250,049 research outputs found

    Close Approaches of Debris to LARES Satellite During Its First Four Years of Operation

    Get PDF
    Since its launch in February 2012, the LAser RElativity Satellite (LARES) of the Italian Space Agency experienced four close approaches with space debris. LARES orbits at an altitude of 1450 km, in a region where the density of space debris has a peak. However, the probability of an impact with a debris during the operational life of the satellite was reasonably low. The analysis of the close approaches identified three of the objects, that are from two peculiar population of objects. This paper discusses the problem of space debris in low orbit, the approaches occurred with LARES, and some possible scenarios related to space regulations and space law in case of an impact

    Space program: Space debris a potential threat to Space Station and shuttle

    Get PDF
    Experts estimate that more than 3.5 million man-made objects are orbiting the earth. These objects - space debris - include whole and fragmentary parts of rocket bodies and other discarded equipment from space missions. About 24,500 of these objects are 1 centimeter across or larger. A 1-centimeter man-made object travels in orbit at roughly 22,000 miles per hour. If it hit a spacecraft, it would do about the same damage as would a 400-pound safe traveling at 60 miles per hour. The Government Accounting Office (GAO) reviews NASA's plans for protecting the space station from debris, the extent and precision of current NASA and Defense Department (DOD) debris-tracking capabilities, and the extent to which debris has already affected shuttle operations. GAO recommends that the space debris model be updated, and that the findings be incorporated into the plans for protecting the space station from such debris. GAO further recommends that the increased risk from debris to the space shuttle operations be analyzed

    Experiment of Diffuse Reflection Laser Ranging to Space Debris and Data Analysis

    Full text link
    Space debris has been posing a serious threat to human space activities and is needed to be measured and cataloged. As a new technology of space target surveillance, the measurement accuracy of DRLR (Diffuse Reflection Laser Ranging) is much higher than that of microwave radar and electro-optical measurement. Based on laser ranging data of space debris from DRLR system collected at SHAO (Shanghai Astronomical Observatory) in March-April 2013, the characteristics and precision of the laser ranging data are analyzed and its applications in OD (Orbit Determination) of space debris are discussed in this paper, which is implemented for the first time in China. The experiment indicates that the precision of laser ranging data can reach 39cm-228cm. When the data is sufficient enough (4 arcs of 3 days), the orbit accuracy of space debris can be up to 50m.Comment: 11 pages, 8 figure

    Active Debris Removal Mapping Project

    Get PDF
    Space debris discussions initiated with the start of the space age 55 years ago and have seen special interest in current years. This is due to the large increase in the number of space debris which has led to an increased threat of collision with operational space systems and of unsafe reentry. Due to this increased interest in this area, many different methods have been proposed in recent years for mitigation and space debris removal, some of which have even secured funding from space agencies for further development. These include ground based lasers and space based systems which use electro-dynamic tethers, solar sails or inflatable components. While each method has its own pros and cons, some of these concepts seem to be more suitable for the short term and others for the long term. This paper identifies major performance measures for space debris removal systems based on current rules and regulations and maps the performance of the ADR technologies based on these criteria. The map can help prioritize removal concepts and required technologies in order to better meet current needs

    A study of the lunisolar secular resonance 2ω˙+Ω˙=02\dot{\omega}+\dot{\Omega}=0

    Full text link
    The dynamics of small bodies around the Earth has gained a renewed interest, since the awareness of the problems that space debris can cause in the nearby future. A relevant role in space debris is played by lunisolar secular resonances, which might contribute to an increase of the orbital elements, typically of the eccentricity. We concentrate our attention on the lunisolar secular resonance described by the relation 2ω˙+Ω˙=02\dot{\omega}+\dot{\Omega}=0, where ω\omega and Ω\Omega denote the argument of perigee and the longitude of the ascending node of the space debris. We introduce three different models with increasing complexity. We show that the growth in eccentricity, as observed in space debris located in the MEO region at the inclination about equal to 5656^\circ, can be explained as a natural effect of the secular resonance 2ω˙+Ω˙=02\dot{\omega}+\dot{\Omega}=0, while the chaotic variations of the orbital parameters are the result of interaction and overlapping of nearby resonances.Comment: 15 pages, 8 figure

    Orbital debris research at NASA Johnson Space Center, 1986-1988

    Get PDF
    Research on orbital debris has intensified in recent years as the number of debris objects in orbit has grown. The population of small debris has now reached the level that orbital debris has become an important design factor for the Space Station. The most active center of research in this field has been the NASA Lyndon B. Johnson Space Center. Work is being done on the measurement of orbital debris, development of models of the debris population, and development of improved shielding against hypervelocity impacts. Significant advances have been made in these areas. The purpose of this document is to summarize these results and provide references for further study

    Improved orbit predictions using two-line elements

    Full text link
    The density of orbital space debris constitutes an increasing environmental challenge. There are three ways to alleviate the problem: debris mitigation, debris removal and collision avoidance. This paper addresses collision avoidance, by describing a method that contributes to achieving a requisite increase in orbit prediction accuracy. Batch least-squares differential correction is applied to the publicly available two-line element (TLE) catalog of space objects. Using a high-precision numerical propagator, we fit an orbit to state vectors derived from successive TLEs. We then propagate the fitted orbit further forward in time. These predictions are compared to precision ephemeris data derived from the International Laser Ranging Service (ILRS) for several satellites, including objects in the congested sun-synchronous orbital region. The method leads to a predicted range error that increases at a typical rate of 100 meters per day, approximately a 10-fold improvement over TLE's propagated with their associated analytic propagator (SGP4). Corresponding improvements for debris trajectories could potentially provide initial conjunction analysis sufficiently accurate for an operationally viable collision avoidance system. We discuss additional optimization and the computational requirements for applying all-on-all conjunction analysis to the whole TLE catalog, present and near future. Finally, we outline a scheme for debris-debris collision avoidance that may become practicable given these developments.Comment: Submitted to Advances in Space Research. 13 pages, 4 figure
    corecore