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Abstract

This thesis is concerned with verifying the correctness of programs written
in GP 2 (for Graph Programs), an experimental, nondeterministic graph
manipulation language, in which program states are graphs, and compu-
tational steps are applications of graph transformation rules. GP 2 allows
for visual programming at a high level of abstraction, with the program-
mer freed from manipulating low-level data structures and instead solv-
ing graph-based problems in a direct, declarative, and rule-based way. To
verify that a graph program meets some specification, however, has been
– prior to the work described in this thesis – an ad hoc task, detracting
from the appeal of using GP 2 to reason about graph algorithms, high-
level system specifications, pointer structures, and the many other practical
problems in software engineering and programming languages that can be
modelled as graph problems. This thesis describes some contributions to-
wards the challenge of verifying graph programs, in particular, Hoare log-
ics with which correctness specifications can be proven in a syntax-directed
and compositional manner.

We contribute calculi of proof rules for GP 2 that allow for rigorous rea-
soning about both partial correctness and termination of graph programs.
These are given in an extensional style, i.e. independent of fixed assertion
languages. This approach allows for the re-use of proof rules with differ-
ent assertion languages for graphs, and moreover, allows for properties of
the calculi to be inherited: soundness, completeness for termination, and
relative completeness (for sufficiently expressive assertion languages).

We propose E-conditions as a graphical, intuitive assertion language for
expressing properties of graphs – both about their structure and labelling –
generalising the nested conditions of Habel, Pennemann, and Rensink. We
instantiate our calculi with this language, explore the relationship between
the decidability of the model checking problem and the existence of effec-
tive constructions for the extensional assertions, and fix a subclass of graph
programs for which we have both. The calculi are then demonstrated by
verifying a number of data- and structure-manipulating programs.

We explore the relationship between E-conditions and classical logic,
defining translations between the former and a many-sorted predicate logic
over graphs; the logic being a potential front end to an implementation of
our work in a proof assistant.

Finally, we speculate on several avenues of interesting future work; in
particular, a possible extension of E-conditions with transitive closure, for
proving specifications involving properties about arbitrary-length paths.
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Chapter 1

Introduction

We open this thesis by motivating our research problem and summaris-
ing our contributions towards addressing it. Then, we describe its struc-
ture, giving an overview of the chapters and appendices, and discuss our
conventions and assumptions of the reader. Finally, we disclose the peer-
reviewed publications in which some of this work has been previously dis-
seminated.

1.1 Motivation

Graphs are ubiquitous in computer science because they model many types
of structures and relations in a simple and intuitive way, from pointers in
C, to network topologies and high-level system specifications. Many in-
stances of practical problems can be modelled as graph problems, motivat-
ing the development and study of algorithms that operate on graphs. One
widely studied approach for manipulating graphs – at that same high level
of abstraction – is graph transformation [EEPT06], in which graphs represent
state and rules represent computational steps. These are akin to Chomsky
string rewriting rules, but lifted to the setting of graphs. Applications of
graph transformation to programming languages and software engineer-
ing include the semantics and implementation of functional programming
languages [Pey87, PvE93], the specification and analysis of pointer struc-
tures [BPR04b, BPR04a, RN08], the semantics of the Unified Modelling Lan-
guage [HZG06, KGKZ09], and the semantics and analysis of model trans-
formations [VVP02, GGZ+05, BET08, HEOG10, KKvT12, GL12].

Applications to the semantics of languages and the analysis of systems
naturally raise the question of how to formally verify properties of graph
transformation systems. Several verification approaches have emerged in
recent years, typically focusing on sets of graph transformation rules or
graph grammars; techniques including inductively inferring correctness
from a logical characterisation of rules [dCR12], model checking [SV03,
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GdMR+12], and abstraction-based approaches for approximating infinite-
state spaces [BCK08, BBKR08, RZ12] (these techniques, among others, we
review in Section 3.7.2).

Graph transformation languages such as PROGRES [SWZ99], Fujaba
[NNZ00], AGG [Tae04], and GrGen [GBG+06], however, provide control
constructs on top of graph transformation rules for practical problem solv-
ing. To give a simple example, consider the problem of reversing the direc-
tion of the edges of an input graph. This requires two loops in sequence:
the first applies for as long as possible a rule which reverses an edge and
marks it as reversed (to ensure termination), the second applies for as long
as possible a rule which removes the auxiliary edge mark.

A first step beyond the verification of graph grammars has been made
by Habel, Pennemann, and Rensink [HPR06, HP09], who contributed a
weakest precondition verification framework for a graph programming lan-
guage, with constructs including sequential composition and as-long-as-
possible iteration over sets of rules. The authors adopt Dijkstra’s approach
to program verification: one calculates the weakest precondition for a pro-
gram and its postcondition, and then needs to prove that the program’s
precondition implies the weakest precondition. Their language falls short
of practical graph transformation languages, however, in that it lacks the
ability to compute with labels (or attributes), a capability which is indis-
pensable for many graph algorithms. For example, computing the shortest
path between two nodes requires one to compare and add distances (edge
labels).

In this thesis we present an approach for verifying programs in the
graph programming language GP 2 [Plu12], a nondeterministic language
for high-level problem solving in the domain of graphs. GP 2 is based
on graph transformation rules and has a simple syntax and semantics, de-
signed to facilitate reasoning about programs. The core of GP 2 consists of
just five constructs: single-step application of a set of rules, sequential com-
position, looping, and two conditional branching constructs. The graph
transformation rules in GP 2 are labelled over (sequences of) expressions,
and are interpreted over a label alphabet comprising (sequences of) inte-
gers and strings. Moreover, they can be equipped with simple Boolean
conditions to forbid the existence of certain edges, and require certain rela-
tions to hold between the labels.

Instead of adopting the weakest precondition approach to verification,
we follow Hoare’s seminal paper [Hoa69] and devise calculi of syntax-
directed proof rules for three notions of correctness (i.e. three levels of guar-
antees about termination). Our proof system aims at human-guided verifi-
cation and the compositional construction of proofs, with future assistance
from a mechanical theorem prover. This is in line with work on program
verification for languages such as Java [PHM99, HJ00, vO01, Nip02] and
Eiffel [NCMM09].
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1.2 Research Hypothesis and Contributions

The hypothesis of this thesis is the following:

The graph transformation language GP 2 can effectively be equipped
with a reasoning system based on Hoare logic, facilitating proofs about
both structural properties of graphs and relations between their labels.

To support this hypothesis, such a reasoning system must satisfy some cri-
teria. In particular, it should be:

• sound: every specification one can prove in the system must be valid
with respect to the semantics of the language;

• realistic: in that it does not require impractical assumptions or restric-
tions on programs;

• practical: it can effectively reason about interesting partial correct-
ness and termination properties of structure- and data-manipulating
graph programs;

• general: it should not be fixed to particular assertion languages, and
hence should be easy to extend.

These criteria will provide the basis with which we evaluate the work to be
presented in the following chapters. To this end, the major contributions of
this thesis are:

Hoare logic for graph programs. We present Hoare calculi for reasoning about
partial correctness and termination of a programming language based on
graph transformation. To the best of our knowledge, we are the first to
study Hoare logic in this context, having reported an earlier version of this
work in [PP10a].

Language-independent approach. We follow an extensional approach and de-
fine our calculi independently of a fixed assertion language. Graph speci-
fication languages of any kind – whether logical ones, graph grammars, or
even graph programs themselves – can be “plugged in” to our axioms and
inference rules, subject to satisfying certain requirements, e.g. being able to
define a weakest liberal precondition transformation. We prove the calculi
to be sound, relatively complete (for sufficiently expressive assertion lan-
guages), and complete for termination.

An assertion language for graph programs. We extend the morphism-based
nested conditions of Habel, Pennemann, and Rensink to E-conditions, a
graphical and intuitive assertion language able to express properties about
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labels (drawn from an infinite label alphabet) in addition to properties about
structure. We instantiate our extensional calculi with E-conditions by defin-
ing transformations for applicability of rules and their weakest liberal pre-
conditions. We prove these transformations correct and thus inherit sound-
ness and completeness for termination from the extensional calculi (relative
completeness for E-conditions remains open). We demonstrate the calculi
by verifying a number of data- and structure-manipulating programs that
up until now have only been verified in an ad-hoc fashion. We also begin
to explore the use of an extension of the language with transitive closure,
i.e. the ability to express properties about arbitrary length paths.

A logic for proof assistants. While we benefit from the high level of abstrac-
tion in E-conditions – e.g. in defining weakest liberal preconditions – the
formalism would be complicated to encode directly in off-the-shelf proof
assistants. As a first step towards a future implementation of our veri-
fication calculi in such tools, we have defined translations between our
morphism-based formalism and a classical many-sorted logic for graphs.
We prove the translations to be correct, and show how the logic itself can
be “plugged in” to our extensional calculi to provide another way of rea-
soning about graph programs.

1.3 Thesis Structure

The content of this thesis is divided into several chapters, as follows.

• Chapter 2 introduces several technical preliminaries for graph trans-
formation, and the frameworks in which graph transformation rules
are applied. Then, we review the graph programming language GP 2,
including its operational semantics, and discuss some example pro-
grams.

• Chapter 3 opens with a review on how to reason with Hoare logic.
Then, it introduces Hoare calculi for graph programs that are exten-
sional (i.e. not tied to a particular assertion language), and that can
prove specifications to three levels of correctness. Properties of the
calculi are studied including soundness, relative completeness, and
completeness for termination. The calculi use extensional assertions
expressing weakest liberal preconditions as well as successful and
failing program executions. The relationship between the existence
of effective constructions for such assertions and the decidability of
the model checking problem is explored.

• Chapter 4 instantiates the extensional calculi of Chapter 3 with E-
conditions, a morphism-based assertion language for expressing prop-
erties about graph labels and structure. Transformations defining the
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extensional assertions (for a subclass of programs) are introduced and
proven to be correct, with the calculi then inheriting soundness and
completeness for termination. The question of whether the calculi
with E-conditions are relatively complete remains open and the prob-
lem is discussed, before our approach is compared with the closely
related work of Oldenburg.

• Chapter 5 demonstrates the use of our calculi with E-conditions by
proving various specifications about data-manipulating graph pro-
grams. Then, it goes beyond what E-conditions can be used to prove,
and speculates on constructing proofs using an extension of the as-
sertion language with transitive closure.

• Chapter 6 provides a first step towards an implementation of our work
in a proof assistant, by defining translations between E-constraints
and a new, many-sorted logic over graphs. Then, it shows how the
logic can be “plugged in” to our extensional calculi by taking advan-
tage of these translations.

• Chapter 7 brings the main part of the thesis to a close, drawing some
conclusions, and discussing several potential items of future work.

• Appendix A lists the axioms and inference rules of our extensional
Hoare calculi (for reference).

• Appendix B lists the axioms and inference rules of the Hoare calculi
with E-conditions (for reference).

• Appendix C lists some definitions and properties of pushouts and pull-
backs – used in the algebraic approach to graph transformation – in
order to support some proofs in Chapter 4.

• Appendix D contains the proofs of some lemmata relied upon in Chap-
ter 6.

Most chapters end with related work and summary sections. The for-
mer can be thought of as chapter notes – or bibliographic remarks – in
which related and historical publications are discussed and cited. Such
discussions, whilst important, are grouped into their own sections to avoid
breaking the narrative flow in the main sections of the chapters. The sum-
mary sections then highlight the main points to take away from each chap-
ter.

We assume the reader to have a basic knowledge of theoretical com-
puter science, in particular, the basic notations and constructions from dis-
crete mathematics and logic. We also assume a little familiarity with ter-
minology from graph theory (a classic reference is [Har69]), e.g. adjacent
nodes, incident edges, loops, connectedness.
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1.4 Publication History

The results of this thesis have been disseminated in the journal, conference,
and workshop papers listed below (we have indicated which parts of the
thesis each paper relates to). The author of this thesis was the primary
contributor in all cases.

1. [PP13] C.M. Poskitt and D. Plump. Verifying Total Correctness of
Graph Programs. In Selected Revised Papers, Graph Computation Models
(GCM 2012). Electronic Communications of the EASST, volume 61,
2013.

• Introduced (weak) total correctness calculi with E-conditions as
the assertions (i.e. parts of Chapters 3 and 4), but was also the
first of our papers to use GP 2 [Plu12], as opposed to GP 1 [Plu09].

2. [PP12] C.M. Poskitt and D. Plump. Hoare-Style Verification of Graph
Programs. Fundamenta Informaticae, 118(1-2):135-175. IOS Press, 2012.

• Extended [PP10a] by adding proofs and further examples. Much
of Chapter 4 is based on this, but was updated for GP 2, and the
proofs (we hope) improved.

3. [Pos12] C.M. Poskitt. Verification of Graph Programs. In Proc. Inter-
national Conference on Graph Transformation (ICGT 2012), volume 7562
of Lecture Notes in Computer Science, pages 420-422. Springer-Verlag,
2012.

• An extended abstract providing an overview of this thesis, espe-
cially Chapters 4, 5, and 6.

4. [PP10a] C.M. Poskitt and D. Plump. A Hoare Calculus for Graph
Programs. In Proc. International Conference on Graph Transformation
(ICGT 2010), volume 6372 of Lecture Notes in Computer Science, pages
139-154. Springer-Verlag, 2010.

• Introduced an earlier version of the partial correctness calculus
with E-conditions in Chapter 4, including a soundness proof.

5. [PP10b] C.M. Poskitt and D. Plump. Hoare Logic for Graph Pro-
grams. In Proc. Theory Workshop at the Third International Conference on
Verified Software: Theories, Tools, and Experiments (VS-THEORY 2010).
2010.
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• Essentially an overview of the work in [PP10a], tailored to a
more general audience (i.e. several technical details were de-
scribed informally).
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Chapter 2

Computing by Graph
Transformation

This chapter has two primary aims: first, to review and convey an intu-
ition for the fundamentals of graph transformation, providing the neces-
sary foundations for the later chapters of this thesis. Secondly, we review
the graph programming language GP 2 that we are setting out to verify,
discussing both its syntax and semantics, and illustrating its use with some
example programs.

2.1 Fundamentals of Graph Transformation

Fundamentally, in graph transformation we want to be able to write rules of
the form L ; R, where L is some subgraph to be matched and R is some
graph with which to replace the match. One can view this as a generali-
sation of rules in Chomsky string grammars, but in graph transformation,
rule application is not quite so simple. What exactly is a match for L in
some graph G? What if a rule deletes nodes but not all of the edges to
which they are incident? How is R connected – or glued – to the graph G
under transformation?

These questions have different answers depending on the graph trans-
formation framework applied. In this thesis, rule application is based on
the double-pushout (DPO) approach. The name comes from its algebraic char-
acterisation, but an important and desirable property of this approach is
that rule applications are side-effect free (in particular, rule applications
that would leave edges “dangling” are simply forbidden).

We begin by defining graphs and structure-preserving mappings – mor-
phisms – that we frequently use to relate them. Then, we describe the DPO
approach to rewriting graphs we use in this thesis, giving both the concrete
steps as well as an algebraic characterisation.
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We present here only the essentials for this thesis. For a broader techni-
cal introduction to graph transformation, we refer the reader to the mono-
graph [EEPT06].

2.1.1 Graphs and Graph Morphisms

We use a definition of graphs in which edges are directed, nodes (resp.
edges) are partially (resp. totally) labelled, and in which parallel edges are
allowed to exist. Usually, we use graphs that are totally labelled. If in some
problem domain a label plays no role, then by convention we label every-
thing with the blank label � which is not usually drawn. Unlabelled nodes
are however required later for technical reasons, to define the application
of rules that relabel nodes (this will be explained in Section 2.1.3).

Definition 2.1 (Label alphabet). A label alphabet C = 〈CV , CE〉 is a pair com-
prising a set CV of node labels and a set CE of edge labels.

Definition 2.2 (Graph). A graph over a label alphabet C is a system G =
〈VG, EG, sG, tG, lG,mG〉 comprising a finite set VG of nodes, a finite set EG

of edges, source and target functions sG, tG : EG → VG, a partial node labelling
function lG : VG → CV , and a total edge labelling function mG : EG → CE . If
VG = ∅, then G is the empty graph, which we denote by ∅.

Given a node v ∈ VG, we write lG(v) = ⊥ to express that lG(v) is unde-
fined. A graph G is totally labelled if lG is a total function.

It may feel more familiar to see graphs defined as ordered pairs G =
〈V,E〉 with E ⊆ V × V . Our definition is more general, however, in that it
allows for parallel edges and labelling.

Example 2.3 (A graph). Consider the graph G = 〈{1, 2, 3}, {a, b, c}, (a 7→
2, b 7→ 2, c 7→ 2), (a 7→ 1, b 7→ 3, c 7→ 3), (1 7→ α, 2 7→ α, 3 7→ γ), (a 7→ �, b 7→
�, c 7→ �)〉 over the label alphabet L = 〈{α, β, γ}, {�}〉. Figure 2.1 is a
picture of G, and represents its isomorphism class in that we abstract from
node and edge identities. We follow the convention of drawing circles for
nodes and arrows for edges. Node labels are written inside the circles, and
edge labels next to the arrows. Node and edge identifiers from VG and EG

are not written, and neither is the blank label �.

Definition 2.4 (Classes of graphs). We write G(C⊥) (resp. G(C)) to denote
the class of all (resp. all totally labelled) graphs over label alphabet C.

We often need to be able to relate graphs in a formal way. For this pur-
pose, we use graph morphisms, which are structure preserving mappings
from the nodes and edges of one graph to another. Graph morphisms are
ubiquitous in the theory of graph transformation, and are important for un-
derstanding how rules are applied as well as for how graphs are reasoned
about (see e.g. Chapter 4).
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α

α

γ

Figure 2.1: A graph

Definition 2.5 (Graph morphism). Given graphsG,H over a label alphabet
C, a graph morphism f : G → H is a pair of mappings 〈fV : VG → VH , fE :
EG → EH〉 that preserve the sources, targets, and labels. That is, sH ◦ fE =
fV ◦ sG, tH ◦ fE = fV ◦ tG, mH ◦ fE = mG, and lH(fV (v)) = lG(v) for all
nodes v for which lG(v) 6= ⊥.

Here, ◦ denotes function composition. Given graph morphisms f : F →
G and g : G → H , the composition g ◦ f : F → H is defined g ◦ f = 〈gV ◦
fV , gE ◦ fE〉.

A graph morphism f is injective (surjective) if both fV and fE are in-
jective (surjective); injective morphisms are usually denoted by a hooked
arrow, →֒. A graph morphism f : A→ B is an isomorphism if it is both injec-
tive, surjective, and satisfies lH(fV (v)) = ⊥ for all nodes v with lG(v) = ⊥;
in this case, graphs A and B are said to be isomorphic, denoted by A ∼= B. A
graph morphism f : A → B is an inclusion if f(x) = x for every node and
edge x ∈ A.

