a. We can observe that the VIO
baseline performs inferior compared to our approach, on both the static and dynamic
track. On the static track, the VIO baseline fails due to the accumulated drift, as shown
in Figure A.4b. While the VIO baseline performs comparably when one single lap is
considered a success, the performance degrades rapidly if the threshold for success is
raised to more laps. Our approach reliably works up to a maximum speed of 9m s−1, while
the performance gracefully degrades at higher velocities. The decrease in performance at
higher speeds is mainly due to the higher body rates of the quadrotor that larger velocities
inevitably entail. Since the predictions of the network are in the body frame, the limited
prediction frequency (30Hz in the simulation experiments) is no longer sufficient to cope
with the large roll and pitch rates of the platform at high velocities.

A.4.3 Generalization to dynamic environments

The learned policy has a characteristic that the expert policy lacks: coping with dynamic
environments. In those, waypoints and collision-free trajectories cannot be defined a
priori. To quantitatively test this ability, we reuse the track layout from the previous
experiment (Figure A.3b), but dynamically move each gate according to a sinusoidal
pattern in each dimension independently. Figure A.4c compares our system to the VIO
baseline for varying amplitudes of gates’ movement relative to their base size. We evaluate
the performance using the same metric as explained in Section A.4.2. For this experiment,

53

Appendix A. Deep Drone Racing: Learning Agile Flight in Dynamic
Environments

Figure A.5 – Setup of the narrow gap and occlusion experiments.

Relative Angle Range [◦] Handcrafted Detector Network

[0, 30] 70% 100%
[30, 70] 0% 80%
[70, 90]* 0% 20%

Table A.1 – Success rate for flying through a narrow gap from different initial angles. Each row
reports the average of ten runs uniformly spanning the range. The gate was completely invisible
at initialization in the experiments marked with *.

we kept the maximum platform velocity vmax constant at 8m s−1. Despite the high speed,
our approach can handle dynamic gate movements of up to 1.5 times the gates’ diameter
without crashing. In contrast, the VIO baseline (i.e. the expert policy) cannot adapt
to changes in the environment, and fails even for tiny gate motions. The performance
of our approach gracefully degrades for gate movements larger than 1.5 times the gates’
diameter, mainly due to the fact that consecutive gates get too close in flight direction
while being shifted in other directions. Such configurations require extremely sharp turns
that go beyond the navigation capabilities of the system. From this experiment, we can
conclude that our approach reactively adapts to dynamic changes and generalizes well to
cases where the track remains roughly similar to the one collected data from.

A.5 Experiments in the Physical World

To show the ability of our approach to control real quadrotors, we performed experiments
on a physical platform. We compare our approach to state-of-the-art classic approaches
to robot navigation, as well as to human drone pilots of different skill levels. For these
experiments, we collected data in the real world. Technical details on the platform used
can be found in the supplement.

In a first set of experiments the quadrotor was required to pass through a narrow gate,
only slightly larger than the platform itself. These experiments are designed to test the
robustness and precision of the proposed approach. An illustration of the setup is shown
in Figure A.5. We compare our approach to the handcrafted window detector of Falanga
et al. [83] by replacing our perception system (Section A.3) with the handcrafted detector
and leaving the control system (Section A.3) unchanged.

54

A.5. Experiments in the Physical World

0 20 40 60

Occlusion of Gate [%]

0

50

100

S
u

c
c
.

G
a

te
 P

a
s
s
e

s
 [

%
] Robustness against Occlusion

Ours

Baseline

(a)

20 40 60 80 100

Success Rate [%]

5

10

15

A
v
e

ra
g

e
 L

a
p

 T
im

e
 [

s
] Ours [1m/s]

Ours [2m/s]

Ours [3m/s]

VIO [1m/s]

VIO [2m/s]

Professional Pilot

Intermediate Pilot

(b)

Figure A.6 – a) Success rate for different amount of occlusion of the gate. The area is calculated
on the entire size of the gate. At more than 60% occlusion, the platform has barely any space to
pass through the gap. b) Results on a real race track composed of 4 gates. Our learning-based
approach compares favorably against a set of baselines based on visual-inertial state estimation.
Additionally, we compare against an intermediate and a professional drone pilot. We evaluate
success rate using the same metric as explained in Section A.4.2.

Table A.1 shows a comparison between our approach and the baseline. We test the
robustness of both approaches to the initial position of the quadrotor. To do so we
place the platform at different starting angles with respect to the gate (measured as
the angle between the line joining the center of gravity of the quadrotor and the gate,
respectively, and the optical axis of the forward facing camera on the platform). We
measure average success rate to pass the gate without crashing. The experiments indicate
that our approach is robust to initial conditions. The drone is able to pass the gate
consistently, even if the gate is only partially visible. By contrast, the handcrafted baseline
cannot detect the gate if it’s not entirely in the field of view. The baseline sometimes
fails even if the gate is fully visible because the window detector loses tracking due to
platform vibrations.

In order to further highlight the robustness and generalization abilities of the approach,
we perform experiments with an increasing amount of clutter that occludes the gate.
Note that the learning approach has never seen these configurations during training.
Figure A.6a shows that our approach is robust to occlusions of up to 50% of the total
area of the gate (Figure A.5), whereas the handcrafted baseline breaks down even for
moderate levels of occlusion. For occlusions larger than 50% we observe a rapid drop in
performance. This can be explained by the fact that the remaining gap was barely larger
than the drone itself, requiring very high precision to successfully pass it. Furthermore,
visual ambiguities of the gate itself become problematic. If just one of the edges of the
window is visible, it is impossible to differentiate between the top and bottom part. This
results in over-correction when the drone is very close to the gate.

A.5.1 Experiments on a race track

In the last set of experiments we challenge the system to race through a track with either
static or dynamics gates. The track is shown in Figure A.1a. It is composed of four gates
and has a total length of 21 meters. To fully understand the potential and limitations of
our approach we compared to a diverse set of baselines, such as a classic approach based

55

Appendix A. Deep Drone Racing: Learning Agile Flight in Dynamic
Environments

on planning and tracking [203] and human pilots of different skill levels. Note that due to
the smaller size of the real track compared to the simulated one, the maximum speed
achieved in real world experiments is lower than in simulation. For our baseline, we use a
state-of-the-art visual-inertial odometry approach [203] to provide global state estimates
in order to track the global reference trajectory.

Figure A.6b summarizes the quantitative results of our evaluation, where we measure
success rate (completing five consecutive laps without crashing), as well as the best lap
time. Our learning-based approach outperforms the visual odometry-based baseline,
whose drift at high speeds inevitably leads to poor performance. By generating waypoint
commands in body frame, instead, our approach is insensitive to state estimation drift,
and can complete the track with higher robustness and speed than the VIO baseline.

In order to see how state-of-the-art autonomous approaches compare to human pilots, we
asked a professional and an intermediate pilot to race through the track in first-person view.
We allowed the pilots to practice the track for 10 laps before lap times and failures were
measured. It is evident from Figure A.6b that both the professional and the intermediate
pilots were able to complete the track faster than the autonomous systems. The high
speed and aggressive flight by human pilots comes at the cost of increased failure rates,
however. The intermediate pilot in particular had issues with the sharp turns present in
the track, leading to frequent crashes. Compared with the autonomous systems, human
pilots perform more agile maneuvers, especially in sharp turns. Such maneuvers require a
level of reasoning about the environment that our autonomous system still lacks.

In a last qualitative experiment, we manually moved gates while the quadrotor navigated
through the track. This requires the navigation system to be able to reactively respond to
dynamic changes. Note that moving gates break the main assumption of traditional high-
speed navigation approaches [39, 101], specifically that the trajectory can be pre-planned
in a static world. They could thus not be deployed in this scenario. Due to the dynamic
nature of this experiment, we encourage the reader to watch the supplementary video1.
As in the simulation experiments, the system can generalize to dynamically moving gates
on the real track. It is worth noting that training data was collected by changing the
position of only a single gate, but the network is able to cope with movement of any gate
at test time.

A.6 Discussion

We have presented a new approach to autonomous, vision-based drone racing. Our
method uses a compact convolutional neural network to continuously predict a desired
waypoint and a desired speed directly from raw images. These high-level commands
are then executed by a classic control stack. To enable agile and fast flight, we train
the network to follow a global reference trajectory. The system combines the robust
perceptual awareness of modern machine learning pipelines with the stability and speed
of well-known control algorithms.

1Available from: http://youtu.be/8RILnqPxo1s

56

http://youtu.be/8RILnqPxo1s

A.6. Discussion

We demonstrated the capabilities of this integrated approach to perception and control
in an extensive set of experiments on real drones and in simulation. Our experiments
show that the resulting system is able to robustly navigate complex race tracks, avoids
the problem of drift that is inherent in systems relying on global state estimates, and can
cope with highly dynamic and cluttered environments.

While our current set of experiments was conducted in the context of drone racing, we
believe that the presented approach could have broader implications for building robust
robot navigation systems that need to be able to act in a highly dynamic world. Methods
based on geometric mapping, localization and planning have inherent limitations in this
setting. Hybrid systems that incorporate machine learning, like the one presented in this
paper, can offer a compelling solution to this task, given the possibility to benefit from
near-optimal solutions to different subproblems.

Scaling such hybrid approaches to more general environments is an exciting avenue for
future work that poses several challenges. First, while the ability of our system to navigate
through moving or partially occluded gates is promising, performance will degrade if the
appearance of the environment changes substantially beyond what was observed during
training. Second, in order to train the perception system, our current approach requires
a significant amount of data in the application environment. This might be acceptable in
some scenarios, but not practical when fast adaptation to previously unseen environments
is needed. This could be addressed with techniques such as few-shot learning. Third,
in the cases where trajectory optimization cannot provide a policy to be imitated, for
instance in the presence of extremely tight turns, the learner is also likely to fail. This
issue could be alleviated by integrating learning deeper into the control system.

57

B Beauty and the Beast: Optimal

Methods Meet Learning for Drone

Racing

The version presented here is reprinted, with permission, from:

Elia Kaufmann, Mathias Gehrig, Philipp Foehn, René Ranftl, Alexey Dosovitskiy, Vladlen
Koltun, and Davide Scaramuzza. “Beauty and the Beast: Optimal Methods Meet Learning
for Drone Racing”. In: IEEE Int. Conf. Robot. Autom. (ICRA) (2019), pp. 690–696.
doi: 10.1109/ICRA.2019.8793631

59

https://doi.org/10.1109/ICRA.2019.8793631

Appendix B. Beauty and the Beast: Optimal Methods Meet Learning for
Drone Racing

Beauty and the Beast: Optimal Methods

Meet Learning for Drone Racing

Elia Kaufmann, Mathias Gehrig, Philipp Foehn, René Ranftl, Alexey Dosovitskiy,

Vladlen Koltun, Davide Scaramuzza

Abstract — Autonomous micro aerial vehicles still struggle with
fast and agile maneuvers, dynamic environments, imperfect sensing,
and state estimation drift. Autonomous drone racing brings these chal-
lenges to the fore. Human pilots can fly a previously unseen track after
a handful of practice runs. In contrast, state-of-the-art autonomous
navigation algorithms require either a precise metric map of the envi-
ronment or a large amount of training data collected in the track of
interest. To bridge this gap, we propose an approach that can fly a
new track in a previously unseen environment without a precise map
or expensive data collection. Our approach represents the global track
layout with coarse gate locations, which can be easily estimated from
a single demonstration flight. At test time, a convolutional network
predicts the poses of the closest gates along with their uncertainty.
These predictions are incorporated by an extended Kalman filter to
maintain optimal maximum-a-posteriori estimates of gate locations.
This allows the framework to cope with misleading high-variance esti-
mates that could stem from poor observability or lack of visible gates.
Given the estimated gate poses, we use model predictive control to
quickly and accurately navigate through the track. We conduct exten-
sive experiments in the physical world, demonstrating agile and robust
flight through complex and diverse previously-unseen race tracks. The
presented approach was used to win the IROS 2018 Autonomous Drone
Race Competition, outracing the second-placing team by a factor of
two.

60

B.1. Introduction

Figure B.1 – A quadrotor flies through an indoor track. Our approach uses optimal filtering
to incorporate estimates from a deep perception system. It can race a new track after a single
demonstration.

B.1 Introduction

First-person view (FPV) drone racing is a fast-growing sport, in which human pilots race
micro aerial vehicles (MAVs) through tracks via remote control. Drone racing provides a
natural proving ground for vision-based autonomous drone navigation. This has motivated
competitions such as the annual IROS Autonomous Drone Race [237] and the recently
announced AlphaPilot Innovation Challenge, an autonomous drone racing competition
with more than 2 million US dollars in cash prizes.

To successfully navigate a race track, a drone has to continually sense and interpret its
environment. It has to be robust to cluttered and possibly dynamic track layouts. It needs
precise planning and control to support the aggressive maneuvers required to traverse a
track at high speed. Drone racing thus crystallizes some of the central outstanding issues
in robotics. Algorithms developed for drone racing can benefit robotics in general and
can contribute to areas such as autonomous transportation, delivery, and disaster relief.

Traditional localization-based approaches for drone navigation require precomputing a
precise 3D map of the environment against which the MAV is localized. Thus, while
previous works demonstrated impressive results in controlled settings [240], these meth-
ods are difficult to deploy in new environments where a precise map is not available.
Additionally, they fail in the presence of dynamic objects such as moving gates, have
inconsistent computational overhead, and are prone to failure under appearance changes
such as varying lighting.

61

Appendix B. Beauty and the Beast: Optimal Methods Meet Learning for
Drone Racing

Recent work has shown that deep networks can provide drones with robust perception
capabilities and facilitate safe navigation even in dynamic environments [171, 156].
However, current deep learning approaches to autonomous drone racing require a large
amount of training data collected in the same track. This stands in contrast to human
pilots, who can quickly adapt to new tracks by leveraging skills acquired in the past.

In this paper, we develop a deep-learning-aided approach to autonomous drone racing
capable of fast adaptation to new tracks, without the need for building precise maps or
collecting large amounts of data from the track. We represent a track by coarse locations
of a set of gate, which can be easily acquired in a single demonstration flight through the
track. These recorded gate represent the rough global layout of the track. At test time,
the local track configuration is estimated by a convolutional network that predicts the
location of the closest gate together with its uncertainty, given the currently observed
image. The network predictions and uncertainties are continuously incorporated using
an extended Kalman filter (EKF) to derive optimal maximum-a-posteriori estimates
of gate locations. This allows the framework to cope with misleading high-variance
estimates that could stem from bad observability or complete absence of visible gate.
Given these estimated gate locations, we use model predictive control to quickly and
accurately navigate through them.

We evaluate the proposed method in simulation and on a real quadrotor flying fully au-
tonomously. Our algorithm runs onboard on a computationally constrained platform. We
show that the presented approach can race a new track after only a single demonstration,
without any additional training or adaptation. Integration of the estimated gate positions
is crucial to the success of the method: a purely image-based reactive approach only
shows non-trivial performance in the simplest tracks. We further demonstrate that the
proposed method is robust to dynamic changes in the track layout induced by moving
gates.

The presented approach was used to win the IROS Autonomous Drone Race Competition,
held in October 2018. An MAV controlled by the presented approach placed first in the
competition, traversing the eight gates of the race track in 31.8 seconds. In comparison,
the second-place entry completed the track in 61 seconds, and the third in 90.1 seconds.

B.2 Related Work

Traditional approaches to autonomous MAV navigation build on visual inertial odometry
(VIO) [97, 32, 194, 349] or simultaneous localization and mapping (SLAM) [249, 306],
which are used to provide a pose estimate of the drone relative to an internal metric map
[203, 86]. While these methods can be used to perform visual teach and repeat [86], they
are not concerned with trajectory generation [227, 243]. Furthermore, teach and repeat
assumes a static world and accurate pose estimation: assumptions that are commonly
violated in the real world.

The advent of deep learning has inspired alternative solutions to autonomous navigation
that aim to overcome these limitations. These approaches typically predict actions directly

62

B.3. Methodology

from images. Output representations range from predicting discrete navigation commands
(classification in action space) [178, 112, 206] to direct regression of control signals [245].
A different line of work combines network predictions with model predictive control by
regressing the cost function from a single image [71].

In the context of drone racing, Kaufmann et al. [171] proposed an intermediate repre-
sentation in the form of a goal direction and desired speed. The learned policy imitates
an optimal trajectory [227] through the track. An advantage of this approach is that
it can navigate even when no gate is in view, by exploiting track-specific context and
background information. A downside, however, is the need for a large amount of labeled
data collected directly in the track of interest in order to learn this contextual information.
As a result, the approach is difficult to deploy in new environments.

Jung et al. [156] consider the problem of autonomous drone navigation in a previously
unseen track. They use line-of-sight guidance combined with a deep-learning-based gate
detector. As a consequence, the next gate to be traversed has to be in view at all times.
Additionally, gates cannot be approached from an acute angle since the algorithm does
not account for gate rotation. The method is thus applicable only to relatively simple
environments, where the next gate is always visible.

Our approach addresses the limitations of both works [171, 156]. It operates reliably even
when no gate is in sight, while eliminating the need to retrain the perception system for
every new track. This enables rapid deployment in complex novel tracks.

B.3 Methodology

We address the problem of robust autonomous flight through a predefined, ordered set of
possibly spatially perturbed gate. Our approach comprises three subsystems: perception,
mapping, and combined planning and control. The perception system takes as input a
single image from a forward-facing camera and estimates both the relative pose of the
next gate and a corresponding uncertainty measure. The mapping system receives the
output of the perception system together with the current state estimate of the quadrotor
and produces filtered estimates of gate poses. The gate poses are used by the planning
system to maintain a set of waypoints through the track. These waypoints are followed by
a control pipeline that generates feasible receding-horizon trajectories and tracks them.

x

y
z

O

B

Gl

(tOB,ROB)

(tBGl
,RBGl

), ΣBGl

(tOGl
,ROGl

), ΣOGl

Figure B.2 – Relation of odometry O, body B, and gate frame Gl.

63

Appendix B. Beauty and the Beast: Optimal Methods Meet Learning for
Drone Racing

B.3.1 Notation and Frame Convention

We denote all scalars by lowercase letters x, vectors by lowercase bold letters x, and
matrices by bold uppercase letters X. Estimated values are written as x̂, measured values
as x̃.

The relevant coordinate frames are the odometry frame O, the body frame B, and the
gate frames Gl, where l ∈ {1, . . . , Nl} and Nl is the number of gate. A schematic overview
of the relation between coordinate frames is shown in Figure B.2. The odometry frame
O is the global VIO reference frame. The relation between the body frame B and the
odometry frame O is given by the rotation ROB and translation tOB. This transform is
acquired through a visual inertial pose estimator. The prediction (t̃BGl

, R̃BGl
) is provided

together with a corresponding uncorrelated covariance in polar coordinates Σ̃BGl,pol =
diag(σ̃2

BGl,pol
) of the gate’s pose in the body frame. In parallel, we maintain an estimate

of each gate pose (t̂OGl
, R̂OGl

) along with its covariance Σ̂OGl
= cov

(

t̂OGl
, R̂OGl

)

in the

odometry frame. This has the advantage that gate poses can be updated independently
of each other.

B.3.2 Perception System

Architecture

The deep network takes as input a 320× 240 RGB image and regresses both the mean
z̃BGl,pol = [r̃, θ̃, ψ̃, φ̃]⊤ ∈ R4 and the variance σ̃2

BGl,pol
∈ R4 of a multivariate normal dis-

tribution that describes the current estimate of the next gate’s pose. Our choice of output
distribution is motivated by the fact that we use an EKF to estimate the joint probability
distribution of a gate’s pose, which is known to be optimal for identical and independently
distributed white noise with known covariance. The mean represents the prediction of
the relative position and orientation of the gate with respect to the quadrotor in spherical
coordinates. We found this to be advantageous compared to a Cartesian representation
since it decouples distance estimation from the position of the gate in image coordinates.
We use a single angle φ̃ to describe the relative horizontal orientation of the gate, since
the gravity direction is known from the IMU. Furthermore, we assume that gate are
always upright and can be traversed horizontally along the normal direction. Specifically,
φ̃ is measured between the quadrotor’s current heading and the gate’s heading.

CNN

MLP

MLP

z̃BGl,pol

σ̃2
BGl,pol

Figure B.3 – Schematic illustration of the network architecture. Image features are extracted
by a CNN [206] and passed to two separate MLPs to regress z̃BGl,pol and σ̃2

BGl,pol
, respectively.

The overall structure of the deep network is shown in Figure B.3. First, the input

64

B.3. Methodology

image is processed by a Convolutional Neural Network (CNN), based on the shallow
DroNet architecture [206]. The extracted features are then processed by two separate
multilayer perceptrons (MLPs) that estimate the mean z̃BGl,pol and the variance σ̃2

BGl,pol

of a multivariate normal distribution, respectively. A similar network architecture for
mean-variance estimation was proposed in [255].

Training Procedure

We train the network in two stages.

In the first stage, the parameters of the CNN and MLPz, denoted by θCNN and θz, are
jointly learned by minimizing a loss over groundtruth poses for images with visible gate:

{θ∗
CNN,θ

∗
z̃i
} = arg min

θCNN,θ
z̃i

N∑

i=1

||yi − z̃i||22, (B.1)

where yi denotes the groundtruth pose and N denotes the dataset size.

In the second stage, the training set is extended to also include images that do not show
visible gate. In this stage only the parameters θσ2 of the subnetwork MLPσ2 are trained,
while keeping the other weights fixed. We minimize the loss function proposed by [255],
which amounts to the negative log-likelihood of a multivariate normal distribution with
uncorrelated covariance:

− log p
(
y | z̃i, σ̃2

)
∝

4∑

j=1

log σ̃2
j +

(yj − z̃j)
2

σ̃2
j

. (B.2)

Our use of mean-variance estimation is motivated by studies that have shown that it is a
computationally efficient way to obtain uncertainty estimates [177].

Training Data Generation

We collect a set of images from the forward-facing camera on the drone and associate each
image with the relative pose of the gate with respect to the body frame of the quadrotor.
In real-world experiments, we use the quadrotor and leverage the onboard state estimation
pipeline to generate training data. The platform is initialized at a known position relative
to a gate and subsequently carried through the environment while collecting images and
corresponding relative gate poses. To collect training data, it is not necessary to have
complete tracks available. A single gate placed in different environments suffices, as the
perception system only needs to estimate the relative pose with respect to the next gate
at test time. Moreover, in contrast to Kaufmann et al. [171], the perception system is
never trained on data from tracks and environments it is later deployed in.

65

Appendix B. Beauty and the Beast: Optimal Methods Meet Learning for
Drone Racing

B.3.3 Mapping System

The mapping system takes as input a measurement from the perception system and
outputs a filtered estimate of the current track layout. By correcting the gates with
the measurements from the CNN, gate displacement and accumulated VIO drift can
be compensated for. The mapping part of our pipeline can be divided into two stages:
measurement assignment stage and filter stage.

Measurement Assignment

We maintain a map of all gate l = 1...Nl with states x̂OGl
= [t̂OGl

, φ̂OGl
]⊤ corresponding

to gate translation t̂OGl
and yaw φ̂OGl

with respect to the odometry frame O. The output
of the perception system is used to update the pose x̂OGl

of the next gate to be passed.
To assign a measurement to a gate, the measurement is transformed into the odometry
frame and assigned to the closest gate. If a measurement is assigned to a gate that is
not the next gate to be passed, it is discarded as an outlier. We keep track of the next
gate by detecting gate traversals. The detection of a gate traversal is done by expressing
the quadrotor’s current position in a gate-based coordinate frame. In this frame, the
condition for traversal can be expressed as

Gl
t̂GlB,x ≥ 0. (B.3)

Extended Kalman Filter

The prediction of the network in body frame B is given by z̃BG,pol = [r̃, θ̃, ψ̃, φ̃]⊤ containing
the spherical coordinates [r̃, θ̃, ψ̃]⊤ and yaw φ̃ of the gate, and the corresponding variance
σ̃2
BG,pol. The transformation into the Cartesian representation z̃BG leads to

z̃BG = f(z̃BG,pol) =

r̃ sin θ̃ cos ψ̃

r̃ sin θ̃ sin ψ̃

r̃ cos θ̃

φ̃

(B.4)

Σ̃BG = Jf |z̃polΣ̃BG,polJ
⊤
f |z̃pol , (B.5)

where Jf ,i,j = ∂fi
∂xpol,j

is the Jacobian of the conversion function f and Jf |zpol is its

evaluation at zpol. To integrate neural network predictions reliably into a map with prior
knowledge of the gate, we represent each gate with its own EKF. We treat the prediction
z̃BG and Σ̃BG at each time step as a measurement and associated variance, respectively.
Similar to the state, z̃BG = [t̃⊤BG, φ̃BG]

⊤ consists of a translation t̃BG and rotation φ̃BG

around the world z-axis. Since our measurement and states have different origin frames,

66

B.3. Methodology

we can formulate the EKF measurement as follows:

z̃k = Hkx̂k +w, w ∼ N (µk,σk) (B.6)

E[z̃k] =

[
R−1

OB,k OtOG,k −R−1
OB,k OtOB,k

φOG,k − φOB,k

]

.

Now with x̂k = [OtOG,k, φOG,k]
⊤ we can write

Hk =

[
R−1

OB,k 0

0 1

]

(B.7)

µk =

[−R−1
OB,k OtOB,k

−φOB,k

]

Σk = Σ̃BG,k (B.8)

and, due to identity process dynamics and process covariance ΣQ, our prediction step
becomes

x̂∗
k+1 = x̂k P̂∗

k+1 = P̂k +ΣQ. (B.9)

The a-posteriori filter update can be summarized as follows:

Kk = P̂∗
kHk

(

Σ̃BG,k +HkP̂
∗
kH

⊤
k

)−1

x̂k+1 = x̂∗
k +Kk(z̃k − µk −Hkx̂

∗
k)

P̂k+1 = (I−KkHk) P̂
∗
k (I−KkHk)

⊤ +KkΣ̃BG,kK
⊤
k

(B.10)

with P̂k as the estimated covariance and the superscript ∗ indicating the a-priori predic-
tions.

B.3.4 Planning and Control System

The planning and control stage is split into two asynchronous modules. First, low-level
waypoints are generated from the estimated gate position and a desired path is generated
by linearly interpolating between the low-level waypoints. Second, locally feasible control
trajectories are planned and tracked using a model predictive control scheme.

Waypoint Generation

For each gate in our map we generate two waypoints: one lying in front of the gate
relative to the current quadrotor position and one lying after the gate. Both waypoints
are set with a positive and negative offset pwp,l± in the x direction with respect to the
gate l:

pwp,l± =O tOGl
+ROGl

[±xG, 0, 0]
⊤, (B.11)

where xG is a user-defined constant accounting for the spatial dimension of gate l. We
then linearly interpolate a path from waypoint to waypoint and use it as a reference for

67

Appendix B. Beauty and the Beast: Optimal Methods Meet Learning for
Drone Racing

our controller.

Model Predictive Control

We formulate the control problem as a quadratic optimization problem which we solve
using sequential quadratic programming as described in [79]:

min
u

∫ tf

t0

(

x̄⊤
t (t)Qx̄t(t) + ū⊤

t (t)Rūt(t)
)

dt

x̄(t) = x(t)− xr(t) ū(t) = u(t)− ur(t)

subject to r(x,u) = 0 h(x,u) ≤ 0.

The states x and inputs u are weighted with positive diagonal matrices Q and R with
respect to a reference xr and ur. The equality and inequality constraints, r and h

respectively, are used to incorporate the vehicle dynamics and input saturations. The
reference is our linearly sampled path along which the MPC finds a feasible trajectory.
Note that we can run the control loop independent of the detection and mapping pipeline
and reactively stabilize the vehicle along the changing waypoints.

B.4 Experimental Setup

We evaluate the presented approach in simulation and on a physical system.

B.4.1 Simulation

We use RotorS [102] and Gazebo [182] for all simulation experiments. To train the
perception system, we generated 45,000 training images by randomly sampling camera
and gate positions and computing their relative poses. For quantitative evaluation, a
100% successful trial is defined as completing 3 consecutive laps without crashing or
missing a gate. If the MAV crashes or misses a gate before completing 3 laps, the success
rate is measured as a fraction of completed gate out of 3 laps: for instance, completing 1

Figure B.4 – Our platform, equipped with an Intel UpBoard and a Qualcomm Snapdragon
Flight.

68

B.5. Results

Figure B.5 – We collected training data for the perception system in 5 different environments.
From left to right: flying room, outdoor urban environment, atrium, outdoor countryside, garage.

lap counts as 33.3% success.

B.4.2 Physical System

In all real-world experiments and data collection we use an in-house MAV platform with
an Intel UpBoard 1 as the main computer running the CNN, EKF, and MPC. Additionally
we use a Qualcomm Snapdragon Flight 2 as a visual-inertial odometry unit. The platform
is shown in Fig. B.4. The CNN reaches an inference rate of ∼ 10Hz while the MPC runs
at 100Hz. With a take-off weight of 950 g the platform reaches thrust-to-weight ratio of
∼ 3.

We collect training data for the perception system in five different environments, both
indoors and outdoors. Example images from the environments are shown in Fig. B.5. In
total, we collected 32,000 images.

B.5 Results

Results are shown in the supplementary video: https://youtu.be/UuQvijZcUSc

B.5.1 Simulation

We first present experiments in a controlled, simulated environment. The aim of these
experiments is to thoroughly evaluate the presented approach both quantitatively and
qualitatively and compare it to a baseline – the method of Jung et al. [156]. The baseline
was trained on the same data as our approach.

We evaluate the two methods on three tracks of increasing difficulty. Figs. B.6a-c show an
illustration of the three race tracks and plot the executed trajectories together with the
nominal gate positions in red and the actual displaced gate positions in the corresponding
track color. Our approach achieved successful runs in all environments, with speeds up
to 4m s−1 in the first two tracks. Additionally, gate displacement was handled robustly
up to a magnitude of 2m before a significant drop in performance occurred. Figs. B.6d-i
show the success rate of our method and the baseline on the three tracks, under varying
speed and track perturbations. Our approach outperforms the baseline by a large margin

1https://www.up-board.org/up/
2https://developer.qualcomm.com/hardware/qualcomm-flight

69

https://youtu.be/UuQvijZcUSc

Appendix B. Beauty and the Beast: Optimal Methods Meet Learning for
Drone Racing

-10 -5 0 5 10 15 20

x [m]

-20

-15

-10

-5

0

y
 [
m

]

run 1

run 2

run 3

run 4

run 5

(a) Track 1, vmax = 2ms−1, ρ =

2m

-5 0 5 10 15 20

x [m]

0

5

10

15

20

y
 [
m

]

run 1

run 2

run 3

run 4

run 5

(b) Track 2, vmax = 2ms−1, ρ =

2m

-10 -5 0 5 10 15

x [m]

-5

0

5

10

15

y
 [
m

]

run 1

run 2

run 3

run 4

run 5

(c) Track 3, vmax = 2ms−1, ρ =

1m
Success of ours on Track 2

0 1 2 3

2

3

4

5

(d) Ours on track 1

Success of ours on Track 1

0 1 2 3

2

3

4

5

(e) Ours on track 2

Success of ours on Track 3

0 1 2 3

2

3

4

5

(f) Ours on track 3
Success of baseline on Track 2

0 1 2 3

2

3

4

5

(g) Baseline on track 1

Success of baseline on Track 1

0 1 2 3

2

3

4

5

(h) Baseline on track 2

Success of baseline on Track 3

0 1 2 3

2

3

4

5

(i) Baseline on track 3

Figure B.6 – Results of the simulation experiments. We compare the presented approach to the
baseline [156] on three tracks, at different speeds and track perturbations. (a)-(c): Perturbed
tracks and example trajectories flown by our approach. (d)-(f): Success rate of our method.
For each data point, 5 experiments were performed with random initial gate perturbation.
(g)-(i): Success rate of the baseline method.

in all scenarios. This is mainly because the baseline relies on the permanent visibility of
the next gate. Therefore, it only manages to complete a lap in the simplest first track
where the next gate can always be seen. In the more complex second and third tracks,
the baseline passes at most one or two gates. In contrast, due to the integration of prior
information from demonstration and approximate mapping, our approach is successful on
all tracks, including the very challenging third one.

B.5.2 Physical System

To show the capabilities of our approach on a physical platform, we evaluated it on a
real-world track with 8 gates and a total length of 80 meters, shown in Fig. B.7. No
training data for the perception system was collected in this environment. Fig. B.8
summarizes the results. As in the simulation experiments, we measure the performance
with respect to the average MAV speed. As before, a success rate of 100% requires 3

70

B.6. Conclusion

-10 -5 0 5

x [m]

-10

-5

0

5

y
 [

m
]

tracked path

gates

Figure B.7 – Trajectory flown through multiple gate, one of which was moved as indicated by
the red arrow. For visualization, only a single lap is illustrated.

completed laps without crashing or missing a gate. Our approach confidently completed
3 laps with speeds up to 2m s−1 and managed to complete the track with speeds up to
3.5m s−1. In contrast, the reactive baseline was not able to complete the full track even
at 1.0m s−1 (not shown in the figure).

An example recorded trajectory of our approach is shown in Fig. B.7. Note that one
of the gates was moved during the experiment, but our approach was robust to this
change in the environment. Our approach could handle gate displacements of up to 3.0m
and complete the full track without crashing. The reader is encouraged to watch the
supplementary video for more qualitative results on real tracks.

B.6 Conclusion

We presented an approach to autonomous vision-based drone navigation. The approach
combines learning methods and optimal filtering. In addition to predicting relative gate
poses, our network also estimates the uncertainty of its predictions. This allows us to
integrate the network outputs with prior information via an extended Kalman filter.

We showed successful navigation through both simulated and real-world race tracks with

1.0 1.5 2.0 2.5 3.0 3.5

Figure B.8 – Success rates of our approach in the real-world experiment. The reader is
encouraged to watch the supplementary video to see the presented approach in action.

71

Appendix B. Beauty and the Beast: Optimal Methods Meet Learning for
Drone Racing

increased robustness and speed compared to a state-of-the-art baseline. The presented
approach reliably handles gate displacements of up to 2m. In the physical track, we
reached speeds of up to 3.5m s−1, outpacing the baseline by a large margin.

Our approach is capable of flying a new track with an approximate map obtained from a
single demonstration flight. This approach was used to win the IROS 2018 Autonomous
Drone Race Competition, where it outraced the second-placing entry by a factor of two.

72

C AlphaPilot: Autonomous Drone

Racing

The version presented here is reprinted, with permission, from:

Philipp Foehn∗, Dario Brescianini∗, Elia Kaufmann∗, Titus Cieslewski, Mathias Gehrig,
Manasi Muglikar, and Davide Scaramuzza. “AlphaPilot: Autonomous Drone Racing”. In:
Robotics: Science and Systems (RSS) (2020)

73

Appendix C. AlphaPilot: Autonomous Drone Racing

AlphaPilot: Autonomous Drone Racing

Philipp Foehn∗, Dario Brescianini∗, Elia Kaufmann∗,

Titus Cieslewski, Mathias Gehrig, Manasi Muglikar, Davide Scaramuzza

Abstract — This paper presents a novel system for autonomous,
vision-based drone racing combining learned data abstraction, non-
linear filtering, and time-optimal trajectory planning. The system
has successfully been deployed at the first autonomous drone racing
world championship: the 2019 AlphaPilot Challenge. Contrary to
traditional drone racing systems, which only detect the next gate,
our approach makes use of any visible gate and takes advantage of
multiple, simultaneous gate detections to compensate for drift in the
state estimate and build a global map of the gates. The global map
and drift-compensated state estimate allow the drone to navigate
through the race course even when the gates are not immediately
visible and further enable to plan a near time-optimal path through the
race course in real time based on approximate drone dynamics. The
proposed system has been demonstrated to successfully guide the drone
through tight race courses reaching speeds up to 8m/s and ranked
second at the 2019 AlphaPilot Challenge.

74

C.1. Introduction

C.1 Introduction

C.1.1 Motivation

Autonomous drones have seen a massive gain in robustness in recent years and perform
an increasingly large set of tasks across various commercial industries; however, they are
still far from fully exploiting their physical capabilities. Indeed, most autonomous drones
only fly at low speeds near hover conditions in order to be able to robustly sense their
environment and to have sufficient time to avoid obstacles. Faster and more agile flight
could not only increase the flight range of autonomous drones, but also improve their
ability to avoid fast dynamic obstacles and enhance their maneuverability in confined
spaces. Human pilots have shown that drones are capable of flying through complex
environments, such as race courses, at breathtaking speeds. However, autonomous drones
are still far from human performance in terms of speed, versatility, and robustness, so
that a lot of research and innovation is needed in order to fill this gap.

In order to push the capabilities and performance of autonomous drones, in 2019, Lockheed
Martin and the Drone Racing League have launched the AlphaPilot Challenge1,2, an open
innovation challenge with a grand prize of $1 million. The goal of the challenge is to
develop a fully autonomous drone that navigates through a race course using machine
vision, and which could one day beat the best human pilot. While other autonomous
drone races [237, 235] focus on complex navigation, the AlphaPilot Challenge pushes the
limits in terms of speed and course size to advance the state of the art and enter the
domain of human performance. Due to the high speeds at which drones must fly in order
to beat the best human pilots, the challenging visual environments (e.g., low light, motion
blur), and the limited computational power of drones, autonomous drone racing raises
fundamental challenges in real-time state estimation, perception, planning, and control.

C.1.2 Related Work

Autonomous navigation in indoor or GPS-denied environments typically relies on simul-
taneous localization and mapping (SLAM), often in the form of visual-inertial odometry
(VIO) [41]. There exists a variety of VIO algorithms, e.g., [241, 32, 278, 97], that are based
on feature detection and tracking that achieve very good results in general navigation
tasks [64]. However, the performance of these algorithms significantly degrades during
agile and high-speed flight as encountered in drone racing. The drone’s high translational
and rotational velocities cause large optic flow, making robust feature detection and
tracking over sequential images difficult and thus causing substantial drift in the VIO
state estimate [63].

To overcome this difficulty, several approaches exploiting the structure of drone racing
with gates as landmarks have been developed, e.g., [196, 156, 170], where the drone locates
itself relative to gates. In [196], a handcrafted process is used to extract gate information
from images that is then fused with attitude estimates from an inertial measurement unit

1https://thedroneracingleague.com/airr/
2https://www.nytimes.com/2019/03/26/technology/alphapilot-ai-drone-racing.html

75

https://thedroneracingleague.com/airr/
https://www.nytimes.com/2019/03/26/technology/alphapilot-ai-drone-racing.html

Appendix C. AlphaPilot: Autonomous Drone Racing

Figure C.1 – Our AlphaPilot drone waiting on the start podium to autonomously race through
the gates ahead.

(IMU) to compute an attitude reference that guides the drone towards the visible gate.
While the approach is computationally very light-weight, it struggles with scenarios where
multiple gates are visible and does not allow to employ more sophisticated planning and
control algorithms which, e.g., plan several gates ahead. In [156], a convolutional neural
network (CNN) is used to retrieve a bounding box of the gate and a line-of-sight-based
control law aided by optic flow is then used to steer the drone towards the detected
gate. While this approach is successfully deployed on a real robotic system, the generated
control commands do not account for the underactuated system dynamics of the quadrotor,
constraining this method to low-speed flight. The approach presented in [170] also relies
on relative gate data but has the advantage that it works even when no gate is visible.
In particular, it uses a CNN to directly infer relative gate poses from images and fuse
the results with a VIO state estimate. However, the CNN does not perform well when
multiple gates are visible as it is frequently the case for drone racing.

Assuming knowledge of the platform state and the environment, there exist many ap-
proaches which can reliably generate feasible trajectories with high efficiency. The most
prominent line of work exploits the quadrotor’s underactuated nature and the resulting
differentially-flat output states [228, 243], where trajectories are described as polynomials
in time. Other approaches additionally incorporate obstacle avoidance [372, 107] or
perception constraints [79, 323]. However, in the context of drone racing, specifically the
AlphaPilot Challenge, obstacle avoidance is often not needed, but time-optimal planning

76

C.2. AlphaPilot Race Format and Drone

is of interest. There exists a handful of approaches for time-optimal planning [127, 205,
296, 91]. However, while [127, 205] are limited to 2D scenarios and only find trajectories
between two given states, [296] requires simulation and real-world data obtained on the
track, and the method of [91] is not applicable due to computational constraints.

C.1.3 Contribution

The approach contributed herein builds upon the work of [170] and fuses VIO with a
robust CNN-based gate corner detection using an extended Kalman filter (EKF), achieving
high accuracy at little computational cost. The gate corner detections are used as static
features to compensate for the VIO drift and to align the drone’s flight path precisely
with the gates. Contrary to all previous works [196, 156, 170], which only detect the
next gate, our approach makes use of any gate detection and even profits from multiple
simultaneous detections to compensate for VIO drift and build a global gate map. The
global map allows the drone to navigate through the race course even when the gates
are not immediately visible and further enables the usage of sophisticated path planning
and control algorithms. In particular, a computationally efficient, sampling-based path
planner (see e.g., [190], and references therein) is employed that plans near time-optimal
paths through multiple gates ahead and is capable of adjusting the path in real time if
the global map is updated.

This paper extends our previous work [92] by including a more detailed elaboration
on our gate corner detection in Sec. C.4 with an ablation study in Sec. C.8.1, further
details on the fusion of VIO and gate detection in Sec. C.5, and a description of the path
parameterization in Sec. C.6, completed by an ablation study on the planning horizon
length in Sec. C.8.3.

C.2 AlphaPilot Race Format and Drone

C.2.1 Race Format

From more than 400 teams that participated in a series of qualification tests including
a simulated drone race [117], the top nine teams were selected to compete in the 2019
AlphaPilot Challenge. The challenge consists of three qualification races and a final
championship race at which the six best teams from the qualification races compete for
the grand prize of $1 million. Each race is implemented as a time trial competition in
which each team is given three attempts to fly through a race course as fast a possible
without competing drones on the course. Taking off from a start podium, the drones
have to autonomously navigate through a sequence of gates with distinct appearances
in the correct order and terminate at a designated finish gate. The race course layout,
gate sequence, and position are provided ahead of each race up to approximately ±3m
horizontal uncertainty, enforcing teams to come up with solutions that adapt to the
real gate positions. Initially, the race courses were planned to have a lap length of
approximately 300m and required the completion up to three laps. However, due to
technical difficulties, no race required to complete multiple laps and the track length at

77

Appendix C. AlphaPilot: Autonomous Drone Racing

the final championship race was limited to about 74m.

C.2.2 Drone Specifications

All teams were provided with an identical race drone (Fig. C.1) that was approximately
0.7m in diameter, weighed 3.4 kg, and had a thrust-to-weight ratio of 1.4. The drone was
equipped with a NVIDIA Jetson Xavier embedded computer for interfacing all sensors and
actuators and handling all computation for autonomous navigation onboard. The sensor
suite included two ±30◦ forward-facing stereo camera pairs (Fig. C.2), an IMU, and a
downward-facing laser rangefinder (LRF). All sensor data were globally time stamped by
software upon reception at the onboard computer. Detailed specifications of the available
sensors are given in Table C.1. The drone was equipped with a flight controller that
controlled the total thrust f along the drone’s z-axis (see Fig. C.2) and the angular
velocity, ω = (ωx, ωy, ωz), in the body-fixed coordinate frame B.

C.2.3 Drone Model

Bold lower case and upper case letters will be used to denote vectors and matrices,
respectively. The subscripts in IpCB = IpB − IpC are used to express a vector from
point C to point B expressed in frame I. Without loss of generality, I is used to represent
the origin of frame I, and B represents the origin of coordinate frame B. For the sake
of readability, the leading subscript may be omitted if the frame in which the vector is
expressed is clear from context.

The drone is modelled as a rigid body of mass m with rotor drag proportional to its
velocity acting on it [160]. The translational degrees-of-freedom are described by the
position of its center of mass, pB = (pB,x, pB,y, pB,z), with respect to an inertial frame I
as illustrated in Fig. C.2. The rotational degrees-of-freedom are parametrized using a unit
quaternion, qIB, where RIB = R(qIB) denotes the rotation matrix mapping a vector
from the body-fixed coordinate frame B to the inertial frame I [313]. A unit quaternion,
q, consists of a scalar qw and a vector q̃ = (qx, qy, qz) and is defined as q = (qw, q̃) [313].

Table C.1 – Sensor specifications.

Sensor Model Rate Details

Cam
Leopard Imaging
IMX 264

60Hz
global shutter, color
resolution: 1200× 720

IMU Bosch BMI088 430Hz
range: ±24g, ±34.5 rad/s
resolution: 7e-4g, 1e-3rad/s

LRF
Garmin
LIDAR-Lite v3

120Hz
range: 1-40m
resolution: 0.01m

78

C.3. System Overview

eIx eIy

eIz

eBx

eBy

eBz

eCx

eCy
eCz

Figure C.2 – Illustration of the race drone with its body-fixed coordinate frame B in blue and
a camera coordinate frame C in red.

The drone’s equations of motion are

mp̈B = RIBfe
B
z −RIBDR

⊺
IBvB −mg, (C.1)

q̇IB =
1

2

[
0
ω

]

⊗ qIB, (C.2)

where f and ω are the force and bodyrate inputs, eBz = (0, 0, 1) is the drone’s z-axis
expressed in its body-fixed frame B, D = diag(dx, dy, 0) is a constant diagonal matrix
containing the rotor drag coefficients, vB = ṗB denotes the drone’s velocity, g is gravity
and ⊗ denotes the quaternion multiplication operator [313]. The drag coefficients were
identified experimentally to be dx = 0.5 kg/s and dy = 0.25 kg/s.

C.3 System Overview

The system is composed of five functional groups: Sensor interface, perception, state
estimation, planning and control, and drone interface (see Fig. C.3). In the following, a
brief introduction to the functionality of our proposed perception, state estimation, and
planning and control system is given.

C.3.1 Perception

Of the two stereo camera pairs available on the drone, only the two central forward-facing
cameras are used for gate detection (see Section C.4) and, in combination with IMU
measurements, to run VIO. The advantage is that the amount of image data to be
processed is reduced while maintaining a very large field of view. Due to its robustness,
multi-camera capability and computational efficiency, ROVIO [32] has been chosen as
VIO pipeline. At low speeds, ROVIO is able to provide an accurate estimate of the
quadrotor vehicle’s pose and velocity relative to its starting position, however, at larger
speeds the state estimate suffers from drift.

79

Appendix C. AlphaPilot: Autonomous Drone Racing

Sensor Interface Perception State Estimation Planning & Control Drone Interface

IMU

Laser

Rangefinder

Camera 4

Camera 3

Camera 2

Camera 1 Gate

Detection

Visual

Inertial

Odometry

EKF

State

Estimation

State

Prediction

Position

Control

Attitude

Control

Angular

Velocity

Path

Planning

Total

Thrust

gate map

trajectory

attitude

vehicle state

Figure C.3 – Overview of the system architecture and its main components. All components
within a dotted area run in a single thread.

C.3.2 State Estimation

In order to compensate for a drifting VIO estimate, the output of the gate detection
and VIO are fused together with the measurements from the downward-facing laser
rangefinder (LRF) using an EKF (see Section C.5). The EKF estimates a global map of
the gates and, since the gates are stationary, uses the gate detections to align the VIO
estimate with the global gate map, i.e., compensates for the VIO drift. Computing the
state estimate, in particular interfacing the cameras and running VIO, introduces latency
in the order of 130ms to the system. In order to be able to achieve a high bandwidth of
the control system despite large latencies, the vehicle’s state estimate is predicted forward
to the vehicle’s current time using the IMU measurements.

C.3.3 Planning and Control

The global gate map and the latency-compensated state estimate of the vehicle are used
to plan a near time-optimal path through the next N gates starting from the vehicle’s
current state (see Section C.6). The path is re-planned every time (i)) the vehicle passes
through a gate, (ii)) the estimate of the gate map or (iii)) the VIO drift are updated
significantly, i.e., large changes in the gate positions or VIO drift. The path is tracked
using a cascaded control scheme (see Section C.7) with an outer proportional-derivative
(PD) position control loop and an inner proportional (P) attitude control loop. Finally,
the outputs of the control loops, i.e., a total thrust and angular velocity command, are
sent to the drone.

C.3.4 Software Architecture

The NVIDIA Jetson Xavier provides eight CPU cores, however, four cores are used to run
the sensor and drone interface. The other four cores are used to run the gate detection,
VIO, EKF state estimation, and planning and control, each in a separate thread on a
separate core. All threads are implemented asynchronously to run at their own speed,
i.e., whenever new data is available, in order to maximize data throughput and to reduce
processing latency. The gate detection thread is able to process all camera images in
real time at 60Hz, whereas the VIO thread only achieves approximately 35Hz. In order

80

C.4. Gate Detection

Figure C.4 – The gate detection module returns sets of corner points for each gate in the
input image (fourth column) using a two-stage process. In the first stage, a neural network
transforms an input image, Iw×h×3 (first column), into a set of confidence maps for corners,
Cw×h×4 (second column), and Part Affinity Fields (PAFs) [43], Ew×h×(4·2) (third column). In
the second stage, the PAFs are used to associate sets of corner points that belong to the same
gate. For visualization, both corner maps, C (second column), and PAFs, E (third column),
are displayed in a single image each. While color encodes the corner class for C, it encodes the
direction of the 2D vector fields for E. The yellow lines in the bottom of the second column show
the six edge candidates of the edge class (TL, TR) (the TL corner of the middle gate is below
the detection threshold), see Section C.4.2. Best viewed in color.

to deal with the asynchronous nature of the gate detection and VIO thread and their
output, all data is globally time stamped and integrated in the EKF accordingly. The
EKF thread runs every time a new gate or LRF measurement is available. The planning
and control thread runs at a fixed rate of 50Hz. To achieve this, the planning and control
thread includes the state prediction which compensates for latencies introduced by the
VIO.

C.4 Gate Detection

To correct for drift accumulated by the VIO pipeline, the gates are used as distinct
landmarks for relative localization. In contrast to previous CNN-based approaches to gate
detection, we do not infer the relative pose to a gate directly, but instead segment the four
corners of the observed gate in the input image. These corner segmentations represent
the likelihood of a specific gate corner to be present at a specific pixel coordinate. To
represent a value proportional to the likelihood, the maps are trained on Gaussians of
the corner projections. This allows the detection of an arbitrary amount of gates, and
allows for a more principled inclusion of gate measurements in the EKF through the
use of reprojection error. Specifically, it exhibits more predictable behavior for partial
gate observations and overlapping gates, and allows to suppress the impact of Gaussian
noise by having multiple measurements relating to the same quantity. Since the exact
shape of the gates is known, detecting a set of characteristic points per gate allows to

81

Appendix C. AlphaPilot: Autonomous Drone Racing

constrain the relative pose. For the quadratic gates of the AlphaPilot Challenge, these
characteristic points are chosen to be the inner corner of the gate border (see Fig. C.4,
4th column). However, just detecting the four corners of all gates is not enough. If just
four corners of several gates are extracted, the association of corners to gates is undefined
(see Fig. C.4, 3rd row, 2nd column). To solve this problem, we additionally train our
network to extract so-called Part Affinity Fields (PAFs), as proposed by [43]. These are
vector fields, which, in our case, are defined along the edges of the gates, and point from
one corner to the next corner of the same gate, see column three in Figure C.4. The
entire gate detection pipeline consists of two stages: 1) predicting corner maps and PAFs
by the neural network, 2) extracting single edge candidates from the network prediction
and assembling them to gates. In the following, both stages are explained in detail.

C.4.1 Stage 1: Predicting Corner Maps and Part Affinity Fields

In the first detection stage, each input image, Iw×h×3, is mapped by a neural network
into a set of NC = 4 corner maps, Cw×h×NC

, and NE = 4 PAFs, Ew×h×(NE ·2). Predicted
corner maps as well as PAFs are illustrated in Figure C.4, 2nd and 3rd column. The
network is trained in a supervised manner by minimizing the Mean-Squared-Error loss
between the network prediction and the ground-truth maps. In the following, ground-truth
maps for both map types are explained in detail.

Corner Maps

For each corner class, j ∈ Cj , Cj := {TL,TR ,BL ,BR }, a ground-truth corner map, C∗
j (s),

is represented by a single-channel map of the same size as the input image and indicates
the existence of a corner of class j at pixel location s in the image. The value at location
s ∈ I in C∗

j is defined by a Gaussian as

C∗
j (s) = exp

(

−
‖s− s∗j‖22

σ2

)

, (C.3)

where s∗j denotes the ground truth image position of the nearest corner with class j. The
choice of the parameter σ controls the width of the Gaussian. We use σ = 7 pixel in our
implementation. Gaussians are used to account for small errors in the ground-truth corner
positions that are provided by hand. Ground-truth corner maps are generated for each
individual gate in the image separately and then aggregated. Aggregation is performed
by taking the pixel-wise maximum of the individual corner maps, as this preserves the
distinction between close corners.

Part Affinity Fields

We define a PAF for each of the four possible classes of edges, defined by its two connecting
corners as (k, l) ∈ EKL := {(TL,TR), (TR,BR), (BR,BL), (BL,TL)}. For each edge class,
(k, l), the ground-truth PAF, E∗

(k,l)(s), is represented by a two-channel map of the same

82

C.4. Gate Detection

size as the input image and points from corner k to corner l of the same gate, provided
that the given image point s lies within distance d of such an edge. We use d = 10 pixel
in our implementation. Let G∗ be the set of gates g and S(k,l),g be the set of image points
that are within distance d of the line connecting the corner points s∗k and s∗l belonging to
gate g. Furthermore, let vk,l,g be the unit vector pointing from s∗k to s∗l of the same gate.
Then, the part affinity field, E∗

(k,l)(s), is defined as:

E∗
(k,l)(s) =

{

vk,l,g if s ∈ S(k,l),g, g ∈ G∗

0 otherwise.
(C.4)

As in the case of corner maps, PAFs are generated for each individual gate in the image
separately and then aggregated. In case a point s lies in S(k,l),g of several gates, the vk,l,g
of all corresponding gates are averaged.

C.4.2 Stage 2: Corner Association

At test time, discrete corner candidates, sj , for each corner class, j ∈ Cj , are extracted
from the predicted corner map using non-maximum suppression and thresholding. For
each corner class, there might be several corner candidates, due to multiple gates in the
image or false positives. These corner candidates allow the formation of an exhaustive set
of edge candidates, {(sk, sl)}, see the yellow lines in Fig. C.4. Given the corresponding
PAF, E(k,l)(s), each edge candidate is assigned a score which expresses the agreement of
that candidate with the PAF. This score is given by the line integral

S((sk, sl)) =
∫ u=1

u=0
E(k,l)(s(u)) ·

sl − sk

‖sl − sk‖
du, (C.5)

where s(u) lineraly interpolates between the two corner candidate locations sk and sl. In
practice, S is approximated by uniformly sampling the integrand.

The line integral S is used as metric to associate corner candidates to gate detections.
The goal is to find the optimal assignment for the set of all possible corner candidates
to gates. As described in [43], finding this optimal assignment corresponds to a K-
dimensional matching problem that is known to be NP-Hard [356]. Following [43],
the problem is simplified by decomposing the matching problem into a set of bipartite
matching subproblems. Matching is therefore performed independently for each edge
class. Specifically, the following optimization problem represents the bipartite matching
subproblem for edge class (k, l):

maxS(k,l) =
∑

k∈Dk

∑

l∈Dl

S((sk, sl)) · zkl (C.6)

s.t. ∀k ∈ Dk,
∑

l∈Dl

zkl ≤ 1 , (C.7)

∀l ∈ Dl,
∑

k∈Dk

zkl ≤ 1 , (C.8)

83

Appendix C. AlphaPilot: Autonomous Drone Racing

where S(k,l) is the cumulative matching score and Dk, Dl denote the set of corner candidates
for edge class (k, l). The variable zkl ∈ {0, 1} indicates whether two corner candidates are
connected. Equations (C.7) and (C.8) enforce that no two edges share the same corner.
Above optimization problem can be solved using the Hungarian method [185], resulting
in a set of edge candidates for each edge class (k, l).

With the bipartite matching problems being solved for all edge classes, the pairwise
associations can be extended to sets of associated edges for each gate.

C.4.3 Training Data

The neural network is trained in a supervised fashion using a dataset recorded in the real
world. Training data is generated by recording video sequences of gates in 5 different
environments. Each frame is annotated with the corners of all gates visible in the image
using the open source image annotation software labelme3, which is extended with KLT-
Tracking for semi-automatic labelling. The resulting dataset used for training consists of
28k images and is split into 24k samples for training and 4k samples for validation. At
training time, the data is augmented using random rotations of up to 30◦ and random
changes in brightness, hue, contrast and saturation.

C.4.4 Network Architecture and Deployment

The network architecture is designed to optimally trade-off between computation time
and accuracy. By conducting a neural network architecture search, the best performing
architecture for the task is identified. The architecture search is limited to variants of
U-Net [287] due to its ability to perform segmentation tasks efficiently with a very limited
amount of labeled training data. The best performing architecture is identified as a 5-level
U-Net with [12, 18, 24, 32, 32] convolutional filters of size [3, 3, 3, 5, 7] per level and a final
additional layer operating on the output of the U-Net containing 12 filters. At each layer,
the input feature map is zero-padded to preserve a constant height and width throughout
the network. As activation function, LeakyReLU with α = 0.01 is used. For deployment
on the Jetson Xavier, the network is ported to TensorRT 5.0.2.6. To optimize memory
footprint and inference time, inference is performed in half-precision mode (FP16) and
batches of two images of size 592× 352 are fed to the network.

C.5 State Estimation

The non-linear measurement models of the VIO, gate detection, and laser rangefinder are
fused using an EKF [161]. In order to obtain the best possible pose accuracy relative to
the gates, the EKF estimates the translational and rotational misalignment of the VIO
origin frame, V , with respect to the inertial frame, I, represented by pV and qIV , jointly
with the gate positions, pGi

, and gate heading, ϕIGi
. It can thus correct for an imprecise

initial position estimate, VIO drift, and uncertainty in gate positions. The EKF’s state

3https://github.com/wkentaro/labelme

84

C.5. State Estimation

space at time tk is xk = x(tk) with covariance Pk described by

xk =
(
pV , qIV ,pG0

, ϕIG0
, . . . ,pGN−1

, ϕIGN−1

)
. (C.9)

The drone’s corrected pose, (pB, qIB), can then be computed from the VIO estimate,
(pVB, qVB), by transforming it from frame V into the frame I using (pV , qIV) as

pB = pV +RIV · pVB, qIB = qIV · qVB. (C.10)

All estimated parameters are expected to be time-invariant but subject to noise and drift.
This is modelled by a Gaussian random walk, simplifying the EKF process update to:

xk+1 = xk, Pk+1 = Pk +∆tkQ, (C.11)

where Q is the random walk process noise. For each measurement zk with noise R the
predicted a priori estimate, x−

k , is corrected with measurement function, h(x−
k), and

Kalman gain, Kk, resulting in the a posteriori estimate, x+
k , as

Kk = P−
k H

⊺
k

(
HkP

−
k H

⊺
k +R

)−1
,

x+
k = x−

k +Kk

(
zk − h(x−

k)
)
, (C.12)

P+
k = (I −KkHk)P

−
k ,

with h(x−
k), the measurement function with Jacobian Hk.

However, the filter state includes a rotation quaternion constrained to unit norm, ‖qIV‖ !
=

1. This is effectively an over-parameterization in the filter state space and can lead
to poor linearization as well as underestimation of the covariance. To apply the EKFs
linear update step on the over-parameterized quaternion, it is lifted to its tangent space
description, similar to [95]. The quaternion qIV is composed of a reference quaternion,
qIVref

, which is adjusted after each update step, and an error quaternion, qVrefV , of which
only its vector part, q̃VrefV , is in the EKF’s state space. Therefore we get

qIV = qIVref
· qVrefV qVrefV =

[√

1− q̃
⊺
VrefV

· q̃VrefV

q̃VrefV

]

(C.13)

from which we can derive the Jacobian of any measurement function, h(x), with respect
to qIV by the chain rule as

∂

∂q̃VrefV
h(x) =

∂

∂qIV
h(x) · ∂qIV

∂q̃VrefV
(C.14)

=
∂

∂q̃IV
h(x) · [qIVref

]×

−q̃
⊺

VrefV
√

1−q̃
⊺

VrefV
·q̃VrefV

I3×3

 (C.15)

where we arrive at (C.15) by using (C.13) in (C.14) and use [qIVref
]× to represent the

matrix resulting from a lefthand-side multiplication with qIVref
.

85

Appendix C. AlphaPilot: Autonomous Drone Racing

C.5.1 Measurement Modalities

All measurements up to the camera frame time tk are passed to the EKF together with
the VIO estimate, pVB,k and qVB,k, with respect to the VIO frame V. Note thate the
VIO estimate is assumed to be a constant parameter, not a filter state, which vastly
simplifies derivations ad computation, leading to an efficient yet robust filter.

Gate Measurements

Gate measurements consist of the image pixel coordinates, sCoij , of a specific gate corner.
These corners are denoted with top left and right, and bottom left and right, as in j ∈ Cj ,
Cj := {TL,TR ,BL ,BR } and the gates are enumerated by i ∈ [0, N − 1]. All gates are of
equal width, w, and height, h, so that the corner positions in the gate frame, Gi, can be
written as pGiCoij = 1

2 (0,±w,±h). The measurement equation can be written as the
pinhole camera projection [334] of the gate corner into the camera frame. A pinhole
camera maps the gate corner point, pCoij , expressed in the camera frame, C, into pixel
coordinates as

hGate(x) = sCoij =
1

[pCoij]z

[
fx 0 cx
0 fy cy

]

pCoij , (C.16)

where [·]z indicates the scalar z-component of a vector, fx and fy are the camera’s focal
lengths and (cx, cy) is the camera’s optical center. The gate corner point, pCoij , is given
by

pCoij =R
⊺
IC

(
pGi

+RIGi
pGiCoj − pC

)
, (C.17)

with pC and RIC being the transformation between the inertial frame I and camera
frame C,

pC =pV +RIV (pVB +RVBpBC) , (C.18)

RIC =RIVRVBRBC , (C.19)

where pBC and RBC describe a constant transformation between the drone’s body frame
B and camera frame C (see Fig. C.2). The Jacobian with respect to the EKF’s state
space is derived using the chain rule,

∂

∂x
hGate(x) =

∂hGate(x)

∂pCoij (x)
· ∂pCoij (x)

∂x
, (C.20)

where the first term representing the derivative of the projection, and the second term
represents the derivative with respect to the state space including gate position and
orientation, and the frame alignment, which can be further decomposed using (C.14).

86

C.6. Path Planning

Gate Correspondences

The gate detection (see Figure C.4) provides sets of m measurements,

Sî = {sCo
îj
0, . . . , sCo

îj
m−1},

corresponding to the unknown gate î at known corners j ∈ Cj . To identify the correspon-
dences between a detection set Sî and the gate Gi in our map, we use the square sum of
reprojection error. For this, we first compute the reprojection of all gate corners, sCoij ,
according to (C.16) and then compute the square error sum between the measurement
set, Sî, and the candidates, sCoij . Finally, the correspondence is established to the gate
Gi which minimizes the square error sum, as in

argmin
i∈[0,N−1]

∑

sCo
îj
∈S

î

(sCo
îj
− sCoij)

⊺(sCo
îj
− sCoij). (C.21)

Laser Rangefinder Measurement

The drone’s laser rangefinder measures the distance along the drones negative z-axis
to the ground, which is assumed to be flat and at a height of 0m. The measurement
equation can be described by

hLRF(x) =
[pB]z

[RIBeBz]z
=

[pV +RIVpV B]z
[RIVRVBeBz]z

. (C.22)

The Jacobian with respect to the state space is again derived by ∂hLRF

∂pV
and ∂hLRF

∂qIV
and

further simplified using (C.14).

C.6 Path Planning

For the purpose of path planning, the drone is assumed to be a point mass with bounded
accelerations as inputs. This simplification allows for the computation of time-optimal
motion primitives in closed-form and enables the planning of approximate time-optimal
paths through the race course in real time. Even though the dynamics of the quadrotor
vehicle’s acceleration cannot be neglected in practice, it is assumed that this simplification
still captures the most relevant dynamics for path planning and that the resulting paths
approximate the true time-optimal paths well. In order to facilitate the tracking of the
approximate time-optimal path, polynomials of order four are fitted to the path which
yield smoother position, velocity and acceleration commands, and can therefore be better
tracked by the drone.

In the following, time-optimal motion primitives based on the simplified dynamics are
first introduced and then a path planning strategy based on these motion primitives is
presented. Finally, a method to parameterize the time-optimal path is introduced.

87

Appendix C. AlphaPilot: Autonomous Drone Racing

C.6.1 Time-Optimal Motion Primitive

The minimum times, T ∗
x , T ∗

y and T ∗
z , required for the vehicle to fly from an initial state,

consisting of position and velocity, to a final state while satisfying the simplified dynamics
p̈B(t) = u(t) with the input acceleration u(t) being constrained to u ≤ u(t) ≤ u are
computed for each axis individually. Without loss of generality, only the x-axis is
considered in the following. Using Pontryagin’s maximum principle [27], it can be shown
that the optimal control input is bang-bang in acceleration, i.e., has the form

u∗x(t) =

{

ux, 0 ≤ t ≤ t∗,

ux, t∗ < t ≤ T ∗
x ,

(C.23)

or vice versa with the control input first being ux followed by ux. In order to control
the maximum velocity of the vehicle, e.g., to constrain the solutions to ranges where the
simplified dynamics approximate the true dynamics well or to limit the motion blur of
the camera images, a velocity constraint of the form vB ≤ vB(t) ≤ vB can be added, in
which case the optimal control input has bang-singular-bang solution [222]

u∗x(t) =

ux, 0 ≤ t ≤ t∗1,

0, t∗1 < t ≤ t∗2,

ux, t∗2 < t ≤ T ∗
x ,

(C.24)

or vice versa. It is straightforward to verify that there exist closed-form solutions for the
minimum time, T ∗

x , as well as the switching times, t∗, in both cases (C.23) or (C.24).

Once the minimum time along each axis is computed, the maximum minimum time,
T ∗ = max(T ∗

x , T
∗
y , T

∗
z), is computed and motion primitives of the same form as in (C.23)

or (C.24) are computed among the two faster axes but with the final time constrained to
T ∗ such that trajectories along each axis end at the same time. In order for such a motion
primitive to exist, a new parameter α ∈ [0, 1] is introduced that scales the acceleration
bounds, i.e., the applied control inputs are scaled to αux and αux, respectively. Fig. C.5
depicts the position and velocity of an example time-optimal motion primitive.

C.6.2 Sampling-Based Receding Horizon Path Planning

The objective of the path planner is to find the time-optimal path from the drone’s current
state to the final gate, passing through all the gates in the correct order. Since the previ-
ously introduced motion primitive allows the generation of time-optimal motions between
any initial and any final state, the time-optimal path can be planned by concatenating
a time-optimal motion primitive starting from the drone’s current (simplified) state to
the first gate with time-optimal motion primitives that connect the gates in the correct
order until the final gate. This reduces the path planning problem to finding the drone’s
optimal state at each gate such that the total time is minimized. To find the optimal path,
a sampling-based strategy is employed where states at each gate are randomly sampled
and the total time is evaluated subsequently. In particular, the position of each sampled
state at a specific gate is fixed to the center of the gate and the velocity is sampled

88

C.6. Path Planning

vB,x

vB,y

vB,z

pB,x

pB,y

pB,z

Time [s]

V
el
o
ci
ty

[m
/
s]

P
o
si
ti
o
n
[m

]

0 0.5 1.0 1.5 1.96

-10

-5

0

5

10

-10

-5

0

5

10

Figure C.5 – Example time-optimal motion primitive starting from rest at the origin to a
random final position with non-zero final velocity. The velocities are constrained to ±7.5m/s and
the inputs to ±12m/s2. The dotted lines denote the per-axis time-optimal maneuvers.

uniformly at random such the velocity lies within the constraints of the motion primitives
and the angle between the velocity and the gate normal does not exceed a maximum
angle, ϕmax It is trivial to show that as the number of sampled states approaches infinity,
the computed path converges to the time-optimal path.

In order to solve the problem efficiently, the path planning problem is interpreted as a
shortest path problem. At each gate, M different velocities are sampled and the arc length
from each sampled state at the previous gate is set to be equal to the duration, T ∗, of the
time-optimal motion primitive that guides the drone from one state to the other. Due to
the existence of a closed-form expression for the minimum time, T ∗, setting up and solving
the shortest path problem can be done very efficiently using, e.g., Dijkstra’s algorithm [27]
resulting in the optimal path p∗(t). In order to further reduce the computational cost,
the path is planned in a receding horizon fashion, i.e., the path is only planned through
the next N gates.

C.6.3 Path Parameterization

Due to the simplifications of the dynamics that were made when computing the motion
primitives, the resulting path is infeasible with respect to the quadrotor dynamics (C.1)
and (C.2) and thus is impossible to be tracked accurately by the drone. To simplify the
tracking of the time-optimal path, the path is approximated by fourth order polynomials
in time. In particular, the path is divided into multiple segments of equal arc length. Let
t ∈ [tk, tk+1) be the time interval of the k-th segment. In order to fit the polynomials,
p̄k(t), to the k-th segment of the time-optimal path, we require that the initial and final
position and velocity are equal to those of the time-optimal path, i.e.,

p̄k(tk) = p∗(tk), p̄k(tk+1) = p∗(tk+1), (C.25)

˙̄pk(tk) = ṗ∗(tk), ˙̄pk(tk+1) = ṗ∗(tk+1), (C.26)

89

Appendix C. AlphaPilot: Autonomous Drone Racing

and that the positions at t = (tk+1 − tk) /2 coincide as well:

p̄k

(
tk+1 + tk

2

)

= p∗

(
tk+1 + tk

2

)

. (C.27)

The polynomial parameterization p̄k(t) of the k-th segment is then given by

p̄k(t) = a4,ks
4 + a3,ks

3 + a2,ks
2 + a1,ks+ a0,k, (C.28)

with s = t− tk being the relative time since the start of k-th segment. The velocity and
acceleration required for the drone to track this polynomial path can be computed by
taking the derivatives of (C.28), yielding

˙̄pk(t) = 4a4,ks
3 + 3a3,ks

2 + 2a2,ks+ a1,k, (C.29)

¨̄pk(t) = 12a4,ks
2 + 6a3,ks+ 2a2,k. (C.30)

C.7 Control

This section presents a control strategy to track the near time-optimal path from Section
C.6. The control strategy is based on a cascaded control scheme with an outer position
control loop and an inner attitude control loop, where the position control loop is designed
under the assumption that the attitude control loop can track setpoint changes perfectly,
i.e., without any dynamics or delay.

C.7.1 Position Control

The position control loop along the inertial z-axis is designed such that it responds to
position errors

pBerr,z = pBref,z − pB,z

in the fashion of a second-order system with time constant τpos,z and damping ratio ζpos,z,

p̈B,z =
1

τ2pos,z

pBerr,z +
2ζpos,z

τpos,z
ṗBerr,z + p̈Bref,z. (C.31)

Similarly, two control loops along the inertial x- and y-axis are shaped to make the
horizontal position errors behave like second-order systems with time constants τpos,xy

and damping ratio ζpos,xy. Inserting (C.31) into the translational dynamics (C.1), the
total thrust, f , is computed to be

f =
[m (p̈Bref

+ g) +RIBDR
⊺
IBvB]z

[RIBeBz
]z

. (C.32)

90

C.8. Results

pB pVB

Final Gate

Gate 1

Start

Final Gate Gate 4

Gate 3

Gate 2

Gate 1Start

Final Gate Gate 4

Gate 3

Gate 2

Gate 1Start

px[m]

p
y
[m

]

px[m]

p
y
[m

]

px[m]

p
y
[m

]

0 4 8 12-10 0 10 20 30 -10 0 10 20 30

0

4

8

12

-30

-20

-10

0

-30

-20

-10

0

8m/s

6m/s

4m/s

2m/s

0m/s

Figure C.6 – Top view of the planned (left) and executed (center) path at the championship
race, and an executed multi-lap path at a testing facility (right). Left: Fastest planned path in
color, sub-optimal sampled paths in gray. Center: VIO trajectory as pVB and corrected estimate
as pB.

C.7.2 Attitude Control

The required acceleration from the position controller determines the orientation of the
drone’s z-axis and is used, in combination with a reference yaw angle, ϕref, to compute
the drone’s reference attitude. The reference yaw angle is chosen such that the drone’s
x-axis points towards the reference position 5m ahead of the current position, i.e., that
the drone looks in the direction it flies. A non-linear attitude controller similar to [35]
is applied that prioritizes the alignment of the drone’s z-axis, which is crucial for its
translational dynamics, over the correction of the yaw orientation:

ω =
2 sgn(qw)
√

q2w + q2z
T−1

att

qwqx − qyqz
qwqy + qxqz

qz

 , (C.33)

where qw, qx, qy and qz are the components of the attitude error, q−1
IB ⊗ qIBref

, and where
Tatt is a diagonal matrix containing the per-axis first-order system time constants for
small attitude errors.

