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Abstract

EN The smartphone revolution has significantly changed our daily lives, offering a
wide range of functionalities; from the ability to order food delivery in a few seconds, to
the usability of finding our way around in a new city using a map application. However,
the introduction of smartphones and tablets generates new challenges such as the limited
battery autonomy to power and keep all these components and applications operational.
Therefore, optimal and efficient energy management of the smartphone’s resources
becomes critical. In this approach, it is important to assess the energy consumption
of the components, and further more to suggest improvements to these in a context
where software developers are running out of tools to efficiently fight energy-drains.
Indeed, this field of research is still in full growth and existing solutions are either not yet
ready or not standardized. This state of the art explores and analyses the smartphone
ecosystem, its open problems and challenges in the domain of energy consumption.
Furthermore, it evaluates the different solutions that have a promising future in the
field of analysis, estimation and optimization of the energy consumption of mobile
applications. This paper finally summarizes the different approaches, their achievements,
their contributions to the field and the possibilities for future work.

FR La révolution des smartphones a significativement changé notre quotidien, nous
proposant une large palette de fonctionnalités, de la capacité de commander une livraison
de nourriture en un temps record, à la facilité de pouvoir s’orienter dans une ville inconnue
en utilisant un service de géolocalisation. Cependant, l’introduction des smartphones
et des tablettes a généré de nouveaux défis telle que l’autonomie encore plus limitée
de la batterie. En conséquence, une gestion optimale et efficace de la consommation
d’énergie des ressources des smartphones devient cruciale. Dans cette démarche, il parâıt
important d’être en mesure d’évaluer la consommation des composants utilisés par les
smartphones, mais également de proposer des pistes d’amélioration dans un contexte où
les développeurs de logiciels ne disposent pas d’outils efficaces pour affronter à armes
égales les problèmes de perte d’énergie. En effet, ce domaine de recherche est en pleine
expansion et les solutions existantes sont soit peu prêtes, soit pas standardisées. Cet état
de l’art explore et analyse l’écosystème des smartphones, ses problématiques actuelles et
ses défis dans le domaine de la consommation énérgétique. De plus, ce travail évalue
les différentes solutions avec un avenir prometteur en matière d’analyse, d’estimation
et d’optimisation de la consommation d’énergie des applications mobiles. Ce papier
clôture en résumant les différentes approches, les avancements, les contributions dans ce
domaine et les pistes pour des travaux futurs.

Keywords smartphone, battery-drain, energy-saving techniques, energy profiling,
issues, power consumption estimation, power consumption modelling, power consumption
optimization, power management, resources usage, energy modelling, energy-efficiency,
state-of-the-art, developer energy awareness.
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Chapter 1

Introduction

1.1 Context

The recent introduction of smartphones allowed us to perform a large amount of
tasks which are similar to those previously performed by personal computers. The
field of personal computers have faced and is still facing a lot of challenges with
the intention of offering an ever more advanced user-experience. It has required a
lot of work from hardware and software developers to reach the level of usability
we know today. Similar to the development of personal computers, the arrival
of smartphones has led to new issues. While offering small size capacity, the
smartphone must integrate the latest electronic components to remain competitive
and meet the performances demanded by the market. High-performance resources
for mobile applications require considerable efforts to limit the battery drain and
to continue to provide the users with features at fingertips. At last, resources
are powered from a battery with limited autonomy, which arises the never-ending
search for the perfect compromise between optimising smartphones’ size and
increasing the battery capacity.

1.2 Problematic

While electronic component manufacturers keep on working on techniques that
reduce the energy consumption of their product or increase its energy capacity,
mobile application software developers focus less on this aspect which is commonly
left behind. Application energy-efficiency is however an important criteria for
the overall user satisfaction. Yet software development companies have few or no
tools at their disposal to accurately analyze and efficiently optimize the energy
consumption of their products. External measurement equipment is expensive
and requires expertise that is often beyond the scope of a programmer. Moreover,
setting the testing environment and run the measurements is both complex and
time consuming. As this is becoming a global problem, several companies are
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setting up working groups (e.g GreenIT1) to deal with the issue. This is part of a
general approach that aims to reduce the environmental footprint of technologies.
Several mobile vendor members such as IBM, Apple, Intel or Microsoft are
currently contributing to this problematic’s solution by providing tools and
documentation ([13, 20, 1, 51, 49]). However, developers are still lacking reliable,
accurate, time- and effortless tools to properly analyze the power consumption of
their applications.

In this thesis, we aspire to provide answers to the following question, how
software engineering solve the application energy consumption prob-
lematic using program analysis techniques?

1.3 Contribution

In this research work, we evaluate state-of-the-art techniques to understand the
current problems faced by researchers in this field. We also compare and criticize
their solutions in an attempt to address the problem.

This work extends a previous research carried out during the 2017-2018 aca-
demic year. It focused on possible approaches to accurately estimate and analyse
application’s energy cost. As smartphone’s resources usage is the initial cause of
the application’s energy consumption, it became interesting to expand that scope
and to include the analysis of electronic components and solutions in regards
to the optimization of their power consumption using program analysis. The
previous work is here updated with researches conducted over the past two years.
The recent literary review proposed by P. K. D. P. and al [40] was particularly
helpful in carrying out the analysis on the energy consumption of electronic
components (see Smartphone Power Consumption Analysis chapter).

This thesis is divided into separate chapters related to the analysis of electronic
components and their impact on energy consumption, such as the processor,
memory, display, graphics unit, wireless interfaces, sensors, and others; the
estimation and analysis of applications and hardware components; and techniques
to optimize mobile applications and hardware interfaces for main smartphone
resources. Finally, we conclude by summarizing the contributions of researchers
in the various fields, their relevance and future prospects.

1.4 Terms Definition

This paper is using the terms power consumption or energy consumption which is
expressed as a watt, a derived unit of power in the International System of Unit
(SI). Watts is defined as 1 Joule per second and is used to refer to cumulative
energy consumption over time.

1GreenIT [88] is an emerging discipline concerned with the optimization of software solutions
with regards to their energy consumption.
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The term voltage refers to the difference in electrical potential between two
points. The voltage is expressed in units of Volt (V).

The term current refers to a movement of electric charges that pass through a
material. The current is expressed in units of Amperes (A).

The term frequency refers to the number of occurrences of a repeating event
per unit of time. The frequency is measured in units of Hertz (Hz).

The term power model or energy modelling refers to a process of building
computer models for purpose of analysis.

The term cycle-accurate refers to a clock cycle accuracy. In this context, it
means that a system is able to match the speed of the Central Processing Unit
(CPU) which can process some of the instructions every cycle.

The term dynamic voltage scaling is a power management technique in com-
puter architecture, where the voltage used in a component is increased or de-
creased, depending upon circumstances2.

The term dynamic frequency scaling is a technique in computer architecture
whereby the frequency of a microprocessor can be automatically adjusted ”on the
fly” depending on the actual needs, to conserve power and reduce the amount of
heat generated by the chip3.

The term transition refers to a computer science paradigm in the context of
communication systems which describes the change of communication mechanisms,
i.e., functions of a communication system, in particular, service and protocol
components4.

2en.wikipedia.org/wiki/Dynamic voltage scaling
3en.wikipedia.org/wiki/Dynamic frequency scaling
4en.wikipedia.org/wiki/Transition (computer science)
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Chapter 2

Smartphone Power Consumption
Analysis

A software component does not consume any energy at first glance. However, it
requires components at lower layers to execute its instructions, to store information
whether volatile or not, to share its data and to communicate them to the outside
world, and to display this information to a user. All these operations have an
energy and time cost that is caused by the time and energy required for a resource
to perform them. Before being able to analyze and estimate the smartphone
energy consumption of these operations, it is important to understand the main
sources that demand this time and energy. This section describes and analyses the
sources of energy consumption that can be found in a smartphone. We separated
these energy-drain sources into 2 groups: hardware components and signalling
modules.

2.1 Power Consumption of the Hardware Com-

ponents

There are many electronic components in a smartphone. Some are required to
perform computational operations, some to store information, some to display
data to the user, and some to retrieve information about the environment around
the smartphone. All these components interface with the software components
and operate like an ecosystem, developing a dense network of dependencies and
information exchanges. This section describes what these sources of energy
consumption are and what the major reasons inducing energy-drain are. P. K. D.
P and al. [40] described the different physical components found in a smartphone
and the factors responsible for the overall energy consumption. Their work tries
to solution the following questions about hardware component parameters [83]:

• The power consumed by the component operating at idle state1 which is the
minimum power needed to be at active state.

1An electronic component is described as idle when it is not being used by any program.
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• The purpose of the hardware component.
• The number of power state models defined
• The number of transitions available in the power states.
• The power cost of each transition.

Table 2.1: Summary of different sources and reasons for
power consumption defined by [40]. The probable ways
to minimise cannot be always applied, it depends on the
context of use.

Power
Consumption
Category

Component
Probable Ways to
Minimise

CPU

Voltage regulation
Clock frequency regulation
Minimizing switching
activities
Code optimization
Using GPU for computing
Hardware accelerators
Dedicated functions

GPU

Resolution scaling
Refresh rate scaling
Hardware accelerators
Dedicated functions

Memory
Avoid increasing RAM size
unnecessarily
Usage management

Storage
Reduced read-write
operations
Temperature control

Display

Efficient technology
Resolution scaling
Lowering pixel density
Decreasing the refresh rate
Reducing backlight

Hardware Components

Sensors
Restricted application
permission

Cellular Network

Network mode selection
Increased signal strength
Controlled handoff
Operator selection

Bluetooth

Manual starting when
needed
Using other modes of data
sharing
Introducing BLE
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Hotspot

Preferring USB tethering
Using Bluetooth instead of
Wi-Fi
Using lower frequency band

Wi-Fi

Manual starting when need
Using lower frequency band
Get closer to the Wi-fi
access point

GPS

Manual starting when
needed
Use GPS where the satellite
signal is decent
Using optimized GPS
application

Signalling Modules

FM Radio

Manual starting when
needed
Antenna management
Display standby during FM
radio usage

Operating System

Using smartphone-oriented
kernel
Using kernel-level display
server

Software
Applications

Verified installations
Managing application
permissions
Uninstalling unused
applications
Disabling auto start-up
applications

Calling

Use 2G network wherever
applicable
Avoid calling with poor
signal strength

Internet usage

Selection of best connection
Restrict network access of
applications
Restrict application
background data

Gaming

Selecting thermally
conductive material
Effective internal cooling
technology
Downclocked CPU
Lowering display brightness
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Music playback

Standby display
Activated sleep mode
Controlled volume
Optimised audio bit-rate

Video playback

Avoid high-resolution
videos, where applicable
Go for videos with low
frames per second (FPS)

Usage Patterns

Running heavy app.
Code offloading
Computating offloading

Inter-device comm.