Example 2.6 (Graph morphisms). Consider Figure 2.2, which shows the
two possible morphisms from the graph on the left to the graph on the right
(one injective, and one not). The small numbers next to the nodes identify
the mappings of the morphism (in the non-injective morphism, nodes 1
and 2 are merged).

Definition 2.7 (Domain and codomain of graph morphisms). Let f : G →
H denote a graph morphism. We call G and H respectively the domain and
codomain of f .

2.1.2 Rules, Matches, and Direct Derivations

The underlying framework used in this thesis for the application of graph
transformation rules is the double-pushout (DPO) approach, first described by
Ehrig, Pfender, and Schneider in [EPS73], and more recently treated in e.g.
[CMR+97, HMP01, EEPT06]. The technical name of this approach comes
from its algebraic characterisation with concepts from category theory. In-
tuitively however, the DPO approach guarantees that rule applications are
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Figure 2.2: An injective and a non-injective graph morphism

local, in the sense that all of the changes made to the graph are described
by the rules themselves. This, for example, means that rules can only be
applied for matches if the result of the application would not leave edges
dangling.

We introduce the DPO approach first by formally defining rules and
matches. Then, we consider the derivation of a graph from another via
the application of a rule, presenting it from two viewpoints: firstly, as a
concrete construction; and secondly, as an algebraic one.

Rules and Rule Applications

In the DPO approach a rule L ; R is actually described by three compo-
nents: L, R, and additionally an interface K.

Definition 2.8 (Rule). A rule r : 〈L ←֓ K →֒ R〉 over a label alphabet C
comprises totally labelled graphs L,K,R ∈ G(C), and inclusions K →֒ L,
K →֒ R. We call L the left-hand side,R the right-hand side, andK the interface
of rule r.

In rules, the graph L describes what is to be matched, and R describes
what the match should be replaced with. The interface graph K describes
a part of the graph that is required to exist for the rule to be applicable, but
is not actually changed by the application of the rule. The part of the graph
to be deleted is described by L − K, and R − K describes the part of the
graph to be “glued on”.
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We will often give rules without the interface, simply writing r : 〈L ⇒
R〉. In such cases we number nodes that correspond in L and R, i.e. they
are not created or deleted, but must be matched and must be preserved.
We establish the convention thatK comprises exactly these nodes, and that
EK = ∅; hence L and R contain all the information necessary with which
to infer K.

Given rule r and a totally labelled graph G, an injective graph mor-
phism g : L →֒ G is a match for r if it satisfies the dangling condition, intu-
itively meaning that if r deletes a node in the match, then all edges incident
to it are also in the match and would be deleted by r.

Definition 2.9 (Dangling condition; match). Given a rule r : 〈L ←֓ K →֒ R〉,
a totally labelled graph G, and injective graph morphism g : L →֒ G, the
dangling condition states that no edge in G− g(L) is incident to any node in
g(L −K). We say that g : L →֒ G is a match for r if it satisfies the dangling
condition.

The application of a rule to a graph roughly involves deleting every-
thing in the match that is not preserved by the interface, then adding ev-
erything in R that is not also in the interface.

Definition 2.10 (Rule application). Given a rule r = 〈L ←֓ K →֒ R〉 and a
match g : L →֒ G, we write G ⇒r,g M if H ∼= M , where H is constructed
from G as follows:

1. Remove all nodes and edges in g(L)− g(K), obtaining a graph D.

2. Add disjointly to D all nodes and edges from R − K retaining their
labels, obtaining a graph H . For e ∈ ER − EK , sH(e) = sR(e) if
sR(e) ∈ VR − VK , otherwise sH(e) = gV (sR(e)).

3. Target functions are defined analogously.

Example 2.11 (Rule application). Figure 2.3 shows an example of a rule ap-
plication. The top three graphs are respectively L, K, and R. The bottom
three graphs are respectively G, D, and H . The rule matches a pair of adja-
cent α-labelled nodes (the edge labelled with the blank symbol �), removes
one of the nodes and the edge, and replaces them with a looping edge. The
part of the graph being rewritten is indicated by dotted lines.

Pushouts and Direct Derivations

Our definition of rule application is expressed in operational steps, and in
terms of the individual nodes and edges mapped to by a match. Such a
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α

α

α

α

γ

1
α

α γ

←֓

←֓

→֒

α

←֓

α γ
→֒ →֒

←֓

1 1

Figure 2.3: A rule application

definition is of course important for practical reasons, but is harder for rea-
soning about at an abstract level. Rule applications in the DPO approach
have an abstract, algebraic characterisation – one that gives the approach
its name – in which graphs are treated as algebras, and in which rule appli-
cations are defined by an algebraic construction modelled as two pushouts
[CMR+97]. As well as providing an abstract framework to allow for for-
mal reasoning about rule applications, this approach allows for the use of
general results and properties from the branch of mathematics known as
category theory.

We give in this subsection a brief introduction to the essentials of the al-
gebraic approach that are needed to understand the technical parts of this
thesis. First, we review pushouts, the gluing construction for graphs in the
DPO approach. Then, we review a construction comprising two pushouts
for directly deriving a graph via a rule and a match. Further technical fun-
damentals from the DPO approach (e.g. properties, decompositions) are
given together in Appendix C, and are referred to in some proofs in later
chapters.

Pushouts are used in this framework as a gluing construction for two
morphisms with a common domain [EEPT06]. Informally, a pushout graph
is formed from the disjoint union of the two codomains, but with nodes and
edges also present in the common domain identified.

Definition 2.12 (Pushout). Given graph morphisms A → B and A → C,
the pushout (1) of these morphisms is formed by the graph D and graph
morphisms B → D and C → D as in Figure 2.4 if the following properties
are satisfied:

Commutativity. A→ B → D = A→ C → D.

14



2.1. Fundamentals of Graph Transformation

Universal Property. For all graph morphisms B → D′ and C → D′ such
that A→ B → D′ = A→ C → D′, there is a unique graph morphism
D → D′ such that B → D → D′ = B → D′ and C → D → D′ = C →
D′.

A B

C D

(1)

A B

C D

D
′

=

=

=

Figure 2.4: A pushout and the universal property of pushouts

Pushouts have a number of important properties. First, every item in
D has a so-called preimage in B or C; that is, every node and edge in D
can be found in either B or C (or both, if they are also in A). Secondly, if
A → B is injective (surjective), then C → D is also injective (surjective).
Another property of interest is the uniqueness of D (up to isomorphism),
following from the universal property of pushouts. A graph D′ together
with morphisms B → D′ and C → D′ is a pushout of A → B and A → C
if and only if there is an isomorphism D → D′ such that B → D → D′ =
B → D′ and C → D → D′ = C → D′.

Example 2.13 (Pushout). Figure 2.5 depicts a simple pushout, in which all
the morphisms are injective. All nodes and edges are labelled with the
blank symbol (the numbers indicate the mappings of the morphisms).

• •

• •• •

• •

•
•

→֒

→֒

→֒ →֒

1 1

1 1

2 2

22

3 3

Figure 2.5: A pushout

If we have a pair of graph morphisms A → B and B → D, a pushout
complement is the graph and two morphisms needed to form a pushout as
in (1) of Figure 2.4.

15



Chapter 2. Computing by Graph Transformation

Definition 2.14 (Pushout complement). Given graph morphisms A → B
andB → D, a pushout complement of these morphisms is a graphC together
with two morphisms A→ C and C → D if the resulting diagram (as in (1)
of Figure 2.4) is a pushout.

Rule applications in the DPO approach can be considered as the con-
struction of a pushout complement followed by a pushout, as in the two
squares of Figure 2.3. Given a graphG and rule r with match g, we say that
H is directly derived fromG via r and g if a double-pushout diagram exists
as described in the following.

Definition 2.15 (Direct derivation; comatch). Given a rule r : 〈L ←֓ K →֒
R〉, graph G, and a match g : L →֒ G, a direct derivation G ⇒r,g H from
graph G to graph H is given by the double-pushout diagram in Figure 2.6
with pushouts (1) and (2). The morphism R →֒ H is called the comatch of
r.

(1)

D H

K R

(2)

L

G

Figure 2.6: A direct derivation

The pushouts (1) and (2) only exist if g satisfies the dangling condition,
i.e. is a match. One can show that D and H are determined uniquely up
to isomorphism, i.e. direct derivations G ⇒r,g H are unique up to isomor-
phism. (Note that H is the same graph, up to isomorphism, as the one
constructed in Definition 2.10.)

We will often write G ⇒r H or G ⇒ H in place of G ⇒r,g H when no
ambiguity arises. We write G⇒R H if G⇒r H for some r ∈ R.

Given graphs G and H , and a set of rulesR, G derives H byR if G ∼= H
or there is a sequence of direct derivations

G⇒r1 G
′ ⇒r2 . . .⇒rn H

with r1, . . . , rn ∈ R. We write G ⇒∗
R H , or G ⇒∗ H , denoting that H is

derived from G in zero or more direct derivations.

2.1.3 Rules with Relabelling

The traditional DPO approach is not ideal for relabelling nodes, due to the
requirement that L, K, and R are totally labelled graphs. Whilst an edge
can easily be “relabelled” in an arbitrary context – by deleting and recreat-
ing the edge with a new label – the same is not true for nodes, because the
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2.1. Fundamentals of Graph Transformation

requirement to satisfy the dangling condition prevents a node from being
deleted unless all edges incident to it are also deleted.

Habel and Plump proposed in [HP02] a modification to the traditional
approach, specifically to facilitate the relabelling of nodes, whilst preserv-
ing the uniqueness (up to isomorphism) of direct derivations. Their ap-
proach relaxes the requirement that the graphs of rules are totally labelled,
allowing partially labelled graphs in their place (subject to conditions).
Steinert [Ste07] tailored the approach for graph programs by insisting that
L and R are totally labelled, but allowing the nodes of K to be partially
labelled. We introduce this tailored approach which later provides the se-
mantic foundation of rule applications in graph programs. Further techni-
cal details are given in Appendix C.

Definition 2.16 (Rule with relabelling). A rule (with relabelling) r : 〈L ←֓
K →֒ R〉 over label alphabet C comprises totally labelled graphs L,R ∈
G(C), a partially labelled graphK ∈ G(C⊥), and inclusionsK →֒ L,K →֒ R.
(Terminology and abbreviations are the same as in Definition 2.8.)

Note that in this definition, unlabelled nodes in K can have different
labels in L and R.

Again, we will frequently omit the interface in rules. We establish the
convention that K comprises exactly the numbered nodes in L and R (the
numbers indicating that nodes correspond, as before), that EK = ∅, and
additionally that all nodes in K are unlabelled.

A rule application with relabelling proceeds exactly as in Definition 2.10
but with additional treatment for unlabelled nodes in the interface.

Definition 2.17 (Rule application with relabelling). Given a rule r = 〈L ←֓
K →֒ R〉 and a match g : L →֒ G, we write G⇒r,g M if H ∼=M , where H is
the graph that is constructed from G as follows:

1. Remove all nodes and edges in g(L) − g(K). Then, nodes that are
images of the unlabelled nodes inK are made unlabelled themselves,
obtaining a graph D.

2. Add disjointly to D all nodes and edges from R − K retaining their
labels, obtaining a graph H . For e ∈ ER − EK , sH(e) = sR(e) if
sR(e) ∈ VR − VK , otherwise sH(e) = gV (sR(e)).

3. Target functions are defined analogously.

4. For each unlabelled node v in K, lH(gV (v)) becomes lR(v).

Example 2.18 (Rule application with relabelling). An example rule and a
possible application of it are given together in Figure 2.7, where both nodes
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Chapter 2. Computing by Graph Transformation

and edges are labelled over the alphabet {j,c,�}. The top row displays
the left- and right-hand sides of the rule, with the interface in the middle
(note that the nodes are unlabelled). The bottom left graph is the one to
which the rule is being applied, the bottom right graph is the outcome of
applying the rule with the particular match g.

We give rule applications with relabelling an algebraic characterisation
using the framework of [HP02], which is a conservative extension of the
traditional DPO approach. The key requirement is that the two pushout
squares are also pullbacks (the dual of pushouts). Squares that are both
pushouts and pullbacks are called natural pushouts.

Definition 2.19 (Pullback). Given graph morphisms B → D and C → D,
the pullback (1) of these morphisms is formed by the graph A and graph
morphisms A → B and A → C as in Figure 2.8 if the following properties
are satisfied:

Commutativity. A→ B → D = A→ C → D.

Universal Property. For all graph morphisms A′ → B and A′ → C such
that A′ → B → D = A′ → C → D, there is a unique graph morphism
A′ → A such that A′ → A → B = A′ → B and A′ → A → C = A′ →
C.

Definition 2.20 (Natural pushout). A diagram (1) as in Figure 2.8 is a natu-
ral pushout if it is both a pushout and a pullback.

Habel and Plump [HP02] give a characterisation of natural pushouts.
Consider the pushout diagram (1) of Figure 2.4. The diagram is a natural
pushout if and only if, for every node v in A that is unlabelled, the image
of v in B or C is also unlabelled.

Direct derivations for rules with unlabelled interface nodes are defined
as in the traditional DPO approach, but with the requirement just discussed
that pushouts are natural.

Definition 2.21 (Direct derivation with relabelling). Given a rule r : 〈L ←֓
K →֒ R〉 with L,R (resp. K) totally (resp. partially) labelled, and a match
g : L →֒ G, a direct derivation (with relabelling) G ⇒r,g H from graph G to
graph H is given in Figure 2.9, where (1) and (2) are natural pushouts.

The graph H is unique up to isomorphism, and is totally labelled if G is
totally labelled [HP02]. (We remark that the graphs we later define graph
programs to operate on are totally labelled.) Moreover, graph H is also the
same as the H constructed in Definition 2.17.
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A B

C D

(1)

A B

C D

=

=
=

A
′

Figure 2.8: A pullback and the universal property of pullbacks

(1)

D H

K R

(2)

L

G

Figure 2.9: A direct derivation with relabelling

Example 2.22. Consider the pushout diagrams in Figure 2.10. The diagram
on the left comprises natural pushouts, whereas the diagram on the right
comprises non-natural pushouts (example from [Plu09]).

α ←֓

→֒

α←֓

→֒ →֒

α ←֓ α←֓

α ←֓

→֒

α←֓

→֒ →֒

α ←֓ α←֓α

Figure 2.10: Natural (left) and non-natural (right) double-pushout dia-
grams

2.2 Graph Programs

Thus far this chapter has focused on the basic definitions, mechanisms, and
frameworks by which a rule application can rewrite a graph – whether
with node relabelling or not. Analogously to Chomsky string grammars
for defining languages or classes of strings, we can create graph gram-
mars for defining classes of graphs, with a wide variety of applications
(see e.g. the handbook [HER99a]). Indeed, much of the research into ver-
ifying graph transformations has focused primarily on the verification of
such grammars (see Section 3.7.2). In this thesis however, we focus on a
more general model of computation than graph grammars, in that instead
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2.2. Graph Programs

of applying sets of rules an arbitrary number of times to some fixed start-
ing graph, we allow users to write programs expressing how those rules
should be applied, and moreover, we allow these programs to be executed
on graphs provided by users. That is, we focus on a graph transformation
programming language allowing for graph-like problems to be solved at a
high level of abstraction, and thus in a more natural way than if one were
required to work directly with the low level data structures that traditional
languages typically use to implement graphs.

The graph transformation language we introduce in this section, and
work with for the rest of the thesis, is GP 2 [Plu12] – the initialism standing
for Graph Programs. A graph program comprises two components: (1) a
set of rules, based upon (but more general than) those in the DPO approach
with relabelling; and (2) some program text expressing how the rules are
to be applied to an input graph. The former, more precisely, are called rule
schemata, which are labelled over syntactic expressions and describe sets
of rules with concrete labels. The latter is built from a small core of con-
trol constructs: single-step application of a set of rule schemata, sequential
composition, conditional branching, and iterative looping. The language is
equipped with an operational semantics, intended by the designers to fa-
cilitate formal reasoning and verification – and later used in this thesis for
proving the soundness of our proof calculi.

Remark 2.23 (GP and GP 2). Most of our previously published work fo-
cused on the version of GP as described in [Plu09]. This thesis however
uses the revised syntax and semantics of GP 2 [Plu12], and thus previously
published work has been updated to be compatible (we give a short sum-
mary of the changes and new features of GP 2 in Section 2.3 for the in-
terested reader). For brevity we will typically write “graph programs” or
“GP”, as opposed to “GP 2”. Unless we explicitly make reference to the
older versions of the language, it can be understood that every instance of
GP in this thesis refers to the language as described in [Plu12].

The rest of this section is organised as follows. First, we define the
building blocks of GP – (conditional) rule schemata – and the class of graphs
that they operate on. Then, we give the abstract syntax of program text, and
discuss some examples of graph programs. Finally, we give the operational
semantics of both core and derived commands in GP.

Note that the definitions presented in the rest of this section are based
on those given in [Plu12].

2.2.1 Graphs and Conditional Rule Schemata

In GP, the graphs that programs are executed on are labelled differently to
the graphs that make up the rule schemata. The former are labelled with
(lists of) integers and strings, and the latter with (lists of) expressions. The
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Chapter 2. Computing by Graph Transformation

former can be thought of as “semantic” graphs, in that they are the graphs
provided as input to programs. The latter can by thought of as “syntactic”
graphs, representing possibly infinite sets of rules at the semantic level.
We fix the two label alphabets in what follows: both are designed to allow
general-purpose computation on graphs, e.g. lists to allow information to
be appended to existing labels, and integers to allow counting and arith-
metic. Both label alphabets also encode the ability to “mark” nodes and
edges.

Labels in semantic graphs comprise a list component and a mark com-
ponent. The list component of a label comprises a (possibly empty) list of
atoms, each atom an integer or string. The mark component is a Boolean
value (true for marked, false for unmarked): a marked node is displayed
as shaded whereas a marked edge is dashed. Marks were added to GP 2 to
facilitate more natural implementations of graph algorithms that need, for
example, a mechanism for indicating that a node or edge has been visited.

In both syntactic and semantic graphs, we will use the same label al-
phabet for both nodes and edges.

Definition 2.24 (Label alphabet L). Let Z be the set of integers, Char be a
finite set of characters and L = (Z∪Char∗)∗ the set of all lists of integers and
character strings. We denote with L the label alphabet for semantic graphs:

L = L× B

where B = {true, false}.

For clarity, we use a colon ‘:’ to delimit the atoms in a list. For exam-
ple, the list comprising the integer 25 followed by the strings “York” and
“Zürich” would be displayed as 25:“York”:“Zürich”.

Remark 2.25 (Marks and labelling functions). Though labels in L comprise
both a list component and a mark component, in several parts of this thesis
we will only be concerned with the list component. Usually we will be
explicit, for example by using the symbol L (denoting the set of all lists)
as opposed to L (the set of all labels). For simplicity however, we will
occasionally abuse our notations by omitting the mark component. For
example, in writing lG(v) = 25, we mean that node v in graph G has list
component 25 with some unspecified mark component.