C.8 Results

The proposed system was used to race in the 2019 AlphaPilot championship race. The
course at the championship race consisted of five gates and had a total length of 74m. A
top view of the race course as well as the results of the path planning and the fastest
actual flight are depicted in Fig. C.6 (left and center). With the motion primitive’s
maximum velocity set to 8m/s, the drone successfully completed the race course in a total
time of 11.36 s, with only two other teams also completing the full race course. The drone
flew at an average velocity of 6.5m/s and reached the peak velocity of 8m/s multiple
times. Note that due to missing ground truth, Fig. C.6 only shows the estimated and
corrected drone position.

The system was further evaluated at a testing facility where there was sufficient space for
the drone to fly multiple laps (see Fig. C.6, right), albeit the course consisted of only two

91

Appendix C. AlphaPilot: Autonomous Drone Racing

Table C.2 – Comparison of different network architectures with respect to intersection over
union (IoU), precision (Pre.) and recall (Rec.). The index in the architecture name denotes
the number of levels in the U-Net. All networks contain one layer per level with kernel sizes of
[3, 3, 5, 7, 7] and [12, 18, 24, 32, 32] filters per level. Architectures labelled with ’L’ contain twice
the amount of filters per level. Timings are measured for single input images of size 352x592 on a
desktop computer equipped with an NVIDIA RTX 2080 Ti.

Arch. IoU Pre. Rec. #params latency [s]

UNet-5L 0.966 0.997 0.967 613k 0.106
UNet-5 0.964 0.997 0.918 160k 0.006
UNet-4L 0.948 0.997 0.920 207k 0.085
UNet-4 0.941 0.989 0.862 58k 0.005
UNet-3L 0.913 0.991 0.634 82k 0.072
UNet-3 0.905 0.988 0.520 27k 0.005

gates. The drone was commanded to pass four times through gate 1 before finishing in
the final gate. Although the gates were not visible to the drone for most of the time, the
drone successfully managed to fly multiple laps. Thanks to the global gate map and the
VIO state estimate, the system was able to plan and execute paths to gates that are not
directly visible. By repeatedly seeing either one of the two gates, the drone was able to
compensate for the drift of the VIO state estimate, allowing the drone to pass the gates
every time exactly through their center. Note that although seeing gate 1 in Fig. C.6
(right) at least once was important in order to update the position of the gate in the
global map, the VIO drift was also estimated by seeing the final gate.

The results of the system’s main components are discussed in detail in the following
subsections, and a video of the results is attached to the paper.

C.8.1 Gate Detection

Architecture Search: Due to the limited computational budget of the Jetson Xavier,
the network architecture was designed to maximize detection accuracy while keeping a low
inference time. To find such architecture, different variants of U-Net [287] are compared.
Table C.2 summarizes the performance of different network architectures. Performance is
evaluated quantitatively on a separate test set of 4k images with respect to intersection
over union (IoU) and precision/recall for corner predictions. While the IoU score only
takes full gate detections into account, the precision/recall scores are computed for each
corner detection. Based on these results, architecture UNet-5 is selected for deployment
on the real drone due to the low inference time and high performance. On the test set,
this network achieves an IoU score with the human-annotated ground truth of 96.4%.
When only analyzing the predicted corners, the network obtains a precision of 0.997 and
a recall of 0.918.

Deployment: Even in instances of strong changes in illumination, the gate detector
was able to accurately identify the gates in a range of 2− 17m. Fig. C.4 illustrates the
quality of detections during the championship race (1st row) as well as for cases with

92

C.8. Results

Table C.3 – Total flight time vs. computation time averaged over 100 runs. The percentage in
parenthesis is the computation time with respect to the computational time for the full track.

Ngates flight time computation time

1 9.593,5 s 1.66ms 2.35%

2 9.291,3 s 18.81ms 26.56%

3 9.270,9 s 35.74ms 50.47%

4 9.266,7 s 53.00ms 74.84%

5 (full track) 9.262,2 s 70.81ms 100%

CPC [91] (full track) 6.520 s 4.62 · 105ms 6524%

multiple gates, represented in the test set (2nd/3rd row). With the network architecture
explained in Section C.4, one simultaneous inference for the left- and right-facing camera
requires computing 3.86GFLOPS (40 kFLOPS per pixel). By implementing the network
in TensorRT and performing inference in half-precision mode (FP16), this computation
takes 10.5ms on the Jetson Xavier and can therefore be performed at the camera update
rate.

C.8.2 State Estimation

Compared to a pure VIO-based solution, the EKF has proven to significantly improve
the accuracy of the state estimation relative to the gates. As opposed to the works by
[196, 156, 170], the proposed EKF is not constrained to only use the next gate, but can
work with any gate detection and even profits from multiple detections in one image.
Fig. C.6 (center) depicts the flown trajectory estimated by the VIO system as pVB and
the EKF-corrected trajectory as pB (the estimated corrections are depicted in gray).
Accumulated drift clearly leads to a large discrepancy between VIO estimate pVB and the
corrected estimate pB . Towards the end of the track at the two last gates this discrepancy
would be large enough to cause the drone to crash into the gate. However, the filter
corrects this discrepancy accurately and provides a precise pose estimate relative to
the gates. Additionally, the imperfect initial pose, in particular the yaw orientation, is
corrected by the EKF while flying towards the first gate as visible in the zoomed section
in Fig. C.6 (center).

C.8.3 Planning and Control

Fig. C.6 (left) shows the nominally planned path for the AlphaPilot championship race,
where the coloured line depicts the fastest path along all the sampled paths depicted in
gray. In particular, a total of M = 150 different states are sampled at each gate, with
the velocity limited to 8m/s and the angle between the velocity and the gate normal
limited to ϕmax = 30◦. During flight, the path is re-planned in a receding horizon fashion
through the next N = 3 gates (see Fig. C.6, center). It was experimentally found that

93

Appendix C. AlphaPilot: Autonomous Drone Racing

choosing N ≥ 3 only has minimal impact of the flight time comapred to planning over all
gates, while greatly reducing the computational cost. Table C.3 presents the trade-offs
between total flight time and computation cost for different horizon lengths N for the
track shown in Fig. C.6 (left). In addition, Table C.3 shows the flight and computation
time of the time-optimal trajectory generation from [91], which significantly outperforms
our approach but is far away from real-time execution with a computation time of 462 s for
a single solution. Online replanning would therefore not be possible, and any deviations
from the nominal track layout could lead to a crash.

Please also note that the evaluation of our method is performed in Matlab on a laptop
computer, while the final optimized implementation over N = 3 gates achieved replanning
times of less than 2ms on the Jetson Xavier and can thus be done in every control
update step. Fig. C.6 (right) shows resulting path and velocity of the drone in a multi-lap
scenario, where the drone’s velocity was limited to 6m/s. It can be seen that drone’s
velocity is decreased when it has to fly a tight turn due to its limited thrust.

C.9 Discussion and Conclusion

The proposed system managed to complete the course at a velocity of 5m/s with a success
rate of 100% and at 8m/s with a success rate of 60%. At higher speeds, the combination
of VIO tracking failures and no visible gates caused the drone to crash after passing
the first few gates. This failure could be caught by integrating the gate measurements
directly in a VIO pipeline, tightly coupling all sensor data. Another solution could be
a perception-aware path planner trading off time-optimality against motion blur and
maximum gate visibility.

The advantages of the proposed system are (i)) a drift-free state estimate at high speeds,
(ii)) a global and consistent gate map, and (iii)) a real-time capable near time-optimal
path planner. However, these advantages could only partially be exploited as the races
neither included multiple laps, nor had complex segments where the next gates were not
directly visible. Nevertheless, the system has proven that it can handle these situations
and is able to navigate through complex race courses reaching speeds up to 8m/s and
completing the championship race track of 74m in 11.36 s.

While the 2019 AlphaPilot Challenge pushed the field of autonomous drone racing, in
particularly in terms of speed, autonomous drones are still far away from beating human
pilots. Moreover, the challenge also left open a number of problems, most importantly
that the race environment was partially known and static without competing drones or
moving gates. In order for autonomous drones to fly at high speeds outside of controlled
or known environments and succeed in many more real-world applications, they must be
able to handle unknown environments, perceive obstacles and react accordingly. These
features are areas of active research and are intended to be included in future versions of
the proposed drone racing system.

94

D Deep Drone Racing: From

Simulation to Reality with Domain

Randomization

The version presented here is reprinted, with permission, from:

Antonio Loquercio∗, Elia Kaufmann∗, René Ranftl, Alexey Dosovitskiy, Vladlen Koltun,
and Davide Scaramuzza. “Deep Drone Racing: From Simulation to Reality with Domain
Randomization”. In: IEEE Trans. Robot. 36.1 (2019), pp. 1–14. doi: 10.1109/TRO.2019.
2942989

95

https://doi.org/10.1109/TRO.2019.2942989
https://doi.org/10.1109/TRO.2019.2942989

Appendix D. Deep Drone Racing: From Simulation to Reality with
Domain Randomization

Deep Drone Racing: From Simulation to

Reality with Domain Randomization

Antonio Loquercio∗, Elia Kaufmann∗, René Ranftl, Matthias Müller,

Vladlen Koltun, Davide Scaramuzza

Abstract — Dynamically changing environments, unreliable state
estimation, and operation under severe resource constraints are fun-
damental challenges that limit the deployment of small autonomous
drones. We address these challenges in the context of autonomous,
vision-based drone racing in dynamic environments. A racing drone
must traverse a track with possibly moving gates at high speed. We
enable this functionality by combining the performance of a state-of-
the-art planning and control system with the perceptual awareness of
a convolutional neural network (CNN). The resulting modular system
is both platform- and domain-independent: it is trained in simula-
tion and deployed on a physical quadrotor without any fine-tuning.
The abundance of simulated data, generated via domain randomiza-
tion, makes our system robust to changes of illumination and gate
appearance. To the best of our knowledge, our approach is the first to
demonstrate zero-shot sim-to-real transfer on the task of agile drone
flight. We extensively test the precision and robustness of our system,
both in simulation and on a physical platform, and show significant
improvements over the state of the art.

96

D.1. Introduction

Figure D.1 – The perception block of our system, represented by a convolutional neural network
(CNN), is trained only with non-photorealistic simulation data. Due to the abundance of such
data, generated with domain randomization, the trained CNN can be deployed on a physical
quadrotor without any finetuning.

D.1 Introduction

Drone racing is a popular sport in which professional pilots fly small quadrotors through
complex tracks at high speeds (Fig. D.1). Drone pilots undergo years of training to master
the sensorimotor skills involved in racing. Such skills would also be valuable to autonomous
systems in applications such as disaster response or structure inspection, where drones
must be able to quickly and safely fly through complex dynamic environments [366].

Developing a fully autonomous racing drone is difficult due to challenges that span
dynamics modeling, onboard perception, localization and mapping, trajectory generation,
and optimal control. For this reason, autonomous drone racing has attracted significant
interest from the research community, giving rise to multiple autonomous drone racing
competitions [236, 235].

One approach to autonomous racing is to fly through the course by tracking a precomputed
global trajectory. However, global trajectory tracking requires to know the race-track
layout in advance, along with highly accurate state estimation, which current methods
are still not able to provide [96, 278, 41]. Indeed, visual inertial odometry [96, 278] is
subject to drift in estimation over time. SLAM methods can reduce drift by relocalizing
in a previously-generated, globally-consistent map. However, enforcing global consistency
leads to increased computational demands that strain the limits of on-board processing.
In addition, regardless of drift, both odometry and SLAM pipelines enable navigation
only in a predominantly-static world, where waypoints and collision-free trajectories can
be statically defined. Generating and tracking a global trajectory would therefore fail in
applications where the path to be followed cannot be defined a priori. This is usually
the case for professional drone competitions, since gates can be moved from one lap to
another.

In this paper, we take a step towards autonomous, vision-based drone racing in dynamic
environments. Instead of relying on globally consistent state estimates, our approach
deploys a convolutional neural network to identify waypoints in local body-frame coor-
dinates. This eliminates the problem of drift and simultaneously enables our system to
navigate through dynamic environments. The network-predicted waypoints are then fed to
a state-of-the-art planner [242] and tracker [78], which generate a short trajectory segment

97

Appendix D. Deep Drone Racing: From Simulation to Reality with
Domain Randomization

and corresponding motor commands to reach the desired location. The resulting system
combines the perceptual awareness of CNNs with the precision offered by state-of-the-art
planners and controllers, getting the best of both worlds. The approach is both powerful
and lightweight: all computations run fully onboard.

An earlier version of this work [171] (Best System Paper award at the Conference on
Robotic Learning, 2018) demonstrated the potential of our approach both in simulation
and on a physical platform. In both domains, our system could perform complex navigation
tasks, such as seeking a moving gate or racing through a dynamic track, with higher
performance than state-of-the-art, highly engineered systems. In the present paper, we
extend the approach to generalize to environments and conditions not seen at training
time. In addition, we evaluate the effect of design parameters on closed-loop control
performance, and analyze the computation-accuracy trade-offs in the system design.

In the earlier version [171], the perception system was track specific: it required a
substantial amount of training data from the target race track. Therefore, significant
changes in the track layout, background appearance, or lighting would hurt performance.
In order to increase the generalization abilities and robustness of our perception system,
we propose to use domain randomization [341]. The idea is to randomize during data
collection all the factors to which the system must be invariant, i.e., illumination,
viewpoint, gate appearance, and background. We show that domain randomization leads
to an increase in closed-loop performance relative to our earlier work [171] when evaluated
in environments or conditions not seen at training time. Specifically, we demonstrate
performance increases of up to 300% in simulation (Fig. D.6) and up to 36% in real-world
experiments (Fig. D.14).

Interestingly, the perception system becomes invariant not only to specific environments
and conditions but also to the training domain. We show that after training purely
in non-photorealistic simulation, the perception system can be deployed on a physical
quadrotor that successfully races in the real world. On real tracks, the policy learned in
simulation has comparable performance to one trained with real data, thus alleviating
the need for tedious data collection in the physical world.

D.2 Related Work

Pushing a robotic platform to the limits of handling gives rise to fundamental challenges
for both perception and control. On the perception side, motion blur, challenging lighting
conditions, and aliasing can cause severe drift in vision-based state estimation [96, 248, 216].
Other sensory modalities, e.g. LIDAR or event-based cameras, could partially alleviate
these problems [37, 288]. Those sensors are however either too bulky or too expensive to be
used on small racing quadrotors. Moreover, state-of-the-art state estimation methods are
designed for a predominantly-static world, where no dynamic changes to the environment
occur.

From the control perspective, plenty of work has been done to enable high-speed navigation,
both in the context of autonomous drones [227, 242, 239] and autonomous cars [184,

98

D.2. Related Work

164, 174, 358]. However, the inherent difficulties of state estimation make these methods
difficult to adapt for small, agile quadrotors that must rely solely on onboard sensing and
computing. We will now discuss approaches that have been proposed to overcome the
aforementioned problems.

D.2.1 Data-driven Algorithms for Autonomous Navigation

A recent line of work, focused mainly on autonomous driving, has explored data-driven
approaches that tightly couple perception and control [71, 264, 283, 158]. These methods
provide several interesting advantages, e.g. robustness against drifts in state estimation [71,
264] and the possibility to learn from failures [158]. The idea of learning a navigation
policy end-to-end from data has also been applied in the context of autonomous, vision-
based drone flight [298, 206, 106]. To overcome the problem of acquiring a large amount
of annotated data to train a policy, Loquercio et al. [206] proposed to use data from
ground vehicles, while Gandhi et al. [106] devised a method for automated data collection
from the platform itself. Despite their advantages, end-to-end navigation policies suffer
from high sample complexity and low generalization to conditions not seen at training
time. This hinders their application to contexts where the platform is required to fly at
high speed in dynamic environments. To alleviate some of these problems while retaining
the advantages of data-driven methods, a number of works propose to structure the
navigation system into two modules: perception and control [120, 66, 46, 52, 247]. This
kind of modularity has proven to be particularly important for transferring sensorimotor
systems across different tasks [52, 66] and application domains [46, 247].

We employ a variant of this perception-control modularization in our work. However,
in contrast to prior work, we enable high-speed, agile flight by making the output of
our neural perception module compatible with fast and accurate model-based trajectory
planners and trackers.

D.2.2 Drone Racing

The popularity of drone racing has recently kindled significant interest in the robotics
research community. The classic solution to this problem is image-based visual servoing,
where a robot is given a set of target locations in the form of reference images or patterns.
Target locations are then identified and tracked with hand-crafted detectors [335, 83,
197]. However, the handcrafted detectors used by these approaches quickly become
unreliable in the presence of occlusions, partial visibility, and motion blur. To overcome
the shortcomings of classic image-based visual servoing, recent work proposed to use a
learning-based approach for localizing the next target [156]. The main problem of this
kind of approach is, however, limited agility. Image-based visual servoing is reliable when
the difference between the current and reference images is small, which is not always the
case under fast motion.

Another approach to autonomous drone racing is to learn end-to-end navigation policies
via imitation learning [246]. Methods of this type usually predict low-level control

99

Appendix D. Deep Drone Racing: From Simulation to Reality with
Domain Randomization

commands, in the form of body-rates and thrust, directly from images. Therefore,
they are agnostic to drift in state estimation and can potentially operate in dynamic
environments, if enough training data is available. However, despite showing promising
results in simulated environments, these approaches still suffer from the typical problems of
end-to-end navigation: (i) limited generalization to new environments and platforms and
(ii) difficulties in deployment to real platforms due to high computational requirements
(desired inference rate for agile quadrotor control is much higher than what current
on-board hardware allows).

To facilitate robustness in the face of unreliable state estimation and dynamic environments,
while also addressing the generalization and feasibility challenges, we use modularization.
On one hand, we take advantage of the perceptual awareness of CNNs to produce
navigation commands from images. On the other hand, we benefit from the high speed
and reliability of classic control pipelines for generation of low-level controls.

D.2.3 Transfer from Simulation to Reality

Learning navigation policies from real data has a shortcoming: high cost of generating
training data in the physical world. Data needs to be carefully collected and annotated,
which can involve significant time and resources. To address this problem, a recent
line of work has investigated the possibility of training a policy in simulation and then
deploying it on a real system. Work on transfer of sensorimotor control policies has mainly
dealt with manual grasping and manipulation [118, 362, 34, 148, 294, 299]. In driving
scenarios, synthetic data was mainly used to train perception systems for high-level
tasks, such as semantic segmentation and object detection [284, 150]. One exception
is the work of Müller et al. [247], which uses modularization to deploy a control policy
learned in simulation on a physical ground vehicle. Domain transfer has also been used
for drone control: Sadeghi and Levine [298] learned a collision avoidance policy by using
3D simulation with extensive domain randomization.

Akin to many of the aforementioned methods, we use domain randomization [341] and
modularization [247] to increase generalization and achieve sim-to-real transfer. Our work
applies these techniques to drone racing. Specifically, we identify the most important
factors for generalization and transfer with extensive analyses and ablation studies.

D.3 Method

We address the problem of robust, agile flight of a quadrotor in a dynamic environment.
Our approach makes use of two subsystems: perception and control. The perception
system uses a Convolutional Neural Network (CNN) to predict a goal direction in local
image coordinates, together with a desired navigation speed, from a single image collected
by a forward-facing camera. The control system uses the navigation goal produced by
the perception system to generate a minimum-jerk trajectory [242] that is tracked by a
low-level controller [78]. In the following, we describe the subsystems in more detail.

100

D.3. Method

Perception system. The goal of the perception system is to analyze the image and
provide a desired flight direction and navigation speed for the robot. We implement the
perception system by a convolutional network. The network takes as input a 300× 200
pixel RGB image, captured from the onboard camera, and outputs a tuple {~x, v}, where
~x ∈ [−1, 1]2 is a two-dimensional vector that encodes the direction to the new goal in
normalized image coordinates, and v ∈ [0, 1] is a normalized desired speed to approach it.
To allow for onboard computing, we employ a modification of the DroNet architecture of
Loquercio et al. [206]. In section D.4.3, we will present the details of our architecture,
which was designed to optimize the trade-off between accuracy and inference time. With
our hardware setup, the network achieves an inference rate of 15 frames per second while
running concurrently with the full control stack. The system is trained by imitating an
automatically computed expert policy, as explained in Section D.3.1.

Control system. Given the tuple {~x, v}, the control system generates low-level com-
mands. To convert the goal position ~x from two-dimensional normalized image coordinates
to three-dimensional local frame coordinates, we back-project the image coordinates ~x
along the camera projection ray and derive the goal point at a depth equal to the pre-
diction horizon d (see Figure D.2). We found setting d proportional to the normalized
platform speed v predicted by the network to work well. The desired quadrotor speed vdes
is computed by rescaling the predicted normalized speed v by a user-specified maximum
speed vmax: vdes = vmax · v. This way, with a single trained network, the user can control
the aggressiveness of flight by varying the maximum speed. Once pg in the quadrotor’s
body frame and vdes are available, a state interception trajectory ts is computed to
reach the goal position (see Figure D.2). Since we run all computations onboard, we use
computationally efficient minimum-jerk trajectories [242] to generate ts. To track ts, i.e.
to compute the low-level control commands, we employ the control scheme proposed by
Faessler et al. [78].

D.3.1 Training Procedure

We train the perception system with imitation learning, using automatically generated
globally optimal trajectories as a source of supervision. To generate these trajectories,
we make the assumption that at training time the location of each gate of the race
track, expressed in a common reference frame, is known. Additionally, we assume that at
training time the quadrotor has access to accurate state estimates with respect to the
latter reference frame. Note however that at test time no privileged information is needed
and the quadrotor relies on image data only. The overall training setup is illustrated in
Figure D.2.

Expert policy. We first compute a global trajectory tg that passes through all gates
of the track, using the minimum-snap trajectory implementation from Mellinger and
Kumar [227]. To generate training data for the perception network, we implement an
expert policy that follows the reference trajectory. Given a quadrotor position ~pc ∈ R3, we
compute the closest point ~pc′ ∈ R3 on the global reference trajectory. The desired position
~pg ∈ R3 is defined as the point on the global reference trajectory the distance of which
from ~pc is equal to the prediction horizon d ∈ R. We project the desired position ~pg onto

101

Appendix D. Deep Drone Racing: From Simulation to Reality with
Domain Randomization

~pc

~v

~pc′

d

~pg

ts
tg

Figure D.2 – The pose ~pc of the quadrotor is projected on the global trajectory tg to find
the point ~pc′ . The point at distance d from the current quadrotor position ~pc, which belongs
to tg in the forward direction with respect to ~pc′ , defines the desired goal position ~pg. To push
the quadrotor towards the reference trajectory tg, a short trajectory segment ts is planned and
tracked in a receding horizon fashion.

the image plane of the forward facing camera to generate the ground truth normalized
image coordinates ~xg corresponding to the goal direction. The desired speed vg is defined
as the speed of the reference trajectory at ~pc′ normalized by the maximum speed achieved
along tg.

Data collection. To train the network, we collect a dataset of state estimates and
corresponding camera images. Using the global reference trajectory, we evaluate the
expert policy on each of these samples and use the result as the ground truth for training.
An important property of this training procedure is that it is agnostic to how exactly
the training dataset is collected. We use this flexibility to select the most suitable data
collection method when training in simulation and in the real world. The key consideration
here is how to deal with the domain shift between training and test time. In our scenario,
this domain shift mainly manifests itself when the quadrotor flies far from the reference
trajectory tg. In simulation, we employed a variant of DAgger [290], which uses the expert
policy to recover whenever the learned policy deviates far from the reference trajectory.
Repeating the same procedure in the real world would be infeasible: allowing a partially
trained network to control a UAV would pose a high risk of crashing and breaking the
platform. Instead, we manually carried the quadrotor through the track and ensured a
sufficient coverage of off-trajectory positions.

Generating data in simulation. In our simulation experiment, we perform a modified
version of DAgger [290] to train our flying policy. On the data collected through the
expert policy (Section D.3.1) (in our case we let the expert policy fly for 40 s), the network
is trained for 10 epochs on the accumulated data. In the following run, the trained
network is predicting actions, which are only executed if they keep the quadrotor within a
margin ǫ from the global trajectory. In case the network’s action violates this constraint,
the expert policy is executed, generating a new training sample. This procedure is an
automated form of DAgger [290] and allows the network to recover when deviating from
the global trajectory. After another 40 s of data generation, the network is retrained
on all the accumulated data for 10 epochs. As soon as the network performs well on
a given margin ǫ, the margin is increased. This process repeats until the network can
eventually complete the whole track without help of the expert policy. In our simulation

102

D.3. Method

experiments, the margin ǫ was set to 0.5m after the first training iteration. The margin
was incremented by 0.5m as soon as the network could complete the track with limited
help from the expert policy (less than 50 expert actions needed). For experiments on the
static track, 20k images were collected, while for dynamic experiments 100k images of
random gate positions were generated.

Generating data in the real world. For safety reasons, it is not possible to apply
DAgger for data collection in the real world. Therefore, we ensure sufficient coverage
of the possible actions by manually carrying the quadrotor through the track. During
this procedure, which we call handheld mode, the expert policy is constantly generating
training samples. Due to the drift of onboard state estimation, data is generated for a
small part of the track before the quadrotor is reinitialized at a known position. For
the experiment on the static track, 25k images were collected, while for the dynamic
experiment an additional 15k images were collected for different gate positions. For the
narrow gap and occlusion experiments, 23k images were collected.

Loss function. We train the network with a weighted MSE loss on point and velocity
predictions:

L = ‖~x− ~xg‖2 + γ(v − vg)
2, (D.1)

where ~xg denotes the groundtruth normalized image coordinates and vg denotes the
groundtruth normalized speed. By cross-validation, we found the optimal weight to be
γ = 0.1, even though the performance was mostly insensitive to this parameter (see
Appendix for details).

Dynamic environments. The described training data generation procedure is limited
to static environments, since the trajectory generation method is unable to take the
changing geometry into account. How can we use it to train a perception system that
would be able to cope with dynamic environments? Our key observation is that training
on multiple static environments (for instance with varying gate positions) is sufficient
to operate in dynamic environments at test time. We collect data from multiple layouts
generated by moving the gates from their initial position. We compute a global reference
trajectory for each layout and train a network jointly on all of these. This simple approach
supports generalization to dynamic tracks, with the additional benefit of improving the
robustness of the system.

Sim-to-real transfer. One of the big advantages of perception-control modularization
is that it allows training the perception block exclusively in simulation and then directly
applying on the real system by leaving the control part unchanged. As we will show in
the experimental section, thanks to the abundance of simulated data, it is possible to
train policies that are extremely robust to changes in environmental conditions, such as
illumination, viewpoint, gate appearance, and background. In order to collect diverse
simulated data, we perform visual scene randomization in the simulated environment,
while keeping the approximate track layout fixed. Apart from randomizing visual scene
properties, the data collection procedure remains unchanged.

103

Appendix D. Deep Drone Racing: From Simulation to Reality with
Domain Randomization

(a) (b) (c) (d)

Figure D.3 – To test the generalization abilities of our approach, we randomize the visual
properties of the environment (background, illumination, gate shape, and gate texture). This
figure illustrates the random textures and shapes applied both at training (a) and test time(b).
For space reasons, not all examples are shown. In total, we used 30 random backgrounds during
training and 10 backgrounds during testing. We generated 6 different shapes of gates and used 5
of them for data generation and one for evaluation. Similarly, we used 10 random gate textures
during training and a different one during evaluation. a) Random backgrounds used during
training data generation. b) Random backgrounds used at test time. c) Gate textures. d)
Selection of training examples illustrating the gate shapes and variation in illumination properties.

We randomize the following visual scene properties: (i) the textures of the background,
floor, and gates, (ii) the shape of the gates, and (iii) the lighting in the scene. For (i),
we apply distinct random textures to background and floor from a pool of 30 diverse
synthetic textures (Figure D.3a). The gate textures are drawn from a pool of 10 mainly
red/orange textures (Figure D.3c). For gate shape randomization (ii), we create 6 gate
shapes of roughly the same size as the original gate. Figure D.3d illustrates four of
the different gate shapes used for data collection. To randomize illumination conditions
(iii), we perturb the ambient and emissive light properties of all textures (background,
floor, gates). Both properties are drawn separately for background, floor, and gates from
uniform distributions with support [0, 1] for the ambient property and [0, 0.3] for the
emissive property.

While the textures applied during data collection are synthetic, the textures applied to
background and floor at test time represent common indoor and outdoor environments
(Figure D.3b). For testing we use held-out configurations of gate shape and texture not
seen during training.

D.3.2 Trajectory Generation

Generation of global trajectory. Both in simulation and in real-world experiments,
a global trajectory is used to generate ground truth labels. To generate the trajectory,
we use the implementation of Mellinger and Kumar [227]. The trajectory is generated
by providing a set of waypoints to pass through, a maximum velocity to achieve, as well
as constraints on maximum thrust and body rates. Note that the speed on the global
trajectory is not constant. As waypoints, the centers of the gates are used. Furthermore,
the trajectory can be shaped by additional waypoints, for example if it would pass
close to a wall otherwise. In both simulation and real-world experiments, the maximum
normalized thrust along the trajectory was set to 18m s−2 and the maximum roll and
pitch rate to 1.5 rad s−1. The maximum speed was chosen based on the dimensions of the
track. For the large simulated track, a maximum speed of 10m s−1 was chosen, while on

104

D.3. Method

the smaller real-world track 6m s−1.

Generation of trajectory segments. The proposed navigation approach relies on
constant recomputation of trajectory segments ts based on the output of a CNN. Imple-
mented as state-interception trajectories, ts can be computed by specifying a start state,
goal state and a desired execution time. The velocity predicted by the network is used to
compute the desired execution time of the trajectory segment ts. While the start state of
the trajectory segment is fully defined by the quadrotor’s current position, velocity, and
acceleration, the end state is only constrained by the goal position pg, leaving velocity
and acceleration in that state unconstrained. This is, however, not an issue, since only
the first part of each trajectory segment is executed in a receding horizon fashion. Indeed,
any time a new network prediction is available, a new state interception trajectory ts is
calculated.

The goal position pg is dependent on the prediction horizon d (see Section D.3.1), which
directly influences the aggressiveness of a maneuver. Since the shape of the trajectory
is only constrained by the start state and end state, reducing the prediction horizon
decreases the lateral deviation from the straight-line connection of start state and end
state but also leads to more aggressive maneuvers. Therefore, a long prediction horizon is
usually required on straight and fast parts of the track, while a short prediction horizon
performs better in tight turns and in proximity of gates. A long prediction horizon leads
to a smoother flight pattern, usually required on straight and fast parts of the track.
Conversely, a short horizon performs more agile maneuvers, usually required in tight
turns and in the proximity of gates.

The generation of the goal position pg differs from training to test time. At training time,
the quadrotor’s current position is projected onto the global trajectory and propagated
by a prediction horizon dtrain. At test time, the output of the network is back-projected
along the camera projection ray by a planning length dtest.

At training time, we define the prediction horizon dtrain as a function of distance from
the last gate and the next gate to be traversed:

dtrain = max (dmin,min (‖slast‖, ‖snext‖)) , (D.2)

where slast ∈ R3 and snext ∈ R3 are the distances to the corresponding gates and dmin

represents the minimum prediction horizon. The minimum distance between the last
and the next gate is used instead of only the distance to the next gate to avoid jumps in
the prediction horizon after a gate pass. In our simulated track experiment, a minimum
prediction horizon of dmin = 1.5m was used, while for the real track we used dmin = 1.0m.

At test time, since the output of the network is a direction and a velocity, the length
of a trajectory segment needs to be computed. To distinguish the length of trajectory
segments at test time from the same concept at training time, we call it planning length at
test time. The planning length of trajectory segments is computed based on the velocity
output of the network (computation based on the location of the quadrotor with respect
to the gates is not possible at test time since we do not have knowledge about gate

105

Appendix D. Deep Drone Racing: From Simulation to Reality with
Domain Randomization

(a) (b)

Figure D.4 – Illustration of the simulated tracks. The small track (a) consists of 4 gates and
spans a total length of 43 meters. The large track (b) consists of 8 gates placed at different
heights and spans a total length of 116 meters.

positions). The objective is again to adapt the planning length such that both smooth
flight at high speed and aggressive maneuvers in tight turns are possible. We achieve this
versatility by computing the planning length according to this linear function:

dtest = min [dmax,max (dmin,mdvout)] , (D.3)

where md = 0.6 s, dmin = 1.0m and dmax = 2.0m in our real-world experiments, and
md = 0.5 s, dmin = 2.0m and dmax = 5.0m in the simulated track.

D.4 Experiments

We extensively evaluate the presented approach in a wide range of simulated and real
scenarios. We first use a controlled, simulated environment to test the main building
blocks of our system, i.e. the convolutional architecture and the perception-control
modularization. Then, to show the ability of our approach to control real quadrotors, we
perform a second set of experiments on a physical platform. We compare our approach to
state-of-the-art methods, as well as to human drone pilots of different skill levels. We also
demonstrate that our system achieves zero-shot simulation-to-reality transfer. A policy
trained on large amounts of cheap simulated data shows increased robustness against
external factors, e.g. illumination and visual distractors, compared to a policy trained
only with data collected in the real world. Finally, we perform an ablation study to
identify the most important factors that enable successful policy transfer from simulation
to the real world.

D.4.1 Experimental Setup

For all our simulation experiments we use Gazebo as the simulation engine. Although
non-photorealistic, we have selected this engine since it models with high fidelity the
physics of a quadrotor via the RotorS extension [102].

Specifically, we simulate the AscTec Hummingbird multirotor, which is equipped with a
forward-looking 300× 200 pixels RGB camera.

The platform is spawned in a flying space of cubical shape with side length of 70 meters,

106

D.4. Experiments

8 10 12
0

50

100

Max. Speed [m/s]

T
as

k
C

om
p
le

ti
on

[%
]

Performance on Static Track

VIO Baseline

Ours

(a)

1 2 3 4 5

Success Threshold [# Laps]

Analysis of Success Threshold

VIO Baseline

Ours

(b)

0 100 200 300

Rel. Gate Movement [%]

Performance on Dynamic Track

VIO Baseline

Ours

(c)

Figure D.5 – a) Results of simulation experiments on the large track with static gates for
different maximum speeds. Task completion rate measures the fraction of gates that were
successfully completed without crashing. A task completion rate of 100% is achieved if the drone
can complete five consecutive laps without crashing. For each speed 10 runs were performed. b)
Analysis of the influence of the choice of success threshold. The experimental setting is the same
as in Figure D.5a, but the performance is reported for a fixed maximum speed of 10m s−1 and
different success thresholds. The y-axis is shared with Figure D.5a. c) Result of our approach
when flying through a simulated track with moving gates. Every gate independently moves in
a sinusoidal pattern with an amplitude proportional to its base size (1.3m), with the indicated
multiplier. For each amplitude 10 runs were performed. As for the static gate experiment, a
task completion rate of 100% is achieved if the drone can complete five consecutive laps without
crashing. Maximum speed is fixed to 8m s−1. The y-axis is shared with Figure D.5a. Lines
denote mean performance, while the shaded areas indicate one standard deviation. The reader is
encouraged to watch the supplementary video to better understand the experimental setup and
the task difficulty.

which contains the experiment-specific race track. The flying space is bounded by
background and floor planes whose textures are randomized in the simulation experiments
of Section D.4.5.

The large simulated race track (Figure D.4b) is inspired by a real track used in international
competitions. We use this track layout for all of our experiments, except the comparison
against end-to-end navigation policies. The track is travelled in the same direction
(clockwise or counterclockwise) at training and testing time. We will release all code
required to run our simulation experiments upon acceptance of this manuscript.

For real-world experiments, except for the ones evaluating sim-to-real transfer, we collected
data in the real world. We used an in-house quadrotor equipped with an Intel UpBoard
and a Qualcomm Snapdragon Flight Kit. While the latter is used for visual-inertial
odometry, the former represents the main computational unit of the platform. The Intel
UpBoard was used to run all the calculations required for flying, from neural network
prediction to trajectory generation and tracking.

D.4.2 Experiments in Simulation

Using a controlled simulated environment, we perform an extensive evaluation to (i) un-
derstand the advantages of our approach with respect to end-to-end or classical navigation

107

Appendix D. Deep Drone Racing: From Simulation to Reality with
Domain Randomization

policies, (ii) test the system’s robustness to structural changes in the environment, and
(iii) analyze the effect of the system’s hyper-parameters on the final performance.

Comparison to end-to-end learning approach. In our first scenario, we use a small
track that consists of four gates in a planar configuration with a total length of 43 meters
(Figure D.4a).

We use this track to compare the performance to a naive deep learning baseline that
directly regresses body rates from raw images. Ground truth body rates for the baseline
were provided by generating a minimum snap reference trajectory through all gates and
then tracking it with a low-level controller [78]. For comparability, this baseline and
our method share the same network architecture. Our approach was always able to
successfully complete the track. In contrast, the naive baseline could never pass through
more than one gate. Training on more data (35K samples, as compared to 5K samples
used by our method) did not noticeably improve the performance of the baseline. We
believe that end-to-end learning of low-level controls [246] is suboptimal for the task of
drone navigation when operating in the real world. Since a quadrotor is an unstable
platform [251], learning the function that converts images to low-level commands has a
very high sample complexity. Additionally, the network is constrained by computation
time. In order to guarantee stable control, the baseline network would have to produce
control commands at a higher frequency (typically 50Hz) than the camera images arrive
(30Hz) and process them at a rate that is computationally infeasible with existing onboard
hardware. In our experiments, since the low-level controller runs at 50Hz, a network
prediction is repeatedly applied until the next prediction arrives.

In order to allow on-board sensing and computing, we propose a modularization scheme
which organizes perception and control into two blocks. With modularization, our
approach can benefit from the most advanced learning based perceptual architectures and
from years of study in the field of control theory [218]. Because body rates are generated
by a classic controller, the network can focus on the navigation task, which leads to high
sample efficiency. Additionally, because the network does not need to ensure the stability
of the platform, it can process images at a lower rate than required for the low-level
controller, which unlocks onboard computation. Given its inability to complete even
this simple track, we do not conduct any further experiments with the direct end-to-end
regression baseline.

Performance on a complex track. In order to explore the capabilities of our approach
of performing high-speed racing, we conduct a second set of experiments on a larger
and more complex track with 8 gates and a length of 116 meters (Figure D.4b). The
quantitative evaluation is conducted in terms of average task completion rate over five
runs initialized with different random seeds. For one run, the task completion rate linearly
increases with each passed gate while 100% task completion is achieved if the quadrotor
is able to successfully complete five consecutive laps without crashing. As a baseline, we
use a pure feedforward setting by following the global trajectory tg using state estimates
provided by visual inertial odometry [96].

The results of this experiment are shown in Figure D.5a. We can observe that the VIO

108

D.4. Experiments

4 6 8 10 12
0

20

40

60

80

100

Speed [m/s]

T
as

k
C

om
p
le

ti
on

[%
]

Background, Shape

Background, Illumination

Background

Background, Illumination, Shape

Figure D.6 – Generalization tests on different backgrounds after domain randomization. More
comprehensive randomization increases the robustness of the learned policy to unseen scenarios
at different speeds. Lines denote mean performance, while the shaded areas indicate one standard
deviation. Background randomization has not been included in the analysis: without it the policy
fails to complete even a single gate pass.

baseline, due to accumulated drift, performs worse than our approach. Figure D.5b
illustrates the influence of drift on the baseline’s performance. While performance is
comparable when one single lap is considered a success, it degrades rapidly if the threshold
for success is raised to more laps. On a static track (Figure D.5a), a SLAM-based state
estimator [248, 278] would have less drift than a VIO baseline, but we empirically found
the latency of existing open-source SLAM pipelines to be too high for closed-loop control.
A benchmark comparison of latencies of monocular visual-inertial SLAM algorithms for
flying robots can be found in [64].

Our approach works reliably up to a maximum speed of 9m s−1 and performance degrades
gracefully at higher velocities. The decrease in performance at higher speeds is mainly due
to the higher body rates of the quadrotor that larger velocities inevitably entail. Since
the predictions of the network are in the body frame, the limited prediction frequency
(30Hz in the simulation experiments) is no longer sufficient to cope with the large roll
and pitch rates of the platform at high velocities.

Generalization to dynamic environments. The learned policy has a characteristic
that the expert policy lacks of: the ability to cope with dynamic environments. To
quantitatively test this ability, we reuse the track layout from the previous experiment
(Figure D.4b), but dynamically move each gate according to a sinusoidal pattern in
each dimension independently. Figure D.5c compares our system to the VIO baseline
for varying amplitudes of gates’ movement relative to their base size. We evaluate the
performance using the same metric as explained in Section D.4.1. For this experiment, we
kept the maximum platform velocity vmax constant at 8m s−1. Despite the high speed, our
approach can handle dynamic gate movements up to 1.5 times the gate diameter without
crashing. In contrast, the VIO baseline cannot adapt to changes in the environment, and
fails even for small gate motions up to 50% of the gate diameter. The performance of our

109

Appendix D. Deep Drone Racing: From Simulation to Reality with
Domain Randomization

1 2 3 4 5

dmin [m]

10

9

8

7

6

5

4

3

2

d
m

a
x
[m

]

17.7

56.5 19.4

96.8 96.8 54.8

80.6 98.4 100.0 80.6

71.0 96.8 96.8 100.0 100.0

77.4 74.2 53.2 66.1

6.5 29.0 29.0

6.5 6.5

6.5

0

20

40

60

80

100

T
ask

C
o
m
p
letion

[%
]

Figure D.7 – Sensitivity analysis of planning length parameters dmin, dmax on a simulated
track. Maximum speed and (static) track layout are kept constant during the experiment.

approach gracefully degrades for gate movements larger than 1.5 times the gate diameter,
mainly due to the fact that consecutive gates get too close in flight direction while being
shifted in other directions. Such configurations require extremely sharp turns that go
beyond the navigation capabilities of the system. From this experiment, we can conclude
that the proposed approach reactively adapts to dynamic changes in the environment
and generalizes well to cases where the track layout remains roughly similar to the one
used to collect training data.

Generalization to changes in the simulation environment. In the previous exper-
iments, we have assumed a constant environment (background, illumination, gate shape)
during data collection and testing. In this section, we evaluate the generalization abilities
of our approach to environment configurations not seen during training. Specifically, we
drastically change the environment background (Figure D.3b) and use gate appearance
and illumination conditions held out at training time.

Figure D.6 shows the result of this evaluation. As expected, if data collection is performed
in a single environment, the resulting policy has limited generalization (red line). To make
the policy environment-agnostic, we performed domain randomization while keeping the
approximate track layout constant (details in Section D.3.1). Clearly, both randomization
of gate shape and illumination lead to a policy that is more robust to new scenarios.
Furthermore, while randomization of a single property leads to a modest improvement,
performing all types of randomization simultaneously is crucial for good transfer. Indeed,
the simulated policy needs to be invariant to all of the randomized features in order to
generalize well.

110

D.4. Experiments

4 5 6 7 8 9 10
0

20

40

60

80

100

Speed [m/s]

T
as

k
C

om
p
le

ti
on

[%
]

Cap. 0.25
Cap. 0.5
Cap. 1.0
Cap. 1.5
Cap. 2.0

Figure D.8 – Comparison of different network capacities on different backgrounds after domain
randomization.

Surprisingly, as we show below, the learned policy can not only function reliably in
simulation, but is also able to control a quadrotor in the real world. In Section D.4.5 we
present an evaluation of the real world control abilities of this policy trained in simulation,
as well as an ablation study to identify which of the randomization factors presented
above are the most important for generalization and knowledge transfer.

Sensitivity to planning length. We perform an ablation study of the planning length
parameters dmin, dmax on a simulated track. Both the track layout and the maximum
speed (10.0m s−1) are kept constant in this experiment. We varied dmin between 1.0m and
5.0m and dmax between (dmin + 1.0)m and (dmin + 5.0)m. Figure D.7 shows the results
of this evaluation. For each configuration the average task completion rate (Section D.4.1)
over 5 runs is reported. Our systems performs well over a large range of dmin, dmax,
with performance dropping sharply only for configurations with very short or very long
planning lengths. This behaviour is expected, since excessively short planning lengths
result in very aggressive maneuvers, while excessively long planning lengths restrict the
agility of the platform.

D.4.3 Analysis of Accuracy and Efficiency

The neural network at the core of our perception system constitutes the biggest computa-
tional bottleneck of our approach. Given the constraints imposed by our processing unit,
we can guarantee real-time performance only with relatively small CNNs. Therefore, we
investigated the relationship between the capacity (hence the representational power) of
a neural network and its performance on the navigation task. We measure performance
in terms of both prediction accuracy on a validation set, and closed-loop control on a sim-
ulated platform, using, as above, completion rate as metric. The capacity of the network
is controlled through a multiplicative factor on the number of filters (in convolutional
layers) and number of nodes (in fully connected layers). The network with capacity 1.0
corresponds to the DroNet architecture [206].

111

Appendix D. Deep Drone Racing: From Simulation to Reality with
Domain Randomization

0.5 1 1.5 2
0.14

0.15

0.16

0.17

0.18

0.19

Network Capacity

T
es

t
L
os

s

0.5 1 1.5 2
20

40

60

80

100

120

In
fe

re
n
ce

T
im

e
[m

s]

Figure D.9 – Test loss and inference time for different network capacity factors. Inference time
is measured on the actual platform.

Figure D.9 shows the relationship between the network capacity, its test loss (RMSE) on
a validation set, and its inference time on an Intel UpBoard (our onboard processing unit).
Given their larger parametrization, wider architectures have a lower generalization error
but largely increase the computational and memory budget required for their execution.
Interestingly, a lower generalization loss does not always correspond to a better closed-loop
performance. This can be observed in Figure D.8, where the network with capacity 1.5
outperforms the one with capacity 2.0 at high speeds. Indeed, as shown in Figure D.9,
larger networks entail smaller inference rates, which result in a decrease in agility.

In our previous conference paper [171], we used a capacity factor of 1.0, which appears
to have a good time-accuracy trade-off. However, in the light of this study, we select a
capacity factor of 0.5 for all our new sim-to-real experiments to ease the computational
burden. Indeed, the latter experiments are performed at a speed of 2m s−1, where both
0.5 and 1.0 have equivalent closed-loop control performance (Figure D.8).

D.4.4 Experiments in the Real World

To show the ability of our approach to function in the real world, we performed experiments
on a physical quadrotor. We compared our model to state-of-the-art classic approaches
to robot navigation, as well as to human drone pilots of different skill levels.

Narrow gate passing. In the initial set of experiments the quadrotor was required
to pass through a narrow gate, only slightly larger than the platform itself. These
experiments are designed to test the robustness and precision of the proposed approach.
An illustration of the setup is shown in Figure D.10. We compare our approach to the
handcrafted window detector of Falanga et al. [83] by replacing our perception system
with the handcrafted detector and leaving the control system unchanged.

Table D.1 shows a comparison between our approach and the baseline. We tested the
robustness of both approaches to the initial position of the quadrotor by placing the

112

D.4. Experiments

Figure D.10 – Setup of the narrow gap and occlusion experiments.

Relative Angle Range [◦] Handcrafted Detector Network

[0, 30] 70% 100%
[30, 70] 0% 80%
[70, 90]* 0% 20%

Table D.1 – Success rate for flying through a narrow gap from different initial angles. Each row
reports the average of ten runs uniformly spanning the range. The gate was completely invisible
at initialization in the experiments marked with *.

platform at different starting angles with respect to the gate (measured as the angle
between the line joining the center of gravity of the quadrotor and the gate, respectively,
and the optical axis of the forward facing camera on the platform). We then measured
the average success rate at passing the gate without crashing. The experiments indicate
that our approach is not sensitive to the initial position of the quadrotor. The drone is
able to pass the gate consistently, even if the gate is only partially visible. In contrast,
the baseline sometimes fails even if the gate is fully visible because the window detector
loses tracking due to platform vibrations. When the gate is not entirely in the field of
view, the handcrafted detector fails in all cases.

In order to further highlight the robustness and generalization abilities of the approach,
we perform experiments with an increasing amount of clutter that occludes the gate.
Note that the learning approach has not been trained on such occluded configurations.
Figure D.11 shows that our approach is robust to occlusions of up to 50% of the total
area of the gate (Figure D.10), whereas the handcrafted baseline breaks down even for
moderate levels of occlusion. For occlusions larger than 50% we observe a rapid drop in
performance. This can be explained by the fact that the remaining gap was barely larger
than the drone itself, requiring very high precision to successfully pass it. Furthermore,
visual ambiguities of the gate itself become problematic. If just one of the edges of the
window is visible, it is impossible to differentiate between the top and bottom part. This
results in over-correction when the drone is very close to the gate.

Experiments on a race track. To evaluate the performance of our approach in a
multi-gate scenario, we challenge the system to race through a track with either static or
dynamic gates. The track is shown in Figure D.13. It is composed of four gates and has
a total length of 21 meters.

113

Appendix D. Deep Drone Racing: From Simulation to Reality with
Domain Randomization

0 20 40 60
0

20

40

60

80

100

Occlusion of Gate [%]

S
u
cc

.
G

at
e

P
as

se
s

[%
]

Ours

Baseline

Figure D.11 – Success rate for different amounts of occlusion of the gate. Our method is much
more robust than the baseline method that makes use of a hand-crafted window detector. Note
that at more than 60% occlusion, the platform has barely any space to pass through the gap.

20 40 60 80 100

5

10

15

Success Rate [%]

B
es

t
L
ap

T
im

e
[s

] Ours [1m/s]

Ours [2m/s]

Ours [3m/s]

VIO [1m/s]

VIO [2m/s]

Professional Pilot

Intermediate Pilot

Figure D.12 – Results on a real race track composed of 4 gates. Our learning-based approach
compares favorably against a set of baselines based on visual-inertial state estimation. Additionally,
we compare against an intermediate and a professional human pilot. We evaluate success rate
using the same metric as explained in Section D.4.1.

Figure D.13 – Track configuration used for the real world experiments.

114

D.4. Experiments

To fully understand the potential and limitations of our approach, we compared to a
number of baselines, such as a classic approach based on planning and tracking [203]
and human pilots of different skill levels. Note that due to the smaller size of the real
track compared to the simulated one, the maximum speed achieved in the real world
experiments is lower than in simulation. For our baseline, we use a state-of-the-art
visual-inertial odometry (VIO) approach [203] for state estimation in order to track the
global reference trajectory.

Figure D.12 summarizes the quantitative results of our evaluation, where we measure
success rate (completing five consecutive laps without crashing corresponds to 100%), as
well as the best lap time. Our learning-based approach outperforms the VIO baseline,
whose drift at high speeds inevitably leads to poor performance. In contrast, our approach
is insensitive to state estimation drift, since it generates navigation commands in the
body frame. As a result, it completes the track with higher robustness and speed than
the VIO baseline.

In order to see how state-of-the-art autonomous approaches compare to human pilots, we
asked a professional and an intermediate pilot to race through the track in first-person
view. We allowed the pilots to practice the track for 10 laps before lap times and failures
were measured (Table D.2). It is evident from Figure D.12 that both the professional
and the intermediate pilots were able to complete the track faster than the autonomous
systems. However, the high speed and aggressive flight by human pilots comes at the cost
of increased failure rates. The intermediate pilot in particular had issues with the sharp
turns present in the track, leading to frequent crashes. Compared with the autonomous
systems, human pilots perform more agile maneuvers, especially in sharp turns. Such
maneuvers require a level of reasoning about the environment that our autonomous system
still lacks.

Dynamically moving gates. We performed an additional experiment to understand
the abilities of our approach to adapt to dynamically changing environments. In order to
do so, we manually moved the gates of the race track (Figure D.13) while the quadrotor
was navigating through it. Flying the track under these conditions requires the navigation
system to reactively respond to dynamic changes. Note that moving gates break the main
assumption of traditional high-speed navigation approaches [39, 101], specifically that the
trajectory can be pre-planned in a static world. They could thus not be deployed in this
scenario. Due to the dynamic nature of this experiment, we encourage the reader to watch
the supplementary video available at http://youtu.be/8RILnqPxo1s. Table D.2 provides
a comparison in term of task completion and lap time with respect to a professional

Task Completion (Average) Best lap time [s]
Method static dynamic static dynamic

Ours 95% 95% 12.1 15.0
Professional Pilot 90% 80% 5.0 6.5

Table D.2 – Comparison of our approach with a professional human pilot on a static and a
dynamic track. We evaluate the performance using the same metric as explained in Section D.4.1.

115

http://youtu.be/8RILnqPxo1s

Appendix D. Deep Drone Racing: From Simulation to Reality with
Domain Randomization

pilot. Due to the gates’ movement, lap times are larger than the ones recorded in static
conditions. However, while our approach achieves the same performance with respect to
crashes, the human pilot performs slightly worse, given the difficulties entailed by the
unpredictability of the track layout. It is worth noting that training data for our policy
was collected by changing the position of only a single gate, but the network was able to
cope with movement of any gate at test time.

D.4.5 Simulation to Real World Transfer

We now attempt direct simulation-to-real transfer of the navigation system. To train the
policy in simulation, we use the same process to collect simulated data as in Section D.4.1,
i.e. randomization of illumination conditions, gate appearance, and background. The
resulting policy, evaluated in simulation in Figure D.6, is then used without any finetuning
to fly a real quadrotor. Despite the large appearance differences between the simulated
environment (Figure D.3d) and the real one (Figure D.13), the policy trained in simulation
via domain randomization has the ability to control the quadrotor in the real world.
Thanks to the abundance of simulated data, this policy can not only be transferred
from simulation to the real world, but is also more robust to changes in the environment
than the policy trained with data collected on the real track. As can be seen in the
supplementaty video, the policy learned in simulation can not only reliably control the
platform, but is also robust to drastic differences in illumination and distractors on the
track.

To quantitatively benchmark the policy learned in simulation, we compare it against a
policy that was trained on real data. We use the same metric as explained in Section D.4.1
for this evaluation. All experiments are repeated 10 times and the results averaged. The
results of this evaluation are shown in Figure D.14. The data that was used to train the
“real” policy was recorded on the same track for two different illumination conditions,
easy and medium. Illumination conditions are varied by changing the number of enabled
light sources: 4 for the easy, 2 for the medium, and 1 for the difficult. The supplementary
video illustrates the different illumination conditions.

The policy trained in simulation performs on par with the one trained with real data
in experiments that have the same illumination conditions as the training data of the
real policy. However, when the environment conditions are drastically different (i.e. with
very challenging illumination) the policy trained with real data is outperformed by the
one trained in simulation. Indeed, as shown by previous work [148], the abundance
of simulated training data makes the resulting learning policy robust to environmental
changes. We invite the reader to watch the supplementary video to understand the
difficulty of this last set of experiments.

What is important for transfer? We conducted a set of ablation studies to understand
what are the most important factors for transfer from simulation to the real world. In
order to do so, we collected a dataset of real world images from both indoor and outdoor
environments in different illumination conditions, which we then annotated using the
same procedure as explained in Section D.3. More specifically, the dataset is composed of

116

D.4. Experiments

Easy Medium Difficult
0

20

40

60

80

100

Illumination

T
as

k
C

om
p
le

ti
on

[%
]

Sim2Real

Real

Figure D.14 – Performance comparison (measured with task completion rate) of the model
trained in simulation and the one trained with real data. With easy and medium illumination (on
which the real model was trained on), the approaches achieve comparable performance. However,
with difficult illumination the simulated model outperforms the real one, since the latter was
never exposed to this degree of illumination changes at training time. The supplementary video
illustrates the different illumination conditions.

Texture

No Texture
Texture

No Texture

Shape

No Shape

0.199 0.213 0.243 0.311

0.207 0.225 0.265 0.339

 Illumination No Illumination

0.10
0.15
0.20
0.25
0.30
0.35
0.40

RM
SE

Figure D.15 – Average RMSE on testing data collected in the real world (lower is better).
Headers indicate what is randomized during data collection.

approximately 10K images and is collected from 3 indoor environments under different
illumination conditions. Sample images of this dataset are shown in the appendix.

During data collection in simulation, we perform randomization of background, illumi-
nation conditions, and gate appearance (shape and texture). In this experiments, we
study the effect of each of the randomized factors, except for the background which
is well known to be fundamental for transfer [148, 341, 298]. We use as metric the
Root Mean Square Error (RMSE) in prediction on our collected dataset. As shown in
Figure D.15, illumination is the most important of the randomization factors, while gate
shape randomization has the smallest effect. Indeed, while gate appearance is similar
in the real world and in simulation, the environment appearance and illumination are
drastically different. However, including more randomization is always beneficial for the
robustness of the resulting policy (Figure D.6).

117

Appendix D. Deep Drone Racing: From Simulation to Reality with
Domain Randomization

D.5 Discussion and Conclusion

We have presented a new approach to autonomous, vision-based drone racing. Our
method uses a compact convolutional neural network to continuously predict a desired
waypoint and speed directly from raw images. These high-level navigation directions
are then executed by a classic planning and control pipeline. As a result, the system
combines the robust perceptual awareness of modern machine learning pipelines with the
precision and speed of well-known control algorithms.

We investigated the capabilities of this integrated approach over three axes: precision,
speed, and generalization. Our extensive experiments, performed both in simulation and
on a physical platform, show that our system is able to navigate complex race tracks,
avoids the problem of drift that is inherent in systems relying on global state estimates,
and can cope with highly dynamic and cluttered environments.

Our previous conference work [171] required collecting a substantial amount of training
data from the track of interest. Here instead we propose to collect diverse simulated
data via domain randomization to train our perception policy. The resulting system can
not only adapt to drastic appearance changes in simulation, but can also be deployed
to a physical platform in the real world even if only trained in simulation. Thanks to
the abundance of simulated data, a perception system trained in simulation can achieve
higher robustness to changes in environment characteristics (e.g. illumination conditions)
than a system trained with real data.

It is interesting to compare the two training strategies—on real data and sim-to-real—in
how they handle ambiguous situations in navigation, for instance when no gate is visible
or multiple gates are in the field of view. Our previous work [171], which was trained
on the test track, could disambiguate those cases by using cues in the environment, for
instance discriminative landmarks in the background. This can be seen as implicitly
memorizing a map of the track in the network weights. In contrast, when trained only in
simulation on multiple tracks (or randomized versions of the same track), our approach
can no longer use such background cues to disambiguate the flying direction and has
instead to rely on a high-level map prior. This prior, automatically inferred from the
training data, describes some common characteristics of the training tracks, such as, for
instance, to always turn right when no gate is visible. Clearly, when ambiguous cases
cannot be resolved with a prior of this type (e.g. an 8-shaped track), our sim-to-real
approach would likely fail. Possible solutions to this problem are fine-tuning with data
coming from the real track, or the use of a metric prior on the track shape to make
decisions in ambiguous conditions [170].

Due to modularity, our system can combine model-based control with learning-based
perception. However, one of the main disadvantages of modularity is that errors coming
from each sub-module degrade the full system performance in a cumulative way. To
overcome this problem, we plan to improve each component with experience using a
reinforcement learning approach. This could increase the robustness of the system and
improve its performance in challenging scenarios (e.g. with moving obstacles).

118

D.5. Discussion and Conclusion

While our current set of experiments was conducted in the context of drone racing, we
believe that the presented approach could have broader implications for building robust
robot navigation systems that need to be able to act in a highly dynamic world. Methods
based on geometric mapping, localization, and planning have inherent limitations in this
setting. Hybrid systems that incorporate machine learning, like the one presented in this
paper, can offer a compelling solution to this task, given the possibility to benefit from
near-optimal solutions to different subproblems. However, scaling our proposed approach
to more general applications, such as disaster response or industrial inspection, poses
several challenges. First, due to the unknown characteristics of the path to be flown
(layout, presence and type of landmarks, obstacles), the generation of a valid teacher
policy would be impossible. This could be addressed with techniques such as few-shot
learning. Second, the target applications might require extremely high agility, for instance
in the presence of sharp turns, which our autonomous system still lacks of. This issue
could be alleviated by integrating learning deeper into the control system [264].

119

E Deep Drone Acrobatics

The version presented here is reprinted, with permission, from:

Elia Kaufmann∗, Antonio Loquercio∗, René Ranftl, Matthias Müller, Vladlen Koltun,
and Davide Scaramuzza. “Deep Drone Acrobatics”. In: Robotics: Science and Systems
(RSS). 2020

121

Appendix E. Deep Drone Acrobatics

Deep Drone Acrobatics

Elia Kaufmann∗, Antonio Loquercio∗, René Ranftl, Matthias Müller,

Vladlen Koltun, Davide Scaramuzza

Abstract — Performing acrobatic maneuvers with quadrotors is
extremely challenging. Acrobatic flight requires high thrust and ex-
treme angular accelerations that push the platform to its physical
limits. Professional drone pilots often measure their level of mastery
by flying such maneuvers in competitions. In this paper, we propose
to learn a sensorimotor policy that enables an autonomous quadrotor
to fly extreme acrobatic maneuvers with only onboard sensing and
computation. We train the policy entirely in simulation by leveraging
demonstrations from an optimal controller that has access to privileged
information. We use appropriate abstractions of the visual input to
enable transfer to a real quadrotor. We show that the resulting policy
can be directly deployed in the physical world without any fine-tuning
on real data. Our methodology has several favorable properties: it
does not require a human expert to provide demonstrations, it cannot
harm the physical system during training, and it can be used to learn
maneuvers that are challenging even for the best human pilots. Our
approach enables a physical quadrotor to fly maneuvers such as the
Power Loop, the Barrel Roll, and the Matty Flip, during which it
incurs accelerations of up to 3g.

122

E.1. Introduction

Figure E.1 – A quadrotor performs a Barrel Roll (left), a Power Loop (middle), and a Matty
Flip (right). We safely train acrobatic controllers in simulation and deploy them with no fine-
tuning (zero-shot transfer) on physical quadrotors. The approach uses only onboard sensing and
computation. No external motion tracking was used.

Supplementary Material

A video demonstrating acrobatic maneuvers is available at https://youtu.be/2N_
wKXQ6MXA. Code can be found at https://github.com/uzh-rpg/deep_drone_acrobatics.

E.1 Introduction

Acrobatic flight with quadrotors is extremely challenging. Human drone pilots require
many years of practice to safely master maneuvers such as power loops and barrel rolls1.
Existing autonomous systems that perform agile maneuvers require external sensing and/or
external computation [214, 2, 38]. For aerial vehicles that rely only on onboard sensing and
computation, the high accelerations that are required for acrobatic maneuvers together
with the unforgiving requirements on the control stack raise fundamental questions in
both perception and control. Therefore, they provide a natural benchmark to compare
the capabilities of autonomous systems against trained human pilots.

Acrobatic maneuvers represent a challenge for the actuators, the sensors, and all physical
components of a quadrotor. While hardware limitations can be resolved using expert-level
equipment that allows for extreme accelerations, the major limiting factor to enable agile
flight is reliable state estimation. Vision-based state estimation systems either provide
significantly reduced accuracy or completely fail at high accelerations due to effects such
as motion blur, large displacements, and the difficulty of robustly tracking features over
long time frames [41]. Additionally, the harsh requirements of fast and precise control
at high speeds make it difficult to tune controllers on the real platform, since even tiny
mistakes can result in catastrophic outcomes for the platform.

The difficulty of agile autonomous flight led previous work to mostly focus on specific
aspects of the problem. One line of research focused on the control problem, assuming near-
perfect state estimation from external sensors [214, 2, 145, 38]. While these works showed
impressive examples of agile flight, they focused purely on control. The issues of reliable
perception and state estimation during agile maneuvers were cleverly circumvented by

1https://www.youtube.com/watch?v=T1vzjPa5260

123

https://youtu.be/2N_wKXQ6MXA
https://youtu.be/2N_wKXQ6MXA
https://github.com/uzh-rpg/deep_drone_acrobatics
https://www.youtube.com/watch?v=T1vzjPa5260

Appendix E. Deep Drone Acrobatics

instrumenting the environment with sensors (such as Vicon and OptiTrack) that provide
near-perfect state estimation to the platform at all times. Recent works addressed
the control and perception aspects in an integrated way via techniques like perception-
guided trajectory optimization [79, 83, 311] or training end-to-end visuomotor agents [370].
However, acrobatic performance of high-acceleration maneuvers with only onboard sensing
and computation has not yet been achieved.

In this paper, we show for the first time that a vision-based autonomous quadrotor
with only onboard sensing and computation is capable of autonomously performing agile
maneuvers with accelerations of up to 3g, as shown in Fig. E.1. This contribution is
enabled by a novel simulation-to-reality transfer strategy, which is based on abstraction
of both visual and inertial measurements. We demonstrate both formally and empirically
that the presented abstraction strategy decreases the simulation-to-reality gap with respect
to a naive use of sensory inputs. Equipped with this strategy, we train an end-to-end
sensimotor controller to fly acrobatic maneuvers exclusively in simulation. Learning
agile maneuvers entirely in simulation has several advantages: (i) Maneuvers can be
simply specified by reference trajectories in simulation and do not require expensive
demonstrations by a human pilot, (ii) training is safe and does not pose any physical risk
to the quadrotor, and (iii) the approach can scale to a large number of diverse maneuvers,
including ones that can only be performed by the very best human pilots.

Our sensorimotor policy is represented by a neural network that combines information
from different input modalities to directly regress thrust and body rates. To cope
with different output frequencies of the onboard sensors, we design an asynchronous
network that operates independently of the sensor frequencies. This network is trained
in simulation to imitate demonstrations from an optimal controller that has access to
privileged state information.

We apply the presented approach to learning autonomous execution of three acrobatic
maneuvers that are challenging even for expert human pilots: the Power Loop, the Barrel
Roll, and the Matty Flip. Through controlled experiments in simulation and on a real
quadrotor, we show that the presented approach leads to robust and accurate policies that
are able to reliably perform the maneuvers with only onboard sensing and computation.

E.2 Related Work

Acrobatic maneuvers comprehensively challenge perception and control stacks. The
agility that is required to perform acrobatic maneuvers requires carefully tuned controllers
together with accurate state estimation. Compounding the challenge, the large angular
rates and high speeds that arise during the execution of a maneuver induce strong motion
blur in vision sensors and thus compromise the quality of state estimation.

The complexity of the problem has led early works to only focus on the control aspect
while disregarding the question of reliable perception. Lupashin et al. [214] proposed
iterative learning of control strategies to enable platforms to perform multiple flips.
Mellinger et al. [228] used a similar strategy to autonomously fly quadrotors through

124

E.3. Overview

a tilted window [228]. By switching between two controller settings, Chen et al. [48]
also demonstrated multi-flip maneuvers. Abbeel et al. [2] learned to perform a series of
acrobatic maneuvers with autonomous helicopters. Their algorithm leverages expert pilot
demonstrations to learn task-specific controllers. While these works proved the ability
of flying machines to perform agile maneuvers, they did not consider the perception
problem. Indeed, they all assume that near-perfect state estimation is available during
the maneuver, which in practice requires instrumenting the environment with dedicated
sensors.

Aggressive flight with only onboard sensing and computation is an open problem. The
first attempts in this direction were made by Shen et al. [311], who demonstrated agile
vision-based flight. The work was limited to low-acceleration trajectories, therefore only
accounting for part of the control and perception problems encountered at high speed.
More recently, Loianno et al. [203] and Falanga et al. [83] demonstrated aggressive flight
through narrow gaps with only onboard sensing. Even though these maneuvers are
agile, they are very short and cannot be repeated without re-initializing the estimation
pipeline. Using perception-guided optimization, Falanga et al. [79] and Lee et al. [192]
proposed a model-predictive control framework to plan aggressive trajectories while
minimizing motion blur. However, such control strategies are too conservative to fly
acrobatic maneuvers, which always induce motion blur.

Abolishing the classic division between perception and control, a recent line of work
proposes to train visuomotor policies directly from data. Similarly to our approach, Zhang
et al. [370] trained a neural network from demonstrations provided by an MPC controller.
While the latter has access to the full state of the platform and knowledge of obstacle
positions, the network only observes laser range finder readings and inertial measurements.
Similarly, Li et al. [198] proposed an imitation learning approach for training visuomotor
agents for the task of quadrotor flight. The main limitation of these methods is in their
sample complexity: large amounts of demonstrations are required to fly even straight-line
trajectories. As a consequence, these methods were only validated in simulation or were
constrained to slow hover-to-hover trajectories.

Our approach employs abstraction of sensory input [247] to reduce the problem’s sample
complexity and enable zero-shot sim-to-real transfer. While prior work has demonstrated
the possibility of controlling real-world quadrotors with zero-shot sim-to-real transfer [208,
298], our approach is the first to learn an end-to-end sensorimotor mapping – from sensor
measurements to low-level controls – that can perform high-speed and high-acceleration
acrobatic maneuvers on a real physical system.

E.3 Overview

In order to perform acrobatic maneuvers with a quadrotor, we train a sensorimotor
controller to predict low-level actions from a history of onboard sensor measurements
and a user-defined reference trajectory. An observation o[k] ∈ O at time k ∈ [0, . . . , T]
consists of a camera image I[k] and an inertial measurement φ[k]. Since the camera and
IMU typically operate at different frequencies, the visual and inertial observations are

125

Appendix E. Deep Drone Acrobatics

updated at different rates. The controller’s output is an action u[k] = [c,ω⊤]⊤ ∈ U that
consists of continuous mass-normalized collective thrust c and bodyrates ω = [ωx, ωy, ωz]

⊤

that are defined in the quadrotor body frame.

The controller is trained via privileged learning [47]. Specifically, the policy is trained on
demonstrations that are provided by a privileged expert: an optimal controller that has
access to privileged information that is not available to the sensorimotor student, such as
the full ground-truth state of the platform s[k] ∈ S. The privileged expert is based on a
classic optimization-based planning and control pipeline that tracks a reference trajectory
from the state s[k] using MPC [79].

We collect training demonstrations from the privileged expert in simulation. Training in
simulation enables synthesis and use of unlimited training data for any desired trajectory,
without putting the physical platform in danger. This includes maneuvers that stretch
the abilities of even expert human pilots. To facilitate zero-shot simulation-to-reality
transfer, the sensorimotor student does not directly access raw sensor input such as color
images. Rather, the sensorimotor controller acts on an abstraction of the input, in the
form of feature points extracted via classic computer vision. Such abstraction supports
sample-efficient training, generalization, and simulation-to-reality transfer [247, 375].

The trained sensorimotor student does not rely on any privileged information and can be
deployed directly on the physical platform. We deploy the trained controller to perform
acrobatic maneuvers in the physical world, with no adaptation required.

The next section presents each aspect of our method in detail.

E.4 Method

We define the task of flying acrobatic maneuvers with a quadrotor as a discrete-time,
continuous-valued optimization problem. Our task is to find an end-to-end control policy
π : O → U, defined by a neural network, which minimizes the following finite-horizon
objective:

min
π

J(π) = Eρ(π)

[k=T∑

k=0

C(τr[k], s[k])
]

, (E.1)

where C is a quadratic cost depending on a reference trajectory τr[k] and the quadrotor
state s[k], and ρ(π) is the distribution of possible trajectories {(s[0],o[0],u[0]), . . . , (s[T],o[T],u[T])}
induced by the policy π.

We define the quadrotor state s[k] = [p, q,v,ω] as the platform position p, its orientation
quaternion q, and their derivatives. Note that the agent π does not directly observe the
state s[k]. We further define the reference trajectory τr[k] as a time sequence of reference
states which describe the desired trajectory. We formulate the cost C as

C(τr[k], s[k]) = x[k]⊤Lx[k], (E.2)

126

E.4. Method

Figure E.2 – Reference trajectories for acrobatic maneuvers. Top row, from left to right: Power
Loop, Barrel Roll, and Matty Flip. Bottom row: Combo.

where x[k] = τr[k]− s[k] denotes the difference between the state of the platform and
the corresponding reference at time k, and L is a positive-semidefinite cost matrix.

E.4.1 Reference Trajectories

Both the privileged expert and the learned policy assume access to a reference trajectory
τr[k] that specifies an acrobatic maneuver. To ensure that such reference is dynamically
feasible, it has to satisfy constraints that are imposed by the physical limits and the
underactuated nature of the quadrotor platform. Neglecting aerodynamic drag and motor
dynamics, the dynamics of the quadrotor can be modelled as

ṗWB = vWB

v̇WB = Wg + qWB ⊙ cB

q̇WB =
1

2
Λ (ωB) · qWB

ω̇B = J−1 · (η − ωB × J · ωB) ,

(E.3)

where pWB, vWB, qWB denote the position, linear velocity, and orientation of the platform
body frame with respect to the world frame. The gravity vector Wg is expressed in
the world frame and qWB ⊙ cB denotes the rotation of the mass-normalized thrust
vector cB = (0, 0, c)⊤ by quaternion qWB. The time derivative of a quaternion q =
(qw, qx, qy, qz)

⊤ is given by q̇ = 1
2Λ(ω) · q and Λ(ω) is a skew-symmetric matrix of the

vector (0,ω⊤)⊤ = (0, ωx, ωy, ωz)
⊤. The diagonal matrix J = diag(Jxx, Jyy, Jzz) denotes

the quadrotor inertia, and η ∈ R3 are the torques acting on the body due to the motor
thrusts.

Instead of directly planning in the full state space, we plan reference trajectories in the
space of flat outputs z = [x, y, z, ψ]⊤ proposed in [227], where x, y, z denote the position
of the quadrotor and ψ is the yaw angle. It can be shown that any smooth trajectory
in the space of flat outputs can be tracked by the underactuated platform (assuming
reasonably bounded derivatives).