Inter-device task
distribution
Optimized processing
across devices
Optimized scheduling
Optimized data-transfer
Energy-efficient
communication protocols

Heating
Device material selection
Not charging and
discharging simultaneously

Other Misc. Factors
Ageing and faulty bat.

Battery replacement
Using power-saving mode

CPU

The CPU is in charge of executing the software’s machine instructions. It consists
of a computing unit, a control unit, an input-output unit, a clock and regis-
ters. The various factors responsible for the CPU’s power consumption can be
categorized as follows [40]:

• Dynamic power consumption: A CPU contains millions of transistors2

continuously operated to perform instructions. Each transistor is toggled
from one state to another and will request the capacitors to rapidly charge
and discharge. This causes energy-drain.

• Short-circuit: During operations, the transistors change their state by
either switching to ON or OFF. However, the delay for switching state may
vary from one transistor to another. When a transistor takes longer to
perform a transition, it can cause a short-circuit.

• Leaking transistor: Transistors are semiconductors that are doped to
block or pass current. Mainly due to state, size and temperature, there is a
small portion of the current that is leaking out.

• Clock frequency: The CPU frequency clock requires power to operate,
the higher the frequency, the higher the power consumption. Reason being

2A transistor is a semiconductor device used to amplify or switch electronic signals and
electrical power. Source: en.wikipedia.org/wiki/Transistor
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the number of operations requested to be performed in a given time. This
induces energy consumption and energy leakage. Yet each microprocessor
have an optimal power consumption point where the CPU capability can
remain unaffected [57].

GPU

The Graphical Processing Unit (GPU) provides the rendering features for the
display. As these functions were traditionally performed by the CPU, it is
becoming more and more common to have a hardware component dedicated to
graphics tasks such as video rendering, 3D rendering3, and other image processing
needed in the field of video games. The categories can be defined [40] as follows:

Figure 2.1: Example of pixel density, from left to right: Low
(1x), Medium (2x), High (3x). blog.prototypr.io/making-
sense-of-device-resolution-pixel-density

• 3D rendering: Some rendering tasks require optimized hardware in order
to efficiently compute and display polygons. The CPU does not support
well the rendering tasks demanded is recent applications and games. On
the opposite, the GPU manages properly such operations but still requires
much energy consumption to perform them.

• Resolution: The resolution is the number of pixels found on a display in
each dimension, width and height. This property is driven by the GPU or
the CPU and has an impact directly proportional to power consumption
[40].

• Pixel Density: Pixel density or commonly called Pixel Per Inch (PPI)
defines the number of pixels forming a square (sometime pixels can be
rectangular) area of one inch long (Figure 2.1). Pixel processing is driven by
the GPU or the CPU. More pixels to deal with equal more power consumption
required from the processing unit. A higher pixel density leads to a higher
processing unit power consumption.

33D rendering is the 3D computer graphics process of converting 3D models into 2D images on
a computer. 3D renders may include photorealistic effects or non-photorealistic styles. Source:
en.wikipedia.org/wiki/3D rendering
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• Refresh rate: The refresh rate is the number of times a display is updated
with new images each second. The higher the refresh rate is, the smoother
the displayed image is (Figure 2.2). The refresh rate defines the frequency
of images processed by the graphical unit. This property is driven by the
GPU or the CPU and is directly proportional to the power consumption.

Figure 2.2: Example of refresh rate effect on moving cars,
from 60 Hz to 120 Hz. Higher the refresh rate is, smoother
the picture will be. Picture found on www.coolblue.be

Memory

The role of memory is to store working data, mainly in a volatile manner. Allowing
this data to be read and written. This component is no exception to the rule, it
tends to grow in order to store an ever-increasing amount of data. A memory
size-enery-cost relationship can be suggested. Researchers identified [40] three
main factors that have an impact on this energy consumption:

• Steady-state4 power consumption: The Random Access Memory (RAM)
semiconductors have the same behavior as a capacitor5 but store data instead
of a charge. In order to keep the data stored, the RAM requires continuous
power.

• RAM capacity: The RAM component is made out of Metal Oxide Semi-
conductor Field Effect Transistor (MOSFET)6 which requires an amount of

4A steady-state is an equilibrium where the system is in relative stability.
5A capacitor is a device that stores electrical energy in an electric field. Source:

en.wikipedia.org/wiki/Capacitor
6MOSFET is a type of transistor, also known as the metal–oxide–silicon transistor (MOS

transistor, or MOS). Its ability to change conductivity with the amount of applied voltage can
be used for amplifying or switching electronic signals. Source: en.wikipedia.org/wiki/MOSFET
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energy to keep the steady-state. Increasing the size of the memory implies
to increase the total number of MOSFETs. Thus, the energy drain for the
memory is directly proportional to the size of memory.

• Read-write power consumption: Energy is also needed as the system is
accessing the RAM. Indeed, each read/write operation requires an amount
of energy to be executed. This amount depends on the technology and
architecture of the RAM.

Storage

Smartphones have 2 categories of storage, internal storage which is mostly soldered
on the motherboard and external storage. The technologies used have a direct
impact on energy consumption. Here are the main factors:

• Read-write power consumption: As with any component that stores
data, accessing and alternating this information requires read and write oper-
ations. The more operations are performed, the more power this component
consume.

• Temperature: Operating temperature also plays a role in energy consump-
tion. The controller of these storage devices can protect itself in case this
temperature is too high. Its countermeasure is to reduce its frequency, which
causes an increased demand for power over time to complete operations.

Display

There are various technologies available for smartphone’s display. More recent
Light-Emitting Diode (LED) displays are low power consumer compared to Liquid
Crystal Display (LCD) displays. Similar to GPU properties, the pixel density
and the refresh rate are directly proportional to power consumption. Amongst
display’s components, the backlight remains the biggest energy consumer. This
component is required for technology displays where no other light source is
possible (e.g LCD). In such case, the number of LEDs used for the backlight and
their intensity is proportional to the component’s power consumption.

Sensors

Sensors play an important role in the ecosystem of a smartphone. Their job
is to broadcast a whole range of data to the nervous system to be analyzed,
interpreted and used for many purposes. On average, there are about ten of
them embedded in the device (Figure 2.3). They can be internal or external [74].
The internal sensors monitor vital signs such as battery life, central processing
temperatures, status of the network, and so on. External sensors, on the other
hand, can probe and capture the environment around the smartphone. Indeed,
they provide a range of data such as location, video recording, audio recording,
physical proximity, external temperature, external brightness, etc.. In order to
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Figure 2.3: Example of sensors in a smartphone

ensure that the data used during the process of interpreting is not outdated, the
sensors require to be constantly monitored, which costs a constant energy drain.

2.2 Power Consumption of the Signalling Mod-

ules

Signalling modules as well as networking modules are the most energy consuming
elements in a smartphone (Figure 2.4). This is mainly because they have to
transmit and receive a lot of data at high rate. These signals have to be transmitted
over a greater or lesser range, which is a parameter that has a great influence on
this energy cost. This chapter describes the different types of modules and the
main factors influencing their energy consumption.

Cellular Network

The primary function of a phone is to make calls using the cellular network
anywhere in the world. In order to ensure the highest possible call quality
regardless of location, smartphones may need to amplify signals on the modules
that receive and transmit data. The worst situations can lead to enormous power
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Figure 2.4: Hardware modules power consumption percent-
age share according to Pramanik and colleagues [40]

consumption. The main factors that cost energy are [40]: the cellular frequency7;
the signal strength and the network operator.

Bluetooth

Bluetooth is a wireless communication standard that allows the bidirectional
exchange of data over very short distances using Ultra High Frequency (UHF)
radio waves on a frequency of 2,4 GHz [19]. This technology is very widely spread
among smartphones where many uses are allowed. There are several versions of
this standard (Table 2.2), called Class, all aimed at improving data transfer and
energy consumption. Here are the various factors that impact the energy required
to operate:

• Constant connectivity: Some devices (Bluetooth speaker, smart watch)
paired to the smartphone via Bluetooth need to be constantly connected to
maintain data flow. This need has a constant energy cost because Bluetooth
transmission has to always be turned on.

• Auto-searching devices: Even if the smartphone is not paired with a
Bluetooth device, it automatically searches for devices to connect to. This
implies a consumption of this component.

• Networking: The proposed use of many devices is potentially not appropri-
ate because not adapted to large data transfer [40]. The maximum distances
during these transfers is also an element which can lead to a higher energy
consumption.

7Cellular frequencies are the sets of frequency ranges within the ultra high frequency band
that have been assigned for cellular-compatible mobile devices, such as mobile phones, to
connect to cellular networks. Source: en.wikipedia.org/wiki/Cellular frequencies
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Wi-Fi

The Wi-Fi technology is a set of wireless communication protocols widely used
in most parts of the world. A Wi-Fi network allows to connect several computer
devices (computer, router, smartphone, Internet modem, etc.) within a computer
network by radio waves in order to allow the transmission of data between them
[93]. Here are the features that can increase energy consumption:

• Wakeup power consumption: Every time the Wi-Fi module is started,
a wireless access process needs to be performed as defined by the 802.11
standard [50]:

1. Scan: The scanning process is required to discover wireless networks
in the smartphone’s range. This step is performed using probes8 that
interrogate access points. The answers describe the configuration and
capabilities of the wireless network managed by the access point [10].
Once a candidate wireless network has been selected, the authentication
stage comes into play.