Labels in rule schemata again comprise a list and a mark component.
The list components however are now lists of expressions. Each expression
is built up from constant symbols (representing semantic values in Z and
Char∗), variables, and function symbols. Variables are typed, each from a
disjoint set of variable identifiers: IVar, SVar, AVar, and LVar respectively
for integer, string, atomic, and list expressions. The abstract syntax of these
expressions is defined by a grammar. (The grammar is ambiguous: we use
parentheses to disambiguate expressions.)
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2.2. Graph Programs

Definition 2.26 (Graph labels for rule schemata). Let RS (short for Rule
Schemata) denote the label alphabet containing all expressions that can be
derived from the syntactic class RSLabel of Figure 2.11. Here, Digit denotes
the set {0, 1, . . . , 9}, and IVar, SVar, AVar, and LVar are respectively sets of
variables of type Integer, String, Atom, and List. By G(RS) we denote the
class of all graphs labelled over RS.

Integer ::= Digit {Digit} | IVar | ’-’ Integer

| Integer ArithOp Integer

ArithOp ::= ’+’ | ’-’ | ’*’ | ’/’

String ::= ’ ” ’ {Char} ’ ” ’ | SVar | String ’.’ String

Atom ::= Integer | String | AVar

List ::= empty | Atom | LVar | List ’:’ List

RSLabel ::= List Mark

Mark ::= true | false

Figure 2.11: Abstract syntax of rule schema labels

Expressions represent possibly infinite sets of lists in L, which are ob-
tained by assigning values to variables (respecting their types) and evaluat-
ing expressions. We identify lists of length one with the atomic expressions
they contain, allowing us to divide semantic and syntactic lists into four
types and establish a hierarchical connection between them. This subtype
hierarchy is shown in Figure 2.12. (We use the non-terminals of the gram-
mar to denote the syntactic classes of expressions that can be derived from
them.)

L

Z ∪ Char∗

Z Char∗

⊆

⊆
⊇

List

Atom

Integer String

⊆

⊆
⊇

Figure 2.12: Subtype hierarchy for lists

The intended meaning of most symbols should be clear, e.g. + denotes
addition of integers, and . denotes string concatenation. A precise seman-
tics will be given with the semantics of rule schema application.
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Example 2.27 (List expressions). Examples of expressions include 25 + x,
”Yo”.”rk”, and y : 0 : ”Zuer”.z. These expressions respectively belong to
Integer, String, and List (the first two also belong to both Atom and List
because of the hierarchical structure of types), provided that x ∈ IVar, and
z ∈ SVar (the variable y can be of any type).

Remark 2.28 (Indegree and outdegree expressions). The grammar of Fig-
ure 2.11 is a slightly restricted version of the one in [Plu12], which addi-
tionally allows integer expressions about the indegrees and outdegrees of
nodes. These integer expressions were introduced only in GP 2, allowing
for labels such as outdeg(1), which would be interpreted as the outdegree
of node 1 in the graph that the expression is used. These differ from all
other list expressions in that their interpretations rely on information about
the structure of a graph; all other expressions are interpreted only with re-
spect to an assignment of variables. We omit expressions about indegrees
and outdegrees to preserve the separation of expressions and graph struc-
ture that was present in GP 1 [Plu09], which was a design choice mirrored
in our assertion language for verification (introduced in [PP10a, PP12]).
To revise the assertion language to support in- and outdegree expressions
would require fundamental changes to its definition, which would likely
break many of the constructions and proofs that assume a separation of ex-
pressions and graph structure. Hence, we leave such an investigation as
future work.

Rule schemata are rules as defined in Definition 2.16, but with the left-
and right-hand side graphs from G(RS) and the interface graph consisting
of unlabelled nodes only. They represent (usually) infinite sets of rules with
graphs in G(L), obtained by assigning variables to values and evaluating
expressions. Because this is done during graph matching, we require that
the expressions in the left-hand graph have a simple shape.

Definition 2.29 (Simple list). A list expression l ∈ List is simple if:

1. l contains no arithmetic operators;

2. l contains at most one occurrence of a list variable; and

3. each occurrence of a string expression in l contains at most one occur-
rence of a string variable.

Definition 2.30 (Rule schema). A rule schema r : 〈L ←֓ K →֒ R〉 comprises
two totally labelled graphs L,R ∈ G(RS), a graph K containing only un-
labelled nodes, and inclusions K →֒ L, K →֒ R. We require that all list
expressions in L are simple and that all variables in R also occur in L.

24



2.2. Graph Programs

Rather than drawing the interface K explicitly in rule schemata, we
leave it implicit by writing node identifiers in L and R to indicate which
nodes are the same. Nodes without identifiers in L are to be deleted, and
those without identifiers in R are to be created. Hence, K comprises those
nodes with identifiers (but with their labels removed).

Example 2.31 (Rule schema). An example of a rule schema is propagate,
given in Figure 2.13. A possible match would be a pair of adjacent nodes
such that: (1) the source (resp. target) node is marked (resp. unmarked); (2)
the edge is unmarked; and (3) the list components of the edge and source
node are integers. In an execution of propagate, the edge and target node
would become marked, and the list component of the target node would be
replaced by the sum of integers i and j. Note that this rule simply performs
a relabelling: both nodes on both sides are given with identifiers (1 and 2),
hence no node is deleted and no node is created.

propagate(i, j : int; x : list)

i

1

x

2

j
⇒ i

1

i+j

2

j

Figure 2.13: A rule schema

If given, the interface graph K for propagate would be drawn as in
Figure 2.14. Note that nodes in K are unlabelled, hence neither marked nor
unmarked.

1 2

Figure 2.14: The interface of propagate

We can equip rule schemata with textual conditions that allow for rela-
tions between labels to be expressed. These conditions can also be used to
express the absence of edges between nodes in the match.

Definition 2.32 (Rule schema condition). A rule schema condition is an ex-
pression that can be derived from Condition in the grammar of Figure 2.15.
Here, Node denotes a set of node identifiers.
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Condition ::= Type ’(’ List ’)’ | List (’=’ | ’\=’) List

| Integer IntRel Integer

| edge ’(’ Node ’,’ Node [’,’ List] ’)’

| not Condition | Condition (and | or) Condition

IntRel ::= ’>’ | ’<’ | ’>=’ | ’<=’

Type ::= int | string | atom

Figure 2.15: Abstract syntax of rule schema conditions

As for list expressions, we will give a semantics for rule schema con-
ditions with the semantics of (conditional) rule schema application. How-
ever, much of the intended meaning should be clear already from the syn-
tax. The Type conditions are used to express that list expressions should
evaluate to particular types. The edge conditions are used to express the
existence of edges between particular nodes in a left-hand graph (the third
optional parameter allows one to require a particular list expression for it).
These are most useful when negated, forbidding rule applications in con-
texts where certain edges exist outside of (but “incident to”) the match.

A conditional rule schema is a rule schema together with a condition on
the expressions of its left-hand graph.

Definition 2.33 (Conditional rule schema). A conditional rule schema is a
pair 〈r,Γ〉with r a rule schema and Γ ∈ Condition a rule schema condition,
such that all variables occurring in Γ also occur in the left-hand graph of
r.

The condition of a conditional rule schema is written underneath the
graphs, and after the keyword where.

Example 2.34 (Conditional rule schema). Figure 2.16 contains bridge, an
example of a conditional rule schema. In an application of bridge, the
(unmarked) nodes and edges in a path of length two would be suitable
for a match, provided the condition is satisfied, i.e. there is no direct edge
linking the first and third node. If this is the case, bridge adds an edge
between these two nodes, the list component of which is constructed from
the list components of the nodes. If applied repeatedly to an (unmarked)
input graph, eventually we would compute its transitive closure.

For the sake of brevity, we will occasionally refer to conditional rule
schemata as simply rule schemata. If the presence (or not) of a condition is
significant in some context, we will be explicit about it.
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bridge(a, b, x, y, z : list)

x

1

y

2

z

3

a b
⇒ x

1

y

2 3

z

3

x : z

a b

where not edge(1, 3)

Figure 2.16: A conditional rule schema

2.2.2 Semantics of Rule Schema Application

In this subsection we define the semantics of (conditional) rule schema ap-
plication which proceeds roughly as follows. For a rule schema r with con-
dition Γ applied to a graph G ∈ G(L):

1. match the left-hand graph L of r with a subgraph of G, ignoring la-
bels;

2. check whether there is an assignment α mapping variables to values
in L such that after evaluating expressions in L, the match is label
preserving;

3. check whether the condition Γ evaluates to true under the assignment
and match;

4. apply to G the rule obtained from r by evaluating all expressions in
the left and right graph.

We formalise these steps in what follows. First we define premorphisms,
which are graph morphisms that disregard labels. Then, we define assign-
ments for the evaluation of expressions, showing how to obtain a graph
in G(L) from a graph in G(RS). Finally, we define the evaluation of rule
schema conditions before putting everything together and defining (condi-
tional) rule schema application.

Since premorphisms are only required in this thesis for graph matching,
we tailor our definition to the particular label alphabets, and require the
functions to be injective.

Definition 2.35 (Premorphism). Given graphs L ∈ G(RS) and G ∈ G(L), a
premorphism g : L →֒ G consists of two injective functions gV : VL →֒ VG and
gE : EL →֒ EG that preserve sources and targets, i.e. sG ◦ gE = gV ◦ sL and
tG ◦ gE = gV ◦ tL.

Each graph in G(RS) represents a possibly infinite set of graphs in G(L).
The latter are obtained by mapping variables to values from L and evalu-
ating expressions.
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Definition 2.36 (Assignment for typed variables). An assignment is a family
of partial1 functions α = (αX)X∈{I,S,A,L} where αI : IVar → Z, αS : SVar →
Char∗, αA : AVar → Z ∪ Char∗, and αL : LVar → L. For notational conve-
nience we often omit the subscripts of these mappings since exactly one of
them is applicable to each variable.

Definition 2.37 (Domain of typed assignments). Given an assignment α,
we denote by dom(α) the domain of α, that is, the set of all variables x for
which there is a partial function αX defined for x.

Definition 2.38 (Application of assignments to labels and graphs). Let (l b)
denote some label with l ∈ List and b ∈ Mark, and let α denote some
assignment defined for all variables in l. We define the application of α to
(l b), denoted by (l b)α as follows. Define (l b)α = (lα, bα) ∈ L, where lα ∈ L

and bα ∈ B are defined inductively:

1. if l = empty, then lα is the empty sequence. If l is a numeral or se-
quence of characters, then lα is the integer or character string2 rep-
resented by l. If l is a variable identifier, then lα = α(l). If l is the
expression -i for some i in Integer, then lα = −iα. If l has the form
i1⊕i2 with i1, i2 in Integer and⊕ in ArithOp, then lα = iα1⊕Z i

α
2 where

⊕Z is the integer operation represented by ⊕3. If l has the form s1.s2
with s1, s2 in String, then lα is the string resulting from concatenating
sα1 and sα2 . Finally, if l is a list l1 : l2 with l1, l2 in List, then lα is the
sequence lα1 followed by lα2 .

2. if b = true (resp. false), then bα = true (resp. false) in B.

Given a graph G in G(RS) and an assignment α defined for all variables
inG, we writeGα for the graph in G(L) that is obtained fromG by replacing
each label (l b) with (l b)α (note that Gα has the same nodes, edges, source
and target functions as G). If g : G → H is a graph morphism with G,H ∈
G(RS), then gα denotes the morphism 〈gV , gE〉 : G

α → Hα.

Definition 2.39 (Application of assignments to conditions). Let Γ denote
some rule schema condition, g : L →֒ G denote a premorphism, and α an
assignment defined for all variables in Γ and L. We define the application of
α, g to Γ, denoted by Γg,α ∈ B, inductively as follows.

If Γ has the form t(l) with t in Type and l in List, then Γg,α = true if
t = int (resp. string, atom) and lα ∈ Z (resp. Char∗, Z ∪Char∗), otherwise
false. If Γ has the form l1 = l2 (resp. l1 \= l2) with l1, l2 in List, then Γg,α =
true if lα1 = lα2 (resp. lα1 6= lα2 ), otherwise false. If Γ has the form i1 ⊲⊳ i2

1Partiality is not needed for the purposes of this chapter but assignments will later be
used for assertions, too, where partiality is convenient.

2Note that the empty list and empty character string are distinct values.
3The effect of division by zero is undefined, i.e. left to the implementation.
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2.2. Graph Programs

with i1, i2 in Integer and ⊲⊳ in IntRel, then Γg,α = true if iα1 ⊲⊳B iα2 where
⊲⊳B is the obvious Boolean-valued function on integers corresponding to
⊲⊳, otherwise false.

If Γ has the form edge(n1, n2) (resp. edge(n1, n2, l)) with n1, n2 node
identifiers in L (resp. l in List), then Γg,α = true if there is an edge inG from
gV (n1) to gV (n2) (resp. with list component lα), otherwise false.

If Γ has the form not Γ′ with Γ′ in Condition, then Γg,α = true if (Γ′)g,α =
false, otherwise false. If Γ has the form Γ1 and Γ2 (resp. Γ1 or Γ2) with Γ1,Γ2

in Condition, then Γg,α = true if Γg,α
1 = Γg,α

2 = true (resp. Γg,α
1 or Γg,α

2 is
true), otherwise false.

Finally, we define the application of a (conditional) rule schema to a
graph. Essentially, it requires the existence of a premorphism g and assign-
ment α such that rg,α = 〈〈Lα ←֓ K →֒ Rα〉,Γg,α〉, an instance of r, can be
applied in the DPO approach with relabelling.

Definition 2.40 (Application of a (conditional) rule schema). Given a con-
ditional rule schema r = 〈〈L ←֓ K →֒ R〉,Γ〉 and graphs G,H ∈ G(L), we
write G ⇒r,g H if there is a premorphism g : L →֒ G and an assignment α
such that:

1. g : Lα →֒ G is a graph morphism;

2. Γg,α = true; and

3. G⇒rg,α,g H .

Here, G ⇒rg,α,g H denotes the application of rg,α with match g to G in the
DPO approach with relabelling (note that⇒ is used for both the application
of conditional rule schemata as well as rules). For simplicity, we often ab-
breviate G⇒r,g H to G⇒r H , and write G⇒R H for a set of (conditional)
rule schemataR if there is some r ∈ R such that G⇒r H .

Because the left-hand graphs of rule schemata contain only simple list
expressions, for a given rule schema r and premorphism g, there is at most
one instance of r that can be applied with match g (see [Plu12]).

Example 2.41 (Application of a conditional rule schema). A possible ap-
plication of the conditional rule schema bridge is shown in Figure 2.17,
where:

αL = {a 7→ �, b 7→ �, x 7→ 0:1 :2, y 7→ 3, z 7→ 4}.

The first row of the diagram displays the conditional rule schema. The
second row displays the rule obtained after evaluating labels with respect
to α. The third row displays a direct derivation G⇒rg,α H . Note that there
are three other possible matches for bridge in G. Note also that bridge
could not be applied again to H with the same premorphism, because the
condition would no longer be satisfied.
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bridge(a, b, x, y, z : list)

x

1

y

2

z

3

a b
⇒ x

1

y

2 3

z

3

x : z

a b

where not edge(1, 3)

7→

α, g

7→

α, g

0:1:2

1

3

2

4

3

⇒ 0:1:2

1

3

2

4

3

0:1:2:4

↓ g ↓

0:1:2 3 4

2

⇒ 0:1:2 3 4

2

0:1:2:4

Figure 2.17: A conditional rule schema and a possible application of it

2.2.3 Abstract Syntax of Programs

Recall that graph programs consist of declarations of (conditional) rule
schemata and some program text (which might be organised into macros).
In this subsection, we give a grammar defining the abstract syntax of pro-
grams in GP, before giving a basic intuition into the meaning of the control
constructs (a formal operational semantics will be given later).

Definition 2.42 (Abstract syntax of programs). Figure 2.18 contains the
grammar for the abstract syntax of graph program. The identifiers of cate-
gory RuleId occurring in a RuleSetCall refer to declarations of (conditional)
rule schemata in RuleDecl, which we have discussed in the previous sec-
tions. As usual, ambiguity is resolved by the use of parentheses.

The most fundamental command in GP is the application of a set of
(conditional) rule schemata, represented in the grammar by RuleSetCall.
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2.2. Graph Programs

Prog ::= Decl {Decl}

Decl ::= RuleDecl |MacroDecl |MainDecl

MacroDecl ::= MacroId ’=’ ComSeq

MainDecl ::= main ’=’ ComSeq

ComSeq ::= Com {’;’ Com}

Com ::= RuleSetCall |MacroCall

| if ComSeq then ComSeq [else ComSeq]

| try ComSeq then ComSeq [else ComSeq]

| ComSeq ’!’

| ComSeq or ComSeq

| skip | fail

RuleSetCall ::= RuleId | ’{’ [RuleId {’,’ RuleId}] ’}’

MacroCall ::= MacroId

Figure 2.18: Abstract syntax of graph programs

When executed, a rule schema from the set is nondeterministically applied
to the input graph. If no rule schema in the set can be applied, then the
execution fails. Commands can be executed sequentially using ’;’. The if

and try commands are the conditional constructs of GP. Rather than evalu-
ate some Boolean function to determine whether to follow the branch after
then or the branch after else, the branching is determined by executing
the “guard” program given immediately after the if or try, taking the first
branch if its execution results in a graph, and the other if it fails. (Note that
due to nondeterminism, some guard programs may both be able to succeed
and fail.) The difference between if and try is that the former executes the
guard program on a copy of the current graph, whereas the latter does not,
and hence retains all changes in a non-failing execution. Finally, as-long-
as-possible iteration is represented by ’!’. A command preceded by this
symbol will be executed for as long as it can be done so without failure. Of
course, as-long-as-possible iteration may introduce non-termination into a
graph program.

The commands or, skip, and fail can be expressed by semantically
equivalent programs made up of the other commands we have described.
However, they are made available to programmers for convenience. Re-
spectively, they represent nondeterministic choice of programs, do-nothing,
and program failure.
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2.2.4 Example Programs

In this subsection, we present some example programs in order to give
some intuition into graph programming, before later introducing a formal
operational semantics. The first program manipulates the labels of nodes
to compute a graph colouring; the second marks nodes in order to check
connectedness; and the third reduces an input graph to check whether it
was a tree or not.