127

Appendix E. Deep Drone Acrobatics

The core part of each acrobatic maneuver is a circular motion primitive with constant
tangential velocity vl. The orientation of the quadrotor is constrained by the thrust
vector the platform needs to produce. Consequently, the desired platform orientation is
undefined when there is no thrust. To ensure a well-defined reference trajectory through
the whole circular maneuver, we constrain the norm of the tangential velocity vl to be
larger by a margin ε than the critical tangential velocity that would lead to free fall at
the top of the maneuver:

‖vl‖ > ε
√
rg, (E.4)

where r denotes the radius of the loop, g = 9.81m s−2, and ε = 1.1.

While the circular motion primitives form the core part of the agile maneuvers, we use
constrained polynomial trajectories to enter, transition between, and exit the maneuvers. A
polynomial trajectory is described by four polynomial functions specifying the independent
evolution of the components of z over time:

zi(t) =

j=Pi∑

j=0

aij · tj for i ∈ {0, 1, 2, 3} . (E.5)

We use polynomials of order Pi = 7 for the position components (i = {0, 1, 2}) of the flat
outputs and Pi = 2 for the yaw component (i = 3). By enforcing continuity for both
start (t = 0) and end (t = tm) of the trajectory down to the 3rd derivative of position,
the trajectory is fully constrained. We minimize the execution time tm of the polynomial
trajectories, while constraining the maximum speed, thrust, and body rates throughout
the maneuver.

Finally, the trajectories are concatenated to the full reference trajectory, which is then
converted back to the full state-space representation τr(t) [227]. Subsequent sampling
with a frequency of 50Hz results in the discrete-time representation τr[k] of the reference
trajectory. Some example trajectories are illustrated in Figure E.2.

E.4.2 Privileged Expert

Our privileged expert π∗ consists of an MPC [79] that generates collective thrust and
body rates via an optimization-based scheme. The controller operates on the simplified
dynamical model of a quadrotor proposed in [242]:

ṗWB = vWB

v̇WB = Wg + qWB ⊙ cB

q̇WB =
1

2
Λ (ωB) · qWB

(E.6)

In contrast to the model (E.3), the simplified model neglects the dynamics of the angular
rates. The MPC repeatedly optimizes the open-loop control problem over a receding
horizon of N time steps and applies the first control command from the optimized sequence.

128

E.4. Method

Figure E.3 – Network architecture. The network receives a history of feature tracks, IMU mea-
surements, and reference trajectories as input. Each input modality is processed using temporal
convolutions and updated at different input rates. The resulting intermediate representations
are processed by a multi-layer perceptron at a fixed output rate to produce collective thrust and
body rate commands.

Specifically, the action computed by the MPC is the first element of the solution to the
following optimization problem:

π∗ = min
u

{

x[N]⊤Qx[N]

+

N−1∑

k=1

(

x[k]⊤Qx[k] + u[k]⊤Ru[k]
)
}

s.t. r(x,u) = 0

h(x,u) ≤ 0,

(E.7)

where x[k] = τr[k]− s[k] denotes the difference between the state of the platform at time
k and the corresponding reference τr[k], r(x,u) are equality constraints imposed by the
system dynamics (E.6), and h(x,u) are optional bounds on inputs and states. Q,R are
positive-semidefinite cost matrices.

E.4.3 Learning

The sensorimotor controller is trained by imitating demonstrations provided by the
privileged expert. While the expert has access to privileged information in the form of
ground-truth state estimates, the sensorimotor controller does not access any privileged
information and can be directly deployed in the physical world [47].

A lemma by Pan et al. [264] formally defines an upper bound between the expert and the
student performance as

J(π)− J(π∗) ≤ Cπ∗Eρ(π)

[

DW (π, π∗)
]

≤ Cπ∗Eρ(π)Eu∗∼π∗Eu∼π[‖u∗ − u‖], (E.8)

where DW (·, ·) is the Wasserstein metric [108] and Cπ∗ is a constant depending on the
smoothness of expert actions. Finding an agent π with the same performance as the

129

Appendix E. Deep Drone Acrobatics

privileged controller π∗ boils down to minimizing the discrepancy in actions between the
two policies on the expected agent trajectories ρ(π).

The aforementioned discrepancy can be minimized by an iterative supervised learning
process known as DAGGER [289]. This process iteratively collects data by letting the
student control the platform, annotating the collected observations with the experts’
actions, and updating the student controller based on the supervised learning problem

π = min
π̂

Es[k]∼ρ(π)[‖u∗(s[k])− π̂(o[k])‖], (E.9)

where u∗(s[k]) is the expert action and o[k] is the observation vector in the state
s[k]. Running this process for O(N) iterations yields a policy π with performance
J(π) ≤ J(π∗) +O(N) [289].

Naive application of this algorithm to the problem of agile flight in the physical world
presents two major challenges: how can the expert access the ground-truth state s[k]
and how can we protect the platform from damage when the partially trained student π
is in control? To circumvent these challenges, we train exclusively in simulation. This
significantly simplifies the training procedure, but presents a new hurdle: how do we
minimize the difference between the sensory input received by the controller in simulation
and reality?

Our approach to bridging the gap between simulation and reality is to leverage abstrac-
tion [247]. Rather than operating on raw sensory input, our sensorimotor controller
operates on an intermediate representation produced by a perception module [375]. This
intermediate representation is more consistent across simulation and reality than raw
visual input.

We now formally show that training a network on abstractions of sensory input reduces
the gap between simulation and reality. Let M(z | s), L(z | s) : S → O denote the
observation models in the real world and in simulation, respectively. Such models
describe how an on-board sensor measurement z senses a state s. We further define
πr = Eor∼M(s)[π(or[k])] and πs = Eos∼L(s)[π(os[k])] as the realizations of the policy
π in the real world and in simulation. The following lemma shows that, disregarding
actuation differences, the distance between the observation models upper-bounds the gap
in performance in simulation and reality.

Lemma 1. For a Lipschitz-continuous policy π the simulation-to-reality gap J(πr)−J(πs)
is upper-bounded by

J(πr)− J(πs) ≤ CπsKEρ(πr)

[

DW (M,L)
]

, (E.10)

where K denotes the Lipschitz constant.

130

E.4. Method

Proof. The lemma follows directly from (E.8) and the fact that

DW (πr, πs) = inf
γ∈Π(or,os)

E(or,os)[dp(πr, πs)]

≤ K inf
γ∈Π(or,os)

E(or,os)[do(or,os)]

= K ·DW (M,L),

where do and dp are distances in observation and action space, respectively.

We now consider the effect of abstraction of the input observations. Let f be a mapping
of the observations such that

DW (f(M), f(L)) ≤ DW (M,L). (E.11)

The mapping f is task-dependent and is generally designed – with domain knowledge –
to contain sufficient information to solve the task while being invariant to nuisance
factors. In our case, we use feature tracks as an abstraction of camera frames. The
feature tracks are provided by a visual-inertial odometry (VIO) system. In contrast to
camera frames, feature tracks primarily depend on scene geometry, rather than surface
appearance. We also make inertial measurements independent of environmental conditions,
such as temperature and pressure, by integration and de-biasing. As such, our input
representations fulfill the requirements of Eq. (E.11).

As the following lemma shows, training on such representations reduces the gap between
task performance in simulation and the real world.

Lemma 2. A policy that acts on an abstract representation of the observations
πf : f(O) → U has a lower simulation-to-reality gap than a policy πo : O → U that
acts on raw observations.

Proof. The lemma follows directly from (E.10) and (E.11).

E.4.4 Sensorimotor Controller

In contrast to the expert policy π∗, the student policy π is only provided with onboard
sensor measurements from the forward-facing camera and the IMU. There are three main
challenges for the controller to tackle: (i) it should keep track of its state based on the
provided inputs, akin to a visual-inertial odometry system [95, 75], (ii) it should be
invariant to environments and domains, so as to not require retraining for each scene,
and (iii) it should process sensor readings that are provided at different frequencies.

We represent the policy as a neural network that fulfills all of the above requirements. The
network consists of three input branches that process visual input, inertial measurements,
and the reference trajectory, followed by a multi-layer perceptron that produces actions.
The architecture is illustrated in Fig. E.3. Similarly to visual-inertial odometry systems [51,

131

Appendix E. Deep Drone Acrobatics

Maneuver Input Power Loop Barrel Roll Matty Flip Combo

Ref IMU FT Error (↓) Success (↑) Error (↓) Success (↑) Error (↓) Success (↑) Error (↓) Success (↑)
VIO-MPC X X X 43 ± 14 100% 79 ± 43 100% 92 ± 41 100% 164 ± 51 70%
Ours (Only Ref) X 250 ± 50 20% 485 ± 112 85% 340 ± 120 15% ∞ 0 %
Ours (No IMU) X X 210 ± 100 30% 543 ± 95 85% 380 ± 100 20% ∞ 0 %
Ours (No FT) X X 28 ± 8 100% 64 ± 24 95% 67 ± 29 100% 134 ± 113 85%
Ours X X X 24 ± 5 100% 58 ± 9 100% 53 ± 15 100% 128 ± 57 95%

Table E.1 – Comparison of different variants of our approach with the baseline (VIO-MPC) in
terms of the average tracking error in centimeters and the success rate. Results were averaged
over 20 runs. Agents without access to IMU data perform poorly. An agent that has access only
to IMU measurements has a significantly lower tracking error than the baseline. Adding feature
tracks further improves tracking performance and success rate, especially for longer and more
complicated maneuvers.

75, 95], we provide the network with a representation of the platform state by supplying
it with a history of length L = 8 of visual and inertial information.

To ensure that the learned policies are scene- and domain-independent, we provide the
network with appropriate abstractions of the inputs instead of directly feeding raw inputs.
We design these abstractions to contain sufficient information to solve the task while
being invariant to environmental factors that are hard to simulate accurately and are
thus unlikely to transfer from simulation to reality.

The distribution of raw IMU measurements depends on the exact sensor as well as
environmental factors such as pressure and temperature. Instead of using the raw
measurements as input to the policy, we preprocess the IMU signal by applying bias
subtraction and gravity alignment. Modern visual-inertial odometry systems perform
a similar pre-integration of the inertial data in their optimization backend [278]. The
resulting inertial signal contains the estimated platform velocity, orientation, and angular
rate.

We use the history of filtered inertial measurements, sampled at 100Hz, and process them
using temporal convolutions [15]. Specifically, the inertial branch consists of a temporal
convolutional layer with 128 filters, followed by three temporal convolutions with 64 filters
each. A final fully-connected layer maps the signal to a 128-dimensional representation.

Another input branch processes a history of reference velocities, orientations, and angular
rates. It has the same structure as the inertial branch. New reference states are added to
the history at a rate of 50Hz.

For the visual signal, we use feature tracks, i.e. the motion of salient keypoints in the
image plane, as an abstraction of the input. Feature tracks depend on the scene structure,
ego-motion, and image gradients, but not on absolute pixel intensities. At the same time,
the information contained in the feature tracks is sufficient to infer the ego-motion of the
platform up to an unknown scale. Information about the scale can be recovered from the
inertial measurements. We leverage the computationally efficient feature extraction and
tracking frontend of VINS-Mono [278] to generate feature tracks. The frontend extracts
Harris corners [124] and tracks them using the Lucas-Kanade method [210]. We perform

132

E.4. Method

Figure E.4 – Example images from simulation (left) and the real test environment (right).

geometric verification and exclude correspondences with a distance of more than 2 pixels
from the epipolar line. We represent each feature track by a 5-dimensional vector that
consists of the keypoint position, its displacement with respect to the previous keyframe
(both on the rectified image plane), and the number of keyframes that the feature has
been tracked (a measure of keypoint quality).

To facilitate efficient batch training, we randomly sample 40 keypoints per keyframe.
The features are processed by a reduced version of the PointNet architecture proposed
in [280] before we generate a fixed-size representation at each timestep. Specifically, we
reduce the number of hidden layers from 6 to 4, with 32, 64, 128, 128 filters, respectively,
in order to reduce latency. The output of this subnetwork is reduced to a 128-dimensional
vector by global average pooling over the feature tracks. The history of resulting hidden
representations is then processed by a temporal convolutional network that has the same
structure as the inertial and reference branches.

Finally, the outputs of the individual branches are concatenated and processed by a
synchronous multi-layer perceptron with three hidden layers of size 128, 64, 32. The final
outputs are the body rates and collective thrust that are used to control the platform.

We account for the different input frequencies by allowing each of the input branches
to operate asynchronously. Each branch operates independently from the others by
generating an output only when a new input from the sensor arrives. The multi-layer
perceptron uses the latest outputs from the asynchronous branches and operates at
100Hz. It outputs control commands at approximately the same rate due to its minimal
computational overhead.

E.4.5 Implementation Details

We use the Gazebo simulator to train our policies. Gazebo can model the physics of
quadrotors with high fidelity using the RotorS extension [102]. We simulate the AscTec
Hummingbird multirotor, which is equipped with a forward-facing fisheye camera. The
platform is instantiated in a cubical simulated flying space with a side length of 70 meters.
An example image is shown in Fig. E.4 (left).

For the real-world experiments we use a custom quadrotor that weighs 1.15 kg and has a
thrust-to-weight ratio of 4:1. We use a Jetson TX2 for neural network inference. Images

133

Appendix E. Deep Drone Acrobatics

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

Maneuver Time [s]

T
ra

ck
in

g
E

rr
or

[m
]

Ours
VIO-MPC
Ours (No FT)

5 10 15 20
0

50

100

Maneuver Time [s]

S
u
cc

es
s

R
at

e
[%

]

Ours
VIO-MPC
Ours (No FT)

Figure E.5 – Tracking error (left) and success rate (right) over time when a maneuver is executed
repeatedly in simulation. The controllers were trained to complete the maneuver for six seconds
and generalize well to longer sequences. Our learned controller, which leverages both IMU and
visual data, provides consistently good performance without a single failure.

and inertial measurements are provided by an Intel RealSense T265 camera.

We use an off-policy learning approach. We execute the trained policy, collect rollouts,
and add them to a dataset. After 30 new rollouts are added, we train for 40 epochs on
the entire dataset. This collect-rollouts-and-train procedure is repeated 5 times: there
are 150 rollouts in the dataset by the end. We use the Adam optimizer [180] with a
learning rate of 3e− 4. We always use the latest available model for collecting rollouts.
We execute a student action only if the difference to the expert action is smaller than a
threshold t = 1.0 to avoid crashes in the early stages of training. We double the threshold
t every 30 rollouts. We perform a random action with a probability p = 30% at every
stage of the training to increase the coverage of the state space. To facilitate transfer
from simulation to reality, we randomize the IMU biases and the thrust-to-weight ratio of
the platform by up to 10% of their nominal value in every iteration. We do not perform
any randomization of the geometry and appearance of the scene during data collection.

E.5 Experiments

We design our evaluation procedure to address the following questions. Is the presented
sensorimotor controller advantageous to a standard decomposition of state estimation
and control? What is the role of input abstraction in facilitating transfer from simulation
to reality? Finally, we validate our design choices with ablation studies.

E.5.1 Experimental Setup

We learn sensorimotor policies for three acrobatic maneuvers that are popular among
professional drone pilots as well as a policy that consists of a sequence of multiple
maneuvers.

1. Power Loop: Accelerate over a distance of 4m to a speed of 4.5m s−1 and enter a

134

E.5. Experiments

loop maneuver with a radius of r = 1.5m.

2. Barrel Roll: Accelerate over a distance of 3m to a speed of 4.5m s−1 and enter a
roll maneuver with a radius of r = 1.5m.

3. Matty Flip: Accelerate over a distance of 4m to a speed of 4.5m s−1 while yawing
180◦ and enter a backwards loop maneuver with a radius of r = 1.5m.

4. Combo: This sequence starts with a triple Barrel Roll, followed by a double Power
Loop, and ends with a Matty Flip. The full maneuver is executed without stopping
between maneuvers.

The maneuvers are listed by increasing difficulty. The trajectories of these maneuvers are
illustrated in Fig. E.2. They contain high accelerations and fast angular velocities around
the body axes of the platform. All maneuvers start and end in the hover condition.

For comparison, we construct a strong baseline by combining visual-inertial odometry [278]
and model predictive control [79]. Our baseline receives the same inputs as the learned
controllers: inertial measurements, camera images, and a reference trajectory.

We define two metrics to compare different approaches. We measure the average root
mean square error in meters of the reference position with respect to the true position of
the platform during the execution of the maneuver. Note that we can measure this error
only for simulation experiments, as it requires exact state estimation. We thus define a
second metric, the average success rate for completing a maneuver. In simulation, we
define success as not crashing the platform into any obstacles during the maneuver. For
the real-world experiments, we consider a maneuver successful if the safety pilot did not
have to intervene during the execution and the maneuver was executed correctly.

E.5.2 Experiments in Simulation

We first evaluate the performance for individual maneuvers in simulation. The results are
summarized in Table E.1. The learned sensorimotor controller that has access to both
visual and inertial data (Ours) is consistently the best across all maneuvers. This policy
exhibits a lower tracking error by up to 45% in comparison to the strong VIO-MPC
baseline. The baseline can complete the simpler maneuvers with perfect success rate, but
generally has higher tracking error due to drift in state estimation. The gap between the
baseline and our controller widens for longer and more difficult sequences.

Table E.1 also highlights the relative importance of the input modalities. Policies that
only receive the reference trajectories but no sensory input (Ours (Only Ref)) – effectively
operating open-loop – perform poorly across all maneuvers. Policies that have access to
visual input but not to inertial data (Ours (No IMU)) perform similarly poorly since
they do not have sufficient information to determine the absolute scale of the ego-motion.
On the other hand, policies that only rely on inertial data for sensing (Ours (No FT))
are able to safely fly most maneuvers. Even though such controllers only have access to
inertial data, they exhibit significantly lower tracking error than the VIO-MPC baseline.

135

Appendix E. Deep Drone Acrobatics

Input Train Test 1 Test 2

Error (↓) Success (↑) Error (↓) Success (↑) Error (↓) Success (↑)
Image 90 ± 32 80% ∞ 0% ∞ 0%
Ours 53 ± 15 100% 58 ± 18 100% 61 ± 11 100%

Table E.2 – Sim-to-sim transfer for different visual input modalities. Policies that directly rely
on images as input do not transfer to scenes with novel appearance (Test 1, Test 2). Feature
tracks enable reliable transfer. Results are averaged over 10 runs.

Maneuver Power Loop Barrel Roll Matty Flip

Ours (No FT) 100% 90% 100%
Ours 100% 100% 100%

Table E.3 – Success rate across 10 runs on the physical platform.

However, the longer the maneuver, the larger the drift accumulated by purely-inertial
(Ours (No FT)) controllers. When both inertial and visual data is incorporated (Ours),
drift is reduced and accuracy improves. For the longest sequence (Combo), the abstracted
visual input raises the success rate by 10 percentage points.

Fig. E.5 analyzes the evolution of tracking errors and success rates of different methods
over time. For this experiment, we trained a policy to repeatedly fly barrel rolls for four
seconds. We evaluate robustness and generalization of the learned policy by flying the
maneuver for up to 20 seconds at test time. The results again show that (abstracted)
visual input reduces drift and increases robustness. The controller that has access to both
visual and inertial data (Ours) is able to perform barrel rolls for 20 seconds without a
single failure.

To validate the importance of input abstraction, we compare our approach to a network
that uses raw camera images instead of feature tracks as visual input. This network
substitutes the PointNet in the input branch with a 5-layer convolutional network that
directly operates on image pixels, but retains the same structure otherwise. We train
this network on the Matty Flip and evaluate its robustness to changes in the background
images. The results are summarized in Table E.2. In the training environment, the
image-based network has a success rate of only 80%, with a 58% higher tracking error
than the controller that receives an abstraction of the visual input in the form of feature
tracks (Ours). We attribute this to the higher sample complexity of learning from raw
pixels [375]. Even more dramatically, the image-based controller fails completely when
tested with previously unseen background images (Test 1, Test 2). (For backgrounds, we
use randomly sampled images from the COCO dataset [200].) In contrast, our approach
maintains a 100% success rate in these conditions.

E.5.3 Deployment in the Physical World

We now perform direct simulation-to-reality transfer of the learned controllers. We use
exactly the same sensorimotor controllers that were learned in simulation and quantita-
tively evaluated in Table E.1 to fly a physical quadrotor, with no fine-tuning. Despite

136

E.6. Conclusion

1 2 3 4 5

60

80

100

Number of Loops

S
u
cc

es
s

R
at

e
[%

]
Ours
Ours (No FT)

Figure E.6 – Number of successful back-to-back Power Loops on the physical quadrotor before
the human expert pilot had to intervene. Results are averaged over 5 runs.

the differences in the appearance of simulation and reality (see Fig. E.4), the abstraction
scheme we use facilitates successful deployment of simulation-trained controllers in the
physical world. The controllers are shown in action in the supplementary video.

We further evaluate the learned controllers with a series of quantitative experiments on
the physical platform. The success rates of different maneuvers are shown in Table E.3.
Our controllers can fly all maneuvers with no intervention. An additional experiment is
presented in Fig. E.6, where a controller that was trained for a single loop was tested
on repeated execution of the maneuver with no breaks. The results indicate that using
all input modalities, including the abstracted visual input in the form of feature tracks,
enhances robustness.

E.6 Conclusion

Our approach is the first to enable an autonomous flying machine to perform a wide range
of acrobatics maneuvers that are highly challenging even for expert human pilots. The
approach relies solely on onboard sensing and computation, and leverages sensorimotor
policies that are trained entirely in simulation. We have shown that designing appropriate
abstractions of the input facilitates direct transfer of the policies from simulation to
physical reality. The presented methodology is not limited to autonomous flight and can
enable progress in other areas of robotics.

137

F Learning High-Speed Flight in the

Wild

The version presented here is reprinted, with permission, from:

Antonio Loquercio∗, Elia Kaufmann∗, René Ranftl, Matthias Müller, Vladlen Koltun,
and Davide Scaramuzza. “Learning High-Speed Flight in the Wild”. In: Science Robotics.
2021

139

Appendix F. Learning High-Speed Flight in the Wild

Learning High-Speed Flight in the Wild

Antonio Loquercio∗, Elia Kaufmann∗, René Ranftl, Matthias Müller, Vladlen

Koltun, Davide Scaramuzza

Abstract — Quadrotors are agile. Unlike most other machines, they
can traverse extremely complex environments at high speeds. To date,
only expert human pilots have been able to fully exploit their capabili-
ties. Autonomous operation with onboard sensing and computation has
been limited to low speeds. State-of-the-art methods generally separate
the navigation problem into subtasks: sensing, mapping, and planning.
While this approach has proven successful at low speeds, the separation
it builds upon can be problematic for high-speed navigation in cluttered
environments. Indeed, the subtasks are executed sequentially, leading
to increased latency and a compounding of errors through the pipeline.
Here we propose an end-to-end approach that can autonomously fly
quadrotors through complex natural and man-made environments at
high speeds, with purely onboard sensing and computation. The key
principle is to directly map noisy sensory observations to collision-free
trajectories in a receding-horizon fashion. This direct mapping drasti-
cally reduces latency and increases robustness to noisy and incomplete
perception. The sensorimotor mapping is performed by a convolu-
tional network that is trained exclusively in simulation via privileged
learning: imitating an expert with access to privileged information.
By simulating realistic sensor noise, our approach achieves zero-shot
transfer from simulation to challenging real-world environments that
were never experienced during training: dense forests, snow-covered
terrain, derailed trains, and collapsed buildings. Our work demon-
strates that end-to-end policies trained in simulation enable high-speed
autonomous flight through challenging environments, outperforming
traditional obstacle avoidance pipelines.

140

F.1. Introduction

Videos of the Experiments

A video of the experiments reported in this manuscript is available at https://youtu.
be/uTWcC6IBsE4

F.1 Introduction

Quadrotors are among the most agile and dynamic machines ever created1 [351, 3].
Thanks to their agility, they can traverse complex environments, ranging from cluttered
forests to urban canyons, and reach locations that are otherwise inaccessible to humans
and machines alike. This ability has led to their application in fields such as search and
rescue, logistics, security, infrastructure, entertainment, and agriculture [131]. In the
majority of these existing applications, the quadrotor needs to be controlled by expert
human pilots, who take years to train, and are thus an expensive and scarce resource.
Infusing quadrotors with autonomy, that is the capability to safely operate in the world
without the need for human intervention, has the potential to massively enhance their
usefulness and to revolutionize whole industries. However, the development of autonomous
quadrotors that can navigate in complex environments with the agility and safety of
expert human pilots or birds is a long-standing problem that is still open.

The limiting factor for autonomous agile flight in arbitrary unknown environments is
the coupling of fast and robust perception with effective planning. The perception
system has to be robust to disturbances such as sensor noise, motion blur, and changing
illumination conditions. In addition, an effective planner is necessary to find a path
that is both dynamically feasible and collision-free while relying only on noisy and
partial observations of the environment. These requirements, together with the limited
computational resources that are available onboard, make it difficult to achieve reliable
perception and planning at low latency and high speeds [80].

Various approaches to enable autonomous flight have been proposed in the literature.
Some works tackle only perception and build high-quality maps from imperfect mea-
surements [128, 103, 303, 76, 33], while others focus on planning without considering
perception errors [39, 282, 6, 202]. Numerous systems that combine online mapping
with traditional planning algorithms have been proposed to achieve autonomous flight in
previously unknown environments [257, 261, 233, 20, 372, 295, 345, 50, 371]. A taxonomy
of prior works is presented in Figure F.9 in the Appendix.

The division of the navigation task into the mapping and planning subtasks is attractive
from an engineering perspective, since it enables parallel progress on each component and
makes the overall system interpretable. However, it leads to pipelines that largely neglect
interactions between the different stages and thus compound errors [371]. Their sequential
nature also introduces additional latency, making high-speed and agile maneuvers difficult
to impossible [80]. While these issues can be mitigated to some degree by careful

1The quadrotor used for the experiments in this paper has a maximum acceleration of 4g. Formula 1
cars achieve accelerations of up to 1.45g, and the Eurofighter Typhoon reaches a longitudinal acceleration
of up to 1.15g.

141

https://youtu.be/uTWcC6IBsE4
https://youtu.be/uTWcC6IBsE4

Appendix F. Learning High-Speed Flight in the Wild

Figure F.1 – Deployment of the presented approach in challenging environments. To get a
better sense of the speed and agility of the autonomous system, please watch https://youtu.
be/uTWcC6IBsE4.

142

https://youtu.be/uTWcC6IBsE4
https://youtu.be/uTWcC6IBsE4

F.1. Introduction

hand-tuning and engineering, the divide-and-conquer principle that has been prevalent
in research on autonomous flight in unknown environments for many years imposes
fundamental limits on the speed and agility that a robotic system can achieve [204].

In contrast to these traditional pipelines, some recent works propose to learn end-to-end
policies directly from data without explicit mapping and planning stages [290, 298, 106,
206]. These policies are trained by imitating a human [290, 206], from experience that
was collected in simulation [298], or directly in the real world [106]. As the number of
samples required to train general navigation policies is very high, existing approaches
impose constraints on the quadrotor’s motion model, for example by constraining the
platform to planar motion [206, 106, 290] and/or discrete actions [298], at the cost of
reduced maneuverability and agility. More recent work has demonstrated that very agile
control policies can be trained in simulation [172]. Policies produced by the last approach
can successfully perform acrobatic maneuvers, but can only operate in unobstructed free
space and are essentially blind to obstacles in the environment.

Here we present an approach to fly a quadrotor at high speeds in a variety of environ-
ments with complex obstacle geometry while having access to only onboard sensing and
computation. By predicting navigation commands directly from sensor measurements,
we decrease the latency between perception and action while simultaneously being robust
to perception artifacts, such as motion blur, missing data, and sensor noise. To deal with
sample complexity and not endanger the physical platform, we train the policy exclusively
in simulation. We leverage abstraction of the input data to transfer the policy from
simulation to reality [247, 172]. To this end, we utilize a stereo matching algorithm to
provide depth images as input to the policy. We show that this representation is both
rich enough to safely navigate through complex environments and abstract enough to
bridge simulation and reality. Our choice of input representation guarantees a strong
similarity of the noise models between simulated and real observations and gives our
policy robustness against common perceptual artifacts in existing depth sensors.

We train the navigation policy via privileged learning [47] on demonstrations that are
provided by a novel sampling-based expert. Our expert has privileged access to a
representation of the environment in the form of a 3D point cloud as well as perfect
knowledge about the state of the quadrotor. Since simulation does not impose real-time
constraints, the expert additionally has an unconstrained computational budget. While
existing global planning algorithms [39, 6, 202] generally output a single trajectory,
our expert uses Metropolis-Hastings sampling to compute a distribution of collision-
free trajectories. This captures the multi-modal nature of the navigation task where
many equally valid solutions can exist (for example, going either left or right around
an obstacle). We therefore use our planner to compute trajectories with a short time
horizon to ensure that they are predictable from onboard sensors and that the sampler
remains computationally tractable. We bias the sampler towards obstacle-free regions by
conditioning it on trajectories from a classic global planning algorithm [202].

We also reflect the multi-modal nature of the problem in the design and training of the
neural network policy. Our policy takes a noisy depth image and inertial measurements as
sensory inputs and produces a set of short-term trajectories together with an estimate of

143

Appendix F. Learning High-Speed Flight in the Wild

individual trajectory costs. The trajectories are represented as high-order polynomials to
ensure dynamical feasibility. We train the policy using a multi-hypothesis winner-takes-all
loss that adaptively maps the predicted trajectories to the best trajectories that have
been found by the sampling-based expert. At test time, we use the predicted trajectory
costs to decide which trajectory to execute in a receding horizon. The policy network is
designed to be extremely lightweight, which ensures that it can be executed onboard the
quadrotor at the update rates required for high-speed flight.

The resulting policy can fly a physical quadrotor in natural and man-made environments
at speeds that are unreachable by existing methods. We achieve this in a zero-shot
generalization setting: we train on randomly generated obstacle courses composed of
simple off-the-shelf objects, such as schematic trees and a small set of convex shapes
such as cylinders and cubes. We then directly deploy the policy in the physical world
without any adaptation or fine-tuning. Our platform experiences conditions at test time
that were never seen during training. Examples include high dynamic range (when flying
from indoor environments to outdoor environments), poorly textured surfaces (indoor
environments and snow-covered terrain), thick vegetation in forests, and the irregular
and complex layout of a disaster scenario (Figure F.2). These results suggest that our
methodology enables a multitude of applications that rely on agile autonomous drones
with purely onboard sensing and computation.

F.2 Results

Our experiments in simulation show that the proposed approach reduces the failure rate
up to 10 times with respect to state-of-the-art methods. We confirm our results in a
variety of real-world environments using a custom-built physical quadrotor; we deploy
our policy trained in simulation without any further adaptations. In all experiments, the
drone was provided with a reference trajectory, which is not collision-free (Figure F.3-C,
depicted in red), to encode the intended flight path. This reference can be provided by a
user or a higher-level planning algorithm. The drone is tasked to follow that flight path
and make adjustments as necessary to avoid obstacles. Recordings of the experiments
can be found at https://youtu.be/uTWcC6IBsE4.

F.2.1 High-Speed Flight in the Wild

We tested our approach in diverse real-world environments, as illustrated in Fig-
ures F.1 and F.2. High-speed flight in these environments is very challenging due to their
complex structure (e.g. thick vegetation, thin branches, or collapsed walls) and multiple
options available to avoid obstacles. In addition, a high-level understanding of the
environment is necessary, for example to pass through far-away openings (Figure F.3-C)
or nearby obstacles (Figure F.2-M). Flying at high speeds also necessitates low-latency
perception and robustness to sensor noise, which is worsened by challenging illumination
conditions and low-texture surfaces (e.g. due to snow). At the same time, only limited
computational resources are available onboard. Despite all of these challenges, our
approach was able to successfully navigate in all environments that it was tested in.

144

https://youtu.be/uTWcC6IBsE4

F.2. Results

A Thin trees B Thick trees C Vegetation

D Boulder E Branches F Rock formation

H Narrow gap I Crane L Building

M Collapsed building N Train O Ruins

Figure F.2 – Testing Environments. Zero-shot generalization of our approach in complex
natural (A to F) and man-made (H to O) environments. The encountered obstacles can often
be avoided in multiple directions and have very different size and structure.

Note that our policy was trained in simulation and was never exposed to any of these
environments or conditions at training time.

We measure performance according to success rate, i.e. the percentage of successful
runs over the total number of runs, where we consider a run successful if the drone
reaches the goal location within a radius of 5m without crashing. We performed a total

145

Appendix F. Learning High-Speed Flight in the Wild

of 56 experiments at different speeds. We report the cumulative and individual success
rates at various speeds in Figures F.3-D and F.3-E. Our experimental platform performs
state estimation and depth perception onboard using vision-based sensors. A detailed
description of the platform is available in Section F.5. We group the environments that
were used for experiments into two classes, natural and man-made, and highlight the
distinct challenges that these types of environments present for agile autonomous flight.

Figure F.3 – Evaluation in indoor and outdoor environments. (A) A circular path in the forest at an
average speed of 7m s−1. (B) Sequence of first-person views from the maneuver in A, observed during
the avoidance of tree branches. The maneuver requires fine and fast adaptations in height (B2,B5)
and attitude (B3,B4) to avoid the vegetation. After the obstacle is passed, the drone accelerates in
the direction of travel (B6). (C) Comparison of reference trajectory passing through a wall (in red),
to actual flight path (in green) in a airplane hangar. (D) Success rates for all experiments aggregated
according to flight speed. (E) Number of trials per environment class at different speeds.

Natural environments. We performed experiments in diverse natural environments:
forests of different types and densities and steep snowy mountain terrains. Figures F.2-A

146

F.2. Results

to F.2-F illustrate the heterogeneity of those environments. We performed experiments
with two different reference trajectories: a 40m-long straight line and a circle with a 6m
radius (Figure F.3-A). Both trajectory types are not collision-free and would lead to a
crash into obstacles if blindly executed. We flew the straight line at different average
speeds in the range 3− 10m s−1. Flying at these speeds requires very precise and low-
latency control of position and attitude to avoid bushes and pass through the openings
between trees and branches (Figure F.3-B). Traditional mapping and planning approaches
generally fail to achieve high speeds in such conditions, as both the thick vegetation and
the texture-less snow terrain often cause very noisy depth observations.

We conducted a total of 31 experiments in natural environments. At average speeds of
3m s−1 and 5m s−1 our approach consistently completed the task without experiencing
a single crash. For comparison, state-of-the-art methods with comparable actuation,
sensing, and computation [372, 372] achieve in similar environments a maximum average
speed of 2.29m s−1. To study the limit of the system, we set the platform’s average speed
to 7m s−1. In spite of the very high-speed, the maneuver was successfully completed
in eight out of ten experiments. The two failures happened when objects entered the
field of view very late due to the high angular velocity of the platform. Given the good
performance at 7m s−1, we push the average flight speed even higher to 10m s−1. At this
speed, external disturbances, e.g. aerodynamics, battery power drops, and motion-blur
start to play a significant role and widen the simulation to reality gap. Nonetheless, we
achieve a success rate of 60%, with failures mainly happening in the proximity of narrow
openings less than a meter wide, where a single wrong action results in a crash.

Man-made environments. We also tested our approach in a set of man-made environ-
ments, illustrated in Figure F.2-G to F.2-O. In these environments, the drone faces a
different set of challenges. It has to avoid obstacles with a variety of sizes and shapes
(e.g. a train, a crane, a building, and ruins), slalom through concrete structures (c.f.
Figure F.2-M), and exit a building through a single narrow opening (c.f. Figure F.2-H).
The irregular and/or large structure of the encountered obstacles, the limited number of
flyable openings, and the requirement to initiate the avoidance maneuver well in advance,
offer a complementary set of challenges with respect to our natural testing environments.

As in the natural environments, we provide the drone with a straight reference trajectory
with length of 40m. The reference trajectory is in direct collision with obstacles and
its blind execution would result in a crash. We performed a total of 19 experiments
with flight speeds in the range of 3− 7m s−1. Given the lower success rate experienced
in the forest environment at 10m s−1, we did not test at higher speeds to avoid fatal
crashes. As shown in Figure F.3-E, our approach is robust to zero-shot deployment
in these environments, whose characteristics were never observed at training time, and
consistently completes the task without crashing.

We further compare our approach to a commercial drone2. Specifically, the drones
are required to exit a hangar by passing through a narrow gap of about 0.8m in width

2The commercial drone (a Skydio R1) was tasked to follow a person running through the narrow gap.
The speed of this drone cannot be enforced nor controlled, and was therefore estimated in post-processing.

147

Appendix F. Learning High-Speed Flight in the Wild

(Figure F.3-C). At the start of the experiment, the drones are placed at approximately 10m
in front of and about 5m to the right of the gap. The task was represented by a straight
reference trajectory passing through the wall (Figure F.3-C, in red). This experiment
is challenging since it requires a high-level understanding of the environment to turn
early enough towards the gap. The commercial drone, flying at a speed of approximately
2.7m s−1 consistently failed to pass through the gap across three experiments. In two
of the experiments it deemed the gap to be too small and stopped in front of it; in the
third, it crashed into the wall. In contrast, the low latency and robustness to perception
failures of our approach enabled the drone to successfully fly through the narrow gap
every time. We performed a total of six experiments at flight speeds of both 3m s−1 and
5m s−1 and never experienced a crash.

F.2.2 Controlled Experiments

We perform a set of controlled experiments in simulation to compare the performance
of our approach with several baselines. We select two representative state-of-the-art
approaches as baselines for navigation in unknown environments: the mapping and
planning method of Zhou et al. [372] (FastPlanner) and the reactive planner of Florence
et al. [89] (Reactive). The first approach [372] incrementally builds a map from a series of
observations and plans a trajectory in this map to reach the goal while avoiding obstacles.
In contrast, the second approach [89] does not build a map but uses instantaneous depth
information to select the best trajectory from a set of pre-defined motion primitives based
on a cost that encodes collision and progress towards the goal.

The baselines receive the same input as our policy: the state of the platform, depth
measurements from the stereo camera, and a goal in the form of a reference state that lies
1 s in the future. To provide a notion of the difficulty of the environments, we additionally
show a naive baseline that blindly follows the reference trajectory to the goal without
avoiding obstacles (Blind). As in the real-world experiments, we compare the different
approaches according to their success rate, which measures how often the drone reaches
the goal location within a radius of 5 meters without crashing.

We perform all experiments in the Flightmare simulator [320] using the RotorS [102]
Gazebo plugin for accurate physics modeling and Unity as a rendering engine [153]. The
experiments are conducted in two types of environments that resemble the setup of our
real-world experiments: a forest and a narrow gap. We build these environments by
adding trees and walls to the uneven ground of an out-of-the-box Unity environment3.

Forest environments. We build a simulated forest [165] in a rectangular region R(l, w)
of width w and length l, and fill it with trees that have a diameter of approximately 0.6m.
Trees are randomly placed according to a homogeneous Poisson point process P with
intensity δ treem−2 [165]. Note that Tomppo et al. [344] found that around 30% of the
forests in Finland could be considered as a realization of a spatial Poisson point process.
We control the task difficulty by changing the tree density δ. We set w = 30m and

3https://assetstore.unity.com/packages/3d/vegetation/forest-environment-dynamic-nature-150668

148

https://assetstore.unity.com/packages/3d/vegetation/forest-environment-dynamic-nature-150668

F.2. Results

Figure F.4 – Simulation experiments. Top three rows illustrate experiments in the forest, while
the bottom row depicts the narrow-gap experiment. Forest experiments are ordered by increasing
difficulty, which is controlled by the tree density δ. The left column reports success rates at
various speeds. The right column shows one of the random realizations of the environment
together with paths taken by different policies from start (green arrow) to end (red arrow). The
paths illustrate the blind policy (red) and the path taken by our approach (green). Our approach
consistently outperforms the baselines in all environments and and at all speeds.

149

Appendix F. Learning High-Speed Flight in the Wild

l = 60m and start the drone at position s = (− l
2 ,−w

2) (the origin of the coordinate system
is at the center of R(l, w)). We provide the drone with a straight reference trajectory of
40m length. We test on three different tree densities with increasing difficulty: δ1 =

1
49

(low), δ2 = 1
36 (medium), and δ3 = 1

25 (high) treem−2 . We vary the average forward
speed of the drone between 3m s−1 and 12m s−1. We repeat the experiments with 20
different random realizations of the forest for each difficulty, using the same random seed
for all baselines.

The first three rows in Figure F.4 show the results of this experiment, together with
one example environment for each difficulty. At a low speed of 3m s−1, all methods
successfully complete every run even for high difficulties. As speed increases, the success
rates of the baselines quickly degrade. At 10m s−1, no baseline completes even a single
run successfully, irrespective of task difficulty. In contrast, our approach is significantly
more robust at higher speeds. It achieves 100% success rate up to 5m s−1. For speeds of
10m s−1, our approach has a success rate of 90% in the low difficulty task and 60% in
the high difficulty task. Moreover, we show that our approach can go as fast as 12m s−1

with a success rate of up to 50%.

We identify two reasons for the drop in performance of the baselines at higher speeds.
The first reason is latency. The baselines follow a modular approach which first builds a
map and then finds a collision-free trajectory in it. This process is not fast enough to
avoid collisions at high speeds. By contrast, our approach has low latency between sensing
and action by design. The second reason for the performance drop is noise in the depth
observations. High-speed motion results in little overlap between consecutive observations,
which is challenging to existing map building approaches that require multiple observations
to cope with noise. On the other hand, purely local point clouds are too noisy to find a
single collision-free trajectory. Our data-driven approach allows leveraging regularities
in the data, which makes it more robust to sensor noise. We show additional controlled
studies on latency and sensor noise in Section F.2.3 and Section F.2.4.

Narrow gap. In the second set of experiments, we mimic the real-world narrow gap
experiment. We render a 40m long wall with a single opening, 10m in front of the drone.
The gap is placed at a randomized lateral offset in the range of [−5, 5]m with respect to
the starting location. The width of the opening is also randomized uniformly between
0.8m and 1.0m. All experiments are repeated 10 times with different opening sizes and
lateral gap offsets for each speed. An illustration of the setup and the results of the
evaluation are shown in the last row of Figure F.4. The reactive and blind baselines
consistently fail to solve this task, while FastPlanner has a success rate of up to 50% at
5m s−1, but still consistently fails at 7m s−1. We observe that the baselines adapt their
trajectory only when being close to the wall, which is often too late to correct course
towards the opening. Conversely, our approach always completes the task successfully
at speeds of up to 5m s−1. Even at a speed of 7m s−1 it only fails in 2 out of 10 runs.
The ability of our approach to combine long-term and short-term planning is of crucial
importance to achieve this performance, as it is necessary to steer the drone early enough
towards the opening and at the same time perform small reactive corrections to avoid a
collision. This ability, in addition to the low latency and robustness to sensor noise, gives

150

F.2. Results

Method µ [ms] σ [ms] Perc. [%] Total Time [ms]

FastPlanner [372]
Sensing 14.6 2.3 22.3

65.2Mapping 49.2 8.7 75.5
Planning 1.4 1.6 2.2

Reactive [89]
Sensing 13.8 1.3 72.3

19.1
Planning 5.3 0.9 27.7

Ours
Sensing 0.1 0.04 3.9

10.28 (2.58*)NN inference 10.1 (2.4*) 1.5 (0.8*) 93.0
Projection 0.08 0.01 3.1

Ours (Onboard)
Sensing 0.2 0.1 0.4

41.6NN inference 38.9 4.5 93.6
Projection 2.5 1.5 6.0

Table F.1 – Latency (µ) on a desktop computer equipped with a hexacore i7-8700 CPU and
a GeForce RTX 2080 GPU. The standard deviation σ is computed over 1000 samples. For our
approach, we report the computation time on the CPU and GPU (marked with *) on the desktop
computer (Ours), as well as the computation time on the onboard computation unit Jetson TX2,
(Ours Onboard). For the FastPlanner [372] and Reactive [89] baselines sensing represents the
time to build a pointcloud from the depth image, while for our method sensing is the time to
convert depth into an input tensor for the neural network. More details on the subtasks division
are available in the Appendix in Section F.6. The proposed methodology is significantly faster
than prior works.

our approach a significant performance advantage with respect to the baselines.

F.2.3 Computational Cost

In this section, we compare the computational cost of our algorithm with the baselines.
Table F.1 shows the results of this evaluation. It highlights how each step of the
methods contributes to the overall computation time. All timings were recorded on a
desktop computer with a 6-core i7-8700 CPU, which was also used to run the simulation
experiments. To ensure a fair comparison, we report the timings when using only the
CPU for all approaches. We also report the timings of our approach when performing
neural network inference on a GeForce RTX 2080 GPU, as accelerators can be used
with our approach without any extra effort. To paint a complete and realistic picture,
we additionally evaluate the timing of our algorithm on the onboard computer of the
quadrotor which is a Jetson TX2.

With a total computation time of 65.2ms per frame, FastPlanner incurs the highest
latency. It is important to note that the temporal filtering operations that are necessary
to cope with sensing errors effectively make perception even slower. Two to three
observations of an obstacle can be required to add it to the map, which increases the
effective latency of the system. By foregoing the mapping stage altogether, the Reactive
baseline significantly reduces computation time. This baseline is approximately three

151

Appendix F. Learning High-Speed Flight in the Wild

times faster than FastPlanner, with a total latency of 19.1ms. However, the reduced
latency comes at the cost of the trajectory complexity that can be represented, since the
planner can only select primitives from a pre-defined library. In addition, the reactive
baseline is sensitive to sensing errors, which can drastically affect performance at high
speeds.

Our approach has significantly lower latency than both baselines; when network inference
is performed on the GPU, our approach is 25.3 times faster than FastPlanner and 7.4
times faster than the Reactive baseline. When GPU inference is disabled, the network’s
latency increases by only 8ms, and our approach is still much faster than both baselines.
Moving from the desktop computer to the onboard embedded computing device, the
network’s forward pass requires 38.9ms. Onboard, the total time to pass from the sensor
reading to a plan is 41.6ms, which corresponds to an update rate of about 24Hz.

F.2.4 The Effect of Latency and Sensor Noise

We analyze the effect of sensor noise and planning latency in a controlled experiment. In
this experiment, the quadrotor is traveling along a straight line at a constant forward
speed and is required to laterally evade a single obstacle (a pole) while having only limited
sensing range. This experimental setup was proposed in Falanga et al. [80] to understand
the role of perception on the navigation ability of a robotic system subject to bounded
inputs. Specifically, the authors derived an upper-bound for the forward speed at which a
robot can fly and avoid a single obstacle as a function of latency and sensing range. They
modeled the robot as a point-mass, which is a limited approximation for a quadrotor as it
neglects the platform’s rotational dynamics. We thus extend their formulation to account
for the latency introduced by the rotational motion that is necessary to avoid the obstacle.
A detailed description of the formulation can be found in the Appendix in Section F.7.

We set up the experiment by spawning a quadrotor with an initial forward velocity v
at a distance of 6m from a pole with diameter 0.6m. According to our formulation, we
compute a theoretical maximum speed – i.e. the speed at which the task is not feasible
anymore – of vmax = 13m s−1. We then perform the controlled experiment with varying
forward speeds v in the range 3− 13m s−1. We perform 10 experiments for each speed
with all approaches and report the success rate. We run the experiment in two settings:
(i) with ground-truth depth information, to isolate the effect of latency on performance,
and (ii) with depth estimated by stereo matching [132] to analyze the combined effect of
latency and sensing errors.

Ground-truth depth. Figure F.5-B1 illustrates the results of this experiment when
perfect depth perception (Figure F.5-A1) is available. All approaches can complete the
task perfectly up to 5m s−1. However, even in these ideal conditions, the performance
of the baselines drops for speeds beyond 5m s−1. This drop in performance for Reactive
can be attributed to the fact that the finite library of motion primitives does not contain
maneuvers that are aggressive enough to complete this task. Similarly, the performance
degrades for FastPlanner as a result of sub-optimal planning of actions. Even though this
baseline manages to map the obstacle in time, the planner frequently commands actions

152

F.2. Results

4 6 8 10 12

0

20

40

60

80

100

Forward Speed [m/s]

S
u
cc

es
s

R
at

e
[%

]

4 6 8 10 12

0

20

40

60

80

100

Forward Speed [m/s]

Theoretical Limit [80] FastPlanner [373] Reactive [89] Ours

B1 B2

Figure F.5 – The effect of sensor noise on performance. (A) When comparing RGB and depth
images generated in simulation with images captured in the real world, we observe that the
corresponding depth images are more similar than the RGB images. In addition, simulated depth
estimated by stereo matching (A2) contains the typical failure cases of a depth sensor (A3), e.g.
missing values and noise. (B) Results of the controlled experiment to study the relationship
between perception latency and navigation ability. The experiment is performed on ground-truth
depth (B1) and stereo depth (B2). Our approach can fly closer to the theoretical limit than the
baselines and is only minimally affected by the noise of stereo depth estimates.

153

Appendix F. Learning High-Speed Flight in the Wild

to stop the platform which leads to crashes when flying at high speeds. It is important to
point out that the FastPlanner baseline was only demonstrated up to speeds of 3m s−1

in the original work [372], and thus was not designed to operate at high speeds. Our
approach can successfully avoid the obstacle without a single failure up to 7m s−1. For
higher speeds, performance gracefully degrades to 60% at 10m s−1. This decrease in
performance can be attributed to the sensitivity to imperfect network predictions when
flying at high speed, where a single wrong action can lead to a crash.

Estimated depth. While the previous experiments mainly focused on latency and the
avoidance strategy, we now study the influence of imperfect sensory measurements on
performance. We repeat the same experiment, but provide all methods with depth maps
that have been computed from the stereo pairs (Figure F.5-A2). Figure F.5-B2 shows the
results of this experiment. The baselines experience a significant drop in performance
compared to when provided with perfect sensory readings. FastPlanner completely fails
for speeds of 5m s−1 and beyond. This sharp drop in performance is due to the need for
additional filtering of the noisy depth measurements that drastically increases the latency
of the mapping stage. As a result, this baseline detects obstacles too late to be able to
successfully evade them. Similarly, the performance of the Reactive baseline drops by
30% at 7m s−1. In contrast to the baselines, our approach is only marginally affected
by the noisy depth readings, with only a 10% drop in performance at 10m s−1, but no
change in performance at lower speeds. This is because our policy, trained on depth from
stereo, learns to account for common issues in the data such as discretization artifacts
and missing values.

F.3 Discussion

Existing autonomous flight systems are highly engineered and modular. The navigation
task is usually split into sensing, mapping, planning, and control. The separation
into multiple modules simplifies the implementation of engineered systems, enables
parallel development of each component, and makes the overall system more interpretable.
However, modularity comes at a high cost: the communication between modules introduces
latency, errors compound across modules, and interactions between modules are not
modeled. Additionally, it is an open question if certain subtasks, such as maintaining an
explicit map of the environment, are even necessary for agile flight.

Our work replaces the traditional components of sensing, mapping, and planning with
a single function that is represented by a neural network. This drastically reduces the
latency of the system and increases its robustness against sensor noise. We demonstrate
that our approach can reach speeds of up to 10m s−1 in complex environments and
reduces the failure rate at high speeds by up to 10 times when compared to the state of
the art.

We achieve this by training a neural network to imitate an expert with privileged
information in simulation. To cope with the complexity of the task and to enable seamless
transfer from simulation to reality, we make several technical contributions. These
include a sampling-based expert, a novel neural network architecture, and a training

154

F.4. Materials and Methods

procedure, all of which take the task’s multi-modality into account. We also use an
abstract, but sufficiently rich input representation that considers real-world sensor noise.
The combination of these innovations enables the training of robust navigation policies in
simulation that can be directly transferred to diverse real-world environments without
any fine-tuning on real data.

We see several opportunities for future work. Currently, the learned policy exhibits
low success rates at average speeds of 10m s−1 or higher. At these speeds even our
expert policy, despite having perfect knowledge of the environment, often fails to find
collision-free trajectories. This is mainly due to the fact that, at speeds of 10m s−1 or
higher, feasible solutions require temporal consistency over a long time horizon and strong
variations of the instantaneous flying speed as a function of the obstacle density. This
requirement makes feasible trajectories extremely sparse in parameter space, resulting
in intractable sampling. Engineering a more complex expert to tackle this problem can
be very challenging and might require specifically tailored heuristics to find approximate
solutions. Therefore, we believe this problem represents a big opportunity for model-free
methods, which have the potential to ease the engineering requirements. The second
reason for the performance drop at very high speeds is the mismatch between the simulated
and physical drone in terms of dynamics and perception. The mismatch in dynamics is
due to aerodynamics effects, motor delays, and dropping battery voltage. Therefore, we
hypothesise that performance would benefit from increasing the fidelity of the simulated
drone and making the policy robust to the unavoidable model mismatches. A third reason
is perception latency. This could be further reduced with event cameras [104], especially
in presence of dynamic obstacles [82].

Overall, our approach is a stepping stone towards the development of autonomous systems
that can navigate at high speeds through previously unseen environments with only
on-board sensing and computation. Combining our short-horizon controller for local
obstacle avoidance with a long-term planner is a major opportunity for many robotics
applications, including autonomous exploration, delivery, and cinematography.

F.4 Materials and Methods

To perform agile flight through cluttered and previously-unseen environments, we train
a sensorimotor policy to predict receding-horizon trajectories from on-board sensor
measurements and a reference trajectory. We assume that the reference trajectory is
provided by a higher-level planning algorithm or the user. The reference is not necessarily
collision-free and only encodes the long-term goal of the platform. The agent is responsible
to fly in the direction dictated by the reference while adapting its flight path to the
environment.

An agent’s observation o consists of a depth image d ∈ IR640×480, an estimate of the
platform velocity v ∈ IR3 and attitude (expressed as a rotation matrix) q ∈ IR9, and a
desired flight direction ω ∈ IR3. The policy output is a set of motion hypotheses which
are represented as receding-horizon trajectories with the corresponding estimated risk
of collision. A model predictive controller then tracks the trajectory with the lowest

155

Appendix F. Learning High-Speed Flight in the Wild

Figure F.6 – Method overview. (A) Our offline planning algorithm computes a distribution of
collision-free trajectories to follow a reference trajectory. The trajectories are computed with
Metropolis-Hastings sampling and are conditioned on complete 3D knowledge of the environment,
which is represented by a point cloud. (B) A sensorimotor agent is trained with imitation learning
to predict the best three trajectories from the estimated depth, the drone’s velocity and attitude,
and the desired direction that encodes the goal. (C) The predictions are projected on the space of
polynomial trajectories and ranked according to their predicted collision cost ck. The trajectory
with the lowest predicted cost ck is then tracked with a model predictive controller. If multiple
trajectories have similar predicted cost (within a 5% range of the minimum c∗ = min ck), the one
with the smallest actuation cost is used.

collision probability and input cost. The controller is trained using privileged learning [47].
Specifically, the policy is trained on demonstrations provided by a sampling-based planner
that has access to information that is not available to the sensorimotor student: the
precise knowledge of the 3D structure of the environment and the exact platform state.
Figure F.6 shows an overview of our method.

We collect demonstrations and perform training entirely in simulation. This trivially
facilitates access to perfect 3D and state data for the privileged expert, enables the
synthesis of unlimited training samples for any desired trajectory, and does not put the
physical platform in danger. We use the Flightmare simulator [320] with the RotorS [102]
Gazebo plugin and Unity as a rendering engine [153]. Both the training and the testing
environments are built by adding obstacles to the uneven ground of an out-of-the-box
Unity environment4.

To enable zero-shot transfer to real environments, special care has to be taken to minimize
the domain shift of the (visual) input modalities from simulation to reality. To this end

4https://assetstore.unity.com/packages/3d/vegetation/forest-environment-dynamic-nature-150668

156

https://assetstore.unity.com/packages/3d/vegetation/forest-environment-dynamic-nature-150668

F.4. Materials and Methods

we use depth as an abstract input representation that shows only a negligible domain
shift from simulation to the real-world (cf. Figure F.5-A). Specifically, the sensorimotor
agent is trained with depth images that have been computed using Semi-Global Matching
(SGM) [132] from a simulated stereo camera pair. As off-the-shelf depth sensors, such as
the Intel RealSense 435 camera used on our physical platform, compute depth from stereo
images using similar principles [175], this strategy ensures that the characteristics of the
input aligns between simulation and the real world. As a result, the trained sensorimotor
agent can be directly deployed in the real world. The next section presents both the
privileged expert as well as the sensorimotor agent in detail.

F.4.1 The Privileged Expert

Our privileged expert is a novel sampling-based motion planning algorithm. The expert
has perfect knowledge of the platform state and the environment (complete 3D map),
both of which are only available in simulation. The expert generates a set of collision-free
trajectories τ representing the desired state of the quadrotor xdes ∈ IR13 over the next
second, starting from the current state of the drone, i.e. τ (0) = x. To do so, it samples
from a probability distribution P that encodes distance from obstacles and proximity
to the reference trajectory. Specifically, the distribution of collision-free trajectories
P (τ | τref, C) is conditioned on the reference trajectory τref and the structure of the
environment in the form of a point cloud C ∈ IRn×3. According to P , the probability of a
trajectory τ is large if far from obstacles and close to the reference τref. We define P as
the following:

P (τ | τref, C) =
1

Z
exp(−c(τ , τref, C)) (F.1)

where Z =
∫

τ
P (τ | τref, C) is the normalization factor and c(τ , τref, C) ∈ IR+ is a cost

function indicating proximity to the reference and distance from obstacles. We define the
trajectory cost function as

c(τ , τref, C) =
∫ 1

0
λcCcollision(τ (t)) + [τ (t)− τref (t)]

⊤Q[τ (t)− τref (t)] dt (F.2)

where λc = 1000, Q is a positive semidefinite state cost matrix, and Ccollision is a measure
of the distance of the quadrotor to the points in C. We model the quadrotor as a sphere
of radius rq = 0.2m and define the collision cost as a truncated quadratic function of dc,
i.e. the distance between the quadrotor and the closest point in the environment:

Ccollision(τ (t)) =

{

0 if dc > 2rq

−d2c/r
2
q + 4 otherwise.

(F.3)

The distribution P is complex due to the presence of arbitrary obstacles and frequently
multi-modal in cluttered environments since obstacles can be avoided in multiple ways.
Therefore, the analytical computation of P is generally intractable.

To approximate the density P , the expert uses random sampling. We generate samples

157

Appendix F. Learning High-Speed Flight in the Wild

with the Metropolis-Hastings (M-H) algorithm [125] as it provides asymptotic convergence
guarantees to the true distribution. To estimate P , the M-H algorithm requires a target
score function s(τ) ∝ P (τ | τref, C). We define s(τ) = exp(−c(τ , τref, C)), where c(·) is
the cost of the trajectory τ . It is easy to show that this definition satisfies the conditions
for the M-H algorithm to asymptotically estimate the target distribution P . Hence, the
trajectories sampled with M-H will asymptotically cover all of the different modes of P .
We point the interested reader to the Appendix, Section F.8, for an overview of the M-H
algorithm and its convergence criteria.

To decrease the dimension of the sampling space, we use a compact yet expressive
representation of the trajectories τ . We represent τ as a cubic B-spline τbspline ∈ IR3×3

curve with 3 control points and a uniform knot vector, enabling interpolation with high
computational efficiency [105]. Cubic B-Splines are twice continuously differentiable and
have a bounded derivative in a closed interval. Due to the differential flatness property of
quadrotors [227], continuous and bounded acceleration directly translates to continuous
attitude over the trajectory duration. This encourages dynamically feasible trajectories
that can be tracked by a model-predictive controller accurately [227, 79]. Therefore,
instead of naively sampling the states of τ , we vary the shape of the trajectory by
sampling the control points of the B-spline in a spherical coordinate system. In addition,
for computational reasons, we discretize the trajectory at equally spaced time intervals of
0.1 s and evaluate the discrete version of Equation (F.2). Specifically, we sample a total
of 50K trajectories using a Gaussian with a variance of 2, 5, 10 that increases every 26K
samples as the proposal distribution. In spite of this efficient representation, the privileged
expert cannot run in real-time, given the large computational overhead introduced by
sampling.

To bias the sampled trajectories towards obstacle-free regions, we replace the raw reference
trajectory τref in Equation (F.2) with a global collision-free trajectory τgbl from start
to goal, that we compute using the approach of Liu et al. [202]. As illustrated in
Figure F.10, conditioning sampling on τgbl practically increases the horizon of the expert
and generates more conservative trajectories. An animation explaining our expert is
available in https://youtu.be/uTWcC6IBsE4. After removing all generated trajectories
in collision with obstacles, we select the three best trajectories with lower costs. Those
trajectories are used to train the student policy.

F.4.2 The Student Policy

In contrast to the privileged expert, the student policy produces collision-free trajectories
in real time with access only to on-board sensor measurements. These measurements
include a depth image estimated with semi-global matching (SGM) [132], the platform
velocity and attitude, and the desired direction of flight. The latter is represented
as a normalized vector heading towards the reference point one second in the future
with respect to the closest reference state. We hypothesize that this information is
sufficient for generating the highest probability samples of the distribution P (τ | τref, C)
without actually having access to the point cloud C. There are two main challenges to
accomplishing this: (i) the environment is only partially observable from noisy sensor

158

https://youtu.be/uTWcC6IBsE4

F.4. Materials and Methods

observations, and (ii) the distribution P is in general multi-modal. Multiple motion
hypotheses with high probabilities can be available, but their average can have a very low
probability.

We represent the policy as a neural network that is designed to be able to cope with these
issues. The network consists of an architecture with two branches that produce a latent
encoding of visual, inertial, and reference information, and outputs M = 3 trajectories
and their respective collision cost. We use a pre-trained MobileNet-V3 architecture [139]
to efficiently extract features from the depth image. The features are then processed by a
1D convolution to generate M feature vectors of size 32. The current platform’s velocity
and attitude are then concatenated with the desired reference direction and processed by
a 4-layer perceptron with [64, 32, 32, 32] hidden nodes and LeakyReLU activations. We
again use 1D convolutions to create a 32-dimensional feature vector for each mode. The
visual and state features are then concatenated and processed independently for each
mode by another 4-layer perceptron with [64, 128, 128] hidden nodes and LeakyReLU
activations. The latter predicts, for each mode, a trajectory τ and its collision cost. In
summary, our architecture receives as input a depth image d ∈ IR640×480, the platform’s
velocity v ∈ IR3, the drone’s attitude expressed as a rotation matrix q ∈ IR9, and reference
direction ω ∈ IR3. From this input it predicts a set Tn of trajectories and their relative
collision cost, i.e. Tn = {(τ k

n , ck) | k ∈ [0, 1, . . . ,M − 1]}, where ck ∈ IR+. Differently
from the privileged expert, the trajectory predicted by the network does not describe the
full state evolution but only its position component, i.e. τ k

n ∈ IR10×3. Specifically, the
network trajectory τ k

n is described by:

τ k
n = [p(ti)]

10
i=1 , ti =

i

10
, (F.4)

where p(ti) ∈ IR3 is the drone’s position at time t = ti relative to its current state x.
This representation is more general than the B-spline with 3 control points used by the
sampling-based planner, and it was preferred to the latter representation to avoid the
computational costs of interpolation at test time.

We train the neural network with supervised learning on the 3 trajectories with lowest
cost found by the expert. To account for the multi-hypotheses prediction, we minimize
the following Relaxed Winner-Takes-All (R-WTA) loss for each sample:

R-WTA(Te, Tn) =
|Te|∑

i=0

|Tn|∑

k=0

α(τ i
e,p, τ

k
n)‖τ i

e,p − τ k
n‖2, (F.5)

where Te and Tn are the set of expert and network trajectories, τe,p denotes the position
component of τe, and α(·) is defined as

α(τ i
e,p, τ

k
n) =

{

1− ǫ if ‖τ i
e,p − τ k

n‖2 ≤ ‖τ j
e,p − τ k

n‖2 ∀j 6= i
ǫ

M−1 otherwise.
(F.6)

Intuitively, an expert trajectory τ i
e ∈ Te is associated with the closest network trajectory

τ k
n ∈ Tn with a weight of 2 − ǫ = 0.95 and with ǫ/(M − 1) = 0.025 to all remaining

159

Appendix F. Learning High-Speed Flight in the Wild

hypotheses. This formulation, proposed by Rupprecht et al. [292], prevents mode collapse
and was shown to outperform other popular approaches for multi-modal learning such
as Mixture Density Networks [31]. In addition, the predicted collision cost ck is trained
with supervised learning on the ground-truth cost Ccollision(τ

k
n) computed according to

Equation (F.3). In summary, the final training loss for each sample is equal to:

L((Te, Tn) = λ1R-WTA(Te, Tn) + λ2

|Tn|∑

k=0

‖ck − Ccollision(τ
k
n)‖2, (F.7)

where λ1 = 10 and λ2 = 0.1 were empirically found to equalize the magnitudes of the
two terms. This loss is averaged over a minibatch of 8 samples and minimized with the
Adam optimizer [180] and a learning rate of 2e−3.

At test time we retrieve the full state information from the predicted trajectories by
projecting them on the space of order-5 polynomials for each axis independently. This
representation enforces continuity in position, velocity, and acceleration with respect
to the current state, and facilitates dynamic feasibility due to differential flatness [227].
Considering for example the x axis, we define the polynomial projection µx(t) = a⊤

x ·T(t),
where a⊤

x = [a0, a1, . . . , a5] and T(t)⊤ =
[
1, t, . . . , t5

]
. The projection term ax is found

by solving the following optimization problem:

minimize
ax

10∑

i=1

(

τ k,i
n,x − a⊤

x ·T(
i

10
)

)2

subject to sx(0)− a⊤
x ·T(0) = 0

ṡx(0)− a⊤
x · Ṫ(0) = 0

s̈x(0)− a⊤
x · T̈(0) = 0 (F.8)

where τ
k,i
n,x is the x component of the ith element of τ k

n and sx(0), ṡx(0), s̈x(0) are the x
position of the quadrotor and its derivatives obtained from the current state estimate.
The latter corresponds to the ground-truth state when deployed in simulation and to
the state estimate computed by the Intel RealSense T265 when deployed on the physical
platform. To reduce abrupt changes in velocity during flight, which would lead to strong
pitching motion, we additionally constrain the polynomial’s average speed to a desired
value vdes. To do so, we scale the time t of polynomial µx(t) by a factor β = vdes/v

x
µ,

i.e. t′ = βt, where vxµ = ‖µ(1)− µ(0)‖.

Once all predicted trajectories are projected we select one for execution. To do so,
we select trajectories with c∗/ck ≥ 0.95 (c∗ = min ck) and compute their input costs
according to Mellinger et al. [227]. The one with the lowest input costs is tracked by a
model-predictive controller [79]. Intuitively, this choice enforces temporal continuity in
the trajectories. For example, when dodging an obstacle to the right, we do not want to
steer toward the left at the next iteration, unless strictly necessary due to the appearance
of a new obstacle.

160

F.4. Materials and Methods

F.4.3 Training Environments

We build custom environments in the Flightmare simulator [320] to collect training data.
All environments are built by spawning items on the uneven empty ground of an off-the-
shelf Unity environment. We spawn items belonging to two categories: simulated trees,
available off-the-shelf, and a set of convex shapes such as ellipsoids, cuboids, and cylinders
(Figure F.7). The dimensions of these shapes are randomized according to a continuous
uniform random distribution with x ∈ U(0.5, 4), y ∈ U(0.5, 4), and z ∈ U(0.5, 8). Training
environments are created by spawning either of the two categories of items according to a
homogeneous Poisson point process with intensity δ.

We generate a total of 850 environments by uniform randomization of the following two
quantities: item category, i.e. trees or shapes, and the intensity δ ∈ U(4, 7), with δ ∈ N+.
For each environment, we compute a global collision-free trajectory τgbl from the starting
location to a point 40m in front of it. The trajectory τgbl is not observed by the student
policy, but only by the expert. The student is only provided with a straight, potentially
not collision-free, trajectory from start to end to convey the goal.

To assure sufficient coverage of the state space, we use the dataset aggregation strategy
(DAgger) [289]. This process consists of rolling out the student policy and labeling the
visited states with the expert policy. To avoid divergence from τgbl and prevent crashes
in the early stages of training, we track a trajectory predicted by the student only if the
drone’s distance from the closest point on τgbl is smaller than a threshold ξ, initialized
to zero. Otherwise, we directly track τgbl with a model-predictive controller. Every 30
environments the student is re-trained on all available data and the threshold ξ set to
ξ′ = min(ξ + 0.25, 6). Aggregating data over all environments results in a dataset of
approximately 90K samples. For the narrow-gap experiments, we finetune the student
policy on 200 environments created by adding a 50m long wall with a single vertical gap
of random width wg ∈ U(0.7, 1.2) meters in the center. In those environments, the drone
starts at a 10m distance from the wall with a randomized lateral offset l ∈ U(−5, 5) from
the gap. We collect approximately 20K training samples from those environments.

We evaluate the trained policies in simulation on environments not seen during training
but coming from the same distributions. The same policies are then used to control the
physical platforms in real-world environments. When deployed in simulation, we estimate
depth with SGM [132] from a simulated stereo pair and use the ground-truth state of
the platform. Conversely, on the physical platform depth is estimated by an off-the-shelf
Intel RealSense 435 and state estimation is performed by an Intel RealSense T265. More
details on our experimental platform are available in Section F.5.

F.4.4 Method Validation

Our approach is based on several design choices that we validate in an ablation study.
We ablate the following components: (i) the use of global planning to initialize the
sampling of the privileged expert, (ii) the use of depth as an intermediate representation
for action, (iii) multi-modal network prediction. The results in Figure F.7 show that all

161

Appendix F. Learning High-Speed Flight in the Wild

4 6 8 10 12

0

20

40

60

80

100

Forward Speed [m/s]

S
u
cc

es
s

R
at

e
[%

]

LocalPlan RGB
UniModal SinglePoint
Ours

(a) Ablation study (b) Poisson forest (c) Poisson convex shapes

Figure F.7 – (a) Method validation. Without initialization of the sampler on a global trajec-
tory (LocalPlan), multi-modal training (UniModal), or training on SGM depth image (RGB),
performance significantly drops. Predicting a single point in the future instead of a full trajectory
(SinglePoint) has similar effects on performance. Ours consistently outperforms all the ablated
versions of the system. (b-c) Training environments. We build training environments by spawning
trees or convex shapes according to an homogeneous Poisson point process with varying intensities.

components are important and that some choices have a larger impact than others. Our
study indicates that depth perception plays a fundamental rule for high-speed obstacle
avoidance: when training on color images (RGB) performance drops significantly. This is
inline with previous findings [375, 172] showing that intermediate image representations
have a strong positive effect on performance when sufficiently informative for the task.
Not accounting for multi-modal trajectory prediction (UniModal) is also detrimental for
performance. This is because the l2-loss pushes predicted trajectories toward the average
of the expert trajectories, which is often in collision with obstacles. Not initializing the
sampling of expert trajectories on a global plan (LocalPlan) is not important for low-speed
flight, but plays an important role for success at higher speeds. Biasing the motion
away from regions that are densely populated by obstacles is particularly important for
high-speed flight where little slack is available for reacting to unexpected obstacles. In
addition, we compare our output representation, i.e. a trajectory one second in the future,
to the less complex output representation in prior work [208], i.e. a single waypoint in the
future (SinglePoint). The results indicate that the limited representation power of the
latter representation causes performance to drop significantly, especially at high speeds.

F.5 Experimental Platform

To validate our approach with real-world experiments, we designed a lightweight, but
powerful, quadrotor platform. The main frame is an Armattan Chameleon 6 inches,
equipped with Hobbywing XRotor 2306 motors and 5 inches, three-bladed propellers.
The platform has a total weight of 890 grams and can produce a maximum thrust of
approximately 40N, which results in a thrust-to-weight ratio of 4.4. The weight and
power of this platform is comparable to the ones used by professional pilots in drone
racing competitions.

162

F.5. Experimental Platform

Figure F.8 – Illustration of our experimental platform. The main computational unit is an
NVIDIA Jetson TX2, whose GPU is used for neural network inference and CPU for the control
stack. Sensing is performed by an Intel Realsense T265 for state estimation and an Intel Realsense
D435 for depth estimation.

The platform’s main computational unit is an NVIDIA Jetson TX2 accompanied by a
ConnectTech Quasar carrier board. The GPU of the Jetson TX2 is used to run neural
network inference and its CPU for the rest of our control framework. The output of this
framework is a low-level control command including a collective thrust and angular rates
to be achieved for flying. The desired commands are sent to a commercial flight controller
running BetaFlight, which produces single-rotor commands that are fed to the 4-in-1
motor controller.

Our quadrotor is equipped with two off-the-shelf sensing units: an Intel RealSense T265
and an Intel RealSense D435i. Both have a stereo camera setup and an integrated IMU.
The RealSense T265 runs a visual-inertial odometry pipeline to output the state estimation
of the platform at 200Hz, which we directly use without any additional processing. Our
second sensing unit, the RealSense D435i, outputs a hardware-accelerated depth estimation
pipeline on its stereo setup. The latter pipeline provides to our framework a dense depth
in VGA resolution (640x480px) at 30Hz, which we use without further processing. The
horizontal field of view of this observation is approximately 90◦, which appeared to be
sufficient for the task of obstacle avoidance. For experiments at speeds of 7m s−1 and
above, we tilt the depth sensor by 30◦ to assure that the camera would look forward
during flight. This is indeed a typical camera setup for high-speed flight in drone racing
competitions. To support the transfer from simulation to reality, we build a simulated
stereo setup with the same characteristics of the RealSense D435, on which we run a
GPU implementation of SGM5 [129] to estimate dense depth in simulation.