2. Authentication: It is a process during which the credentials provided
by the user are compared to a database on the local router or remote
server. If these identifiers match, the process is completed and the user
is authorized to access the network.

3. Association: During the association process, the access point sends
information such as SSIDs9 and data rate to the requester. The client
then deploys a probe to scan the available channels in order to associate
the access point with the strongest signal. If this signal weakens, the
client restarts a scan to find a better match [89].

This waking up process is consuming power at every Wi-Fi start.
• Connection maintenance power consumption: Access point requires

that the Wi-Fi device maintain an active connection which drains constant
power.

GPS

Global Positioning System (GPS) is a hardware component used for tracking the
location of the device. It exploits the satellite data to give a great precision posi-
tion. Combined to applications, it can provide location services for geolocation,
advertising and more. Here are the consumption details of GPS pointed by paper
[40]:

8A probe request is a special frame sent by a client station requesting information from
either a specific access point, specified by SSID, or all access points in the area, specified with
the broadcast SSID. Source: www.hak5.org/episodes/haktip-23

9A SSID (Service Set IDentifier) serves as network name and is usually defined as a natural
language label.
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Bluetooth Class Power Cons. in mW

1 100
1.5 10
2 2.5
3 1
4 0.5

Table 2.2: Power consumption of different Bluetooth classes.
Higher the class is, lower the power consumption is required
to operate.

• GPS receiver: GPS receiver is composed of an antenna tuned to satellite
frequency emission, receiver-processor and an highly stable clock. A connec-
tion is required to be maintained between the smartphone and the satellites
when operating.
• Dependency: The GPS receiver itself is only able to identify the geographic

location in terms of coordinates. For example, geolocation applications need
to use services such as internet map services to be able to provide a map.
Moreover, the GPS can increase its accuracy by using data from cellular
towers (Figure 2.5) and Wi-Fi networks. The use of multiple services has a
high energy cost but for best accuracy and more.

• Sleep mode: When using the GPS receiver, the network between smart-
phone and satellites is constantly operating and data received have to be
processed, it does not allow the device to go to any sleep mode. This
consumes constant power.

• Signal quality: Similar to cellular network, when the device is placed in a
poor signal area, the location service requires more power in order to amplify
the weak signal or to search for a lost signal.

• Device position: Materials that are around us such as walls, roofs, ... have
also an impact on the strength of the received signals. In these circumstances,
the receiver amplifier drains more power to increase the signal from satellites.

FM Radio

FM radio is a broadcasting method that uses Frequency Modulation (FM). It
is mainly used by radio stations to share audio. Although it’s not the biggest
energy consumer, FM radio still drains power when it’s in use. Here are some of
the elements that impact this energy consumption:

• FM radio receiver chip: Similar to the GPS receiver, the FM radio
receiver can consume much power when trying to maintain a good quality
signal. Indeed, when the received signal becomes too poor, the chip drains
power to properly amplify the signal.

• Antenna: The antenna is an essential component for all devices with a
radio receiver in order to capture radio waves. As recent smartphones do not
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Figure 2.5: Assisted Global Positioning System (AGPS)
principle illustrateda, A-GPS augments basic satellite in-
formation by using cell tower data to enhance quality and
precision.

aIllustration from www.in.c.mi.com.

have space to store an antenna, the connection of headphones is required to
act as a temporary radio receiver. However, as a headphones cable is not
rigid enough signals cannot always properly be received, which is why signal
amplification may be needed.
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Chapter 3

Smartphone Power Consumption
Measurement

Now that we have analyzed the electronic components that have an impact on the
power consumption of the smartphone, we review the techniques that estimate
and analyze the energy consumption of smartphones using program analysis. This
step is crucial to accurately identify the practices implemented in an application
that are not energy-efficient. Most of the research works evaluate their findings
by comparing them to the overall consumption of a smartphone using hardware
measurement systems. This chapter describes techniques based on the construc-
tion of power models, tools for static analysis of programming errors related to
energy consumption, solutions for estimating the cost of implementations using
repositories, and tools for reporting the analysed data.

3.1 Smartphone Power Consumption Analysis

and Modelling

Getting the overall energy cost of a smartphone is not the easiest analysis to carry
out. There are indeed many elements involved in the chain of smartphone energy
consumption. From the hardware component (Figure 3.1) through the hardware
driver, the operating system layer and at last the application. The way in which the
electronic component is used is not always energy-efficient [86] but it is necessary
to understand where does the issue lie. This need for estimation and analysis can
be supported by the generation of power models. In this approach, solutions exist
for estimating and analysing the energy consumption of the elements that are
part of this energy consumption chain. A fine granularity estimation requires a
deep level of analysis. The solutions reviewed in this chapter focus on usage-based
data, data provided by system calls and finally, data estimated at the level of a
method call as well as at the level of instruction execution.
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Figure 3.1: Power consumption distribution in modern
mobile systems as defined by authors [35]. The System on
a Chip (SoC), the communications modules and the output
resources are all battery’s energy consumers.

Utilization-Based Modelling

Utilization-based power models represent full system energy consumption by
profiling each component’s energy consumption in two steps. The first step is
to collect utilization data1 from a set of scenarios and its corresponding energy
consumption. The second step is to apply linear regression analysis2 in order
to construct the power model for software energy consumption based on the
collected utilization data. The trained model is then used to predict energy
consumption. It can be used to locate application’s hotspots3 by reporting some
of the characteristics during run-time and data collected can also prevent excessive
energy consumption of the source code.

This power model is widely exploited in the domain [63, 53, 7, 36, 51, 24, 94]
where PowerScope [53] was the first tool able to profile the energy usage by
applications. It has several shortcomings, first it requires an external monitor
infrastructure and second it is only dedicated for single core architecture for
which only one application can be executed at the time.

Following prior work, Brooks and colleagues [28] developed a framework for
architectural-level power analysis and optimizations. They are concerned about
the power dissipation that issue designers of embedded or portable computer

1The data are collected during application run-time and allow to generate a method’s Call
Graph Flow (CFG) for each functionality. A call graph flow provides fine-grained details of the
structure of the program as a whole, especially its subroutines.

2Linear regression attempts to model the relationship between two variables by fitting a
linear equation to observed data. One variable is considered to be an explanatory variable,
and the other is considered to be a dependent variable. For example, a modeler might want
to relate the weights of individuals to their heights using a linear regression model. Source:
www.stat.yale.edu/Courses/1997-98/101/linreg.htm

3Issue in software code where a wrong behaviour is discovered.
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Figure 3.2: Overall structure of the power simulator Wattch
[28]. The framework uses power models to simulate perfor-
mance of the CPU at cycle-accuracy level.

systems are facing. Their work, Wattch [28] is a power simulator that estimates
CPU power consumption based on a suite of parameterizable power models.
According to them, Wattch [28] can be integrated into a wide range of architectural
simulators. As proof of concept, they have integrated their framework into the
SimpleScalar architectural simulator [29] in order to provide power estimates.
Figure 3.2 shows the overall structure of Wattch [28] and the interface between
the simulator and their power models. Their work is focused on power modelling
the main processor unit which they divided into four categories and thus four
models:
• Array structures composed of data and instruction caches, all register files,

load/store queues,...
• Content Addressable Memory (CAM) or Associative Memory which is a mem-

ory that implements the lookup-table function using dedicated comparison
circuitry

• Combinational Logistic and Wires composed of functional units, dependency
check logic, results buses,..

• Clocking which gathers the clock buffers, the clock wires and the capacitive
loads

Even though Wattch[28] can achieve power models with high sampling rate as
it is cycle-accurate (according to the results it has an accuracy of 10% and can
be up to 1000X faster than prior existing layout-level power tools), it requires
circuit-level power characterization and are generated by a fixed set of benchmark
applications which is a major limitation and drops the accuracy of the models.
Indeed, smartphone usage is diverse among different users and cannot be modeled
through a fixed set of benchmarks.

On the contrary, recent related work, Valgreen [41] from Cupertino and col-
leagues, bases its models from real energy usage of individual users. It is an
application’s energy profiler which exploits the battery’s information in order to
generate an architecture-independent power model through a calibration process.
It samples the power of an application in short time steps and measures the total
energy spent during the execution of such application. They collect utilization
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statistics through the Advanced Configuration and Power Interface (ACPI)4 at
no additional cost. They also exploit operating system sensors to measure the
behaviour of the application and then collect data related to the hardware usage.
As machine related sensors can only measure property for the whole computing
system, it cannot make distinction of running processes. However, Valgreen tool

Figure 3.3: Comparison between ACPI power meter and
Valgreen [41] linear model showing a better accuracy for
estimating the real power consumed.

can link up the energy usage to a specific process using application related sensors
(eg. CPU usage) and the ACPI power meter. The authors state that the CPU,
memory disk and hard disk are the most consuming devices. For portables devices,
the wireless network interface card and the screen can also have a great impact.
Since the CPU is the most consuming device, the default mathematical model
used to estimate the power consumption of applications in Valgreen [41] is a CPU
proportional model, described as follows:

Ppid = w0 + w1

∑
cpu

tcpupid

tcpu + tidl
+ w2

1

|RP |
, ∀cpu ∈ C

where tcpu, tidl and tcpupid are, respectively, the total, idle and process’ CPU time,
C is the set of all processors available, |RP | is the cardinality of the running
processes set and the weight vector w = [w0, w1, w2] is the set of architecture

4In a computer, the ACPI provides an open standard that operating systems can use to
discover and configure computer hardware components, to perform power management by (for
example) putting unused components to sleep, and to perform status monitoring. Source:
en.wikipedia.org/wiki/Advanced Configuration and Power Interface
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dependent parameters [41]. Calibration process is composed of two steps. First,
they retrieve ACPI sampling rate5 in order to estimate the total duration of
the data recovery. Indeed, this sampling rate is required for the second step to
collect enough data for the power model input by learning all the parameters.
The calibration is an important criteria for the accuracy of the model. Figure 3.3
shows the accuracy of Valgreen using linear model compared to the current draw
data from the ACPI. Through this work, they demonstrate that a power model
can have a high accuracy based on collected data from embedded power meter.
Additionally, using a well-defined model can bring update frequency from less
than 1 Hz (ACPI frequency) to 10 Hz. However, the accuracy stands at process
level while instruction-based power model can go down at the function level and
even deeper.