Example 2.43 (Computing a graph colouring). The program colouring in
Figure 2.19 produces a colouring (an assignment of integers to nodes such
that adjacent nodes have different colours) for every input graph that is
unmarked and atom-labelled, recording colours as the second elements in
the list components of nodes.

main = init!; inc!

init(x : atom) inc(i : int; k : list; x, y : atom)

1

x ⇒

1

x :0 x :i y :i

1 2

k ⇒ x :i y :i+1

1
2

k

3

3

33

3 3

33 ⇒+ 3:0

3:1

3:03:1

3 3

33

⇒+

3:0

3:1

3:23:1

3 3

33

Figure 2.19: The program colouring and two of its executions

The program initially colours each node with 0 by applying the rule
schema init as long as possible, using the iteration operator ’!’. It then
iterates inc for as long as possible, which matches adjacent nodes with the
same colour, and increments the colour of the target node by 1. Observe
that the iteration of inc will only end once the graph is correctly coloured,
otherwise inc would be applied again and the iteration would continue.
(Note that for simplicity the program only operates on unmarked nodes
and edges, but could easily be extended for marked ones were it necessary.)
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2.2. Graph Programs

Example 2.44 (Checking connectedness). The program connected? in Fig-
ure 2.20 takes a graph (in which all nodes and edges are unmarked) and
checks whether it is connected or not, i.e. whether or not there exists a path
between any two pairs of nodes. The program provides the result – “yes”
or “no” – as the label of a fresh node that it creates. In this example, we
ignore the directions of edges, so a path is allowed to contain edges that
are followed from the target node to the source node.

main = init; {prop1, prop2}!;
(if unmarked then no else yes); undo!

init(x : list) unmarked(x : list)

1

x ⇒

1

x

1

x ⇒

1

x

prop1(k, x, y : list) prop2(k, x, y : list)

x y

1 2

k ⇒ x y

1 2

k
x y

1 2

k ⇒ x y

1 2

k

yes() no()

∅ ⇒ ”yes” ∅ ⇒ ”no”

undo(x : list)

1

x ⇒

1

x

Figure 2.20: The program connected?

The program begins applying the rule schema init exactly once, which
nondeterministically marks a single node in the graph. (It would fail at this
point if the input graph is the empty graph ∅, or if no node is unmarked.)
Then, the program iterates applications of prop1 and prop2, which propa-
gate node marks along edges in both directions. When neither of these rule
schemata can be applied, the program tries to apply unmarked in the guard
of a conditional. The rule schema does not change the graph, however, if
it can be applied, then there must be an unmarked node in the graph. This
means that there is some node that cannot be reached from the initially
marked one, hence the graph is not connected. In this case, no is applied
which creates a new node indicating this result. In the other case, yes cre-
ates a new node indicating that the graph is connected. In both cases, the
program then iterates undo to remove all of the marks used in the compu-
tation.
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A more elegant version of the program – that does not need undo! –
would be:

if init; {prop1, prop2}!; unmarked then no else yes.

This version of the program performs the main part of the computation
on a copy of the input graph, because it is wholly within the guard of an
if-then-else conditional (the next example program discusses this construct
further). When guards of conditionals are more than single sets of rule
schemata, however, the program becomes harder to verify (see Chapters 3
and 4).

Example 2.45 (Was it a tree?). The program tree? of Figure 2.21 takes a
graph (containing only unmarked nodes and edges) and checks whether
or not it is a tree, i.e. an acyclic graph in which all nodes have indegree
of at most 1, and exactly one node has indegree 0. Unlike the programs
colouring and connected? which only perform label manipulations, this
program performs a destructive test on the graph (i.e. deletes nodes and
edges) in order to establish whether or not the original input graph was a
tree or not. However, it does so within the guard of an if-then-else con-
struct, which hides the effect of the rules. As for connected?, a fresh node
labelled with “yes” or “no” is created to indicate the result.

main = if chop!; finalChop; node then no else yes

chop(k, x, y : list) finalChop(x : list)

x y

1

k ⇒

1

x x ⇒ ∅

node(x : list)

1

x ⇒

1

x

Figure 2.21: The program tree?

The whole program is just an instance of an if-then-else conditional.
Upon execution, the program in the guard is executed on a copy of the
input graph; a successful execution then leading to an execution of no, and
a failing one leading to an execution of yes. Intuitively, the guard program
applies a rule akin to what might be seen in a graph grammar for trees –
but in reverse – and then determines whether the original input was a graph
or not based on what the rule was not able to reduce.

The guard program begins by “chopping” the tree down to its root. It
iterates the rule schema chop, each application of which removes a leaf
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from the tree (as well as the edge pointing to it). Note that this rule schema
exploits the DPO approach to match the leaves of the tree, since the node
labelled with y can only be deleted if the only edge pointing to it is the
edge labelled with k – otherwise edges would be left dangling (and the
node would not have been a leaf in the first place). Note also that this
iteration preserves an important invariant: if the graph is a tree before an
application of chop, then it remains a tree (albeit a smaller one) after every
possible application. Moreover, if the graph is not a tree, applying chop

cannot transform it into a graph that is a tree.

After the iteration completes, if the original input graph was a tree, then
only the root should remain. Then, the program attempts to delete this
node, and checks whether or not this results in the empty graph, reporting
“yes” if it is and “no” if it is not (these rule schemata are the same as in
connected?). If the graph is not empty, then it means that there was either
a node that chop could not delete because it was incident to more than one
incoming edge (hence the graph was not a tree), or the graph was a forest
of trees and hence the reduction left more than root node.

2.2.5 Operational Semantics

GP has an operational semantics in the style of Plotkin [Plo04], which pre-
cisely describes the meaning of the language’s control constructs, and which
is used in the soundness proofs of our verification work in later chapters.
The semantics of GP consists of inference rules, which inductively define
a small-step transition relation → on configurations. Intuitively, configura-
tions represent the current state (a graph or a special failure state) paired
with a command sequence that remains to be executed (if any).

Definition 2.46 (Configuration). A program configuration is either a com-
mand sequence with a graph in ComSeq × G(L), just a graph in G(L), or
the special element fail.

Definition 2.47 (Transition relation). A small-step transition relation

→⊆ (ComSeq× G(L))× ((ComSeq× G(L)) ∪ G(L) ∪ {fail})

over configurations defines the individual steps of computation. The tran-
sitive and reflexive-transitive closures of→ are written→+ and→∗ respec-
tively.

Configurations in ComSeq×G(L) represent states of unfinished compu-
tations, whereas graphs in G(L) are proper results. The configuration fail
represents a failure state. A configuration γ is said to be terminal if there is
no configuration δ such that γ → δ.
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We provide semantic inference rules for both the core and the derived
commands of GP (“derived” in the sense that the commands have seman-
tically equivalent programs consisting of only core commands). Each infer-
ence rule has a premise and conclusion, separated by a horizontal bar. Both
contain (implicitly) universally quantified meta-variables for command se-
quences and graphs, where R stands for a call in RuleSetCall, C,P, P ′, Q
for command sequences in ComSeq, and G,H for graphs in G(L).

Definition 2.48 (Semantic inference rules for core commands). The inference
rules for core commands of GP are given in Figure 2.22. The notation G 6⇒R

expresses that for a graphG ∈ G(L), there is no graphH such thatG⇒R H .

[call1]OS
G⇒R H
〈R, G〉 → H

[call2]OS
G 6⇒R

〈R, G〉 → fail

[seq1]OS
〈P, G〉 → 〈P ′, H〉

〈P ;Q, G〉 → 〈P ′;Q, H〉
[seq2]OS

〈P, G〉 → H
〈P ;Q, G〉 → 〈Q, H〉

[seq3]OS
〈P, G〉 → fail
〈P ;Q, G〉 → fail

[if1]OS
〈C, G〉 →+ H

〈if C then P else Q, G〉 → 〈P, G〉

[if2]OS
〈C, G〉 →+ fail

〈if C then P else Q, G〉 → 〈Q, G〉

[try1]OS
〈C, G〉 →+ H

〈try C then P else Q, G〉 → 〈P, H〉

[try2]OS
〈C, G〉 →+ fail

〈try C then P else Q, G〉 → 〈Q, G〉

[alap1]OS
〈P, G〉 →+ H

〈P !, G〉 → 〈P !, H〉
[alap2]OS

〈P, G〉 →+ fail
〈P !, G〉 → G

Figure 2.22: Inference rules for core commands

To convey an intuition as to how the rules should be read, consider the
rule [call1]OS. This reads: “for all sets of (conditional) rule schemata R and
all graphs G,H ∈ G(L), G⇒R H implies that 〈R, G〉 → H”.

Note how if-then-else and try-then-else are distinguished. In the for-
mer, successful executions of the “guard” program C are hidden in the
sense that P is executed on the original input graph G. In the latter, suc-
cessful executions of C are not discarded, and P is executed on the graph
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that is returned. Note also the nondeterminism with regards to failing ex-
ecutions in the rules for if-then-else, try-then-else, and as-long-as-possible
iteration. There may be cases when a program execution might either result
in a proper state or fail, depending on the execution path taken, and hence
either the first or second rule for each construct is nondeterministically ap-
plied.

By inspection of the inference rules, we note that a program execution
can only result in a failure state if a set of conditional rule schemata is ap-
plied to a graph for which no rule schema in the set is applicable.

Definition 2.49 (Semantic inference rules for derived commands). The in-
ference rules for derived commands of GP are given in Figure 2.23.

[or1]OS 〈P or Q, G〉 → 〈P, G〉 [or2]OS 〈P or Q, G〉 → 〈Q, G〉

[skip]OS 〈skip, G〉 → G [fail]OS 〈fail, G〉 → fail

[if3]OS
〈C, G〉 →+ H

〈if C then P, G〉 → 〈P, G〉
[if4]OS

〈C, G〉 →+ fail
〈if C then P, G〉 → G

[try3]OS
〈C, G〉 →+ H

〈try C then P, G〉 → 〈P, H〉
[try4]OS

〈C, G〉 →+ fail
〈try C then P, G〉 → G

[try5]OS
〈C, G〉 →+ H
〈try C, G〉 → H

[try6]OS
〈C, G〉 →+ fail
〈try C, G〉 → G

Figure 2.23: Inference rules for derived commands

The derived commands can be defined by the core commands. We do
not go into details, but refer the reader to [Plu12].

The meaning of programs is given by the semantic function J K, which
assigns to each program P the function JP K mapping an input graph G ∈
G(L) to the set of all possible results of executing P on G. The application
of function JP K to graphG is denoted JP KG. As well as graphs, this set may
contain the special values fail and ⊥. The former indicates a program run
ending in failure, whereas ⊥ indicates that at least one execution diverges
(does not terminate), or “gets stuck”.

Definition 2.50 (Divergence). A program P can diverge from graphG if there
is an infinite sequence:

〈P,G〉 → 〈P1, G1〉 → 〈P2, G2〉 → . . .
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Definition 2.51 (Getting stuck). A program P can get stuck from graph G if
there is a terminal configuration 〈Q,H〉 such that 〈P,G〉 →∗ 〈Q,H〉.

A program can get stuck if the guard program C of a conditional can
diverge on some graph G, neither producing a graph nor failing, or if the
same property is true for a program that is iterated. The execution in these
cases gets stuck because none of the inference rules for conditionals and
iteration can be applied.

Definition 2.52 (Semantic function). The semantic function J K : ComSeq →
(G(L)→ 2G(L)∪{fail,⊥}), given a graphG ∈ G(L) and a programP , is defined
by:

JP KG = {X ∈ G(L) ∪ {fail} | 〈P,G〉 →+ X}

∪ {⊥ | P can diverge or get stuck from G}.

Finally, we provide a straightforward definition of program equiva-
lence which is based on the definition of semantic functions.

Definition 2.53 (Semantic equivalence). Two graph programs P and Q are
semantically equivalent, denoted by P ≡ Q, if JP K = JQK.

2.3 Related Work

This chapter has only touched the surface of the algebraic approach to
graph transformation, presenting only what we need as a technical basis
for this thesis. The recent monograph [EEPT06] provides a (rather tech-
nical) introduction to further topics, and the handbook volumes survey a
range of foundations and applications [Roz97, HER99a, HER99b].

The algebraic constructions we have considered have all been in the
context of graphs and graph morphisms, specifically to provide a formal
basis for GP. However, much effort in graph transformation research has
been focused towards generalising these frameworks to more abstract set-
tings so that results become applicable not just for graphs, but for sev-
eral other graph-like structures, e.g. hypergraphs, Petri-nets. The DPO ap-
proach (without relabelling) has been studied extensively in such abstract
settings (we refer again to the monograph [EEPT06]). Recent work has con-
sidered DPO rewriting with relabelling – the formal basis of rule applica-
tion in GP – in an abstract categorical setting [HP12], and generalising the
results of this thesis into that framework is a possibility for future work.
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GP 2, as defined in this paper, has been evolving for more than a decade
since the minimal and computationally complete core presented in [HP01].
The original incarnation of conditional rule schemata was introduced by
Plump and Steinert in [PS04], using the DPO with relabelling approach of
[HP02] as the formal basis for their application. Steinert presented a thor-
ough account of “GP 1” in her thesis [Ste07], which included a structural
operational semantics and a number of case studies; this language, Man-
ning began to implement [MP08]. Plump published a paper summarising
the state of the GP project in 2009 [Plu09], which we used as a basis for our
first papers on verification. Following lessons learnt from case studies and
our verification work, the language was revised further to GP 2 [Plu12],
the version used in this thesis. Among the changes were new types for
rule schema labels (atoms, lists), marked nodes and edges, the try-then-
else construct, and the removal of forced backtracking in the semantics of
failing loop bodies and guard programs of conditionals (in order to allow
a more efficient implementation). Bak and Plump have begun to address
the “bottleneck” of graph matching by considering so-called rooted graph
programs [BP12], in which rule schemata and host graphs contain and ma-
nipulate distinguished nodes (roots) to facilitate graph matching in con-
stant time. The authors are proposing to implement this work and thus
supersede the (now outdated) GP prototype of Manning.

GP is not the only graph transformation language: AGG [Tae04], Fujaba
[NNZ00], and GrGen [GBG+06] are some well-known examples. Unlike
GP, these languages lack formal semantics making them less attractive to
use in the context of our verification work. PROGRES [SWZ99] is another
well-known graph transformation language: this does have a complete for-
mal semantics due to Schürr, but unlike the semantics of GP, it is very com-
plicated.

2.4 Summary

In this chapter we have:

• given some preliminary definitions: label alphabets, graphs, graph
morphisms;

• reviewed the DPO approach to applying rules in graph transforma-
tion (i.e. no side effects in rule application), giving both concrete steps
and an algebraic construction formed from two pushouts;

• reviewed the DPO approach with relabelling;

• defined conditional rule schemata, the building blocks of GP, which
generalise the above approach to rewriting with expressions as labels;
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• explained the control constructs of graph programs, and demonstrated
them in a number of example programs;

• given a formal operational semantics for GP.
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Chapter 3

Hoare Calculi for Graph
Programs

In this chapter we introduce our verification calculi for graph programs,
which follow the approach initiated by Hoare [Hoa69]. We introduce the
proof rules of the calculi in the extensional style – i.e. independent of a
fixed assertion language – before defining three notions of correctness, and
showing the calculi to be sound (that is, everything provable is valid). We
show too that the calculi are relatively complete (roughly, everything valid
is provable), and complete for termination (if a program iteration eventu-
ally terminates, we can prove it). Finally, we briefly review related work on
the verification of graph transformations.

3.1 Reasoning with Hoare Logic

Hoare logics are calculi of axioms and inference rules (collectively referred
to as “proof rules”) for rigorously reasoning about the correctness of pro-
grams. Central to the approach is the Hoare triple, {pre} P {post}, which is
a specification about the behaviour of a programP when executed on a pro-
gram state satisfying some precondition pre. (For now, we do not fix how
to assert properties of program states.) In such situations – and ignoring
for now the issue of termination – executing P establishes the postcondi-
tion post. The idea of a Hoare logic is to allow the derivation of such triples
– such specifications – directly from the syntax of a program.

From the most fundamental program constructs, we derive such triples
by instantiating axioms1. Take, for example, some program construct de-
noted by do-nothing, which upon execution terminates immediately with-
out altering the program state. An obvious axiom would be:

1These are really “axiom schemata”, but we follow other authors in simply referring to
them as the axioms of the calculi.
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[do-nothing]
{pre} do-nothing {pre}

Given the (informal) semantics of this construct, whatever is asserted in
pre about the state, we can be sure that after do-nothing is executed the
assertion pre still holds. Hence from this axiom, and in a classical setting
where program states comprise a variable store, we can “prove” triples
like ⊢ {x > 0} do-nothing {x > 0} or ⊢ {x*y = 30} do-nothing {x*y = 30}.
Here, the symbol ⊢ is used to indicate that the triple has been proven within
some calculus, but it is often omitted when the context is clear. (Later, we
use another symbol |=, to indicate the truth of a triple under some interpre-
tation.)

For less fundamental constructs, Hoare logics contain inference rules.
Unlike axioms, to derive a triple from these, one must first prove some
other triples in the calculus using other inference rules and axioms. Take
for example a sequential composition construct denoted by ‘;’. Informally,
a program P ; Q is executed by first executing P , and upon its termination,
executing Q. To yield a triple about P ; Q, an inference rule might require a
proof about both P and Q individually relative to some “midpoint” asser-
tion, as follows:

{pre} P {mid} {mid} Q {post}
[seq-comp]

{pre} P ; Q {post}

Constructing and using Hoare logics is appealing because it allows rea-
soning around individual parts and components of programs. This is in
contrast to e.g. a weakest precondition semantics (as described by Dijk-
stra [Dij75, Dij76]), in which a program and postcondition are recursively
transformed into an assertion describing the “weakest” requirements on a
state for the program to establish the postcondition. Whereas verification
in the latter approach is reduced to proving that a precondition implies the
weakest precondition of a program (which is often large and non-trivial),
a Hoare logic approach allows for the isolation of difficult aspects of the
proof, for example, in finding and proving invariants of looping programs.

To be useful, a Hoare logic needs to be sound. That is, if some triple
can be proven in the calculus, that triple must be valid according to some
notion of correctness. Typically, this involves appealing to the formal se-
mantics of the programming language, and showing that the axioms and
inference rules faithfully adhere to them. In a sense, Hoare logics capture
the essential properties of the semantics whilst avoiding the need to work
with them directly [NN07].

Another desirable property of a Hoare logic is completeness. That is, if
one can denote a triple that is valid according to some notion of correctness,
then it is possible to prove that triple within the calculus. Unfortunately,
because most calculi require – for practicality – inference rules that allow
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preconditions to be strengthened and postconditions to be weakened (or
either to be replaced by semantically equivalent but syntactically distinct
assertions), completeness is relative to the assertion language. Take such
an inference rule for deriving new assertions:

pre implies pre′ {pre′} P {post′} post′ implies post
[consequence]

{pre} P {post}

To derive ⊢ {pre} P {post}, one must first prove ⊢ {pre′} P {post′}, and
then also show that the two implications in the assertion language are valid,
i.e. true in all states. Unless the assertion language is very simple, the latter
task is usually a source of incompleteness. For example, if the assertion
language can express arithmetical expressions over the integers, then by
Gödel’s incompleteness theorem there is no complete calculus for deducing
valid assertions [Cro72]. Separately, the assertion language may also cause
incompleteness by not being expressive enough, i.e. unable to express cer-
tain preconditions required in correctness proofs.