Our software stack is developed in both C++ and Python, and will be made publicly
available upon acceptance. Specifically, we implement the trajectory prediction framework
with Tensorflow in a Python node and the rest of our trajectory projection and tracking
software in separate C++ nodes. The communication between different nodes is imple-
mented with ROS. Specifically, the Tensorflow node predicts trajectories at 24.7Hz on
the physical platform, and the MPC generates commands in the form of collective thrust
and body rates at 100Hz to track those trajectories. The low-level controller, responsible
for tracking desired body rates and collective thrust predicted by the MPC, runs at 2 kHz.

5https://github.com/dhernandez0/sgm

163

https://github.com/dhernandez0/sgm

Appendix F. Learning High-Speed Flight in the Wild

The platform only receives a start and stop command from the base computer, and is
therefore completely autonomous during flight.

F.6 Computational Complexity

The baseline with the largest latency is FastPlanner. This baseline has three components:
sensing, mapping and planning. Sensing includes transforming a depth image to a
pointcloud after filtering. Mapping includes ray casting and Euclidean Signed Distance
Field (ESDF) computation. Finally, planning includes finding the best trajectory to reach
the goal while avoiding obstacles. The total time to perform all these operations is 65.2ms.
However, it is important to note that, while the depth filtering and the probabilistic
ray casting process are necessary to remove sensing errors, those operations make the
inclusions of obstacles in the local map slower. Practically, 2-3 observations are required
to add an obstacle to the local map, therefore largely increasing the overall latency of the
system.

Removing the mapping stage altogether, the Reactive baseline experiences significant gains
in computation time. For this baseline, the sensing latency is the time between receiving
a depth observation and generating a point cloud after filtering and outlier rejection.
The planning latency consists of building a KD-Tree from the filtered point cloud, and
selecting the best trajectory out of the available motion primitives according to a cost
based on collision probability and proximity to the goal. This baseline is approximately
three times faster than FastPlanner, with a total latency of 19.1ms. However, the reduced
latency comes at the cost of a lower trajectory-representation power, since the planner
can only select a primitive from a pre-defined motion library. In addition, given the lack
of temporal filtering, the reactive baseline is very sensitive to sensing errors, which can
drastically affect performance at high speeds.

Our approach has significantly lower latency than both baselines: when network inference
is performed on the GPU, our approach is 25.3 times faster than FastPlanner and 7.4
times faster than the Reactive baseline. When GPU inference is disabled, the network’s
latency increases by only 8ms, and our approach is still significantly faster than both
baselines. For our approach, we break down computation into three operations: (i) sensing,
which includes the time for recording an image and convert it to an input tensor, (ii)
neural network inference, and (iii) projection, which is the time to project the prediction
of the neural network into the space of dynamically feasible trajectories for the quadrotor.
Moving from the desktop computer to the onboard embedded computing device, the
network’s forward pass requires 38.9ms. Onboard, the total time to pass from sensor to
action is then 41.6ms, which is sufficient to update actions at up to 24.3Hz.

F.7 Rotational Dynamics

Extending [80] to the quadrotor platform, we approximate the maximum speed vmax

that still allows successful avoidance of a vertical cylindrical obstacle of radius robs. The
avoidance maneuver is described as a sequence of two motion primitives consisting of

164

F.8. Metropolis-Hastings Sampling

pure rolling and pure acceleration. Both primitives are executed with maximum motor
inputs. Concretely, we treat the time required to reorient the quadrotor as additional
latency in the system, which can be computed by

trot =

√

2φJ

Tmax
, (F.9)

with J being the moment of inertia, Tmax the maximum torque the quadrotor can produce,
and φ the desired roll angle. As the roll angle becomes a decision variable itself in this
setting, we identify the best roll angle by maximizing the speed that still allows successful
avoidance. Assuming that the quadrotor oriented at a roll angle φ accelerates with full
thrust, its lateral position plat can be described by

plat(t) =
1

2
sinφ · cmax · t2 , (F.10)

where cmax denotes the maximum mass-normalized thrust of the platform. Solving this
equation for t and setting plat = robs allows to formulate a maximum linear speed that
still allows successful avoidance when considering the sensing range s, the sensing latency
ts, and the latency introduced to reorient the platform trot:

vmax =
s

ts + trot +
√

2robs

sinφ·cmax

. (F.11)

Inserting (F.9) into (F.11) we can identifying φ that maximizes vmax. In our study case,
we set robs = 0.5m, which is the sum of the radius of the pole to avoid and the size
of the drone. In addition, we set cmax = 33m s−2, J = 0.007 kgm−2, and ts = 66ms,
since images are rendered at 15Hz. Using these values, we derive a rotational latency
trot = 119ms and a rotation angle φ = 69.1◦. Therefore, the total latency due to
perception and the system’s rotational inertia is 185ms. This latency and the sensing
range of the depth camera s can be used to compute vmax according to Equation F.11.
Note that this approximation does not account for the fact that the quadrotor platform
already performs some lateral acceleration during the rotation phase.

F.8 Metropolis-Hastings Sampling

In statistics, the Metropolis-Hastings (M-H) algorithm [125] is used to sample a distribution
P (w) which can’t be directly accessed. To generate the samples, the M-H algorithm
requires a score function d(w) proportional to P (w). Requiring d(w) ∝ P (w) waives the
need to find the normalization factor Z =

∫

w
d(w) such that P (w) = 1

Z
d(w), which can’t

be easily calculated for high-dimensional spaces. Metropolis-Hastings is a Markov Chain
Monte Carlo sampling method [10]. Therefore, it generates samples by constructing a
Markov chain that has the desired distribution as its equilibrium distribution. In this
Markov chain, the next sample wt+1 comes from a distribution t(wt+1|wt), referred to as
transition model, which only depends on the current sample wt. The transition model
t(wt+1|wt) is generally a pre-defined parametric distribution, e.g. a Gaussian. The next

165

Appendix F. Learning High-Speed Flight in the Wild

Figure F.9 – Taxonomy of existing approaches for drone navigation in challenging and cluttered
environments. Approaches are ordered with respect to the required prior knowledge about the
environment and the maximum agility they achieve.

sample wt+1 is then accepted and used for the next iteration, or it is rejected, discarded,
and the current sample wt is re-used. Specifically, the sample is accepted with probability
equal to

α = min

(

1,
d(wt+1)

d(wt)

)

= min

(

1,
P (wt+1)

P (wt)

)

. (F.12)

Therefore, M-H always accepts a sample with a higher score than its predecessor. However,
the move to a sample with a smaller score will sometimes be rejected, and the higher
the drop in score 1

α
, the smaller the probability of acceptance. Therefore, many samples

come from the high-density regions of P (w), while relatively few from the low-density
regions. Roberts et. al [285] have shown that under the mild condition that

α > 0 ∀ wt, wt+1 ∈ W, (F.13)

P̂ (w) will asymptotically converge to the target distribution P (w). According to
Eq. (F.13), the probability of accepting a sample with lower score than its predecessor is
always different from zero, which implies that the method will not ultimately get stuck
into a local extremum. Intuitively, this is why the empirical sample distribution P̂ (w)
approximates the target distribution P (w). In contrast to other Monte Carlo statistical
methods, e.g. importance sampling, the MH algorithm tend to suffer less from the curse of
dimensionality and are therefore preferred for sampling in high-dimensional spaces [285].

166

F.8. Metropolis-Hastings Sampling

(a) Without global planning (b) With global planning

Figure F.10 – Illustration of the influence of global planning on the sampled trajectories.
Sampling around the raw reference trajectory (in red) strictly limits the expert’s sight to the
immediate horizon (a). Conversely, sampling around a global collision-free trajectory (in green)
results in a bias towards obstacle-free regions even beyond the immediate horizon (b). Best
viewed in color.

167

G A Benchmark Comparison of

Learned Control Policies for Agile

Quadrotor Flight

The version presented here is reprinted, with permission, from:

Elia Kaufmann, Leonard Bauersfeld, and Davide Scaramuzza. “A Benchmark Comparison
of Learned Control Policies for Agile Quadrotor Flight”. In: 2022 International Conference
on Robotics and Automation (ICRA). IEEE. 2022

169

Appendix G. A Benchmark Comparison of Learned Control Policies for
Agile Quadrotor Flight

A Benchmark Comparison of Learned

Control Policies for Agile Quadrotor Flight

Elia Kaufmann, Leonard Bauersfeld, Davide Scaramuzza

Abstract — Quadrotors are highly nonlinear dynamical systems
that require carefully tuned controllers to be pushed to their physical
limits. Recently, learning-based control policies have been proposed for
quadrotors, as they would potentially allow learning direct mappings
from high-dimensional raw sensory observations to actions. Due to
sample inefficiency, training such learned controllers on the real platform
is impractical or even impossible. Training in simulation is attractive
but requires to transfer policies between domains, which demands
trained policies to be robust to such domain gap. In this work, we
make two contributions: (i) we perform the first benchmark comparison
of existing learned control policies for agile quadrotor flight and show
that training a control policy that commands body-rates and thrust
results in more robust sim-to-real transfer compared to a policy that
directly specifies individual rotor thrusts, (ii) we demonstrate for the
first time that such a control policy trained via deep reinforcement
learning can control a quadrotor in real-world experiments at speeds
over 45km/h.

170

G.1. Introduction

SRT

πSRT Delay

ẋ = f(x)

τiot

∆t = 1ms

LV

πLV Delay

Ctrlẋ = f(x) PD

v

ωz

τi

ot

x ∆t = 1ms

IMU

CTBR

πCTBR Delay

ẋ = f(x) PD

c

ω

τi

ot

∆t = 1ms

IMU

Figure G.1 – In this paper, we compare three different classes of control policies for the task
of agile quadrotor flight. From left to right: policies specifying desired linear velocities (LV)
(they rely on a control stack that maps the output velocities to individual rotor thrusts), policies
commanding collective thrust and bodyrates (CTBR) (they rely on a low-level controller that
maps the output bodyrates to individual rotor thrusts), policies directly outputting single-rotor
thrust (SRT).

Supplementary Material

A narrated video illustrating our findings is available at https://youtu.be/zqdfVq2uWUA

G.1 Introduction

Agile quadrotor flight is a challenging problem that requires fast and accurate control
strategies. In recent years, numerous learning-based controllers have been proposed for
quadrotors. In contrast to their traditional counterparts, learned control policies have the
potential to directly map sensory information to actions, alleviating the need for explicit
state estimation [370, 172, 195, 209].

Prior work has proposed learned control policies that make use of various control input
modalities to the underlying platform: while some directly specify motor commands [370,
145, 234], others, instead, output desired collective thrust and bodyrates [172, 246] (that
are then executed by a low-level controller), or velocity commands [112, 206] (that are
then executed by a control stack), or even a sequence of future waypoints [209]. Most
published approaches do not justify their choice of control input. This renders performance
comparisons among them and, thus, scientific progress difficult.

Due to the high sample complexity of learning-based policies, they are often trained
in simulation, which then requires transferring the policy from simulation to the real
world. This transfer between domains is known to be hard and is typically approached
by increasing the simulation fidelity [337, 23], by randomization of dynamics [234, 12] or
rendering properties [298, 341] at training time, or by abstraction of the policy inputs [172,
209]. Apart from simulation enhancements and input abstractions, also the choice of
action space of the learned policy itself can facilitate transfer. Policies that generate
high-level commands, such as desired linear velocity or future waypoints [209], have a
reduced simulation to reality gap, as they abstract the task of flying by relying on an
existing underlying control stack. However, while facilitating transfer, such abstractions
also constrain the maneuverability of the platform. Approaches that do not rely on such
abstractions (like those specifying collective thrust and body rates or even single-rotor-

171

https://youtu.be/zqdfVq2uWUA

Appendix G. A Benchmark Comparison of Learned Control Policies for
Agile Quadrotor Flight

thrust commands) can potentially execute much more agile maneuvers, but have so far
only been shown for near-hover trajectories [234] or require a dedicated policy for each
maneuver [172].

In this paper, we compare and benchmark learned control policies with respect to their
choice of action space. Specifically, we compare them in terms of peak performance in
case of perfect model identification, as well as in terms of their transferability to a new
platform with possibly different dynamics properties. We compare the learned policies
with respect to their flight performance, which we characterize by the average tracking
error on a set of predefined trajectories.

Our experiments, performed both in simulation and on a real quadrotor platform, show
that control policies that command collective thrust and bodyrates are more robust to
changes in the dynamics of the platform without compromising agility. Additionally,
compared to high-level action parameterizations, specifying collective thrust and bodyrates
allows performing significantly more agile maneuvers.

Finally, we demonstrate the first learning-based controller, trained via deep reinforcement
learning, that is able to perform previously unseen agile maneuvers on a real quadrotor
flying at speeds over 45 kmh−1. The policy is trained purely in simulation and transferred
to the real platform without any fine-tuning.

G.2 Related Work

In this section, we give an overview of the related work for learning-based quadrotor
control while focusing on the choice of action space. While there exists a comparison of
action spaces of learned policies for 2D locomotion [268], such analysis is still lacking
in the aerial robotics community. In the following, we group learned control strategies
according to their action space into a) Linear Velocity Commands (LV), b) Collective
Thrust and Bodyrates (CTBR), and c) Single Rotor Thrusts (SRT).

Linear Velocity. Control policies specifying high-level commands, often in the form of
receding-horizon waypoints or velocity commands, have been proposed for a variety of
tasks, such as forest trail navigation [112], navigation in city streets [206] and indoor
environments [298], or even drone racing [171]. Recently, [24] have used model-based meta
reinforcement learning to generate velocity commands that adapt to unknown payloads.
While these approaches have been successfully deployed in the real world, only [171]
achieved flight speeds beyond 3m s−1, while the other policies result in near-hover flight.
As the control policy does not take into account the dynamic constraints of the platform,
it can be easily transferred, but does not exploit the platform’s full dynamic capabilities.
Furthermore, such approaches rely on an existing underlying control stack, which itself is
dependent on high-quality state estimation.

Collective Thrust and Bodyrates. Compared to specifying linear velocity commands,
controlling collective thrust and bodyrates has been shown to allow performing significantly
more aggressive maneuvers. In [246], a racing policy directly maps image observations to

172

G.2. Related Work

collective thrust and bodyrate commands. Although the policy successfully races through
challenging race tracks in simulation, it is not deployed on a real platform. In [312],
the authors propose combining a classical controller with a learned residual command
to correct for aerodynamic disturbances such as ground effect during near-hover flight.
In [172], the authors use privileged learning to imitate a model predictive controller (MPC)
to perform acrobatic maneuvers. While this approach successfully showed acrobatic flight
on a real platform, it was constrained to a single maneuver and required a separate policy
for each trajectory. In contrast to generating high-level commands, specifying collective
thrust and bodyrates does not necessitate estimation of the full state of the platform, but
only requires inertial measurements to perform feedback control on the bodyrates. This
information is readily available at high frequency in today’s flight controllers, rendering
collective thrust and bodyrates the preferred control input modality for professional
human pilots.

Single-Rotor Thrusts. There are several works that propose to directly learn to control
individual rotor thrusts [145, 234, 322, 370, 189, 271, 272]. As this control input does not
require any additional control loop, it provides direct access to the actuators and as a
result correctly represents the true actuation limits of the platform. It constitutes the most
versatile control input investigated in this work. In [145, 234], the authors train a policy
to map state observations directly to desired individual rotor thrusts. While [145] required
a PID controller at data collection time to facilitate training, [234] demonstrated training
of a stabilizing quadrotor control policy from scratch in simulation and deployment on
multiple real platforms. [322] trains a policy for autonomous drone racing. Their approach
demonstrates competitive racing performance in simulation, but is not deployed on a real
quadrotor. In [370], the authors train a policy to perform obstacle avoidance using guided
policy search by imitating an MPC controller that has access to privileged information
about the environment. One of the few works that does not rely on simulated data for
training is presented in [189], where the authors propose an approach based on deep
model-based reinforcement learning to train a hovering policy for the Crazyflie quadrotor.
The trained policy managed to control the real platform in hover for 6 s before crashing.
A position controller is trained via reinforcement learning in [271] and extended in [272]
to be robust against external disturbances such as wind. In [181], the authors train
an attitude controller via deep reinforcement learning. They argue that their approach
provides a better flight performance compared to a PID controller, while still being
computationally lightweight. Although this method outputs individual rotor thrusts, it is
still dependent on a higher-level controller that produces attitude setpoints to achieve
stable flight.

While some of these works show successful deployment of their policies in the real world,
none achieved agile flight, only reaching maximum speeds below 4m s−1.

173

Appendix G. A Benchmark Comparison of Learned Control Policies for
Agile Quadrotor Flight

4

2

1

3

xB

yB

zB

xW

yW

zW

gW

Figure G.2 – Diagram of the quadrotor depicting the world and body frames and propeller
numbering.

G.3 Quadrotor Dynamics

To train a control policy for agile flight, we implement the quadrotor dynamics as an
environment in TensorFlow Agents1. The following section gives a brief overview of the
dynamics implemented in the simulator.

G.3.1 Notation

Scalars are denoted in non-bold [s, S], vectors in lowercase bold v, and matrices in
uppercase bold M . World W and Body B frames are defined with orthonormal basis i.e.
{xW ,yW , zW}. The frame B is located at the center of mass of the quadrotor. A vector
from coordinate p1 to p2 expressed in the W frame is written as: Wv12. If the vector’s
origin coincides with the frame it is described in, the frame index is dropped, e.g. the
quadrotor position is denoted as pWB. Unit quaternions q = (qw, qx, qy, qz) with ‖q‖ = 1
are used to represent orientations, such as the attitude state of the quadrotor body qWB.

Finally, full SE3 transformations, such as changing the frame of reference from body
to world for a point pB1, can be described by WpB1 = WtWB + qWB ⊙ pB1. Note the
quaternion-vector product is denoted by ⊙ representing a rotation of the vector by the
quaternion as in q ⊙ v = qvq̄, where q̄ is the quaternion’s conjugate.

G.3.2 Quadrotor Dynamics

The quadrotor is assumed to be a 6 degree-of-freedom rigid body of mass m and diagonal
moment of inertia matrix J = diag(Jx, Jy, Jz). Furthermore, the rotational speeds of the
four propellers Ωi are modeled as first-order system with time constant kmot where the
commanded motor speeds Ωcmd are the input.

1https://github.com/tensorflow/agents

174

https://github.com/tensorflow/agents

G.4. Methodology

The state space is thus 17-dimensional and its dynamics can be written as:

ẋ =

ṗWB

q̇WB

v̇WB

ω̇B

Ω̇

=

vW

qWB ·
[

0
ωB/2

]

1
m
(qWB ⊙ (fprop + fdrag)) + gW

J−1
(

τprop − ωB × JωB

)

1
kmot

(

Ωcmd −Ω
)

, (G.1)

where gW = [0, 0,−9.81m/s2]⊺ denotes earth’s gravity, fprop, τprop are the collective
force and the torque produced by the propellers, and fdrag is a linear drag term. The
quantities are calculated as follows:

fprop =
∑

i

fi , τprop =
∑

i

τi + rP,i × fi , (G.2)

fdrag = −
[
kvxvB,x kvyvB,y kvzvB,z

]⊤
, (G.3)

where rP,i is the location of propeller i expressed in the body frame , fi, τi are the forces
and torques generated by the i-th propeller, and (kvx, kvy, kvz) [102, 78] are linear drag
coefficients. A commonly used [102, 309] model for the forces and torques exerted by a
single propeller is presented in the following: the thrust and drag torque are assumed
to be proportional to the square of the propellers’ rotational speed. The corresponding
thrust and drag coefficients cl and cd can be readily identified on a static propeller test
stand. By also measuring the rotational speed of the propeller during those tests, the
motor time constant kmot can be estimated. Overall, the force and torque produced by a
single propeller are modeled as follows:

fi(Ω) =
[
0 0 cl · Ω2

]⊤
, τi(Ω) =

[
0 0 cd · Ω2

]⊤ (G.4)

The dynamics are integrated using a symplectic Euler scheme with step size 1ms. For
numerical values of the identified mass, inertia, and thrust and drag constants, we refer
the reader to Section G.4.3.

G.4 Methodology

We address the challenge of robust and agile quadrotor flight using learned control
policies by identifying the best choice of action space for the task. We train deep neural
control policies that directly map observations ot in the form of platform state and a
reference trajectory to control actions ut. The control policies are trained using model-free
reinforcement learning (PPO [308]) purely in simulation on a set of over 600 reference
trajectories that cover the full performance envelope of the quadrotor. We train policies
of three different types that only differ in their choice of action space ut, as illustrated in
Figure G.1:

175

Appendix G. A Benchmark Comparison of Learned Control Policies for
Agile Quadrotor Flight

1. Linear Velocity & Yaw Rate (LV): Each action specifies a desired linear velocity
and yaw rate, which are then tracked by a full control stack with access to accurate
state estimation. πLV(ot) ⇒ ut = {vx, vy, vz, ωz}

2. Collective Thrust & Bodyrate (CTBR): Each action represents desired col-
lective thrust and bodyrates, which are tracked by a low-level controller using
measurements from an inertial sensor. πCTBR(ot) ⇒ ut = {c, ωx, ωy, ωz}

3. Single-Rotor Thrust (SRT): Each action directly specifies desired individual
rotor thrusts, which are then applied for the duration of a control step. πSRT(ot) ⇒
ut = {f1, f2, f3, f4}

All policy types feature a 4-dimensional action space, are fed the same observations ot,
and are represented by the same network architecture.

G.4.1 Observations, Actions, and Rewards

An observation ot obtained from the environment at time t consist of (i) a history of
previous states and applied actions and (ii) the future reference along the trajectory.
Specifically, the state information contains a history of length H = 10 of the z-position of
the platform, its velocity, attitude represented as rotation matrix, and bodyrates. Even
though the simulator internally uses quaternions, we pass attitude as rotation matrix
to the networks to avoid discontinuities [376]. The reference information consists of a
sequence of length R = 10 of future relative position, velocity, and bodyrates as well as
the full rotation matrix of the reference. The position and velocity components of the
reference states are expressed as the residual from the current state of the quadrotor. All
observations are normalized before passing them to the networks.

Since the value network is only used during training time, it can access privileged informa-
tion about the environment that is not accessible to the policy network. Specifically, this

Table G.1 – Input features to the policy and value networks. The state is represented by a
sliding window of length H of current and previous states, the reference is represented by a
receding-horizon window of length R of current and future reference states. Both networks observe
the same state and reference, but only the value network observes privileged information, such as
biases in mass, inertia, drag and gravity applied during training with domain randomization.

Input Components Dimensions Policy NW Value NW

State

z-Position H × 1 X X

Velocity H × 3 X X

Attitude H × 9 X X

Bodyrates H × 3 X X

Privileged Info. H × 7 ✗ X

Reference

Position R× 3 X X

Velocity R× 3 X X

Attitude R× 9 X X

Bodyrates R× 3 X X

176

G.4. Methodology

Table G.2 – Physical parameters of the simulation. At the start of each rollout, the parameters
are sampled from a uniform distribution around the nominal values with the randomization
specified above.

Parameter Nominal Value Randomization

Mass [kg] 0.768 ±30%
Inertia [kgm2] [2.5e-3, 2.1e-3, 4.3e-3] ±30%
Gravity [ms−2] [0.0, 0.0, -9.81] ±0.4
kvx [Nsm−1] 0.3 ±0.3
kvy [Nsm−1] 0.3 ±0.3
kvz [Nsm−1] 0.15 ±0.15
cl [Nrad−1 s−1] 1.563e-6 ±0.0
cd [Nmrad−1 s−1] 1.909e-8 ±0.0

privileged information contains the mass and inertia biases applied during randomization,
as well as the sampled drag coefficients and the additive gravity bias. An overview of the
observation provided to the policy and value network is given in Table G.1. The value
network and the policy network share the same architecture but have different parameters.
The state and reference information are encoded by two separate fully-connected neural
networks with 3 hidden layers with 64 neurons each. The encodings are then concatenated
and fed to a final multilayer perceptron with two layers of 128 neurons each.

We use a dense shaped reward formulation to learn the task of agile trajectory tracking.
The reward rt at timestep t is given by

rt =− (xt − xref,t)
⊤Q(xt − xref,t) (G.5)

− (ut − uref,t)
⊤R(ut − uref,t)− rcrash ,

where Q and R are diagonal matrices, xt the full state of the quadrotor, ut the applied
action, xref,t and uref,t their respective references, and rcrash is a binary penalty that is
only active when the altitude of the platform is negative, which also ends the episode.

G.4.2 Policy Learning

All control policies are trained using Proximal Policy Optimization (PPO) [308]. PPO has
been shown to achieve state-of-the-art performance on a set of continuous control tasks
and is well suited for learning problems where interaction with the environment is fast.
Data collection is performed by simulating 50 agents in parallel. At each environment
reset, every agent samples a new trajectory from the set of training trajectories and is
initialized with bounded perturbation at the start of the trajectory.

Inspired by prior work on simulation to reality transfer, we perform randomization of the
dynamics of the platform during training time and apply Gaussian noise to the policy
observations. Specifically, we randomize mass, inertia, aerodynamic drag, and thrust
variations of the quadrotor.

177

Appendix G. A Benchmark Comparison of Learned Control Policies for
Agile Quadrotor Flight

Table G.3 – Training hyperparameters.

Hyperparameter Value

γ (discount factor) 0.98
Actor learning rate 3e-4
Critic learning rate 3e-4
Entropy regularization 1e-2
ε (importance ratio clipping) 0.2

G.4.3 Training Details

The policies are trained in a simulated quadrotor environment implemented using Tensor-
Flow Agents. The nominal quadrotor parameters such as mass and inertia are identified
from the real platform and are summarized in Table G.2 together with the amount of
randomization applied at training time. Training hyperparameters specified in Table G.3.

During trajectory tracking, the agent receives at each timestep a reward that penal-
izes tracking error and deviation from the reference action as laid out in Eq. (G.5).
The matrices Q and R have nonzero elements only on the diagonal. Specifically, we
use Q = diag{0.1 · 13×1, 0.02 · 19×1, 0.002 · 13×1, 0.01 · 13×1} and R = diag{0.001 · 14×1}.
The episode is terminated when the quadrotor crashes (i.e. pz ≤ 0.0) with a reward of
rcrash = −500.

G.5 Experiments

We design our experimental setup to investigate the influence of the choice of action space
on flight performance. Specifically, we design our experiments to answer the following
research questions: (i) How is the peak control performance in situation of perfect model
identification affected by the actuation model? (ii) How does the choice of action space
affect the robustness against model mismatch? (iii) What is the impact of the choice of
action space on training data requirement?

We evaluate the performance of all policies on a set of test trajectories of varying agility,
spanning from a hover trajectory up to a racing trajectory [91] that requires to perform
accelerations beyond 3g to track. All test trajectories are within the distribution of training
trajectories and are feasible, i.e. they do not exceed the platform limits. Table G.4 shows
the key metrics of all test trajectories.

G.5.1 Simulation Experiments

In a set of controlled experiments in simulation, the tracking performance of each policy
is investigated. We compare performance with respect to average positional tracking
error. Experiments are performed on the test trajectories in two settings: (i) in the
Nominal setting, the test environment perfectly matches the training environment; (ii) in

178

G.5. Experiments

the Model Mismatch setting, the environment at test time is different from the training
environment. Specifically, we use in setting (ii) a quadrotor simulation that was identified
from real flight data and uses blade-element momentum theory to accurately model the
aerodynamic forces acting on the platform [23]. We also apply a control delay of 20ms to
simulate wireless communication latency. Note that we can only use this simulation at
test time, since it is computationally too expensive to run it at training time.
While setting (i) is focused on the maximum possible performance achievable by a method
and its training data requirement, setting (ii) investigates the robustness of policies against
model mismatch. All policies tested in setting (i) have been trained specifically for the
nominal environment without any randomization, while the policies tested in setting (ii)
have been trained on a distribution of environments as explained in Section G.4.2. We also
compare against two state-of-the-art classical control approaches: MPC-SRT represents
an optimization-based controller [346] that directly controls at individual rotor thrust
level, while MPC-CTBR makes use of a low-level controller. All learned policies are run
at a constant frequency of 50Hz, while the traditional controllers are executed at 100Hz.

Nominal Model. Table G.5 shows the results of the experiments in the Nominal setting
(i). SRT and CTBR policies perform comparable in this setting, with CTBR marginally
outperforming on slower trajectories, while SRT performs slightly better on the more
aggressive maneuvers. These results confirm previous findings from experiments in the
domain of 2D locomotion [268]: policies that operate in concert with an underlying
low-level controller outperform end-to-end policies. The policies that produce linear
velocity commands (LV) perform inferior especially for agile maneuvers. This can be
explained by the fact that the action space of linear velocity commands does not correctly
represent the dynamic constraints of a quadrotor platform, which leads to a reduced
maneuverability. This result extends the findings of [268] and shows that more abstraction
does not necessarily lead to better performance. Compared to the learned policies, the
traditional control approaches (MPC-SRT, MPC-CTBR) perform significantly better in
the Nominal setting. This results is expected, as the system dynamics implemented in
the MPC exactly match the simulated dynamics of the platform. We still provide these
results to allow a comparison with traditional control approaches.

Table G.4 – Maxima of velocity, mass-normalized collective thrust and bodyrates of the test
trajectories.

Trajectory ‖v‖max[m s−1] cmax[m s−2] ‖ω‖max[rad s
−1]

Hover 0.0 9.81 0.0
RandA 3.87 12.68 1.27
RandB 6.36 13.54 1.52
RandC 8.92 14.52 1.93
RaceA 10.48 16.18 5.74
RaceB 11.97 24.94 8.37
Split-S 12.40 26.35 6.11
RaceC 14.22 33.04 11.56

179

Appendix G. A Benchmark Comparison of Learned Control Policies for
Agile Quadrotor Flight

Table G.5 – Average positional tracking error in centimeter on each test trajectory in case of no
model mismatch. The table reports results for learned policies (SRT, CTBR, LV), and traditional
approaches (MPC-SRT, MPC-CTBR). Results report mean and standard deviation for 10 trained
policies.

SRT CTBR LV MPC-SRT MPC-CTBR

Hover 1.0±0.2 0.6±0.2 7.0±1.6 0.1 0.2
RandA 1.5±0.2 0.9±0.1 15.4±3.0 0.2 0.3
RandB 2.4±0.2 1.6±0.1 61.5±21.0 0.2 0.4
RandC 3.0±0.3 2.0±0.2 85.7±11.5 0.2 0.4
RaceA 5.0±1.2 5.0±1.0 121.1±25.8 0.3 1.3
RaceB 7.1±1.8 6.9±1.5 170.2±16.3 0.7 3.0
Split-S 3.5±0.4 6.6±1.1 92.1±20.8 1.0 2.1
RaceC 9.2±3.2 12.3±2.2 197.9±38.1 1.2 3.9

Table G.6 – Average positional tracking error in centimeter on each test trajectory obtained in
a quadrotor simulator based on blade-element momentum theory with a control delay of 20ms.
Results report mean and standard deviation for 10 trained policies.

SRT CTBR LV MPC-SRT MPC-CTBR

Hover 11.3±4.5 0.6±0.5 6.7±2.0 1.0 0.5
RandA 12.0±4.0 1.2±0.5 17.8±1.4 3.3 1.1
RandB 14.4±2.4 2.2±0.8 57.0±12.0 7.0 2.0
RandC 17.6±5.9 2.6±0.8 78.9±13.4 8.5 2.6
RaceA crash 5.6±1.7 144.0±20.1 12.6 4.8
RaceB crash 10.0±4.0 171.4±17.0 crash 6.3
Split-S crash 6.9±2.6 83.8±9.7 11.3 11.4
RaceC crash 14.9±5.5 176.7±22.0 crash 7.5

Model Mismatch. Table G.6 shows the results of the Model Mismatch scenario.
Controllers that directly specify single rotor thrusts exhibit a significant reduction in
performance, especially for agile trajectories: SRT has a significantly higher tracking
error for slow trajectories and often crashes on the faster maneuvers; MPC-SRT also has
higher tracking error and even crashes on RaceB and RaceC. We report crash, as soon as
one policy crashes on the maneuver. The CTBR policies (as well as MPC-CTBR) are
less affected by the model mismatch and can still execute all maneuvers with a modest
increase in tracking errors. The LV policies show a smaller sensitivity to the model
mismatch, but are still consistently outperformed by the CTBR policies on all trajectories.

Training Data Requirement. Figure G.3 depicts the learning curves of all policies
in case of no domain randomization (left) and with domain randomization (right). All
policies have been trained for a total of 50M environment interactions. The learning
curves also show the robustness of CTBR and LV to changes in the platform dynamics,
we even observed that training with a randomized platform accelerates learning in the
early stages of training. In contrast, the learning curves of SRT in case of domain
randomization initially exhibit a high variance, train slower, and converge to a final
performance substantially lower than in case of no domain randomization.

180

G.5. Experiments

0 20 40

−1,000

−800

−600

−400

−200

0

Million Environment Interactions

R
ew

a
rd

Without Domain Randomization

SRT

CTBR

LV

0 20 40

−1,000

−800

−600

−400

−200

0

Million Environment Interactions

R
ew

a
rd

With Domain Randomization

SRT

CTBR

LV

Figure G.3 – Learning curves of policies trained without (left) and with (right) domain
randomization. All policies are trained for a total of 50M environment interactions. Learning
curves show mean performance and standard deviation computed over all trained policies.

Figure G.4 – Sensitivity to control delay on three trajectories of increasing agility. The results
show that policies that operate on single rotor thrust (SRT) are less robust against control delay.

Influence of Delay. Our experiments show that the performance of the tested control
policies varied significantly in case of unknown control delay. Figure G.4 shows that
policies that operate at higher abstraction levels such as LV or CTBR are less sensitive
to such delay. Furthermore, accurate identification of control delay is more important
for agile trajectories; while hover is possible for CTBR without a noticeable decrease in
performance for latencies up to 60ms, the same latency leads to a crash on the racing
trajectory.

Table G.7 – Positional tracking error in centimeter on a set of test trajectories executed in the
real world. Results report mean and standard deviation for 5 trained policies.

CTBR LV MPC-CTBR

Hover 4.4±1.4 6.2±2.0 3.0
RandA 8.1±1.0 60.0±16.8 8.0
RandB 8.6±0.8 87.0±30.3 8.0
RandC 47.8±9.9 134.8±19.6 14.0
Circle 31.8±4.4 170.7±11.6 25.0
Lemniscate 26.8±4.4 189.5±13.7 16.0
Racing 53.0±9.2 200.8±14.5 20.0

181

Appendix G. A Benchmark Comparison of Learned Control Policies for
Agile Quadrotor Flight

G.5.2 Real World Experiments

We assess the performance of different control policies when deployed on a real quadrotor
platform. As in the simulation experiments, we execute a set of trajectories and compare
tracking performance between the methods presented in Section G.4. We encourage the
reader to watch the supplementary video to understand the dynamic nature of these
experiments.

The results of the real world experiments are shown in Table G.7. Due to its significant
sensitivity to control delays and a communication latency of 60ms imposed by the real
system, the SRT policies could not be deployed. The CTBR policies instead manage to fly
unseen maneuvers on the real platform despite the control delay. The LV policies transfer
to the real platform as well, but CTBR significantly outperforms on agile trajectories.
Compared to the results in the BEM simulator, tracking errors are higher in the real
world mainly due to unmodelled effects such as varying battery voltage, imperfect motor
thrust mappings, and torque imbalances due to imperfect mass distribution. Throughout
the tested trajectories, the CTBR policies reach accelerations of up to 3g and speeds
beyond 45 kmh−1, which outperforms the previous state of the art in learning-based
quadrotor control by a factor of 3 in terms of speed.

G.6 Conclusion

We presented a comparison of learning-based controllers for agile quadrotor flight. We
compared policies that specify individual rotor thrusts, collective thrust and bodyrates,
and linear velocity commands. While all tested policy types were able to learn a universal
flight controller, they differed strongly in terms of peak performance and robustness
against dynamics mismatch. We identified that policies producing collective thrust and
bodyrates exhibit strong resilience against dynamics mismatch and transfer well between
domains while retaining high agility. This work can serve as guideline for future work on
learning-based quadrotor control by identifying the control input modality that is best
suited for agile flight.

G.7 Supplementary Material

In the supplementary material we provide implementation details of our quadrotor
simulation, training hyperparameters, reference trajectories and the MPC baselines.
Additionally, we show a set of additional ablation studies regarding the choice of low level
controller, the history length H, and the reference length R.

G.7.1 MPC Baselines

This section gives a brief overview of the MPC baselines implemented in this work. MPC
stabilizes a system subject to its dynamics ẋ = fdyn(x,u) along a reference x∗(t),u∗(t),
where fdyn is represented by Eq. (G.1), omitting the dynamics of the motors. In each

182

G.7. Supplementary Material

control update, MPC minimizes a cost L(x,u) as in:

min
u

∫

L(x,u) (G.6)

subject to ẋ = fdyn(x,u)

x(t0) = xinit

h(x,u) ≤ 0

where x0 denotes the initial condition, fdyn implements the system dynamics as equality
constraints, and h represents inequality constraints, such as input limitations.
For our application, and as most commonly done, we specify the cost to be of quadratic
form L(x,u) = ‖x − x∗‖2Q + ‖u − u∗‖2R and discretize the system into N steps over
time horizon T of size dt = T/N . We account for input limitations by constraining
0 ≤ u ≤ umax.

min
u

x
⊺
NQxN+

N∑

k=0

x
⊺
kQxk + u

⊺
kRuk (G.7)

subject to xk+1 = fRK4(xk,uk, δt)

x0 = xinit

umin ≤ uk ≤ umax

where fRK4 represents the discretized dynamics fdyn using a 4th-order Runge-Kutta
scheme. To solve this quadratic optimization problem, we construct it using a multiple
shooting scheme and solve it through a sequential quadratic program (SQP) executed in
a real-time iteration scheme. All implementations are done using ACADO [138]. Both
MPC baselines in this work (MPC-SRT and MPC-CTBR) use the same formulation.
While MPC-SRT forwards the predicted single rotor thrusts to the motors, in case of
MPC-CTBR the bodyrates and collective thrust from the first predicted state are used
as setpoints for the low level controller.

G.7.2 Ablation Studies

We ablate the performance of our trained policies to investigate the impact of the history
length H and the reference length R, and analyze the sensitivity to the tuning of the
low-level controller.

Sensitivity to Low-Level Controller. We investigate the sensitivity of the CTBR
control policies to the tuning of the underlying low-level controller. The low-level controller
consists of a PD-controller that tracks desired angular rates. The sensitivity analysis is
performed by individually scaling P- and D-gains and analyzing the tracking performance.
The analysis is performed on the RaceA maneuver in the nominal simulation setting. For
reference, the sensitivity analysis is performed also for the MPC-CTBR baseline.
Figure G.5 shows the results of this sensitivity analysis. Starting from the nominal
PD-tuning with a scaling factor of (1.0, 1.0), 121 controller tunings have been tested with
scaling factors in the range [0.0, 100.0]. The learned CTBR policies show comparable

183

Appendix G. A Benchmark Comparison of Learned Control Policies for
Agile Quadrotor Flight

0.
0

0.
05 0.

1
0.

2
0.

5
1.

0
2.

0
5.

0
10

.0
20

.0
10

0.
0

D-gain scale [-]

0.0

0.05

0.1

0.2

0.5

1.0

2.0

5.0

10.0

20.0

100.0

P
-g

a
in

sc
a

le
[-

]

5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

0.1 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

0.1 0.1 0.1 0.1 0.1 5.0 5.0 5.0 5.0 5.0 5.0

0.1 0.1 0.1 0.1 0.1 0.1 0.1 5.0 5.0 5.0 5.0

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 5.0 5.0 5.0

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 5.0 5.0

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 5.0

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 5.0

0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 5.0

0.8 0.6 0.5 0.5 0.4 0.3 0.1 0.1 0.1 0.1 5.0

5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

Sensitivity Analysis Low-Level Controller: CTBR

0.
0

0.
05 0.

1
0.

2
0.

5
1.

0
2.

0
5.

0
10

.0
20

.0
10

0.
0

D-gain scale [-]

0.0

0.05

0.1

0.2

0.5

1.0

2.0

5.0

10.0

20.0

100.0
P

-g
a

in
sc

a
le

[-
]

5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

0.5 0.5 0.8 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

0.1 0.1 0.1 0.1 0.2 0.8 5.0 5.0 5.0 5.0 5.0

0.1 0.1 0.1 0.1 0.1 0.1 0.2 5.0 5.0 5.0 5.0

0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.9 5.0 5.0

0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.1 5.0 5.0

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 5.0

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 5.0

0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 5.0

0.6 0.5 0.5 0.5 0.4 0.4 0.2 0.1 0.1 0.3 5.0

1.1 1.1 1.1 5.0 1.1 1.1 1.4 1.2 5.0 5.0 5.0

Sensitivity Analysis Low-Level Controller: MPC

Figure G.5 – Positional tracking error in meters for varying low-level controllers on RaceA
for the MPC-CTBR baseline (left) and the learned CTBR policies (right). The low-level PD
controller is randomized by individually scaling its P- and D-gains. Tracking errors are clipped at
5m. The learned CTBR policies exhibit a significant robustness against changes in the underlying
low-level controller that is comparable to the MPC-CTBR baseline.

robustness against changes in the low-level controller as the MPC-CTBR baseline.

Influence of Observation History. We investigate the impact of the history length
H on the tracking performance of our trained policies. All policies are trained using
domain randomization and only differ in the length of the history of prior states and
actions observed. We train policies for H = {1, 5, 10}. The reference length R = 10 is
kept constant.
The results of this ablation study are shown in Table G.8. Policies with access to a history
of observations strictly outperform reactive policies for all control input modalities on all
tested trajectories. Transitioning from no history (H1) to a medium-sized history (H5)
leads to a larger improvement in performance compared to the difference between a long
history (H10) and a medium-sized history (H5). Policies operating at a lower abstraction
level (SRT, CTBR) show a larger sensitivity to history length than policies operating at
a higher abstraction level (LV).

Influence of Reference Length. We investigate the impact of the reference length R
on the tracking performance of our trained policies. All policies are trained using domain
randomization and only differ in the length of the receding-horizon reference. We train
policies for R = {1, 5, 10}. The history length H = 10 is kept constant.
The results of this ablation study are shown in Table G.9. Policies with a longer reference
length of R = 10 perform superior compared to policies with only access to a single
reference R = 1 or a short reference R = 5. This trend is consistent across action spaces
and is more pronounced for more aggressive maneuvers.

184

G.7. Supplementary Material

Table G.8 – Ablation of the impact of the history length H on the tracking performance,
evaluated in a quadrotor simulator based on blade-element momentum theory. Results report
mean and standard deviation for 10 trained policies.

Hover RandA RandB RandC RaceA RaceB Split-S RaceC

SRT-H1 crash crash crash crash crash crash crash crash
CTBR-H1 1.7±0.5 5.4±2.9 5.0±1.2 6.2±1.4 16.4±3.0 46.5±18.6 12.3±3.6 67.0±16.0
LV-H1 7.6±2.0 21.5±6.7 79.2±7.6 133±30 168±55 217±19 138±48 210±35

SRT-H5 0.106 crash crash crash crash crash crash crash
CTBR-H5 1.2±0.4 2.3±0.9 4.4±1.7 4.0±1.5 7.7±2.9 11.5±4.2 7.7±3.2 28.5±17.6
LV-H5 7.2±0.9 19.2±1.7 67.7±9.0 98.3±24.6 155.3±9.8 182.0±24.9 103.3±24.6 196.0±10.7

SRT-H10 11.3±4.5 12.0±4.0 14.4±2.4 17.6±5.9 crash crash crash crash
CTBR-H10 0.6±0.5 1.2±0.5 2.2±0.8 2.6±0.8 5.6±1.7 10.0±4.0 6.9±2.6 14.9±5.5
LV-H10 6.7±2.0 17.8±1.4 57.0±12.0 78.9±13.4 144.0±20.1 161.4±17.0 83.8±9.7 161.7±22.0

Table G.9 – Ablation of the impact of the reference length R on the tracking performance,
evaluated in a quadrotor simulator based on blade-element momentum theory. Results report
mean and standard deviation for 10 trained policies.

Hover RandA RandB RandC RaceA RaceB Split-S RaceC

SRT-R1 14.0±2.4 17.7±2.1 crash crash crash crash crash crash
CTBR-R1 5.6±2.1 7.3±2.4 7.6±2.0 6.1±2.4 11.8±5.7 33.0±8.1 22.1±6.4 43.3±14.6
LV-R1 10.6±3.4 27.9±9.4 73.3±13.5 101±17 174±22 191±21 97.9±10.6 218±41

SRT-R5 12.3±2.4 15.0±2.9 crash crash crash crash crash crash
CTBR-R5 0.9±0.2 1.6±0.3 4.5±1.7 5.0±2.4 10.1±5.2 18.0±7.0 11.7±5.3 23.4±6.0
LV-R5 7.8±1.6 20.3±3.6 62.3±7.5 87.7±12.4 162.0±25.5 178.3±23.9 92.3±12.1 188.9±38.5

SRT-R10 11.3±4.5 12.0±4.0 14.4±2.4 17.6±5.9 crash crash crash crash
CTBR-R10 0.6±0.5 1.2±0.5 2.2±0.8 2.6±0.8 5.6±1.7 10.0±4.0 6.9±2.6 14.9±5.5
LV-R10 6.7±2.0 17.8±1.4 57.0±12.0 78.9±13.4 144.0±20.1 161.4±17.0 83.8±9.7 161.7±22.0

185

Appendix G. A Benchmark Comparison of Learned Control Policies for
Agile Quadrotor Flight

G.7.3 Tracking Performance

In addition to the tracking errors reported in Section G.5, we provide trajectory plots for
the test trajectory RaceA. We show plots for both simulation settings evaluated in the
experimental section: the nominal simulation and the simulation based on blade-element
momentum theory with 20ms delay. Each plot illustrates the reference position and the
actual position of the platform. In case of a crash, the rollout is terminated (Figure G.9).

Nominal Model. Figures G.6, G.7, G.8 illustrate the positional tracking performance
of each policy type on the maneuver RaceA in the nominal simulation setting. The corre-
sponding numerical tracking errors can be found in Table G.5. While SRT (Figure G.6)
and CTBR (Figure G.7) achieve near-perfect performance, LV (Figure G.8) exhibits
significant tracking error, especially in high-acceleration regimes of the trajectory.

Model Mismatch. Figures G.9, G.10, G.11 illustrate the performance of each policy
type on the maneuver RaceA in the model mismatch setting, which uses blade-element
momentum theory to model the aerodynamic forces and torques acting on the platform.
The corresponding numerical tracking errors can be found in Table G.6. SRT policies
are very sensitive to changes in the quadrotor model, leading to a crash already after
5.5s as shown in Figure G.9. In contrast, CTBR policies manage to complete the entire
trajectory with similar performance as in the nominal setting (Figure G.10). LV policies
are also robust to changes in platform dynamics, with tracking performance comparable
to the nominal case. Also in the model mismatch setting, LV policies show large tracking
errors, especially in high-acceleration regimes of the trajectory (Figure G.11).

G.7.4 Reference Trajectories

The control policies are trained on a set of feasible reference trajectories. We generate
smooth trajectories in position using two approaches: (i) we generate random circular
trajectories of different inclination angles, radii, and speeds; (ii) we generate random
position trajectories by combining periodic exponential-sine-squared kernels of different
magnitudes and frequencies. Both type of trajectories are extended to full-state quadrotor
trajectories by exploiting the differential flatness property of the quadrotor dynamics [78].
In total we generate over 600 trajectories covering speeds from 0m s−1 up to 20m s−1

and accelerations up to 35m s−2. An illustration of one sample of both trajectory types
is provided in Figure G.12 and Figure G.13.

186

G.7. Supplementary Material

0 5 10 15 20 25 30

−5

0

5

10

Time [s]

P
os

it
io

n
[m

] px
py
pz
pref,x

pref,y

pref,z

Figure G.6 – Tracking performance of SRT on test trajectory RaceA evaluated with the nominal
quadrotor model.

0 5 10 15 20 25 30

−5

0

5

10

Time [s]

P
os

it
io

n
[m

] px
py
pz
pref,x

pref,y

pref,z

Figure G.7 – Tracking performance of CTBR on test trajectory RaceA evaluated with the
nominal quadrotor model.

0 5 10 15 20 25 30

−5

0

5

10

Time [s]

P
os

it
io

n
[m

] px
py
pz
pref,x

pref,y

pref,z

Figure G.8 – Tracking performance of LV on test trajectory RaceA evaluated with the nominal
quadrotor model.

187

Appendix G. A Benchmark Comparison of Learned Control Policies for
Agile Quadrotor Flight

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

−5

0

5

Time [s]

P
os

it
io

n
[m

] px
py
pz
pref,x

pref,y

pref,z

Figure G.9 – Tracking performance of SRT on test trajectory RaceA evaluated in the BEM
simulation.

0 5 10 15 20 25 30

−5

0

5

10

Time [s]

P
os

it
io

n
[m

] px
py
pz
pref,x

pref,y

pref,z

Figure G.10 – Tracking performance of CTBR on trajectory RaceA evaluated in the BEM
simulation.

0 5 10 15 20 25 30

−5

0

5

10

Time [s]

P
os

it
io

n
[m

] px
py
pz
pref,x

pref,y

pref,z

Figure G.11 – Tracking performance of LV on test trajectory RaceA evaluated in the BEM
simulation.

188

G.7. Supplementary Material

−4
−2
0
2
4

P
o
si

ti
o
n

[m
]

px
py
pz

−10

0

10

V
el

o
ci

ty
[m

/
s]

vx
vy
vz

−0.5

0

0.5

1

A
tt

it
u
d
e

[-
] qw

qx
qy
qz

0 10 20 30 40 50 60

−2

0

2

Time [s]

ω
[r

a
d
/
s] ωx

ωy
ωz

Figure G.12 – Illustration of a sample circular reference trajectory in the training set. Circular
trajectories are generated with random inclination angles, radii and speeds.

0

5

P
o
si

ti
o
n

[m
]

px
py
pz

−5

0

5

V
el

o
ci

ty
[m

/
s]

vx
vy
vz

−1

−0.5

0

0.5

1

A
tt

it
u
d
e

[-
] qw

qx
qy
qz

0 10 20 30 40 50 60

−2

0

2

Time [s]

ω
[r

a
d
/
s] ωx

ωy
ωz

Figure G.13 – Illustration of a sample random reference trajectory in the training set. Random
trajectories are generated by combining periodic exponential-sine-squared kernels of different
magnitudes and frequencies, resulting in a smooth position trajectory. Reference attitude and
angular rate is then computed using the differential flatness property of the quadrotor platform.

189

H Champion-Level Drone Racing

using Deep Reinforcement Learning

The version presented here is reprinted, with permission, from:

Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Müller, Vladlen Koltun,
and Davide Scaramuzza. “Champion-Level Drone Racing using Deep Reinforcement
Learning”. In: Nature (2023)

191

Appendix H. Champion-Level Drone Racing using Deep Reinforcement
Learning

Champion-Level Drone Racing using Deep

Reinforcement Learning

Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Müller, Vladlen

Koltun, Davide Scaramuzza

Abstract — First-person view (FPV) drone racing is a televised sport
in which professional competitors pilot high-speed aircraft through a
3D circuit. Each pilot sees the environment from the perspective of
their drone by means of video streamed from an onboard camera.
Reaching the level of professional pilots with an autonomous drone
is challenging since the robot needs to fly at its physical limits while
estimating its speed and location in the circuit exclusively from onboard
sensors. Here we introduce Swift, an autonomous system that can
race physical vehicles at the level of the human world champions. The
system combines deep reinforcement learning in simulation with data
collected in the physical world. Swift competed against three human
champions, including the world champions of two international leagues,
in real-world head-to-head races. Swift won multiple races against each
of the human champions and demonstrated the fastest recorded race
time. This work represents a milestone for mobile robotics and machine
intelligence, which may inspire the deployment of hybrid learning-based
solutions in other physical systems.

192

H.1. Introduction

H.1 Introduction

Deep Reinforcement Learning (RL) [332] has enabled a number of recent advances in
artificial intelligence. Policies trained with deep RL have outperformed humans in complex
competitive games including Atari [230, 307, 74], Go [314, 316, 315, 307], chess [315, 307],
StarCraft [353], Dota 2 [26], and Gran Turismo [99, 363]. These impressive demonstrations
of the capabilities of machine intelligence have primarily been limited to simulation and
board game environments, which support policy search in an exact replica of the testing
conditions. Overcoming this limitation and demonstrating champion-level performance
in physical competitions is a long-standing problem in autonomous mobile robotics and
artificial intelligence [100, 326, 361].

First-person view (FPV) drone racing is a televised sport in which highly trained human
pilots push aerial vehicles to their physical limits in high-speed agile maneuvers H.1a. The
vehicles used in FPV racing are quadcopters, which are among the most agile machines
ever built H.1b. During a race, the vehicles exert forces that surpass their own weight by
a factor of five or more, reaching speeds over 100 kmh−1 and accelerations multiple times
that of gravity, even in confined spaces. Each vehicle is remotely controlled by a human
pilot who wears a headset showing a video stream from an onboard camera, creating an
immersive “first-person view” experience H.1c.

Attempts to create autonomous systems that reach the performance of human pilots
date back to the first autonomous drone racing competition in 2016 [237]. A series
of innovations followed, including the use of deep networks to identify the next gate
location [156, 171, 369], transfer of racing policies from simulation to reality [208, 209],
and accounting for uncertainty in perception [170, 196]. The 2019 AlphaPilot autonomous
drone racing competition showcased some of the best research in the field [7]. However,
the first two teams still took twice as long as a professional human pilot to complete the
track [93, 355]. More recently, autonomous systems have begun to reach expert human
performance [91, 286, 329]. However, these works rely on near-perfect state estimation
provided by an external motion capture system. This makes the comparison with human
pilots unfair, since humans only have access to onboard observations from the drone.

In this article, we describe Swift, the first autonomous system that can race a quadrotor
at the level of human world champions while using only onboard sensors and computation.
Swift consists of two key modules: (i) a perception system that translates high-dimensional
visual and inertial information into a low-dimensional representation and (ii) a control
policy that ingests the low-dimensional representation produced by the perception system
and produces control commands.

The control policy is represented by a feedforward neural network and is trained in
simulation using model-free on-policy deep reinforcement learning [308]. To bridge
discrepancies in sensing and dynamics between simulation and the physical world, we
leverage non-parametric empirical noise models estimated from data collected on the
physical system. These empirical noise models have proven to be instrumental for
successful transfer of the control policy from simulation to reality.

193

Appendix H. Champion-Level Drone Racing using Deep Reinforcement
Learning

c Human Champions

a Drone Racing: Human vs. AI

Human Pilot

AI Drone (ours)

vs.

b Head-to-Head Competition

Figure H.1 – Drone Racing. a, Swift (blue) races head-to-head against Alex Vanover, the
2019 Drone Racing League world champion (red). The track contains seven square gates that must
be passed in order in each lap. To win a race, a competitor has to complete three consecutive laps
before its opponent. b, A close-up view of Swift, illuminated with blue LEDs, and a human-piloted
drone, illuminated with red LEDs, during one of the races. The autonomous drones used in this
work rely only on onboard sensory measurements, with no support from external infrastructure
such as motion capture systems. c, From left to right: Thomas Bitmatta, Marvin Schaepper, and
Alex Vanover racing their drones through the track. Each pilot wears a headset that displays a
video stream transmitted in real time from a camera onboard their aircraft. The headsets provide
an immersive “first-person view” experience.

We evaluate Swift on a physical track designed by a professional drone-racing pilot H.1a.
The track contains seven square gates arranged in a volume of 30× 30× 8 meters, forming
a lap of 75 meters in length. Swift raced this track against three human champions: Alex
Vanover, the 2019 Drone Racing League world champion, Thomas Bitmatta, two-time
MultiGP International Open World Cup champion, and Marvin Schaepper, three-time
Swiss National champion. The quadrotors used by Swift and by the human pilots have
the same weight, shape, and propulsion. They are similar to drones used in international
competitions.

The human pilots were given one week of practice on the race track. After this week of

194

H.1. Introduction

Perception System Real-World Deployment

Perception

Residual

Control

Policy

π

Dynamics

Residual

Real-World

Experience

observed state

obs.
state

a
ct
io
n

residual force & torque

ground-truth state

ground-truth state

a Real-World Operation

b Reinforcement Learning Training Loop

Simulation Environment

200 HzIMU

Image 30 Hz 30 HzGate Detector

VIO 100 Hz

Kalman

Filter

100 Hz

Reward Physics Simulation

(fprop

(fprop
(fprop

(fprop

+ fres)

= v

+ τ res

+ g

100 Hz
MLP: 2 x 128

Control Policy π
VIO
state

gate
detections

previous action

action

v̇ =
1

m

(

q⊙ (fprop + faero + fres)
)

+ g

ω̇ = J−1
(

τ prop + τ aero + τ res

)

ṗ = v

q̇ = q ·

[

0
ω/2

]

Figure H.2 – The Swift system. Swift consists of two key modules: a perception system
that translates visual and inertial information into a low-dimensional state observation, and a
control policy that maps this state observation to control commands. a, The perception system
consists of a visual-inertial odometry (VIO) module that computes a metric estimate of the drone
state from camera images and high-frequency measurements obtained by an inertial measurement
unit (IMU). The VIO estimate is coupled with a neural network that detects the corners of racing
gates in the image stream. The corner detections are mapped to a 3D pose and fused with the
VIO estimate using a Kalman filter. b, We leverage model-free on-policy deep reinforcement
learning to train the control policy in simulation. During training, the policy maximizes a
reward that combines progress towards the center of the next racing gate with a perception
objective to keep the next gate in the camera’s field of view. To transfer the racing policy from
simulation to the physical world, we augment the simulation with data-driven residual models
of the vehicle’s perception and dynamics. These residual models are identified from real-world
experience collected on the race track.

practice, each pilot competed against Swift in multiple head-to-head races H.1a,b. In
each head-to-head race, two drones (one controlled by a human pilot and one controlled
by Swift) start from a podium. The race is set off by an acoustic signal. The first vehicle
that completes three full laps through the track, passing all gates in the correct order in
each lap, wins the race.

Swift won multiple races against each of the human pilots and achieved the fastest race
time recorded during the events. Our work marks the first time that a machine achieved
world-champion-level performance in a real-world competitive sport.

195

Appendix H. Champion-Level Drone Racing using Deep Reinforcement
Learning

The Swift System

Swift uses a combination of learning-based and traditional algorithms to map onboard
sensory readings to control commands. This mapping comprises two parts: (i) an
observation policy, which distills high-dimensional visual and inertial information into
a task-specific low-dimensional encoding, and (ii) a control policy that transforms the
encoding into commands for the drone. A schematic overview of the system is provided
in H.2.

The observation policy consists of a visual-inertial estimator [304, 140] that operates in
concert with a gate detector [93], which is a convolutional neural network that detects the
racing gates in the onboard images. Detected gates are then used to estimate the drone’s
global position and orientation along the race track. This is done by a camera resectioning
algorithm [54] in combination with a map of the track. The estimate of the global pose
obtained from the gate detector is then fused with the estimate from the visual-inertial
estimator via a Kalman filter, resulting in a more accurate representation of the robot’s
state. The control policy, represented by a two-layer perceptron, maps the output of the
Kalman filter to control commands for the aircraft. The policy is trained using on-policy
model-free deep reinforcement learning [308] in simulation. During training, the policy
maximizes a reward that combines progress towards the next racing gate [322] with a
perception objective that rewards keeping the next gate in the field of view of the camera.
Seeing the next gate is rewarded because it increases the accuracy of pose estimation.

Optimizing a policy purely in simulation yields poor performance on physical hardware if
the discrepancies between simulation and reality are not mitigated. The discrepancies are
caused primarily by two factors: (i) the difference between simulated and real dynamics
and (ii) the noisy estimation of the robot’s state by the observation policy when provided
with real sensory data. We mitigate these discrepancies by collecting a small amount of
data in the real world and using this data to increase the realism of the simulator.

Specifically, we record onboard sensory observations from the robot together with highly
accurate pose estimates from a motion capture system while the drone is racing through the
track. The recorded data allows to identify the characteristic failure modes of perception
and dynamics observed through the race track. These intricacies of failing perception
and unmodeled dynamics are environment-, platform-, track-, and sensor-dependent.
The perception and dynamics residuals are modeled using Gaussian processes [357] and
k-nearest neighbor regression, respectively. These residual models are integrated into
the simulation and the racing policy is fine-tuned in this augmented simulation. This
approach is related to the empirical actuator models used for simulation-to-reality transfer
by Hwangbo et al. [143], but further incorporates empirical modeling of the perception
system and also accounts for the stochasticity in the estimate of the platform state.

We ablate each component of Swift in controlled experiments reported in the supple-
mentary material. In addition, we compare against recent work that tackles the task of
autonomous drone racing with traditional methods including trajectory planning and
model predictive control. While such approaches achieve comparable or even superior
performance to our approach in idealized conditions, such as simplified dynamics and

196

H.2. Results

perfect knowledge of the robot’s state, their performance collapses when their assumptions
are violated. We find that approaches that rely on precomputed paths [91, 286] are
particularly sensitive to noisy perception and dynamics. No traditional method has
achieved competitive lap times to Swift or human world champions, even when provided
with highly accurate state estimation from a motion capture system. Detailed analysis is
provided in the supplementary material.

H.2 Results

The drone races take place on a track designed by an external world-class FPV pilot.
The track features characteristic and challenging maneuvers such as a Split-S 1 (Fig. H.1a
(top-right corner) and H.4d). Pilots are allowed to continue racing even after a crash,
provided that their vehicle is still able to fly. If both drones crash and cannot complete
the track, the drone that proceeded farther along the track wins.

As shown in Fig. H.3b, Swift wins 5 out of 9 races against A. Vanover, 4 out of 7 races
against T. Bitmatta, and 6 out of 9 races against M. Schaepper. Overall, Swift wins
the majority of races against each human pilot. Swift also achieves the fastest race time
recorded, with a lead of half a second over the best time clocked by a human pilot (A.
Vanover).

Figure H.4 provides an analysis of the fastest lap flown by Swift and each human pilot.
While Swift is globally faster than all human pilots, it is not faster on all individual
segments of the track (Fig. H.4f). Swift is consistently faster at the start and in tight
turns such as the Split-S. At the start, Swift has a lower reaction time, taking off from
the podium on average 120ms before human pilots. In addition, it accelerates faster
and reaches higher speeds going into the first gate (Fig. H.4f, segment 1). In sharp
turns, as shown in Fig. H.4c,d, Swift finds tighter maneuvers. One hypothesis is that
Swift optimizes trajectories on a longer time scale than human pilots. It is known that
model-free RL can optimize long-term rewards via a value function [142]. Conversely,
human pilots plan their motion on a shorter time scale, up to one gate into the future [270].
This is apparent for example in the Split-S (Fig. H.4b,d), where human pilots are faster in
the beginning and at the end of the maneuver, but slower overall (Fig. H.4f, segment 3).
In addition, human pilots orient the aircraft to face the next gate earlier than Swift does
(Fig. H.4c,d). We hypothesize that human pilots are accustomed to keeping the upcoming
gate in view, whereas Swift has learned to execute some maneuvers while relying on
other cues, such as inertial data and visual odometry against features in the surrounding
environments. Overall, averaged over the entire track, the autonomous drone achieves
the highest average speed, finds the shortest racing line, and manages to maintain the
aircraft closer to its actuation limits throughout the race as indicated by the average
thrust and power drawn (Fig. H.4f).

We also compare the performance of Swift and the human champions in time trials
(Fig. H.3a). In a time trial, a single pilot races the track, with the number of laps left to

1To execute a split S, the pilot half-rolls their aircraft inverted and executes a descending half-loop,
resulting in level flight in the opposite direction at a lower altitude.

197

Appendix H. Champion-Level Drone Racing using Deep Reinforcement
Learning

a

m m ed i a n = 5.52 m m ed i a n = 5.76 m m ed i a n = 5.96 m m ed i a n = 6.80

6

8

10

Swift

(n = 483)

Vanover

(n = 331)

Bitmatta

(n = 469)

Schaepper

(n = 345)

L
a
p
ti
m
e
[s
]

Single Laptime Comparison

m m ed i a n = 16.98 m m ed i a n = 17.38 m m ed i a n = 17.98 m m ed i a n = 21.65

15

20

25

Swift

(n = 115)

Vanover

(n = 221)

Bitmatta

(n = 338)

Schaepper

(n = 202)

L
a
p
ti
m
e
[s
]

Three Laps Comparison

b

Number of Races Best Time-to-Finish Wins Losses Win Ratio

A. Vanover vs. Swift 9 17.956 s 4 5 0.44

T. Bitmatta vs. Swift 7 18.746 s 3 4 0.43

M. Schaepper vs. Swift 9 21.160 s 3 6 0.33

Swift vs Human Pilots 25 17.465 s 15 10 0.60

Head-to-Head Racing Results

Figure H.3 – Results. a, Laptime results. We compare Swift against the human pilots in
time-trial races. Lap times indicate best single-lap times and best average times achieved in a
heat of 3 consecutive laps. The reported statistics are computed over a dataset recorded during
one week on the race track, which corresponds to 483 (115) datapoints for Swift, 331 (221) for A.
Vanover, 469 (338) for T. Bitmatta, and 345 (202) for M. Schaepper. The first number is the
number of single laps, the second is the number of three consecutive laps. The dark points in
each distribution correspond to laps flown in race conditions. b, Head-to-head results. We report
the number of head-to-head races flown by each pilot, the number of wins and losses, as well as
the win ratio.

the pilot’s discretion. We accumulate time trial data from the practice week and the races,
including training runs (Fig. H.3a, colored) and laps flown in race conditions (Fig. H.3a,
black). For each contestant, we use more than 300 laps for computing statistics. The
autonomous drone more consistently pushes for fast lap times, exhibiting lower mean
and variance. Conversely, human pilots decide whether to push for speed on a lap-by-lap
basis, yielding higher mean and variance in lap times, both during training and in the
races. The ability to adapt the flight strategy allows human pilots to maintain a slower
pace if they identify that they have a clear lead, so as to reduce the risk of a crash. The
autonomous drone is unaware of its opponent and pushes for fastest expected completion
time no matter what, potentially risking too much when in the lead and too little when

198

H.2. Results

Alex Vanover
b

c

a

d e

Thomas Bitmatta Marvin Schaepper

5 0 5 10

5

0

5

X [m]

Y
[m

]

Seg 1 Seg 2 Seg 3 Seg 4

1

2

3 4

56

7

Split-S

Start

1

2

3 4

56

7

Split-S

Start

1

2

3 4

56

7

Split-S

Start

1

2

3

4 5

6

7

Split-S

Start

2

3

4

5

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

Race Progress [%]

T
im

e
b
e
h
in
d
A
Id
ro
n
e
[s
]

Vanover

Segment 2
Segment 3

Segment 4

Segment 2
Segment 3

Segment 4

Segment 2
Segment 3

Segment 4Seg. 1

First Lap Second Lap Third Lap

Bitmatta

Schaepper

Figure H.4 – Analysis. a, Comparison of the fastest race of each pilot, illustrated by the time
behind Swift. The time difference from the autonomous drone is computed as the time since it
passed the same position on the track. While Swift is globally faster than all human pilots, it is
not necessarily faster on all individual segments of the track. b, Visualization of where the human
pilots are faster (red) and slower (blue) compared to the autonomous drone. Swift is consistently
faster at the start and in tight turns such as the Split-S. c, Analysis of the maneuver after gate
2. (Swift in blue, Vanover in red.) Swift gains time against human pilots in this segment as it
executes a tighter turn while maintaining comparable speed. d, Analysis of the Split-S maneuver.
(Swift in blue, Vanover in red.) The Split-S is the most challenging segment in the race track,
requiring a carefully coordinated roll and pitch motion that yields a descending half-loop through
the two gates. Swift gains time against human pilots on this segment as it executes a tighter turn
with less overshoot. e, Illustration of track segments used for analysis. Segment 1 is traversed
once at the start, while segments 2-4 are traversed in each lap (three times over the course of a
race). f, Comparison of the average speed, power, thrust, time, and distance traveled for each
pilot during the fastest flown race. Best numbers are indicated in bold.

trailing behind [324].

Discussion

First-person view drone racing requires real-time decision making based on noisy and in-
complete sensory input from the physical environment. We have presented an autonomous
physical system that achieves champion-level performance in this sport, reaching and at
times exceeding the performance of human world champions. Our system has certain
structural advantages over the human pilots. First, it leverages inertial data from an
onboard inertial measurement unit [304]. This is akin to the human vestibular system [60],

199

Appendix H. Champion-Level Drone Racing using Deep Reinforcement
Learning

which is not leveraged by the human pilots because they are not physically in the aircraft
and do not feel the accelerations acting on it. Second, our system benefits from lower
sensorimotor latency (40ms for Swift versus an average of 220ms for expert human pi-
lots [270]). On the other hand, the limited refresh rate of the camera used by Swift (30Hz)
can be considered a structural advantage for human pilots, whose cameras’ refresh rate is
four times as fast (120Hz), improving their reaction time [179].

Human pilots are impressively robust: they can crash at full speed, and, if the hardware
still functions, carry on flying and complete the track. Swift was not trained to recover
after a crash. Human pilots are also robust to changes in environmental conditions, such
as illumination, which can dramatically alter the appearance of the track. In contrast,
Swift’s perception system assumes that the appearance of the environment is consistent
with what was observed during training. If this assumption fails, the system can fail.
Robustness to appearance changes can be provided by training the gate detector and the
residual observation model in a diverse set of conditions.

Notwithstanding the remaining limitations and the work ahead, the attainment by an
autonomous mobile robot of world-champion-level performance in a popular physical sport
is a milestone for robotics and machine intelligence. This work may inspire the deployment
of hybrid learning-based solutions in other physical systems, such as autonomous ground
vehicles, aircraft, and personal robots across a broad range of applications.

H.3 Methods

H.3.1 Quadrotor Simulation

Quadrotor dynamics. To enable large-scale training, we use high-fidelity simulation
of the quadrotor dynamics. This section briefly explains the simulation. The dynamics of
the vehicle can be written as

ẋ =

ṗWB

q̇WB

v̇W
ω̇B

Ω̇

=

vW

qWB ·
[

0
ωB/2

]

1
m

(

qWB ⊙ (fprop + faero)

)

+ gW

J−1
(

τprop + τmot + τaero + τiner

)

1
kmot

(

Ωdes −Ω
)

, (H.1)

where ⊙ represents quaternion rotation, pWB, qWB, vW , and ωB denote the position,
attitude quaternion, inertial velocity, and bodyrates of the quadcopter, respectively.
The motor time constant is kmot and the motor speeds Ω and Ωdes are the actual and
commanded motor speeds, respectively. The matrix J is the quadcopter’s inertia and gW
denotes the gravity vector. Two forces act on the quadrotor: the lift force fprop generated
by the propellers and an aerodynamic force faero that aggregates all other forces, such
as aerodynamic drag, dynamic lift, and induced drag. The torque is modeled as a sum

200

H.3. Methods

of four components: the torque generated by the individual propeller thrusts τprop, the
yaw-torque τmot generated by a change in motor speed, an aerodynamic torque that
accounts for various aerodynamic effects such as blade flapping, and an inertial term τiner.
The individual components are given as

fprop =
∑

i
fi , τprop =

∑

i
τi + rP,i × fi , (H.2)

τmot = Jm+p

∑

i
ζi Ω̇i , τiner = −ωB × JωB (H.3)

where rP,i is the location of propeller i, expressed in the body frame, and fi, τi are the
forces and torques generated by the i-th propeller. The axis of rotation of the i-th motor
is denoted by ζi, the combined inertia of motor and propeller is Jm+p, and the derivative
of the i-th motor speed is Ω̇i. The individual propellers are modelled using a commonly
used quadratic model, which assumes that the lift force and drag torque are proportional
to the square of the propeller speed Ωi:

fi(Ω) =
[
0 0 cl · Ω2

]⊤
, τi(Ω) =

[
0 0 cd · Ω2

]⊤ (H.4)

where cl and cd denote the propeller lift and drag coefficients, respectively.

Aerodynamic forces and torques. The aerodynamic forces and torques are hard
to model with a first-principles approach. We thus use a data-driven model [23]. To
maintain the low computational complexity required for large-scale RL training, a graybox
polynomial model is used rather than a neural network. The aerodynamic effects are
assumed to primarily depend on the velocity vB (in body frame) and the average squared
motor speed Ω2. Based on insights from the underlying physical processes, linear and
quadratic combinations of the individual terms are selected. For readability, the coefficients
multiplying each summand have been omitted:

fx ∼ vx + vx|vx|+Ω2 + vxΩ2

fy ∼ vy + vy|vy|+Ω2 + vy Ω2

fz ∼ vz + vz|vz|+ vxy + v2xy + vxy Ω2 + vz Ω2 + vxy vz Ω2

τx ∼ vy + vy|vy|+Ω2 + vy Ω2 + vy|vy|Ω2

τy ∼ vx + vx|vx|+Ω2 + vxΩ2 + vx|vx|Ω2

τz ∼ vx + vy

The respective coefficients are then identified from real-world flight data, where motion
capture is used to provide ground-truth forces and torque measurements. We use data
from the race track, allowing the dynamics model to fit the track. This is akin to the
human pilots’ training for days or weeks prior to the race on the specific track that they
will be racing. In our case, the human pilots are given a week of practice on the same
track ahead of the competition.