Another similar approach is the work of Dong and colleagues [63] called
Sesame, which consists on a self power measurement through the smart battery
interface. They offer an high rate system model without external assistance. This
particularity allows them not to be hardware configuration dependent compared
to other works that have dependencies of the system models and thus require
a personalized model for every different mobile device. Their work achieves
accuracy similar to state-of-the-art system power models using their individual
sampling, PowerTutor at 1 Hz [58] , PowerBooter at 0.1 Hz [58] and Finite State
Machine (FSM) at 20 Hz [9]. They demonstrated the interest of research in self
energy modeling.

Figure 3.4: PowerAPI [7] reference architecture. The frame-
work uses information from the operating system to estimate
application’s power consumption.

Related work [7] offer process-level energy information using monitoring mod-
ules built with state-of-the-art models and formulae. The power model they are

5A sampling rate is the frequency at which samples of an analog signal are captured in order
to convert it into digital signal.
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using for energy consumption computation is based on the following state-of-the-
art formulae [21]:

Esof tware = Ecomp + Ecom + Einf ra

where Ecomp is the computational cost (e.g CPU processing, memory access, I/O
operations). Ecom is the exchanging date over network cost and Einf ra is the
additional cost (e.g cost of Java Virtual Machine (JVM), Operating System (OS))
[7].

PowerAPI is implemented as a system level modular library which consist of
CPU and network modules and associated power models. Each system component
is represented as a power module aiming to provide power information per Process
IDentifier (PID). Each power module consists of two sub-modules (Figure 3.4):
formula and sensor. The sensor sub-module gathers hardware and operating
system related information. For example, their implementation exploits system
information available in procfs [39] and sysfs[80] file systems. It means that this
approach for the sub-module is however OS-dependent. The formula sub-module
calculates the power consumed for each process by using information retrieved
by the sensor sub-module. This sub-module is on the other hand, platform
independent. However, PowerAPI [7] approach does not cover hardware such as
memory and disk.

Although linear regression analysis is popular[7, 53, 58], linear model assume
-by definition- that the variations in power consumption are linear causing an
increased estimation error when it is not the case [48]. Base on this fact, some
researchers [35] have recently been experimenting with algorithms such as the use
of neural networks6 to build power models on ARM architectures7. The technique
is called a NARX non-linear8 neural net previously proposed by Xie and al [95].
The authors show that this solution is simpler, easier to implement and above
all, more suitable because changes in consumption are not always linear. They
assume that the total amount of power consumption consumed by the smartphone
can be split into the sum of powers consumed by each component (Figure 3.1) and
a static amount of power consumed by the smartphone [48], giving the following
formulae:

PT otal = PStatic +
n∑

i=1

Pi

where i is the component number (CPU, GPU, RAM...) and n is the total number
of components [35]. They apply NARX neural network [95] to predict the output
of time series and construct the power model using above parameters as inputs.
However, this work is only applicable to a particular architecture, the ARM

6A neural network is a series of algorithms that endeavors to recognize underlying relationships
in a set of data through a process that mimics the way the human brain operates. Source:
/www.investopedia.com/terms/n/neuralnetwork.asp

7ARM is a family of reduced instruction set computing (RISC) architectures for computer pro-
cessors, configured for various environments. Source: en.wikipedia.org/wiki/ARM architecture

8NARX network is a dynamic neural network which appears effective in
the input-output identification of both linear and nonlinear systems. Source:
https://ieeexplore.ieee.org/document/7244449
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processors, which limits the field of use even if the authors demonstrate that the
accuracy is by 97% compared to an external measuring system. Future work will
be to study the health status and the operational states of the systems.

Figure 3.5: Neural network general structure for NARX
nonlinear neural net used in [35], with output feedback and
the Time Delay Line (TDL)

Instruction-Based Modelling

Instruction-based power models for applications in JVM are using Java bytecode9

instructions to build energy models for software systems.
Seo and colleagues [21, 22] propose an energy consumption model for Java-

based software systems running on distributed devices. This work is integrating
three components: computational energy cost; communication energy cost; and
infrastructure energy overhead. It shows an accuracy that falls within 5% of the
actual energy cost for an application but this model is highly dependent on the
hardware and JVM.

Based on this work, Shuai Hao and colleagues [86] propose a new approach
for estimating the energy consumption of mobile applications. Their solution is
both lightweight in terms of its developer requirements and provides fine-grained
estimates of energy consumption at code level.

In this approach, the authors are using eLens [86], a combination of program
analysis and per-instruction energy modeling that is able to estimate energy
consumption to within 10% of the ground truth for a set of mobile applications
from the Google Play store. In their previous work [85] they used execution traces
to estimate CPU energy consumption. The application of the techniques were
limited as they were only able to estimate energy for instructions. Their new
paper goes further by adding more sophisticated CPU model and techniques that
include other hardware components such as RAM, Wi-Fi and GPS. All this is
done via Software Environment Energy Profile (SEEP). The inputs used in their
approach are: the software artifact; the workload, which describes how the users
will interact with the application; and the system profiles, which provides the
power characteristics of the platforms by using per-instruction energy models.
As shown in Figure 3.6, eLens [86] contains three components: the Workload

9Java bytecode is the instruction set of the Java virtual machine (JVM).
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Figure 3.6: General overview of eLens’s framework [86] to
detect and show in source code the energy hotspots. Based
on workload reports and system profiles, it is capable to
find misuse of resource and annotate the source code.

Generator which has the main job of translating the workload into sets of path
through the software artifact; the Analyzer is the element that will use the
previously defined sets of path and the external system profile to compute an
energy estimate; and the Source Code Annotator which makes a combination of
both paths and energy estimate to render an annotated version of the source code.
Their work integrates path profiling techniques based on the state-of-the-art
T. Ball and R. Larus [90] algorithm. A path profile will determine how many
times each acyclic path in a routine executes. It has a real potential for program
improvement, software test coverage and profile-directed compilation. Fine-grain
profiles using basic blocks and control-flow edges are broadly used for profile-
driven compilation. Although their accuracy can be better, the low cost and
small complexity gives the advantage to quickly profile an application. Aside of
this technique, T. Ball and R. Larus [90] propose a path profile algorithm that
points out accurate profiling is neither complex nor expensive. Figure 3.7 shows
a commonly heuristic to select the most frequented path [81] where we can see
basic blocks and control-flow edges technique giving a very disparate number of
path executed times between profiling executions Prof1 and Prof2 resulting in
bad accuracy. Ball and Larus algorithm uses a single instrumentation variable
per method to record path traversed through the CFG of a method. By assigning
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Figure 3.7: Illustration and description from [90], in which
edge profiling does not identify the most frequently executed
paths. The table contains two different path profiles. Both
path profiles induce the same edge execution frequencies,
shown by the edge frequencies in the control-flow graph.
In path profile Prof1, path ABCDEF is most frequently
executed, although the heuristic of following edges with
the highest frequency identifies path ABCDEF as the most
frequent.

weights to edges of the CFG and summing them, they are able to generate an
unique path ID for each method traversed. It allows eLens to quickly profile
application and to use the set of paths to compute an energy estimation based on
per-instruction power model.

The authors used a case study to demonstrate the accuracy and usability of
eLens for measuring power consumption of marketplace applications. Regarding
the accuracy, the results show eLens estimation error at the whole program level
is below 10% with an overall average of 8.8% and an overall average of 7.1% at
the method level. Regarding the usability, the instrumentation time ranged from
4 to 14 minutes and the analysis time ranged from 6 to 17 seconds. Authors recall
that in practice, the instrumentation time would be much lower because only
pieces of code (e.g object class10) changed from an iteration to another would be
instrumented as opposed to this case, where all objects class were instrumented.
However, like most instruction-based power model solutions, this work is only
applicable for software running in JVM. It implies limitations on the usability of
such technique.

10In object-oriented programming, a class is an extensible program-code-
template for creating objects, providing initial values for state (member vari-
ables) and implementations of behavior (member functions or methods). Source:
https://en.wikipedia.org/wiki/Class (computer programming)
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System Call-Based Modelling

System calls are the interface between applications and the OS kernel. They
form an Application Programming Interface (API) for users applications to
access services and devices that are managed by the OS. They are standard
functions made available for user processes. Figure 3.8 presents the relationship
between users applications, C library functions, systems calls and the OS kernel
[84]. Researchers are investigating on how to make the relation between energy
consumption and system-calls as it provides insight on how hardware and software
resources are used by the application and thus could help developers to detect
performance regressions dues to changes made on the source code. Contrasting
with profiling energy consumption, profiling system-calls requires no external
monitoring tool, it becomes easier for the programmer to track changes to system
calls. Indeed, profiling system-calls is less resource intensive than setting-up
specialized hardware test bed and using power monitoring tools in order to profile
energy consumption.

Figure 3.8: This diagram [84] shows how applications, C
library functions, system calls, and the kernel interact with
each other.

