643 research outputs found

    An observationally complete program logic for imperative higher-order functions

    Get PDF
    We establish a strong completeness property called observational completeness of the program logic for imperative, higher-order functions introduced in [1]. Observational completeness states that valid assertions characterise program behaviour up to observational congruence, giving a precise correspondence between operational and axiomatic semantics. The proof layout for the observational completeness which uses a restricted syntactic structure called finite canonical forms originally introduced in game-based semantics, and characteristic formulae originally introduced in the process calculi, is generally applicable for a precise axiomatic characterisation of more complex program behaviour, such as aliasing and local state

    Encoding CSP into CCS

    Get PDF
    We study encodings from CSP into asynchronous CCS with name passing and matching, so in fact, the asynchronous pi-calculus. By doing so, we discuss two different ways to map the multi-way synchronisation mechanism of CSP into the two-way synchronisation mechanism of CCS. Both encodings satisfy the criteria of Gorla except for compositionality, as both use an additional top-level context. Following the work of Parrow and Sj\"odin, the first encoding uses a centralised coordinator and establishes a variant of weak bisimilarity between source terms and their translations. The second encoding is decentralised, and thus more efficient, but ensures only a form of coupled similarity between source terms and their translations.Comment: In Proceedings EXPRESS/SOS 2015, arXiv:1508.0634

    Verification of Graph Programs

    Get PDF
    This thesis is concerned with verifying the correctness of programs written in GP 2 (for Graph Programs), an experimental, nondeterministic graph manipulation language, in which program states are graphs, and computational steps are applications of graph transformation rules. GP 2 allows for visual programming at a high level of abstraction, with the programmer freed from manipulating low-level data structures and instead solving graph-based problems in a direct, declarative, and rule-based way. To verify that a graph program meets some specification, however, has been -- prior to the work described in this thesis -- an ad hoc task, detracting from the appeal of using GP 2 to reason about graph algorithms, high-level system specifications, pointer structures, and the many other practical problems in software engineering and programming languages that can be modelled as graph problems. This thesis describes some contributions towards the challenge of verifying graph programs, in particular, Hoare logics with which correctness specifications can be proven in a syntax-directed and compositional manner. We contribute calculi of proof rules for GP 2 that allow for rigorous reasoning about both partial correctness and termination of graph programs. These are given in an extensional style, i.e. independent of fixed assertion languages. This approach allows for the re-use of proof rules with different assertion languages for graphs, and moreover, allows for properties of the calculi to be inherited: soundness, completeness for termination, and relative completeness (for sufficiently expressive assertion languages). We propose E-conditions as a graphical, intuitive assertion language for expressing properties of graphs -- both about their structure and labelling -- generalising the nested conditions of Habel, Pennemann, and Rensink. We instantiate our calculi with this language, explore the relationship between the decidability of the model checking problem and the existence of effective constructions for the extensional assertions, and fix a subclass of graph programs for which we have both. The calculi are then demonstrated by verifying a number of data- and structure-manipulating programs. We explore the relationship between E-conditions and classical logic, defining translations between the former and a many-sorted predicate logic over graphs; the logic being a potential front end to an implementation of our work in a proof assistant. Finally, we speculate on several avenues of interesting future work; in particular, a possible extension of E-conditions with transitive closure, for proving specifications involving properties about arbitrary-length paths

    Synthesis of Strategies Using the Hoare Logic of Angelic and Demonic Nondeterminism

    Full text link
    We study a propositional variant of Hoare logic that can be used for reasoning about programs that exhibit both angelic and demonic nondeterminism. We work in an uninterpreted setting, where the meaning of the atomic actions is specified axiomatically using hypotheses of a certain form. Our logical formalism is entirely compositional and it subsumes the non-compositional formalism of safety games on finite graphs. We present sound and complete Hoare-style calculi that are useful for establishing partial-correctness assertions, as well as for synthesizing implementations. The computational complexity of the Hoare theory of dual nondeterminism is investigated using operational models, and it is shown that the theory is complete for exponential time

    Classical BI: Its Semantics and Proof Theory

    Full text link
    We present Classical BI (CBI), a new addition to the family of bunched logics which originates in O'Hearn and Pym's logic of bunched implications BI. CBI differs from existing bunched logics in that its multiplicative connectives behave classically rather than intuitionistically (including in particular a multiplicative version of classical negation). At the semantic level, CBI-formulas have the normal bunched logic reading as declarative statements about resources, but its resource models necessarily feature more structure than those for other bunched logics; principally, they satisfy the requirement that every resource has a unique dual. At the proof-theoretic level, a very natural formalism for CBI is provided by a display calculus \`a la Belnap, which can be seen as a generalisation of the bunched sequent calculus for BI. In this paper we formulate the aforementioned model theory and proof theory for CBI, and prove some fundamental results about the logic, most notably completeness of the proof theory with respect to the semantics.Comment: 42 pages, 8 figure

    Fifty years of Hoare's Logic

    Get PDF
    We present a history of Hoare's logic.Comment: 79 pages. To appear in Formal Aspects of Computin
    corecore