A more realistic completeness property to aim for, due to Cook [Coo78],
is relative completeness (or Cook completeness). The idea is to separate incom-
pleteness due to the axioms and inference rules from any incompleteness in
deducing valid assertions. A Hoare logic is relatively complete, if all valid
triples can be proven in the calculus, relative to an oracle for deciding the
validity of assertions.

3.2 Assertions for Graph Programs

In the previous section we discussed Hoare logic without much attention
to assertion languages for expressing the pre- and postconditions of triples.
That is, with the exception of how we separate incompleteness due to in-
adequate proof calculi from incompleteness due to the assertion language.
This idea of separating proof rules and assertion languages is one that we
continue in this chapter, even as we come to consider graph programs
specifically.

Rather than fixing assertion languages for graph programs, we define
our axioms, inference rules, and notions of correctness in a general way
that allows for languages to be “plugged in” later. According to Nielson
and Nielson [NN07], this is an extensional approach to Hoare logic. The ap-
proach allows us to focus on capturing the semantics of GP’s various con-
trol constructs in the proof rules of our calculi without having to concern
ourselves with the limitations of a particular assertion language.

Formally, we require only that assertion languages are associated with
a satisfaction relation, which holds when a state (i.e. a graph) “satisfies” an
assertion in some sense. What the assertions actually are (and they need
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not be restricted to logical formulae), and what constitutes “satisfaction”,
is left open to users.

Definition 3.1 (Assertion language). An assertion language is a pair A =
〈A, |=A〉, whereA is a (possibly infinite) set of assertions, and |=A ⊆ G(L)×A
is a satisfaction relation. If for a graphG ∈ G(L) and assertion a ∈ Awe have
that G |=A a holds, we say that G satisfies a.

Example 3.2. An example of a weak assertion language is one that can ex-
press three properties: that a graph is empty, that it is not, or that either of
those properties hold. This can be defined by:

A1 = 〈{emp, notemp, either}, |=A1
〉

where given a graph G ∈ G(L),

G |=A1
emp if VG = ∅,

G |=A1
notemp if VG 6= ∅, and

G |=A1
either always.

Example 3.3. A more powerful assertion language is one in which the
assertions are DPO graph grammars and the satisfaction relation holds
when a graph can be generated by such a grammar. This can be defined
by A2 = 〈GG, |=A2

〉 where GG is a class of DPO graph grammars, and
G |=A2

GRA for G ∈ G(L),GRA ∈ GG if G can be generated by GRA.

A closely related idea is to use Graph Reduction Specifications (GRSs)
[BPR04b, BPR03] as an assertion language. Unlike grammars, where one
checks whether a graph can be generated from some starting graph, in
GRSs, one checks whether a graph can be reduced to some accepting graph.
An assertion language based on GRSs would be useful for reasoning ab-
stractly about shape safety, e.g. manipulations of pointer structures.

Examples 3.2 and 3.3 describe respectively weak and powerful asser-
tion languages. The former can only express two properties, whereas the
latter ones can be used to express any recursively enumerable set of graphs
(see the result of Uesu [Ues78]). Whilst expressiveness is generally impor-
tant, other factors are also important in choosing an assertion language
for a Hoare logic. For example, is there a decision procedure for check-
ing whether a graph satisfies an assertion? And is the language expressive
enough for the calculus?
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3.3 Notions of Correctness

In this section we fix our semantics of Hoare triples, i.e. what it means for
{pre} P {post} to be “correct”. To do this we look at the semantics of graph
programs, and in particular, recall the semantic function from Definition
2.52:

JP KG = {X ∈ G(L) ∪ {fail} | 〈P,G〉 →+ X}

∪ {⊥ | P can diverge or get stuck from G}.

For a program P executed on a graphG, the set JP KGmight contain graphs,
the element fail, and possibly also⊥. Of these possible elements, the graphs
can be seen as the results of “successful” executions, i.e. they are the proper
states. In particular, there might be several (or none) of them due to the
nondeterminism, and this must be accounted for in definitions of correct-
ness. Following standard approaches (see e.g. [AdO09]), we define our
weakest notion of correctness – partial correctness – to consider only the
proper states (i.e. graphs) that might result, without any guarantee that
any will actually be returned.

Definition 3.4 (Partial correctness). Let A = 〈A, |=A〉 be an assertion lan-
guage, and c, d be assertions in A. A graph program P is partially cor-
rect with respect to a precondition c and postcondition d, denoted |=par

{c} P {d}, if for every graph G ∈ G(L), G |=A c implies H |=A d for ev-
ery H in JP KG.

With partial correctness we can make guarantees about the properties
of graphs in JP KG, but the definition is not strong enough to guarantee that
⊥ (for diverging executions and those that get stuck) is absent from the
set, nor strong enough to guarantee the absence of fail (for failing execu-
tions). We follow [Apt84] and define two notions of correctness to account
for these distinct issues. When we refer to weak total correctness, we mean
partial correctness as well as absence of divergence and executions that get
stuck. When we refer to total correctness, we mean weak total correctness as
well as absence of failing executions.

Definition 3.5 (Weak total correctness). Let A = 〈A, |=A〉 be an assertion
language, and c, d be assertions in A. A graph program P is weakly totally
correct with respect to a precondition c and postcondition d, denoted |=wtot

{c} P {d}, if |=par {c} P {d} and if for every graph G ∈ G(L) such that
G |=A c, there is no infinite sequence 〈P,G〉 → 〈P1, G1〉 → 〈P2, G2〉 →
· · · (divergence), and there is no terminal configuration 〈Q,H〉 such that
〈P,G〉 →∗ 〈Q,H〉 (getting stuck).
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Definition 3.6 (Total correctness). Let A = 〈A, |=A〉 be an assertion lan-
guage, and c, d be assertions in A. A graph program P is totally correct with
respect to a precondition c and postcondition d, denoted |=tot {c} P {d}, if
|=wtot {c} P {d}, and if for every graph G ∈ G(L) such that G |=A c, there is
no derivation 〈P,G〉 →∗ fail.

We remark that in GP 1 [Plu09], it is possible for JP KG to be empty
if P terminates on G but all its execution paths result in failure (this was
referred to as finite failure). With the GP 2 semantics we use in this thesis,
JP KG in this case would be a singleton set containing only fail (we refer to
the semantic function and semantic inference rules in Section 2.2.5).

3.4 Partial Correctness Calculus

Having fixed three notions of correctness for Hoare triples, in this section
we give the axioms and inference rules of a proof system for the first of
them – partial correctness. The proof rules are introduced individually in
this section, alongside informal discussions of the semantics of GP which
directly motivated the choices we made. They are also presented together
for reference in Figures A.1 and A.2 of the appendix.

We define the provability of triples in our partial, weak total, and total
correctness calculi in the standard way. Note that we allow premises of in-
ference rules to require provability in a different calculus; this is especially
useful in the total correctness calculus, where occasionally total correctness
is too strong to require of a premise. If a triple is provable, we can display
a proof for it by means of a proof tree (see e.g. Example 3.13).

Definition 3.7 (Provability; proof tree). Given an proof system I , a triple
⊢I {c} P {d} is provable in I if one can construct a proof tree from the axioms
and inference rules of I with that triple as the root. If ⊢I {c} P {d} is an
instance of an axiom X , then:

X
⊢I {c} P {d}

is a proof tree, and the triple is provable in I . If ⊢I {c} P {d} can be instan-
tiated from the conclusion of an inference rule X , and there are proof trees
T1, . . . , Tn with conclusions that are instances of the n premises of X , then:

T1 · · · Tn
X
⊢I {c} P {d}

is a proof tree, and the triple is provable in I .

Let A = 〈A, |=A〉 be an assertion language. Let r (resp. R) range over
rule schemata (resp. sets of rule schemata), c, c′, d, d′, e, inv over assertions

46



3.4. Partial Correctness Calculus

in A, and C,P,Q over graph programs. If a triple {c} P {d} can be proved
with our axioms and inference rules for partial correctness, we denote this
by ⊢par {c} P {d}. (The connections between provability, i.e. ⊢par, and valid-
ity, i.e. |=par, are made explicitly clear later in Section 3.6.)

Notation 3.8. Note that all the triples in the premises and conclusions of
our proof rules for partial correctness can be assumed to be preceded by
⊢par.

First we consider the axiom [ruleapp]wlp which allows reasoning about
the application of a single (conditional) rule schema.

[ruleapp]wlp
{WlpA[r, c]} r {c}

Rule schema application directly manipulates the state (a graph), and
hence the [ruleapp]wlp axiom can be seen as core to our calculus as the
assignment axiom might be in a calculus for a traditional imperative lan-
guage. The axiom rests entirely on the precondition WlpA[r, c], which is
an assertion in A that in this extensional approach we do not define, but
rather characterise in Definition 3.10. Informally, WlpA[r, c] should express
a weakest liberal precondition relative to r and c, i.e. the weakest restrictions
on a graph such that any successful application of r results in a graph that
establishes the postcondition c (note that a successful application of r is not
guaranteed by satisfying the precondition).

Definition 3.9 (Liberal precondition). Given an assertion language A =
〈A, |=A〉, a program P , and a postcondition c in A, an assertion a in A is a
liberal precondition relative to P, c if for all graphs G such that G |=A a,

H ∈ JP KG implies H |=A c.

Definition 3.10 (Weakest liberal precondition WlpA). Given an assertion
language A = 〈A, |=A〉, a program P , and a postcondition c in A, WlpA[P, c]
denotes a weakest liberal precondition relative to P, c, that is, a liberal precon-
dition in A such that for all graphs G and all other liberal preconditions
a ∈ A,

G |=A a implies G |=A WlpA[P, c].
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An important question to ask is whether a particular assertion language
A is expressive enough to actually define the assertion WlpA[r, c] – as we
have characterised it – for all combinations of r, c. If there is not such
an assertion in A, then the assertion language introduces incompleteness.
Whether a construction actually exists for transforming an arbitrary rule
schema and postcondition into an assertion WlpA[r, c] is thus an important
consideration for choosing an assertion language.

A set of rule schemata R is applied to a graph by nondeterministically
choosing an applicable rule schema from the set and applying it to the
graph. Hence to derive a triple about R, we must prove the same triple
but for each each of the individual rule schemata inR – this is captured by
the proof rule [ruleset]:

{c} r {d} for each r ∈ R
[ruleset]

{c} R {d}

For each {c} r {d} it might be the case that c is a suitable assertion for
WlpA[r, d], and so each triple is proved simply by instantiating [ruleapp]wlp.
But it might also be the case that c is stronger than the weakest liberal pre-
condition, and so we need a rule of consequence:

impl(c, c′) {c′} P {d′} impl(d′, d)
[cons]

{c} P {d}

impl(a1, a2) : prove that G |=A a1 implies G |=A a2 for all G ∈ G(L)

The aim of our [cons] rule is no different from rules of consequence in
other Hoare logics: it allows for preconditions to be strengthened, postcon-
ditions to be weakened, or either to be replaced by semantically equivalent
but syntactically distinct assertions. It requires two proofs – outside of the
calculus – about the relationships between pre- and postconditions in the
premise and the conclusion of the rule. If the assertion language is logi-
cal, then what is required is essentially to prove the validity of c ⇒ c′ and
d′ ⇒ d. But in our more general setting where assertion languages could
be non-logical (e.g. graph grammars), we describe – via the abbreviation
impl(a1, a2) – the essential property that needs to be shown. That is, re-
gardless of state, satisfying c is sufficient for satisfying c′, and satisfying
d′ is sufficient for satisfying d. The difficulty of checking these implica-
tions (which would ideally be automatic), is an important consideration in
choosing an assertion language.

Sequential composition is captured by the [comp] rule:
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{c} P {e} {e} Q {d}
[comp]

{c} P ; Q {d}

In an execution of P ; Q, the program Q is not executed until after the
execution of P has terminated. So to prove a partial correctness triple about
P ; Q, it suffices to prove triples about P and Q separately relative to some
“midpoint”, i.e. some assertion e that holds for a graph after a successful
execution of P and before an execution of Q.

Next we consider the proof rule [if] for the first of GP’s conditional con-
structs:

{SEA[c, C]} P {d} {FEA[c, C]} Q {d}
[if]

{c} if C then P else Q {d}

The [if] rule requires two further special assertions, which we charac-
terise more formally shortly. Intuitively, SEA[c, C] is an assertion satisfied
by graphs for which assertion c holds, and for which program C has an
execution path that yields a graph (“Successful Execution”). On the other
hand, FEA[c, C] is an assertion satisfied by graphs for which c holds, and for
which C has an execution path that yields a fail state (“Failing Execution”).
These assertions are used in the premises of [if] to appropriately capture
the semantics of if C then P else Q. Recall that in an execution of this
program on a graph G, the program C is first executed on a copy of G. If C
terminates and results in a graph, then P is executed on G. If C terminates
and results in a fail state, then Q is executed on G instead. (Note that JCKG
could contain both a graph and fail; in such a case either P or Q could be
executed.)

Definition 3.11 (Assertion SEA). Given an assertion language A = 〈A, |=A〉,
a graph program C, and an assertion c in A, SEA[c, C] is any assertion in A
such that:

G |=A SEA[c, C] if and only if (G |=A c and H ∈ JCKG)

for some H ∈ G(L).

Definition 3.12 (Assertion FEA). Given an assertion language A = 〈A, |=A〉,
a graph program C, and an assertion c in A, FEA[c, C] is any assertion in A
such that:

G |=A FEA[c, C] if and only if (G |=A c and fail ∈ JCKG) .
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As for WlpA, it is important to consider whether the assertion language
is expressive enough to define SEA[c, C] and FEA[c, C] for all combinations
of c and C. Actually, if the language is expressive enough to construct them
effectively, the problem of checking whether a graph satisfies an assertion
becomes undecidable. This problem, which we discuss and prove later
in Section 3.6.1, is due to the fact that C can be an arbitrary program –
including one that employs as-long-as-possible iteration. When we define
a particular assertion language in Chapter 4, we get around this problem by
restricting C to a particular class of programs – one for which SEA[c, C] and
FEA[c, C] can be constructed, and one for which the problem of checking
whether a graph satisfies an assertion can remain decidable.

We remark too that in several proofs it is the assertion c that is needed
to establish the postcondition d, and not an assertion about the executions
of C. In such cases, a simpler version of [if] could be used in which the
premises are ⊢par {c} P {d} and ⊢par {c} Q {d}, and then the issues of
defining SEA[c, C] and FEA[c, C] disappear.

The proof rule for GP’s other conditional construct – try – is similar to
that for [if]:

{SEA[c, C]} C; P {d} {FEA[c, C]} Q {d}
[try]

{c} try C then P else Q {d}

The program try C then P else Q behaves at execution in the same
way as if C then P else Q, except that C is not executed on a copy of
the graph. Rather, if its execution is successful, the program P is executed
on the new graph; the changes retained. This is captured by sequential
composition in the first of the premises.

The remaining core construct in GP is as-long-as-possible iteration, cap-
tured by the proof rule [!] below:

{inv} P {inv}
[!]
{inv} P ! {FEA[inv, P ]}

The intuition behind the rule should be simple: if an assertion inv (for
invariant) holds before and after a single execution of P , then it should
also hold after any number of executions of P . If P ! terminates, then from
the semantics of the construct we know that the final execution of P re-
sulted in a fail state, and so FEA[inv, P ] must hold too. We remark that
if a proof requires only the invariant, an application of [cons] yields ⊢par

{inc} P ! {inv}. We remark also that this construct is a potential source of
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non-termination (i.e. divergence or getting stuck), and the proof rule does
not prove anything about its absence.

The partial correctness proof rules discussed are given together in Fig-
ure A.1 of the appendix. Additionally, in Figure A.2 we present some fur-
ther proof rules for the derived commands of GP. These are given for conve-
nience, but are not required for completeness since derived commands all
have semantically equivalent programs comprised only of core commands.

Example 3.13 (Partial correctness proof). We construct a partial correctness
proof of a very simple program, using A1 of Example 3.2 as the asser-
tion language. Recall that this language comprises three assertions: emp,
notemp, and either which respectively correspond to expressing that a
graph is empty, non-empty, or either (clearly a property that all graphs sat-
isfy). The assertion language is too weak to allow us to prove anything
interesting – this will come in Chapters 4 and 5 – but allows us to demon-
strate how to instantiate the proof rules, and moreover how one can display
a proof in the form of a proof tree.

Consider the program {node, loop}, the rule schemata of which are:

node() loop(x : list)

∅ ⇒

1 1

x ⇒

1

x

We will prove ⊢par {emp} {node, loop} {notemp}, that is, if the program
is executed on an empty graph, any graph resulting is non-empty. A proof
of this triple is presented below, in the form of a proof tree. Here, the “root”
is at the bottom of the tree and is the triple we desire to prove. The “leaves”
are instances of the axioms, with the rest of the proof tree comprising in-
stances of inference rules.

[ruleapp]wlp
{either} node {notemp}

[cons]
{emp} node {notemp}

[ruleapp]wlp
{either} loop {notemp}

[cons]
{emp} loop {notemp}

[ruleset]
⊢par {emp} {node, loop} {notemp}

Here, we have taken either to define both PreA1
[node, notemp] and

PreA1
[loop, notemp], although we have not attempted to define a general

construction for arbitrary rule schemata and assertions. Rather, we can ar-
gue that in these two cases either fits the characterisation in Definition
3.10. For node this is obvious, but for loop one must remember that we are
working with partial correctness. A graph can only ever result if the rule
schema is executed on a non-empty graph; in this case it is clear that the
graph cannot become non-empty. We remark that {emp} loop {notemp} is
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not true in the sense of total correctness, since executing loop on the empty
graph always results in failure. We remark also on our convention that we
do not display the implications required in the premises of [cons]. These
are treated separately when they are non-trivial (in this example they obvi-
ously hold).

Example 3.14 (Partial correctness proof). In this example we will prove a
property of a graph program relative to assertions from a much more ex-
pressive language – one in which the assertions are also graph programs!
Define the assertion language P = 〈P, |=P〉where P is the class of all graph
programs, and G |=P P holds for G ∈ G(L), P ∈ P if G ∈ JP K∅, i.e. G is a
possible result of executing P on the empty graph. (Of course, in general,
checking G |=P P is undecidable.)