201

Appendix H. Champion-Level Drone Racing using Deep Reinforcement
Learning

Betaflight low-level controller. To control the quadrotor, the neural network outputs
collective thrust and bodyrates. This control signal is known to combine high agility with
good robustness to simulation-to-reality transfer [169]. The predicted collective thrust and
bodyrates are then processed by an onboard low-level controller that computes individual
motor commands. On the physical vehicle, this low-level controller is implemented using
the open-source Betaflight firmware [340]. In simulation, we use an accurate model of
this low-level controller.

Battery model. The action produced by the neural network policy specifies an ac-
celeration in the body-z direction. The low-level controller, however, does not perform
closed-loop control on the body-z acceleration, but instead converts the thrust command
into a (pulse-width modulation) PWM signal for the motors. For a given PWM command,
the motor speed is a function of the battery voltage. Therefore, the motor thrust depends
on the battery voltage. Our simulation thus models the battery voltage as well. We use
a graybox battery model [22] that simulates the voltage based on instantaneous power
consumption Pmot:

Pmot =
cdΩ

3

η
(H.5)

The battery model then simulates the battery voltage based on this power demand. We
use a polynomial mapping between the commanded collective thrust, the battery voltage,
and the steady-state motor speed Ωdes that has been identified from experimental data.
Together with the model of the low-level controller, this enables the simulator to correctly
translate an action in the form of collective thrust and bodyrates to desired motor speeds
Ωdes in eq. (H.1).

Policy Training

We train deep neural control policies that directly map observations ot in the form of
platform state and next gate observation to control actions ut in the form of mass-
normalized collective thrust and bodyrates [169]. The control policies are trained using
model-free reinforcement learning in simulation.

Training algorithm. Training is performed using proximal policy optimization [308].
This actor-critic approach requires jointly optimizing two neural networks during training:
the policy network, which maps observations to actions, and the value network, which
serves as the “critic” and evaluates actions taken by the policy. After training, only the
policy network is deployed on the robot.

Observations, actions, and rewards. An observation ot ∈ R31 obtained from the
environment at time t consists of (i) an estimate of the current robot state, (ii) the relative
pose of the next gate to be passed on the track layout, and (iii) the action applied in the

202

H.3. Methods

previous step. Specifically, the estimate of the robot state contains the position of the
platform, its velocity, and attitude represented by a rotation matrix. Even though the
simulation uses quaternions internally, we use a rotation matrix to represent attitude to
avoid ambiguities [376]. The relative pose of the next gate is encoded by providing the
relative position of the four gate corners with respect to the vehicle. All observations
are normalized before being passed to the network. Since the value network is only used
during training time, it can access privileged information about the environment that is
not accessible to the policy [273]. This privileged information is concatenated with other
inputs to the policy network and contains the exact position, orientation, and velocity of
the robot.

For each observation ot, the policy network produces an action at ∈ R4 in the form of
desired mass-normalized collective thrust and bodyrates.

We use a dense shaped reward formulation to learn the task of perception-aware au-
tonomous drone racing. The reward rt at timestep t is given by

rt =rprog
t + rperc

t + rcmd
t + rcrash

t (H.6)

where rprog rewards progress towards the next gate [322], rperc encodes perception
awareness by adjusting the vehicle’s attitude such that the optical axis of the camera
points towards the next gate’s center, rcmd rewards smooth actions, and rcrash is a binary
penalty that is only active when colliding with a gate or when the platform leaves a
pre-defined bounding box. If rcrash is triggered, the training episode ends.

Specifically, the reward terms are

rprog
t = λ1

[
dGate
t−1 − dGate

t

]

rperc
t = λ2 exp

[
λ3 · δ4cam

]
(H.7)

rcmd
t = λ4a

ω
t + λ5‖at − at−1‖2 (H.8)

rcrash
t =

{

−5.0, if pz < 0 or in collision with gate.

0, otherwise

where dGate
t denotes the distance from the vehicle’s center of mass to the center of the next

gate at timestep t, δcam represents the angle between the optical axis of the camera and
the center of the next gate, and aω

t are the commanded bodyrates. The hyperparameters
λ1, . . . , λ5 balance different terms (Table H.1).

Training details. Data collection is performed by simulating 100 agents in parallel
that interact with the environment in episodes of 1500 steps. At each environment reset,
every agent is initialized at a random gate on the track, with bounded perturbation
around a state previously observed when passing this gate. In contrast to prior work [234,
12, 169], we do not perform randomization of the platform dynamics at training time.
Instead we perform fine-tuning based on real-world data. The training environment is
implemented using TensorFlow Agents [116]. The policy network and the value network

203

Appendix H. Champion-Level Drone Racing using Deep Reinforcement
Learning

are both represented by two-layer perceptrons with 128 nodes in each layer. Network
parameters are optimized using the Adam optimizer with learning rate 3e-4 for both the
policy network and the value network.

Policies are trained for a total of 1e8 environment interactions, which takes 50 minutes
on a workstation (i9 12900K, RTX 3090, 32RAM DDR5). Fine-tuning is performed for
2e7 environment interactions.

Table H.1 – Training hyperparameters.

Hyperparameter Value

γ (discount factor) 0.99
ε (importance ratio clipping) 0.2
λ1 1.0
λ2 0.02
λ3 -10.0
λ4 -2e-4
λ5 -1e-4

Residual Model Identification

We perform fine-tuning of the original policy based on a small amount of data collected in
the real world. Specifically, we collect three full rollouts in the real world, corresponding
to approximately 50 s of flight time. We fine-tune the policy by identifying residual
observations and residual dynamics, which are then used for training in simulation.

Residual observation model. Navigating at high speeds results in substantial motion
blur, which can lead to a loss of tracked visual features and severe drift in linear odometry
estimates. We fine-tune policies with an odometry model that is identified from only
a handful of trials recorded in the real world. To model the drift in odometry, we
use Gaussian processes [357], as they allow fitting a posterior distribution of odometry
perturbations, from which we can sample temporally consistent realizations.

Specifically, the Gaussian process model fits residual position, velocity, and attitude as
a function of the ground-truth robot state. The observation residuals are identified by
comparing the observed VIO estimates during a real-world rollout with the ground-truth
platform states, which are obtained from an external motion tracking system.

We treat each dimension of the observation separately, effectively fitting a set of 9 one-
dimensional Gaussian processes to the observation residuals. We use a mixture of Radial
Basis Function (RBF) kernels

κ(zi, zj) = σ2
f exp

(

−1

2
(zi − zj)

⊺L−2(zi − zj)

)

+ σ2
n (H.9)

where L is the diagonal length scale matrix and σf , σn represent the data and prior noise

204

H.3. Methods

variance, respectively, and zi, zj represent data features. The kernel hyperparameters
are optimized by maximizing the log-marginal-likelihood. After kernel hyperparameter
optimization, we sample new realizations from the posterior distribution that are then
used during fine-tuning of the policy. Figure H.5 illustrates the residual observations in
position, velocity and attitude in real-world rollouts, as well as 100 sampled realizations
from the Gaussian process model.

Residual dynamics model. We use a residual model to complement the simulated
robot dynamics [346]. Specifically, we identify residual accelerations as a function of the
platform state s and the commanded mass-normalized collective thrust c:

ares = KNN(s, c) (H.10)

We use k-nearest neighbor regression with k = 5. The size of the dataset used for residual
dynamics model identification depends on the track layout, and ranges between 800 and
1000 samples for the track layout used in this work.

VIO Drift Estimation

The odometry estimates from the VIO pipeline [147] exhibit substantial drift during
high-speed flight. We use gate detection to stabilize the pose estimates produced by VIO.
The gate detector outputs the coordinates of all visible gates’ corners. A relative pose
is first estimated for all predicted gates using infinitesimal plane-based pose estimation
(IPPE) [54]. Given this relative pose estimate, each gate observation is assigned to the
closest gate in the known track layout, thus yielding a pose estimate for the drone.

Due to the low frequency of the gate detections and the high quality of the VIO orientation
estimate, we only refine the translational components of the VIO measurements. We
estimate the drift of the VIO pipeline using a Kalman filter that estimates the static drift
pd (position offset) and its derivative, the drift velocity vd. The filter state x is given by
x = [p⊤

d ,v
⊤
d]

⊤ ∈ R6.

The state x and covariance P updates are given by:

xk+1 = Fxk, Pk+1 = FPkF
⊤ +Q , (H.11)

F =

[
I3×3 dt I3×3

03×3 I3×3

]

, Q =

[
σposI3×3 03×3

03×3 σvelI
3×3

]

. (H.12)

Based on measurements, the process noise is set to σpos=0.05 and σvel=0.1. The filter
state and covariance are initialized to zero. For each measurement zk (pose estimate from
a gate detection), the predicted VIO drift x−

k is corrected to the estimate x+
k according

205

Appendix H. Champion-Level Drone Racing using Deep Reinforcement
Learning

Figure H.5 – a, Visualization of the residual observation model and the residual dynamics
model identified from real-world data. Black curves depict the residual observed in the real
world, colored lines show 100 sampled realizations of the residual observation model. b, Predicted
residual observation for a simulated rollout.

206

H.3. Methods

to the Kalman filter equations:

Kk = P−
k H

⊺
k

(
HkP

−
k H

⊺
k +R

)−1
,

x+
k = x−

k +Kk

(
zk −H(x−

k)
)
, (H.13)

P+
k = (I −KkHk)P

−
k ,

where Kk is the Kalman gain, R is the measurement covariance, and Hk is the measure-
ment matrix. The main source of measurement error is the uncertainty in the gate-corner
detection of the network. This error in the image plane results in a pose error when IPPE
is applied. We opted for a sampling-based approach to estimate the pose error from the
known average gate-corner detection uncertainty. For each gate, the IPPE algorithm is
applied to the nominal gate observation as well as to 20 perturbed gate-corner estimates.
The resulting distribution of pose estimates is then used to approximate the measurement
covariance R of the gate observation.

Simulation Results

Reaching champion-level performance in autonomous drone racing requires overcoming
two challenges: imperfect perception and incomplete models of the system’s dynamics. In
controlled experiments in simulation, we assess the robustness of our approach to both of
these challenges. To this end, we evaluate performance in a racing task when deployed in
four different settings: In setting (i), we simulate a simplistic quadrotor model with access
to ground-truth state observations. In setting (ii), we replace the ground-truth state
observations with noisy observations identified from real-world flights. Settings (iii) and
(iv) share the observation models with the previous two settings, respectively, but replace
the simplistic dynamics model with more accurate aerodynamical simulation [23]. These
four settings allow controlled assessment of the sensitivity of the approach to changes in
the dynamics and the observation fidelity.

In all four settings, we benchmark our approach against the following baselines: Zero-Shot,
Domain Randomization, and Time-Optimal. The Zero-Shot baseline represents a learning-
based racing policy [322] trained using model-free RL that is deployed zero-shot from
the training domain to the test domain. The training domain of the policy is equal to
experimental setting (i), i.e. idealized dynamics and ground-truth observations. Domain
Randomization extends the learning strategy from the Zero-Shot baseline by randomizing
observations and dynamics properties to increase robustness. The Time-Optimal baseline
uses a precomputed time-optimal trajectory [91] that is tracked using an MPC controller.
The dynamics model used by the trajectory generation and the MPC controller matches
the simulated dynamics of experimental setting (i).

Performance is assessed by evaluating the fastest lap time, the average and minimum
observed gate margin of successfully passed gates, and percentage of track successfully
completed. The gate margin metric measures the distance between the drone and the
closest point on the gate when crossing the gate plane. A high gate margin indicates that
the quadrotor passed close to the center of the gate. Leaving a smaller gate margin can
increase speed but can also increase risk of collision or missing the gate. Any lap that

207

Appendix H. Champion-Level Drone Racing using Deep Reinforcement
Learning

results in a crash is not considered valid.

The results are summarized in Table H.2. All approaches manage to successfully complete
the task when deployed in idealized dynamics and ground-truth observations, with the
Time-Optimal baseline yielding the lowest lap time. When deployed in settings that
feature domain shift, either in the dynamics or the observations, the performance of all
baselines collapses and none of the three baselines are able to complete even a single lap.
This performance drop is exhibited by both learning-based and traditional approaches.
In contrast, our approach, which features empirical models of dynamics and observation
noise, succeeds in all deployment settings, with small increases in lap time.

Table H.2 – Evaluation in simulation, with idealized dynamics (top) versus realistic dynamics
(bottom) and ground-truth observations (left) versus noisy observations (right). We report
the fastest achieved collision-free lap time in seconds, the average and smallest gate margin of
successfully passed gates, and percentage of track completed. We compare our approach with a
learning-based approach that performs zero-shot transfer, with and without domain randomization
during training, as well as a traditional planning and control approach [91].

Ground-truth observations Noisy observations
Approach Lap time

(↓)
in seconds

Gate
margin
(↑)

in meters

Completion
(↑)
in %

Lap time
(↓)

in seconds

Gate
margin
(↑)

in meters

Completion
(↑)
in %

Id
ea

l.
d
y
n
.

Zero-Shot Transfer [322] 4.88 0.63 | 0.46 100 ∞ n/a | n/a 0
Domain Randomization 5.06 0.60 | 0.47 100 ∞ 0.43 | 0.30 9
Time-Opt. Traj. + MPC [91] 4.60 0.50 | 0.25 100 ∞ 0.48 | 0.29 9
Ours 4.88 0.63 | 0.46 100 5.26 0.56 | 0.44 100

R
ea

l.
d
y
n
.

Zero-Shot Transfer [322] ∞ 0.62 | 0.62 4 ∞ 0.41 | 0.21 9
Domain Randomization ∞ 0.28 | 0.28 4 ∞ 0.47 | 0.45 9
Time-Opt. Traj. + MPC [91] ∞ n/a | n/a 0 ∞ 0.23 | 0.23 4
Ours 5.20 0.51 | 0.30 100 5.42 0.48 | 0.23 100

The key feature that enables our approach to succeed across deployment regimes is the
use of an empirical model of dynamics and observation noise, estimated from real-world
data. A comparison between an approach that has access to such data and approaches
that do not is not entirely fair. For that reason, we also benchmark the performance of all
baseline approaches when having access to the same real-world data used by our approach.
Specifically, we compare the performance in experimental setting (ii), which features the
idealized dynamics model but noisy perception. All baseline approaches are provided with
the predictions of the same Gaussian process model we use to characterize observation
noise. The results are summarized in Table H.3. All baselines benefit from the more
realistic observations, yielding higher completion rates. Nevertheless, our approach is the
only one that reliably completes the entire track. In addition to the predictions of the
observation noise model, our approach also takes into account the model’s uncertainty.

Drone Hardware Configuration

The quadrotors used by the human pilots and Swift have the same weight, shape, and
propulsion. The platform design is based on the Agilicious framework [94]. Each vehicle
has a weight of 870 g and can produce a maximum static thrust of approximately 35N,

208

H.3. Methods

Table H.3 – Comparison to baselines that are provided with the same observation noise model
used by our approach.

Approach
Lap
time

Gate
margin

Comp-

letion

Zero-Shot Transfer [322] 4.92 0.57 | 0.41 42
Domain Randomization ∞ 0.34 | 0.23 19
Time-Opt. Traj. + MPC [91] ∞ 0.51 | 0.41 19
Ours 5.26 0.56 | 0.44 100

which results in a static thrust-to-weight ratio of 4.1. The base of each platform consists
of an Armattan Chameleon 6-inch main frame that is equipped with T-Motor Velox
2306 motors and 5-inch, three-bladed propellers. An NVIDIA Jetson TX2 accompanied
by a ConnectTech Quasar carrier board provides the main compute resource for the
autonomous drones. The human-piloted drones do not carry a Jetson computer and
are instead equipped with a corresponding ballast weight. Control commands in the
form of collective thrust and bodyrates produced by the human pilots or Swift are
sent to a commercial flight controller running BetaFlight, an open-source flight control
software [340].

Human Pilot Impressions

The following quotes convey the impressions of the three human champions that raced
against Swift.

Alex Vanover:

• These races will be decided at the Split-S, it is the most challenging part of the track.

• This was the best race! I was so close to the autonomous drone, I could really feel
the turbulence when trying to keep up with it.

Thomas Bitmatta:

• The possibilities are endless, this is the start of something that could change the
whole world. On the flip side, I’m a racer, I don’t want anything to be faster than
me.

• As you fly faster, you trade off precision for speed.

• It’s inspiring to see the potential of what drones are actually capable of. Soon, the
AI drone could even be used as a training tool to understand what would be possible.

209

Appendix H. Champion-Level Drone Racing using Deep Reinforcement
Learning

Marvin Schaepper:

• It feels different racing against a machine, because you know that the machine
doesn’t get tired.

210

I Data-Driven MPC for Quadrotors

The version presented here is reprinted, with permission, from:

Guillem Torrente∗, Elia Kaufmann∗, Philipp Foehn, and Davide Scaramuzza. “Data-driven
mpc for quadrotors”. In: IEEE Robot. Autom. Lett. 6.2 (2021), pp. 3769–3776

211

Appendix I. Data-Driven MPC for Quadrotors

Data-Driven MPC for Quadrotors

Guillem Torrente∗, Elia Kaufmann∗, Philipp Foehn, Davide Scaramuzza

Abstract — Aerodynamic forces render accurate high-speed trajec-
tory tracking with quadrotors extremely challenging. These complex
aerodynamic effects become a significant disturbance at high speeds, in-
troducing large positional tracking errors, and are extremely difficult to
model. To fly at high speeds, feedback control must be able to account
for these aerodynamic effects in real-time. This necessitates a modeling
procedure that is both accurate and efficient to evaluate. Therefore,
we present an approach to model aerodynamic effects using Gaussian
Processes, which we incorporate into a Model Predictive Controller
to achieve efficient and precise real-time feedback control, leading to
up to 70% reduction in trajectory tracking error at high speeds. We
verify our method by extensive comparison to a state-of-the-art linear
drag model in synthetic and real-world experiments at speeds of up to
50km/h and accelerations beyond 4g.

212

I.1. Introduction

Supplementary Material

Video: https://youtu.be/FHvDghUUQtc
Code: https://github.com/uzh-rpg/data_driven_mpc

I.1 Introduction

Accurate trajectory tracking with quadrotors in high-speed and high-acceleration regimes
is still a challenging research problem. While autonomous quadrotors have seen a
significant gain in popularity and have been applied in a variety of industries ranging from
agriculture to transport, security, infrastructure, entertainment, and search and rescue,
they still do not exploit their full maneuverability. The ability to precisely control drones
during fast and highly agile maneuvers would allow to not only fly fast in known-free
environments, but also close to obstacles, humans, or through openings, where already
small deviations from the reference have catastrophic consequences.

Operating a quadrotor at high speeds and controlling it through agile, high-acceleration
maneuvers requires to account for complex aerodynamic effects acting on the platform.
These effects are difficult to model, since they consist of a combination of propeller lift
and drag dependent on the induced airstream velocity, fuselage drag, and complex or
even turbulent effects due to the interaction between the propellers, the downwash of
other propellers, and the fuselage. Furthermore, in the context of model-based feedback
control, the model complexity is constrained by the feedback time-scale and computational
capabilities of the executing platform. Therefore, it is not sufficient to find the most
accurate model, but required to find an applicable trade-off between model accuracy and
complexity.

[321] Very little work exists on agile control of quadrotors at speeds beyond 5m s−1 and
accelerations above 2g, [79, 77, 162, 252, 228, 172, 92, 321]. Even though these works
show agile control at various levels, none of them accounts for aerodynamic effects. This is
not a limiting assumption when the quadrotor is controlled close to hover conditions, but
introduces significant errors when tracking fast and agile trajectories. Other approaches
use iterative learning control to perform highly aggressive trajectories [214], but they are
constrained to a single maneuver and do not generalize.

The main challenge when performing aggressive flight is to identify a dynamics model
of the platform that is capable of describing the aerodynamic effects while still being
lightweight enough to guarantee real time performance. While there exist sophisticated
computational fluid dynamics simulations that are able to model turbulent aerodynamic
effects [350], they require hours of processing on a compute cluster, and still need to be
abstracted in simplified models to be tractable in a control loop running at high frequency.

In this work, we propose to learn the aerodynamic effects acting on the platform from
data. Inspired by [130, 157], we use Gaussian Processes to learn the residual dynamics
with respect to a simplified quadrotor model that does not account for aerodynamic effects.
Learning the residual dynamics simplifies the learning problem and allows describing the

213

https://youtu.be/FHvDghUUQtc
https://github.com/uzh-rpg/data_driven_mpc

Appendix I. Data-Driven MPC for Quadrotors

Figure I.1 – Our quadrotor platform reaches its physical limits at a pitch angle of 80 degrees
while performing a lemniscate trajectory in our experiments. Throughout the trajectory, the
platform reaches speeds of up to 14m s−1 and accelerations beyond 4g.

model augmentation using only a small number of inducing points for Gaussian Processes.
Using such a small model allows leveraging the combined dynamics formulation in a
Model Predictive Control (MPC) pipeline.

Our experiments, performed in simulation and in the real world, show that the proposed
approach can significantly improve control performance for agile trajectories with speeds
up to 14m s−1 and accelerations exceeding 4g. We show that the method generalizes
between different trajectories and outperforms methods relying on simplified correction
terms.

Contributions

In this paper, we present a Model Predictive Control pipeline that is augmented with
learned residual dynamics using Gaussian Processes. We extend the approach presented
in [130, 157] to three-dimensional GP predictions for the quadrotor platform. By combining
the learned GP corrections with the nominal quadrotor dynamics, we can learn an accurate
dynamics model from a small number of inducing data points. Such a small model can be
efficiently optimized within an MPC pipeline and allows for control frequencies greater
than 100Hz. We show that the augmented MPC improves trajectory tracking by up
to 70% with respect to its nominal counterpart. We verify our method by extensive
comparison to a state-of-the-art linear drag model in synthetic and real-world experiments
at speeds of up to 14m s−1 and accelerations beyond 4g.

214

I.2. Related Work

I.2 Related Work

Performing fast and agile maneuvers with an autonomous robot requires knowledge of
an accurate dynamics model of the platform. However, especially at high speeds and
accelerations, such a description of the system is difficult to obtain due to hard-to-model
effects caused by friction, aerodynamics or varying battery voltage. As modeling these
effects significantly increases the problem complexity, controlling a robot under such
conditions requires to find a trade-off between model expressivity and computational
tractability. Most prior work on control of autonomous robots does not account for
higher-order effects at all and treats them as external disturbances [79, 28, 201, 291, 212].
While this allows for very efficient and lightweight controller implementations, tracking
performance progressively decreases for higher speeds. In [336], Nonlinear Incremental
Dynamics Inversion is used to achieve robust tracking of fast trajectories. However, the
reactive nature of this approach does not allow to account for future disturbances as the
controller does not optimize over a horizon of actions.

A recent line of work [360, 85, 29, 193] investigates the application of dynamics learned
entirely from data for a variety of applications such as robot arms, cars or fluids. These
learned dynamics representations take the form of deep neural networks and substitute the
nominal dynamics in the MPC. While the resulting dynamics models are very expressive,
their optimization is often intractable due to local minima. A common way to overcome
this challenge is to use sampling-based optimizers, which in turn scale poorly to high-
dimensional input spaces.

Instead of learning the full dynamics from data, [130, 157, 301, 44] combine a nominal
model with a learned correction term. This allows to limit the learned dynamics to have
different dimensionality than the nominal system and provides the possibility to learn
only specific effects that are difficult to capture with the nominal model.

For the particular case of quadrotor flight, the most prominent source of disturbances are
aerodynamic effects originating from drag caused by the rotors and the fuselage, as well as
lift effects that act on the platform at high speeds. By conducting controlled experiments
in both wind tunnels as well as instrumented tracking volumes, previous work has shown
a significant effect of aerodynamic forces already at linear speeds of 5m s−1 [78, 331].

Neglecting other aerodynamic effects, previous work mainly studies the effect of rotor
drag [36, 78, 220]. Rotor drag effects originate from blade flapping and induced drag of
the rotors. These effects are typically combined as linear effects in a lumped parameter
dynamical model [218]. In [78], the authors identify a linear model for the rotor drag
and use it to compute feedforward terms of a PID controller. Even though they show
improved trajectory tracking performance, they evaluate their linear model only up to
5m s−1. At these speeds, the linear effect of rotor drag dominates the fuselage drag. We
integrate the model of [78] in an MPC pipeline to act as baseline of our approach.

Similar to our work, in [130, 157, 224, 42, 65], the authors use Gaussian Processes to
improve the control performance of a robotic platform. In [224], Gaussian Processes are
used on a quadrotor to correct for wind disturbances. Since instead of platform states only

215

Appendix I. Data-Driven MPC for Quadrotors

observed disturbances are fed to the GPs, this approach does not learn a dynamics model
and can only react to disturbances once they have been observed. In [42], the authors
separately learn the translational and rotational dynamics of a quadrotor platform. As
this approach learns the full model from data, it requires a large number of training
points and is computationally very expensive. As a result, the prediction horizon of the
MPC needs to be reduced to a single point to achieve near real-time performance.

In [65], a robust experience-driven predictive controller (EPC) is proposed that uses
Gaussian belief propagation to account for uncertainties in the state estimate. The
controller demonstrates robust constraint satisfaction on a quadrotor platform, where it
is integrated into an MPC that controls the translational dynamics of the vehicle. In [130,
157], the authors use the predictions of the Gaussian Processes to improve the tracking
performance of an autonomous race car by learning the residual dynamics of a nominal
model. Learning such residual dynamics instead of the full model allows to simplify the
learning problem and as a result reduce the number of training points in the GP.

Our work is inspired by these approaches, but extends [130, 157] to three-dimensional
GP predictions for the quadrotor platform. Instead of learning a mapping from observed
disturbances to future disturbance as in [224], we focus on fast flight and correct for
aerodynamic effects that arise due to the fast ego-motion of the platform. We tightly
integrate the predictions of the Gaussian Processes into the MPC formulation. Instead of
using virtual inputs such as bodyrates and collective thrust [79], our MPC models the
dynamics down to the motor inputs and can therefore account for the true actuation limits
of the platform. Our work is the first to combine Gaussian Processes with a full-state
quadrotor MPC formulation to model aerodynamic drag effects while still being able to
account for the true actuation limits of the platform.

I.3 Methodology

I.3.1 Notation

We denote scalars in lowercase s, vectors in lowercase bold v, and matrices in uppercase
bold M . We define the World W and Body B frames with orthonormal basis i.e.
{xW ,yW , zW }. The frame B is located at the center of mass of the quadrotor. Note
that we assume all four rotors are situated in the xy-plane of frame B, as depicted
in Fig. I.2. A vector from coordinate p1 to p2 expressed in the W frame is written
as: Wv12. If the vector’s origin coincide with the frame it is described in, we drop
the frame index, e.g. the quadrotor position is denoted as pWB. Furthermore, we use
unit quaternions q = (qw, qx, qy, qz) with ‖q‖ = 1 to represent orientations, such as the
attitude state of the quadrotor body qWB. Finally, full SE3 transformations, such as
changing the frame of reference from body to world for a point pB1, can be described
by WpB1 =W tWB + qWB ⊙ pB1. Note the quaternion-vector product denoted by ⊙
representing a rotation of the vector by the quaternion as in q ⊙ v = qvq̄, where q̄ is the
quaternion’s conjugate.

216

I.3. Methodology

3

0

1

2
xB

yB

zB

Body

xW

yW

zW

World

gW

Figure I.2 – Diagram of the quadrotor model with the world and body frames and propeller
numbering convention.

I.3.2 Nominal Quadrotor Dynamics Model

We assume the quadrotor is a 6 degree-of-freedom rigid body of mass m and diagonal
moment of inertia matrix J = diag(Jx, Jy, Jz). Our model is similar to [79, 162] but we
write the nominal dynamics ẋ up to second order derivatives, leaving the quadrotors
individual rotor thrusts Ti∀i ∈ (0, 3) as control inputs u. The state space is thus
13-dimensional and its dynamics can be written as:

ẋ =

ṗWB

q̇WB

v̇WB

ω̇B

= fdyn(x,u) =

vW

qWB ·
[

0
ωB/2

]

1
m

qWB ⊙ TB + gW
J−1 (τB − ωB × JωB)

, (I.1)

where gW = [0, 0,−9.81m/s2]⊺ denotes Earth’s gravity, TB is the collective thrust and
τB is the body torque as in:

TB =

0
0

∑
Ti

 and τB =

dy(−T0 − T1 + T2 + T3)
dx(−T0 + T1 + T2 − T3)
cτ (−T0 + T1 − T2 + T3)

 (I.2)

where dx, dy are the rotor displacements and cτ is the rotor drag torque constant. To
incorporate these dynamics in discrete time algorithms, we use an explicit Runge-Kutta
method of 4th order fRK4(x,u) to integrate ẋ given an initial state xk, input uk and
integration step δt by:

xk+1 = fRK4(xk,uk, δt). (I.3)

I.3.3 Gaussian Process-Augmented Dynamics

Inspired by [130, 157], we use Gaussian Processes to complement the nominal dynamics
of the quadrotor in an MPC pipeline. In this setting, the GPs predict the error of the
dynamics and correct them at every time instance tk. Similar to most GP-based learning

217

Appendix I. Data-Driven MPC for Quadrotors

problems, we assume the existence of the inaccessible true dynamics ftrue of the quadrotor,
which we measure as ỹk+1 through a noisy process at discrete time instances tk:

ỹk+1 = ftrue(xk,uk) +wk (I.4)

We further assume that wk ∼ N (0,Σ) is Gaussian noise, where Σ is the time-invariant
and diagonal covariance matrix. This means we can effectively treat each dimension of
yk independently through a separate 1-dimensional output GP. We use the Radial Basis
Function (RBF) kernel

κ(zi, zj) = σ2
f exp

(

−1

2
(zi − zj)

⊺L−2(zi − zj)

)

+ σ2
n (I.5)

where L is the diagonal length scale matrix and σf , σn represent the data and prior noise
variance, respectively, and zi, zj represent data features.

We redefine the system dynamics as a (corrected, fcorr) combination of the dynamics (I.1)
plus the mean posterior of a GP, µ. The GP only corrects a subset of the state, determined
in the selection matrix Bd, using the feature vector zk, determined by selection matrix
Bz:

fcor(xk,uk) = fdyn(xk,uk) +Bdµ(zk) (I.6)

zk = Bz

[
x
⊺
k u

⊺
k

]⊺
. (I.7)

Given the concatenated training feature samples Z and the query feature samples Zk,
the mean and covariance of the GP prediction can be recovered as follows:

µ(Zk) = K
⊺
kK

−1Z Σµk = Kkk −K
⊺
kK

−1Kk

with K = κ(Z,Z) + σ2
nI (I.8)

Kk = κ(Z,Zk) Kkk = κ(Zk,Zk).

where Kij , the entry of K with index i, j, is Kij = κ(zi, zj).

Given the mean and covariance of the GP, not only is it possible to learn the corrected
dynamics, but in addition we can also propagate the corrected model forward in time to
use it in an MPC. To propagate the state we simply substitute the nominal dynamics
fdyn with the corrected model fcor in the Runge-Kutta integration. For the propagation
of the covariance, we refer to the formulation in [130, 157].

I.3.4 MPC Formulation

In its most general form, MPC stabilizes a system subject to its dynamics ẋ = f(x,u)
along a reference x∗(t),u∗(t), by minimizing a cost L(x,u) as in:

218

I.3. Methodology

min
u

∫

L(x,u) (I.9)

subject to ẋ = fdyn(x,u) x(t0) = xinit

r(x,u) = 0 h(x,u) ≤ 0

where x0 denotes the initial condition and h, r can incorporate (in-)equality constraints,
such as input limitations.

For our application, and as most commonly done, we specify the cost to be of quadratic
form L(x,u) = ‖x − x∗‖2Q + ‖u − u∗‖2R and discretize the system into N steps over
time horizon T of size dt = T/N . We account for input limitations by constraining
0 ≤ u ≤ umax, and optionally include the GP predictions within the system dynamics.

min
u

x
⊺
NQxN+

N∑

k=0

x
⊺
kQxk + u

⊺
kRuk (I.10)

subject to xk+1 = fRK4(xk,uk, δt)

x0 = xinit

umin ≤ uk ≤ umax

where fRK4 can be extended to the corrected dynamics fcor.

To solve this quadratic optimization problem we construct it using a multiple shooting
scheme [67] and solve it through a sequential quadratic program (SQP) executed in a
real-time iteration scheme (RTI) [67]. All implementations are done using ACADOS [352]
and CasADi [9].

I.3.5 Practical Implementation

The implementation of the learned dynamics of our GP-MPC must be designed to maxi-
mize the performance while minimizing the computational cost added to the optimization.
Note that aerodynamic effects operate on the body reference frame. Likewise, the training
dataset is adjusted such that the learning problem setup is to identify such a mapping
from body frame velocities Bv to body frame acceleration disturbances Bae, so that

Bae = µ(Bv). Furthermore, to reduce the need for additional training samples, we reduce

219

Appendix I. Data-Driven MPC for Quadrotors

the dimensionality of our input space such that the mappings are learned axis wise.

Baek = µ(Bvk) =

µvx(Bvxk)
µvy(Bvyk)
µvz(Bvzk)

 (I.11)

Σµ(Bvk) = diag

σ2
vx(Bvxk)

σ2
vy(Bvyk)

σ2
vz(Bvzk)

 (I.12)

I.3.6 Data Collection and Model Learning

To fit the GPs, real-world flight data is collected (as detailed in Sec. I.4) using the
nominal dynamics model. For each sample at time tk, the velocity at the next sample
point Bvk+1 and the predicted velocity at the next sample point Bv̂k+1 are recorded,
together with the timestep δtk. We can then compute the time-normalized velocity error,
corresponding to the acceleration error:

Baek =
Bvk+1 −B v̂k+1

δtk
(I.13)

To select the hyperparameters of the kernel function (l, σn, σf), we perform maximum
likelihood optimization on the collected dataset. Being a non-parametric method, the
complexity of GP regression depends on the number of training points. As using the
full dataset would make MPC optimization intractable in real time, we subsample the
dataset and only use a small number of inducing points. To this end, we leverage the
smooth nature of the aerodynamic effects by sampling these points at regular intervals in
the ranges of the training set.

I.4 Experiments and Results

We design our evaluation procedure to address the following questions: i) What is the
contribution of the learned dynamics of our GP-MPC in a closed-loop tracking task? ii)
How does our GP-MPC compare to an MPC with linear aerodynamic effect compensation,
as proposed in [78]? iii) How does the learned model generalize to unseen trajectories?
Finally, we validate our design choices with ablation studies. We refer the reader to the
attached video to understand the dynamic nature of our experiments.

I.4.1 Experimental Setup

We conduct experiments both in simulation as well as on a real quadrotor platform. To
assess our proposed approach, the quadrotor executes three different trajectories (Random,
Circle, Lemniscate), illustrated in Fig. I.3. The lemniscate trajectory lies in the horizontal
plane and is defined by

[
x(t) = 2 cos

(√
2t
)
; y(t) = 2 sin

(√
2t
)
cos

(√
2t
)]

.

220

I.4. Experiments and Results

Figure I.3 – Trajectories considered in this work. Left: single-loop randomly-generated polyno-
mial trajectory with motion along all axes. The tracking starts and ends at the upper-right corner.
Center and right: circular and lemniscate trajectories respectively. Both have zero translation
along the z axis, tracking starts at 0 velocity, ramps up until reaching a peak, and ramps down
back to hover. The position references remain as shown in the figures in all cases.

8 9 10 11 12 13 14

0

0.05

0.1

0.15

vmax [m s−1]

R
M

S
E

[m
]

Random

2 4 6 8 10 12

0

0.1

0.2

0.3

vmax [m s−1]

Circle

4 6 8 10 12 14 16 18

0

0.1

0.2

0.3

vmax [m s−1]

Lemniscate

Ideal Nominal GP-MPC 15 GP-MPC 100

Figure I.4 – Closed-loop position tracking error as a function of maximum velocity achieved in
our custom simulator. Ideal denotes the nominal MPC performance in a disturbance-free scenario.
Nominal corresponds to the un-augmented MPC, and GP-MPC 15 and GP-MPC 100 are our
GP-augmented controllers where the GP’s have been trained with 15 and 100 training samples.

0.06

0.08

0.10

0.12

0.14

P
re

d
R

M
S
E

[m
s−

1
]

0 20 40 60 80 100

2

4

6

8

10

training samples

O
p
ti

m
iz

at
io

n
ti

m
e
[m

s]

Nominal GP-MPC

Figure I.5 – Trade-off between number of training samples, GP performance (top) and opti-
mization time (bottom). Models are trained and evaluated on data collected in our Simplified
Simulation.

221

Appendix I. Data-Driven MPC for Quadrotors

We compare the tracking performance on these trajectories using our MPC with the
Nominal quadrotor model (I.1), and the improvement after adding different correction
terms identified from data. We study two possible augmentations: GP-MPC (ours)
and RDRv. The RDRv approach was proposed in [78] as a feed-forward PID controller
term, which identifies a set of linear drag coefficients along the body axes. We instead
incorporate this linear compensation into the nominal dynamics of our MPC pipeline.
Note that the three control approaches only differ in the dynamics model used by the
MPC, i.e. they use the same control frequency and cost matrices. Furthermore, both the
GP-MPC and the RDRv are always trained on the same dataset.

For the simulation experiments, we perform a Nominal run on random polynomial
trajectories of high aggressiveness to collect training samples for the GP and the coefficient
identification for RDRv. With both models fitted, we deploy all three controllers, Nominal,
RDRv and GP-MPC, on the test trajectories without retraining. For the real-world
experiments, we first perform a run of the Nominal baseline on both circle and lemniscate
trajectories, which is also used for GP training and RDRv coefficient identification. In
the subsequent rollouts, we test RDRv and GP-MPC on these two trajectories in different
permutations.

I.4.2 Experiments in Simulation

We first evaluate the performance for individual maneuvers in simulation. To isolate the
effects of varying MPC computation times for different models, we divide the simulation
experiments into two parts: simplified simulation and Gazebo simulation. This setup
allows to compare the predictive performance of arbitrary sized models without the need
to correct for varying computation times.

Simplified Simulation This simulation is constituted of a simple forward integration
of the system dynamics (I.1) using an explicit Runge-Kutta method of 4th order with
a step size of 0.5ms. We assume to have access to perfect odometry measurements of
the quadrotor, ideal tracking of the commanded single-rotor thrusts, and that the MPC
computation is instantaneous. The simulator models drag effects caused both by the
rotors as well as the fuselage. Additionally, zero-mean Gaussian noise forces and torques
are simulated that act on the quadrotor body, as well as asymmetric noise on the motor
voltage signals.

In the simplified simulation, we investigate the influence of the number of training points
of the GP on the predictive performance. As the choice of this hyperparameter constitutes
a trade-off between model accuracy and computation time, we seek the model with the
minimum number of inducing points that surpasses a desired performance threshold. This
effect is investigated with two experiments: first, we analyze the trade-off between GP
performance and optimization time. In the second experiment, we extend the comparison
of different-sized GPs to closed-loop experiments on the three test trajectories.

Having identified the optimal size of the GP, we perform an additional set of experiments
to compare the tracking performance on the circle and lemniscate test trajectories between

222

I.4. Experiments and Results

the Nominal and RDRv baselines and our approach. Both trajectories are executed up to
varying maximum speeds, where the highest speed pushes the platform to its physical
limits. The training set for both the RDRv and the GP models in this simulator is
collected by executing random polynomial trajectories of high aggressiveness (such as
Fig. I.3 left) with the quadrotor, up to 16m s−1 axis-wise. This technique works well in
simulation since it allows to explore densely all the ranges of operating points without
risk of breaking the aircraft if tracking fails.

The results of the GP size analysis are summarized in Fig. I.5. As can be seen, the
complexity of the optimization problem approximately follows a linear function with
respect to the number of training points. Since the predictive performance barely increases
when adding more than 20 inducing points, we identify the optimal range to be between 15
to 25 samples, corresponding to 4− 5ms of optimization time. For comparative purposes,
we illustrate in Fig. I.4 how two of our GP models perform in closed-loop tracking for 15
and 100 training samples. It can be verified that a larger number of samples is strictly
beneficial, but comes at the expense of an increase in optimization time. In fact, such
a large model is not usable for a real time application of our pipeline. Based on this
evidence, we chose to use 20 inducing points for the rest of this work.

The main results of the closed-loop tracking experiments are summarized in Table I.1.
The table reports position tracking error in millimeters for both maneuvers at varying
maximum speeds. While the Ideal column indicates the tracking error in case of no
unmodelled disturbances (i.e. the MPC dynamics model perfectly fit the actual system),
the Nominal column represents the baseline when no model augmentations are enabled.
Note that even though the MPC controller performs very well in the Ideal scenario,
it does not achieve zero tracking error due to discretization effects. Both the RDRv
baseline as well as the GP-MPC significantly improve the tracking error compared to
the non-augmented Nominal case. However, while RDRv performs comparably to our
approach up to speeds of 4m s−1, it starts to fail for higher speeds due to its inability to
model higher-order aerodynamic effects such as body drag. Our approach also captures
these effects very well and shows consistent improvement for the full range of tested
speeds.

Gazebo Simulation To verify the results obtained in the simplified simulation in a
well-known quadrotor simulator, we also perform closed-loop tracking experiments in
Gazebo [182]. We employ the AscTec Hummingbird quadrotor model using the RotorS
extension [102]. To properly evaluate the performance of our pipeline, we also use ground
truth odometry measurements instead of a state estimator. We collect a dataset containing
velocities in the range [−12, 12] m s−1 for training our models. This dataset is obtained
by tracking randomly generated aggressive trajectories, as with the simplified simulator.
We execute the circle and lemniscate trajectories at increasing speeds and compare the
tracking performance of the Nominal and RDRv baselines, as well as our approach. Note
that once again we use completely independent training and test sets in our setup to
ensure our models can generalize to new trajectories.

The main results of the Gazebo experiments are summarized in Fig. I.6. In this case,
both RDRv as well as our GP-MPC achieve very similar performance over the full range

223

Appendix I. Data-Driven MPC for Quadrotors

2 3 4 5 6 7 8 9 10

0.1

0.2

C
ir

cl
e

RMSE [m]

3 4 5 6 7 8 9 10 11 12

0.05

0.10

0.15

max vel [m/s]

L
em

n
is

ca
te

Nominal GP-MPC 15 RDRv

Figure I.6 – Closed-loop position tracking error as a function of maximum velocity achieved in
the RotorS Gazebo simulator in the circle and the lemniscate trajectories.

of tested speeds. This is expected, as the RotorS package implementation only simulates
rotor drag as aerodynamic effect [102], which follows a linear mapping with respect to the
body frame velocity [220]. The true aerodynamic effects acting on a quadrotor however
are a combination of rotor drag, body drag and turbulent effects caused by the propellers.
We are analyzing these effects in more detail in the following section.

I.4.3 Experiments in the Real World

Lastly, we compare the performance of our GP-MPC against both Nominal as well as
RDRv controllers on a real quadrotor. We use a custom quadrotor that weighs 0.8kg and
has a thrust-to-weight ratio of 5:1. We run the controller on a laptop computer and send
control commands in the form of collective thrust and desired bodyrates at 50Hz to the
quadrotor through a Laird RM024 radio module. A PID controller running onboard the
quadrotor tracks the sent commands. The quadrotor flies in an indoor arena equipped
with an optical tracking system that provides pose estimates at 100Hz. Note that our
control method also works with state estimates that are obtained differently than with a
motion capture system. As in the simulation experiments, we compare the tracking error
along both circle and lemniscate trajectories with speeds up to 14m s−1.

To demonstrate that our approach can correct for complex aerodynamic effects, we
perform the real world experiments in two settings: in setting i) we perform all maneuvers
with the standard quadrotor setup, while in setting ii) we extend the quadrotor body with
a vertical drag board. This drag board introduces additional asymmetric aerodynamic
disturbance as can be seen in Fig. I.7. For the real world experiment, we use 20 inducing
points on our GP’s.

Table I.2 summarizes the results of our real world experiments in setting i). We train
two GP models on the circle and lemniscate trajectories, and use them at test time in
all permutations. As can be seen, our methods as well as the RDRv baseline improve
tracking performance by up to 50%, with our approach slightly outperforming the RDRv

224

I.4. Experiments and Results

Figure I.7 – Aerodynamic effects observed in the real quadrotor platform along body axes x
(left column) and y (right column) as a function of body frame velocity. The platform was studied
in its default configuration (upper row), and with an additional flat board attached along the
body x axis (lower row), resulting in a significantly increased body drag effect in the y direction.

225

Appendix I. Data-Driven MPC for Quadrotors

baseline. This result can be explained by the fact that the quadrotor platform used in
setting i) is very compact and powerful, rendering the main source of disturbance being
the rotor drag. Rotor drag is a linear effect, which can be well compensated for by the
linear RDRv model augmentation. The slight improvement of GP-MPC over RDRv in
this setting can be explained by the ability of the GPs to also account for imperfect thrust
mappings.

Finally, we compare the circle tracking for settings i) and ii) in Table I.3. As can be
seen, our approach significantly outperforms RDRv in setting ii), where the latter fails to
capture the full nonlinearity of aerodynamic effects. This can be verified also in Fig. I.7,
where the linear fit leads to significant bias.

I.5 Conclusion

In this work, we propose the usage of Gaussian Processes to augment the nominal
dynamics of a quadrotor to compensate for aerodynamic effects. This GP-based model
augmentation is integrated in a Model Predictive Controller and the resulting system
significantly improves positional tracking error, both in simulation and on a real quadrotor.
Using data from previously recorded flights, the GP’s are trained to predict the acceleration
error of the nominal model given its current velocity in body frame.

In extensive experiments in simulation and the real world, we show that our approach
outperforms a state-of-the-art linear drag model. Furthermore, our GP-augmented
controller opens up interesting lines of follow-up research for future development. On one
hand, we plan to make use of the predicted uncertainty to perform safe agile trajectories
close to obstacles. On the other hand, leveraging the fast fitting time of our GP models
(in the order of seconds), training and control loop can be executed in parallel on separate
threads in real time during flight. This would enable to adapt the dynamics model to
varying external or internal conditions such as wind disturbance or battery voltage.

226

I.5. Conclusion

Table I.1 – Comparison of closed-loop tracking errors on the circle and lemniscate trajectories
in simulation.

Model
Ideal Nominal RDRv GP-MPC

R
e
f. vpeak

[m s−1]
RMSE
[mm]

RMSE
[mm]

RMSE
[mm]

%↓ RMSE
[mm]

%↓
4 0.1 114.1 18.1 84 16.1 85
8 0.4 241.2 56.9 76 25.4 89

C
ir

c
le

12 1.2 338.3 93.0 72 28.4 93

4 0.3 104.0 15.5 85 16.3 84
8 1.5 157.7 32.3 79 20.3 87

L
e
m

n
.

12 4.2 212.4 60.6 71 24.4 88

Opt. dt
[ms]

1.32 1.76 4.13

Table I.2 – Comparison of the RDRv and GP-MPC methods in the real world experiments.

Model RMSE [mm]

GP GP
Ref. Nomin.

(circle)
%↓

(lemn.)
%↓ RDRv %↓

Circle 319.7 172.9 46 141.0 56 168.3 47

Lemn. 396.2 254.2 36 266.3 33 269.3 33

Table I.3 – Velocity-dependent tracking performance of the augmented MPC methods on the
circle trajectory.

Model
Nominal RDRv GP-MPC 20

Config.
vrange

[m s−1]
RMSE
[m]

RMSE
[m]

%↓ RMSE
[m]

%↓
0-2 0.087 0.130 -49 0.109 -25
2-4 0.233 0.119 49 0.103 56
4-6 0.329 0.177 46 0.129 61
6-8 0.458 0.210 54 0.154 66D

e
fa

u
lt

8-10 0.531 0.192 64 0.203 62

0-2 0.197 0.132 33 0.060 69
2-4 0.346 0.287 17 0.078 77
4-6 0.564 0.381 32 0.141 75
6-8 0.837 0.463 45 0.219 74

D
ra

g
b
o
a
rd

8-10 0.912 Crash ? 0.379 59

227

J NeuroBEM: Hybrid Aerodynamic

Quadrotor Model

The version presented here is reprinted, with permission, from:

Leonard Bauersfeld∗, Elia Kaufmann∗, Philipp Foehn, Sihao Sun, and Davide Scaramuzza.
“NeuroBEM: Hybrid Aerodynamic Quadrotor Model”. In: RSS: Robotics, Science, and
Systems (2021)

229

Appendix J. NeuroBEM: Hybrid Aerodynamic Quadrotor Model

NeuroBEM: Hybrid Aerodynamic

Quadrotor Model

Leonard Bauersfeld∗, Elia Kaufmann∗, Philipp Foehn, Sihao Sun, Davide

Scaramuzza

Abstract — Quadrotors are extremely agile, so much in fact, that
classic first-principle-models come to their limits. Aerodynamic effects,
while insignificant at low speeds, become the dominant model defect
during high speeds or agile maneuvers. Accurate modeling is needed
to design robust high-performance control systems and enable flying
close to the platform’s physical limits. We propose a hybrid approach
fusing first principles and learning to model quadrotors and their aero-
dynamic effects with unprecedented accuracy. First principles fail to
capture such aerodynamic effects, rendering traditional approaches
inaccurate when used for simulation or controller tuning. Data-driven
approaches try to capture aerodynamic effects with blackbox modeling,
such as neural networks; however, they struggle to robustly generalize
to arbitrary flight conditions. Our hybrid approach unifies and out-
performs both first-principles blade-element momentum theory and
learned residual dynamics. It is evaluated in one of the world’s largest
motion-capture systems, using autonomous-quadrotor-flight data at
speeds up to 65 km/h. The resulting model captures the aerodynamic
thrust, torques, and parasitic effects with astonishing accuracy, out-
performing existing models with 50% reduced prediction errors, and
shows strong generalization capabilities beyond the training set.

230

J.1. Introduction

Figure J.1 – Long-exposure images depicting quadrotor trajectory tracking at speeds up to
65 km/h in a large-scale motion-capture system. The captured data is used to fit a hybrid quadrotor
model combining blade-element-momentum (BEM) theory with a neural network compensating
residual dynamics. This hybrid model reproduces the flown trajectories in simulation with a
positional RMSE error reduction of over 50% compared to state-of-the-art.

Supplementary Material

A narrated video illustrating our approach is available at https://youtu.be/Nze1wlfmzTQ.
Code and dataset can be found at http://rpg.ifi.uzh.ch/NeuroBEM.html.

J.1 Introduction

In recent years, research on fast navigation of autonomous quadrotors has made tremen-
dous progress, continually pushing the vehicles to more aggressive maneuvers [296, 203,
172, 91] (Figure J.1). To further advance the field, several competitions have been
organized, such as the autonomous drone race series at the recent IROS and NeurIPS
conferences [235, 217] and the AlphaPilot challenge [92]. In the near future, estimation
and control algorithms will reach the level of maturity necessary to push autonomous
quadrotors to the bounds of what is physically possible. This presents the need for
quadrotor models that can predict the behaviour of the platform even during highly
aggressive maneuvers.

Accurately modeling quadrotors flying at their physical limits is extremely challenging
and requires to capture complex effects due to aerodynamic forces, motor dynamics, and
vibrations. Especially aerodynamic forces pose a challenge, as they depend on hidden
state variables like airflow, which cannot be easily measured. Furthermore, the individual
downwash induced by the rotors interacts with both the frame and the blades depending
on the current state of the platform. The repeatability of tracking errors observed in
prior work [277, 296, 17] and in this work when performing aggressive maneuvers suggests
that the difficulty of learning quadrotor dynamics is not caused by stochasticity in the
dynamics, but rather by unobserved state variables such as airflow.

Traditional approaches to quadrotor modeling limit the captured effects to simple linear
drag approximations and quadratic thrust curves [102, 309, 78]. Such approximations are
computationally efficient and describe the platform well in low-speed regimes, but exhibit
increasing bias at higher velocities as they neglect the influence of the inflow velocity on
the generated thrust. More elaborate models based on blade-element-momentum (BEM)

231

https://youtu.be/Nze1wlfmzTQ
http://rpg.ifi.uzh.ch/NeuroBEM.html

Appendix J. NeuroBEM: Hybrid Aerodynamic Quadrotor Model

Our Approach First Principles

Learning Based

MM RM

NN

+

fprop

τprop

fres

τres

f

τ

[

Ωk,cmd

]

xk Ωk

xk−1 Ωk−1

xk−2 Ωk−2

...
...

...
...

xk−h Ωk−h

Figure J.2 – Overview of the proposed architecture to predict aerodynamic forces and torques.
The physical modeling pipeline (upper part) consists of a motor model (MM) and a rotor model
(RM)—detailed in Sections J.3.3 and J.3.4. It takes the current state xk, current motor speeds
Ωk, and the motor speed command Ωk,cmd as an input. Combined with the estimate of the
residual forces and torques predicted by the neural network (NN) using the current and past h
states, the acting force f and torque τ are calculated.

theory manage to accurately model single rotors at high wind velocities, but they do
not account for the aerodynamic interactions between rotors and the frame. Parametric
gray-box models [331] aim to overcome these limitations by describing the forces and
torques as a linear combination of library functions. While these models can perform
well, their performance hinges on the appropriate choice of basis functions, which require
human expert knowledge to design. Recent research has investigated computational fluid
dynamics [350] to model the aerodynamic effects at play during different flight conditions.
While being very accurate, such approaches are computationally expensive and need
hours of processing on a compute cluster, rendering them impractical for experiments
spanning more than a few seconds.

Accurately predicting forces acting on the quadrotor at high speeds requires to implicitly
estimate the airflow around the vehicle. Although this state variable cannot be directly
observed, it can be deduced from a sequence of measurements of other observable state
variables. Thus, learning a high-order dynamics model requires a method for regression of a
nonlinear function in a high-dimensional input space. Deep neural networks have shown to
excel at such high-dimensional regression tasks and have already been applied to dynamic
system modeling [277, 17, 231, 274, 115]. Despite showing promising performance, such
purely-learned models require large amounts of data and require careful regularization to
avoid overfitting.

Contribution

This work proposes a quadrotor dynamics model that can accurately capture complex
aerodynamic effects by combining a state-of-the-art rotor model based on BEM theory
with learned residual force and torque terms represented by a deep neural network. The
resulting hybrid model benefits from the expressive power of deep neural networks and
the generalizability of first-principles modeling. The latter reduces the need for extreme
amounts of training data. The model is identified using data collected from a large set
of maneuvers performed on a real quadrotor platform. Leveraging one of the biggest

232

J.2. Related Work

optical tracking volumes in the world, the platform’s state as well as the motor speeds are
recorded during flight. The resulting dataset contains 96 flights with a cumulative time
of 1h 15min and 1.8 million data points, covering the entire performance envelope of the
platform up to observed speeds of 65 kmh−1 (18m s−1) and accelerations of 46.8m s−2.

The proposed model is compared against state-of-the-art modeling approaches on unseen
test maneuvers. The comparison is done in terms of both evaluation of predicted
aerodynamic forces and torques and closed-loop integration of the model in a simulator,
each evaluated against real-world reference data. In both categories, a performance
increase by a factor of two is observed.

J.2 Related Work

Traditionally, a rotor is assumed to produce thrust and axial torque proportional to the
square of its angular rate with a constant coefficient [218], which is referred to hereinafter
as the simple quadratic model. While these assumptions are valid for rotors on a static
thrust stand and for near-hover flight, they do neither account for the case where the rotors
move through air, nor for rotor-to-rotor and rotor-to-body interactions. Nevertheless,
due to its simplicity, this model is still used in well-known aerial robotics simulators
such as AirSim [309], Flightmare [320], RotorS [102] and others [229]. To improve the
accuracy of the thrust model in non-stationary flights over the simple quadratic model,
momentum theory has been used in [133, 141, 134]. Blade element theory is another
approach to model a single rotor more accurately. The forces and torques acting on each
infinitesimal portion of the blade are integrated over the whole propeller [276]. This
theory has been adopted to model aerodynamic effects on a quadrotor in many studies
[260, 36, 173, 338, 275]. However, both blade-element theory and momentum theory
require the value of the induced velocity which is challenging to estimate. Hence, the
blade-element-momentum (BEM) theory is proposed, which combines the above two
theories to alleviate the difficulty of calculating the induced velocity. The resulting model
can accurately capture aerodynamic forces and torques acting on single rotors in a wide
range of operating conditions [176, 110, 111].

Even though BEM outperforms simple quadratic models and often achieves accurate
predictions, it does not account for any interaction between the flow tubes of different
propellers or the frame [331]. Previous work has incorporated interaction effects using
either static wind tunnel tests [293, 305, 19] where the vehicle is rigidly mounted on a force
sensor, or by performing fast maneuvers in instrumented tracking volumes [346]. In [346] a
simple quadratic model is combined with residual forces predicted by Gaussian Processes.
While this approach offers a lightweight solution to learn residual forces and can be used
for control, it does not model residual torques, effectively neglecting moments caused by
rotor-to-rotor interactions. In [331], the quadrotor platform is identified using a gray-box
model that uses a library of polynomials as basis functions and is able to model both
aerodynamic forces and torques. This method relies on the predefined function library and
also contains discontinuities in the learned model. Another line of works investigates the
modeling of quadrotors using computational fluid dynamics (CFD) [350, 213]. While such
simulations achieve results that are highly accurate and manage to capture real-world

233

Appendix J. NeuroBEM: Hybrid Aerodynamic Quadrotor Model

4

2

1

3

xB

yBzB

xW

yW

zW

gW

Figure J.3 – Diagram of the quadrotor model depicting the world and body frames and
illustrating the propeller numbering convention.

effects well, they require large amounts of computation time on high-performance compute
clusters.

Due to their ability to identify patterns in large amounts of data, deep neural networks
represent a promising approach to model aerodynamic effects precisely and computation-
ally efficient. A recent line of works employs deep neural networks to learn quadrotor
dynamics model purely from data, for both continuous time formulations [17, 277] as
well as discrete-time formulations [231, 232, 312, 274]. While approaches relying entirely
on learning-based methods have high representative power and the potential to also
learn complex interaction effects, they require large amounts of data to train and careful
regularization to avoid overfitting.

The approach presented in this work is inspired by [277, 17], but instead of learning the
full dynamics, it combines state-of-the-art BEM modeling based on first principles with a
data-driven approach to learn the residual force and torque terms. The resulting model
benefits from the strong generalization performance of traditional first-principle modeling
and the flexibility of learning-based function approximation.

J.3 Quadrotor Model

This section explains the hybrid quadrotor model proposed in this work. It starts by
introducing the notation and the rigid body dynamics (Figure J.3), proceeds to explaining
two approaches to single-rotor modeling of increasing complexity and concludes with
the learned residual model. The hybrid structure of the model, illustrated in Figure J.2,
consists of a rotor model and a learned correction.

J.3.1 Notation

Scalars are denoted in non-bold [s, S], vectors in lowercase bold v, and matrices in
uppercase bold M . World W and Body B frames are defined with orthonormal basis i.e.
{xW ,yW , zW}. The frame B is located at the center of mass of the quadrotor. A vector
from coordinate p1 to p2 expressed in the W frame is written as: Wv12. If the vector’s
origin coincides with the frame it is described in, the frame index is dropped, e.g. the
quadrotor position is denoted as pWB. Furthermore, unit quaternions q = (qw, qx, qy, qz)

234

J.3. Quadrotor Model

with ‖q‖ = 1 are used to represent orientations, such as the attitude state of the quadrotor
body qWB. Finally, full SE3 transformations, such as changing the frame of reference
from body to world for a point pB1, can be described by WpB1 = WtWB + qWB ⊙ pB1.
Note the quaternion-vector product is denoted by ⊙ representing a rotation of the vector
by the quaternion as in q ⊙ v = qvq̄, where q̄ is the quaternion’s conjugate.

J.3.2 Quadrotor Dynamics

The quadrotor is assumed to be a 6 degree-of-freedom rigid body of mass m and diagonal
moment of inertia matrix J = diag(Jx, Jy, Jz). The state space is thus 13-dimensional
and its dynamics can be written as:

ẋ =

ṗWB

q̇WB

v̇WB

ω̇B

=

vW

qWB ·
[

0
ωB/2

]

1
m

(

qWB ⊙
(

fprop + fres
︸ ︷︷ ︸

:=f

))

+ gW

J−1
(

τprop + τres
︸ ︷︷ ︸

:=τ

−ωB × JωB

)

, (J.1)

where gW = [0, 0,−9.81m/s2]⊺ denotes earth’s gravity, fprop is the collective force
produced by the propellers including any parasitic effects the rotor model can simulate
(e.g. induced drag), and fres denotes residual forces that are not explained by the rotor
model used. Similarly, τprop and τres are the cumulative torques acting on the platform
due to the propellers and residual torques that are not explained by the rotor model.

fprop =
∑

i

fi (J.2)

τprop =
∑

i

τi + rP,i × fi , (J.3)

where rP,i is the location of propeller i expressed in the body frame and fi, τi are the
forces and torques generated by the i-th propeller. The rotor models aim at predicting
accurate estimates of the single-rotor forces and torques fi, τi, as explained in the
following sections. The force and torque effects of the fuselage, body, and rotor interaction
are not explicitly modeled, but should be captured by the residual dynamics fres and τres,
predicted by a neural network.

J.3.3 Rotor Model: Quadratic

The simplest model for single propeller is a quadratic fit which assumes the thrust and
torque produced by a single propeller to be proportional to the square of its rotational

235

Appendix J. NeuroBEM: Hybrid Aerodynamic Quadrotor Model

rate (propeller speed) Ω.

fi(Ω) =

0
0

cl,q · Ω2

 τi(Ω) =

0
0

cd,q · Ω2

 (J.4)

The coefficients cl,q and cd,q are typically identified using a static propeller test stand.
This simplified model is a good approximation for near-hover flight at near-zero velocity
without ceiling or ground effects [275] and explains static thrust-test stand measurements
very well. However, it ignores that ego-motion impacts the lift generated by the propeller.
The induced drag, which depends on the propeller speed and body-relative air velocity,
is neglected as well, albeit being the dominant source of drag for quadrotors. This is
sometimes mitigated by combining the model with a linear drag term such as in [102, 78].

J.3.4 Rotor Model: BEM

Compared to the quadratic model, Blade-Element-Momentum-Theory (BEM) accounts
for the effects of varying relative air speed on the rotor thrust. It assumes interaction
effects between individual rotors to be negligible and describes each rotor separately. The
approach presented here is based on classical propeller modeling for helicopters [276].
The modeling of the propeller lift and drag coefficients is based on [110, 72].

First, basic momentum theory is introduced and used to relate the thrust force to a given
velocity difference in a flow-tube across the rotor. Then the aerodynamic blade-element
model is presented. While momentum theory uses the momentum conservation to relate
induced airspeed and generated thrust, a blade-element model sums the contributions of
infinitesimal blade elements to the total thrust force and drag torque. Finally, the full
algorithm combining momentum theory and the blade-element model is presented.

For now, the induced velocity vi is considered to be known as momentum theory and the
blade element model jointly yield this information. Together with the known ego-motion
of the quadcopter, this fully determines the wind field around the individual propellers.

Momentum Theory. The most simple theory for analyzing rotors is momentum theory
as it allows to calculate the thrust of a propeller based on a momentum balance across
the rotor. This balance is done inside a flow-tube with radius R that fully contains the
propeller. Assuming a known and constant induced velocity vi across the diameter of the
flow tube, the thrust T of a rotor is given by [276]:

T = 2viρA
√

v2hor + (vver − vi)2 , (J.5)

where vhor and vver denote the horizontal and vertical velocity component of the flow
tube. Note that momentum theory alone does not provide any means for calculating
the induced velocity, it merely relates the induced velocity and the thrust based on a
momentum balance and does not make any assumption on the physical process that
actually accelerates the air.

236

J.3. Quadrotor Model

xP

yP

vhor

Ψ

a1

zP

vver

vi

b1

Figure J.4 – Lateral flapping b1 and longitudinal flapping a1 occur due to lift imbalance. The
azimuth angle Ψ of the blade is measured ‘from the tail’ in the direction of rotation. The
horizontal velocity vhor and vertical velocity vver are defined opposite to the propeller frame, i.e.
if the propeller moves along zP the relative velocity will also have a positive vertical component.
Note that coning is not shown to improve the clarity of the schematic.

Blade Element Theory. The main purpose of a blade element model is to estimate the
acting forces and torques accurately. A propeller consists of b identical blades (typically
b = 2 or b = 3) attached to the rotor hub, each acting as a wing producing lift and
drag forces. The propeller coordinate frame P shown in Figure J.4 is defined such that
the zP -axis points down and the xP -axis opposes the horizontal component vhor of the
incoming wind.

The finite stiffness of the blade and its hub-mount allow it to bend and deform, transmitting
forces and introducing torques around the hub. It also causes the rotor-disk plane to
be tilted with respect to the propeller coordinate system. This deformation can be split
into a symmetric coning component a0 due to the overall lift produced by the propeller
(not shown in Figure J.4) and an asymmetric flapping component that depends on the
azimuth angle Ψ of the propeller. Figure J.4 illustrates this: in forward flight one side of
the propeller experiences a higher relative airspeed (advancing blade) compared to the
opposite side (retracting blade). Thus, there is a lift imbalance between the sides of the
propeller which in turn causes the elastic propeller to bend upwards on the advancing
side. This is called lateral flapping with the associated flapping angle b1. Due to the
inertia of the blade, the lateral flapping also induces a longitudinal flapping angle a1.

Figure J.5 shows the velocities, angles and forces of a blade element. The chord of the
airfoil is rotated by an angle θ relative to the xy-plane. Together with the inflow angle
ϕ, this results in a total angle of attack α = θ + ϕ. Each blade element produces a lift
force dL perpendicular to the incoming airstream and a drag force dD in the direction of
the incoming airflow. The thrust force dT and horizontal force dH are aligned with the
propeller coordinate frame.

The tangential velocity UT and parallel-to-motor velocity UP are related to the angular

237

Appendix J. NeuroBEM: Hybrid Aerodynamic Quadrotor Model

U

α

dD

dL

c

UT
UP

ϕ

θ

dT

dH

vi

xP

zP

Figure J.5 – A blade element located at radius r and azimuth angle Ψ.

velocity Ω of the propeller as

UT (r,Ψ) = Ωr + vhor sinΨ (J.6)

UP (r,Ψ) = vver − vi (J.7)

− rΩ(a1 sinΨ + b1 cosΨ)

+ vver(a0 − a1 cosΨ− b1 sinΨ) cosΨ .

The local angle of attack α can be calculated as

ϕ(r,Ψ) = arctan(UP (r,Ψ)/UT (r,Ψ)) (J.8)

α(r,Ψ) = θ0 +
r

R
θ1 + ϕ(r,Ψ) , (J.9)

where θ0 is the pitch angle of the blade and θ1 the blade twist. The differential lift force
dL and the differential drag dD can be expressed as functions of radius r and azimuth
angle Ψ:

dL(r,Ψ) = c(r)cl(α(r,Ψ))(UT (r,Ψ)2 + UP (r,Ψ)2) (J.10)

dD(r,Ψ) = c(r)cd(α(r,Ψ))(UT (r,Ψ)2 + UP (r,Ψ)2), (J.11)

where c(r) is the chord length and cl(α), cd(α) are the angle-of-attack dependent coeffi-
cients of lift and drag respectively. The coefficients are modeled as proposed in [110, 72]
as

cd(α) = cd,0 sin
2 α cl(α) = cl,0 sinα cosα , (J.12)

where cd,0 and cl,0 are experimentally determined by measuring the lift and drag torque
on a thrust test stand.

The overall thrust T , horizontal force H and drag torque Q are obtained through

238

J.3. Quadrotor Model

e

Mspring

Figure J.6 – Illustration of the hinged blade model.

integration.

T =
bρ

4π

∫ R

0

∫ 2π

0
dL cosφ+ dD sinφ dΨ dr (J.13)

H =
bρ

4π

∫ R

0

∫ 2π

0
(−dL sinφ+ dD cosφ) sinΨ dΨ dr (J.14)

Q =
bρ

4π

∫ R

0

∫ 2π

0
(−dL sinφ+ dD cosφ) r dΨ dr (J.15)

Blade Elasticity. Standard helicopters have their rotor blades connected to the rotor
hub through a hinge pin, optionally with an offset. This is not true for small rotor sizes
typically found on multicopters, since the blade is fixed and elastic which breaks the
assumptions made in standard helicopter literature. Therefore, the model is slightly
adapted to capture the characteristics of small propellers: a blade is rigid and connected
to the rotor hub with a hinge and a torsional spring at an offset e [133] as shown in
Figure J.6. The coning angle a0 as well as the flapping angles a1 and b1 can be calculated
by equating the moments acting on the rotor hub. At the hinge position, the following
moment equilibrium occurs:

0 = Mw +Mgyro +Minertial +Mcf +Maero +Mspring , (J.16)

where the moment Mw is caused by the weight of the blade, the moment Mgyro is due
to gyroscopic effects the blade experiences when a non-zero rollrate or pitchrate are
present, Minertial comes from the inertia of the blade and its angular acceleration during
the flapping motion, Mcf is caused by centrifugal forces when the blade flaps, the moment
Maero is a result of the lift generated by the blade, and lastly Mspring is the restoring
moment produced by the hinge spring. For brevity, the derivation of the coning and
flapping angles are omitted here. They closely follow [276] (pp. 463). Due to the torsional
spring at the hinge, the spring moment needs to be considered additionally:

Mspring = kβ (a0 + a1 cosΨ + b1 sinΨ) , (J.17)

where kβ is the given spring stiffness. From (J.16), the coning and flapping angles are
calculated. The resulting expression is omitted here for readability.

Complete BEM-Model Algorithm. Throughout above explanations, the induced
velocity vi was treated as a known quantity. However, when simulating the vehicle the
induced velocity is unknown and needs to be calculated. This can be done by combining

239

Appendix J. NeuroBEM: Hybrid Aerodynamic Quadrotor Model

the results from momentum theory and blade-element theory: (J.5) and (J.13) can both
be used to calculate the thrust of the propeller. Due to the relatively stiff blade, the
flapping and coning angle are small (typically less than 1◦) and can thus be neglected as
a first approximation to calculate the induced velocity.

Due to the nature of the physical modeling process, the results from the momentum
theory are only valid if the vehicle does not fly in its own downwash. This occurs when
the vehicle descends with a certain speed, e.g. the propeller is in vortex-ring state [133] if
and only if

0 <
vP,z

vi
< 2 . (J.18)

If the results from momentum-theory are not applicable, the induced velocity can not be
calculated. In [133] a solution is presented which relies on an empirical fit to calculate
the induced velocity in such flight conditions. The proposed fit consists of a quartic
polynomial to approximate vi as follows:

ṽi = vh,i
(
1 + 1.125(vP,z/vh,i)− 1.372(vP,z/vh,i)

2 (J.19)

+1.718(vP,z/vh,i)
3 − 0.655(vP,z/vh,i)

4
)
,

where vh,i is the induced velocity if the vehicle would fly horizontally in the given flight
state, i.e. set vP,z = 0. To ensure a smooth transition back to the physical modeling, the
final induced velocity in vortex ring state is given as vi = max(ṽi, vh,i).

The algorithm thus consists of the following steps:

1. Assume a0 = 0, a1 = 0, b1 = 0.

2. Find vi such that (J.5) and (J.13) are simultaneously satisfied, i.e. the thrust
calculated by momentum theory and blade element theory are identical. If inside
vortex-ring state, use the approximation presented above.

3. Calculate the coning and flapping angle a0, a1 and b1 with the previously computed
induced velocity.

4. Using the previously calculated induced velocity and blade flapping angles, (J.13) –
(J.15) can be evaluated again.

5. The total force of the propeller and torque around the center of the propeller are
given by:

fP =

−(H + sin a1T)
± sin b1T
−T cos a0

 τP =

±kβb1
kβa1
∓Q

 ,

where the upper sign of ± and ∓ corresponds to propeller rotating clockwise and
the lower sign needs to be used for a counter-clockwise spinning propeller.

240

J.4. Experimental Setup

Table J.1 – Comparison of different network architectures with respect to RMSE of force and
torque prediction on a held-out test set.

Architecture Force RMSE [N] Torque RMSE [Nm] # Param

TCN small 0.365 6.525 ×10−3 12k
TCN medium 0.352 5.274 ×10−3 25k
TCN large 0.355 4.674 ×10−3 72k
MLP 0.356 5.172 ×10−3 30k

J.3.5 Learned Residual Dynamics

Both rotor models presented in Sections J.3.3 and J.3.4 do not account for aerodynamic
forces and torques caused by the quadrotor body or interaction effects between the
propellers. In this work, these residual dynamics are approximated by a deep neural
network. Modeling such effects accurately requires to implicitly estimate the airflow
around the vehicle. Considering the airflow as hidden state of the system, it can be
estimated by measuring a history of observable state variables. In this work, the angular
and linear velocities, as well as motor speeds are used as input features for the neural
network. A history length of h = 20, with temporary equally-spaced samples with a
δt = 2.5ms is used, effectively giving information of the platform evolution over the past
50ms.

