1,363 research outputs found

    Cybersecurity: Past, Present and Future

    Full text link
    The digital transformation has created a new digital space known as cyberspace. This new cyberspace has improved the workings of businesses, organizations, governments, society as a whole, and day to day life of an individual. With these improvements come new challenges, and one of the main challenges is security. The security of the new cyberspace is called cybersecurity. Cyberspace has created new technologies and environments such as cloud computing, smart devices, IoTs, and several others. To keep pace with these advancements in cyber technologies there is a need to expand research and develop new cybersecurity methods and tools to secure these domains and environments. This book is an effort to introduce the reader to the field of cybersecurity, highlight current issues and challenges, and provide future directions to mitigate or resolve them. The main specializations of cybersecurity covered in this book are software security, hardware security, the evolution of malware, biometrics, cyber intelligence, and cyber forensics. We must learn from the past, evolve our present and improve the future. Based on this objective, the book covers the past, present, and future of these main specializations of cybersecurity. The book also examines the upcoming areas of research in cyber intelligence, such as hybrid augmented and explainable artificial intelligence (AI). Human and AI collaboration can significantly increase the performance of a cybersecurity system. Interpreting and explaining machine learning models, i.e., explainable AI is an emerging field of study and has a lot of potentials to improve the role of AI in cybersecurity.Comment: Author's copy of the book published under ISBN: 978-620-4-74421-

    High-Performance Transactional Event Processing

    Get PDF
    Abstract. This paper presents a transactional framework for low-latency, high-performance, concurrent event processing in Java. At the heart of our framework lies Reflexes, a restricted programming model for highly responsive systems. A Reflex task is an event processor that can run at a higher priority and preempt any other Java thread, including the garbage collector. It runs in an obstruction-free manner with time-oblivious code. We extend Reflexes with a publish/subscribe communication system, itself based on an optimistic transactional event processing scheme, that provides efficient coordination between time-critical, low-latency tasks.We report on the comparison with a commercial JVM, and show that it is possible for tasks to achieve 50 ”s response times with way less than 1% of the executions failing to meet their deadlines.

    Statistiline lÀhenemine mÀlulekete tuvastamiseks Java rakendustes

    Get PDF
    Kaasaegsed hallatud kĂ€itusaja keskkonnad (ingl. managed runtime environment) ja programmeerimiskeeled lihtsustavad rakenduste loomist ning haldamist. KĂ”ige levinumaks nĂ€iteks sÀÀrase keele ja keskkonna kohta on Java. Üheks tĂ€htsaks hallatud kĂ€itusaja keskkonna ĂŒlesandeks on automaatne mĂ€luhaldus. Vaatamata sisseehitatud prĂŒgikoristajale, mĂ€lulekke probleem Javas on endiselt relevantne ning tĂ€hendab tarbetut mĂ€lu hoidmist. Probleem on eriti kriitiline rakendustes mis peaksid ööpĂ€evaringselt tĂ”rgeteta toimima, kuna mĂ€luleke on ĂŒks vĂ€heseid programmeerimisvigu mis vĂ”ib hĂ€vitada kogu Java rakenduse. Parimaks indikaatoriks otsustamaks kas objekt on kasutuses vĂ”i mitte on objekti viimane kasutusaeg. Selle meetrika pĂ”hiliseks puudujÀÀgiks on selle hind jĂ”udluse mĂ”ttes. KĂ€esolev vĂ€itekiri uurib mĂ€lulekete problemaatikat Javas ning pakub vĂ€lja uudse mĂ€lulekkeid tuvastava ning diagnoosiva algoritmi. VĂ€itekirjas kirjeldatakse alternatiivset lĂ€henemisviisi objektide kasutuse hindamiseks. PĂ”hihĂŒpoteesiks on idee et lekkivaid objekte saab statistiliste meetoditega eristada mittelekkivatest kui vaadelda objektide populatsiooni eluiga erinevate gruppide lĂ”ikes. Pakutud lĂ€henemine on oluliselt odavama hinnaga jĂ”udluse mĂ”ttes, kuna objekti kohta on vaja salvestada infot ainult selle loomise hetkel. VĂ€itekirja uurimistöö tulemusi on rakendatud mĂ€lulekete tuvastamise tööriista Plumbr arendamisel, mida hetkel edukalt kasutatakse ka erinevates toodangkeskkondades. PĂ€rast sissejuhatavaid peatĂŒkke, vĂ€itekirjas vaadeldakse siiani pakutud lahendusi ning on pakutud vĂ€lja ka nende meetodite klassifikatsioon. JĂ€rgnevalt on kirjeldatud statistiline baasmeetod mĂ€lulekete tuvastamiseks. Lisaks on analĂŒĂŒsitud ka kirjeldatud baasmeetodi puudujÀÀke. JĂ€rgnevalt on kirjeldatud kuidas said defineeritud lisamÔÔdikud mis aitasid masinĂ”ppe abil baasmeetodit tĂ€psemaks teha. Testandmeid masinĂ”ppe tarbeks on kogutud Plumbri abil pĂ€ris rakendustest ning toodangkeskkondadest. Lisaks, kirjeldatakse vĂ€itekirjas juhtumianalĂŒĂŒse ning vĂ”rdlust ĂŒhe olemasoleva mĂ€lulekete tuvastamise lahendusega.Modern managed runtime environments and programming languages greatly simplify creation and maintenance of applications. One of the best examples of such managed runtime environments and a language is the Java Virtual Machine and the Java programming language. Despite the built in garbage collector, the memory leak problem is still relevant in Java and means wasting memory by preventing unused objects from being removed. The problem of memory leaks is especially critical for applications, which are expected to work uninterrupted around the clock, as running out of memory is one of a few reasons which may cause the termination of the whole Java application. The best indicator of whether an object is used or not is the time of the last access. However, the main disadvantage of this metric is the incurred performance overhead. Current thesis researches the memory leak problem and proposes a novel approach for memory leak detection and diagnosis. The thesis proposes an alternative approach for estimation of the 'unusedness' of objects. The main hypothesis is that leaked objects may be identified by applying statistical methods to analyze lifetimes of objects, by observing the ages of the population of objects grouped by their allocation points. Proposed solution is much more efficient performance-wise as for each object it is sufficient to record any information at the time of creation of the object. The research conducted for the thesis is utilized in a memory leak detection tool Plumbr. After the introduction and overview of the state of the art, current thesis reviews existing solutions and proposes the classification for memory leak detection approaches. Next, the statistical approach for memory leak detection is described along with the description of the main metric used to distinguish leaking objects from non-leaking ones. Follows the analysis of this single metric. Based on this analysis additional metrics are designed and machine learning algorithms are applied on the statistical data acquired from real production environments from the Plumbr tool. Case studies of real applications and one previous solution for the memory leak detection are performed in order to evaluate performance overhead of the tool