A system-call-based power model was first proposed by Pathal and colleagues
[9] where they applied energy consumption model to estimate power consumption
of applications during run-time. They showed by analysing the behaviour of
components in smartphones that: several components stay in high power state for
a period of time after use; system calls that are not in use can change power states
and several components do not have quantitative utilization. In lights of these
observations, they conclude that building energy linear model based on correlating
utilization with energy consumption is not accurate. Their second approach was
to build energy models by tracing system calls and generate a FSM11 for each
system call of each component. They then integrated all the FSMs to build a

11A finite-state machine (FSM) is a mathematical model of computation. It is an abstract
machine that can be in exactly one of a finite number of states at any given time. Source:
en.wikipedia.org/wiki/Finite-state machine

31



FSM for each component. Finally, they gathered the FSMs to build the FSM
model of the smartphone. Using this model, they can identify the current state of
the system and estimate the energy consumption of an application. Their result
showed an improved accuracy compared to PowerScope [53], which is based on
linear regression modeling. They extended [8] their prior work and implemented
a fine-grained energy profiler for mobiles using FSMs. Their tool can be executed
on both Android and Windows Mobile operating systems.

Similar to this system-call-based power model, Aggarwal and colleagues [56]
also trace system calls and correlate them with software energy consumption.
However, their work uses a change model using logistic regressions to predict if
a new version has significantly different energy consumption compared to the
previous version. This is based on the difference in system call invocations. Their
approach uses Green Miner [5] testbed with hardware equipment to measure the
energy consumption of Android applications. Green Miner [5] is able to collect
data across multiple application versions. This type of technique is introduced
in the last chapter. The second step was to write test scripts to generate the
workload as input to the application during run-time. They finally collect and
analyze data. Through their work, they demonstrate that system-calls suffer from
limited variability. They conclude that most system-calls are moderately related
to energy consumption as the solution they found was to rely on averages to
make the relationship between system calls and energy consumption. Regarding
the reliability of such estimation, their evaluation on the Calculator and Firefox
showed respectively an accuracy of 87,7% and 80,04%.

3.2 Detecting Energy Hotspots, Energy Bugs

and Energy Leaks

An alternative or even a complementary solution to the construction of energy
models is the detection of energy failures within the code of an application. These
failures are mainly programming errors that are not always detected by a standard
compiler. This section describes findings that would allow the programmer to
be aware of the energy impacts on the way he programs, as if it was a standard
programming error.

Detecting Energy Bugs

Energy bugs are defects that can have a great impact on the energy consumption
of mobile applications. As some resource intensive hardware components are
requested during run-time, the battery energy can be mostly consumed by the
applications usage. There are two main families of energy bugs: the first one is
the resource leak; it refers to a case when an application does not release the
resource after use and the impact is the battery drain for no actual reason; the
second one is the layout defect that refers to a poor software layout structure
where for instance the layout is too deep and there are too many or ineffective
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widgets.
Work related to energy bugs detection focus on detecting either background

programs [92, 91] or foreground ones such as user interfaces [45].

Figure 3.9: Illustration of the framework of Energy Bug
Detection [44]. Two software analyzing tools are used to
detect resource leaks and layout defects.

Research [44] focus on detecting resources leaks and layout defects. Their ap-
proach, SAAD[44] which stands for Static Application Analysis Detector (SADD),
is able to detect and to report applications resource leaks using inter-procedural
and intra-procedural analyses. In this approach, they integrate several energy
bugs analysis and detection tools such as Apktool[12], SAAF[47] and Lint[60].
As shown in Figure 3.9, the input of their framework is an APK12 file which
is decompiled into Dalvik bytecode13 in order to generate the manifest configu-
ration file of the application. This file includes declared components required
to establish relationship between calls to abstract them into a component call
graph. De-compiled application is then used as input for the open sourced static
Android analysis framework SAAF[47] which encapsulates it into its data models
(Instruction model, BasicBlock model, Method model and SmaliClass model). In
parallel, SAAD [44] uses the static analysis tool Lint[60] to detecting performance
problems of the structure code. It takes as inputs the Android project source files
and an XML14 file in which severity levels of problems are defined. A detailed
report is generated based on Lint[60] analysis. Jiang and colleagues contribution
resides mainly in what comes after; they implemented two modules: the layout

12An APK file is an Android Package file that’s used to distribute applications on Google’s
Android operating system.

13Dalvik bytecode is similar to Java bytecode. The two most notable differences
are: Dalvik is register based rather than stack based and the local registers are
untyped. These differences are reflected in their two instruction sets. Source:
www.sciencedirect.com/science/article/pii/S0167642313003304

14Extensible Markup Language (XML) is a markup language that defines a set of rules for
encoding documents in a format that is both human-readable and machine-readable. Source:
en.wikipedia.org/wiki/XML
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defect module which basically integrates the output from Lint but also filter the
report in order to extract energy defects issues. This filter sub-module has a set
of filter rules that points out which issue is an energy problem and thus which
one is relevant; the resource leak detection module integrates the component
call graph to explore the function call path with resource applying and releasing
and further extract a set of executions paths. Each path flow is checked to
see whether or not the acquired resource is released after use. Post-analyis of
both modules output report result where energy defects issues and resource leaks
are summarized. Although their evaluation shows good results, it is only based
on common Android system functions analysis and thus does not cover all the
component call of an application.

In conjunction with CPU energy management, ineffective use of sensors and
their data can also cause severe energy leakage. Chang Xu and al [62] focus
their analysis on sensor’s utilization in Android applications. Their approach
automatically detects sensor’s data at different states and reports information to
help developers locate energy leaks. The analysis tool called GreenDroid simulates
the runtime behavior of applications by taking as input the application’s Java
bytecodes (*.class format) and configuration files (*.xml format) and construct
application execution model. Under this approach, they implement their solution
on top of Java PathFinder (JFP)15. GreenDroid leverages JFP model checking
functionality to generates user interaction sequences to create the execution paths.
Moreover, they use dynamic tainting-based techniques16 for analyzing sensors
data. The Android application’s data objects are tainted with a unique mark
before being fed to to GreenDroid. They then track the sensors usage data by
variables in each bytecode instruction. Finally, the constructed application’s
execution model reports sensors data power consumption at specific point in the
source code. The framework show good results but requires JVM and analysis
can only be executed Android applications. Furthermore, their solution does not
detect misuse of wake locks17 on sensors.

3.3 Tools and Applications for Power Consump-

tion Monitoring and Analysis

This chapter discusses the main software tools and methods for analyzing, esti-
mating, and reporting the energy consumption of smartphones.

15Java Pathfinder (JPF) is a system to verify executable Java bytecode programs. JPF
was developed at the NASA Ames Research Center and open sourced in 2005. Source:
https://en.wikipedia.org/wiki/JavaP athf inder

16Software taint analysis detects overwrite attacks which include most types of security
breeches.

17Wake locks are power-managing software mechanisms used to indicate the device to stay on.
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Mining Software Repositories

Mining Software Repository (MSR) research aims to increase awareness amongst
developers in order to base their decisions on data mined from software repositories
such as version control systems, bug trackers and project documentation. Many
researches on software power consumption are made but only a few focuses
on power consumption related to software change. Moura and colleagues [68]
conducted a study on 2,000 commits on several open-source projects in Github18

where they found out that 371 of them were probably dedicated to save software
energy consumption using energy-efficiency solutions such as frequency scaling19

and levels of idleness20. Yet this conclusion is based on programmers’ commits
that were manually analysed.

One relevant work is Abraham Hindle paper [3] which presents an abstract
methodology for measuring and correlating power consumption of software across
multiple commit versions. GreenMining [3] measures and extracts power consump-
tion information relevant to software change. Their methodology is as follows
(extract from paper [3], pp. 3 - 5):

• Choose a software product to test and which context it should be tested in.
• Decide on the level of instrumentation and on the different kinds of data

recorded, including power measurements.
• Choose a set of versions, snapshots or revisions, of a software product to

test.
• Develop a test case for the software that can be run on the selected snapshots

and revisions of the software.
• Configure the testbed system to reduce background noise from other pro-

cesses.
• For every chosen version:

– Run the test within the testbed and record the instrumented data.

– Compile and store the recorded data.

– Clean up the test and the testbed.

• Compile and Analyze the results.

They used external Alternative Current (AC) power monitor ”Watts Up? Pro”
hardware device to measure power consumption of the system which is able to
sample at a frequency of 1 Hz. System activity information such as CPU, disk
and memory were also required in order to model the energy cost of targeted
application. In this approach, they used System Activity Report (SAR)[43] which
is a system activity report tool provided on Linux [61] platforms. Their evaluation
was to first compare the power consumption of different Firefox commit branches
and second to analyse Vuze21 power consumption revision-by-revision. This work

18www.github.com
19See Section 1.4
20Levels of idleness refers to the management of idle states of electronic components
21Vuze is a BitTorrent client coded in Java
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demonstrates the feasibility of using green mining methodology to point out power
relevant behavior across multiple versions of an application. Indeed, they show
that software change induce changes in power consumption but on the other hand,
they also found out that results depend greatly on the structure of the tests
executed and thus changes observed are not highly accurate.

Their prior work [4] was a prospect of extended possibilities mining repositories
can offer, it did not analyze source code or relate software changes to power
consumption. Related work [2] also explores mining techniques yet to estimate
energy consumption of application using traces on Windows Phone 7 operating
system.

Energy Efficiency Repositories

Figure 3.10: Overview of HADAS toolkit [73] where two
roles for using the solution are clearly defined: developer
and researcher. Researchers provide power energy input
data while developers rely on power consumption data to
select the best energy-efficiency implementation according
to their needs.