The network architecture is empirically validated by minimizing the prediction error on
an unseen test set. The candidate architectures consist of temporal-convolutional (TCN)
encoders [259] and fully-connected (MLP) encoders, which both are combined with two
fully-connected heads, one for the residual force prediction and one for the residual torque
prediction. Each architecture uses leaky-ReLU activations and a linear output layer.
Training is performed in a supervised fashion using the Adam optimizer by minimizing
the RMSE loss on forces and torques between predictions and labels. Table J.1 shows
the main results of these ablation experiments. Due to its favourable performance versus
inference time trade off, the medium-sized temporal-convolutional encoder (TCN-medium)
was selected for all subsequent experiments.

J.4 Experimental Setup

J.4.1 Data Collection

To train the model and to verify its accuracy, real world measurement data is needed. It is
recorded in a flying arena equipped with a motion tracking system with a usable volume of
25m× 25m× 8m. The Vicon1 motion tracking system allows to record accurate position
and attitude measurements at 400Hz. Additionally, onboard IMU measurements and
motor speeds are recorded at 1 kHz by the low-level flight controller. This onboard data
and the pose measurements need to be synchronized and fused in post processing. For
this purpose interpolating cubic splines are fitted to the datapoints, which allows fusing

1https://www.vicon.com/

241

https://www.vicon.com/

Appendix J. NeuroBEM: Hybrid Aerodynamic Quadrotor Model

the asynchronous measurements from both data sources, and recovers the full dynamic
state. Furthermore, to estimate the unobserved linear velocity and angular acceleration,
differentiation of the fitted splines provides less noisy estimates than direct differentiation
of the discrete, noisy measurements. For the means of time synchronization, offset and
clock skew are estimated through the correlation quality of the axis-wise angular rate
measurement from the IMU with the spline. Gyroscope measurements are used because
they provide better noise characteristics than the accelerometer data. The clock skew was
typically observed to be 2.4%. The motor data is smoothed with a finite-impulse-response
fourth-order Butterworth low-pass filter with a cutoff frequency corresponding to the
time-constant of the motors, identified from the step response of the motors. This ensures
that noise is suppressed without attenuating high-frequency motor signals more than
3 dB.

The resulting dataset contains 1.8 million data points recorded from 96 flights covering
1h:15min of flight time. The dataset is split into 70% training, 20% validation, and
10% test set. Each subsets contains trajectories that cover the full range of speeds and
accelerations observed in the full data set.

J.4.2 Quadrotor Platform

The real-world flights are performed with a custom-made quadrotor platform. It features
an Armattan Chameleon 6 inch main frame, equipped with Hobbywing XRotor 2306
motors and 5 inch, three-bladed propellers. The platform has a total weight of 752 g and
can produce a maximum static thrust of approximately 33N, which results in a static
thrust-to-weight ratio of 4.5. The weight and power of this platform is comparable to
the ones used by professional pilots in drone racing competitions. The platform’s main
computational unit is an NVIDIA Jetson TX2 accompanied by a ConnectTech Quasar
carrier board. In all real world flights, control commands in the form of collective thrust
and bodyrates are computed on a laptop computer and sent via a Laird module to the
Jetson TX2. The Jetson then forwards these commands to a commercial flight controller
running BetaFlight2, which produces single-rotor commands that are fed to a 4-in-1
electronic speed controller.

J.4.3 Control System

Control commands are produced by a control pipeline consisting of two levels: (i)) a
high-level non-linear quadratic MPC controller generating bodyrate and collective thrust
commands at 100Hz, and (ii)) a low-level Betaflight controller tracking the desired
bodyrate setpoint at 1 kHz. To ensure repeatability, BetaFlight features targeted at
human piloted drones (feed-forward terms) are disabled, and the controller is reduced
to a PID with equal parameters for simulation and real-world flight. BetaFlight is run
as a software module within the simulation, resembling the real control system. Both
controllers are kept equal in the simulation with respect to the real-world experiments, to
guarantee equal performance in both scenarios.

2https://github.com/betaflight/betaflight

242

https://github.com/betaflight/betaflight

J.5. Experiments and Results

J.4.4 Simulator Extension

To compare different models, their resulting simulation accuracy is evaluated with respect
to the real-world trajectory. For this purpose, the closed-loop system is simulated forward
in time. While the rigid-body dynamics are given by (J.1) and the aerodynamic force and
torque are provided by the model in question, there are two further components needed
for an accurate simulation: integration and motor dynamics.

Integration. The integration is performed by a symplectic Euler scheme with a timestep
of 1ms using the rigid body dynamics (J.1), the modeled linear and angular accelerations
of the tested model, and the motor dynamics explained in the following section. The
advantage of the symplectic Euler scheme is its energy conservation property, which is
invalidated with other integration schemes, such as the standard Euler methods or the
Runge-Kutta family of integrators.

Motor Dynamics. Since the aerodynamic model is based on the angular speed of the
propeller, the motors are modeled as a first-order system according to

δ

δt
Ω =

1

τΩ
(Ωcmd − Ω) (J.20)

where Ωcmd is the commanded propeller speed and τΩ is the motor time constant. For the
quadrotor platform used throughout the experiments, the time constant was identified to
be τΩ = 33ms.

J.5 Experiments and Results

The evaluation procedure is designed to address the following questions: (i) When does
the classical approach to quadrotor modeling based on quadratic thrust and torque curves
start to break down? (ii) How do the forces and torques predicted by a model based on
BEM compare with respect to a simple quadratic model? (iii) What is the contribution of
a learned residual dynamics component? The reader is encouraged to watch the attached
video to understand the highly dynamic nature of the experiments.

J.5.1 Experimental Setup

Throughout the experiments multiple models are fitted using the training and validation
data, and evaluated using the test data. The predictive performance of these models is
compared in two different settings, covered in the subsequent sections: in Section J.5.2, the
RMSE of predicted forces and torques is compared on unseen flight data; in Section J.5.3,
different dynamics models are evaluated in conjunction with a known controller to
determine the mismatch between simulation and the real world in a closed-loop scenario.
Both types of comparisons are performed on unseen test trajectories that cover the entire
performance envelope of the platform. Each trajectory has been performed on the real
platform in an instrumented tracking volume as explained in Section J.4.

243

Appendix J. NeuroBEM: Hybrid Aerodynamic Quadrotor Model

Table J.2 – Comparison of model performance in terms of RMSE on an unseen test set.
Approaches marked with an asterisk are trained on a reduced training set to compare generalization
performance.

Model Fxy [N] Fz [N] Mxy

[Nm]
Mz

[Nm]
F [N] M [Nm]

None 1.549 13.618 0.036 0.006 7.964 0.029
Fit 1.536 1.381 0.104 0.033 1.486 0.087
BEM 0.803 1.265 0.090 0.017 0.982 0.074
PolyFit [331] 0.453 0.832 0.027 0.008 0.606 0.022
None+NN 0.236 0.681 0.017 0.002 0.438 0.014
Fit+NN 0.232 0.722 0.017 0.004 0.458 0.014
BEM+NN (ours) 0.204 0.504 0.014 0.004 0.335 0.012

PolyFit* [331] 1.450 6.637 2.815 0.164 4.011 2.301
None+NN* 0.470 1.959 0.007 0.002 1.194 0.006
Fit+NN* 0.501 1.225 0.024 0.013 0.817 0.021
BEM+NN* (ours) 0.344 0.816 0.025 0.008 0.549 0.021

J.5.2 Comparison of Predictive Performance

In a first set of experiments, the presented models are compared in terms of predicted
forces and torques on unseen trajectories. These trajectories cover the entire performance
envelope of the quadrotor, ranging from slow near-hover trajectories with speeds below
5m s−1 to aggressive trajectories at the limit of the platform’s capabilities, exceeding
speeds of 18m s−1 and accelerations up to 46.8m s−2. The models compared in this
experiment consist of the quadratic model (Fit), the BEM model (BEM) and a naive
model predicting all zeros (None). Each of these models is augmented with a learned
residual correction using a neural network, marked with +NN. While the None model
represents a naive baseline to better understand the magnitude of prediction errors,
None+NN illustrates the performance of a purely learned model. Finally, the approach
presented in [331] is compared, denoted as PolyFit as it uses automatically selected
polynomial basis functions to fit the model.

To evaluate generalization performance, each approach is trained on two datasets: the
entire training set as explained in Section J.4 and a reduced dataset that only covers
linear speeds up to 5m s−1. This reduced dataset is used to identify new parameters for
each approach, which are marked with an asterisk.

Table J.2 summarizes the results of this experiment, while Figure J.7 illustrates perfor-
mance on a highly aggressive maneuver. The proposed hybrid model based on BEM and
learned residual dynamics consistently outperforms all other models on the predicted
forces. Note that the trajectories performed in this work are designed to minimize yaw
rate, and as a result only cover extremely small yaw torques Mz (the largest yaw torque in
the dataset is 0.072Nm), as discussed in Section J.6. It is evident that thrust and torque
along the body zB-axis are more challenging to predict accurately. The reason for this

244

J.5. Experiments and Results

0 2 4
0

5

10

15

20

S
p
ee

d
[m

/
s]

0 2 4
0

0.2

0.4

0.6

0.8

1

M
x
y

[N
m

]

Measurement BEM Graybox BEM + NN

0 2 4

0

2

4

6

Time [s]

F
x
y

[N
]

0 2 4
0

10

20

30

Time [s]

F
z

[N
]

Figure J.7 – The plot illustrates the results presented in Table J.2. The plots show a highly
aggressive maneuver (from the test dataset) where only models with neural net augmentation
predict the forces and torques well.

is two-fold: First, all linear acceleration actuation lies in the zB direction, contributing
actuation noise predominantly along this axis. Second, all trajectories are designed to
minimize yaw torque, since this is the least actuated torque direction, and significantly
limits the acceleration envelope, and therefore the attainable agility. This explains the
good performance of even very naive baselines with respect to this metric.

When comparing on the reduced dataset (Table J.2, bottom), the performance of the pro-
posed approach gracefully degrades, still outperforming the baselines in terms of predicted
forces. Note that the PolyFit baseline completely breaks down in this setting, indicating
poor generalization to unseen data. The purely learning-based baseline outperforms all
other approaches in the predicted torques, but also fails to generalize the force predictions
to the new data.

Figure J.8 – Trajectories used for testing. Each trajectory is flown multiple times with varying
speeds.

245

Appendix J. NeuroBEM: Hybrid Aerodynamic Quadrotor Model

Table J.3 – Comparison of closed-loop simulation performance on an unseen test set of different
trajectories. Results show the positional RMSE between trajectories flown in simulation with
different dynamics models and the same set of trajectories flown on the real platform. Models
marked with an asterisk (⋆) were trained only on slow data up to 5m s−1.

v m
e
a
n

[m
/s

]

v m
a
x

[m
/s

]

F
it

B
E

M

P
ol

y
F
it

[3
31

]

N
on

e+
N

N

F
it

+
N

N

B
E

M
+

N
N

(o
u
rs

)

P
ol

y
F
it
⋆

N
on

e+
N

N
⋆

F
it

+
N

N
⋆

B
E

M
+

N
N

⋆

(o
u
rs

)

R
ot

or
S

[1
02

]

Lemnis. 1.7 3.5 0.061 0.059 0.043 0.046 0.049 0.059 0.046 0.049 0.048 0.053 0.11
Random 2.3 8.2 0.167 0.138 0.130 crash 0.126 0.141 crash 0.130 0.123 0.134 0.24
Lemn. 3.2 7.0 0.183 0.146 0.102 0.103 0.112 0.109 crash 0.100 0.112 0.112 0.15
Melon 3.5 7.6 0.229 0.163 0.117 0.126 0.126 0.133 crash 0.127 0.134 0.137 0.19
Sl. Circ. 6.9 10.7 0.381 0.232 0.166 0.172 0.168 0.167 crash 0.210 0.193 0.185 0.26
Lin. Osc. 7.2 16.9 0.506 0.438 0.172 0.270 0.234 0.171 crash 0.258 0.263 0.216 0.56
Race 7.6 13.1 0.414 0.286 0.233 0.283 0.223 0.214 crash 0.257 0.262 0.240 0.42
Melon 7.7 13.5 0.431 0.221 0.239 0.179 0.164 0.155 crash 0.263 0.207 0.185 0.40
Sl. Circ. 8.5 13.3 0.531 0.217 0.255 0.206 0.197 0.192 crash 0.340 0.268 0.180 0.40
Race 9.9 17.8 0.617 0.408 0.820 0.447 0.320 0.301 crash 0.446 0.420 0.370 0.71
Lemnis. 12.0 19.8 0.762 0.549 0.316 0.782 0.352 0.286 crash 0.469 0.423 0.371 1.16
Ellipse 15.0 19.2 0.855 0.369 crash 0.347 0.402 0.285 crash 0.605 0.481 0.290 0.65

J.5.3 Closed-Loop Comparison

To demonstrate the benefits of an accurate force and torque model, a second set of
experiments presents a comparison of closed-loop simulation performance. Using the
simulation setup explained in Section J.4.4, a set of unseen trajectories (Figure J.8) is
flown in simulation and the resulting flight path is compared with the data obtained from
executing the same set of trajectories on the real platform. As for the previous set of
experiments, also this comparison is performed for models identified on the full training
set, as well as a reduced training set to compare generalization performance. Additionally
to the baselines already used in the previous experiments, this experiment also compares
against RotorS [102]. To do this, the standard model in RotorS is updated with the
parameters identified from the real platform (i.e. mass, inertia, dimensions, lift and drag
coefficients).

Table J.3 illustrates the results of the closed-loop experiment. For each trajectory, the
accumulated positional error between the simulated flight and the data observed in the real
world is reported. As can be seen, all models achieve similar performance for trajectories
close to hover. The Fit model exhibits increasing bias with higher speeds, with the error
exceeding the worst performance of the proposed approach already at average speeds
below 7m s−1. In contrast, the BEM model is able to maintain competitive performance
up to the fastest trajectories. At low speeds, the PolyFit baseline performs very well,
but exhibits increasing bias for higher speeds, even resulting in a crash on the fastest
trajectory. The RotorS baseline performs inferior on all trajectories, achieving results
comparable to the Fit baseline. The proposed approach combining BEM with a learned
residual term (BEM+NN) achieves competitive performance on the slow trajectories and

246

J.6. Discussion

−10
0

10
−10

0

10

−10

0

10

vx,B [m/s]

vy,B [m/s]

v
z
,B

[m
/
s]

training set ellipse test set lemniscate test set

Figure J.9 – Visualization of the reduced training set, the ellipse test set and the fastest
lemniscate test set in the body-frame velocity space. Although the test set mostly covers regions
of the state space that are not part of the training set, the trained BEM+NN⋆ model still provides
good accuracy in simulating the trajectory. This demonstrates its remarkable generalization
capability.

outperforms all baselines on the faster trajectories. Compared to Fit+NN, BEM+NN
achieves consistently better performance for fast maneuvers.

When trained on the reduced dataset, all models show decreased performance. However,
while approaches such as PolyFit completely break down, the proposed approach expe-
riences only a minor performance reduction around 20%, outperforming the baselines
on all faster trajectories. This result highlights the ability of the proposed approach to
generalize beyond the data it was trained on (Figure J.9).

J.6 Discussion

The results obtained in this work show that the proposed hybrid dynamics model,
combining first-principles based on blade-element-momentum theory with a learning-
based residual term, outperforms state-of-the-art modeling for quadrotors with a 50%
decreased aerodynamic force and torque prediction error. Furthermore, evaluation in
controlled experiments on a large real-world dataset shows that such a complementary
modeling approach outperforms each of its compositional submodules.

In fact, not only does the performance of the proposed hybrid model structure improve
with a more capable rotor model, but the learned residual dynamics also increase in
accuracy if a broader envelope of effects can already be captured using first principles.
Specifically, the learned residual prediction achieves up to 30% better performance when

247

Appendix J. NeuroBEM: Hybrid Aerodynamic Quadrotor Model

combined with a rotor model based on blade-element-momentum theory.

While the proposed approach significantly improves upon state-of-the-art in quadrotor
modeling for highly aggressive maneuvers by up to 60%, its advantages for slow speed
trajectories below 5m s−1 are limited. Our experiments indicate that for such slow trajec-
tories, a traditional parametric approach such as [331] achieves very strong performance
at a lower computational cost. While the quadratic and polynomial fits can be evaluated
in a mere 1 µs, even on a micro processor, the BEM model requires in the order of 100 µs
on a modern Intel-architecture CPU, and a forward pass of the network averages also at
around 100 µs on a modern NVidia GPU. The reason for the dominant runtime of the
BEM model is the necessary implicit solution for the induced velocity equation. Even
though our approach is not optimized for runtime, simulations can be run at an arbitrary
timescale, where most applications gladly trade-off real-time evaluation for improved
accuracy.

The results of the closed-loop simulation using the proposed model could be further
improved by refining the following aspects of the control pipeline: (i) The experimental
platform currently relies on the BetaFlight inner-loop low-level controller, which is
optimized for human pilots. However, as such, it only takes a throttle command and a
body rate command as inputs, and relies on the inner-loop to track the rate command.
Furthermore, it performs filtering and interpolation of the control signals to ensure
a consistent flight feeling for human pilots, which introduces undesirable control-loop
shaping. An MPC outer-loop controller directly outputting single-rotor motor speeds
that are tracked by an inner loop motor speed controller would improve the accuracy of
our approach further as this would minimize the differences between the simulation and
the actual experiments. (ii) Modeling the latency from the motion capture pose filtering,
the data transmission to the drone, and the communication to the flight controller in
simulation would also reduce the error as it improves the realism of the simulator. The
authors expect the results in Table J.3 to be even more favorable for their approach in
such an ideal setting. The accuracy of the force and torque predictions shown in Table J.2
would also benefit from a custom low-level controller providing more precise and less
noisy motor-speed information.

Compared to a purely learning-based approach such as None+NN, the proposed approach
performs 25% better for all non-trivial trajectories with average speeds above 4m s−1,
and extrapolates well to unseen flight data, as opposed to e.g. the PolyFit baseline. The
authors expect the performance of learning-only approaches to improve with more data.
However, in a real world setting, where high-quality data is sparse, pure learning-based
approaches fall short of traditional methods. Additionally, accurate aerodynamic force
and torque prediction does not necessarily translate to good closed-loop performance,
as demonstrated in our evaluation. Moreover, this study observed cases where a purely-
learned residual component introduced a feedback loop on the predicted torques that led
to a crash. In such cases, support through first-principles is vital for accurate and robust
modeling.

248

J.7. Conclusion

J.7 Conclusion

This work proposes a novel method to model quadrotors by combining modeling based
on first principles with a learning-based residual term represented by a neural network.
The proposed method is able to accurately model quadrotors even throughout aggressive
trajectories pushing the platform to its limits. This hybrid model outperforms its
compositional modules with up to 50% error reduction, including baseline methods that
utilize only first-principles modeling, as well as purely learning-based methods. The
method shows strong generalization beyond the training set used to identify the model
and predicts accurate forces and torques where other methods break down. Controlled
experiments indicate that the fusion of learned dynamics with first-principles is a powerful
combination, where the learned dynamics-residual benefits from high-fidelity models,
such as the BEM. Applied to simulations, our approach enables unprecedented accuracy,
reducing positional RMSE from ∼0.8m for state-of-the-art approaches, down to below
0.3m. This could tremendously speed up development and testing of advanced control
and navigation strategies for quadrotors, without the need of the tedious and crash-prone
trial-and-error strategy on real systems.

Acknowledgement

This work was supported by the National Centre of Competence in Research (NCCR)
Robotics through the Swiss National Science Foundation (SNSF), the Intel Network
on Intelligent Systems, the European Union’s Horizon 2020 Research and Innovation
Programme under grant agreement No. 871479 (AERIAL-CORE) and the European
Research Council (ERC) under grant agreement No. 864042 (AGILEFLIGHT).

249

K Agilicious: Open-Source and

Open-Hardware Agile Quadrotor for

Vision-Based Flight

The version presented here is reprinted, with permission, from:

Philipp Foehn∗, Elia Kaufmann∗, Angel Romero, Robert Penicka, Sihao Sun, Leonard
Bauersfeld, Thomas Laengle, Yunlong Song, Antonio Loquercio, and Davide Scaramuzza.
“Agilicious: Open-Source and Open-Hardware Agile Quadrotor for Vision-Based Flight”.
In: Science Robotics (2021). under review

251

Appendix K. Agilicious: Open-Source and Open-Hardware Agile
Quadrotor for Vision-Based Flight

Agilicious: Open-Source and

Open-Hardware Agile Quadrotor for

Vision-Based Flight

Philipp Foehn, Elia Kaufmann, Angel Romero, Robert Penicka, Sihao Sun,

Leonard Bauersfeld, Thomas Laengle, Yunlong Song, Antonio Loquercio, Davide

Scaramuzza

Abstract — Autonomous, agile quadrotor flight raises fundamental
challenges for robotics research in terms of perception, planning, learn-
ing, and control. A versatile and standardized platform is needed to
accelerate research and let practitioners focus on the core problems.
To this end, we present Agilicious, a co-designed hardware and soft-
ware framework tailored to autonomous, agile quadrotor flight. It is
completely open-source and open-hardware and supports both model-
based and neural-network–based controllers. Also, it provides high
thrust-to-weight and torque-to-inertia ratios for agility, onboard vision
sensors, GPU-accelerated compute hardware for real-time perception
and neural-network inference, a real-time flight controller, and a versa-
tile software stack. In contrast to existing frameworks, Agilicious offers
a unique combination of flexible software stack and high-performance
hardware. We compare Agilicious with prior works and demonstrate it
on different agile tasks, using both model-based and neural-network–
based controllers. Our demonstrators include trajectory tracking at up
to 5 g and 70 kmh−1 in a motion-capture system, and vision-based acro-
batic flight and obstacle avoidance in both structured and unstructured
environments using solely onboard perception. Finally, we demonstrate
its use for hardware-in-the-loop simulation in virtual-reality environ-
ments. Thanks to its versatility, we believe that Agilicious supports
the next generation of scientific and industrial quadrotor research.

252

K.1. Introduction

K.1 Introduction

Quadrotors are extremely agile vehicles. Exploiting their agility in combination with full
autonomy is crucial for time-critical missions, such as search and rescue, aerial delivery,
and even flying cars. For this reason, over the past decade, research on autonomous, agile
quadrotor flight has continually pushed platforms to higher speeds and agility [228, 203,
170, 233, 373, 92, 197, 253, 172, 91].

To further advance the field, several competitions have been organized—such as the
autonomous drone racing series at the recent IROS and NeurIPS conferences [235, 53,
170, 217] and the AlphaPilot challenge [117, 92]—with the goal to develop autonomous
systems that will eventually outperform expert human pilots. Million-dollar projects,
such as AgileFlight[57] and Fast Light Autonomy (FLA)[233], have also been funded
by the European Research Council and the United States government, respectively, to
further push research.

Agile flight comes with ever-increasing engineering challenges since performing faster
maneuvers with an autonomous system requires more capable algorithms, specialized
hardware, and proficiency in system integration. As a result, only a small number
of research groups have undertaken the significant overhead of hardware and software
engineering, and have developed the expertise and resources to design quadrotor platforms
that fulfill the requirements on weight, sensing, and computational budget necessary for
autonomous agile flight. This work aims to bridge this gap through an open-source agile
flight platform, enabling everyone to work on agile autonomy with minimal engineering
overhead.

The platforms and software stacks developed by research groups [226, 203, 233, 297,
78, 256, 14, 126] vary strongly in their choice of hardware and software tools. This
is expected, as optimizing a robot with respect to different tasks based on individual
experience in a closed-source research environment leads to a fragmentation of the research
community. For example, even though many research groups use the Robot Operating
System middleware to accelerate development, publications are often difficult to reproduce
or verify since they build on a plethora of previous implementations of the authoring
research group. In the worst case, building on an imperfect or even faulty closed-source
foundation can lead to wrong or non-reproducible conclusions, slowing down research
progress. To break this vicious cycle and to democratize research on fast autonomous flight,
the robotics community needs an open-source and open-hardware quadrotor platform
that provides the versatility and performance needed for a wide range of agile flight tasks.
Such an open and agile platform does not yet exist, which is why we present Agilicious,
an open-source and open-hardware agile quadrotor flight stack summarized in Figure K.1.

To reach the goal of creating an agile, autonomous, and versatile quadrotor research
platform, three main design requirements must be met by the quadrotor: (i) it must carry
the required compute hardware needed for autonomous operation, (ii) it must be crash
resilient to allow fast prototyping, and (iii) must be capable of agile flight.

To meet the first requirement on computing resources needed for true autonomy, a quadro-

253

Appendix K. Agilicious: Open-Source and Open-Hardware Agile
Quadrotor for Vision-Based Flight

Simulation

Rigid Body

Dynamics

BEMModel

Motor Model

Low Level

Controller

state

RealWorld

Quadrotor

Low Level

Controller

state

5" Propeller

Brushless Motor

Carbon Fiber Frame

Nut

RealSense T265

4S LiPo Battery

Quasar Carrier Board

3D-printed Sensor Mount
Hobbywing ESC

Damper

Radix Flight Controller

3D-printed Battery Mount

3D-printed Jetson Mount Jetson TX2

Pipeline

state setpoint command
Estimator Sampler BridgeController

Logic

WaypointTrajectory Velocity Body Rates + Thrust Rotor Thrusts

User select Reference

OffHoverLandStart

Action User select

Agilicious Pilot

Figure K.1 – The Agilicious software and hardware quadrotor platform are tailored for agile
flight while featuring powerful onboard compute capabilities through an NVIDIA Jetson TX2.
The versatile sensor mount allows for rapid prototyping with a wide set of camera sensors
such as the RealSense T265. As a key feature, the software of Agilicious is built in a modular
fashion, allowing rapid software prototyping in simulation and seamless transition to real-world
experiments. The Agilicious Pilot encapsulates all logic required for agile flight, while exposing
a rich set of interfaces to the user, from high-level pose commands to direct motor commands.
The software stack can be used in conjunction with a custom modular simulator which supports
highly accurate aerodynamics based on blade-element momentum theory [23], or with RotorS
[102], hardware-in-the-loop, and rendering engines such as Flightmare [320]. Deployment on the
physical platform only requires selecting a different bridge and a sensor-compatible estimator.

254

K.1. Introduction

tor must have sufficient compute capability to concurrently run estimation, planning, and
control algorithms onboard. With the emergence of learning-based methods, also efficient
hardware acceleration for neural network inference is required. As more compute typically
entails increased size and weight, a conservative approach to fulfill the compute demand
would negatively affect requirements (ii) and (iii), which try to maximize the platform’s
crash resilience and agility. When pushing quadrotors to their limits, research on agile
flight sooner or later inevitably leads to crashes. To meet the second requirement on crash
resilience, the platform must withstand such crashes without requiring major repairs. To
satisfy the third requirement, the platform must deliver an adequate thrust-to-weight
ratio and torque-to-inertia ratio. While the thrust-to-weight ratio can often be enhanced
using sufficiently large motors, more powerful motors require larger propellers and thus
larger size of the platform. However, the torque-to-inertia ratio typically decreases with
higher weight and size, since the moment of inertia increases quadratic with the size,
and linearly with the weight. Therefore, it is desirable to design a lightweight and
small platform [187, 88] to maximize agility (i.e. maximize both thrust-to-weight ra-
tio (thrust-to-weight) and torque-to-inertia ratio (torque-to-inertia)). These three design
objectives require optimizing the platform to meet the best trade-off, since maximizing
compute resources competes against the other two design goals. Apart from hardware
design considerations, a quadrotor research platform needs to provide the software frame-
work for flexible usage and reproducible research. This entails the abstraction of hardware
interfaces and a general co-design of software and hardware necessary to exploit the
platform’s full potential. Such co-design must account for the capabilities and limitations
of each system component, such as the complementary real-time capabilities of common
operating systems and embedded systems, communication latencies and bandwidths,
system dynamics bandwidth limitations, and efficient usage of hardware accelerators. In
addition to optimally using hardware resources, the software should be built in a modular
fashion to enable rapid prototyping through a simple exchange of components, both in
simulation and real-world applications. This modularity enables researchers to test and
experiment with their research code, without the requirement to develop an entire flight
stack, accelerating time to development and facilitating reproducibility of results. Finally,
the software stack should run on a broad set of computing boards, be efficient, easy to
transfer and adapt by having minimal dependencies and provide known interfaces, such
as the widely-used Robot Operating System (ROS).

The complex set of constraints and design objectives is difficult to meet. There exists a
variety of previously published open-source research platforms, which, while well designed
for low-agility tasks, could only satisfy a subset of the aforementioned hardware and
software constraints. In the following section, we list and analyze prominent examples
such as the FLA platform [233], the MRS quadrotor [14], the ASL-Flight [297], the
MIT-Quad [336], the GRASP-Quad[203], or our previous work [78].

The FLA platform [233] relies on many sensors, including Lidars and laser-range finders
in conjunction with a powerful onboard computer. While this platform can easily meet
autonomous flight computation and sensing requirements, it does not allow to perform
agile flight beyond 2.4g of thrust, limiting the flight envelope to near-hover flight. The
MRS platform [14] provides an accompanying software stack and features a variety of
sensors. Even though this hardware and software solution allows fully autonomous flight,

255

Appendix K. Agilicious: Open-Source and Open-Hardware Agile
Quadrotor for Vision-Based Flight

the actuation renders the system not agile with a maximum thrust-to-weight of 2.5. The
ASL-Flight [297] is built on the DJI Matrice 100 platform and features an Intel NUC as
the main compute resource. Similarly to the MRS platform, the ASL-Flight has very
limited agility due to its weight being on the edge of the platform’s takeoff capability. The
comparably smaller GRASP-Quad proposed in [203] operates with only onboard IMU and
monocular camera while having a weight of only 250 g. Nevertheless, the used Qualcomm
Snapdragon board lacks computational power and the reported maximal accelerations are
only up to 1.5g. Motivated by drone racing, the MIT-Quad [336] reported accelerations
of up to 2.1g while it was further equipped with NVIDIA Jetson TX2 in [13], however, it
does not reach the agility of the Agilicious and contains proprietary electronics. Finally,
the quadrotor proposed in [78] is a research platform designed explicitly for agile flight.
Although the quadrotor featured a high thrust-to-weight ratio of up to 4, its compute
resources are very limited, prohibiting truly autonomous operation. All these platforms
are optimized for either relatively heavy sensor setups or for agile flight in non-autonomous
settings. While the former platforms lack the required actuation power to push the state
of the art in autonomous agile flight, the latter have insufficient compute resources to
achieve true autonomy.

Finally, several mentioned platforms rely on either Pixhawk-PX4 [225], the Parrot [300] or
DJI [69] low-level controllers, which are mostly treated as blackboxes. This, together with
the proprietary nature of the DJI limits control over the low-level flight characteristics,
which negatively impacts agility and predictability. Full control over the complete pipeline
is necessary to truly understand aerodynamic and high-frequency effects, model and
control them, and exploit the platform to its full potential.

Apart from platforms mainly developed by research labs, several quadrotor designs are
proposed by industry (Skydio [317], DJI [69], Parrot [300]) and open-source projects
(PX4 [225], Paparazzi [126], Crazyflie [109]). While Skydio [317] and DJI [69] both develop
platforms featuring a high level of autonomy, they do not support interfacing with custom
code and therefore are of limited value for research and development purposes. Parrot [300]
provides a set of quadrotor platforms tailored for inspection and surveillance tasks that
are accompanied by limited software development kits that allow researchers to program
custom flight missions. In contrast, PX4 [225] provides an entire ecosystem of open-source
software and hardware as well as simulation. While these features are extremely valuable
especially for low-speed flight, both cross-platform hardware and software are not suited
to push the quadrotor to agile maneuvers. Similarly, Paparazzi [126] is an open-source
project for drones, which supports various hardware platforms. However, the supported
autopilots have very limited onboard compute capability, rendering them unsuited for agile
autonomous flight. The Crazyflie [109] is an extremely lightweight quadrotor platform
with a takeoff weight of only 27 g. The minimal hardware setup leaves no margin for
additional sensing or computation, prohibiting any non-trivial navigation task.

To address the requirements of agile flight, the shortcomings of existing works, and to
enable the research community to progress fast towards agile flight, we present an open-
source and open-hardware quadrotor platform for agile flight at more than 5g acceleration
while providing excellent onboard compute and versatile software. The hardware design
leverages recent advances in motor, battery, and frame design initiated by the first-person-

256

K.1. Introduction

framework open-source simulation
onboard
computer

low-level
controller

CPU mark
(higher is better)

GPU

maximum speed
(0-100 kmh−1

time)
thrust/weight

PX4 [225] SW and HW ✓ ✗ custom open source - ✗ - -
Paparazzi [126] SW and HW ✓ ✗ custom open source - ✗ - -
DJI [69] - ✗ ✗ proprietary - ✗ 140 kmh−1 (2.0 s) ≈ 5.00
Skydio [317] - ✗ ✗ proprietary - ✗ 58 kmh−1 -
Parrot [300] SW ✗ ✗ proprietary - ✗ 55 kmh−1 -
Crazyflie [109] SW and HW ✓ ✗ custom open source - ✗ - ≈ 2.26
FLA-Quad [233] SW and HW ✗ ✓ PX4 3,383 ✗ - ≈ 2.38
GRASP-Quad [203] - ✗ ✓ custom 625 ✗ - ≈ 1.80
MIT-Quad [13] - ✗ ✓ custom 1,343 ✓ - ≈ 2.33
ASL-Flight [297] SW and HW ✗ ✓ DJI 3,383 ✗ - ≈ 2.32
RPG-Quad [78] SW and HW ✓ ✓ Betaflight 633 ✗ - ≈ 4.00
MRS UAV [14] SW and HW ✓ ✓ PX4 8,846 ✗ - ≈ 2.50

Agilicious (Ours) SW and HW ✓ ✓ custom open source 1,343 ✓ 131 kmh−1 (1.01 s) ≈ 5.00

Table K.1 – Comparison of quadrotor platforms used in research and industry. The platforms
are compared based on their openness to the community, support of simulation and onboard
computation, used low-level controller, CPU power (reported according to publicly available
benchmarks https://www.cpubenchmark.net and corresponding to the speed of solving a set of
benchmark algorithms that represent a generic program), and the availability of onboard general-
purpose GPU. The agility of the platforms is expressed in the terms of thrust-to-weight ratio;
however, we also report the maximal velocity as an agility indicator due to limited information
about the commercial platforms.

view (FPV) racing community. The design objectives resulted in creating a lightweight
750 g platform with maximal speed of 131 kmh−1. This high-performance drone hardware
is combined with a powerful onboard computer that features an integrated GPU, enabling
complex neural network architectures to run at high frequency while concurrently running
optimization-based control algorithms at low latency onboard the drone. The most
important features of the Agilicious framework are summarized and compared with
relevant research and industrial platforms in Table K.1. A qualitative comparison
of mutually contradicting onboard computational power and agility is presented in
Figure K.2.

In co-design with the hardware, we complete the drone design with a modular and
versatile software stack, called Agilicious. It provides a software architecture that allows
to easily transfer algorithms from prototyping in simulation to real-world deployment
in instrumented experiment setups, and even pure onboard-sensing applications in un-
known and unstructured environments. This modularity is key for fast development
and high-quality research, since it allows to quickly substitute existing components with
new prototypes and enables all software components to be used in standalone testing
applications, experiments, benchmarks, or even completely different applications.

The hardware and software presented in this work have been developed, tested, and
refined throughout a series of research publications [79, 170, 172, 209, 328, 91, 254, 322].
All these publications share the ambition to push autonomous drones to their physical
limits. The experiments, performed in a diverse set of environments demonstrate the
versatility of Agilicious by deploying different estimation, control, and planning strategies
on a single physical platform. The flexibility to easily combine and replace both hard-
and software components in the flight stack while operating on a standardized platform
facilitates testing new algorithms and accelerates research on fast autonomous flight.

257

https://www.cpubenchmark.net

Appendix K. Agilicious: Open-Source and Open-Hardware Agile
Quadrotor for Vision-Based Flight

Future Research

Onboard Compute Capability

A
g
il
it
y

Ours
DJI

Crazyflie

Parrot

Skydio

MIT

GRASP

FLA

ASL

Research Platform / Open

Proprietary Platform / Closed

MRS

Figure K.2 – A qualitative comparison of different available consumer and research platforms
with respect to available onboard compute capability and agility. The open-source frameworks
FLA[233], ASL[297], and MRS[14] have relatively large weight and low agility. The DJI[69],
Skydio[317], and Parrot[300] are closed-source commercial products that are not intended for
research purposes. The Crazyflie[109] does not allow for sufficient onboard compute or sensing,
while the MIT[13] and GRASP[203] platforms are not available open-source. Finally, our
proposed Agilicious framework provides agile flight performance, onboard GPU-accelerated
compute capabilities, as well as open-source and open-hardware availability.

258

K.2. Results

K.2 Results

The capabilities of the proposed Agilicious platform are demonstrated in a set of experi-
ments that require, due to their individual challenges, broad flexibility of the hardware
and software stack. To this end, we showcase the performance of our platform in three
different scenarios. First, we focus on experiments conducted in one of the world’s largest
tracking arenas, where we show that our platform can be pushed to its physical limits
and is able to outperform even professional human pilots. Next, we present the possibility
of using Agilicious in a hardware-in-the-loop simulation, enabling the potential to test
algorithms in an unlimited number of photorealistic virtual test environments while flying
in the real world. Finally, we demonstrate our system’s capabilities to fly autonomously
in the wild, using only onboard sensing and computation. For details regarding the
hardware and software design of Agilicious, we refer the reader to Section K.4.

K.2.1 Agile Flight in a Tracking Arena

In this section, we demonstrate the versatility of Agilicious and the performance of our
platform by tracking an aggressive time-optimal trajectory in a drone racing challenge.
Additionally, to benchmark our planning and control algorithms, we compete against a
world-class drone racing pilot FPV pilot [91]. As illustrated in Fig. , our drone racing
trackK.3, consists of seven gates that need to be traversed in a pre-defined order as fast
as possible.

Flying through gates at high speed requires precise state estimates, which is still an open
challenge using vision-based state estimators [63]. For this reason, we conduct these
experiments in our tracking arena, equipped with 36 VICON cameras that provide precise
pose measurements at 400Hz. The large flight volume of 30× 30 × 8m (7,200m3) makes
it possible to safely test many trajectories and use-cases. By virtue of the modularity
offered by Agilicious, we can bypass the state estimation problem and independently
focus on the planning and control tasks to extract the maximum actuation power of our
platform.

To effectively complete the drone racing track, we first pre-compute the desired time-
optimal trajectory using a state-of-the-art planner proposed by [91]. Then we use various
non-linear flight control approaches to accurately track the trajectory (see further for
more details).

Given the position of the gates, we generate the time-optimal trajectory offline by solving a
non-linear optimization problem that automatically allocates the time at which the drone
passes through each gate. Since this algorithm leverages the full-non-linear quadrotor
dynamic model and the actuation constraints, the optimized trajectory can fully exploit
the capability of our drone platform. However, accurately tracking such aggressive
trajectories poses considerable challenges with respect to the controller design, which
usually requires several iterations of algorithm development and considerable tuning
effort.

259

Appendix K. Agilicious: Open-Source and Open-Hardware Agile
Quadrotor for Vision-Based Flight

7.2

7.0

6.8

6.6

6.4

6.2
L

a
p

 T
im

e
s

[s
]

Tr
ac

k
in

g
 E

rr
o

r
[m

] 0.4

0.3

0.2

0.1

70 1 2 3 4 5 6

Time [s]

20

15

10

5

Fl
ig

h
t

S
p

e
e

d
 [

m
/s

]

Reference Trajectory

Flatness-Based Controller

Model Predictive Controller

Human expert

Position Tracking RMSE

x [m]

− 7.5

− 5.0

− 2.5

0.0

2.5

5.0

7.5

10.0

12.5

y
[m

]

− 5.0

− 2.5

0.0

2.5

5.0

7.5

10.0

z
[m

]

0

2

4

6
A

B

C

D

Figure K.3 – Autonomous time-optimal flight for drone racing and comparison against a
world-class drone racing pilot. A comparison between two different control approaches and the
human pilot is displayed. A: a 3D view of the placement of the gates and the flown trajectories.
B: velocity tracking of the two controllers, together with the velocity of the human. Notice how
our platform can achieve speeds of almost 20m s−1 (i.e., 70 kmh−1). C: tracking error and the
RMSE of the two controlled approaches. D: distribution of lap times of the controlled platform
in comparison with that of the professional human pilot.

The proposed Agilicious flight stack allows us to easily design, test, and deploy different
control methods. First, we implement the control algorithm directly within the flight
stack, specifically using the "Controller" box, as displayed in Fig. K.1. Then we test
and tune the controller in the high-fidelity simulation environment that is built inside
Agilicious. A big benefit of using our Agilicious flight stack is that after testing and tuning
in the simulator, the algorithm is ready to be directly deployed and fine-tuned in the real
platform, and no source code changes are necessary to transfer from the simulation stage
to the real-world deployment.

Agilicious’ modular structure allows for a number of different cascaded control architectures
to be deployed. Among these possible combinations, in this paper we showcase two
different control approaches as the outer loop: a differential-flatness-based non-linear
controller [336], and a non-linear model predictive controller [346]. Both methods are
designed considering the full non-linear model of the platform, the true actuator limits,
and the aerodynamic drag forces. For the inner loop, in order to be able to track
our platform’s fast attitude dynamics, we combine the previous controllers with an
incremental non-linear dynamic inversion (INDI) method [318]. This combination results
in significant improvements in the robustness against model mismatch and external
disturbances [329]. The INDI inner-loop converts the collective thrust and angular
acceleration commands from the aforementioned controllers to rotor speed commands,
which are directly commanded to the motors.

Figure K.3 shows the real-world comparison of our platform performance (using two

260

K.2. Results

different controllers) against a world-class drone racing pilot. In terms of lap times (shown
in Figure K.3D), our platform outperforms the human pilot and shows significantly more
consistent performance. Both controllers implemented in our flight stack show good
tracking performance, with less than 0.4m tracking error while flying at almost 20m s−1

(i.e., 70 kmh−1) (see Figure K.3B-C). Note that, in this example, the human pilot is not
supposed to track any predefined reference trajectory.

All things considered, the Agilicious flight stack’s modularity and versatility allow us
to develop a wide range of control algorithms and significantly reduce the number of
iterations from writing a new algorithm to deploying it in real-world flight. These two
intrinsic characteristics of our flight stack have proven to be of extreme importance when
pushing the frontiers of the state-of-the-art in agile drone flight.

K.2.2 Hardware in the Loop Simulation

RealWorld Simulation Algorithms

Photorealistic Environments
Sensors (Camera, Depth Sensor, Optical Flow)

Physical Platform
Vicon Motion Capture (with mm Precision)

Quadrotor Position and Attitude

HIL Simulator BEM Simulator Simple Simulator

0.414
0.381

0.149

0.287
0.314

Network

Expert

0.144

R
M
S
E
Tr
a
ck
in
g
E
rr
o
r
[m
]

Simulated Sensor Data

Vision-based Navigation
Machine Learning

RealWorld Simulation

B C

A

Figure K.4 – A: The hardware-in-the-loop simulation of Agilicious consists of a real quadrotor
flying in a motion capture system and photorealistic simulation of complex 3D environments.
Multiple sensors can then be simulated while virtually flying in various simulated environments.
Such hardware-in-the-loop simulation offers a modular framework for prototyping robust vision-
based algorithms safely, efficiently, and inexpensively. B-C: Hardware-in-the-loop is used to
evaluate the performance of a neural policy trained on the task of drone racing and tested in
different simulators available in Agilicious. The network predicts control commands (body rates
and collective thrust) from simulated inertial and visual information. The network is trained by
imitating a model-predictive-control expert tracking a time-optimal trajectory.

261

Appendix K. Agilicious: Open-Source and Open-Hardware Agile
Quadrotor for Vision-Based Flight

Developing vision-based perception and navigation algorithms for agile flight is slow,
expensive, and unsafe. This is due, on one side, to the large amount of data required to
train and test perception algorithms for operation in diverse real-world settings and, on
the other side, to the high speeds of the drone, which, sooner or later, inevitably leads
to crashes. This motivates the Agilicious framework to support hardware-in-the-loop
simulation, which consists of flying a physical quadrotor in a motion-capture system while
observing virtual photorealistic environments, as previously shown in [117].

The key advantage of hardware-in-the-loop simulation over classical quadrotor simula-
tion [102]—where both quadrotor physics and sensors are simulated—is the usage of
real-world dynamics and proprioceptive sensors (e.g., inertial measurement unit) of the
physical platform instead of an idealized dynamic model based on estimated physical
properties of the quadrotor. Combining a physical platform during real-world flight
with photorealistic, simulated onboard camera images allows for fast, cheap, and safe
development and testing of robust vision-based algorithms while minimizing the risk of
crashing the quadrotor.

The simulation of complex 3D environments and realistic exteroceptive sensors is achieved
using our high-fidelity quadrotor simulator [320] that is developed with Unity [153]. The
simulator can offer a rich and configurable sensor suite, including RGB cameras, depth
sensors, optical flow, and image segmentation. In addition, it is possible to simulate
different sensor noise, e.g., motion blur or lens distortions, and diverse environmental
factors, e.g., wind and rain. Thanks to the rich amount of assets on the Unity Asset
Store [348], the implementation of different testing environments is fast and cheap. For
example, the user can switch from a city to a forest environment in under one minute.

The Agilicious hardware-in-the-loop simulation uses the position and attitude of the
quadrotor measured by a VICON motion capture system to render sensor data in the
frame of simulated sensors attached to the quadrotor. The simulation of synthetic
environments and the rendering of images are performed by a powerful workstation
that features a high-performance GPU. Such offboard rendered sensory data can then
be sent to the quadrotor in real-time and used for testing vision algorithms onboard.
Alternatively, when prototyping algorithms that require expensive computations, the
simulated data can be processed directly offboard, and low bandwidth results such as
control commands are then sent to the quadrotor. Hence, Agilicious allows for rapid
development of vision-based perception, estimation, planning, and control algorithms,
such as visual(-inertial) odometry, SLAM, image segmentation, and end-to-end control
via neural network policies.

We demonstrate the advantages of the hardware-in-the-loop simulation by using it for
testing an end-to-end neural network policy on the task of vision-based drone racing.
Following the approach in [208], we train the network by imitating a model predictive
controller tracking a time-optimal trajectory [91]. Similarly to [172], the network directly
predicts control commands, i.e. body rates and collective thrust, from visual and inertial
measurements. The network is trained from experience collected in the simple simulator
and evaluated in high-fidelity simulators including hardware-in-the-loop. We use the
tracking error with respect to the time-optimal reference trajectory as a performance

262

K.2. Results

metric.

From the results presented in Figure K.4C, two main conclusions can be drawn. First,
when flying in a realistic BEM simulator or in hardware-in-the-loop, the performance
of both the expert and the network significantly drops (up to 65%). This is justified
by the fact that the simple simulator, used by both the expert and the network, does
not account for the majority of aerodynamic effects acting on the platform, which are
particularly relevant at high speeds. Second, we observe that the BEM simulator of
Agilicious can closely predict the behavior of the closed-loop system in the physical world.
Note that the hardware-in-the-loop simulation played a fundamental role in drawing such
conclusions, since it enables to only vary the physical model between the experiments,
keeping the sensor observations unchanged. Additionally, hardware-in-the-loop allows us
to test vision-in-the-loop algorithms safely regardless of large tracking errors, which could
otherwise lead to crashing into physical gates.

Overall, the integration of our agile quadrotor platform and high-fidelity visual simulation
provides an efficient framework for the rapid development of vision-based navigation
systems in complex and unstructured environments. Moreover, the framework opens
up opportunities for transferring end-to-end neural network policies to the real world
by combining the real aerodynamics and system delays with almost unlimited synthetic
images.

K.2.3 Vision-based Agile Flight with Onboard Sensing and Computa-

tion

When a quadrotor can only rely on onboard vision and computation, perception needs to
be effective, low-latency, and robust to disturbances. Violating this requirement may lead
to crashes. Therefore, agile flight with only onboard resources pushes the boundaries of
existing navigation systems and offers a very interesting venue for research. Demonstra-
tions of our recent works on agile flight with onboard vision and computation [172, 209],
enabled by the Agilicious flight stack, are shown in Figure K.5A-F. Key highlights are
acrobatic flight with accelerations up to 3 g and obstacle avoidance in both structured
and unstructured environments with speeds up to 10m s−1. During these maneuvers, the
actuators, sensors, and all physical components of the platform are tested to their limits.
Latency has to be low and robustness to perception disturbances must be high.

Vision systems either exhibit reduced accuracy or completely fail at high speeds due
to perception disturbances such as motion blur, large pixel displacements, and quick
illumination changes [41]. To overcome these challenges, vision-based navigation systems
generally build upon two different paradigms. The first uses the traditional perception-
planning-and-control pipeline, generally represented by standalone blocks which are
executed sequentially and designed independently [257, 89, 83, 373, 83, 203]. Works in the
second category substitute either parts or the complete perception-planning-and-control
pipeline with learning-based methods [367, 368, 18, 136, 172, 371, 290, 298, 206, 106].
We deploy the Agilicious flight stack to quantitatively compare in simulation traditional
and learning-based methods using the aforementioned navigation tasks.

263

Appendix K. Agilicious: Open-Source and Open-Hardware Agile
Quadrotor for Vision-Based Flight

A B C

D E F

HG I

4 6 8 10

0

50

100

Blind FastPlanner

Reactive Ours

Forward Speed [m/s]

S
u
cc
e
ss
R
a
te
[%
]

4 6 8 10 12

0

50

100

Trajectory Waypoint

Trajectories (Ours)

5 10 15 20

0

50

100

Forward Speed [m/s] Maneuver Time [s]

End-to-End VIO-MPC

End-to-End (IMU)

Figure K.5 – The Agilicious platform is deployed in a diverse set of environments while only
relying on onboard sensing and computation. A-C: The quadrotor performs a set of acrobatic
maneuvers using a learned control policy. D-F: By leveraging zero-shot sim2real transfer, the
quadrotor platform performs agile navigation through cluttered environments. G-I: The flexibility
of Agilicious enables rapid development and benchmarking of model-based and learning-based
methods. To demonstrate this flexibility, we evaluate state-of-the-art approaches in the task
of navigation in a previously unknown forest environment (G, H), and acrobatic flight (I) by
consecutively repeating the barrel-roll maneuver (A) multiple times. Courtesy of Kaufmann et
al. [172] and Loquercio et al. [209].

264

K.2. Results

We first consider the problem of high-speed obstacle avoidance in a previously unknown
forest environment. As a baseline, we select two state-of-the-art approaches operating
with the traditional perception-planning-control pipeline: FastPlanner [373], which builds
a map of the environment and uses it with an A* planner, and Reactive [89], that
instantaneously selects the best trajectory from a set of pre-defined motion primitives
. We compare these methods to a learning-based approach that selects a collision-free
trajectory from depth and inertial measurements (Ours) [209]. For all approaches, we use
the Agilicious flight stack to track the predicted trajectory. The results of this experiment,
presented in Figure K.5G, show an interesting pattern: at low speeds (3m s−1) all methods
perform similarly. However, as the speed increases, the traditional methods’ performances
quickly drop, and already at 5m s−1 they are not able to complete all runs without
crashing. In contrast, the learning-based method can reliably fly at high speeds through
all environments, achieving a success rate of 60% at 10m s−1. The drop in performance
of the traditional methods can be justified by their sensitivity to perception disturbances
and limited expressive power. By contrast, our data-driven approach enables leveraging
regularities in the data to predict collision-free trajectories from noisy data, which makes
it both more expressive and more robust to sensor noise than the baselines [209].

We further use the possibility to seamlessly switch between different input modalities
of Agilicious (Figure K.1) for ablating the action representation of the learning-based
policy. From depth images and inertial measurements, the base policy predicts a set
of three trajectories to account for the multi-modality of the avoidance task [209]. We
compare this output representation to a single trajectory or a waypoint while keeping
the rest of the approach and underlying stack unchanged. The results in Figure K.5H
indicate that without accounting for the multi-modality of the task the performance is
degraded. This is because the l2-loss pushes predicted trajectories toward the average of
the expert trajectories, which is often in collision with obstacles. In addition, substituting
a trajectory to the less complex action representation of a single waypoint leads to similar
drops in performance.

Finally, we perform a comparison between the traditional approach of state-estimation
and control (VIO-MPC) [79] and a learning-based method (End-to-End) [172] in the
task of acrobatic flight. We further compare to a blind policy with no access to visual
information (End-to-End (IMU)). Figure K.5H analyzes the evolution of success rates of
different methods over time while flying a barrel roll maneuver [172]. A neural policy
that only relies on inertial data for sensing can safely fly, but only for short periods
(approximately 6 s). Similarly, the traditional estimation and control pipeline has no
failures for shorter maneuvers, but its performance gracefully degrades when flight time
increases. Conversely, the controller that has access to both visual and inertial data
(End-to-End) is able to perform barrel rolls for 20 seconds without a single failure. These
results indicate that, despite the challenges of reliable perception at high speeds, visual
input is fundamental to reduce drift and increase robustness for long maneuvers.

Overall, the Agilicious hardware is a perfect fit for vision-based agile flight. Indeed, it
provides reliable and low-latency interfacing to a wide range of sensors, from frame-based to
event-based cameras [104], and high-performance compute hardware (c.f. Section K.4.1).
In addition, our software framework provides the flexibility to quickly develop and

265

Appendix K. Agilicious: Open-Source and Open-Hardware Agile
Quadrotor for Vision-Based Flight

benchmark different vision-based navigation paradigms, including model-based, learning-
based, or hybrid approaches.

266

K.3. Discussion

K.3 Discussion

The presented Agilicious framework substantially advances the published state of the art
in autonomous quadrotor platform research. It offers advanced computing capabilities
combined with the most powerful open-source and open-hardware quadrotor platform
created to date, opening the door for research on the next generation of autonomous
robots. We see three main axes for future research based on our work.

First, we hypothesize that future flying robots will be smaller, lighter, cheaper, and
consuming less power than what is possible today, increasing battery life, crash-resilience,
as well as thrust-to-weight ratio and torque-to-inertia ratio [88]. This miniaturization is
evident in state-of-the-art research towards direct hardware implementations of modern
algorithms in the form of application-specific integrated circuit (ASIC)s, such as the
Navion [327] or the PULP processor [262]. These highly specialized in-silicon imple-
mentations are typically magnitudes smaller and more efficient than general compute
units. Their success is rooted in the specific structure many algorithmic problems exhibit,
such as the parallel nature of image data or the factor-graph representations used in
estimation, planning, and control algorithms, like SLAM, model-predictive control, and
neural network inference. This raises the question of whether these problems could
be solved using ASICs and whether the overall system benefits from miniaturization.
Navion [327] and modern neural-network accelerators, such as the Movidius [146] or
the PULP architecture [262, 263] already hint at the potential gains such in-silicon
implementations could bring to drones, and Agilicious provides the modular and flexible
environment necessary to prototype and test such solutions.

Second, the presented framework was mainly demonstrated with fixed-shape quadrotors.
This is an advantage as the platform is easier to model and control, and less susceptible
to hardware failures. Nevertheless, platforms with a dynamic morphology are by design
more adaptable to the environment and power efficient [4, 45, 81, 21]. For example, to
increase flight time, a quadrotor might transform to a fixed-wing aircraft [58]. Due to its
flexibility, Agilicious is the ideal tool for the future development of morphable and soft
aerial systems that, like many birds, change their shape to efficiently move and interact
with the environment.

Finally vision-based agile flight is still in the early stages and has not yet reached
the performance of professional human pilots. The main challenges lie in handling
complex aerodynamics, e.g. transient torques or rotor inflow, low-latency perception
and state estimation, and recovery from failures at high speeds. In the last few years,
considerable progress has been made by leveraging data-driven algorithms [23, 172, 209]
and novel sensors as event-based cameras [82, 328], that provide a high dynamic range,
low latency, and low battery consumption [104]. A major opportunity for future work is to
complement the existing capabilities of Agilicious with novel compute devices such as the
Intel Loihi [59, 73, 354] or SynSense Dynap [238] neuromorphic processing architecture,
which are specifically designed to operate in an event-driven compute scheme. Due to the
modular nature of Agilicious, individual software components can be replaced by these
novel computing architectures, supporting rapid iteration and testing.

267

Appendix K. Agilicious: Open-Source and Open-Hardware Agile
Quadrotor for Vision-Based Flight

In summary, Agilicious offers a unique quadrotor testbed to accelerate current and future
research on fast autonomous flight. Its versatility in both hardware and software allows
deployment in a wide variety of tasks, ranging from exploration or search and rescue
missions to acrobatic flight. Furthermore, the modularity of the hardware setup allows
integrating novel sensors or even novel compute hardware, enabling to test such hardware
on an autonomous agile vehicle. By open-sourcing Agilicious, we provide the research
and industrial community access to a highly agile, versatile, and extendable quadrotor
platform.

268

K.4. Materials and Methods

K.4 Materials and Methods

Designing a versatile and agile quadrotor research platform requires to co-design its
hardware and software, while carefully trading off competing design objectives such as
onboard computing capacity and platform agility. In the following, the design choices
that resulted in the flight hardware, compute hardware, and software design of Agilicious
(see Fig. K.1) are explained in detail.

K.4.1 Compute Hardware

To exploit the full potential of highly unstable quadrotor dynamics, a high-frequency
low-latency controller is needed. Both of these requirements are difficult to meet with
general-purpose operating systems, which typically come without any real-time execution
guarantees. Therefore, we deploy a low-level controller with limited compute capabilities
but reliable real-time performance, which stabilizes high-bandwidth dynamics, such as
the motor speeds or the vehicle’s bodyrate. This allows complementing the system
with a general-purpose high-level compute unit that can run Linux for versatile software
deployment, with significantly relaxed real-time requirements.

High-Level Compute Board The high-level of the system architecture provides all the
necessary compute performance to run the full flight stack, including estimation, planning,
optimization-based control, neural network inference, or other demanding experimental
applications. Therefore, the main goal is to provide general-purpose computing power,
while complying with the strict size and weight limits. We evaluate a multitude of different
compute modules made from system-on-a-chip (SoC) solutions since they allow inherently
small footprints. We exclude the evaluation of two popular contenders: (a) the Intel NUC
platform, since it neither provides any size and weight advantage over the Jetson Xavier
AGX nor provides a general-purpose GPU; and (b) the Raspberry Pi compute modules
since they do not offer any compute advantages over the Odroid and UpBoard, and no
size and weight advantage over the NanoPi product family.

As we target general flight applications, fast prototyping, and experimentation, it is
important to support a wide variety of software, which is why we chose a Linux-based
system. An overview of existing compute modules is shown in Tab. K.2. The required
module should provide enough computational power to run state-of-the-art estimation
and control algorithms, support hardware-accelerated neural network inference for real-
time deployment and other heterogeneous compute applications, and provide simple
interfacing with other hardware. TensorFlow [221] and PyTorch [266] are some of
the most prominent frameworks with hardware-accelerated neural network inference.
Both of them support accelerated inference on the Nvidia CUDA general-purpose GPU
architecture, which renders nVidia products favorable, as other products have no or
poorly-supported accelerators. Therefore, four valid options remain, listed in the second
row of Tab. K.2. While the Jetson Xavier AGX is beyond our size and weight goals,
the Jetson Nano provides no advantage over the Xavier NX, rendering both the Jetson
TX2 and Xavier NX viable solutions. Since these two CUDA-enabled compute modules

269

Appendix K. Agilicious: Open-Source and Open-Hardware Agile
Quadrotor for Vision-Based Flight

without General-Purpose GPU

Product Odroid XU4 Intel UpBoard NanoPi Neo 3 NanoPi Neo air

CPU 8× 32-bit ARM 2.1GHz 4× 64-bit Atom 1.92GHz 4× 64-bit ARM 1.5GHz 4× 32-bit ARM 1.2GHz

RAM 2GB LPDDR3 4GB LPDDR3 2GB LPDDR4 512MB LPDDR3

GPU Mali-T628 Intel HD400 Mali-450 MP4 Mali-400 MP2

FLOPS ∼120GFLOPS ∼ 115GFLOPS ∼40GFLOPS ∼10GFLOPS

Storage up to 128GB EMMC up to 64GB EMMC only SD card 8GB EMMC

Interfaces
USB, Ethernet, Serial,

I2C, SPI, GPIO

USB, Ethernet, Serial,

I2C, SPI, GPIO, 1 camera

USB, Ethernet, Serial,

I2C, SPI, GPIO

USB, Ethernet, WIFI,

Serial, I2C, SPI, GPIO, 1

camera

Size 83 × 58 × 19mm 85 × 57 × 20mm 40 × 40 × 23mm 40 × 40 × 10mm

Weight 59 g 79 g 36 g 24 g

with General-Purpose GPU

Product nVidia Jetson Nano nVidia Jetson TX2 nVidia Jetson Xavier NX nVidia Jetson AGX Xavier

CPU 4× 64-bit ARM 1.43GHz 6× 64-bit ARM 2.0GHz 6× 64-bit ARM 1.9GHz 8× 64-bit ARM 2.26GHz

RAM 4 GB LPDDR4 8 GB LPDDR4 8 GB LPDDR4 32 GB LPDDR4

GPU 128× Maxwell CUDA 256× Pascal CUDA 384× Volta CUDA 512× Volta CUDA

FLOPS 472GFLOPS 1.33TFLOPS 2.12TFLOPS 11TFLOPS

Storage 16GB EMMC 32GB EMMC 16GB EMMC 32GB EMMC

Interfaces

USB, Ethernet, Serial,

I2C, SPI, GPIO, 4

cameras

USB, Ethernet, WIFI,

Serial, I2C, SPI, GPIO, 6

cameras

USB, Ethernet, Serial,

I2C, SPI, GPIO, 6

cameras

USB, Ethernet, Serial,

I2C, SPI, GPIO, 6

cameras

Size 69.9 × 45 × 22mm 87 × 50 × 34mm 69.9 × 45 × 22mm 100 × 87 × 58mm

Weight 63 g 154 g 79 g 650 g

Table K.2 – Overview of compute hardware commonly used on autonomous flying vehicles.
Due to the emerging trend of deploying learning-based methods onboard, hardware solutions are
grouped according to the presence of a general-purpose GPU, enabling real-time inference.

require a breakout board to connect to peripherals, our first choice is the TX2 due to the
better availability and diversity of such adapter boards, smaller footprint, and support
of onboard WiFi networking. The opted Jetson TX2 is used together with the breakout
board ConnectTech Quasar[55], providing multiple USB ports, Ethernet, serial ports, and
other interfaces for sensors and cameras.

Low-Level Flight Controller The Low-Level Flight Controller must provide real-
time low-latency interfacing and control of the vehicle’s and actuator’s high-frequency
dynamics. A simple and widespread option is the open-source BetaFlight [340] software
which runs on many commercially available flight controllers, such as the Radix[211].
However, BetaFlight is made for human-piloted drones with a control pipeline optimized
for a good human flight feeling, but not for autonomous operation. Furthermore, even
though it uses high-speed IMU readings for the control loop, it only provides very limited
sensor readings at only 10Hz. Therefore, Agilicious provides its own low-level flight
controller implementation called "agiNuttx", reusing the same hardware as the BetaFlight
controllers. This means that the wide variety of commercially available products can be
bought and reflashed with agiNuttx to provide a low-level controller suited for autonomous
agile flight.

270

agi:https://wiki.odroid.com/odroid-xu4/odroid-xu4
agi:https://up-board.org/up/specifications/
agi:https://wiki.friendlyarm.com/wiki/index.php/NanoPi_NEO3
agi:https://wiki.friendlyarm.com/wiki/index.php/NanoPi_NEO_Air
agi:https://developer.nvidia.com/embedded/jetson_nano
agi:https://developer.nvidia.com/embedded/jetson_tx2
agi:https://developer.nvidia.com/embedded/jetson_xavier_nx
agi:https://developer.nvidia.com/embedded/jetson-agx-xavier

K.4. Materials and Methods

In particular, we recommend using the BrainFPV Radix [211] controller, to deploy our
agiNuttx software. The agiNuttx is based on the open-source NuttX [339] real-time
operating system, optimized to run on embedded microcontrollers such as the STM32F4
used in many BetaFlight products. Our agiNuttx implementation interfaces with the
motor’s ESC over the digital bi-directional Dshot protocol, allowing not only to command
the motors, but also readout their rotational speed in real-time. This feedback is provided
to the high-level controller together with IMU and battery voltage measurements, and
quadrotor status information over a 1MBaud serial bus at 500Hz. The agiNuttx also
provides closed-loop motor speed control, bodyrate control, and time synchronization for
precise time-stamped measurements, allowing estimation and control algorithms to take
full advantage of the available hardware.

K.4.2 Flight Hardware

To maximize the agility of the drone, it needs to be designed as lightweight and small
as possible [187] while still being able to accommodate the Jetson TX2 compute unit.
This section gives an overview of the components used (for details, see Tab. K.2) and
design choices made. The Armattan Chameleon 6 inch frame is used as a base because its
freestyle FPV design provides more space for the compute hardware than a conventional
FPV racing frame. Being made out of carbon fiber, it is very durable while weighing only
86 g. The other structural parts of the quadrotor are custom-designed plastic parts (PLA,
TPU) and produced using a 3D printer. Most components are made out of PLA which is
stiffer and only parts that act as impact protectors or as predetermined breaking points
are made out of TPU. For propulsion, a 5.1 inch three-bladed propeller is used since a
larger propeller would not leave enough space to fit the compute and sensing components.
Three-bladed propellers are favored in drone racing as they provide more lift per area
and have lower rotational inertia compared to a two-bladed propeller with a similar lift
curve. To achieve a high thrust output, fast-spinning brushless DC motors with a high
maximum power rating of 758W and a high KV-number (2400KV) are selected. The
chosen motor-propeller combination achieves a continuous static thrust of 4× 9.5N on
the quadrotor and consumes about 400W of power per motor. To match the high power
demand of the motors, a lithium-polymer (LiPo) battery with 1,800mAh and a rating of
120C is used. Therefore, the total peak current of 110A is well within the 216A limit of
the battery.

For agile flight, the low-level flight controller (FC) and electronic speed controller (ESC)
are integral components of the overall design. To have access to high-frequency motor
speed measurements, an ESC supporting the Dshot protocol is required. The Hobbywing
XRotor ESC is selected due to its compact form factor, its high current rating (60A per
motor), and support of the very fast Dshot 1200 protocol. The Radix from Brainfpv is
used as a flight controller because it comes with an ARM Cortex-M4 based, a widely used
STM32F4 MCU for which the custom firmware was developed. The FC can be interfaced
with the high-level controller and other sensors (e.g. GPS) through 6 serial connectors.

271

Appendix K. Agilicious: Open-Source and Open-Hardware Agile
Quadrotor for Vision-Based Flight

Component Product Specification

Frame Armattan Chemeleon 6 inch 4mm carbon fiber, 86 g
Motor Xrotor 2306 23×6mm stator, 2,400 kV, 758W, 4× 27.5 g

Propeller Azure Power SFP 5148 5.1 inch length and 4.8 inch pitch, 4× 5 g

Battery Tattoo R-Line 1800 4× 3.7V, 1,800mAh, 199 g
Flight Controller BrainFPV radix BetaFlight or custom firmware, 6 g
Motor Controller HobbyWing XRotor DSHOT protocol, 4× 60A, 15 g
Compute Unit nVidia Jetson TX2 6× ARM 2.0GHz, 256× CUDA cores, 8GB, 154 g

Table K.3 – Overview of the components of the flight hardware design.

K.4.3 The Agilicious Flight Stack Software

To exploit the full potential of our platform and enable fast prototyping, we provide the
Agilicious flight stack as an open-source software package. The main development goals
for Agilicious are aligned with our overall design goals: high versatility and modularity,
low latency for agile flight, and transferability between simulation and multiple real-world
platforms. These goals are met by splitting the software stack into two parts.

The core library, called "agilib", is built with minimal dependencies but provides all
functionality needed for agile flight, implemented as individual modules (illustrated in
Fig. K.1). It can be deployed on a large range of computing platforms, from lightweight
low-power devices to parallel neural network training farms built on heterogeneous server
architectures. This is enabled by avoiding dependencies on other software components
that could introduce compatibility issues and rely only on the core C++-17 standard and
the Eigen library for linear algebra. Additionally, agilib includes a standalone set of unit
tests and benchmarks that can be run independently, with minimal dependencies, and in
a self-contained manner.

To provide compatibility to existing systems and software, the second component is a
ROS-wrapper, called "agiros", which enables networked communication, data logging,
provides a simple GUI interface to command the vehicle and allows for integration with
other software components. This abstraction between "agiros" and the core library
"agilib" allows a more flexible deployment on systems or in environments where ROS is
not available, not needed, or communication overhead must be avoided. On the other
hand, the ROS-enabled Agilicious provides versatility and modularity due to a vast
number of open-source ROS packages provided by the research community.

For flexible and fast development, "agilib" uses modular software components unified
in an umbrella structure called "pipeline" and orchestrated by a control logic, called
"Pilot". The modules consist of an "estimator", "sampler", "controllers", and a "bridge",
all working together to track a so-called "reference". These modules are executed in
sequential order within a forward pass of the pipeline, corresponding to one control cycle.
However, each module can spawn its individual threads to perform parallel tasks, e.g.
asynchronous sensor data processing. Agilicious provides a collection of state-of-the-art
implementations for each module, inherited from base classes of the modules. This allows
to not only create new modules within Agilicious, but also outside of the core library.

272

K.4. Materials and Methods

These external modules can be registered and linked into the pilot at runtime without
changing the core library, allowing for rapid prototyping and independent development.
This way, Agilicious is not only capable to control a drone when running onboard the
vehicle, but can also run offboard on computationally more capable hardware and send
commands to the drone over low-latency wireless serial interfaces.

Finally, the core library is completed by a physics simulator. While this might seem
redundant due to the vast variety of simulation pipelines available [102, 309, 320], it
allows to use high-fidelity models (e.g. for aerodynamics), evaluates software prototypes
without having to interface with other frameworks, avoids dependencies, and enables even
simulation-based continuous integration testing that can run on literally any platform.
Moreover, it also allows us to experiment with our own built-in simulators, and extend
them with state-of-the-art functionalities. The pilot, software modules, and simulator are
all described in the following sections.

Pilot

The pilot contains the main logic needed for flight operation, handling of the individual
modules, and interfaces to manage references and task commands. In its core, it loads
and configures the software modules according to YAML[25] parameter files, runs the
control loop, and provides simplified user interfaces and ROS [279] bindings to manage
flight tasks, such as position and velocity control or the generation and execution of
trajectories. For all state descriptions, we use a right-handed coordinate system located
in the center of gravity, with the Bez pointing in body-relative upward thrust direction,
and Bex pointing along with the drone’s forward direction. Motion is represented with
respect to an inertial world frame with Iez pointing against the gravity direction, where
translational derivatives (e.g. velocity) are expressed in the world frame and rotational
derivatives (e.g. bodyrate) are expressed in the body frame.

Estimator The first module in the pipeline is the estimator, which provides a time-
stamped state estimate for the subsequent software modules in the control cycle. A state
estimate x = [p, q,v,ω,a, τ , j, s, bω, ba,fd,f], representing position p, orientation unit
quaternion q, velocity v, bodyrate ω, linear a and angular τ accelerations, jerk j, snap s,
gyroscope and accelerometer bias bω and ba, and desired and actual single rotor thrusts
fd and f . Most of the state components are optional, with the minimal required set being
position p, orientation q, and velocity v. Agilicious provides a feed-through estimator to
include external estimates or ground-truth from a simulation, as well as two extended
Kalman filters, one with IMU filtering, and one using the IMU as propagation model.
These estimators can easily be replaced or extended to work with additional measurement
sources, such as GPS or altimeters, other estimation systems, or even implement complex
localization pipelines such as visual-inertial odometry.

Sampler For trajectory tracking using a state estimate from the aforementioned estima-
tor, the controller module needs to be provided with a subset of points of the trajectory

273

Appendix K. Agilicious: Open-Source and Open-Hardware Agile
Quadrotor for Vision-Based Flight

that encode the desired progress along it. A sampler performs this subsampling of a
reference trajectory. Agilicious implements two types of samplers: a time-based sampling
scheme that computes progress along the trajectory based on the time since trajectory
start, and a position-based sampling scheme that selects trajectory progress based on
the current position of the platform, trading off temporally accurate tracking for higher
robustness and lower positional tracking error.

Controller To control the vehicle along the sampled reference setpoints, a multitude
of controllers are available, which provide the closed-loop commands for the low-level
controller. We provide a state-of-the-art model-predictive control (MPC) that uses the
full non-linear model of the platform and which allows to track highly agile references
using single-rotor thrust commands or bodyrate control, compensates aerodynamic
effects. Additionally, we include a cascaded geometric controller based on the quadrotor’s
differential flatness[227]. The pipeline can cascade two controllers, which even allows
combining the aforementioned MPC or geometric approaches with an intermediate
controller for which we provide an L1 adaptive controller[123] and an incremental non-
linear dynamic inversion controller[329].