In this example we consider the program makecomplete in Figure 3.1
that transforms a loop-free graph containing n nodes into a complete graph
of n nodes (i.e. a graph in which all pairs of nodes are linked by an edge in
each direction).

main = strip!; link!

strip(k, x, y : list)

1

x

2

y
k

⇒
1

x

2

y

link(x, y : list)

1

x

2

y ⇒
1

x

2

y

where not edge(1, 2)

Figure 3.1: The program makecomplete

We will prove the triple ⊢par {noloop} strip!; link! {connected}where
noloop is a program generating all non-empty loop-free graphs labelled
over the empty list, and connected is a program generating all non-empty
connected graphs labelled over the empty list (i.e. there is at least one path
between every pair of nodes, ignoring the directions of edges). Note that
we do not consider marked nodes or edges in this example. We display a
proof of the triple below, again with a proof tree.

[ruleapp]wlp
{noloop} strip {noloop}

[!]
{noloop} strip! {noedge}

[ruleapp]wlp
{nopara} link {nopara}

[!]
{nopara} link! {complete}

[cons]
{noedge} link! {connected}

[comp]
⊢par {noloop} strip!; link! {connected}
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The programs used as assertions are given in the table below:

Program Name Program Text

noloop main = node; ({node, edge} or fail)!
noedge main = node; (node or fail)!

nopara main = node; ({node, link} or fail)!
complete main = node; (node or fail)!; bilink!

connnected main = node; ({expand1, expand2, edge} or fail)!

where the rule schemata are as given in Figure 3.2. The programs are
intended for execution on the empty graph, each of them initialising by
creating a single node. The programs then behave essentially as graph
grammars, applying a set of rules repeatedly via the as-long-as-possible
construct, with “or fail” used to allow for nondeterministic terminations
of the iterations. The program complete has a slightly different form in
that there are two iterations: the first creates some number of nodes (de-
termined nondeterministically) and the second creates edges between all
pairs of nodes until the graph is complete.

To complete the proof we must justify the implications in the instance
of [cons], and the special assertions demanded by [ruleapp]wlp and [!]. To
avoid bloating the example, we present the justifications in this case very
informally.

The instance of [cons] requires that graphs satisfying noedge also satisfy
nopara, and that graphs satisfying complete also satisfy connected. For
the former, this is clear from the program texts: every graph computed by
noedge can be computed by nopara by nondeterministically choosing node

in each iteration. The latter case is more difficult to show by appealing
to the program text, but assuming that complete does correctly generate
complete graphs and connected does correctly generate connected graphs,
it should be intuitively clear that complete graphs are also connected (there
are paths of length one between all pairs of nodes).

In the instances of [!] we must argue that noedge is a suitable asser-
tion for FEP[noloop, strip] and that complete is a suitable assertion for
FEP[nopara, link]. To do this we appeal to Definition 3.12 and consider
the assertions in turn.

G |=P noedge if and only if (G |=P noloop and fail ∈ JstripKG)

Satisfying noedge implies the satisfaction of noloop (by examination of
the program texts), and strip will fail since there are no edges in the graph.
Conversely, satisfying noloop guarantees there are no loops, and having
fail ∈ JstripKG means there is also an absence of non-looping edges. To-
gether, the graph must also satisfy noedge.
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node()

∅ ⇒

edge()

1 2

⇒
1 2

link()

1 2

⇒
1 2

where not edge(1, 2)

bilink()

1 2

⇒
1 2

where not edge(1, 2) and not edge(2, 1)

expand1()

1

⇒
1

expand2()

1

⇒
1

Figure 3.2: Rule schemata for the makecomplete proof tree

G |=P complete if and only if (G |=P nopara and fail ∈ JlinkKG)

Satisfying complete implies the satisfaction of nopara, due to the con-
dition in the rule schema bilink, and link will fail since the iterated ap-
plication of bilink will have already added edges between all pairs of
nodes, meaning that the condition of link will not be satisfied by any pair
of nodes. Conversely, satisfying nopara guarantees the absence of paral-
lel edges and loops, and having fail ∈ JlinkKG means that there is not a
pair of nodes without an edge between them. Together, the graph must be
complete and hence also satisfy complete.

54



3.5. Total Correctness Calculi

Finally, it should be argued that noloop (resp. nopara) is a suitable as-
sertion for WlpP[strip, noloop] (resp. WlpP[link, nopara]). Informally,
this can be seen by observing that the rule schemata are independent of
the assertions, in that they can only establish the desired postconditions
if they already hold before an execution. They cannot cause them to stop
holding if they held before, and if they did not hold before, they can never
cause them to hold after their executions.

Note that in both examples we had to apply creativity to determine
suitable assertions for [!] and [ruleapp]wlp, then justify them on a case-by-
case basis. We alleviate this challenge in Chapter 4 when we instantiate the
proof calculi with an assertion language for which there are transforma-
tions defining the special assertions Wlp, SE, and FE.

3.5 Total Correctness Calculi

In this section we extend our proof system for partial correctness with proof
rules for reasoning about termination. Recall from Section 3.3 the two no-
tions correctness we defined for this – weak total correctness then total cor-
rectness – respectively adding guarantees about termination and absence
of failure. We introduce proof systems for the two notions of correctness
in this order. Again, we introduce the new proof rules one-by-one, with
all of them displayed together for reference in Figures A.3 and A.5 of the
appendix.

First, we extend our calculus to account for weak total correctness. Let
A = 〈A, |=A〉 be an assertion language. Let r (resp. R) range over rule
schemata (resp. sets of rule schemata), c, c′, d, d′, e, inv over assertions in A,
and C,P,Q over graph programs. If a triple {c} P {d} can be proven in our
system for weak total correctness, we denote this by ⊢wtot {c} P {d}.

Notation 3.15. Note that unless explicitly stated otherwise, all the triples in
the premises and conclusions of our proof rules for weak total correctness
can be assumed to be preceded by ⊢wtot.

Our proof system for weak total correctness includes already some par-
tial correctness proof rules of Figure A.1, but with each ⊢par replaced with
⊢wtot: [ruleapp]wlp, [ruleset], [comp], and [cons]. These proof rules are al-
ready sound in the sense of weak total correctness.

The new proof rules for the conditional constructs of GP are as they are
for partial correctness, but with an additional premise:
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{c} C {⊤A} {SEA[c, C]} P {d} {FEA[c, C]} Q {d}
[if]wtot

{c} if C then P else Q {d}

{c} C {⊤A} {SEA[c, C]} C; P {d} {FEA[c, C]} Q {d}
[try]wtot

{c} try C then P else Q {d}

In these proof rules, ⊤A is an assertion satisfied by every graph G ∈
G(L), i.e. the weakest possible assertion. In a logical language, true would
be such an assertion. (Actually, the rules remain sound for any assertion in
place of ⊤A. But completeness is affected if we unnecessarily constrain the
permissible results of executing C.) The intuition behind the new premises
is this: in proving ⊢wtot {c} C {⊤A}, we can be sure that no execution of the
program C on a graph satisfying c will diverge or get stuck. Hence we can
be sure that P orQwill always be executed eventually, and the termination
of these programs is then guaranteed by the other premises.

The construct that can introduce non-termination to a graph program
is as-long-as-possible iteration, for which we introduce a new proof rule
below:

{inv} P {inv} P is #-decreasing under inv
[!]wtot

{inv} P ! {FEA[inv, P ]}

The first premise requires a derivation of ⊢wtot {inv} P {inv} in our
proof system for weak total correctness, which establishes inv as an invari-
ant (as in [!]), but also establishes that P will terminate (this excludes the
possibility of P ! getting stuck). The second premise requires that there is
a function mapping graphs to natural numbers, such that if an execution
of P on G yields a graph, that graph is mapped to a smaller number than
G. Such a function # is called a termination function. If this property holds
for graphs G satisfying inv, we say that P is #-decreasing under inv. These
definitions are given more precisely below.

Definition 3.16 (Termination function; #-decreasing). A termination func-
tion is a mapping # : G(L) → N from (semantic) graphs to natural num-
bers. Let A = 〈A, |=A〉 be an assertion language. Given an assertion a in A,
a graph program P is #-decreasing (under a) if for all graphs G,H in G(L)
(such that G |=A a and H |=A a),

H ∈ JP KG implies #G > #H .
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In an application of [!]wtot, one must find a suitable termination function
# that returns smaller natural numbers along the graphs of program exe-
cutions. A simple, intuitive termination function would be one that maps a
graph to its size (e.g. total number of nodes and edges). If a program is re-
ducing the size of a graph upon each application, then clearly the iteration
cannot continue indefinitely, and this is reflected by the output of # tend-
ing towards zero. However, in cases when programs are not necessarily de-
creasing the size of the graph, much less trivial termination functions may
be needed. (We mention that the problem of deciding whether a program –
or even just a set of rule schemata – is terminating or not, is undecidable in
general [Plu98].) Note that the rule [!]wtot requires only that # is decreasing
for graphs that satisfy the invariant inv, i.e. it need not be decreasing for
graphs outside of the particular context described by the invariant.

Example 3.17 (Termination function for wtot proof). Recall the rule schema
init from the colouring program of Figure 2.19:

init(x : atom)

1

x ⇒
1

x :0

For init, we can define a termination function #init : G(L)→ N to map
graphs to the number of their nodes labelled by a single atom. The rule
schema is clearly #init-decreasing, since every application of init reduces
by one the number of nodes with such a label.

Example 3.18 (Termination function for wtot proof). Recall the rule schema
inc from the colouring program of Figure 2.19:

inc(i : int; k : list; x, y : atom)

x :i y :i

1 2

k ⇒ x :i y :i+1

1
2

k

This rule schema requires a less obvious termination function than the
one proposed in Example 3.17. For simplicity, we will define (in English,
for now) an invariant inv, and define a termination function for inc that as-
sumes the invariant holds. We denote by inv the graph property described
in this box:

“every node label has the form x : i for some atom x, and
colour i (which is a natural number). Moreover, there is
a sequence 0 � · · · � n for n ≥ 0, including each of the
colours used in the graph, where p � q holds if q = p or
q = p+ 1.”
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Given any graph G ∈ G(L), we define the termination function #inc :
G(L)→ N by:

#inc(G) =

|VG|
∑

i=0

i−
∑

v∈VG

colour(v)

where colour(v) for a node v ∈ VG is defined:

colour(v) =

{

i if lG(v) = x : i with x ∈ Z ∪ Char∗, i ∈ N;
0 otherwise.

We show that inc is #inc-decreasing under inv. Observe that if G is a
graph with colour(v) = 0 for every node v in VG, then for every derivation
G ⇒∗

inc H there is some 0 ≤ k < |VH | such that k is the largest colour in
VH . We obtain an upper bound for the second summation:

∑

v∈VH

colour(v) ≤ 0 + 1 + · · ·+ (|VH | − 1) = 0 + 1 + · · ·+ (|VG| − 1) <

|VG|
∑

i=0

i.

Since
∑

v∈VH
colour(v) equals the number of rule schema applications

inG⇒∗
inc H , it follows that incmust eventually terminate (as it approaches

the upper bound). By subtracting the summation from the upper bound,
we instead have a number decreasing towards 0 after every application
of inc. Hence #inc is a suitable termination function, and inc is #inc-
decreasing under inv.

We remark that inc! will terminate on any graph – not just those satis-
fying inv. A termination function however is harder to write without the
assumptions the invariant allows us to make about the graphs. Of course,
in our Hoare logic approach, we are generally interested in proving more
than termination alone. Hence it will often be possible to exploit partial
correctness properties (in particular, invariants) to help us to write (weak)
total correctness proofs.

The weak total correctness proof rules discussed are given together in
Figure A.3 of the appendix. Additionally, in Figure A.4 we present some
further proof rules for the derived commands of GP. (Again, these are not
necessary for completeness since derived commands all have semantically
equivalent programs comprised only of core commands.)

Finally, we introduce our proof system for the strongest of our notions
of correctness – total correctness – which guarantees in addition to termi-
nation the absence of failing executions. If a triple {c} P {d} can be proven
in our system for total correctness, we denote this by ⊢tot {c} P {d}.

Notation 3.19. Note that unless explicitly stated otherwise, all the triples
in the premises and conclusions of our proof rules for total correctness can
be assumed to be preceded by ⊢tot.
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Our proof system for total correctness includes [comp] and [cons] of
Figure A.1 but with ⊢tot preceding the triples. These proof rules are already
sound in the sense of total correctness. The proof rules for many of the other
constructs are very similar to those we have discussed already, except that
they explicitly demand certain premises to be proved for a weaker notion of
correctness (which we shall see immediately in the first of the proof rules).

First, we add new proof rules for the conditional and iteration con-
structs:

⊢wtot {c} C {⊤A} {SEA[c, C]} P {d} {FEA[c, C]} Q {d}
[if]tot

{c} if C then P else Q {d}

⊢wtot {c} C {⊤A} {SEA[c, C]} C; P {d} {FEA[c, C]} Q {d}
[try]tot

{c} try C then P else Q {d}

⊢wtot {inv} P {inv} P is #-decreasing under inv
[!]tot

{inv} P ! {FEA[inv, P ]}

The proof rules [if]tot, [try]tot, and [!]tot each contain a premise that must
be shown to hold in our calculus for weak total correctness. In [if]tot and
[try]tot it is required to show that executions of program C on a graph satis-
fying the precondition always terminate. However, proving that the execu-
tion will not lead to failure is too strong a demand; failure simply informs
the branch of the conditional to execute next. Suppose that the premise
was instead ⊢tot {c} C {t} with t defining ⊤A. Then, for example, for the
following program F :

if fail then fail else skip

we would not be able to prove ⊢tot {a} F {a} for any assertion a. Any such
triple is true because F is equivalent to the derived command skip: the
“guard” program always fails, meaning that skip is always executed. But
the supposed premise is too strong, requiring us to prove that the guard
program never fails.

In [!]tot, we do not want to prove ⊢tot {inv} P {inv} as a premise, since
we expect that at some point that P will fail and allow the iteration to ter-
minate.

Finally, what remains to be addressed is the core operation that can ex-
plicitly introduce failure: the application of (sets of) rule schemata. We add
the following new proof rule to address this:
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impl(c, SEA[c,R]) ⊢par {c} r {d} for each r ∈ R
[ruleset]tot

{c} R {d}

impl(a1, a2) : prove that G |=A a1 implies G |=A a2 for all G ∈ G(L)

The proof rule [ruleset]tot separates the issues of failure and partial cor-
rectness. In using the proof rule, one must show (outside the calculus) that
satisfying the precondition c implies the applicability ofR. In showing that
this premise holds, we can be sure that at least one rule schema in R can
be applied to a graph satisfying c, and by the semantics of rule application,
no execution ofR on that graph will fail. Separately, it must be shown that
⊢par {c} r {d} for each r ∈ R, that is, each rule schema in the set is partially
correct with respect to the pre- and postcondition. Together, we derive that
every execution of R will yield a graph, and that the graph will satisfy the
postcondition.

We do not include a proof rule for a program that is just a single rule
schema r, because this case is captured by proving ⊢tot {c} {r} {d}.

The total correctness proof rules discussed are given together in Figure
A.5 in the appendix. Additionally, in Figure A.6 we present some further
proof rules for the derived commands of GP.

3.6 Properties of the Calculi

In this section we consider some important properties of the calculi we have
introduced. First, we consider an inherent property of assertion languages
able to construct SE and FE relative to all assertions and programs: that the
problem of checking whether an assertion is satisfied by a graph becomes
undecidable. Then, we follow with technical results about the soundness
and completeness of the calculi.

3.6.1 Definability and Decidability

In the proof rules of our calculi we rely upon some assertions expressing the
existence of successful and failing executions. One might get the feeling –
correctly – that being able to define such assertions for arbitrary programs
has consequences in decidability. Consider the model checking problem,
i.e. the problem of checking whether a graph satisfies a given assertion:
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Model Checking Problem (MCP) for A

Input: graph G,
assertion a ∈ A

Question: does G |=A a?

The model checking problem is undecidable if one can construct the as-
sertions SE or FE for arbitrary programs (but not a class of restricted ones;
see Chapter 4). We sketch a proof of this, by (informally) encoding Tur-
ing machines and strings respectively as graph transformation systems and
graphs representing configurations, and illustrate how the model checking
problem cannot be decidable because it could be used to construct a decider
for the halting problem.

Proposition 3.20 (Constructing SEA; MCP undecidability). Let A = 〈A, |=A〉
be an assertion language. Suppose that there is a transformation SE(a, P )
defining SEA[a, P ] for all programs P and all assertions a in A. Then the
model checking problem for A is undecidable in general.

Proof sketch. Assume that the model checking problem is decidable, i.e. that
there is a decider for the question of whether G |=A a. We construct a
decider for the halting problem using an MCP decider as a component and
hence derive a contradiction. For simplicity, we assume that the assertion
language defines ⊤A, i.e. an assertion satisfied by all graphs.

Let M denote a deterministic Turing machine and w a string composed
of M ’s alphabet. We assume without loss of generality that M does not
crash on any input (can always be ensured). Let enc(M) denote a set of rule
schemata simulating the transitions ofM (along the lines of [HP01, Plu13]),
and enc(w) denote a graph encoding the initial configuration ofM on string
w.

We construct a decider for the halting problem in Figure 3.3: here, E1

and E2 denote algorithms encoding w and M , and E3 represents the ap-
plication of transformation SE(⊤A, enc(M)) to get an assertion defining
SEA[⊤A, enc(M)].

If enc(w) |=A SE(⊤A, enc(M)), then by the definition of SE, we have
that there exists some graph G ∈ Jenc(M)Kenc(w), corresponding to some
accepting configuration of M . Moreover, Jenc(M)Kenc(w) = {G} since M
is deterministic. Hence M halts on w if enc(w) |=A SE(⊤A, enc(M)). If the
satisfaction relation does not hold then M will loop on w (by assumption it
will not crash). Termination ofM onw is equivalent to checking enc(w) |=A

SE(⊤A, enc(M)), so we use the answer of the MCP decider to solve the
halting problem for M,w. But the halting problem is not decidable. A
contradiction. The model checking problem cannot be decidable if there is
a construction defining SE for arbitrary programs.
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MCP

Decider

E1

E2

w

M

enc(w)

enc(M)
E3

yes

does Turing machine M halt on input w?

no

SEA[⊤A, enc(M)]

Figure 3.3: Decider for the halting problem

Proposition 3.21 (Constructing FEA; MCP undecidability). Let A = 〈A, |=A〉
be an assertion language. Suppose that there is a transformation FE(a, P )
defining FEA[a, P ] for all programs P and all assertions a in A. Then the
model checking problem for A is undecidable in general.

Proof sketch. A similar argument to that in the proof of Proposition 3.20 can
be used; instead, we replace program enc(M) with enc(M); fail. Then,
we use the fact that this program will fail on enc(w) if and only if enc(M)
halts on enc(w).

3.6.2 Soundness

Now, we prove that the three proof calculi are sound with respect to the
operational semantics of GP. That is, we show that if a triple is derivable in
a proof system for partial, weak total, or total correctness, then that triple
is valid in the sense of the corresponding notion of correctness.