The tools mentioned can therefore help to ensure that an eco-friendly appli-
cation is designed through the analysis of commits, but this information on the
cases detected and their findings remains stored in the programmer’s head or,
in the best case, in the coding style of a software development company. They
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are not shared to the developer community so they cannot become standardized
solutions. D-J Munoz author [73] is aware of this lack of sharing. He presents
a solution using a Software Product Line (SPL)22 approach called HADAS (Fig-
ure 3.10). The purpose of this tool is to connect the software community that
includes researchers and developers. This solution relies on a MariaDB23 rela-
tional database which stores and categorizes the energy-efficiency implementation
designs. The information is categorized into structure layers (Energy consuming
concerns, Design variants, Implementation alternatives, Energy context, ...). The
researcher produces data for the energy efficiency repository in the form of a
design solution with an attractive energy performance. To achieve this, he fills
in a template containing many fields that define the technologies used, the en-
ergy cost, etc. of the proposed design. The developer has at his disposal a web
interface where the data is displayed in tree view. He can select implementation
alternatives according to his needs. All data relating to the relevance of the
design, i.e. its energy consumption, are displayed. Unfortunately their system is
not fully automated and seems to be highly related to web development based
design. Authors continue working on the toolkit with new features, improvements
and a more user-friendly interface [69, 70, 71, 72].

22A software product line is a set of software-intensive systems that share a common, man-
aged set of features satisfying the specific needs of a particular market segment or mission
and that are developed from a common set of core assets in a prescribed way. Source:
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=513819

23mariadb.org
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Chapter 4

Smartphone Power Consumption
Optimization

Analyzing and estimating the energy consumption of applications is a big step but
in order to make the applications energy-efficient, it is necessary to optimize the
resource usage. Many of the techniques proposed for the analysis provide a lead so
that the programmer can reduce the energy cost. In these situations, optimization
depends on how the data will be interpreted and used during software develop-
ment. There is however a whole range of improvements that are possible either
on hardware low-level power management or on applications where automatic
optimization techniques can be applied. This section describes the optimization
of operations allowed on hardware components such as display, computing units,
task offloading techniques and code refactoring techniques.

4.1 Device Operation Optimization

Newer smart-phones include several components that enable to perform math-
ematical operations. They are becoming more and more powerful and some of
them can be dedicated to certain types of operations while others are able to
perform tasks in parallel. However, the maximum performance provided by these
components is not always required [23] and could be tailored to reduce power
consumption. The proposed research covers these topics that are considered
important and for with a possible future in the field of energy-efficiency.

Dynamic Resource Allotment

Parallel running processes are a common feature in recent OS, with some running
in the foreground and others in the background not necessarily requiring the
same resources. Mukherjee and Chantem’s [6] offer a solution to minimise the
energy cost of these processes that run in the background. Their work relies on
a framework that is able to manage the resources at system-level. The targeted
components are the processor and the memory, more precisely the voltage and
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frequency of the computing unit as well as the memory bandwidth1. The idea is
to adjust these parameters in real-time on the basis of a characterization that
takes the form of a series of different configurations which are selected according
to the current needs. The following solution is composed of two-step procedure
(Figure 4.1).

They run applications side-by-side for the profiling phase which is executed
offline. The profiler calculates the average performance data and energy con-
sumption data for an application for each CPU frequency and memory bandwidth.
This is stored as a tuple (CPU frequency, Memory bandwidth) and represents
a system configuration (Figure 4.2). Such information will assist in decision
making when managing the energy consumption through the online controller.
The second step consists of an online framework which is periodically executed

Figure 4.1: The proposed framework [6] is decoupled into
running applications side-by-side in offline profiling phase
(left), and an online framework to select the best energy-
performance configuration (right).

for selecting the best energy-performance configuration (energy-efficiency with
less performance degradation). This module relies on phase detection combined
with the profiling methods. A phase transition is identified when a computation
intensive phase is followed by a memory intensive phase. CPU intensive phase
are monitored with existing CPU activity tool Perf [33] while memory trafic
monitoring is realized with an intra-monitoring mechanism developed for the
study. The memory intensive phases are monitored from CPU memory caches (L1
and L2). The information is then used to define usage patterns of the application
and select the best voltage and frequency level of associated core settings for the
processor; and memory bandwidth to get the most energy-efficient configuration
without sacrificing the performance target.

The proposed framework is also able to progressively reduce power consumption

1Memory bandwidth is the rate at which data can be read from or stored into a semiconductor
memory by a processor. Source: en.wikipedia.org/wiki/Memory bandwidth
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Figure 4.2: Example of application’s Look Up Table (LUT)
generated for system configuration [6] with the relation
bewteen CPU Freq, Memory bandwidth, IPCa and power
consumption expressed in mW. In this example, the energy-
efficient configuration for the application’s resource needs
is the Config. 5. Lowering the CPU frequency can cause
more energy consumption as it can require more time to
perform the application’s operations.

aIn computer architecture, the term Instruction Per Cycle (IPC) refers to one as-
pect of a processor’s performance: the average number of instructions executed for
each clock cycle. It is the multiplicative inverse of cycles per instruction. Source:
en.wikipedia.org/wiki/Instructions per cycle

of newly installed applications even if no resource usage data is yet available. To
achieve this, the offline profiles are browsed in order to find the closest match
and select the most similar profile.

As the use of this technique does not require to modify code application, it
is applicable to both open-source and proprietary applications. Authors claims
it can achieve up to 31 % energy reduction compared to existing techniques and
default Android Governor [11]. However, their work does not yet make it possible
to manage several applications running on the same processor. They are only able
to characterize the workload, adjust the voltage settings and memory bandwidth
for one application at a time.

S. Li and S. Mishra’s [59] work also focus on multi-cores optimization by
providing a middle-ware layer capable of dynamically schedule an optimal number
of cores. It uses same dynamic profiling and CPU frequency adjustment of each
of the core based on CPU load and performance. Moreover, the tool benefits from
user’s usage and data for battery’s charge and discharge time. For this study,
they explore scheduling algorithms in order to trade-off energy consumption,
performance, and user experience. Three algorithms are proposed for which they
believe it can achieve good balance between the above criteria. Unfortunately,
their paper is not publicly available which limits any exhaustive evaluation.

Task Parallelism and Scheduling

Some other research are also being explored in order to reduce both CPU and GPU
power consumption using Dynamic and Voltage Frequency Scaling (DVFS) policy.

40



This solution is commonly employed to reduce energy and power consumption for
applications by tailoring its needs. It works on two power saving techniques: the
dynamic frequency scaling; and the dynamic voltage scaling2. Research work [87]
claims that most of the time, some extra frequency level is used in applications,
even if DVFS techniques are already applied. Recent work on dynamic parallelism
requires costly dedicated hardware and relies on greedy algorithm for decision
making. As the actual application needs could be dynamically analysed, they
propose to select optimal parallelism, voltage and frequency to guarantee high
power efficiency. To achieve that purpose, they use recent work on dynamic
parallelism with the conventional DVFS and make the parallel choices autonomous
from hardware.

In memory’s power management field, [82] used the Phase Change Memory
(PCM)3 but combined it to the RAM optimizations which was already applied
to personal computer systems. Indeed, they applied the same power memory
management to smartphone hardware that was originally proposed for desktops
and servers. Their result show that the state-of-the-art Power-Aware Virtual
Memory (PAVM) mechanism has interesting power efficiency. The result is high-
efficient compared to the standard system with no energy management. Moreover,
they observe no performance degradation on their hybrid mechanism while they
degradation on both and PCM technologies are identified. Their analysis suggests
that hybrid memory may be a better choice for future smartphone design.

Parallel management of communication data is another field that some re-
searchers are studying [27]. They believe that parallel communications require
less energy than their stand-alone execution. Their work analyzes the possibilities
for scheduling communications in order to reduce energy consumption. In this
approach, they identify two types of communications to manage a service, the
Delay-Tolerant Services (DTS) and the Real-Time Services (RTS). The first type
groups services that do not require instant updates when they are not in the
foreground. The second type includes services that have a real-time need such
as a video streaming or a phone call. Based on this distinction, they propose to
schedule the first group opportunistically in parallel with RTS. They exploit the
freedom in the scheduling policy for DTS services in order to execute them at
minimum cost. Evaluation of pairing strategy benefits is performed on simulated
traces for 3G, 4G and Wi-Fi networks. Results show 10 % to 15 % of energy sav-
ing for file uploading/downloading task in parallel with other real-time services,
compared to sequential operations. However, no evaluation was performed on
real communication data and there is currently no concrete application found.

2See Section 1.4
3Phase-Change Memory is a type of non-volatile RAM that stores data by altering the state

of the material. Different from RAM, data can be overwritten without having to erase it first.
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4.2 Optimizing Device Display

Display systems answer to a significant portion of the power consumed by the
smartphone despite the emerging technologies for low-power display. Indeed,
constructor innovations are moving in this direction, focusing on reducing the
size of components and their energy consumption while increasing their perfor-
mance (contrast, brightness, life-time, ...). This chapter describes techniques for
optimizing the display system to make it even more energy-efficient. Research in
this area [42, 25, 14], focuses on better management of the power supplied to this
component, and on solutions to reduce the brightness of the display performing
image processing. To this end, the main display technologies used for these
purposes are the LCD and Organic Light-Emitting Diode (OLED).

Dynamic voltage scaling and dimming of OLED panel

Some screen technology such as LCD require more power than current OLED4

screen where a backlight system is necessary. Indeed, LCD screens use high
intensive backlight to illuminate their pixels whereas OLED screens pixels are self-
illuminating using organic light emission material (Figure 4.3). In this approach,
researchers try to reduce power consumed by the display, especially the backlight
as it is the major factor responsible for this power drain. OLED displays consume
low power for high quality images but it is still a dominant power consumer.

Figure 4.3: LCD layer technology (left) and OLED layer
technology (right) [76]. A backligth system is required on
LCD screens while OLED screens uses organic light emission
material.

Interesting work uses tone mapping techniques5 ([14] on mobile games), ([25]

4An organic light-emitting diode (OLED or Organic LED), is a light-emitting diode (LED)
in which the emissive electroluminescent layer is a film of organic compound that emits light in
response to an electric current. Source: en.wikipedia.org/wiki/OLED

5Tone mapping is a technique used in image processing and computer graphics to map one set
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on video streams) in order to dynamically increase the image brightness on LCD
displays. This allows a LCD back-light level reduction while preserving the image
contrast. Anand and al [14] demonstrate it in their work on reducing energy
consumption of a smartphone while running mobile games. The solution is based
on gamma correction6 applied to tone mapping. The gamma correction is an
image process widely available in all graphic implementation (OpenGL, X11,
game rendering engines, etc) but also as an hardware-assisted function found
in many modern GPUs [77]. The system they implemented requires inputs to
calculate and apply the tone mapping technique.