    A Zero-Positive Learning Approach for Diagnosing Software Performance Regressions

    Get PDF
    The field of machine programming (MP), the automation of the development of software, is making notable research advances. This is, in part, due to the emergence of a wide range of novel techniques in machine learning. In this paper, we apply MP to the automation of software performance regression testing. A performance regression is a software performance degradation caused by a code change. We present AutoPerf–a novel approach to automate regression testing that utilizes three core techniques:(i) zero-positive learning,(ii) autoencoders, and (iii) hardware telemetry. We demonstrate AutoPerf’s generality and efficacy against 3 types of performance regressions across 10 real performance bugs in 7 benchmark and open-source programs. On average, AutoPerf exhibits 4% profiling overhead and accurately diagnoses more performance bugs than prior state-of-the-art approaches. Thus far, AutoPerf has produced no false negatives

    Principles of Security and Trust

    Get PDF
    This open access book constitutes the proceedings of the 8th International Conference on Principles of Security and Trust, POST 2019, which took place in Prague, Czech Republic, in April 2019, held as part of the European Joint Conference on Theory and Practice of Software, ETAPS 2019. The 10 papers presented in this volume were carefully reviewed and selected from 27 submissions. They deal with theoretical and foundational aspects of security and trust, including on new theoretical results, practical applications of existing foundational ideas, and innovative approaches stimulated by pressing practical problems

    Future of Functional Reactive Programming in Real-Time Systems

    Get PDF
    The evolution of programming paradigms and the development of new programming languages are driven by the needs of problem domains. Functional reactive programming (FRP) combines functional programming (FP) and reactive programming (RP) concepts that leverage asynchronous dataflow from reactive programming and higher-level abstractions building blocks from functional programming to enable developers to define data flows and transformations declaratively. Declarative programming allows developers to concentrate more on the problem to be solved rather than the implementation details, resulting in efficient and concise code. Over the years, various FRP designs have been proposed in real-time application areas. Still, it remains unclear how FRP-based solutions compare with traditional methods for implementing these applications. In this survey, we studied the usefulness of FRP in some real-time applications, such as game development, animation, graphical user interface(GUI), and embedded system. We conducted a qualitative comparison for game development and studied various applications in animation, GUI, and embedded systems. We found that using FRP in these applications is quite difficult because of insufficient libraries and tools. Additionally, due to high learning curves and a need for experienced developers, the development process in FRP takes time and effort. Our examination of two well-known games: Asteroid and Pong, in three programming paradigms: imperative programming using the Unity game engine, FP in Haskell, and FRP in the Yampa library, showed that imperative programming is effective in terms of performance and usability. The other two paradigms for developing games from scratch are inefficient and challenging. Despite the fact that FRP was designed for animation, the majority of its applications are underperforming. FRP is more successful for GUI applications, where libraries like RxJS have been used in many web interfaces. FRP is also applied in developing embedded system applications for its effective memory management, maintainability, and predictability. Developing efficient solutions from scratch is not suitable in FRP due to several factors, such as poor performance compared to other programming paradigms, programming complexity, and a steep learning curve. Instead, developers can be benefited from utilizing FRP-supported modular platforms to build robust and scalable real-time applications
    • 

    corecore