First, we prove the soundness of the partial correctness proof calculus
summarised in Figure A.1.

Theorem 3.22 (Soundness for partial correctness). Given a program P and
assertions c, d from an arbitrary assertion language A = 〈A, |=A〉,

⊢par {c} P {d} implies |=par {c} P {d}.

Proof. To prove soundness, we show that the implication holds for each of
the axioms and inference rules by appealing to the operational semantics of
programs (see Section 2.2.5). The result then follows by structural induction
on proof trees.

Let r (resp. R) range over rule schemata (resp. sets of rule schemata),
c, c′, d, d′, e, inv over assertions in A, G,G′, H,H ′ over graphs in G(L), and
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C,P,Q over graph programs. Recall that the symbol → denotes a small-
step transition relation on configurations of graphs and programs.

[ruleapp]wlp. Suppose that ⊢par {c} r {d} where c is a suitable assertion for
WlpA[r, d]. Suppose that G |=A c. Then by Definitions 3.9 and 3.10 we have
that H |=A d for every direct derivation G ⇒r H , i.e. every H ∈ JrKG, and
the result that |=par {c} r {d}.

[ruleset]. Suppose that ⊢par {c}R {d} andG |=A c. By induction hypothesis
we have |=par {c} r {d} for each r ∈ R, and by definition of partial correct-
ness we have that H |=A d for each H ∈ JrKG = {H ∈ G(L) | G ⇒r H}
where the equality is clear from the semantic rule [call1]OS. By the defini-
tion of rule schema set application, it is clear that JRKG =

⋃

r∈RJrKG, so
every graph H in JRKG must satisfy d. With this we get that result that
|=par {c} R {d}.

[comp]. Suppose that ⊢par {c} P ; Q {d} and G |=A c. By induction hy-
pothesis we have |=par {c} P {e}, |=par {e} Q {d}, and together with the
semantic rules [seq1]OS, [seq2]OS we have that

JP ; QKG− {fail}2 = {H ∈ G(L) | 〈P ; Q,G〉 →+ 〈Q,G′〉 →+ H}

where each G′ (resp. H) in the sequence of configurations satisfies e (resp.
d). It follows that |=par {c} P ; Q {d}.

[if]. Suppose that ⊢par {c} if C then P else Q {d} and G |=A c. By induc-
tion hypothesis we have |=par {cs} P {d}, |=par {cf} Q {d} where cs (resp.
cf ) is an assertion defining SEA[c, C] (resp. FEA[c, C]). We consider the three
possible outcomes of executing C on a graph G and show that soundness
holds for all of them.

Case A. There is a successful execution of C, i.e. there is some graph G′

in JCKG, and by Definition 3.11, G |=A cs. By the semantic rule [if1]OS, P
is executed on G. Then by induction hypothesis and definition of partial
correctness, we have that every graph H ∈ JP KG satisfies d.

Case B. There is a failing execution of C, i.e. fail ∈ JCKG, and by Defini-
tion 3.12, G |=A cf . By the semantic rule [if2]OS, Q is executed on G. Then
by induction hypothesis and definition of partial correctness, we have that
every graph H ∈ JQKG satisfies d.

Case C. There is neither a successful nor a failing execution of C. No
semantic rules can be applied; the execution is stuck. No graph will result
to check against the postcondition d.

Putting all three cases together we obtain our soundness result for [if],
i.e. |=par {c} if C then P else Q {d}.

2We are not concerned with the element fail in partial correctness.
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[try]. Suppose that ⊢par {c} try C then P else Q {d} and G |=A c. By
induction hypothesis we have |=par {cs} C; P {d}, |=par {cf} Q {d} where
cs (resp. cf ) is an assertion defining SEA[c, C] (resp. FEA[c, C]). We consider
the three possible outcomes of executing C on a graph G and show that
soundness holds for all of them.

Case A. There is a successful execution of C, i.e. there is some graph G′

in JCKG, and by Definition 3.11, G |=A cs. By the semantic rule [try1]OS,
P is executed on G′. By induction hypothesis and the definition of partial
correctness, we have that every graph H in

JC; P KG− {fail} = {H ∈ G(L) | 〈C; P,G〉 →+ 〈P,G′〉 →+ H}

satisfies the postcondition d.

Case B. There is a failing execution of C. Case follows as for [if].

Case C. There is neither a successful nor a failing execution of C. Case
follows as for [if].

Putting all three cases together we obtain our soundness result for [try],
i.e. |=par {c} try C then P else Q {d}.

[!]. Suppose that ⊢par {inv} P ! {invf} where invf is an assertion defining
FEA[inv, P ], and suppose that G |=A inv. Given any graph H in JP !KG, it
must result from a sequence of configurations:

〈P !, G〉 →∗ H

where the sequence contains zero or more applications of [alap1]OS (case
zero: H = G) followed by a single application of [alap2]OS. Sequences
of [alap1]OS instances contain configurations 〈P !, X〉 where X is a graph
resulting from applying P once in each instance of the sequence. By in-
duction hypothesis we have |=par {inv} P {inv}, and so each graph along
the sequence satisfies the invariant inv. The single instance of [alap2]OS

does not transform the final graph, H , hence it satisfies the invariant. But
the premise of [alap2]OS states that there is a failing execution of P on
H – which satisfies inv – so by Definition 3.12 it must be the case that
H |=A invf . Hence the result that |=par {inv} P {invf}.

[cons]. Suppose that ⊢par {c} P {d} and G |=A c. By induction hypothesis
we have |=par {c

′} P {d′}, G |=A c′, H |=A d′, and H |=A d for every H in
JP KG. Hence immediately the result that |=par {c} P {d}.

Next, we prove the soundness of the proof calculus for weak total cor-
rectness, the proof rules of which are summarised in Figure A.3.
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Theorem 3.23 (Soundness for weak total correctness). Given a program P
and assertions c, d from an arbitrary assertion language A = 〈A, |=A〉,

⊢wtot {c} P {d} implies |=wtot {c} P {d}.

Proof. To prove soundness, we show that the implication holds for each of
the axioms and inference rules by appealing to the operational semantics of
programs (see Section 2.2.5). The result then follows by structural induction
on proof trees.

Let r (resp. R) range over rule schemata (resp. sets of rule schemata),
c, c′, d, d′, e, inv over assertions in A, G,G′, H,H ′ over graphs in G(L), and
C,P,Q over graph programs. Recall that the symbol → denotes a small-
step transition relation on configurations of graphs and programs.

[ruleapp]wlp, [ruleset]. We have the partial correctness of both rules from
Theorem 3.22. The semantics of rule schemata application imply weak total
correctness in both cases: executions of the programs either transform the
graph, or fail, in exactly one transition.

[comp]. Suppose that ⊢wtot {c} P ; Q {d} andG |=A c. By induction hypoth-
esis we have |=wtot {c} P {e} and |=wtot {e} Q {d}, i.e. the executions of P
and Q always terminate with regards to their pre- and postconditions. If
the execution of P results in fail, then [seq3]OS will apply and the execution
of P ;Q results in fail. Should the execution of P result in a graph H , then
by [seq2]OS program Q will be executed on H and will result in a graph or
fail. Together with Theorem 3.22 we get the result that |=wtot {c} P ; Q {d}.

[cons]. The conclusion of the proof rule is clearly weakly totally correct if
the premise is: the program in both triples remains the same. The rule sim-
ply allows manipulation of the pre- and postconditions, the soundness of
which was shown in Theorem 3.22.

[if]wtot. Suppose that ⊢wtot {c} if C then P else Q {d} and G |=A c. By in-
duction hypothesis, |=wtot {c}C {t}where t is an assertion defining⊤A. All
executions of C on graphs satisfying c result in a graph or fail (i.e. no diver-
gence or getting stuck), resulting respectively in the application of [if1]OS

or [if2]OS, i.e. the execution of P or Q on the original graph G. By induc-
tion hypothesis, |=wtot {cs} P {d} (resp. |=wtot {cf} Q {d}) where cs (resp.
cf ) defines SEA[c, C] (resp. FEA[c, C]), i.e. the programs P and Q are guar-
anteed to terminate when executed on a graph satisfying c. Together, and
with Theorem 3.22 we get the result that |=wtot {c} if C then P elseQ {d}.
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[try]wtot. Similar to the argument for [if]wtot.

[!]wtot. Suppose that ⊢wtot {inv} P ! {invf}where invf is an assertion defin-
ing FEA[inv, P ], and G |=A inv. By induction hypothesis, we have |=wtot

{inv} P {inv}, i.e. each application of P maintains the invariant and also
terminates. Since every iteration of P will yield a graph or fail state, the ex-
ecution of the program will not get stuck in some configuration 〈P !, X〉 for
X ∈ G(L) since either [alap1]OS or [alap2]OS will always eventually be ap-
plicable. What remains to show is that there will be a strictly finite number
of iterations of P , i.e. no diverging sequence 〈P !, G〉 → 〈P !, G′〉 → · · · .

Suppose that there is a termination function # such that program P is
#-decreasing under inv. By Definition 3.16, for all graphs G,H in G(L) sat-
isfying inv, we have that H ∈ JP KG implies #G > #H . We show by con-
tradiction that this guarantees a finitely long iteration of P . Assume that P !
diverges on any such G. Since P is #-decreasing under inv, each complete
execution of P yields a graph for which # returns a smaller natural number.
Since P ! diverges, there are infinitely many executions of P , each resulting
in a graph for which # returns a smaller number. But there are only finitely
many smaller natural numbers than any natural number n. A contradic-
tion. It cannot be the case that P ! diverges from any such G. Together, and
with Theorem 3.22, we get the result that |=wtot {inv} P ! {invf}.

Finally, we prove soundness of our calculus for total correctness. The
proof rules of this calculus can be found together in Figure A.5.

Theorem 3.24 (Soundness for total correctness). Given a program P and
assertions c, d from an arbitrary assertion language A = 〈A, |=A〉,

⊢tot {c} P {d} implies |=tot {c} P {d}.

Proof. To prove soundness, we show that the implication holds for each of
the axioms and inference rules by appealing to the operational semantics of
programs (see Section 2.2.5). The result then follows by structural induction
on proof trees.

Let r (resp. R) range over rule schemata (resp. sets of rule schemata),
c, c′, d, d′, e, inv over assertions in A, G,G′, H,H ′ over graphs in G(L), and
C,P,Q over graph programs. Recall that the symbol → denotes a small-
step transition relation on configurations of graphs and programs.

[comp]. Suppose that ⊢tot {c} P ; Q {d} and G |=A c. By induction hy-
pothesis we have |=tot {c} P {e} and |=tot {e} Q {d}. By the definition of
total correctness and Theorem 3.23, we have |=wtot {c} P ; Q {d}, which
we strengthen to |=tot {c} P ; Q {d} since the semantic rule [seq3]OS cannot
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be applied (by induction hypothesis there is no possibility that 〈P,G〉 →+

fail), and by induction hypothesis Q will not fail on graphs satisfying e.

[cons]. The conclusion of the proof rule is clearly totally correct if the
premise is: the program in both triples remains the same. The rule sim-
ply allows manipulation of the pre- and postconditions, the soundness of
which was shown in Theorem 3.22.

[ruleset]tot. Suppose that ⊢tot {c} R {d} and G |=A c. By induction hy-
pothesis and Theorem 3.22 we have that |=par {c} r {d} for each r ∈ R,
which gives us |=par {c} R {d}. Also by induction hypothesis, we have that
G |=A cs where cs is an assertion defining SEA[c,R]. By Definition 3.11,
there is some H ∈ JRKG, and by the semantic rule [call1]OS it must be the
case that G ⇒R H . This contradicts the premise of [call2]OS, meaning that
the semantic rule cannot be applied and fail /∈ JRKG. Together, and with
the observation that R cannot diverge or get stuck on any graph, we get
the result that |=tot {c} R {d}.

[if]tot. Suppose that ⊢tot {c} if C then P else Q {d} and G |=A c. By
induction hypothesis we have |=wtot {c} C {t}, |=tot {cs} P {d}, and |=tot

{cf} Q {d} where t, cs, cf respectively define ⊤A, SEA[c, C], FEA[c, C]. By
Theorem 3.23 we have that |=wtot {c} if C then P else Q {d}, which we
strengthen to |=tot by the semantics of if-then-else and the hypothesis that
P and Q do not fail – and are weakly totally correct – on graphs respec-
tively satisfying cs, cf .

[try]tot. The argument is similar to that for [if]tot.

[!]tot. Suppose that ⊢tot {inv} P ! {invf}where invf defines FEA[inv, P ], and
G |=A inv. By induction hypothesis we have |=wtot {inv} P {inv} and that
P is #-decreasing under inv. Together with Theorem 3.23, we have that
|=wtot {inv} P ! {invf}. From the semantic rules [alap1]OS and [alap2]OS,
there is no possibility of an execution 〈P !, G〉 →∗ fail. Hence the result that
|=tot {inv} P ! {invf}.

3.6.3 Completeness

In this subsection, we consider two important completeness properties.
First, we consider the completeness of the partial correctness rules, i.e. if
a triple is valid, can one prove it in our calculus? Next, we consider the
issue of termination, and prove that if a program under as-long-as-possible
iteration will terminate, then a termination function exists that we can use
to prove it.
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Relative Completeness

In Section 3.1 we discussed the notion of completeness, and in particular
the notion of relative completeness, which treats incompleteness due to
the assertion language as a separate issue. Here, we prove the relative
completeness of our partial correctness calculus in a similar style to that
of Winskel [Win93].

The proof relies on weakest liberal preconditions relative to commands
and postconditions, the idea being that stronger liberal preconditions can
be proven simply by an application of [cons]. This requires that the asser-
tion language we are using is expressive, i.e. able to define weakest liberal
preconditions for arbitrary combinations of programs and postconditions.

Definition 3.25 (Expressive assertion languages). An assertion language
A = 〈A, |=A〉 is expressive (resp. expressive for P) if for every program P
(resp. from a restricted class of programs P) and assertion a in A, there is a
weakest liberal precondition WlpA[P, a] in A.

For our extensional calculi, we simply assume that the assertion lan-
guage is expressive. If an assertion language is fixed, the relative complete-
ness proof for our calculi can still be used, but in addition one must also
prove that the assertion language is expressive (the biggest challenge is to
show that it can express the weakest liberal precondition relative to an iter-
ated program and postcondition).

Lemma 3.26 (Provability of Wlp). Let A = 〈A, |=A〉 denote an expressive
assertion language, P a program, and a an assertion in A. Then,

⊢par {WlpA[P, c]} P {c}.

Proof. We proceed by structural induction on programs, showing that the
lemma holds for all commands. Let r range over conditional rule schemata,
R over sets of conditional rule schemata, and C,P1, P2 over programs.

Case P = r. We get ⊢par {WlpA[r, c]} r {c} directly from the axiom
[ruleapp]wlp.

Case P = R. If R = ∅, then [ruleset] has no premises to prove and so
we axiomatically deduce ⊢par {WlpA[R, c]} R {c}. IfR 6= ∅, then:

G |=A WlpA[R, c]

iff H |=A c for all G⇒R H

iff H |=A c for all G⇒r H and r ∈ R

iff G |=A WlpA[r, c] for all r ∈ R
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By the induction hypothesis we have ⊢par {WlpA[r, c]} r {c} for all r ∈ R.
With [cons] we deduce from each of these ⊢par {WlpA[R, c]} r {c}, and then
finally, with the rule [ruleset], we deduce the result:

⊢par {WlpA[R, c]} R {c}.

Case P = P1;P2. In this case,

G |=A WlpA[P1;P2, c]

iff H |=A c for all H ∈ JP1;P2KG

iff H |=A c for all H ∈ JP2KG
′ and all G′ ∈ JP1KG

iff G′ |=A WlpA[P2, c] for all G′ ∈ JP1KG

iff G |=A WlpA[P1,WlpA[P2, c]]

By the induction hypothesis we have:

⊢par {WlpA[P1,WlpA[P2, c]]} P1 {WlpA[P2, c]}

and:

⊢par {WlpA[P2, c]} P2 {c}.

By [comp] we get:

⊢par {WlpA[P1,WlpA[P2, c]]} P1;P2 {c}

and then by [cons] the result that:

⊢par {WlpA[P1;P2, c]} P1;P2 {c}.

Case P = if C then P1 else P2. In this case,

G |=A WlpA[if C then P1 else P2, c]

iff (some G′ ∈ JCKG implies H |=A c for all H ∈ JP1KG

and fail ∈ JCKG implies H |=A c for all H ∈ JP2KG)

iff (G |=A SEA[true, C] implies G |=A WlpA[P1, c]

and G |=A FEA[true, C] implies G |=A WlpA[P2, c])

By the induction hypothesis we have ⊢par {WlpA[P1, c]} P1 {c} and ⊢par

{WlpA[P2, c]} P2 {c}. Applying [cons] and the definitions of SE, FE we get:

⊢par {SEA[WlpA[if C then P1 else P2, c], C]} P1 {c}
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and:

⊢par {FEA[WlpA[if C then P1 else P2, c], C]} P2 {c}.

By [if] we get the result that:

⊢par {WlpA[if C then P1 else P2, c]} if C then P1 else P2 {c}.

Case P = try C then P1 else P2. In this case,

G |=A WlpA[try C then P1 else P2, c]

iff (some G′ ∈ JCKG implies H |=A c for all H ∈ JP1KG
′

and fail ∈ JCKG implies H |=A c for all H ∈ JP2KG)

iff (some G′ ∈ JCKG implies G′ |=A WlpA[P1, c]

and fail ∈ JCKG implies H |=A c for all H ∈ JP2KG)

iff (G |=A SEA[true, C] implies G |=A WlpA[C,WlpA[P1, c]]

and G |=A FEA[true, C] implies G |=A WlpA[P2, c])

By the induction hypothesis and with [comp] we get:

⊢par {WlpA[C,WlpA[P1, c]]} C; P1 {c}

and:

⊢par {WlpA[P2, c]} P2 {c}.

Applying [cons] and the definitions of SE, FE we get:

⊢par {SEA[WlpA[try C then P1 else P2, c], C]} C; P1 {c}

and:

⊢par {FEA[WlpA[try C then P1 else P2, c], C]} P2 {c}.

With [try] we get the result that:

⊢par {WlpA[try C then P1 else P2, c]} try C then P1 else P2 {c}.

Case P = P1!. The induction hypothesis gives us:

⊢par {WlpA[P1,WlpA[P1!, c]]} P1 {WlpA[P1!, c]}.
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With the following reasoning,

G |=A WlpA[P1!, c]

implies H |=A c for all H ∈ JP1!KG

implies H |=A c for all H ∈ JP1!KG
′ and G′ ∈ JP1KG

implies G′ |=A WlpA[P1!, c] for all G′ ∈ JP1KG

implies G |=A WlpA[P1,WlpA[P1!, c]]

and an application of [cons], we get:

⊢par {WlpA[P1!, c]} P1 {WlpA[P1!, c]}.