Bridge A bridge serves as an interface to hardware or software by sending control
commands to a low-level controller or other means of communication sinks. Low-level
commands can either be single rotor thrusts or bodyrates in combination with a collective
thrust. Agilicious provides a set of bridges to communicate via commonly used protocols
such as ROS, SBUS, and serial. While the ROS-bridge can be used to easily integrate
Agilicious in an existing software stack that relies on ROS, the SBUS protocol is a widely
used standard in the FPV community and therefore allows to interface Agilicious to
off-the-shelf flight controllers such as BetaFlight[340]. For simple simulation, there is a
specific bridge to interface with the popular RotorS [102] simulator, which is however less
accurate than our own simulation described in Sec. K.4.3. As Agilicious is written in a
general abstract way, it runs on onboard compute modules and offboard, for which case
we provide a bridge to interface with the LAIRD[188] wireless serial interface. Finally,
Agilicious also provides a bridge to talk to the custom low-level controller described in
Sec. K.4.1. This provides the advantage of gaining access to closed-loop single rotor
speed control, high-frequency IMU, rotor speed, and voltage measurements at 500Hz, all
provided to the user through the bridge.

References References are used in conjunction with a controller to encode the desired
flight path of a quadrotor. In Agilicious, a reference is fed to the sampler, which generates
a receding-horizon vector of setpoints that are then passed to the controller. The software
stack implements a set of reference types, consisting of Hover, Velocity, Polynomial, and
Sampled. While Hover references are uniquely defined by a reference position and a yaw
angle, a Velocity reference specifies a desired linear velocity with a yaw rate. By exploiting
the differential flatness of the quadrotor platform, Polynomial references describe the
position and yaw of the quadrotor as polynomial functions of time. Sampled references
provide the most general reference representations. Agilicious provides interfaces to

274

K.4. Materials and Methods

generate, and receive such sampled references and also defines a message and file format
to store references to a file. By defining such formats, a wide variety of trajectories
can be generated, communicated, saved, and executed using Python or other languages.
Finally, to simplify the integration and deployment of other control approaches, Agilicious
also exposes a command feedthrough, that allows taking direct control over the applied
low-level commands.

Simulation

The Agilicious software stack includes a simulator that allows simulating quadrotor
dynamics at various levels of fidelity to accelerate prototyping and testing. Specifically,
Agilicious models motor dynamics and aerodynamics acting on the platform. To also
incorporate the different, possibly off-the-shelf, low-level controllers that can be used on
the quadrotors, the simulator can optionally simulate the behavior of low-level controllers.
One simulator update, typically called at 1 kHz, includes a call to the simulated low-level
controller, the motor model, the aerodynamics model, and the rigid body dynamics model
in a sequential fashion. Each of these components is explained in the following.

Low-Level Controller & Motor Model Simulated low-level controllers run at simu-
lation frequency and convert collective thrust and bodyrates commands into individual
motor speed commands. The usage of a simulated low-level controller is optional if the
computed control commands are already in the form of individual rotor thrusts. In this
case, the thrusts are mapped to motor speed commands and then directly fed to the
simulated motor model. The motors are modeled as a first-order system with a time
constant which can be identified on a thrust test stand.

Aerodynamics The simulated aerodynamics model lift and drag produced by the
rotors from the current ego-motion of the platform and the individual rotor speeds.
Agilicious implements two rotor models: Quadratic and BEM. The Quadratic model
implements a simple quadratic mapping from rotor rotational speed to produced thrust,
as commonly done in quadrotor simulators [102, 309, 320]. While such a model does
not account for effects imposed by the movement of a rotor through the air, it is highly
efficient to compute. In contrast, the BEM model leverages Blade-Element-Momentum-
Theory (BEM) to account for the effects of varying relative airspeed on the rotor thrust.
To further increase the fidelity of the simulation, a neural network predicting the residual
forces and torques (e.g. unmodeled rotor to rotor interactions and turbulence) can be
integrated into the aerodynamics model. For details regarding the BEM model and the
neural network augmentation, we refer the reader to [23].

Rigid Body Dynamics Provided with a model of the forces and torques acting on
the platform predicted by the aerodynamics model, the system dynamics of the quadrotor
are integrated using a 4th order Runge-Kutta scheme with a step size of 1ms. Agilicious
also implements different integrators such as explicit Euler or symplectic Euler.

275

Appendix K. Agilicious: Open-Source and Open-Hardware Agile
Quadrotor for Vision-Based Flight

Apart from providing its own state-of-the-art quadrotor simulator, Agilicious can also
be interfaced with external simulators. Interfaces to the widely-used RotorS quadrotor
simulator [102] and Flightmare [320], including the hardware-in-the-loop (HIL) simulator,
are already provided in the software stack.

276

L Rapid Exploration with

Multi-Rotors: A Frontier Selection

Method for High-Speed Flight

The version presented here is reprinted, with permission, from:

Titus Cieslewski, Elia Kaufmann, and Davide Scaramuzza. “Rapid exploration with
multi-rotors: A frontier selection method for high speed flight”. In: IEEE/RSJ Int. Conf.
Intell. Robot. Syst. (IROS). 2017, pp. 2135–2142

277

Appendix L. Rapid Exploration with Multi-Rotors: A Frontier Selection
Method for High-Speed Flight

Rapid Exploration with Multi-Rotors:

A Frontier Selection Method for

High-Speed Flight

Titus Cieslewski, Elia Kaufmann, Davide Scaramuzza

Abstract — Exploring and mapping previously unknown environ-
ments while avoiding collisions with obstacles is a fundamental task for
autonomous robots. In scenarios where this needs to be done rapidly,
multi-rotors are a good choice for the task, as they can cover ground
at potentially very high velocities. Flying at high velocities, however,
implies the ability to rapidly plan trajectories and to react to new
information quickly. In this paper, we propose an extension to classical
frontier-based exploration that facilitates exploration at high speeds.
The extension consists of a reactive mode in which the multi-rotor
rapidly selects a goal frontier from its field of view. The goal frontier
is selected in a way that minimizes the change in velocity necessary
to reach it. While this approach can increase the total path length, it
significantly reduces the exploration time, since the multi-rotor can fly
at consistently higher speeds.

278

L.1. Introduction

Multimedia Material

A video attachment to this work is available at https://youtu.be/54s6gGZLpJo.

L.1 Introduction

Exploring and mapping previously unknown environments is a fundamental task for
autonomous robots. Given an environment with free (traversable) and occupied (un-
traversable) space, the task is to detect free space within a target area. This can be
used to map previously unseen environments or to search for objects or people, such as
in search and rescue scenarios. The task can be further specified depending on further
requirements. In search and rescue, for instance, it is important to find survivors rapidly.
Thus, an objective would be to cover the area as quickly as possible. A related objective
would be to expend as little energy as possible, for example when mapping with an
energy-constrained robot.

Another objective would be to minimize the uncertainty of the map. Many exploration
algorithms assume that pose estimation and free space detection are good enough that
effects of uncertainty can be ignored, or reduced to the uncertainty of depth sensors
only. This assumption, however, cannot be made generally, since real systems do exhibit
uncertainty. Exploration algorithms that take uncertainty into account are usually
more complex and less generally applicable than algorithms that make the simplifying
assumption, since they need to consider specific aspects of the underlying mapping
algorithm. In our work, we make this assumption and focus on the case where exploration
is performed with a single multi-rotor robot. Most related work in the same setting
designs the exploration algorithm in a way that minimizes the distance traveled. At the
same time, it is often assumed that the multi-rotor flies at low velocities, which relaxes
design constraints when it comes to execution time and trajectory generation. However,
a multi-rotor expends energy on hovering and thus its limited energy supply is best used
when flying at velocities that are not near-hover.

In this paper, we propose an exploration algorithm that is designed to fly at high
velocities as much as possible. To that end, we introduce a reactive mode, which, instead
of planning trajectories generates instantaneous velocity commands based on currently
observed frontiers. This control loop is able to run at high frequency, allowing high
velocity flight and rapid incorporation of new information. Frontiers that drop out of
the current field of view are added to a data structure with global frontiers and we fall
back to classical frontier-based exploration as soon as no frontiers are left in the field of
view. We evaluate our approach, compare it to previous approaches and show that while
it can result in larger distances traveled, the exploration time is lower than with other
approaches, in particular at higher velocities.

279

https://youtu.be/54s6gGZLpJo

Appendix L. Rapid Exploration with Multi-Rotors: A Frontier Selection
Method for High-Speed Flight

0 200 400 600 800

time [s]

0

0.2

0.4

0.6

0.8

1

ra
ti
o

 o
f

e
x
p

lo
re

d
 s

p
a

c
e

0

100

200

300

400

d
is

ta
n

c
e

 t
ra

v
e

lle
d

 [
m

]

Rapid versus Classic frontier exploration

Rapid

Classic

Figure L.1 – We propose an algorithm for exploration with multi-rotors at high speeds. While
our approach sometimes ends up traveling a larger distance, it is able to complete the exploration
task faster, as it is capable of flying at higher speeds, as can be seen in this data of a single
run. Note that a lot of time is spent at almost 100% coverage, as the robot needs to travel some
distance to complete the final portions of undiscovered space.

L.2 Related work

As previously stated, exploration is the task of detecting free space within a given area.
This is achieved with a robot that is capable of detecting free space, typically with a depth
sensor such as an RGBD camera or a laser range finder. Since a robot normally cannot
perceive the whole environment from one position, exploration reduces to repeatedly
deciding where to move next at a given time when the area is already partially explored.
This is essentially the same as the next-best-view (NBV) problem, which has been studied
for reconstructing 3D objects with a sequence of depth scans for several decades [56, 223].

An adaptation of the NBV problem to a robotic context has been performed in [113].
It consists of adding two constraints: Firstly, a view may only be considered if a safely
navigable path to it exists. Secondly, enough overlap between the current and next view
must exist, such that the robot can register the two views. The proposed solution is to
sample poses in the known free space, and to calculate for each sample a utility function
that consists of the expected gain in terms of area that can be discovered and the cost to
reach it. Then, from reachable samples that satisfy the overlap constraint, the one that
maximizes the utility function is chosen. The cost is typically set to be proportional to the
distance to the sample, but can also encode practical considerations such as minimizing
behaviors that increase uncertainty [347]. In our approach, we assign a high cost to
changes in velocity.

Frontier-based exploration is an alternative to NBV approaches that was proposed in [364].
The environment is discretized into a 2D or 3D grid, where each cell is labeled as occupied,
free or unknown. Frontier cells are defined as free cells that are adjacent to unknown
cells. Instead of sampling candidate views, frontier-based exploration assumes that simply
navigating to a frontier will result in the exploration of new space. In [364], the robot
navigates to the closest frontier found by depth-first search. Frontier-based exploration

280

L.3. Flight velocity for optimal energy use

has become a popular exploration approach that has been extended in several publications,
for example to support exploration using multiple robots [365, 40]. Extensions also exist
for single robots systems, but it has been repeatedly shown that classic frontier-based
exploration remains competitive [135] or even outperforms [151] these extensions. [135]
also shows that the frontier-based approach outperforms the NBV approach presented
in [113]. As a consequence, we will use as one baseline the nearest-frontier approach as
implemented in [151]. For situations where uncertainty cannot be neglected, [151] shows
that algorithms designed for that scenario, such as [219] or [152] result in a lower map
error.

Exploration specifically using multi-rotors has been shown in [98], [310] and [30], among
others. In [98], the authors propose a frontier-based exploration strategy for quadrotors
using the 3D occupancy map OctoMap [137]. As in [135], this occupancy map is
continuously updated, and thus more information is captured. Furthermore, before
targeting a new frontier, flood-fill is used to reject unreachable frontiers, reducing time
spent in trying to reach them. [310] proposes a novel way of determining frontier locations,
which does not rely on explicitly representing the full space; only occupied space is
represented. Rather than representing free and unknown space, particles are sampled
within known free space. These particles are then used to simulate a gas that is contained
by the known occupied space, and frontiers are identified as the places in which the gas
expands. In terms of exploration speed, however, their experiments show that the frontier
exploration approach by [40] performs better. [30] revisits NBV-based exploration. Instead
of sampling poses in the free space, feasible trajectories are sampled using RRT* [166].
They do not execute a full trajectory, but rather the first part of the planning tree that
is common to most trajectories with high utility. Then, the planning step is repeated
in a receding horizon fashion. The authors compare their approach with [113] and show
superior performance with faster calculation times and more explored space. We will use
their publically available method as a second baseline for our comparisons.

L.3 Flight velocity for optimal energy use

An important motivation for our work is that the limited multi-rotor energy supply is
not well used when flying near-hover. This is intuitive: when hovering, energy is used
while no new ground is being covered. As we put more energy into motion, less is wasted
on hovering. However, very large velocities are also inefficient due to aerodynamic drag.
Thus, given a direction of motion, there must be an optimal velocity v⋆ at which most
distance is traveled per energy use. Let us consider horizontal motion. The optimal
velocity can be expressed as:

v⋆ = argmax
v

v

P
∼ argmax

v

v

T
(L.1)

where P is the power used. Since P is roughly proportional to the thrust T , we can
P with T . To estimate a typical v⋆, we consider the multi-rotor model from [258]. We
extend their translational dynamics model with an approximation of the aerodynamic
drag of the quadrotor body, see Fig. L.2:

281

Appendix L. Rapid Exploration with Multi-Rotors: A Frontier Selection
Method for High-Speed Flight

~Fg

~Fa

~FT

~v

φ

~Fr

Figure L.2 – Forces acting on the multi-rotor during horizontal flight.

0 5 10 15 20

v [m/s]

0

0.2

0.4

0.6

v
/T

 [
s
/k

g
]

0

20

40

60

80

 [
d

e
g

]

Efficiency at horizontal speeds

Figure L.3 – Efficiency v
T

and corresponding pitch φ as a function of the horizontal velocity v
calculated using the model (L.3). The parameters m = 1.9kg, k = 0.21

gs
and caero = 0.15 are taken

from the quadrotor specifications in [258]. While the values do not represent all multi-rotors,
they give an idea of the magnitude of the optimal velocity.

m~a = ~FT + ~Fg + ~Fr + ~Fa

= TR~e3 −mg~e3 − TkR~v ~v·R~v
~v·~v − |~v|~vcaero,

(L.2)

with m the multi-rotor mass, ~a the acceleration, R the rotation matrix representing
the multi-rotor attitude, ~e3 the unit vector in z-direction of the world frame, g the
gravitational constant, k a first-order drag coefficient due to rotors, derived in [258]
and caero the second-order drag coefficient due to the multi-rotor body. We make the
assumption that caero is isotropic. In steady-state motion, ~a = 0 and all forces act in a
plane spanned by ~v and ~e3. Then, considering horizontal motion, (L.2) can be decomposed
into a horizontal and vertical component:

caerov
2 + cos2 φkTv = sinφT

sinφ cosφkTv + cosφT = mg
(L.3)

where φ is the pitch angle. Using the multi-rotor specifications from [258], we solve
this system of equations for different v and plot v

T
(v) in Fig. L.3. As we can see, v⋆ is

just above 10m
s
, with the pitch just above 50◦, which motivates flight at high speeds.

In practice, there is an upper limit on the velocity vmax due to thrust limits, obstacle
avoidance reaction time and speed limits of state estimation. We will henceforth assume
v⋆ > vmax and consider vmax a parameter.

To enable effective obstacle avoidance, we align the depth sensor, for which we assume a
limited field of view, with the flight direction ~v as much as is possible using only yaw.

282

L.4. Methodology

L.4 Methodology

We approximate the environment with a regular 3D voxel grid V = {~x} with voxel
dimensions s3, where each voxel is represented by its centroid. Voxels are labeled free,
occupied or unknown: V = Vfree ∪ Vocc ∪ Vunk. The labeling is obtained from the robot’s
RGBD sensor measurements using OctoMap [137], assuming a perfect pose estimate but
noisy depth measurements. We define the global set of frontiers

Fg := {~xi ∈ Vfree : ∃~xj ∈ Vunk : |~xi − ~xj | = s}. (L.4)

Previous frontier-based approaches typically decide where to move next by considering
all Fg. One approach is to run the Dijkstra algorithm [68], starting from the position of
the robot and allowing transitions between adjacent ~x ∈ Vfree until a frontier ~x ∈ Fg is
reached [151]. [30] samples possible trajectories using RRT* and moves towards the most
promising direction. What can be observed with these approaches is that they require
time to calculate, resulting in a stop-and-go behavior in which the robot moves for a
while, stops to perform the calculation, then moves again. Furthermore, the goal frontier
often lies behind the robot. A multi-rotor flying at a non-zero velocity would thus need
to reverse its flight direction and re-visit ground that it has already covered. Evidently,
all frontiers need to be visited sooner or later. But we find that choosing a direction and
maintaining it, and only later returning, can result in faster coverage than going back
and forth in a breadth-first-search manner, especially when flying at high speeds.

To avoid these problems, we propose to restrict the considered frontiers to those that
are in the current field of view: Fv ⊆ Fg. This has three advantages: firstly, Fv can
be calculated very efficiently from the operations that anyways need to be performed
at every depth measurement. Secondly, the size of Fv is small enough that it allows
a rapid decision and makes path planning inexpensive. Finally, any ~x ∈ Fv will lie in
flight direction of the multi-rotor, avoiding the effort to change the current velocity and
avoiding flying back and forth, see Fig. L.4. One could consider a different restriction,
such as picking frontiers that lie in front of the robot, but that would require to perform
a query in Octomap, whereas obtaining Fv can be easily combined with the most recent
incorporation of depth measurements. Furthermore, Fv is guaranteed not to contain
any frontiers that are currently occluded and thus not directly reachable. Note that Fv

depends on the field of view of the robot - a broader field of view will result in a larger
Fv.

From Fv we select the frontier ~x⋆i with the lowest cost ci = |~vi − ~vcurr|, the norm of the
difference between the current velocity and the desired velocity at the frontier, ~vi. Recall
from Section L.3 that we on one hand aim to fly at vmax as much as possible. On the
other hand, we want to have a velocity that allows us to react to yet unknown obstacles.
Thus, we define the desired velocity for a frontier as

~v(~xi) = (~xi − ~xr) ·
vmax

rsensor
, (L.5)

~xr being the robot position. For frontiers that are at the detection range rsensor of the

283

Appendix L. Rapid Exploration with Multi-Rotors: A Frontier Selection
Method for High-Speed Flight

~v
f∗

rapid

f∗

classic

tclassic

trapid

FoV

Figure L.4 – The gist of our approach is that in frontier selection, we prefer frontiers which lie
in flight direction. This allows continuous flight at high speeds and reduces the time spent flying
through known areas.

visible frontier being

checked for accessibility

Vocc VunkFv Fg \ FvVfree

FoV

robot position

dsafe

Figure L.5 – Two dimensional illustration of determining the accessibility of members of the
visible frontier set.

depth sensor, the desired velocity will be vmax and pointing towards the unknown volume,
while for frontiers closer to the robot the desired velocity will be lower. This imposes a
slower approach of frontiers behind which there might be nearby obstacles.

Once we have determined ~x⋆i , we set the robot velocity to ~vi. Lest the robot tries to reach
a physically unreachable frontier, we further restrict the choice of frontiers to the ones
that are accessible from the current position:

Fa = {~x ∈ Fv : A(~x)} (L.6)

A(~x) : ∄~xocc ∈ Vocc, ~xs ∈ Sr(~x) : |~xocc − ~xs| < dsafe (L.7)

with Sr(~x) the set of points on the segment between the current position and the frontier
~x and dsafe a minimum safety radius (see Fig. L.5). The control loop runs every 20ms.

As soon as Fa = ∅, the algorithm switches to a classical frontier selection method,
which is implemented as discussed in [151]: a shortest path with waypoints W (~xi) =

284

L.5. Experiments

{~w1, ~w2, ..., ~wm} to any frontier ~xi ∈ Fg is sought using the Dijkstra algorithm. If no such
path is found, exploration is considered complete. Otherwise, the robot will track W .
This path tracking is aborted if one of two conditions occurs: if ~wm has been reached
or is unreachable, the frontier ~xi that had generated the path is removed from Fg and a
new path W is calculated. Alternatively, if at any point of the waypoint tracking Fa 6= ∅,
the control switches back to the rapid frontier selection method.

In order to fly close to vmax during W tracking, the multi-rotor velocity is set such that
it flies at the fastest safe speed towards the furthest accessible waypoint:

~vr ← ~v(argmax
~wj

j : A(~wj)) (L.8)

where ~v(~x) is the same as in (L.5), with the norm truncated to vmax.

L.5 Experiments

In order to evaluate and compare the performance of the proposed approach, simulation
studies have been performed using RotorS [102] and Gazebo. Furthermore, a real world
experiment has been conducted to demonstrate the rapid exploration algorithm on a real
quadrotor. In all experiments we use the control architecture from [76].

L.5.1 Simulation

The simulated multi-rotor is equipped with a depth camera mounted in a forward-looking
configuration. The stereo camera has a field of view (FoV) of [60, 115]◦ in vertical and
horizontal direction. The proposed algorithm (Rapid) is compared with the classic frontier-
based exploration as implemented in [151] (Classic) as well as with the next-best-view
approach presented in [30] (NBV). To make a fair comparison, we have tried to make
the quadrotor fly at the same maximum speed vmax for all approaches, as far as this is
possible with the selected trajectories. To that end, we employ the same waypoint-based
navigation for Classic as discussed in Section L.4. NBV is limited to low speeds and we
were not able to deploy it at the full range of velocities that we evaluate. The reason
for this speed limitation is the way the quadrotor navigates to its new goal. Instead of
generating a smooth trajectory, the quadrotor attempts to navigate to the next node of
the generated random tree in a straight line. Since this results in instantaneous changes
of direction at every node of the tree, for velocities above 0.7 meters per second the
quadrotor fails to follow the trajectory. This often results in a crash into nearby obstacles.
Furthermore, the maximum yaw rate was limited to 0.75 rad/s for NBV for the same
reasons.

We perform simulations on three different scenarios: Juliá, an environment mimicking
Scenario 2 from [151], see Fig. L.6. This 2D scenario is dominated by corridors and
contains two open spaces. Office, another 2D scenario with a more open, office-like
layout as depicted in Fig. L.7. And finally Powerplant, a 3D scenario of a powerplant

285

Appendix L. Rapid Exploration with Multi-Rotors: A Frontier Selection
Method for High-Speed Flight

Figure L.6 – Fully explored Juliá scenario, with dimensions 38x26x3 m. For visualization
reasons, the map is truncated at a height of 2.5 meters.

Figure L.7 – Fully explored Office scenario, with dimensions 38x23x3 m. For visualization
reasons, the map is truncated at a height of 2.5 meters.

286

L.5. Experiments

Figure L.8 – Fully explored Powerplant scenario, with dimensions 33x31x26 m.

Parameter Value Parameter Value

vmax {0.3, 0.7, 1.5, 2.5}m/s FoV [60x115]◦

Resolution 0.2m ϕ̇max 1.5rad/s

dsafe 0.6m ϕ̇NBV
max 0.75rad/s

Table L.1 – Parameters common in the different simulation scenarios.

obtained from the Gazebo model library1. The original powerplant model is cropped
to smaller dimensions as depicted in Fig. L.8. Specific parameters for the scenarios
are listed in tables L.1 and L.2. Parameters dplanner

max , λ, Nmax and the maximum edge
length of the RRT tree refer to the setup of NBV and are explained in [30]. Since
exploration performance can be dependent on the initial position of the robot, simulations
were performed for multiple initial positions. Furthermore, the maximum velocity of
the quadrotor was varied and a complete set of six simulations was performed for each
velocity. Note that our method is defined in 3D. Thus, the 2D scenarios are extruded to

1https://bitbucket.org/osrf/gazebo_models/src

Juliá Office Powerplant

Dimensions [m] 38x26x3 38x23x3 33x31x26

dsensor
max [m] 5.0 5.0 7.0

d
planner
max [m] 1.5 1.5 2.0

λ 0.3 0.2 0.2

Nmax 20 20 30

RRT max edge length [m] 1.0 1.0 3.0

Table L.2 – Parameters changing for the different scenarios. 287

https://bitbucket.org/osrf/gazebo_models/src

Appendix L. Rapid Exploration with Multi-Rotors: A Frontier Selection
Method for High-Speed Flight

Parameter Value Parameter Value

vmax {0.3, 0.7, 1, 1.5, 2}m/s FoV [43x56]◦

Resolution 0.2m ϕ̇max 1.5rad/s

rsensor {3, 3.5, 4} m dsafe 0.7m

Table L.3 – Parameters used for the indoor experiment.

a height of 2.5m and closed with floor and ceiling. The height is low enough so that the
area can be covered while flying at a single altitude.

L.5.2 Real World Experiments

To verify that the speeds achieved in simulation can also be reached in the real world,
we implemented our exploration algorithm on a real quadrotor, and made it explore
both an indoor and an outdoor scenario: The indoor scenario is a room with dimensions
6.5x6.8x2.6 meters, see Fig. L.9, and the outdoor scenario is a forest, see Fig. L.10.
Since there were no natural bounds in the outdoor scenario, we artificially restricted the
motion of the quadrotor to a bounding box expressed relative to its starting point. This
results in an inconsistent amount of free space between different runs, and we had to
change the experiment location frequently due to lighting conditions, so we only present
quantitative results for the indoor scenario. The depth sensor used for both real world
scenarios was the Intel RealSense R200 with a FoV of [56,43] degrees in horizontal and
vertical direction, respectively, and was mounted in a forward-looking configuration at a
pitch angle of 0 degrees. A summary of the parameters applied in the indoor scenario is
given in Table L.3. Note that the sensor range is set at different values that are all below
the actual range of the sensor. We have done this to require the quadrotor to move – had
we used the full sensor range, the quadrotor would not have needed to move very far to
explore the room at hand. At higher velocities, however, we need to increase the sensor
range such that the quadrotor is able to react to obstacles. The outdoor experiments
were performed at {1, 1.5, 2}m

s
and with rsensor = 5m. For state estimation, we use the

pipeline described in [76], which relies on visual odometry by SVO [96] that is fused with
an IMU estimate using MSF [215].

L.5.3 Measurements

In each experiment, the count of cells currently estimated free |Vfree|(t), the state at which
the robot is in (rapid exploration, calculating W or tracking W) as well as the current
position and velocity of the quadrotor are sampled at 5Hz. From this, the coverage ratio
|Vfree|
|V ⋆

free
|(t), where V ⋆

free is the actual free space, and the distance traveled dtot(t) are measured

for all samples at times t. To compare the approaches, we report as main performance
metric the time at which the scenario is fully explored tmax, the total distance traveled
dmax and the expected voxel discovery time

texp =
1

|V ⋆
free|

∑

~x∈V ⋆
free

min{t : ~x ∈ Vfree(t)}. (L.9)

288

L.5. Experiments

Figure L.9 – Quadrotor flying in the indoor real world scenario.

Figure L.10 – Quadrotor flying in the outdoor real world scenario.

289

Appendix L. Rapid Exploration with Multi-Rotors: A Frontier Selection
Method for High-Speed Flight

Rapid NBV Planner Classic Frontier

vmax[
m
s
] dmax[m] tmax[s] texp[s] dmax[m] tmax[s] texp[s] dmax[m] tmax[s] texp[s]

J
u
li
a

0.3 262± 8.9 1074± 55 379± 31 268± 24 1261± 124 490± 34

0.7 273± 15 553± 59 202± 13 258± 14 636± 28 264± 15

1.5 310± 28 408± 49 121± 15 263± 19 531± 78 221± 35

2.5 315± 30 360± 39 105± 8.7 260± 26 505± 58 211± 14

O
ffi

c
e

0.3 223± 14 866± 55 318± 29 466± 30 1698± 158 573± 91 275± 11 1266± 50 452± 74

0.7 237± 20 471± 53 178± 22 474± 54 983± 96 346± 49 272± 26 657± 73 278± 30

1.5 253± 12 332± 29 117± 4.1 261± 25 433± 38 176± 41

P
o
w

e
r
p
la

n
t

0.7 692± 53 1245± 151 364± 31 1363± 290 2104± 406 613± 131 692± 57 2397± 170 852± 86

1.5 710± 65 717± 94 198± 2.1 692± 32 1519± 88 567± 31

2.5 728± 49 582± 26 150± 3.9 684± 56 1437± 123 565± 80

Table L.4 – Mean and standard deviation for the total distance traveled smax, the total time
spent exploring tmax and the expected cell discovery time texp accross all experiments.

The last metric is more meaningful than tmax for scenarios where the goal is to find several
objects in an unknown environment as quickly as possible (see related discussion in [151]).

We have found that with our implementation of Dijkstra, the robot often spends a
significant amount of time calculating the path W . Especially in later stages of the
exploration process, where the path to the next frontier tends to become longer, the
path calculation can take up to 10 seconds. In order to estimate only the quality of the
resulting flight behavior, we adjust for this calculation time by not counting time spent
on it when calculating the above performance metrics. This mainly benefits tmax and
tmean of the classic frontier approach. The calculation time of both the reactive mode
and of the NBV method are negligible, and so we do not need to adjust for them.

L.6 Results

L.6.1 Simulation

The main results are reported in Table L.4. For the office scenario, the comparison of
the main performance metrics for different values of vmax are visualized in Figs. L.11,
L.12 and L.13. As can be seen, our approach consistently outperforms classical Frontier-
based exploration and next-best-view exploration across all scenarios with respect to
tmax. The improvement is even more significant for texp, as in our approach there is
often a significant amount of time at the end used only for re-visiting frontiers that have
been previously skipped. This behavior is well illustrated in Fig. L.1, which shows the
evolution of |Vfree|

|V ⋆
free

|(t) and dtot(t) for one instance of Rapid and Classic each in scenario

Juliá, vmax = 2.5. Within the approaches, tmax and texp decrease as vmax increases, as
can be expected. However, as our approach is designed for high speeds, its decrease in

290

L.6. Results

0.3 0.7 1.5

v
max

 [m/s]

0

1000

2000

t m
a
x
 [

s
]

t
max

Rapid

Classic

NBV

Figure L.11 – Exploration times in office scenario. Each dot represents one of six runs.

0.3 0.7 1.5

v
max

 [m/s]

200

400

600

d
m

a
x
 [

m
]

d
max

Rapid

Classic

NBV

Figure L.12 – Traveled path in office scenario. Each dot represents one of six runs.

0.3 0.7 1.5

v
max

 [m/s]

0

200

400

600

800

t e
x
p
 [

s
]

t
exp

Rapid

Classic

NBV

Figure L.13 – Expected voxel exploration time for office scenario. Each dot represents one of
six runs.

291

Appendix L. Rapid Exploration with Multi-Rotors: A Frontier Selection
Method for High-Speed Flight

tmax and texp is most significant, in particular in the Juliá and Powerplant scenarios.

We are surprised by the poor results that we obtained from NBV, in spite of parameter
tuning. In particular, in Juliá it consistently gets stuck in one part of the map and does
not move towards the unexplored regions. Thus, we cannot report any results for that
scenario. For the scenarios in which it did succeed, its performance was mostly inferior
to the other two approaches. This is consistent with the results in [135], which shows
longer exploration times for a previous NBV-based approach [113], compared to a classic
frontier-based approach. In Fig. L.14 it can be seen that the NBV trajectory is less
smooth than the trajectories performed by the other two approaches.

Of particular interest is the behavior of dmax. Within the runs of both the NBV planner
and classic frontier-based exploration, dmax is not significantly affected by vmax. For the
proposed exploration algorithm, however, it increases with vmax. We assume that this
happens because a higher vmax will cause the multi-rotor both to overshoot in dead ends
and to make wider turns. The comparison of dmax between Rapid and Classic Frontier
exploration is not consistent. For Juliá and Powerplant, dmax is generally higher for our
approach than for Classic Frontier exploration. However, dmax is lower for our approach
in the Office scenario. Here, we discern two effects: on one hand, our approach does not
minimize distance traveled as does the Classic Frontier-based approach. On the other
hand, our approach, which is more reactive, results in smoother trajectories. As can be
seen in Fig. L.14, this is beneficial in the Office scenario. In a scenario which is more
cluttered and which imposes more narrow turns, we would expect a smaller difference in
overall performance between our approach and classic frontier based exploration.

Another observation that can be made is that classical frontier based exploration outper-
forms NBV exploration in the two dimensional case of office exploration. In the 3D case,
however, classic frontier based exploration shows poor performance. A reason for this
drop in performance is the limited field of view of the sensor. While in the 2D case, the
sensor usually manages to simultaneously detect floor and ceiling at the same time, in
the large 3D environment this is no longer the case. As a result, the quadrotor selects
frontiers on the border of the view frustum of the camera and moves step-wise up or down,
without large movements in the xy-plane. The NBV controller is better able to handle
this and outperforms the classical frontier-based method. Rapid exploration, however,
again shows the best performance in the 3D case, since the quadrotor will fly with the
maximum velocity for long distances.

L.6.2 Real World Experiments

The quadrotor successfully managed to map the real world scenarios at the tested speeds.
Table L.5 shows the performance of the proposed approach on the indoor scenario
with respect to the three metrics for various vmax. Apart from vmax = {0.3, 0.7}m

s
,

the total exploration time tmax, as well as the expected exploration time texp decrease
with larger velocities. Since only one run was performed for each velocity, we consider
vmax = {0.3, 0.7}m

s
to be outliers.

292

L.6. Results

Trajectories in Office Scenario

-20 -10 0 10 20

x[m]

-20

-15

-10

-5

0

5

10

15

y
[m

]

Rapid

Classic

NBV Planner

Figure L.14 – Comparison of trajectories in Office scenario.

t = 6 s t = 17 s t = 23 s

t = 29 s t = 39 s t = 46 s

Figure L.15 – Real world exploration of an empty room that is halfway separated by a wall.
The top speed of the quadrotor is 2m

s
.

293

Appendix L. Rapid Exploration with Multi-Rotors: A Frontier Selection
Method for High-Speed Flight

Rapid

vmax[
m
s
] dmax[m] tmax[s] texp[s]

0.3 29.4 125.7 42.6
0.5 21.3 66.9 26.2
0.7 27.7 77.6 27.8
1.0 24.1 63.3 23.5
1.5 26.4 54.4 19.9
2.0 28.7 52.5 23.6

Table L.5 – Total distance traveled dmax, the total time spent exploring tmax and the expected
cell discovery time texp obtained for the indoor real world experiment.
Most of the failures that were experienced in the real world can be attributed to one of
three causes: firstly, pose estimation failures, particularly with rapid changes in attitude
above terrain. This is due to the visual odometry being based on the image of a down-
looking camera, whose image would rapidly change. To prevent such failures indoors, we
set the room up such that attitude above terrain changes would be minimal. Outdoors, we
chose locations dominated by tree trunks, with little vegetation on the ground. Secondly,
the RealSense sensor would sometimes fail to see objects, in particular the curtain that we
had on one side of the room, which would rapidly flap as the quadrotor would approach it.
Clamping the bottom of the curtain significantly decreased the frequency at which this
problem occurred. Thirdly, the geometry of the sensor placement and field of view resulted
in a blind spot for obstacles at certain low-radius turns executed in the reactive mode.
This problem was solved by artificially restricting the field of view when considering the
set of visible frontiers Fv.

Fig. L.15 depicts the indoor exploration process at six distinct time instances and
illustrates the growth of the map representing the environment at vmax = 2m

s
. Note

that after starting the exploration task, the quadrotor waits for 3 seconds to assure
a sufficient OctoMap representation of the environment before it starts to navigate to
frontiers. For more insights, we invite the reader to take a look at the multimedia material
at https://youtu.be/54s6gGZLpJo.

L.7 Conclusion

Within this work, an exploration algorithm was proposed that is designed specifically for
multi-rotor exploration at high speeds. The reactive behavior of the algorithm allows for
fast incorporation of new information and results in efficient trajectories. Compared to
classic frontier-based exploration, the approach can occasionally exhibit a small increase
in the total path traveled to explore an area, but at the same time achieves smaller
exploration times for the same maximum velocity constraint. These properties are
demonstrated in multiple simulations for different exploration scenarios and validated
with real world experiments.

294

https://youtu.be/54s6gGZLpJo

Bibliography

[1] “A.I. Is Flying Drones (Very, Very Slowly)”. In: The New York Times (Mar. 26,
2019). url: https://www.nytimes.com/2019/03/26/technology/alphapilot- ai-
drone-racing.html (visited on 04/16/2022).

[2] Pieter Abbeel, Adam Coates, and Andrew Y Ng. “Autonomous helicopter aero-
batics through apprenticeship learning”. In: The International Journal of Robotics
Research 29.13 (2010), pp. 1608–1639.

[3] Evan Ackermann. AI-Powered Drone Learns Extreme Acrobatics. https://spectrum.
ieee.org/automaton/robotics/drones/ai-powered-drone-extreme-acrobatics. [On-
line; accessed 21.6.2021]. 2020.

[4] Enrico Ajanic, Mir Feroskhan, Stefano Mintchev, Flavio Noca, and Dario Floreano.
“Bioinspired wing and tail morphing extends drone flight capabilities”. In: Science
Robotics 5.47 (2020). doi: 10.1126/scirobotics.abc2897. eprint: https://robotics.
sciencemag.org/content/5/47/eabc2897.full.pdf. url: https://robotics.sciencemag.
org/content/5/47/eabc2897.

[5] Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew,
Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, and Raphael Ribas.
“Solving rubik’s cube with a robot hand”. In: arXiv preprint arXiv:1910.07113
(2019).

[6] R. Allen and M. Pavone. “A Real-Time Framework for Kinodynamic Planning with
Application to Quadrotor Obstacle Avoidance”. In: AIAA Guidance, Navigation,
and Control Conference. 2016. doi: 10.2514/6.2016-1374.

[7] “AlphaPilot AI Drone Innovation Challenge”. In: https://lockheedmartin.com/en-
us/news/events/ai-innovation-challenge.html (Jan. 2020). url: https://lockheedmartin.
com/en-us/news/events/ai-innovation-challenge.html.

[8] Gokul Anandayuvaraj. Drones: The Future Of Business? https://www.forbes.
com/sites/forbesbusinesscouncil/2020/06/08/drones-the-future-of-business/. [On-
line; accessed 6.10.2021]. 2020.

[9] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl. “CasADi –
A software framework for nonlinear optimization and optimal control”. In: Mathe-
matical Programming Computation (2018).

[10] Christophe Andrieu, Nando de Freitas, Arnaud Doucet, and Michael I. Jordan.
“An Introduction to MCMC for Machine Learning”. In: Mach. Learn. 50.1-2 (2003),
pp. 5–43.

295

https://www.nytimes.com/2019/03/26/technology/alphapilot-ai-drone-racing.html
https://www.nytimes.com/2019/03/26/technology/alphapilot-ai-drone-racing.html
https://spectrum.ieee.org/automaton/robotics/drones/ai-powered-drone-extreme-acrobatics
https://spectrum.ieee.org/automaton/robotics/drones/ai-powered-drone-extreme-acrobatics
https://doi.org/10.1126/scirobotics.abc2897
https://robotics.sciencemag.org/content/5/47/eabc2897.full.pdf
https://robotics.sciencemag.org/content/5/47/eabc2897.full.pdf
https://robotics.sciencemag.org/content/5/47/eabc2897
https://robotics.sciencemag.org/content/5/47/eabc2897
https://doi.org/10.2514/6.2016-1374
https://lockheedmartin.com/en-us/news/events/ai-innovation-challenge.html
https://lockheedmartin.com/en-us/news/events/ai-innovation-challenge.html
https://www.forbes.com/sites/forbesbusinesscouncil/2020/06/08/drones-the-future-of-business/
https://www.forbes.com/sites/forbesbusinesscouncil/2020/06/08/drones-the-future-of-business/

Bibliography

[11] Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David
Pfau, Tom Schaul, Brendan Shillingford, and Nando De Freitas. “Learning to
learn by gradient descent by gradient descent”. In: Advances in neural information
processing systems 29 (2016).

[12] OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz,
Bob McGrew, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell,
and Alex Ray. “Learning dexterous in-hand manipulation”. In: Int. J. Robot.
Research (2020).

[13] Amado Antonini, Winter Guerra, Varun Murali, Thomas Sayre-McCord, and
Sertac Karaman. “The Blackbird UAV dataset”. In: Int. J. Robot. Research 39.10-
11 (2020), pp. 1346–136.

[14] Tomas Baca, Matej Petrlik, Matous Vrba, Vojtech Spurny, Robert Penicka, Daniel
Hert, and Martin Saska. “The MRS UAV System: Pushing the Frontiers of Re-
producible Research, Real-world Deployment, and Education with Autonomous
Unmanned Aerial Vehicles”. In: J. Intell. Rob. Syst. 102.1 (Apr. 2021), p. 26. issn:
1573-0409. doi: 10.1007/s10846-021-01383-5.

[15] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. “An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling”. In: arXiv:1803.01271
(2018).

[16] Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob
McGrew, and Igor Mordatch. “Emergent tool use from multi-agent autocurricula”.
In: arXiv preprint arXiv:1909.07528 (2019).

[17] Somil Bansal, Anayo K Akametalu, Frank J Jiang, Forrest Laine, and Claire J
Tomlin. “Learning quadrotor dynamics using neural network for flight control”.
In: 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE. 2016,
pp. 4653–4660.

[18] Somil Bansal, Varun Tolani, Saurabh Gupta, Jitendra Malik, and Claire J. Tom-
lin. “Combining Optimal Control and Learning for Visual Navigation in Novel
Environments”. In: Conference on Robot Learning, CoRL 2019. Vol. 100. Pro-
ceedings of Machine Learning Research. PMLR, 2019, pp. 420–429. url: http:
//proceedings.mlr.press/v100/bansal20a.html.

[19] Engin Baris, Colin P Britcher, and George Altamirano. “Wind Tunnel Testing
of Static and Dynamic Aerodynamic Characteristics of a Quadcopter”. In: AIAA
Aviation 2019 Forum. 2019, p. 2973.

[20] Andrew J. Barry, Peter R. Florence, and Russ Tedrake. “High-speed autonomous
obstacle avoidance with pushbroom stereo”. In: J. Field Robot. 35.1 (2018), pp. 52–
68. doi: 10.1002/rob.21741.

[21] L. Bauersfeld, L. Spannagl, G. Ducard, and C. Onder. “MPC Flight Control for a
Tilt-rotor VTOL Aircraft”. In: IEEE Transactions on Aerospace and Electronic
Systems (2021), pp. 1–13. doi: 10.1109/TAES.2021.3061819.

[22] Leonard Bauersfeld and Davide Scaramuzza. “Range, Endurance, and Optimal
Speed Estimates for Multicopters”. In: IEEE Robotics and Automation Letters 7.2
(2022), pp. 2953–2960. doi: 10.1109/LRA.2022.3145063.

296

https://doi.org/10.1007/s10846-021-01383-5
http://proceedings.mlr.press/v100/bansal20a.html
http://proceedings.mlr.press/v100/bansal20a.html
https://doi.org/10.1002/rob.21741
https://doi.org/10.1109/TAES.2021.3061819
https://doi.org/10.1109/LRA.2022.3145063

Bibliography

[23] Leonard Bauersfeld∗, Elia Kaufmann∗, Philipp Foehn, Sihao Sun, and Davide Scara-
muzza. “NeuroBEM: Hybrid Aerodynamic Quadrotor Model”. In: RSS: Robotics,
Science, and Systems (2021).

[24] Suneel Belkhale, Rachel Li, Gregory Kahn, Rowan McAllister, Roberto Calandra,
and Sergey Levine. “Model-based meta-reinforcement learning for flight with
suspended payloads”. In: IEEE Robot. Autom. Lett. (2021).

[25] Oren Ben-Kiki, Clark Evans, and Ingy Döt Net. YAML Ain’t Markup Language
(YAML™) Version 1.2. https://yaml.org/spec/1.2/spec.pdf. Accessed: 2021-7-20.
Oct. 2009.

[26] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław
Dębiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris
Hesse, Rafal Jozefowicz, Scott Gray, Catherine Olsson, Jakub Pachocki, Michael
Petrov, Henrique P. d.O. Pinto, Jonathan Raiman, Tim Salimans, Jeremy Schlatter,
Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang, Filip Wolski, and Susan
Zhang. “Dota 2 with large scale deep reinforcement learning”. In: arXiv preprint
arXiv:1912.06680 (2019).

[27] Dimitri P Bertsekas. Dynamic programming and optimal control. Vol. 1. Athena
scientific Belmont, MA, 1995.

[28] Davide Bicego, Jacopo Mazzetto, Ruggero Carli, Marcello Farina, and Antonio
Franchi. “Nonlinear model predictive control with enhanced actuator model for
multi-rotor aerial vehicles with generic designs”. In: J. Intell. Robot. Syst. (2020).

[29] Katharina Bieker, Sebastian Peitz, Steven L Brunton, J Nathan Kutz, and Michael
Dellnitz. “Deep model predictive flow control with limited sensor data and online
learning”. In: Theoretical and Computational Fluid Dynamics (2020).

[30] Andreas Bircher, Mina Kamel, Kostas Alexis, Helen Oleynikova, and Roland
Siegwart. “Receding horizon "next-best-view" planner for 3D exploration”. In:
2016 IEEE International Conference on Robotics and Automation (ICRA). IEEE.
2016, pp. 1462–1468.

[31] Christopher M Bishop. Mixture density networks. Aston University, 1994.

[32] Michael Bloesch, Sammy Omari, Marco Hutter, and Roland Siegwart. “Robust
Visual Inertial Odometry Using a Direct EKF-Based Approach”. In: IEEE/RSJ
Int. Conf. Intell. Robot. Syst. (IROS). 2015.

[33] Michael Blösch, Stephan Weiss, Davide Scaramuzza, and Roland Siegwart. “Vision
based MAV navigation in unknown and unstructured environments”. In: IEEE Int.
Conf. Robot. Autom. (ICRA). 2010, pp. 21–28.

[34] Konstantinos Bousmalis, Alex Irpan, Paul Wohlhart, Yunfei Bai, Matthew Kelcey,
Mrinal Kalakrishnan, Laura Downs, Julian Ibarz, Peter Pastor, and Kurt Konolige.
“Using simulation and domain adaptation to improve efficiency of deep robotic
grasping”. In: IEEE Int. Conf. Robot. Autom. (ICRA). 2018.

[35] Dario Brescianini and Raffaello D’Andrea. “Tilt-prioritized quadrocopter attitude
control”. In: IEEE Transactions on Control Systems Technology (2018). url:
https://ieeexplore.ieee.org/document/8556372.

297

https://yaml.org/spec/1.2/spec.pdf
https://ieeexplore.ieee.org/document/8556372

Bibliography

[36] Pierre-Jean Bristeau, Philippe Martin, Erwan Salaün, and Nicolas Petit. “The role
of propeller aerodynamics in the model of a quadrotor UAV”. In: 2009 European
control conference (ECC). IEEE. 2009, pp. 683–688.

[37] Adam Bry, Abraham Bachrach, and Nicholas Roy. “State estimation for aggressive
flight in GPS-denied environments using onboard sensing”. In: IEEE Int. Conf.
Robot. Autom. (ICRA). IEEE. 2012, pp. 1–8.

[38] Adam Bry, Charles Richter, Abraham Bachrach, and Nicholas Roy. “Aggressive
flight of fixed-wing and quadrotor aircraft in dense indoor environments”. In: The
International Journal of Robotics Research 34.7 (2015), pp. 969–1002.

[39] Adam Bry and Nicholas Roy. “Rapidly-exploring Random Belief Trees for motion
planning under uncertainty”. In: IEEE Int. Conf. Robot. Autom. (ICRA). 2011.

[40] Wolfram Burgard, Mark Moors, Cyrill Stachniss, and Frank E Schneider. “Coor-
dinated multi-robot exploration”. In: IEEE Trans. Robot. 21.3 (2005), pp. 376–
386.

[41] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scaramuzza, José
Neira, Ian Reid, and John J Leonard. “Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age”. In: IEEE Trans.
Robot. (2016).

[42] Gang Cao, Edmund M-K Lai, and Fakhrul Alam. “Gaussian process model predic-
tive control of an unmanned quadrotor”. In: J. Intell. Robot. Syst. (2017).

[43] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. “Realtime multi-person
2d pose estimation using part affinity fields”. In: IEEE Conf. Comput. Vis. Pattern
Recog. (CVPR). 2017, pp. 7291–7299.

[44] Andrea Carron, Elena Arcari, Martin Wermelinger, Lukas Hewing, Marco Hutter,
and Melanie N Zeilinger. “Data-driven model predictive control for trajectory
tracking with a robotic arm”. In: IEEE Robot. Autom. Lett. (2019).

[45] Eric Chang, Laura Y. Matloff, Amanda K. Stowers, and David Lentink. “Soft
biohybrid morphing wings with feathers underactuated by wrist and finger motion”.
In: Science Robotics 5.38 (2020). doi: 10.1126/scirobotics.aay1246. eprint: https:
//robotics.sciencemag.org/content/5/38/eaay1246.full.pdf. url: https://robotics.
sciencemag.org/content/5/38/eaay1246.

[46] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. “Deepdriving:
Learning affordance for direct perception in autonomous driving”. In: International
Conference on Computer Vision (ICCV). 2015.

[47] Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp Krähenbühl. “Learning by
Cheating”. In: Conference on Robot Learning (CoRL). 2019.

[48] Ying Chen and Néstor O Pérez-Arancibia. “Controller Synthesis and Performance
Optimization for Aerobatic Quadrotor Flight”. In: IEEE Transactions on Control
Systems Technology (2019), pp. 1–16.

[49] Su Yeon Choi and Dowan Cha. “Unmanned aerial vehicles using machine learning
for autonomous flight; state-of-the-art”. In: Advanced Robotics 33.6 (2019), pp. 265–
277.

298

https://doi.org/10.1126/scirobotics.aay1246
https://robotics.sciencemag.org/content/5/38/eaay1246.full.pdf
https://robotics.sciencemag.org/content/5/38/eaay1246.full.pdf
https://robotics.sciencemag.org/content/5/38/eaay1246
https://robotics.sciencemag.org/content/5/38/eaay1246

Bibliography

[50] Titus Cieslewski, Elia Kaufmann, and Davide Scaramuzza. “Rapid exploration
with multi-rotors: A frontier selection method for high speed flight”. In: IEEE/RSJ
Int. Conf. Intell. Robot. Syst. (IROS). 2017, pp. 2135–2142.

[51] Ronald Clark, Sen Wang, Hongkai Wen, Andrew Markham, and Niki Trigoni.
“VINet: Visual-inertial odometry as a sequence-to-sequence learning problem”. In:
AAAI Conference on Artificial Intelligence. 2017.

[52] Ignasi Clavera, David Held, and Pieter Abbeel. “Policy Transfer via Modularity
and Reward Guiding”. In: IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS). 2017.

[53] José Arturo Cocoma-Ortega and José Martínez-Carranza. “Towards high-speed
localisation for autonomous drone racing”. In: Mexican International Conference
on Artificial Intelligence. Springer. 2019.

[54] Toby Collins and Adrien Bartoli. “Infinitesimal plane-based pose estimation”. In:
Int. J. Comput. Vis. 109.3 (2014), pp. 252–286.

[55] Connect Tech Inc. Quasar Carrier Board. https://connecttech.com/product/quasar-
carrier-nvidia-jetson-tx2/. Accessed: 2021-7-20. Aug. 2019.

[56] Cl Connolly. “The determination of next best views”. In: IEEE Int. Conf. Robot.
Autom. (ICRA). Vol. 2. 1985, pp. 432–435. doi: 10.1109/ROBOT.1985.1087372.

[57] CORDIS - European Comission. AgileFlight. https://cordis.europa.eu/project/id/864042.
Accessed: 2021-7-30.

[58] Ruben D’Sa, Devon Jenson, and Nikolaos Papanikolopoulos. “SUAV:Q - a hybrid
approach to solar-powered flight”. In: 2016 IEEE International Conference on
Robotics and Automation (ICRA). 2016, pp. 3288–3294. doi: 10.1109/ICRA.2016.
7487501.

[59] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang
Cao, Sri Harsha Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain,
Yuyun Liao, Chit-Kwan Lin, Andrew Lines, Ruokun Liu, Deepak Mathaikutty,
Steven McCoy, Arnab Paul, Jonathan Tse, Guruguhanathan Venkataramanan,
Yi-Hsin Weng, Andreas Wild, Yoonseok Yang, and Hong Wang. “Loihi: A Neuro-
morphic Manycore Processor with On-Chip Learning”. In: IEEE Micro 38.1 (Jan.
2018), pp. 82–99. doi: 10.1109/MM.2018.112130359.

[60] Brian L. Day and Richard C. Fitzpatrick. “The vestibular system”. In: Current
Biology 15.15 (2005), R583–R586. doi: 10.1016/j.cub.2005.07.053. url: https:
//doi.org/10.1016/j.cub.2005.07.053.

[61] C De Wagter, F Paredes-Vallés, N Sheth, and G de Croon. “Learning fast in
autonomous drone racing”. In: Nature Machine Intelligence 3.10 (2021), pp. 923–
923.

[62] Christophe De Wagter, Federico Paredes-Valles, Nilay Sheth, and Guido de Croon.
“The Artificial Intelligence behind the winning entry to the 2019 AI Robotic Racing
Competition”. In: arXiv preprint arXiv:2109.14985 (2021).

[63] Jeffrey Delmerico, Titus Cieslewski, Henri Rebecq, Matthias Faessler, and Davide
Scaramuzza. “Are We Ready for Autonomous Drone Racing? The UZH-FPV Drone
Racing Dataset”. In: IEEE Int. Conf. Robot. Autom. (ICRA). 2019.

299

https://connecttech.com/product/quasar-carrier-nvidia-jetson-tx2/
https://connecttech.com/product/quasar-carrier-nvidia-jetson-tx2/
https://doi.org/10.1109/ROBOT.1985.1087372
https://cordis.europa.eu/project/id/864042
https://doi.org/10.1109/ICRA.2016.7487501
https://doi.org/10.1109/ICRA.2016.7487501
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1016/j.cub.2005.07.053
https://doi.org/10.1016/j.cub.2005.07.053
https://doi.org/10.1016/j.cub.2005.07.053

Bibliography

[64] Jeffrey Delmerico and Davide Scaramuzza. “A Benchmark Comparison of Monoc-
ular Visual-Inertial Odometry Algorithms for Flying Robots”. In: IEEE Int. Conf.
Robot. Autom. (ICRA) (2018). doi: 10.1109/ICRA.2018.8460664.

[65] Vishnu R Desaraju, Alexander E Spitzer, Cormac O’Meadhra, Lauren Lieu, and
Nathan Michael. “Leveraging experience for robust, adaptive nonlinear MPC on
computationally constrained systems with time-varying state uncertainty”. In: Int.
J. Robot. Research (2018).

[66] Coline Devin, Abhishek Gupta, Trevor Darrell, Pieter Abbeel, and Sergey Levine.
“Learning modular neural network policies for multi-task and multi-robot transfer”.
In: IEEE Int. Conf. Robot. Autom. (ICRA). 2017.

[67] M. Diehl, H. G. Bock, H. Diedam, and P. B. Wieber. “Fast direct multiple shooting
algorithms for optimal robot control”. In: Fast motions in biomechanics and robotics.
Springer, 2006.

[68] Edsger W Dijkstra. “A note on two problems in connexion with graphs”. In:
Numerische mathematik 1.1 (1959), pp. 269–271.

[69] DJI. DJI Digital FPV System. https://www.dji.com/fpv. Accessed: 2021-7-20.

[70] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. “CARLA: An Open Urban Driving Simulator”. In: Conference on Robot
Learning (CORL). 2017, pp. 1–16.

[71] Paul Drews, Grady Williams, Brian Goldfain, Evangelos A Theodorou, and James
M Rehg. “Aggressive deep driving: Combining convolutional neural networks and
model predictive control”. In: Conf. on Robotics Learning (CoRL). 2017.

[72] Guillaume Ducard and Minh-Duc Hua. “Modeling of an unmanned hybrid aerial
vehicle”. In: 2014 IEEE Conference on Control Applications (CCA). IEEE. 2014,
pp. 1011–1016.

[73] J. Dupeyroux, J. Hagenaars, F. Paredes-Valles, and G. de Croon. “Neuromorphic
control for optic-flow-based landings of MAVs using the Loihi processor”. In:
Arxiv:2011.00534. 2020.

[74] Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, and Jeff
Clune. “First return, then explore”. In: Nature 590.7847 (2021), pp. 580–586. doi:
10.1038/s41586-020-03157-9.

[75] Jakob Engel, Vladlen Koltun, and Daniel Cremers. “Direct sparse odometry”. In:
IEEE transactions on pattern analysis and machine intelligence (T-PAMI) 40.3
(2018), pp. 611–625.

[76] Matthias Faessler, Flavio Fontana, Christian Forster, Elias Mueggler, Matia Pizzoli,
and Davide Scaramuzza. “Autonomous, Vision-based Flight and Live Dense 3D
Mapping with a Quadrotor MAV”. In: J. Field Robot. 33.4 (2016), pp. 431–450.

[77] Matthias Faessler, Flavio Fontana, Christian Forster, and Davide Scaramuzza.
“Automatic Re-Initialization and Failure Recovery for Aggressive Flight with a
Monocular Vision-Based Quadrotor”. In: IEEE Int. Conf. Robot. Autom. (ICRA).
2015.

300

https://doi.org/10.1109/ICRA.2018.8460664
https://www.dji.com/fpv
https://doi.org/10.1038/s41586-020-03157-9

Bibliography

[78] Matthias Faessler, Antonio Franchi, and Davide Scaramuzza. “Differential Flatness
of Quadrotor Dynamics Subject to Rotor Drag for Accurate Tracking of High-
Speed Trajectories”. In: IEEE Robot. Autom. Lett. 3.2 (Apr. 2018), pp. 620–626.
doi: 10.1109/LRA.2017.2776353.

[79] Davide Falanga, Philipp Foehn, Peng Lu, and Davide Scaramuzza. “PAMPC:
Perception-aware model predictive control for quadrotors”. In: IEEE/RSJ Int.
Conf. Intell. Robot. Syst. (IROS). 2018.

[80] Davide Falanga, Suseong Kim, and Davide Scaramuzza. “How Fast is Too Fast?
The Role of Perception Latency in High-Speed Sense and Avoid”. In: IEEE Robot.
Autom. Lett. 4.2 (Apr. 2019), pp. 1884–1891. issn: 2377-3766. doi: 10.1109/LRA.
2019.2898117.

[81] Davide Falanga, Kevin Kleber, Stefano Mintchev, Dario Floreano, and Davide
Scaramuzza. “The Foldable Drone: A Morphing Quadrotor That Can Squeeze and
Fly”. In: IEEE Robotics and Automation Letters 4.2 (2019), pp. 209–216. doi:
10.1109/LRA.2018.2885575.

[82] Davide Falanga, Kevin Kleber, and Davide Scaramuzza. “Dynamic obstacle avoid-
ance for quadrotors with event cameras”. In: Science Robotics 5.40 (2020).

[83] Davide Falanga, Elias Mueggler, Matthias Faessler, and Davide Scaramuzza. “Ag-
gressive quadrotor flight through narrow gaps with onboard sensing and computing
using active vision”. In: IEEE Int. Conf. Robot. Autom. (ICRA). 2017, pp. 5774–
5781. doi: 10.1109/ICRA.2017.7989679.

[84] Davide Falanga, Alessio Zanchettin, Alessandro Simovic, Jeffrey Delmerico, and
Davide Scaramuzza. “Vision-based autonomous quadrotor landing on a moving
platform”. In: 2017 IEEE International Symposium on Safety, Security and Rescue
Robotics (SSRR). IEEE. 2017, pp. 200–207.

[85] David Fan, Aliakbar Aghamohammadi, and Evangelos Theodorou. “Deep learning
tubes for tube MPC”. In: Robotics: Science and Systems (RSS) (2020).

[86] Marius Fehr, Thomas Schneider, and Roland Siegwart. “Visual-Inertial Teach and
Repeat Powered by Google Tango”. In: IEEE/RSJ Int. Conf. Intell. Robot. Syst.
(IROS). 2018. doi: 10.1109/IROS.2018.8593416.

[87] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-agnostic meta-learning
for fast adaptation of deep networks”. In: International conference on machine
learning. PMLR. 2017, pp. 1126–1135.

[88] Dario Floreano and Robert J Wood. “Science, technology and the future of small
autonomous drones”. en. In: Nature 521.7553 (May 2015), pp. 460–466. issn:
0028-0836, 1476-4687. doi: 10.1038/nature14542.

[89] Pete Florence, John Carter, and Russ Tedrake. “Integrated perception and con-
trol at high speed: Evaluating collision avoidance maneuvers without maps”. In:
Algorithmic Foundations of Robotics XII. Springer, 2020, pp. 304–319.

[90] Philipp Foehn, Davide Falanga, Naveen Kuppuswamy, Russ Tedrake, and Davide
Scaramuzza. “Fast Trajectory Optimization for Agile Quadrotor Maneuvers with
a Cable-Suspended Payload”. In: Robotics: Science and Systems (RSS). 2017.

301

https://doi.org/10.1109/LRA.2017.2776353
https://doi.org/10.1109/LRA.2019.2898117
https://doi.org/10.1109/LRA.2019.2898117
https://doi.org/10.1109/LRA.2018.2885575
https://doi.org/10.1109/ICRA.2017.7989679
https://doi.org/10.1109/IROS.2018.8593416
https://doi.org/10.1038/nature14542

Bibliography

[91] Philipp Foehn, Angel Romero, and Davide Scaramuzza. “Time-optimal plan-
ning for quadrotor waypoint flight”. In: Science Robotics 6.56 (2021). doi: 10.
1126/scirobotics.abh1221. url: https://robotics.sciencemag.org/content/6/56/eabh1221.

[92] Philipp Foehn∗, Dario Brescianini∗, Elia Kaufmann∗, Titus Cieslewski, Mathias
Gehrig, Manasi Muglikar, and Davide Scaramuzza. “AlphaPilot: Autonomous
Drone Racing”. In: Robotics: Science and Systems (RSS) (2020).

[93] Philipp Foehn∗, Dario Brescianini∗, Elia Kaufmann∗, Titus Cieslewski, Mathias
Gehrig, Manasi Muglikar, and Davide Scaramuzza. “AlphaPilot: Autonomous
Drone Racing”. In: Autonom. Rob. (2021). doi: 10.1007/s10514-021-10011-y.

[94] Philipp Foehn∗, Elia Kaufmann∗, Angel Romero, Robert Penicka, Sihao Sun,
Leonard Bauersfeld, Thomas Laengle, Yunlong Song, Antonio Loquercio, and
Davide Scaramuzza. “Agilicious: Open-Source and Open-Hardware Agile Quadrotor
for Vision-Based Flight”. In: Science Robotics (2021). under review.

[95] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza. “On-Manifold Preintegra-
tion for Real-Time Visual-Inertial Odometry”. In: IEEE Trans. Robot. 33.1 (2017),
pp. 1–21.

[96] C. Forster, M. Pizzoli, and D. Scaramuzza. “SVO: Fast semi-direct monocular
visual odometry”. In: IEEE Int. Conf. Robot. Autom. (ICRA). 2014. doi: 10.
1109/ICRA.2014.6906584.

[97] C. Forster, Z. Zhang, M. Gassner, M. Werlberger, and D. Scaramuzza. “SVO:
Semidirect Visual Odometry for Monocular and Multicamera Systems”. In: IEEE
Trans. Robot. 33.2 (2017), pp. 249–265.

[98] Friedrich Fraundorfer, Lionel Heng, Dominik Honegger, Gim Hee Lee, Lorenz
Meier, Petri Tanskanen, and Marc Pollefeys. “Vision-based autonomous mapping
and exploration using a quadrotor MAV”. In: IEEE/RSJ Int. Conf. Intell. Robot.
Syst. (IROS). 2012.

[99] Florian Fuchs, Yunlong Song, Elia Kaufmann, Davide Scaramuzza, and Peter Dürr.
“Super-Human Performance in Gran Turismo Sport Using Deep Reinforcement
Learning”. In: IEEE Robotics and Automation Letters 6.3 (2021), pp. 4257–4264.

[100] Joseph Funke, Paul Theodosis, Rami Hindiyeh, Ganymed Stanek, Krisada Kri-
tatakirana, Chris Gerdes, Dirk Langer, Marcial Hernandez, Bernhard Müller-
Bessler, and Burkhard Huhnke. “Up to the limits: Autonomous Audi TTS”. In:
2012 IEEE Intelligent Vehicles Symposium. IEEE. 2012, pp. 541–547.

[101] Paul Furgale and Timothy D. Barfoot. “Visual teach and repeat for long-range
rover autonomy”. In: Journal of Field Robotics 27.5 (2010), pp. 534–560.

[102] Fadri Furrer, Michael Burri, Markus Achtelik, and Roland Siegwart. “RotorS—A
modular gazebo MAV simulator framework”. In: Robot Operating System (ROS).
Springer, 2016.

[103] Sajad Saeedi G., Carl Thibault, Michael Trentini, and Howard Li. “3D Mapping for
Autonomous Quadrotor Aircraft”. In: Unmanned Syst. 5.3 (2017), pp. 181–196. doi:
10.1142/S2301385017400064. url: https://doi.org/10.1142/S2301385017400064.

302

https://doi.org/10.1126/scirobotics.abh1221
https://doi.org/10.1126/scirobotics.abh1221
https://robotics.sciencemag.org/content/6/56/eabh1221
https://doi.org/10.1007/s10514-021-10011-y
https://doi.org/10.1109/ICRA.2014.6906584
https://doi.org/10.1109/ICRA.2014.6906584
https://doi.org/10.1142/S2301385017400064
https://doi.org/10.1142/S2301385017400064

Bibliography

[104] Guillermo Gallego, Tobi Delbruck, Garrick Orchard, Chiara Bartolozzi, Brian
Taba, Andrea Censi, Stefan Leutenegger, Andew Davison, Joerg Conradt, Kostas
Daniilidis, and Davide Scaramuzza. “Event-based Vision: A Survey”. In: IEEE
Trans. Pattern Anal. Mach. Intell. (2020).

[105] Jean Gallier. Curves and Surfaces in Geometric Modeling: Theory and Algo-
rithms. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1999. isbn:
1558605991.

[106] Dhiraj Gandhi, Lerrel Pinto, and Abhinav Gupta. “Learning to fly by crashing”.
In: IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS). 2017, pp. 3948–3955.

[107] Fei Gao, William Wu, Wenliang Gao, and Shaojie Shen. “Flying on point clouds:
Online trajectory generation and autonomous navigation for quadrotors in cluttered
environments”. In: J. Field Robot. 36.4 (2019), pp. 710–733. doi: https://doi.org/10.
1002/rob.21842.

[108] Alison L Gibbs and Francis Edward Su. “On choosing and bounding probability
metrics”. In: International Statistical Review 70.3 (2002), pp. 419–435.

[109] Wojciech Giernacki, Mateusz Skwierczyński, Wojciech Witwicki, Pawel Wroński,
and Piotr Kozierski. “Crazyflie 2.0 quadrotor as a platform for research and
education in robotics and control engineering”. In: International Conference on
Methods and Models in Automation and Robotics (MMAR). 2017, pp. 37–42. doi:
10.1109/MMAR.2017.8046794.

[110] Rajan Gill and Raffaello D’Andrea. “Propeller thrust and drag in forward flight”.
In: 2017 IEEE Conference on Control Technology and Applications (CCTA). IEEE.
2017, pp. 73–79.

[111] Rajan Gill and Raffaello D’Andrea. “Computationally Efficient Force and Moment
Models for Propellers in UAV Forward Flight Applications”. In: Drones 3.4 (2019),
p. 77.

[112] Alessandro Giusti, Jérôme Guzzi, Dan C. Cireşan, Fang-Lin He, Juan P. Rodríguez,
Flavio Fontana, Matthias Faessler, Christian Forster, Jürgen Schmidhuber, Gianni
Di Caro, Davide Scaramuzza, and Luca M. Gambardella. “A Machine Learning
Approach to Visual Perception of Forest Trails for Mobile Robots”. In: IEEE Robot.
Autom. Lett. 1.2 (2016).

[113] Hector H Gonzalez-Banos and Jean-Claude Latombe. “Navigation strategies for
exploring indoor environments”. In: Int. J. Robot. Research 21.10-11 (2002), pp. 829–
848.

[114] Melissa Greeff, SiQi Zhou, and Angela P Schoellig. “Fly Out The Window: Ex-
ploiting Discrete-Time Flatness for Fast Vision-Based Multirotor Flight”. In: IEEE
Robot. Autom. Lett. 7.2 (2022), pp. 5023–5030.

[115] Radek Grzeszczuk, Demetri Terzopoulos, and Geoffrey Hinton. “Neuroanimator:
Fast neural network emulation and control of physics-based models”. In: Proceedings
of the 25th annual conference on Computer graphics and interactive techniques.
1998, pp. 9–20.

303

https://doi.org/https://doi.org/10.1002/rob.21842
https://doi.org/https://doi.org/10.1002/rob.21842
https://doi.org/10.1109/MMAR.2017.8046794

Bibliography

[116] Sergio Guadarrama, Anoop Korattikara, Oscar Ramirez, Pablo Castro, Ethan
Holly, Sam Fishman, Ke Wang, Ekaterina Gonina, Neal Wu, Efi Kokiopoulou,
Luciano Sbaiz, Jamie Smith, Gabor Bartok, Jesse Berent, Chris Harris, Vincent
Vanhoucke, and Eugene Brevdo. TF-Agents: A library for Reinforcement Learning
in TensorFlow. https://github.com/tensorflow/agents. [Online; accessed 25-June-
2019]. 2018. url: https://github.com/tensorflow/agents.

[117] Winter Guerra, Ezra Tal, Varun Murali, Gilhyun Ryou, and Sertac Karaman.
“FlightGoggles: Photorealistic Sensor Simulation for Perception-driven Robotics
using Photogrammetry and Virtual Reality”. In: IEEE/RSJ Int. Conf. Intell. Robot.
Syst. (IROS). 2019.

[118] Abhishek Gupta, Coline Devin, YuXuan Liu, Pieter Abbeel, and Sergey Levine.
“Learning invariant feature spaces to transfer skills with reinforcement learning”.
In: Internation Conference on Learning Representation (ICLR) (2017).

[119] Tuomas Haarnoja, Kristian Hartikainen, Pieter Abbeel, and Sergey Levine. “Latent
space policies for hierarchical reinforcement learning”. In: International Conference
on Machine Learning. PMLR. 2018, pp. 1851–1860.

[120] Raia Hadsell, Pierre Sermanet, Jan Ben, Ayse Erkan, Marco Scoffier, Koray
Kavukcuoglu, Urs Muller, and Yann LeCun. “Learning long-range vision for
autonomous off-road driving”. In: J. Field Robot. 26.2 (2009), pp. 120–144.

[121] Zhichao Han, Zhepei Wang, Neng Pan, Yi Lin, Chao Xu, and Fei Gao. “Fast-
Racing: An Open-Source Strong Baseline for SE(3) Planning in Autonomous Drone
Racing”. In: IEEE Robot. Autom. Lett. 6.4 (2021), pp. 8631–8638.

[122] Zhichao Han, Ruibin Zhang, Neng Pan, Chao Xu, and Fei Gao. “Fast-tracker: A
robust aerial system for tracking agile target in cluttered environments”. In: IEEE
Int. Conf. Robot. Autom. (ICRA). 2021, pp. 328–334.

[123] Drew Hanover, Philipp Foehn, Elia Kaufmann, and Davide Scaramuzza. “Perfor-
mance, Precision, and Payloads: Adaptive Optimal Control for Quadrotors Under
Uncertainty”. In: IEEE Robot. Autom. Lett. 2022. doi: 10.1109/LRA.2021.3131690.

[124] Christopher G. Harris and Mike Stephens. “A combined corner and edge detector”.
In: In Proc. of Fourth Alvey Vision Conference. 1988.

[125] W. K. Hastings. “Monte Carlo sampling methods using Markov chains and their
applications”. In: Biometrika 57.1 (1970), pp. 97–109.

[126] Gautier Hattenberger, Murat Bronz, and Michel Gorraz. “Using the Paparazzi UAV
System for Scientific Research”. In: International Micro Air Vehicle Conference
and Competition. 2014, pp. 247–252.

[127] M. Hehn, R. Ritz, and R. D’Andrea. “Performance benchmarking of quadrotor
systems using time-optimal control”. In: Auton. Robots (Mar. 2012). doi: 10 .
1007/s10514-012-9282-3.

[128] Lionel Heng, Dominik Honegger, Gim Hee Lee, Lorenz Meier, Petri Tanskanen,
Friedrich Fraundorfer, and Marc Pollefeys. “Autonomous Visual Mapping and
Exploration With a Micro Aerial Vehicle”. In: J. Field Robotics 31.4 (2014), pp. 654–
675.