Figure 4.4: Results showing close histogram to the original
image (a) using gamma correction (c) in order to reduce
back-light level [14].

They first estimate the image brightness through sampling methods where
they select about 2000 samples pixels (1 out of every 20 pixels from the image).
For each pixel, they compute its brightness with a function that gets Red (R),
Green (G) and Blue (B) colour values. They then compute a weighted average of
all the pixel brightness so that the image brightness value is recovered. This final
value is categorized on a fourteen level scale. The next step was to define the
gamma threshold values for the fourteen brightness levels. The gamma thresholds
calibration was conducted through a user study involving 10 participants. Each
potential user selected the lower limit and the upper limit of the gamma correction
to be applied for which there was little or no loss of overall image contrast. In

of colors to another to approximate the appearance of high-dynamic-range images in a medium
that has a more limited dynamic range. Source: en.wikipedia.org/wiki/Tone mapping

6Gamma correction, or often simply gamma, is a nonlinear operation used to encode
and decode luminance or tristimulus values in video or still image systems. Source:
en.wikipedia.org/wiki/Gamma correction
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other words, the range was not to contain any cases where the image quality was
impacted, thus the quality of the game-play retained. The defined values are then
computed into their run-time algorithm (Figure 4.5), that basically calculate the
gamma and backlight level settings to apply for a given image brightness level.

Their analysis on two different games shows that it can save up to 68 % of
the display power without significantly affecting the perceived image quality.
However, this technique is not supported on Android smartphones for some less
recent versions (e.g, with no powerful GPU such as the Nvidia Tegra [77]). In fact,
those smartphones do not have a native software interface for the use of gamma
correction. Regarding the hardware, it does not support direct access to these
image processing operations. To overcome this limitation, they have managed to
apply similar but limited techniques using alpha compositing methods7, made
available through OpenGL8 graphical libraries. Furthermore, the tests conducted
on old LCD screens were successful, while those ran on Active-Matrix Organic
Light-Emitting Diode (AMOLED) displays showed less energy-efficiency results.
They finally hope that the gamma correction methods will be supported on most
new smartphones.

A more recent work proposes a video classifier based on the same dynamic
tone mapping for OLED screens [25]. They found out that there is a similarity in
power consumption among video streams of the same category. They use Hidden
Markov Model (HMM) [46] to classify videos files into groups with a similar
energy footprint. However, their findings are currently not publicly available and
is limited to a Proof Of Concept (POC).

Other studies demonstrate that organic LED displays are becoming more and
more popular among smartphones and have good potential for improving power
consumption. Researchers such as Kim and al. [31] are trying to apply techniques
to dynamically adjust the voltage supplied to these displays. Their solution is
based on Dynamic Voltage Scaling (DVS) [37] techniques of the OLED panel,
similar to studies that focused on improving process units energy cost [87, 59, 6].
Their work use characteristics of OLED drivers, especially the driver transistor
and the internal resistance where they apply respectively an Amplitude Modulator
(AM)9 and a Pulse Width Modulator (PWM)10. The current applied on OLED
cells determines its luminance. By adjusting the cell voltage, they can adjust the

7In computer graphics, alpha compositing is the process of combining one image with a
background to create the appearance of partial or full transparency. It is often useful to render
picture elements (pixels) in separate passes or layers and then combine the resulting 2D images
into a single, final image called the composite. Source: en.wikipedia.org/wiki/Alpha compositing

8www.opengl.org
9AM is a modulation technique used in electronic communication, most commonly for

transmitting information via a radio carrier wave. In amplitude modulation, the amplitude
(signal strength) of the carrier wave is varied in proportion to that of the message signal being
transmitted. Source: en.wikipedia.org/wiki/Amplitude modulation

10PWM is a method of reducing the average power delivered by an electrical signal, by
effectively chopping it up into discrete parts. The average value of voltage (and current) fed to
the load is controlled by turning the switch between supply and load on and off at a fast rate.
Source: en.wikipedia.org/wiki/Pulse-width modulation
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Figure 4.5: Flowchart of gamma correction decision engine
[14]. Based on current image’s average brightness, the
algorithm decides if it is worth it or not to apply new
gamma correction and change backlight level.

cell current as,
Pcell = IcellVcell

where Pcell is the power given to the cell, Icell is the current to the cell and Vcell

is the voltage to the cell.
The AM and PWM drivers are used to alter the power supplied to the OLED

panel which enables the reduction of its energy consumption. As the power
supplied is lowered, its luminance is also reduced. However, this solution can
cause image distortion. To remedy this, they apply image processing based on
the human-perceived color space. Their work is different from the previous ones
because even if the color of the pixels has an impact on energy consumption,
changing this color degrades the quality of the image [31]. Their prototype showed
52.5 % energy saving on best case but sometimes, the luminance distortion is
unavoidable therefore they sacrificed the display quality to save a certain amount
of power consumption. Moreover, their solution relies on OLED hardware only,
specifically on AM and PWM drivers, which limits the field of application.
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4.3 Optimizing Application Design for Energy

Efficiency

Despite the many proposed improvements in smartphone resource management,
the way in which applications are designed remains a key element in ensuring
appropriate power consumption and energy-efficiency. Tools are proposed to
analyze and therefore better understand where the energy hot-spots are in a
software application (see Smartphone Power Consumption Measurement chapter)
but these require an effort from the beginning and throughout the design to
manage these issues. There are, however, other solutions that aim to improve the
energy efficiency of an application that has already been designed. This chapter
reviews and describes current trends in this domain.

Task Offloading

Mobile Cloud Computing (MCC) provides the execution of mobile applications
on external resource to the mobile device. It manages to offload tasks to a
remote server, saving energy consumption of the smartphones. Connectivities
of mobile devices offer immediate access to available computing, storage and
communications on commercial clouds. However, mobile applications that benefit
from the cloud computing cannot be developed as a monolithic process, it has to
be split in traditional client-server paradigm.

We focus our literature review on solutions offered to optimize application
not designed to take benefit from the cloud computing. To address this problem,
there are research done in automatic partitioning11, migration and execution.
One related recent work is MAUI[38], which partitions applications using a
framework that combines static program analysis with dynamic program profiling
and optimize execution time or energy consumption using a optimization solver.
MAUI[38]’s framework decides at run-time which methods should be remotely
executed through energy-aware decision engine. However, this approach has some
disadvantages, for example it requires the help of the programmer in order to
annotate methods as remotable, consequently, the application needs to be written
in a non-standard way.

Similar to MAUI [38], Chun and colleagues [15] present an approach able to
partition portions of the execution but also provides automatic transformation of
mobile applications to benefit from the cloud. Authors think that it can be worth
to pay the cost for sending the relevant data and code from the device to the
cloud. Portions of the application execution is moved onto device clones operating
in a computational cloud (Figure 4.6). CloneCloud [15] design goal is to take
programmer out of business of application partitioning by rewriting automatically
an unmodified application executable. Their partitioning mechanism aims to pick
which part of the application will continue to be executed on the mobile device

11It refers to the process for automatic detection of pieces of code eligible for migration and
execution on a remote server.
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Figure 4.6: CloneCloud system model [15]. CloneCloud
transforms a single-machine execution (mobile device com-
putation) into a distributed execution (mobile device and
cloud computation) automatically.

and which is migrated to the cloud. They submitted their algorithm to three
main constraints in order to generate a legal partition: ”Methods that access
specific features of a machine must be pinned to the machine; Methods that share
native state must be collocated at the same machine; Prevent nested migration”
[15]. The output of this mechanism is a choice of execution points where the
application migrates part of its execution and state between the device and the
clone. They also integrate migration mechanism for partitions previously defined
to be executed within a Virtual Machine (VM). This process operates at the gran-
ularity of a thread allowing a multi-thread application to offload functionalities,
one thread-at-a-time. Basically, when a thread reaches an execution point, it will
be suspended with all its states packaged and sent to the virtual machine where
the process will be executed until reaching the end of the execution portion. The
thread will be then packaged with the new states and sent back to the mobile
application into the device. Application thread is suspended during migration
process and does not block other threads unless they require to access specific
resource held by the migrated thread. Their evaluation shows that their able to
achieve basic augmented execution of mobile applications on the cloud. They
say their solution can speed up to 20x execution time and reduce energy up to
20-fold. Yet there are limitations dues to his inability to migrate native state and
to export unique native resources remotely.

Additionally to previous works, a recent solution [75] brings an interesting
element which is to consider the variable capacity of the wireless network over time
(Figure 4.7). Their paper presents a framework called User Level Online Offloading
Framework for Mobile Edge Computing (ULOOF) which is a lightweight system
that takes benefit from edge computing facilities. This application tool is a
computation offloading framework that transfer and execute methods calls from
a user application to a computing cloud server. It also equipped with a decision
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Figure 4.7: Nogueira and al [75] defined mobile computation
offline scenarios to consider the variable capacity of the
wireless network over time.

engine that minimizes remote execution overhead and requires no modification
on the device’s operating system. This tool is divided into two components, the
instrumentation component; and the remote execution platform. Nogueira and al
described it as follows (extract from paper [75], p. 4) :

• In the mobile device, the instrumentation component instruments the candi-
date methods for offloading. Whenever such methods are called, it intercepts
the call and makes execution time and energy consumption estimations for
both local and remote method execution cases. Then, the decision engine
chooses whether to execute the method locally or remotely based on the
estimation.

• The remote execution platform takes care of the remote execution of the
offloadable computation, by means of a connector module. It executes the
requested offloading and returns the result to the mobile device.

Figure 4.8: Comparison between state of the art frameworks
for task offloading. ULOOF [75] resolve some of the main
constraints of prior techniques.

The network bandwidth estimation, which is a significant added value com-
pared to previous techniques, is performed by the decision engine who compute
this information into its calculations to decide whether or not to transfer a method
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on the basis of the execution time required and the energy cost of the method.
Their technique seems to have successfully managed the prior solution constraints
(Figure 4.8) and can even lower execution time by 50 % while offloading up to 73
% of the computations of an application. Although the framework seems efficient
and meets many needs while covering the major issues of prior solutions, it re-
quires to de-compile and re-compile the target application to mark the candidate
methods to the offload. This last step creates a modified APK file to integrate
the offloading logic into the application. This last point brings a constraint of use
but opens opportunities to bring an energy optimization solution to applications
whose development has ended up.

Code refactoring

Figure 4.9: Sequence that represents the steps for the refac-
toring process and power consumption comparison between
original and refactored code [55].

Code refactoring techniques are mainly used to improve maintainability of
software to extend its lifetime. Their method focus on restructuring existing com-
puting code without alternating its external behavior. However, some research[55]
observed that power consumption is not considered in the refactoring process
although some work [96, 54] used code refactoring techniques to enhance software
quality attributes like performance or reliability. The energy carefree process can
result in a refactored code consuming more power than the original code. Some
suggest [66] that energy-efficiency shall be a dominant factor in software quality
process.

In this approach, [55] compares code refactoring techniques in order to demon-
strate if they can support energy-efficient software generation or not. Their
work analyses M. Fowler’s 63 [66] refactoring techniques as they provide general
common concepts and also cover a wide range of industrial practices to software
refactoring. Figure 4.9 illustrates their estimation process of power consumption
for the 63 refactoring techniques. To estimate the power consumption of different
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Figure 4.10: Java code fragment showing non-optimal use
of camera resource acquisition, described by [16]. The wake
locka is acquired from the Entry Node to the Exit Node but
it’s actually necessary only during a piece of the sequence.

aWake locks are power-managing software mechanisms used to indicate the device to stay on.

techniques, authors use XEEMU[97] tool which is a software power estimation
tool supporting C/C++ based estimation. They prepared example source codes
based on sample codes used in M. Flower’s studies [66] and customized them to be
executed without any external input as they can cause different power consump-
tion estimation for the same code. Their evaluation shows that 30 refactoring
techniques cause energy consumption regressions while 33 others bring no change
or are even energy-efficiencies. Through this paper, they demonstrate that code
refactoring process could improve energy consumption of applications, in the
same way as their primary goal which is improving maintainability of software.

Related work [64] defines the conditions of power waste for mobile application.
Based on his prior work [65], they were able to create a code refactoring technique
to respond to the waste conditions. They also demonstrate that their solution
is appropriate for reducing power consumption of refactored code. Nevertheless,
the detail refactoring process is not fully described in his work [64], preventing
any other use of his technique.

The compiler is also an integral part of the development process, therefore
it can also play a role in reducing the energy consumption of the application.
Yet there is very few work on the subject. X. Chen and al [26] have developed
a solution called Android Energy Profiler (AEP) to analyze the energy impact
of programming languages such as C, C++ or Java. This analysis also proposes
programming styles with appropriate use of native code12 in order to optimize
the way the application will be compiled. This work cannot however be exploited

12Native code is a programming code compiled to run with a particular processor and its set
of instructions.
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Figure 4.11: Algorithm that computes design-expressions
to implement energy-efficiency guidelines. Decisions are
made based on following rules: Sub-optimal binding, Nested
usage, Tradeoff and resourceleak. [16]

all along the application development but it is rather there to guide the choices
of implementation in the first phases of design.

Some researchers [16] are also recently proposing a solution that re-factor the
source code to make it energy-efficient. They say this technique is capable of auto-
matically refactor android applications in order to assist in energy awareness dur-
ing application development. In this approach, they developed a framework that
comprises a set of energy-efficiency guidelines to refactor the design-expression
of an application. This design-expression is a regular expression that repre-
sents the modules that are energy-intensive and operate smartphone resources.
Their framework detects and refactors instances of energy-drain within the target
application using a refactoring design expression algorithm (Figure 4.11). For
example, one of the guideline-based refactoring is to ensure that resources usage
is acquired as late as possible and released as soon as possible. The Figure 4.10
is an example showing that this their rules bring energy improvement on common
design patterns. They demonstrate that such technique can achieve up to 29

51



% of application energy-saving. The framework can be executed on both under
development or released applications. Such energy-aware design can also raise the
programmer’s consciousness for future developments. Moreover, as the changes
are made to the application source code and not onto the platform, the behaviour
should react similar, independently on the platform and the device. However,
the energy-efficiency guidelines do not cover all case as they say, the features
of real-life applications may vary widely and their insights are not necessarily
shared with the developer community. Also the guidelines may not be applicable,
depending on the context in which a feature is used and what is the purpose of
using it in this way.
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Chapter 5

Conclusion

The introduction of smartphones has brought its share of new challenges that
need to be addressed, such as saving smartphone’s energy. Batteries with limited
autonomy are no longer sufficient to run all the applications used on a daily basis.
Applications rely on hardware resources to provide features for the user’s need.
Those demands have an energy cost that drains the battery’s autonomy. It becomes
necessary to efficiently use the electronic components. Meanwhile, researchers
are studying the possibilities to estimate, analyze and optimize resource usage
in order to make more energy-efficient applications. Large companies are also
concerned by the energy saving problematic and are currently forming research
groups (e.g. IBM and Intel forming GreenIT [88]) to carry out studies in this field.
In spite of the efforts, available tools that assist developer during the mobile
application design are still few in number, they require a large investment of time
and money or are not very accurate. Unlike standards that enforce application’s
security or general performance of the smartphone, there is no common application
energy-efficiency guideline that programmers can rely on.

In this thesis we attempted to answer the question of how software engineering
can resolve the application power consumption problematic using program analysis.
This work describes and analyzes the main factors of energy consumption of the
resources in a smartphone, the existing solutions that estimate, analyze and
report this energy consumption and the actual solutions to optimize resource
usage in mobile applications.

We first tried to understand the main reasons for which electronic components
consume energy. They allow mathematical operations to be performed and
the information to be stored, communicated, displayed and captured on the
smartphone such as audio, video and positioning data. Following this analysis, we
understand that the technologies and features used inside the smartphone have a
significant impact on smartphone’s power consumption. However, the hardware
designers of components are aware of the need to reduce this energy consumption.
In fact, hardware technologies evolve and tend towards less energy-consuming
solutions while increasing performance and thinness.

Secondly, we reviewed the techniques for estimating and analysing the energy
consumption of mobile applications and consequently the cost of using resources.

53



The most suitable solutions for estimation are the constructions of power models.
They provide data that are essential for software application designers. Model’s
inputs can be related to the use of smartphones, to the cost of a method call
or instruction and the cost of using interfaces to hardware components. It is
clear that if we want a fine-grained estimation, power modeling must allow as
much information as possible. Instruction-based modeling techniques seem to
have a promising future in this area where the energy cost of executing a line of
source code can be estimated. In addition, some work has showing that that it
is possible to integrate power consumption profiling tools into integrated devel-
opment environment (IDE) currently used by programmers. This would make
it possible to quickly and effortlessly analyze the energy cost of implemented
designs. In that chapter, we have also looked at solutions that support software
developers and more particularly that raise awareness of best practices in the
community. Techniques such as mining repositories or energy efficiency reposito-
ries are proposed and could meet this need of sharing information about design
energy cost. However, the existing solutions need the support of the community
as their relevance lies in generalizing the use of tools to build a sufficient data
set.

Finally, we evaluated techniques for optimizing the energy consumption of
mobile applications. Many solutions can be found at several levels between the
resource and the application, but we selected the ones that can improve the man-
agement of the most demanding resources and those that provide an alternative
optimization solution for applications with a finished design. In this approach, we
evaluated solutions that improve the power management of the computing units
as well as the display units. Most techniques perform voltage and/or frequency
regulation on memory, processing unit, graphical unit and displays. Researchers
asked themselves if the resource actually needs all this power for the duration
of its operation. Their study answers the question by showing that alternatives
exist and they can maintain initial performance and usability. However, the
techniques mentioned in the chapter require specific technologies and a lot of
empirical analysis. We hope that electronic components manufacturers are going
to continue the improvements in reducing the product’s energy consumption. The
last area we reviewed deals with task offloading techniques and code refactoring
techniques. The recent solutions we evaluated have shown a promising future as
they demonstrate the existing techniques to offload smartphone’s resources from
the weight of carrying out energy-intensive tasks. The energy consuming tasks
can be executed on remote servers provided with powerful hardware to perform
operations required by the smartphone. The last two years have brought a lot of
progress with solutions to limit changes in the source code and in network quality
analysis, and more efficient task decision algorithms whose smartphone’s external
execution is worth it. This section reviews refactoring techniques use for optimiz-
ing the design code of the application. Based on pre-established rules, researchers
show that the source code can be maintained while being the energy-efficient.
Most of the solutions can automatically refactor application code with reliability.
However, the question of whether it is possible to trust pre-established rules that
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do not necessarily take the context of use into account arises.
In conclusion, we believe that there is an urgent need to raise energy-saving

awareness among the software development community. Nonetheless, on the
researchers’ side, increasingly effective analyzing tools are already proposed.
The best analyzing techniques yet are those with the capability to analyze and
estimate energy consumption at fine-grained level. However, not many are fully
extensible to different platforms than studied cases. Today it is still possible
to collect power consumption data and it is now time to find means that will
enable to share and benefit the developers’ community of those markers. In
regard to application legacy code, alternatives to optimize applications with few
code modification are emerging. The latter solutions would help to constraint
application’s energy-efficiency as a common software quality attribute. In this
approach, the motivation of the software developers is a key element therefore,
the tools’ usability and reliability shall be the main aspects to go through (e.g
integration in software development toolkit).
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