304

https://github.com/tensorflow/agents
https://github.com/tensorflow/agents
https://doi.org/10.1109/LRA.2021.3131690
https://doi.org/10.1007/s10514-012-9282-3
https://doi.org/10.1007/s10514-012-9282-3

Bibliography

[129] Daniel Hernandez-Juarez, Alejandro Chacón, Antonio Espinosa, David Vázquez,
Juan Carlos Moure, and Antonio M. López. “Embedded Real-time Stereo Esti-
mation via Semi-Global Matching on the GPU”. In: International Conference on
Computational Science 2016, ICCS 2016, 6-8 June 2016, San Diego, California,
USA. 2016.

[130] Lukas Hewing, Juraj Kabzan, and Melanie Zeilinger. “Cautious model predictive
control using Gaussian process regression”. In: IEEE Trans. Control Sys. Tech.
(2019).

[131] Juliane Hilf and Klaus Umbach. “The Commercial Use of Drones”. In: Computer
Law Review International 16.3 (2015).

[132] Heiko Hirschmuller. “Stereo processing by semiglobal matching and mutual infor-
mation”. In: IEEE Transactions on pattern analysis and machine intelligence 30.2
(2007), pp. 328–341.

[133] Gabriel Hoffmann, Haomiao Huang, Steven Waslander, and Claire Tomlin. “Quadro-
tor helicopter flight dynamics and control: Theory and experiment”. In: AIAA
guidance, navigation and control conference and exhibit. 2007, p. 6461.

[134] Gabriel M Hoffmann, Haomiao Huang, Steven L Waslander, and Claire J Tomlin.
“Precision flight control for a multi-vehicle quadrotor helicopter testbed”. In:
Control engineering practice 19.9 (2011), pp. 1023–1036.

[135] Dirk Holz, Nicola Basilico, Francesco Amigoni, and Sven Behnke. “Evaluating the
efficiency of frontier-based exploration strategies”. In: Int. Symp. Robotics (ISR)
(2010).

[136] Namdar Homayounfar, Wei-Chiu Ma, Justin Liang, Xinyu Wu, Jack Fan, and
Raquel Urtasun. “Dagmapper: Learning to map by discovering lane topology”. In:
IEEE Conf. Comput. Vis. Pattern Recog. (CVPR). 2019, pp. 2911–2920.

[137] Armin Hornung, Kai M Wurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram
Burgard. “OctoMap: An efficient probabilistic 3D mapping framework based on
octrees”. In: Autonomous Robots (2013).

[138] Boris Houska, Hans Joachim Ferreau, and Moritz Diehl. “ACADO toolkit—An
open-source framework for automatic control and dynamic optimization”. In:
Optimal Control Applications and Methods (2011).

[139] Andrew Howard, Ruoming Pang, Hartwig Adam, Quoc V. Le, Mark Sandler, Bo
Chen, Weijun Wang, Liang-Chieh Chen, Mingxing Tan, Grace Chu, Vijay Vasude-
van, and Yukun Zhu. “Searching for MobileNetV3”. In: International Conference
on Computer Vision, ICCV. 2019, pp. 1314–1324.

[140] Guoquan Huang. “Visual-inertial navigation: A concise review”. In: 2019 inter-
national conference on robotics and automation (ICRA). IEEE. 2019, pp. 9572–
9582.

[141] Haomiao Huang, Gabriel M Hoffmann, Steven L Waslander, and Claire J Tomlin.
“Aerodynamics and control of autonomous quadrotor helicopters in aggressive
maneuvering”. In: 2009 IEEE international conference on robotics and automation.
IEEE. 2009, pp. 3277–3282.

305

Bibliography

[142] Chia-Chun Hung, Timothy Lillicrap, Josh Abramson, Yan Wu, Mehdi Mirza,
Federico Carnevale, Arun Ahuja, and Greg Wayne. “Optimizing agent behavior
over long time scales by transporting value”. In: Nature Communications 10.1
(Nov. 2019). doi: 10.1038/s41467-019-13073-w.

[143] Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios Tsounis,
Vladlen Koltun, and Marco Hutter. “Learning agile and dynamic motor skills for
legged robots”. In: Science Robotics 4.26 (2019).

[144] Jemin Hwangbo, Joonho Lee, and Marco Hutter. “Per-contact iteration method for
solving contact dynamics”. In: IEEE Robot. Autom. Lett. 3.2 (2018), pp. 895–902.

[145] Jemin Hwangbo, Inkyu Sa, Roland Siegwart, and Marco Hutter. “Control of a
quadrotor with reinforcement learning”. In: IEEE Robot. Autom. Lett. (2017).

[146] Intel Corporation. Intel Movidius Myriad X Vision Processing Unit. https :
//www . intel . com/content/www/us/en/products/details/processors/movidius -
vpu/movidius-myriad-x.html. Accessed: 2021-8-2.

[147] Intel RealSense T265 Series Product Family. https://www.intelrealsense.com/wp-
content/uploads/2019/09/Intel_RealSense_Tracking_Camera_Datasheet_
Rev004_release.pdf. 2019.

[148] Stephen James, Andrew J Davison, and Edward Johns. “Transferring end-to-
end visuomotor control from simulation to real world for a multi-stage task”. In:
Conference on Robot Learning (CoRL) (2017).

[149] Jialin Ji, Zhepei Wang, Yingjian Wang, Chao Xu, and Fei Gao. “Mapless-planner:
A robust and fast planning framework for aggressive autonomous flight without
map fusion”. In: IEEE Int. Conf. Robot. Autom. (ICRA). 2021, pp. 6315–6321.

[150] Matthew Johnson-Roberson, Charles Barto, Rounak Mehta, Sharath Nittur Srid-
har, Karl Rosaen, and Ram Vasudevan. “Driving in the matrix: Can virtual worlds
replace human-generated annotations for real world tasks?” In: IEEE Int. Conf.
Robot. Autom. (ICRA). 2017.

[151] Miguel Juliá, Arturo Gil, and Oscar Reinoso. “A comparison of path planning
strategies for autonomous exploration and mapping of unknown environments”. In:
Autonomous Robots 33.4 (2012), pp. 427–444.

[152] Miguel Juliá, Oscar Reinoso, Arturo Gil, Mónica Ballesta, and Luis Payá. “A
hybrid solution to the multi-robot integrated exploration problem”. In: Engineering
Applications of Artificial Intelligence (2010).

[153] Arthur Juliani, Vincent-Pierre Berges, Esh Vckay, Yuan Gao, Hunter Henry,
Marwan Mattar, and Danny Lange. “Unity: A general platform for intelligent
agents”. In: arXiv e-prints (2018).

[154] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,
Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Zidek, Anna
Potapenko, Alex Bridgland, Clemens Meyer, Simon A A Kohl, Andrew J Bal-
lard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain,
Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy, Michal
Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Sebastian

306

https://doi.org/10.1038/s41467-019-13073-w
https://www.intel.com/content/www/us/en/products/details/processors/movidius-vpu/movidius-myriad-x.html
https://www.intel.com/content/www/us/en/products/details/processors/movidius-vpu/movidius-myriad-x.html
https://www.intel.com/content/www/us/en/products/details/processors/movidius-vpu/movidius-myriad-x.html
https://www.intelrealsense.com/wp-content/uploads/2019/09/Intel_RealSense_Tracking_Camera_Datasheet_Rev004_release.pdf
https://www.intelrealsense.com/wp-content/uploads/2019/09/Intel_RealSense_Tracking_Camera_Datasheet_Rev004_release.pdf
https://www.intelrealsense.com/wp-content/uploads/2019/09/Intel_RealSense_Tracking_Camera_Datasheet_Rev004_release.pdf

Bibliography

Bodenstein, David Silver, Oriol Vinyals, Andrew W Senior, Koray Kavukcuoglu,
Pushmeet Kohli, and Demis Hassabis. “Highly accurate protein structure prediction
with AlphaFold”. In: Nature 596.7873 (2021), pp. 583–589. doi: 10.1038/s41586-
021-03819-2.

[155] Sunggoo Jung, Sungwook Cho, Dasol Lee, Hanseob Lee, and David Hyunchul Shim.
“A direct visual servoing-based framework for the 2016 IROS Autonomous Drone
Racing Challenge”. In: J. Field Robot. 35.1 (2018), pp. 146–166.

[156] Sunggoo Jung, Sunyou Hwang, Heemin Shin, and David Hyunchul Shim. “Per-
ception, Guidance, and Navigation for Indoor Autonomous Drone Racing Using
Deep Learning”. In: IEEE Robot. Autom. Lett. 3.3 (2018). doi: 10.1109/LRA.2018.
2808368.

[157] Juraj Kabzan, Lukas Hewing, Alexander Liniger, and Melanie N Zeilinger.
“Learning-based model predictive control for autonomous racing”. In: IEEE Robot.
Autom. Lett. (2019).

[158] Gregory Kahn, Adam Villaflor, Bosen Ding, Pieter Abbeel, and Sergey Levine.
“Self-supervised deep reinforcement learning with generalized computation graphs
for robot navigation”. In: 2018 IEEE International Conference on Robotics and
Automation (ICRA). 2018.

[159] Gregory Kahn, Tianhao Zhang, Sergey Levine, and Pieter Abbeel. “PLATO: Policy
learning using adaptive trajectory optimization”. In: IEEE Int. Conf. Robot. Autom.
(ICRA). IEEE, 2017, pp. 3342–3349.

[160] Jean-Marie Kai, Guillaume Allibert, Minh-Duc Hua, and Tarek Hamel. “Nonlinear
feedback control of quadrotors exploiting first-order drag effects”. In: IFAC World
Congress 50.1 (2017), pp. 8189–8195.

[161] R. Kalman. “A New Approach to Linear Filtering and Prediction Problems”. In: J.
Basic Eng. 82 (1 1960), pp. 35–45.

[162] M. Kamel, M. Burri, and R. Siegwart. “Linear vs Nonlinear MPC for Trajectory
Tracking Applied to Rotary Wing Micro Aerial Vehicles”. In: arXiv (2016). url:
http://arxiv.org/abs/1611.09240.

[163] Katie Kang, Suneel Belkhale, Gregory Kahn, Pieter Abbeel, and Sergey Levine.
“Generalization through simulation: Integrating simulated and real data into deep
reinforcement learning for vision-based autonomous flight”. In: 2019 international
conference on robotics and automation (ICRA). IEEE. 2019, pp. 6008–6014.

[164] Nitin R Kapania. “Trajectory Planning and Control for an Autonomous Race
Vehicle”. PhD thesis. Stanford University, 2016.

[165] Sertac Karaman and Emilio Frazzoli. “High-speed flight in an ergodic forest”. In:
2012 IEEE International Conference on Robotics and Automation. IEEE. 2012,
pp. 2899–2906.

[166] Sertac Karaman and Emilio Frazzoli. “Sampling-based algorithms for optimal
motion planning”. In: Int. J. Robot. Research 30.7 (2011), pp. 846–894.

[167] Konstantinos Karydis and Vijay Kumar. “Energetics in robotic flight at small
scales”. en. In: Interface Focus 7.1 (Feb. 2017), p. 20160088. issn: 2042-8898. doi:
10.1098/rsfs.2016.0088.

307

https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1109/LRA.2018.2808368
https://doi.org/10.1109/LRA.2018.2808368
https://www.sciencedirect.com/science/article/pii/S2405896317317822
https://www.sciencedirect.com/science/article/pii/S2405896317317822
http://arxiv.org/abs/1611.09240
https://doi.org/10.1098/rsfs.2016.0088

Bibliography

[168] Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Müller, Vladlen
Koltun, and Davide Scaramuzza. “Champion-Level Drone Racing using Deep
Reinforcement Learning”. In: Nature (2023).

[169] Elia Kaufmann, Leonard Bauersfeld, and Davide Scaramuzza. “A Benchmark
Comparison of Learned Control Policies for Agile Quadrotor Flight”. In: 2022
International Conference on Robotics and Automation (ICRA). IEEE. 2022.

[170] Elia Kaufmann, Mathias Gehrig, Philipp Foehn, René Ranftl, Alexey Dosovitskiy,
Vladlen Koltun, and Davide Scaramuzza. “Beauty and the Beast: Optimal Methods
Meet Learning for Drone Racing”. In: IEEE Int. Conf. Robot. Autom. (ICRA)
(2019), pp. 690–696. doi: 10.1109/ICRA.2019.8793631.

[171] Elia Kaufmann∗, Antonio Loquercio∗, Rene Ranftl, Alexey Dosovitskiy, Vladlen
Koltun, and Davide Scaramuzza. “Deep Drone Racing: Learning Agile Flight in
Dynamic Environments”. In: Conf. on Robotics Learning (CoRL). 2018.

[172] Elia Kaufmann∗, Antonio Loquercio∗, René Ranftl, Matthias Müller, Vladlen
Koltun, and Davide Scaramuzza. “Deep Drone Acrobatics”. In: Robotics: Science
and Systems (RSS). 2020.

[173] Derya Kaya and Ali T Kutay. “Aerodynamic modeling and parameter estimation
of a quadrotor helicopter”. In: AIAA Atmospheric Flight Mechanics Conference.
2014, p. 2558.

[174] John C Kegelman, Lene K Harbott, and J Christian Gerdes. “Insights into vehicle
trajectories at the handling limits: analysing open data from race car drivers”. In:
Vehicle system dynamics 55.2 (2017), pp. 191–207.

[175] Leonid Keselman, John Iselin Woodfill, Anders Grunnet-Jepsen, and Achintya
Bhowmik. “Intel RealSense Stereoscopic Depth Cameras”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops.
2017.

[176] Waqas Khan and Meyer Nahon. “Toward an accurate physics-based UAV thruster
model”. In: IEEE/ASME Transactions on Mechatronics 18.4 (2013), pp. 1269–
1279.

[177] Abbas Khosravi, Saeid Nahavandi, Doug Creighton, and Amir F Atiya. “Compre-
hensive review of neural network-based prediction intervals and new advances”.
In: IEEE Trans. Neural Netw. 22.9 (2011). doi: 10.1109/TNN.2011.2162110. url:
https://doi.org/10.1109/TNN.2011.2162110.

[178] Dong Ki Kim and Tsuhan Chen. “Deep neural network for real-time autonomous
indoor navigation”. In: arXiv:1511.04668 (2015).

[179] Joohwan Kim, Josef Spjut, Morgan McGuire, Alexander Majercik, Ben Boudaoud,
Rachel Albert, and David Luebke. “Esports Arms Race: Latency and Refresh Rate
for Competitive Gaming Tasks”. In: Journal of Vision 19.10 (Sept. 2019), p. 218c.
doi: 10.1167/19.10.218c.

[180] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”.
In: International Conference on Learning Representations (ICLR). 2015.

308

https://doi.org/10.1109/ICRA.2019.8793631
https://doi.org/10.1109/TNN.2011.2162110
https://doi.org/10.1109/TNN.2011.2162110
https://doi.org/10.1167/19.10.218c

Bibliography

[181] William Koch, Renato Mancuso, Richard West, and Azer Bestavros. “Reinforcement
learning for UAV attitude control”. In: ACM Transactions on Cyber-Physical
Systems (2019).

[182] Nathan Koenig and Andrew Howard. “Design and use paradigms for Gazebo, an
open-source multi-robot simulator”. In: IEEE/RSJ Int. Conf. Intell. Robot. Syst.
(IROS). Vol. 3. 2004, pp. 2149–2154.

[183] Stefan Kohlbrecher, Johannes Meyer, Thorsten Graber, Karen Petersen, Uwe
Klingauf, and Oskar von Stryk. “Hector open source modules for autonomous
mapping and navigation with rescue robots”. In: Robot Soccer World Cup. Springer.
2013, pp. 624–631.

[184] Krisada Kritayakirana and J Christian Gerdes. “Autonomous vehicle control at
the limits of handling”. In: International Journal of Vehicle Autonomous Systems
10.4 (2012), pp. 271–296.

[185] Harold W Kuhn. “The Hungarian method for the assignment problem”. In: Naval
research logistics quarterly 2.1-2 (1955), pp. 83–97.

[186] Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra Malik. “Rma: Rapid
motor adaptation for legged robots”. In: arXiv preprint arXiv:2107.04034 (2021).

[187] Vijay Kumar and Nathan Michael. “Opportunities and challenges with autonomous
micro aerial vehicles”. In: The International Journal of Robotics Research 31.11
(2012), pp. 1279–1291.

[188] Laird Connectivity. https://www.lairdconnect.com/. Accessed: 2021-7-20.

[189] Nathan O Lambert, Daniel S Drew, Joseph Yaconelli, Sergey Levine, Roberto
Calandra, and Kristofer SJ Pister. “Low-level control of a quadrotor with deep
model-based reinforcement learning”. In: IEEE Robot. Autom. Lett. (2019).

[190] S. M. LaValle. Planning algorithms. Cambridge university press, 2006. url: http:
//planning.cs.uiuc.edu.

[191] Junseok Lee, Xiangyu Wu, Seung Jae Lee, and Mark W Mueller. “Autonomous
flight through cluttered outdoor environments using a memoryless planner”. In:
2021 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE.
2021, pp. 1131–1138.

[192] Keuntaek Lee, Jason Gibson, and Evangelos A Theodorou. “Aggressive Perception-
Aware Navigation using Deep Optical Flow Dynamics and PixelMPC”. In:
arXiv:2001.02307 (2020).

[193] Ian Lenz, Ross A Knepper, and Ashutosh Saxena. “DeepMPC: Learning deep
latent features for model predictive control.” In: Robotics: Science and Systems
(RSS). 2015.

[194] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale. “Keyframe-Based
Visual-Inertial SLAM using Nonlinear Optimization”. In: Int. J. Robot. Research
(2015).

[195] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. “End-to-end
training of deep visuomotor policies”. In: The Journal of Machine Learning Research
(2016).

309

https://www.lairdconnect.com/
http://planning.cs.uiuc.edu
http://planning.cs.uiuc.edu

Bibliography

[196] Shuo Li, Erik van der Horst, Philipp Duernay, Christophe De Wagter, and Guido
de Croon. “Visual Model-predictive Localization for Computationally Efficient
Autonomous Racing of a 72-gram Drone”. In: ArXiv abs/1905.10110 (2019).

[197] Shuo Li, Michael MOI Ozo, Christophe De Wagter, and Guido CHE de Croon.
“Autonomous drone race: A computationally efficient vision-based navigation and
control strategy”. In: Robotics and Autonomous Systems 133 (2020).

[198] Shuo Li, Ekin Ozturk, Christophe De Wagter, Guido de Croon, and Dario Izzo.
“Aggressive Online Control of a Quadrotor via Deep Network Representations of
Optimality Principles”. In: arXiv:1912.07067 (2019).

[199] Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anandkumar. “Fourier Neural Operator
for Parametric Partial Differential Equations”. In: International Conference on
Learning Representations. 2020.

[200] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C. Lawrence Zitnick. “Microsoft COCO: Common
Objects in Context”. In: European Conference on Computer Vision (ECCV). 2014.

[201] Cunjia Liu, Hao Lu, and Wen-Hua Chen. “An explicit MPC for quadrotor trajectory
tracking”. In: IEEE Chin. Control Conf. (CCC). 2015.

[202] Sikang Liu, Kartik Mohta, Nikolay Atanasov, and Vijay Kumar. “Search-Based
Motion Planning for Aggressive Flight in SE(3)”. In: IEEE Robot. Autom. Lett.
(2018). doi: 10.1109/LRA.2018.2795654.

[203] G. Loianno, C. Brunner, G. McGrath, and V. Kumar. “Estimation, Control, and
Planning for Aggressive Flight With a Small Quadrotor With a Single Camera
and IMU”. In: IEEE Robot. Autom. Lett. (2017).

[204] G. Loianno and D. Scaramuzza. “Special issue on future challenges and op-
portunities in vision-based drone navigation”. In: J. Field Robot. (2020). doi:
10.1002/rob.21962.

[205] W. Van Loock, G. Pipeleers, and J. Swevers. “Time-optimal quadrotor flight”. In:
IEEE Eur. Control Conf. (ECC). 2013. doi: 10.23919/ECC.2013.6669253.

[206] Antonio Loquercio, Ana I. Maqueda, Carlos R. del-Blanco, and Davide Scaramuzza.
“DroNet: Learning to Fly by Driving”. In: IEEE Robot. Autom. Lett. 3.2 (2018),
pp. 1088–1095.

[207] Antonio Loquercio, Alessandro Saviolo, and Davide Scaramuzza. “Autotune: Con-
troller tuning for high-speed flight”. In: IEEE Robot. Autom. Lett. 7.2 (2022),
pp. 4432–4439.

[208] Antonio Loquercio∗, Elia Kaufmann∗, René Ranftl, Alexey Dosovitskiy, Vladlen
Koltun, and Davide Scaramuzza. “Deep Drone Racing: From Simulation to Reality
with Domain Randomization”. In: IEEE Trans. Robot. 36.1 (2019), pp. 1–14. doi:
10.1109/TRO.2019.2942989.

[209] Antonio Loquercio∗, Elia Kaufmann∗, René Ranftl, Matthias Müller, Vladlen
Koltun, and Davide Scaramuzza. “Learning High-Speed Flight in the Wild”. In:
Science Robotics. 2021.

310

https://doi.org/10.1109/LRA.2018.2795654
https://doi.org/10.1002/rob.21962
https://doi.org/10.23919/ECC.2013.6669253
https://doi.org/10.1109/TRO.2019.2942989

Bibliography

[210] Bruce D. Lucas and Takeo Kanade. “An Iterative Image Registration Technique
with an Application to Stereo Vision”. In: Int. Joint Conf. Artificial Intell. (IJCAI).
1981.

[211] Martin Luessi. radix. en. https://www.brainfpv.com/product/radix-fc/. Accessed:
2021-7-20. Dec. 2017.

[212] Dario Lunni, Angel Santamaria-Navarro, Roberto Rossi, Paolo Rocco, Luca
Bascetta, and Juan Andrade-Cetto. “Nonlinear model predictive control for aerial
manipulation”. In: IEEE Int. Conf. Unmanned Aircraft Syst. (ICUAS). 2017.

[213] Jinglin Luo, Longfei Zhu, and Guirong Yan. “Novel quadrotor forward-flight model
based on wake interference”. In: Aiaa Journal 53.12 (2015), pp. 3522–3533.

[214] Sergei Lupashin, Angela Schöllig, Michael Sherback, and Raffaello D’Andrea.
“A simple learning strategy for high-speed quadrocopter multi-flips”. In: IEEE
International Conference on Robotics and Automation (ICRA). 2010, pp. 1642–
1648.

[215] S. Lynen, M. Achtelik, S. Weiss, M. Chli, and R. Siegwart. “A Robust and Modular
Multi-Sensor Fusion Approach Applied to MAV Navigation”. In: IEEE/RSJ Int.
Conf. Intell. Robot. Syst. (IROS). 2013.

[216] Simon Lynen, Torsten Sattler, Michael Bosse, Joel Hesch, Marc Pollefeys, and
Roland Siegwart. “Get Out of My Lab: Large-scale, Real-Time Visual-Inertial
Localization”. In: Robotics: Science and Systems. 2015.

[217] Ratnesh Madaan, Nicholas Gyde, Sai Vemprala, Matthew Brown, Keiko Nagami,
Tim Taubner, Eric Cristofalo, Davide Scaramuzza, Mac Schwager, and Ashish
Kapoor. “AirSim Drone Racing Lab”. In: PMLR post-proceedings of the NeurIPS
2019’s Competition Track (2020).

[218] R. Mahony, V. Kumar, and P. Corke. “Multirotor Aerial Vehicles: Modeling,
Estimation, and Control of Quadrotor”. In: IEEE Robot. Autom. Mag. (2012). doi:
10.1109/MRA.2012.2206474.

[219] Alexei A Makarenko, Stefan B Williams, Frederic Bourgault, and Hugh F Durrant-
Whyte. “An experiment in integrated exploration”. In: Intelligent Robots and
Systems, IEEE/RSJ International Conference on. 2002.

[220] Philippe Martin and Erwan Salaün. “The true role of accelerometer feedback in
quadrotor control”. In: IEEE Int. Conf. Robot. Autom. (ICRA). 2010.

[221] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,
Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software
available from tensorflow.org. 2015. url: https://www.tensorflow.org/.

311

https://www.brainfpv.com/product/radix-fc/
https://doi.org/10.1109/MRA.2012.2206474
https://www.tensorflow.org/

Bibliography

[222] Helmut Maurer. “On optimal control problems with bounded state variables and
control appearing linearly”. In: SIAM J. on Control and Optimization 15.3 (1977),
pp. 345–362.

[223] Jasna Maver and Ruzena Bajcsy. “Occlusions as a guide for planning the next
view”. In: IEEE Trans. Pattern Anal. Mach. Intell. (1993).

[224] Mohit Mehndiratta and Erdal Kayacan. “Gaussian Process-based Learning Control
of Aerial Robots for Precise Visualization of Geological Outcrops”. In: IEEE Eur.
Control Conf. (ECC). 2020.

[225] Lorenz Meier, Dominik Honegger, and Marc Pollefeys. “PX4: A node-based mul-
tithreaded open source robotics framework for deeply embedded platforms”. In:
2015 IEEE International Conference on Robotics and Automation (ICRA). 2015,
pp. 6235–6240.

[226] Lorenz Meier, Petri Tanskanen, Lionel Heng, Gim Hee Lee, Friedrich Fraundorfer,
and Marc Pollefeys. “PIXHAWK: A micro aerial vehicle design for autonomous
flight using onboard computer vision”. In: Autonom. Rob. 33.1 (Aug. 2012), pp. 21–
39. doi: 10.1007/s10514-012-9281-4.

[227] D. Mellinger and V. Kumar. “Minimum snap trajectory generation and control for
quadrotors”. In: IEEE Int. Conf. Robot. Autom. (ICRA). 2011. doi: 10.1109/ICRA.
2011.5980409.

[228] Daniel Mellinger, Nathan Michael, and Vijay Kumar. “Trajectory genera-
tion and control for precise aggressive maneuvers with quadrotors”. In: Int.
J. Robot. Research 31.5 (Apr. 2012), pp. 664–674. issn: 0278-3649. doi: 10 .
1177/0278364911434236.

[229] Johannes Meyer, Alexander Sendobry, Stefan Kohlbrecher, Uwe Klingauf, and
Oskar Von Stryk. “Comprehensive simulation of quadrotor uavs using ros and
gazebo”. In: International conference on simulation, modeling, and programming
for autonomous robots. Springer. 2012, pp. 400–411.

[230] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, and
Georg Ostrovski. “Human-level control through deep reinforcement learning”. In:
nature 518.7540 (2015), pp. 529–533.

[231] Nima Mohajerin, Melissa Mozifian, and Steven Waslander. “Deep learning a
quadrotor dynamic model for multi-step prediction”. In: 2018 IEEE International
Conference on Robotics and Automation (ICRA). IEEE. 2018, pp. 2454–2459.

[232] Nima Mohajerin and Steven Waslander. “Multistep Prediction of Dynamic Systems
With Recurrent Neural Networks”. In: IEEE Transactions on Neural Networks
and Learning Systems (2019).

[233] Kartik Mohta, Michael Watterson, Yash Mulgaonkar, Sikang Liu, Chao Qu, Anurag
Makineni, Kelsey Saulnier, Ke Sun, Alex Zhu, Jeffrey Delmerico, Konstantinos
Karydis, Nikolay Atanasov, Giuseppe Loianno, Davide Scaramuzza, Kostas Dani-
ilidis, Camillo Jose Taylor, and Vijay Kumar. “Fast, autonomous flight in GPS-
denied and cluttered environments”. In: J. Field Robot. 35.1 (2018), pp. 101–120.
doi: 10.1002/rob.21774.

312

https://doi.org/10.1007/s10514-012-9281-4
https://doi.org/10.1109/ICRA.2011.5980409
https://doi.org/10.1109/ICRA.2011.5980409
https://doi.org/10.1177/0278364911434236
https://doi.org/10.1177/0278364911434236
https://doi.org/10.1002/rob.21774

Bibliography

[234] Artem Molchanov, Tao Chen, Wolfgang Hönig, James A. Preiss, Nora Ayanian,
and Gaurav S. Sukhatme. “Sim-to-(Multi)-Real: Transfer of Low-Level Robust
Control Policies to Multiple Quadrotors”. In: IEEE/RSJ Int. Conf. Intell. Robot.
Syst. (IROS). 2019.

[235] H. Moon, J. Martinez-Carranza, T. Cieslewski, M. Faessler, D. Falanga, A. Simovic,
D. Scaramuzza, S. Li, M. Ozo, C. De Wagter, G. de Croon, S. Hwang, S. Jung,
H. Shim, H. Kim, M. Park, T.-C. Au, and S. J. Kim. “Challenges and implemented
technologies used in autonomous drone racing”. In: J. Intell. Service Robot. (2019).
doi: 10.1007/s11370-018-00271-6.

[236] H. Moon, Y. Sun, J. Baltes, and S. J. Kim. “The IROS 2016 Competitions
[Competitions]”. In: IEEE Robotics and Automation Magazine 24.1 (2017), pp. 20–
29.

[237] Hyungpil Moon, Yu Sun, Jacky Baltes, and Si Jung Kim. “The IROS 2016
Competitions”. In: IEEE Robot. Autom. Mag. 24.1 (Mar. 2017), pp. 20–29. doi:
10.1109/MRA.2016.2646090. url: https://ieeexplore.ieee.org/document/7886372.

[238] Saber Moradi, Ning Qiao, Fabio Stefanini, and Giacomo Indiveri. “A Scalable
Multicore Architecture With Heterogeneous Memory Structures for Dynamic
Neuromorphic Asynchronous Processors (DYNAPs)”. en. In: IEEE Trans. Biomed.
Circuits Syst. 12.1 (Feb. 2018), pp. 106–122. issn: 1932-4545, 1940-9990. doi:
10.1109/TBCAS.2017.2759700.

[239] Benjamin Morrell, Marc Rigter, Gene Merewether, Robert Reid, Rohan Thakker,
Theodore Tzanetos, Vinay Rajur, and Gregory Chamitoff. “Differential flatness
transformations for aggressive quadrotor flight”. In: IEEE Int. Conf. Robot. Autom.
(ICRA). 2018.

[240] Benjamin Morrell, Rohan Thakker, Gene Merewether, Robert G Reid, Marc
Rigter, Theodore Tzanetos, and Gregory Chamitoff. “Comparison of Trajectory
Optimization Algorithms for High-Speed Quadrotor Flight Near Obstacles”. In:
IEEE Robot. Autom. Lett. 3.4 (2018).

[241] Anastasios I. Mourikis and Stergios I. Roumeliotis. “A Multi-State Constraint
Kalman Filter for Vision-aided Inertial Navigation”. In: IEEE Int. Conf. Robot.
Autom. (ICRA). Apr. 2007, pp. 3565–3572.

[242] M. W. Mueller, M. Hehn, and R. D’Andrea. “A computationally efficient algorithm
for state-to-state quadrocopter trajectory generation and feasibility verification”.
In: IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS). 2013. doi: 10.1109/iros.2013.
6696852.

[243] Mark Wilfried Mueller, Markus Hehn, and Raffaello D’Andrea. “A Computationally
Efficient Motion Primitive for Quadrocopter Trajectory Generation”. In: IEEE
Trans. Robot. 31.6 (2015), pp. 1294–1310.

[244] Matthias Müller, Vincent Casser, Jean Lahoud, Neil Smith, and Bernard Ghanem.
“Sim4cv: A photo-realistic simulator for computer vision applications”. In: Int. J.
Comput. Vis. 126.9 (2018), pp. 902–919.

[245] Matthias Müller, Vincent Casser, Neil Smith, Dominik L Michels, and Bernard
Ghanem. “Teaching UAVs to Race Using UE4Sim”. In: arXiv:1708.05884 (2017).

313

https://doi.org/10.1007/s11370-018-00271-6
https://doi.org/10.1109/MRA.2016.2646090
https://ieeexplore.ieee.org/document/7886372
https://doi.org/10.1109/TBCAS.2017.2759700
https://doi.org/10.1109/iros.2013.6696852
https://doi.org/10.1109/iros.2013.6696852

Bibliography

[246] Matthias Müller, Vincent Casser, Neil Smith, Dominik L. Michels, and Bernard
Ghanem. “Teaching UAVs to Race: End-to-End Regression of Agile Controls in
Simulation”. In: (2018).

[247] Matthias Müller, Alexey Dosovitskiy, Bernard Ghanem, and Vladlen Koltun.
“Driving Policy Transfer via Modularity and Abstraction”. In: Conference on Robot
Learning. 2018, pp. 1–15.

[248] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós. “ORB-SLAM: a Versatile
and Accurate Monocular SLAM System”. In: IEEE Trans. Robot. 31.5 (2015),
pp. 1147–1163.

[249] Raúl Mur-Artal and Juan D. Tardós. “ORB-SLAM2: An Open-Source SLAM
System for Monocular, Stereo, and RGB-D Cameras”. In: IEEE Trans. Robot. 33.5
(2017).

[250] Fang Nan, Sihao Sun, Philipp Foehn, and Davide Scaramuzza. “Nonlinear MPC
for Quadrotor Fault-Tolerant Control”. In: IEEE Robot. Autom. Lett. 2022.

[251] K.S. Narendra and K. Parthasarathy. “Identification and control of dynamical
systems using neural networks”. In: IEEE Transactions on Neural Networks (1990).

[252] M. Neunert, C. de Crousaz, F. Furrer, M. Kamel, F. Farshidian, R. Siegwart,
and J. Buchli. “Fast nonlinear Model Predictive Control for unified trajectory
optimization and tracking”. In: IEEE Int. Conf. Robot. Autom. (ICRA). 2016. doi:
10.1109/icra.2016.7487274.

[253] Huan Nguyen, Mina Kamel, Kostas Alexis, and Roland Siegwart. “Model Predictive
Control for Micro Aerial Vehicles: A Survey”. In: arXiv e-prints (Nov. 2020). arXiv:
2011.11104 [cs.RO].

[254] Barza Nisar, Philipp Foehn, Davide Falanga, and Davide Scaramuzza. “VIMO:
Simultaneous Visual Inertial Model-Based Odometry and Force Estimation”. In:
IEEE Robot. Autom. Lett. 4.3 (July 2019), pp. 2785–2792. doi: 10.1109/LRA.2019.
2918689.

[255] David A Nix and Andreas S Weigend. “Estimating the mean and variance of the
target probability distribution”. In: IEEE Int. Conf. Neural Netw. 1994.

[256] Helen Oleynikova, Christian Lanegger, Zachary Taylor, Michael Pantic, Alexander
Millane, Roland Siegwart, and Juan Nieto. “An open-source system for vision-based
micro-aerial vehicle mapping, planning, and flight in cluttered environments”. In:
J. Field Robot. 37.4 (June 2020), pp. 642–666. doi: 10.1002/rob.21950.

[257] Helen Oleynikova, Zachary Taylor, Marius Fehr, Roland Siegwart, and Juan I. Nieto.
“Voxblox: Incremental 3D Euclidean Signed Distance Fields for on-board MAV
planning”. In: IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS). 2017, pp. 1366–
1373.

[258] Sammy Omari, Minh-Duc Hua, Guillaume Ducard, and Tarek Hamel. “Nonlinear
control of vtol uavs incorporating flapping dynamics”. In: IEEE/RSJ Int. Conf.
Intell. Robot. Syst. (IROS). 2013.

[259] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,
Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. “Wavenet:
A generative model for raw audio”. In: arXiv preprint arXiv:1609.03499 (2016).

314

https://doi.org/10.1109/icra.2016.7487274
https://arxiv.org/abs/2011.11104
https://doi.org/10.1109/LRA.2019.2918689
https://doi.org/10.1109/LRA.2019.2918689
https://doi.org/10.1002/rob.21950

Bibliography

[260] Matko Orsag and Stjepan Bogdan. “Influence of forward and descent flight on
quadrotor dynamics”. In: Recent Advances in Aircraft Technology (2012), pp. 141–
156.

[261] T. Ozaslan, G. Loianno, J. Keller, C. J. Taylor, V. Kumar, J. M. Wozencraft,
and T. Hood. “Autonomous Navigation and Mapping for Inspection of Penstocks
and Tunnels With MAVs”. In: IEEE Robotics and Automation Letters 2.3 (2017),
pp. 1740–1747.

[262] D. Palossi, A. Loquercio, F. Conti, F. Conti, E. Flamand, E. Flamand, D. Scara-
muzza, L. Benini, and L. Benini. “A 64mW DNN-based Visual Navigation Engine
for Autonomous Nano-Drones”. In: IEEE Internet of Things Journal (2019), pp. 1–
1. issn: 2327-4662. doi: 10.1109/JIOT.2019.2917066.

[263] Daniele Palossi, Francesco Conti, and Luca Benini. “An Open Source and Open
Hardware Deep Learning-Powered Visual Navigation Engine for Autonomous Nano-
UAVs”. In: 2019 15th International Conference on Distributed Computing in Sensor
Systems (DCOSS). May 2019, pp. 604–611. doi: 10.1109/DCOSS.2019.00111.

[264] Yunpeng Pan, Ching-An Cheng, Kamil Saigol, Keuntaek Lee, Xinyan Yan, Evan-
gelos Theodorou, and Byron Boots. “Agile Autonomous Driving Using End-to-End
Deep Imitation Learning”. In: Robotics: Science and Systems (RSS). 2018.

[265] Jacopo Panerati, Hehui Zheng, SiQi Zhou, James Xu, Amanda Prorok, and
Angela P Schoellig. “Learning to fly—a gym environment with pybullet physics
for reinforcement learning of multi-agent quadcopter control”. In: 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE. 2021,
pp. 7512–7519.

[266] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. “PyTorch: An Imperative Style, High-Performance Deep Learning Li-
brary”. In: Advances in Neural Information Processing Systems 32. Ed. by H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett. Curran
Associates, Inc., 2019, pp. 8024–8035. url: http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

[267] Xue Bin Peng, Erwin Coumans, Tingnan Zhang, Tsang-Wei Lee, Jie Tan, and
Sergey Levine. “Learning Agile Robotic Locomotion Skills by Imitating Animals”.
In: Robotics: Science and Systems (RSS). 2020. doi: 10.15607/RSS.2020.XVI.064.

[268] Xue Bin Peng and Michiel van de Panne. “Learning locomotion skills using
deeprl: Does the choice of action space matter?” In: Proceedings of the ACM
SIGGRAPH/Eurographics Symp. on Comput. Anim. 2017.

[269] Karime Pereida, Lukas Brunke, and Angela P Schoellig. “Robust adaptive model
predictive control for guaranteed fast and accurate stabilization in the presence of
model errors”. In: International Journal of Robust and Nonlinear Control 31.18
(2021), pp. 8750–8784.

315

https://doi.org/10.1109/JIOT.2019.2917066
https://doi.org/10.1109/DCOSS.2019.00111
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.15607/RSS.2020.XVI.064

Bibliography

[270] Christian Pfeiffer and Davide Scaramuzza. “Human-piloted drone racing: Visual
processing and control”. In: IEEE Robotics and Automation Letters 6.2 (2021),
pp. 3467–3474.

[271] Chen-Huan Pi, Kai-Chun Hu, Stone Cheng, and I-Chen Wu. “Low-level autonomous
control and tracking of quadrotor using reinforcement learning”. In: Control Engi-
neering Practice (2020).

[272] Chen-Huan Pi, Wei-Yuan Ye, and Stone Cheng. “Robust quadrotor control through
reinforcement learning with disturbance compensation”. In: Applied Sciences
(2021).

[273] Lerrel Pinto, Marcin Andrychowicz, Peter Welinder, Wojciech Zaremba, and Pieter
Abbeel. “Asymmetric Actor Critic for Image-Based Robot Learning”. In: Robotics:
Science and Systems (RSS). 2018. doi: 10.15607/RSS.2018.XIV.008.

[274] Gavin D Portwood, Peetak P Mitra, Mateus Dias Ribeiro, Tan Minh Nguyen,
Balasubramanya T Nadiga, Juan A Saenz, Michael Chertkov, Animesh Garg,
Anima Anandkumar, and Andreas Dengel. “Turbulence forecasting via Neural
ODE”. In: 2nd Workshop on Machine Learning and the Physical Sciences (NeurIPS
2019) (2019).

[275] Caitlin Powers, Daniel Mellinger, Aleksandr Kushleyev, Bruce Kothmann, and
Vijay Kumar. “Influence of aerodynamics and proximity effects in quadrotor flight”.
In: Experimental robotics. Springer. 2013, pp. 289–302.

[276] Raymond W Prouty. Helicopter performance, stability, and control. 1995.

[277] Ali Punjani and Pieter Abbeel. “Deep learning helicopter dynamics models”. In:
2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE.
2015, pp. 3223–3230.

[278] T. Qin, P. Li, and S. Shen. “VINS-Mono: A Robust and Versatile Monocular
Visual-Inertial State Estimator”. In: IEEE Trans. Robot. July 2018.

[279] M Quigley, J Faust, T Foote, and J Leibs. “ROS: an open-source Robot Operating
System”. In: ICRA workshop on open source software. Dec. 2009.

[280] René Ranftl and Vladlen Koltun. “Deep fundamental matrix estimation”. In:
European Conference on Computer Vision (ECCV). 2018.

[281] Kanishka Rao, Chris Harris, Alex Irpan, Sergey Levine, Julian Ibarz, and Mohi
Khansari. “RL-CycleGAN: Reinforcement Learning Aware Simulation-to-Real”. In:
IEEE Conf. Comput. Vis. Pattern Recog. (CVPR). 2020, pp. 11154–11163. doi:
10.1109/CVPR42600.2020.01117.

[282] Charles Richter, Adam Bry, and Nicholas Roy. “Polynomial Trajectory Planning
for Aggressive Quadrotor Flight in Dense Indoor Environments”. In: Proc. Int.
Symp. Robot. Research (ISRR). 2013.

[283] Charles Richter and Nicholas Roy. “Safe Visual Navigation via Deep Learning and
Novelty Detection”. In: Robotics: Science and Systems. 2017.

[284] Stephan R. Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. “Playing
for Data: Ground Truth from Computer Games”. In: European Conference on
Computer Vision (ECCV). 2016.

316

https://doi.org/10.15607/RSS.2018.XIV.008
https://doi.org/10.1109/CVPR42600.2020.01117

Bibliography

[285] Gareth O Roberts and Adrian FM Smith. “Simple conditions for the convergence
of the Gibbs sampler and Metropolis-Hastings algorithms”. In: Stochastic processes
and their applications 49.2 (1994), pp. 207–216.

[286] Angel Romero, Sihao Sun, Philipp Foehn, and Davide Scaramuzza. “Model Pre-
dictive Contouring Control for Near-Time-Optimal Quadrotor Flight”. In: IEEE
Trans. Robot. (2021). arXiv: 2108.13205 [cs.RO].

[287] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convolutional net-
works for biomedical image segmentation”. In: International Conference on Medical
image computing and computer-assisted intervention. Springer. 2015, pp. 234–241.

[288] Antoni Rosinol Vidal, Henri Rebecq, Timo Horstschaefer, and Davide Scaramuzza.
“Ultimate SLAM? Combining Events, Images, and IMU for Robust Visual SLAM
in HDR and High Speed Scenarios”. In: IEEE Robot. Autom. Lett. 3.2 (2018),
pp. 994–1001. doi: 10.1109/LRA.2018.2793357.

[289] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. “A reduction of imitation
learning and structured prediction to no-regret online learning”. In: Proceedings
of the fourteenth international conference on artificial intelligence and statistics.
2011, pp. 627–635.

[290] Stéphane Ross, Narek Melik-Barkhudarov, Kumar Shaurya Shankar, Andreas
Wendel, Debadeepta Dey, J. Andrew Bagnell, and Martial Hebert. “Learning
monocular reactive UAV control in cluttered natural environments”. In: IEEE Int.
Conf. Robot. Autom. (ICRA). 2013, pp. 1765–1772.

[291] Pengkai Ru and Kamesh Subbarao. “Nonlinear model predictive control for un-
manned aerial vehicles”. In: Aerospace (2017).

[292] Christian Rupprecht, Iro Laina, Robert S. DiPietro, and Maximilian Baust. “Learn-
ing in an Uncertain World: Representing Ambiguity Through Multiple Hypotheses”.
In: International Conference on Computer Vision, ICCV. 2017, pp. 3611–3620.

[293] Carl Russell, Jaewoo Jung, Gina Willink, and Brett Glasner. “Wind tunnel and
hover performance test results for multicopter UAS vehicles”. In: AHS 72nd annual
forum. 2016, pp. 16–19.

[294] Andrei A Rusu, Matej Vecerik, Thomas Rothörl, Nicolas Heess, Razvan Pascanu,
and Raia Hadsell. “Sim-to-real robot learning from pixels with progressive nets”.
In: Conference on Robot Learning (CoRL). 2017.

[295] Markus Ryll, John Ware, John Carter, and Nick Roy. “Efficient trajectory planning
for high speed flight in unknown environments”. In: 2019 International conference
on robotics and automation (ICRA). IEEE. 2019, pp. 732–738.

[296] Gilhyun Ryou, Ezra Tal, and Sertac Karaman. “Multi-fidelity black-box optimiza-
tion for time-optimal quadrotor maneuvers”. In: Robotics: Science and Systems
(RSS). 2020.

[297] Inkyu Sa, Mina Kamel, Michael Burri, Michael Blosch, Raghav Khanna, Marija
Popovic, Juan Nieto, and Roland Siegwart. “Build Your Own Visual-Inertial Drone:
A Cost-Effective and Open-Source Autonomous Drone”. In: IEEE Robot. Autom.
Mag. 25.1 (Mar. 2018), pp. 89–103. issn: 1070-9932.

317

https://arxiv.org/abs/2108.13205
https://doi.org/10.1109/LRA.2018.2793357

Bibliography

[298] Fereshteh Sadeghi and Sergey Levine. “CAD2RL: Real Single-Image Flight without
a Single Real Image”. In: Robotics: Science and Systems (RSS). Ed. by Nancy M.
Amato, Siddhartha S. Srinivasa, Nora Ayanian, and Scott Kuindersma. 2017.

[299] Fereshteh Sadeghi, Alexander Toshev, Eric Jang, and Sergey Levine. “Sim2Real
Viewpoint Invariant Visual Servoing by Recurrent Control”. In: Conference on
Computer Vision and Pattern Recognition (CVPR). 2018. doi: 10.1109/cvpr.2018.
00493.

[300] Parrot Drone SAS. Parrot ANAFI Ai. https://www.parrot.com/en/drones/anafi-ai.
Accessed: 2021-7-20.

[301] Matteo Saveriano, Yuchao Yin, Pietro Falco, and Dongheui Lee. “Data-efficient
control policy search using residual dynamics learning”. In: IEEE/RSJ Int. Conf.
Intell. Robot. Syst. (IROS). 2017.

[302] Thomas Sayre-McCord, Winter Guerra, Amado Antonini, Jasper Arneberg, Austin
Brown, Guilherme Cavalheiro, Yajun Fang, Alex Gorodetsky, Dave Mccoy, Sebas-
tian Quilter, Fabian Riether, Ezra Tal, Yunus Terzioglu, Luca Carlone, and Sertac
Karaman. “Visual-Inertial Navigation Algorithm Development Using Photorealistic
Camera Simulation in the Loop”. In: IEEE Int. Conf. Robot. Autom. (ICRA).
2018. doi: 10.1109/ICRA.2018.8460692.

[303] Davide Scaramuzza, Michael Achtelik, Lefteris Doitsidis, Friedrich Fraundorfer,
Elias B. Kosmatopoulos, Agostino Martinelli, Markus W. Achtelik, Margarita Chli,
Savvas A. Chatzichristofis, Laurent Kneip, Daniel Gurdan, Lionel Heng, Gim Hee
Lee, Simon Lynen, Marc Pollefeys, Alessandro Renzaglia, Roland Siegwart, Jan
Carsten Stumpf, Petri Tanskanen, Chiara Troiani, Stephan Weiss, and Lorenz Meier.
“Vision-Controlled Micro Flying Robots: From System Design to Autonomous
Navigation and Mapping in GPS-Denied Environments”. In: IEEE Robot. Autom.
Mag. 21.3 (2014), pp. 26–40.

[304] Davide Scaramuzza and Zichao Zhang. “Visual-inertial odometry of aerial robots”.
In: Encyclopedia of Robotics (2019).

[305] Fabrizio Schiano, Javier Alonso-Mora, Konrad Rudin, Paul Beardsley, Roland Y
Siegwart, and Bruno Sicilianok. “Towards estimation and correction of wind effects
on a quadrotor UAV”. In: IMAV 2014: International Micro Air Vehicle Conference
and Competition 2014. 2014, pp. 134–141.

[306] T. Schneider, M. T. Dymczyk, M. Fehr, K. Egger, S. Lynen, I. Gilitschenski, and R.
Siegwart. “maplab: An Open Framework for Research in Visual-inertial Mapping
and Localization”. In: IEEE Robot. Autom. Lett. 3.3 (2018).

[307] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Lau-
rent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore
Graepel, Timothy Lillicrap, and David Silver. “Mastering Atari, Go, chess and
shogi by planning with a learned model”. In: Nature 588.7839 (2020), pp. 604–609.

[308] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
“Proximal policy optimization algorithms”. In: arXiv e-prints (2017).

318

https://doi.org/10.1109/cvpr.2018.00493
https://doi.org/10.1109/cvpr.2018.00493
https://www.parrot.com/en/drones/anafi-ai
https://doi.org/10.1109/ICRA.2018.8460692

Bibliography

[309] S. Shah, D. Dey, C. Lovett, and A. Kapoor. “AirSim: High-Fidelity Visual and
Physical Simulation for Autonomous Vehicles”. In: Field and Service Robot. 2017,
pp. 621–635.

[310] Shaojie Shen, Nathan Michael, and Vijay Kumar. “Stochastic differential equation-
based exploration algorithm for autonomous indoor 3d exploration with a micro-
aerial vehicle”. In: The International Journal of Robotics Research 31.12 (2012),
pp. 1431–1444.

[311] Shaojie Shen, Yash Mulgaonkar, Nathan Michael, and Vijay Kumar. “Vision-
Based State Estimation and Trajectory Control Towards High-Speed Flight with
a Quadrotor”. In: Robotics: Science and Systems (RSS). 2013.

[312] Guanya Shi, Xichen Shi, Michael O’Connell, Rose Yu, Kamyar Azizzadenesheli,
Animashree Anandkumar, Yisong Yue, and Soon-Jo Chung. “Neural lander: Stable
drone landing control using learned dynamics”. In: IEEE Int. Conf. Robot. Autom.
(ICRA). 2019. doi: 10.1109/icra.2019.8794351.

[313] Malcolm D. Shuster. “Survey of attitude representations”. In: Journal of the
Astronautical Sciences 41.4 (Oct. 1993), pp. 439–517.

[314] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner,
Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore
Graepel, and Demis Hassabis. “Mastering the game of Go with deep neural networks
and tree search”. In: Nature 529.7587 (2016), pp. 484–489.

[315] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,
Timothy Lillicrap, Karen Simonyan, and Demis Hassabis. “A general reinforcement
learning algorithm that masters chess, shogi, and Go through self-play”. In: Science
362.6419 (2018), pp. 1140–1144. doi: 10.1126/science.aar6404.

[316] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, and Adrian
Bolton. “Mastering the game of go without human knowledge”. In: nature 550.7676
(2017), pp. 354–359.

[317] Skydio. Skydio. July 26, 2021.

[318] Ewoud JJ Smeur, Qiping Chu, and Guido CHE de Croon. “Adaptive incremental
nonlinear dynamic inversion for attitude control of micro air vehicles”. In: Journal
of Guidance, Control, and Dynamics 39.3 (2016), pp. 450–461.

[319] Laura Smith, J Chase Kew, Xue Bin Peng, Sehoon Ha, Jie Tan, and Sergey Levine.
“Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the
Real World”. In: arXiv preprint arXiv:2110.05457 (2021).

[320] Yunlong Song, Selim Naji, Elia Kaufmann, Antonio Loquercio, and Davide Scara-
muzza. “Flightmare: A Flexible Quadrotor Simulator”. In: Conference on Robot
Learning. 2020.

[321] Yunlong Song and Davide Scaramuzza. “Learning High-Level Policies for Model
Predictive Control”. In: IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS). 2020.

319

https://doi.org/10.1109/icra.2019.8794351
https://doi.org/10.1126/science.aar6404

Bibliography

[322] Yunlong Song, Mats Steinweg, Elia Kaufmann, and Davide Scaramuzza. “Au-
tonomous Drone Racing with Deep Reinforcement Learning”. In: IEEE/RSJ Int.
Conf. Intell. Robot. Syst. (IROS). 2021.

[323] Igor Spasojevic, Varun Murali, and Sertac Karaman. “Joint Feature Selection and
Time Optimal Path Parametrization for High Speed Vision-Aided Navigation”. In:
IEEE Int. Conf. Robot. Autom. (ICRA). 2020.

[324] Riccardo Spica, Eric Cristofalo, Zijian Wang, Eduardo Montijano, and Mac Schwa-
ger. “A Real-Time Game Theoretic Planner for Autonomous Two-Player Drone
Racing”. In: IEEE Transactions on Robotics 36.5 (Oct. 2020), pp. 1389–1403. doi:
10.1109/tro.2020.2994881.

[325] Nathan A Spielberg, Matthew Brown, and J Christian Gerdes. “Neural Network
Model Predictive Motion Control Applied to Automated Driving With Unknown
Friction”. In: IEEE Transactions on Control Systems Technology (2021).

[326] Nathan A Spielberg, Matthew Brown, Nitin R Kapania, John C Kegelman, and J
Christian Gerdes. “Neural network vehicle models for high-performance automated
driving”. In: Science robotics (2019).

[327] Amr Suleiman, Zhengdong Zhang, Luca Carlone, Sertac Karaman, and Vivienne
Sze. “Navion: A 2-mW Fully Integrated Real-Time Visual-Inertial Odometry
Accelerator for Autonomous Navigation of Nano Drones”. In: IEEE J. Solid-
State Circuits 54.4 (Apr. 2019), pp. 1106–1119. issn: 0018-9200, 1558-173X. doi:
10.1109/JSSC.2018.2886342.

[328] Sihao Sun, Giovanni Cioffi, Coen De Visser, and Davide Scaramuzza. “Autonomous
quadrotor flight despite rotor failure with onboard vision sensors: Frames vs. events”.
In: IEEE Robotics and Automation Letters 6.2 (2021), pp. 580–587.

[329] Sihao Sun, Angel Romero, Philipp Foehn, Elia Kaufmann, and Davide Scaramuzza.
“A Comparative Study of Nonlinear MPC and Differential-Flatness-Based Control
for Quadrotor Agile Flight”. In: IEEE Trans. Robot. (2022).

[330] Sihao Sun, Leon Sijbers, Xuerui Wang, and Coen de Visser. “High-speed flight of
quadrotor despite loss of single rotor”. In: IEEE Robot. Autom. Lett. 3.4 (2018),
pp. 3201–3207.

[331] Sihao Sun, Coen C de Visser, and Qiping Chu. “Quadrotor gray-box model
identification from high-speed flight data”. In: Journal of Aircraft 56.2 (2019),
pp. 645–661.

[332] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[333] “Swiss Drone Industry Report 2021”. In: Drone Industry Association Switzerland
(Nov. 1, 2021). url: https://droneindustry.ch/swiss-drone-industry-report-2021/
(visited on 04/16/2022).

[334] Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Com-
puter Science. Springer, 2010. isbn: 9781848829343.

[335] O. Tahri and F. Chaumette. “Point-based and region-based image moments for
visual servoing of planar objects”. In: IEEE Transactions on Robotics 21.6 (2005),
pp. 1116–1127.

320

https://doi.org/10.1109/tro.2020.2994881
https://doi.org/10.1109/JSSC.2018.2886342
https://droneindustry.ch/swiss-drone-industry-report-2021/

Bibliography

[336] Ezra Tal and Sertac Karaman. “Accurate tracking of aggressive quadrotor trajec-
tories using incremental nonlinear dynamic inversion and differential flatness”. In:
IEEE Transactions on Control Systems Technology 29.3 (2020), pp. 1203–1218.

[337] Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner,
Steven Bohez, and Vincent Vanhoucke. “Sim-to-real: Learning agile locomotion
for quadruped robots”. In: Robotics: Science and Systems (RSS) (2018).

[338] Yi-Rui Tang and Yangmin Li. “Dynamic modeling for high-performance con-
troller design of a UAV quadrotor”. In: 2015 IEEE International Conference on
Information and Automation. IEEE. 2015, pp. 3112–3117.

[339] The Apache Software Foundation. NuttX. https://nuttx.apache.org/. Accessed:
2021-7-20.

[340] The Betaflight Open Source Flight Controller Firmware Project. Betaflight. https:
//github.com/betaflight/betaflight. Accessed: 2021-7-20.

[341] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and
Pieter Abbeel. “Domain randomization for transferring deep neural networks from
simulation to the real world”. In: IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS).
2017.

[342] Emanuel Todorov, Tom Erez, and Yuval Tassa. “Mujoco: A physics engine for
model-based control”. In: IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS). 2012,
pp. 5026–5033.

[343] T. Tomic, P. Lutz, K. Schmid, A. Mathers, and S. Haddadin. “Simultaneous
contact and aerodynamic force estimation (s-CAFE) for aerial robots”. In: Int. J.
Robot. Research (2020). doi: 10.1177/0278364920904788.

[344] Erkki Tomppo. “Models and methods for analysing spatial patterns of trees”. PhD
dissertation. Finnish Forest Research Institute, 1986.

[345] Jesus Tordesillas, Brett Thomas Lopez, and Jonathan P. How. “FASTER: Fast and
Safe Trajectory Planner for Flights in Unknown Environments”. In: International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2019, pp. 1934–1940.
doi: 10.1109/IROS40897.2019.8968021.

[346] Guillem Torrente∗, Elia Kaufmann∗, Philipp Foehn, and Davide Scaramuzza. “Data-
driven mpc for quadrotors”. In: IEEE Robot. Autom. Lett. 6.2 (2021), pp. 3769–
3776.

[347] Benjamin Tovar, Lourdes Munoz-Gomez, Rafael Murrieta-Cid, Moises Alencastre-
Miranda, Raul Monroy, and Seth Hutchinson. “Planning exploration strategies for
simultaneous localization and mapping”. In: J. Robot. and Auton. Syst. (2006).

[348] Unity. Unity Asset Store. https://assetstore.unity.com/. Accessed: 2021-08-02.

[349] Vladyslav Usenko, Jakob Engel, Jörg Stückler, and Daniel Cremers. “Direct visual-
inertial odometry with stereo cameras”. In: IEEE Int. Conf. Robot. Autom. (ICRA).
2016.

[350] Patricia Ventura Diaz and Steven Yoon. “High-Fidelity Computational Aerody-
namics of Multi-Rotor Unmanned Aerial Vehicles”. In: AIAA Aerospace Sciences
Meeting. 2018.

321

https://nuttx.apache.org/
https://github.com/betaflight/betaflight
https://github.com/betaflight/betaflight
https://doi.org/10.1177/0278364920904788
https://doi.org/10.1109/IROS40897.2019.8968021
https://assetstore.unity.com/

Bibliography

[351] Jon Verbeke and Joris De Schutter. “Experimental maneuverability and agility
quantification for rotary unmanned aerial vehicle”. In: International Journal of
Micro Air Vehicles (2018). doi: 10.1177/1756829317736204.

[352] Robin Verschueren, Gianluca Frison, Dimitris Kouzoupis, Niels van Duijkeren,
Andrea Zanelli, Rien Quirynen, and Moritz Diehl. “Towards a modular software
package for embedded optimization”. In: IFAC-PapersOnLine (2018).

[353] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew
Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, and Petko
Georgiev. “Grandmaster level in StarCraft II using multi-agent reinforcement
learning”. In: Nature 575.7782 (2019), pp. 350–354.

[354] Antonio Vitale1, Alpha Renner, Celine Nauer, Davide Scaramuzza, and Yulia
Sandamirskaya. “Event-driven Vision and Control for UAVs on a Neuromorphic
Chip”. In: IEEE Int. Conf. Robot. Autom. (ICRA). 2021.

[355] Christophe De Wagter, Federico Paredes-Vallé, Nilay Sheth, and Guido de Croon.
“The sensing, state-estimation, and control behind the winning entry to the 2019
Artificial Intelligence Robotic Racing Competition”. In: Field Robotics 2.1 (Mar.
2022), pp. 1263–1290. doi: 10.55417/fr.2022042.

[356] Douglas Brent West. Introduction to graph theory. Vol. 2. Prentice hall Upper
Saddle River, NJ, 2001.

[357] Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for
machine learning. The MIT Press, Cambridge, MA, 2006.

[358] Grady Williams, Paul Drews, Brian Goldfain, James M. Rehg, and Evangelos A.
Theodorou. “Aggressive Driving with Model Predictive Path Integral Control”. In:
IEEE Int. Conf. Robot. Autom. (ICRA). Stockholm, Sweden, May 2016, pp. 1433–
1440.

[359] Grady Williams, Paul Drews, Brian Goldfain, James M. Rehg, and Evangelos
A. Theodorou. “Information-Theoretic Model Predictive Control: Theory and
Applications to Autonomous Driving”. In: IEEE Trans. Robotics 34.6 (2018),
pp. 1603–1622.

[360] Grady Williams, Nolan Wagener, Brian Goldfain, Paul Drews, James M Rehg,
Byron Boots, and Evangelos A Theodorou. “Information theoretic MPC for model-
based reinforcement learning”. In: IEEE Int. Conf. Robot. Autom. (ICRA). 2017.

[361] Dong-Ok Won, Klaus-Robert Müller, and Seong-Whan Lee. “An adaptive deep rein-
forcement learning framework enables curling robots with human-like performance
in real-world conditions”. In: Science Robotics 5.46 (2020).

[362] Markus Wulfmeier, Ingmar Posner, and Pieter Abbeel. “Mutual alignment transfer
learning”. In: Conference on Robot Learning (CoRL). 2017.

[363] Peter R Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik
Subramanian, Thomas J Walsh, Roberto Capobianco, Alisa Devlic, Franziska
Eckert, Florian Fuchs, et al. “Outracing champion Gran Turismo drivers with deep
reinforcement learning”. In: Nature 602.7896 (2022), pp. 223–228.

[364] Brian Yamauchi. “A frontier-based approach for autonomous exploration”. In: IEEE
Int. Symp. Comp. Intell. Robot. and Autom. 1997. doi: 10.1109/CIRA.1997.613851.

322

https://doi.org/10.1177/1756829317736204
https://doi.org/10.55417/fr.2022042
https://doi.org/10.1109/CIRA.1997.613851

Bibliography

[365] Brian Yamauchi. “Frontier-based exploration using multiple robots”. In: ACM Int.
Conf. Aut. Agents. 1998. doi: 10.1145/280765.280773.

[366] Guang-Zhong Yang, Jim Bellingham, Pierre E Dupont, Peer Fischer, Luciano
Floridi, Robert Full, Neil Jacobstein, Vijay Kumar, Marcia McNutt, and Robert
Merrifield. “The grand challenges of Science Robotics”. In: Science Robotics 3.14
(2018), eaar7650.

[367] Wenyuan Zeng, Wenjie Luo, Simon Suo, Abbas Sadat, Bin Yang, Sergio Casas,
and Raquel Urtasun. “End-to-end interpretable neural motion planner”. In: IEEE
Conf. Comput. Vis. Pattern Recog. (CVPR). 2019, pp. 8660–8669.

[368] Wenyuan Zeng, Shenlong Wang, Renjie Liao, Yun Chen, Bin Yang, and Raquel
Urtasun. “Dsdnet: Deep structured self-driving network”. In: Eur. Conf. Comput.
Vis. (ECCV). 2020, pp. 156–172.

[369] Daniel Zhang and Daniel D. Doyle. “Gate Detection Using Deep Learning”. In:
2020 IEEE Aerospace Conference. 2020, pp. 1–11. doi: 10.1109/AERO47225.2020.
9172619.

[370] Tianhao Zhang, Gregory Kahn, Sergey Levine, and Pieter Abbeel. “Learning deep
control policies for autonomous aerial vehicles with mpc-guided policy search”. In:
IEEE Int. Conf. Robot. Autom. (ICRA). 2016.

[371] Zichao Zhang and Davide Scaramuzza. “Perception-aware Receding Horizon Navi-
gation for MAVs”. In: IEEE Int. Conf. Robot. Autom. (ICRA). 2018, pp. 2534–
2541.

[372] B. Zhou, F. Gao, L. Wang, C. Liu, and S. Shen. “Robust and Efficient Quadrotor
Trajectory Generation for Fast Autonomous Flight”. In: IEEE Robot. Autom. Lett.
(2019). doi: 10.1109/LRA.2019.2927938.

[373] Boyu Zhou, Fei Gao, Jie Pan, and Shaojie Shen. “Robust real-time uav replan-
ning using guided gradient-based optimization and topological paths”. In: 2020
IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2020,
pp. 1208–1214.

[374] Boyu Zhou, Jie Pan, Fei Gao, and Shaojie Shen. “RAPTOR: Robust and Perception-
aware Trajectory Replanning for Quadrotor Fast Flight”. In: IEEE Trans. Robot.
(2021).

[375] Brady Zhou, Philipp Krähenbühl, and Vladlen Koltun. “Does computer vision
matter for action?” In: Sci. Robotics 4.30 (2019).

[376] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao Li. “On the continuity
of rotation representations in neural networks”. In: IEEE Conf. Comput. Vis.
Pattern Recog. (CVPR). 2019.

323

https://doi.org/10.1145/280765.280773
https://doi.org/10.1109/AERO47225.2020.9172619
https://doi.org/10.1109/AERO47225.2020.9172619
https://doi.org/10.1109/LRA.2019.2927938

Elia Kaufmann
MSc ETH Zurich
Robotics, Systems and Control

Luzernerstrasse 108

6333 Hünenberg See

Switzerland

Personal Details

Name Elia Kaufmann

Date of Birth 03.06.1992

Education

11.2017–

07.2022

Doctoral Program, University of Zurich, Department of Informatics

PhD thesis in Machine Learning for Robotics: Learning Agile Flight

Advisor: Prof. Davide Scaramuzza

05.2017–

11.2017

Research Assistant, Robotics and Perception Group,

Department of Neuroinformatics, Department of Informatics

09.2014–

05.2017

MSc Robotics, Systems and Control, ETH Zurich

Focus: Dynamic Programming and Optimal Control, Machine Learning, Recursive Esti-

mation, System Identification, Model Predictive Control, Robot Dynamics

Advisor: Prof. Raffaello D’Andrea

Master Thesis:

Rapid Exploration with Multi-Rotors: A Frontier Selection Method for High Speed Flight

Advisor: Prof. Davide Scaramuzza

Semester Thesis:

Nonlinear Infinite-Horizon Model Predictive Control Using Multi-Interval Polynomial Trajectories

Advisor: Prof. Raffaello D’Andrea, Dr. Michael Mühlebach

09.2011–

05.2014

BSc Mechanical Engineering, ETH Zurich

Focus: Control Systems, Robotics and Mechatronics

Bachelor Thesis:

Using Magnetometers and Barometers During Indoor Flight

Advisor: Prof. Raffaello D’Andrea, Prof. Mark Müller

325

	Acknowledgements
	Abstract
	List of Contributions
	Introduction
	Motivation
	Advantages
	Challenges

	Related Work
	Autonomous Navigation: External Sensing
	Autonomous Navigation: Onboard Sensing and Computation
	Data-Driven Dynamics Models
	Simulation
	Hardware Platforms
	Simulation-to-Reality Transfer
	Autonomous Drone Racing

	Contributions
	Tight Coupling of Learning-Based Perception and Optimal Planning and Control
	Paper A: Deep Drone Racing: Learning Agile Flight in Dynamic Environments
	Paper B: Beauty and the Beast: Optimal Methods Meet Learning for Drone Racing
	Paper C: AlphaPilot: Autonomous Drone Racing

	Simulation-to-Reality Transfer for Agile Drone Flight
	Paper D: Deep Drone Racing: From Simulation to Reality with Domain Randomization
	Paper E: Deep Drone Acrobatics
	Paper F: Learning High-Speed Flight in the Wild
	Paper G: A Benchmark Comparison of Learned Control Policies for Agile Quadrotor Flight
	Paper H: Champion-Level Performance in Drone Racing using Deep Reinforcement Learning

	Data-Driven Dynamics Models
	Paper I: Data-Driven MPC for Quadrotors
	Paper J: NeuroBEM: Hybrid Aerodynamic Quadrotor Model

	Additional Contributions
	Paper K: Agilicious: Open-Source and Open-Hardware Agile Quadrotor for Vision-Based Flight
	Paper L: Rapid Exploration with Multi-Rotors: A Frontier Selection Method for High-Speed Flight

	Future Directions
	Deep Drone Racing: Learning Agile Flight in Dynamic Environments
	Introduction
	Related Work
	Method
	Training procedure

	Experiments in Simulation
	Comparison to end-to-end learning approach
	Performance on a complex track
	Generalization to dynamic environments

	Experiments in the Physical World
	Experiments on a race track

	Discussion

	Beauty and the Beast: Optimal Methods Meet Learning for Drone Racing
	Introduction
	Related Work
	Methodology
	Notation and Frame Convention
	Perception System
	Mapping System
	Planning and Control System

	Experimental Setup
	Simulation
	Physical System

	Results
	Simulation
	Physical System

	Conclusion

	AlphaPilot: Autonomous Drone Racing
	Introduction
	Motivation
	Related Work
	Contribution

	AlphaPilot Race Format and Drone
	Race Format
	Drone Specifications
	Drone Model

	System Overview
	Perception
	State Estimation
	Planning and Control
	Software Architecture

	Gate Detection
	Stage 1: Predicting Corner Maps and Part Affinity Fields
	Stage 2: Corner Association
	Training Data
	Network Architecture and Deployment

	State Estimation
	Measurement Modalities

	Path Planning
	Time-Optimal Motion Primitive
	Sampling-Based Receding Horizon Path Planning
	Path Parameterization

	Control
	Position Control
	Attitude Control

	Results
	Gate Detection
	State Estimation
	Planning and Control

	Discussion and Conclusion

	Deep Drone Racing: From Simulation to Reality with Domain Randomization
	Introduction
	Related Work
	Data-driven Algorithms for Autonomous Navigation
	Drone Racing
	Transfer from Simulation to Reality

	Method
	Training Procedure
	Trajectory Generation

	Experiments
	Experimental Setup
	Experiments in Simulation
	Analysis of Accuracy and Efficiency
	Experiments in the Real World
	Simulation to Real World Transfer

	Discussion and Conclusion

	Deep Drone Acrobatics
	Introduction
	Related Work
	Overview
	Method
	Reference Trajectories
	Privileged Expert
	Learning
	Sensorimotor Controller
	Implementation Details

	Experiments
	Experimental Setup
	Experiments in Simulation
	Deployment in the Physical World

	Conclusion

	Learning High-Speed Flight in the Wild
	Introduction
	Results
	High-Speed Flight in the Wild
	Controlled Experiments
	Computational Cost
	The Effect of Latency and Sensor Noise

	Discussion
	Materials and Methods
	The Privileged Expert
	The Student Policy
	Training Environments
	Method Validation

	Experimental Platform
	Computational Complexity
	Rotational Dynamics
	Metropolis-Hastings Sampling

	A Benchmark Comparison of Learned Control Policies for Agile Quadrotor Flight
	Introduction
	Related Work
	Quadrotor Dynamics
	Notation
	Quadrotor Dynamics

	Methodology
	Observations, Actions, and Rewards
	Policy Learning
	Training Details

	Experiments
	Simulation Experiments
	Real World Experiments

	Conclusion
	Supplementary Material
	MPC Baselines
	Ablation Studies
	Tracking Performance
	Reference Trajectories

	Champion-Level Drone Racing using Deep Reinforcement Learning
	Introduction
	Results
	Methods
	Quadrotor Simulation

	Data-Driven MPC for Quadrotors
	Introduction
	Related Work
	Methodology
	Notation
	Nominal Quadrotor Dynamics Model
	Gaussian Process-Augmented Dynamics
	MPC Formulation
	Practical Implementation
	Data Collection and Model Learning

	Experiments and Results
	Experimental Setup
	Experiments in Simulation
	Experiments in the Real World

	Conclusion

	NeuroBEM: Hybrid Aerodynamic Quadrotor Model
	Introduction
	Related Work
	Quadrotor Model
	Notation
	Quadrotor Dynamics
	Rotor Model: Quadratic
	Rotor Model: BEM
	Learned Residual Dynamics

	Experimental Setup
	Data Collection
	Quadrotor Platform
	Control System
	Simulator Extension

	Experiments and Results
	Experimental Setup
	Comparison of Predictive Performance
	Closed-Loop Comparison

	Discussion
	Conclusion

	Agilicious: Open-Source and Open-Hardware Agile Quadrotor for Vision-Based Flight
	Introduction
	Results
	Agile Flight in a Tracking Arena
	Hardware in the Loop Simulation
	Vision-based Agile Flight with Onboard Sensing and Computation

	Discussion
	Materials and Methods
	Compute Hardware
	Flight Hardware
	The Agilicious Flight Stack Software

	Rapid Exploration with Multi-Rotors: A Frontier Selection Method for High-Speed Flight
	Introduction
	Related work
	Flight velocity for optimal energy use
	Methodology
	Experiments
	Simulation
	Real World Experiments
	Measurements

	Results
	Simulation
	Real World Experiments

	Conclusion

	Bibliography
	Curriculum Vitae