Applying [!] we get:

⊢par {WlpA[P1!, c]} P1! {FEA[WlpA[P1!, c], P1]}.

We need to show that satisfying FEA[WlpA[P1!, c], P1] implies the satisfac-
tion of c. Suppose that G |=A FEA[WlpA[P1!, c], P1]. Then by definition of
FE, fail ∈ JP1KG and G |=A WlpA[P1!, c]. Then G |=A c because G ∈ JP1!KG
and for all H ∈ JP1!KG, H |=A c. With [cons] we derive the result:

⊢par {WlpA[P1!, c]} P1! {c}.

With all cases considered, the lemma is proven by structural induction.

The main theorem – that our calculus is relatively complete – follows
easily from this lemma. We simply use the proof rule [cons] and the defini-
tion of weakest liberal preconditions.

Theorem 3.27 (Relative completeness). Let A = 〈A, |=A〉 denote an expres-
sive assertion language, P a program, and c, d assertions in A. Then,

|=par {c} P {d} implies ⊢par {c} P {d}.

Proof. Suppose that |=par {c} P {d}. By Lemma 3.26 we have:

⊢par {WlpA[P, d]} P {d}.

By the definition of weakest liberal preconditions, for every graph G ∈
G(L), G |=A c implies that G |=A WlpA[P, d]. Applying [cons] then gives us
the result:

⊢par {c} P {d}.
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Completeness for Termination

In the proof rule handling as-long-possible-iteration for (weak) total cor-
rectness, the user is required to devise a termination function outside of
the calculus to show that a program will eventually terminate. Previously
we have shown this to be a sound method for proving (weak) total correct-
ness. Now, we go a step further and prove that regardless of the program
being iterated, there is always a suitable termination function that can be
defined for that program. We refer to this property as completeness for ter-
mination. First however, we prove a lemma about finiteness that we require
in the proof.

Lemma 3.28 (wtot implies finiteness). Let P be a program and c, d be ar-
bitrary assertions from some language A = 〈A, |=A〉. Then for all graphs
G ∈ G(L),

|=wtot {c} P {d} implies JP KG is finite up to isomorphism.

Proof. Assume that |=wtot {c} P {d}, i.e. P does not diverge or get stuck on
graphs satisfying c. We show by induction on the structure of P that the set
of possible graphs (and possibly fail) resulting from executing P on such a
graph is always finite (up to isomorphism).

Induction basis. Suppose that P = R for some set of rule schemata R.
Then by the semantics of GP, JP KG = {H ∈ G(L) | G ⇒R H}. There are
finitely many rule schemata r in R, and finitely many matches g. Each ap-
plication G ⇒r,g H is unique up to isomorphism. Together, JP KG is finite
up to isomorphism.

Induction step. Suppose that P = Q;S where Q,S are programs. Ap-
plying the induction hypothesis for Q,S, JQKG is finite, and for each graph
G′ in that set JSKG′ is finite. By the semantics of sequential composition,
clearly JP KG must also be finite up to isomorphism.

Suppose that P = if C then Q else S where C,Q, S are programs.
By assumption, C must terminate on G. The execution of the program is
then that of either Q or S, and JQKG (resp. JSKG) is finite by induction
hypothesis. By the semantics of if-then-else, JP KG must also be finite up to
isomorphism. Similar argument for case P = try C then Q else S.

Finally, suppose that P = Q! where Q is some graph program. By as-
sumption, there cannot be an infinite sequence of iterations of Q. But also,
by induction hypothesis, JQKG′ for any graphG′ ∈ G(L) is finite. Figure 3.4
summarises sequences of executions via instances of [alap1]OS. The depth
is finite by the assumption, and the degrees of all nodes are finite by the
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Figure 3.4: Execution tree for as-long-as-possible iteration

induction hypothesis. At the end of sequences, [alap2]OS is applied termi-
nating the iteration. Hence, JP KG is finite up to isomorphism, the result.

With this lemma proven we are now equipped to prove completeness
for termination3. Intuitively, we show that one can always define a termi-
nation function that at a point of the execution, returns the length of the
longest sequence of configurations (that do not exit the iteration) from that
point of the execution.

Theorem 3.29 (Completeness of [!]tot for termination). Let P be a program
inv an assertion from some assertion language A = 〈A, |=A〉. If |=wtot

{inv} P {inv} and |=wtot {inv} P ! {inv}, then there exists a termination
function # such that P is #-decreasing under inv.

Proof. Let G ∈ G(L) be a graph such that G |=A inv. By assumption that
|=wtot {inv} P ! {inv}, P ! will not diverge or get stuck on G. Hence there
must be a finite sequence of derivations:

〈P !, G0〉 → 〈P !, G1〉 → 〈P !, G2〉 → · · · → Gn

via applications of [alap1]OS, [alap2]OS where G0 = G and Gi denotes
a graph resulting from the ith iteration of P . To define the termination

3Detlef Plump wrote the original version of this proof in [PP13], restricted to sets of
conditional rule schemata. We generalise it to arbitrary programs.
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function #, we show that the length of such sequences starting from G
is bounded. (Note that, in general, a terminating relation need not be
bounded.)

For M,N ∈ G(L), let M ;P N denote a transition 〈P !,M〉 → 〈P !, N〉
via [alap1]OS. We exploit that ;P is closed under isomorphism in the
following sense: given graphs M,M ′, N and N ′ such that M ∼= M ′ and
N ∼= N ′, then M ;P N implies M ′ ;P N ′. Hence we can lift ;P to
a relation on isomorphism classes of graphs by defining: [M ] ;P [N ] if
M ;P N . For every isomorphism class [M ] the set {[N ] | [M ] ;P [N ]} is
finite. To see this, observe that |=wtot {inv} P {inv} implies the finiteness
(up to isomorphism) of JP KM (Lemma 3.28).

Now, since there is no infinite sequence of ;P -steps starting from [G],
it follows from König’s lemma [Kön36] that the length of ;P -transitions
starting from [G] is bounded. (In the tree of all derivations starting from
[G], all nodes have a finite degree. Hence the tree cannot be infinite, as
otherwise it would contain an infinite derivation.) Hence the length of ;P -
derivations starting fromG is bounded as well. In general, given any graph
M in G(L), let #M be the length of a longest ;P -sequence starting fromM
if M |=A inv, and #M = 0 otherwise. Then if M,N |=A inv and M ;P N ,
we have #M > #N . Thus P is #-decreasing under inv.

Since a termination function can be defined for every iterated program
that terminates, we can also use the non-existence of a termination function
to prove that a program diverges.

Example 3.30. Suppose that we want to prove |=wtot {inv} (P !)! {inv} for
some program P and assertion inv in A. Suppose also that we have |=wtot

{inv} P ! {inv}, i.e. the “inner” program is known to terminate on graphs
satisfying inv. To get the same result for (P !)!, we can use [!]wtot and define
a termination function for which the program is decreasing.

Suppose that # is a termination function for which P ! is #-decreasing,
i.e. for all graphsG,H ∈ G(L) withH ∈ JP !KG, #G > #H . By assumption,
P ! is terminating under inv, so there is a sequence of configurations

〈P !, G〉 → · · · → 〈P !, H〉 → H

with the final transition being an instance of [alap2]OS. The premise of
this rule must have been satisfied, i.e. there is a sequence of configurations
〈P,H〉 →+ fail. Hence the same graph H is in the set JP !KH since the tran-
sition

〈P !, H〉 → H

is clearly possible again by [alap2]OS. A contradiction. A termination func-
tion # cannot exist since there are executions of P ! returning graphs with
the same #-number as the input graph. By Theorem 3.29 the triple |=wtot

{inv} (P !)! {inv} does not hold.
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3.7 Related Work

In this section we provide some pointers to related work. First, we pro-
vide some historical references for Hoare logic and relative completeness.
Following this we shall point to some recent – and quite contrasting – veri-
fication approaches applied to graph transformation.

3.7.1 Hoare Logic

The original ideas behind Hoare logic were first published by Floyd [Flo67]
who considered programs as flowcharts. The approach was then adapted
for program texts in Hoare’s seminal paper [Hoa69], and has been de-
veloped by numerous researchers in the decades since. Developments in
Hoare logic during the first decade were surveyed by Apt [Apt81, Apt84],
and several more recent textbooks cover the subject quite thoroughly (e.g.
[AdO09, Win93, NN07]). In the last decade an extension of Hoare logic for
local reasoning – known as separation logic [Rey02] – has seen much suc-
cess in the verification of programs that manipulate shared mutable state
(e.g. a heap). Many authors have also considered extensions of Hoare
logic for reasoning about object-oriented programs; of these, a particu-
larly relevant and recent paper [ZWL13] proposed a graph-based exten-
sion of Hoare logic for this purpose. Here, program states are visualised
as directed labelled graphs which characterise properties of interest in the
object-oriented paradigm, e.g. aliasing and reachability. The model is tai-
lored however to reasoning about such properties, whereas GP is much
more general.

The separation of weak total correctness (termination) and total cor-
rectness (termination and absence of failing executions) follows the ap-
proach of Apt in the second part of his survey [Apt84] (although Apt does
not describe weak total correctness extensively). The thesis of Pennemann
[Pen09] describes slightly different notions of correctness: weak partial (as
in our partial), strong partial (existence of results guaranteed but not termi-
nation), and total (as in our total). We prefer to leave guarantees of results
to the strongest notion of correctness because it leaves the option open for
programmers to use failure as a valid and intended result.

The idea of relative completeness was first described by Cook [Coo78].
He devised a Hoare logic for an ALGOL-like language, and proved its com-
pleteness relative to being able decide the validity of arithmetic assertions.
A later paper by Clarke [Cla85] again considered completeness, showing
some negative results: that there are (implemented) constructs (e.g. pro-
cedures as parameters of procedure calls) that make it an impossibility to
devise a sound and relatively complete Hoare logic for the language. Sev-
eral textbooks (e.g. [Win93]) cover relative completeness quite thoroughly
(indeed our relative completeness proof is given in a similar style).
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Weakest preconditions, as introduced by Dijkstra [Dij75, Dij76] for his
Guarded Command Language, are a key notion in proving relative com-
pleteness. They, along with other predicate transformers such as strongest
postconditions, can be used for verification in their own right, e.g. for a
given specification compute the weakest precondition relative to a program
and postcondition, and then try to deduce (ideally automatically) whether
the original precondition implies the weakest precondition.

3.7.2 Verifying Graph Transformations

We (to the best of our knowledge) were the first to use Hoare logic in the
verification of a language based on graph transformation [PP10a, PP12],
but our original papers only considered partial correctness, did not con-
sider relative completeness, and did not present the calculi in an exten-
sional style. We extended this work in [PP13] to allow (weak) total cor-
rectness proofs, requiring users to devise termination functions for pro-
grams under as-long-as-possible iteration. Termination of graph gram-
mars in general is known to be undecidable [Plu98], but in special cases
can be shown to hold. For example, [EEdL+05] describes termination cri-
teria for model transformations expressed as graph transformations, and
[VVGE+06] – again for model transformations expressed as graph trans-
formations – gives a termination analysis technique using Petri net abstrac-
tions that either proves termination, or returns a “does not know” answer.

The closest related work to our own is that of Habel, Pennemann, and
Rensink, who laid the foundations for assertional reasoning about pro-
grams based on graph transformation. They contributed weakest precon-
dition calculi for proving the correctness of programs with respect to first-
order structural properties. We give special attention to this work, and
compare it with our own approach in Section 4.6.

Other than the aforementioned work, most verification approaches in
graph transformation have focused on graph grammars, i.e. sets of rules
iteratively executed on some start graph, rather than programming lan-
guages like the one considered in this thesis. In the rest of this section we
will give an overview of these approaches with some pointers into the lit-
erature.

One approach is to logically infer the correctness of graph transforma-
tion systems, translating away from graphical rules and formalisms, work-
ing instead with a logical characterisation such as that of [Cou90]. Along
these lines, Strecker [Str08] models graph transformation rules with (a frag-
ment of) first-order logic over graph structure in the interactive proof as-
sistant Isabelle. While Isabelle can assist with some automation, this is
otherwise a manual task, which may be more challenging for users given
the translation away from graphical abstractions. Da Costa and Ribeiro
[dCR12] propose to define graph grammars using relational structures, and
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to use first-order logic to model rule applications. Their approach is equiva-
lent to the single-pushout framework (although they claim the work can be
adapted for others), and is intended to provide a way for theorem provers
to be used with work that relies on such algebraic frameworks. Tran and
Percebois [TP12] are using this approach to verify invariants of graph gram-
mars, using Isabelle for the implementation. In a very recent paper from
these authors and Strecker [PST13], it is shown how one can verify global
invariants involving paths, directly at the rule level; again with Isabelle
modelling the transformations. The approach is sound, but incomplete;
rather focusing on the preservation of reachability and separation proper-
ties.

An approach quite in contrast to theorem proving is model checking;
this involving the exhaustive and automatic search of a state space in order
to verify some specification. In the context of graph transformation, such
states are (encodings of) graphs, and transitions between them must cor-
respond to the application of rules. Two early and distinct approaches to
model checking graph transformation systems – CheckVML and GROOVE
– are compared in [RSV04].

The idea of CheckVML [SV03] is to exploit off-the-shelf model checking
technology. More specifically, a graph transformation system is encoded in
Promela, which is then submitted to the SPIN model checking tool for for-
mal analysis. Whilst benefiting from an existing tool that has been the sub-
ject of several years of research, by translating away from the core concepts
of graphs and graph transformation systems, it becomes difficult to suit-
ably handle issues like symmetries in graphs, and counterexamples are re-
ported at the abstraction level of SPIN and not translated back into graphs.

GROOVE [Ren03, GdMR+12] instead works with graphs and graph
transformation throughout the entire model checking process. Safety, reach-
ability, and danger properties are specified by a graph-based logic, and
model checking algorithms are tailored to graphs. While the underlying
model of GROOVE allows for existing graph transformation theory to be
directly applied, a consequence is that little of the theory and tool devel-
opment from traditional model checking can be used without significant
reworking.

Baresi and Spoletini [BS06] explored the use of Alloy [Jac12] in analysing
graph transformation systems. Alloy is a structural modelling language,
based on first-order logic and the notion of relation. The Alloy Analyzer
tool takes a system expressed in this language and performs finite-scope
checks for verification and example generation. Baresi and Spoletini de-
scribed how to render a graph transformation system (in AGG) as an Al-
loy model, and showed how the tool could check e.g. reachability prop-
erties, and applicability of sequences of graph transformation rules. The
approach however only analyses the systems for a finite scope, relying on
Jackson’s so-called “small scope hypothesis” (that flaws in models are often
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revealed in relatively small scopes [Jac12]). The authors (with others) have
also looked at transforming AGG specifications into models for the Bogor
model checker, with support for both attributed typed graphs and layered
graph transformation systems [BRRS08].

The model checking problem becomes undecidable when we want to
verify graph transformation systems that have infinite states spaces. In
order to facilitate automatic verification, approximation techniques are re-
quired to allow us to work with a more abstract view of the system (there
is the possibility however of introducing “spurious” counterexamples in
that they do not appear in the original system). A well known approach
by König et al., introduced in [BCK01, BK02] and further elaborated in
[BCK08], approximates the behaviour of graph transformation systems us-
ing finite Petri net-like structures obtained from an approximated unfold-
ing construction. If the abstraction introduces a counterexample that does
not exist in the system, the abstraction can be incrementally refined to re-
move it [KK06]. The techniques have been implemented in the tool Augur
2 for (attributed) graph transformation systems [KK08]. Another approach
is the framework of neighbourhood abstraction [BBKR08] (unifying inde-
pendent work by Rensink, Distefano, and Bauer [RD06, Bau06]), which is
based on neighbourhood similarity. An abstract graph is obtained by fold-
ing “neighbourhood equivalent” nodes (roughly, nodes with the same la-
bels and degrees) into one, keeping count of the original number up to a
given bound of precision. This framework has been implemented in the
model checker GROOVE [RZ10, ZR12]. A more recent approach, pattern
abstraction [RZ12], allows for a property-driven graph abstraction based
on given collections of “patterns” describing structures of interest. This
method is more fine-grained than neighbourhood abstraction, although im-
plementing it remains as future work.

3.8 Summary

In this chapter we have:

• described how to reason with Hoare logic, and the notions of sound-
ness and (relative) completeness;

• defined an abstract notion of assertion language, emphasising that for
graph programs they need not be logical languages;

• defined three notions of correctness – partial, weak total, and total –
based on the operational semantics of graph programs;

• defined three extensional Hoare calculi (i.e. calculi not tied to partic-
ular assertion languages) for these three notions of correctness;
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3.8. Summary

• shown that the model checking problem becomes undecidable when
there are effective constructions for expressing the existence of suc-
cessful or failing executions of arbitrary programs;

• proven the soundness of our calculi with respect to the three notions
of correctness;

• proven the relative completeness of our partial correctness rules, as-
suming the expressiveness of the assertion language;

• proven the existence of termination functions for iterated programs
that terminate;

• briefly reviewed alternative approaches to verification in graph trans-
formation.
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Chapter 4

Verification with E-Conditions

In Chapter 3 we introduced Hoare calculi for verifying graph programs,
though we did so in an extensional style, i.e. without tying them to a par-
ticular assertion language. In doing so we allowed for a separate and clean
treatment of both the proof rules themselves and the assertion languages
we “plug in” to them. We also discussed tradeoffs between the power of
the proof rules and the power of the assertion languages, such as the de-
cidability of the model checking problem when particular properties can
be expressed.

The next step we take in this thesis is to study “instances” of our calculi
that are fixed to a particular assertion language: one that can express inter-
esting properties of graphs, but for which the model checking property is
decidable, and for which there are constructions for weakest liberal precon-
ditions, the existence of successful executions, and the existence of failing
executions. This approach, in contrast to the previous chapter, is referred
to as an intensional one.

This chapter begins with a discussion on our proposed assertion lan-
guage – nested conditions with expressions (short E-conditions) – which
adds expressions and relations over labels to the nested conditions devel-
oped by Habel, Pennemann, and Rensink [HP09, Ren04]. Then, we discuss
Hoare calculi with E-conditions that, in particular, define transformations
for Wlp, SE, and FE for arbitrary E-conditions and a certain class of pro-
grams. We consider technical properties of the calculi and language, such
as the soundness of the rules, correctness of the transformations, and the
problem of (relative) completeness. Finally, we explore some related and
historical work (with a particular focus on the work by Pennemann et al.).

4.1 Nested Conditions with Expressions

When studying the verification of simple, imperative programming lan-
guages such as those described in [AdO09, Win93], pre- and postconditions
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Chapter 4. Verification with E-Conditions

are often expressed using formulae of first-order logic. Typically, a formula
will express properties about “locations”, which under an interpretation
correspond to the values of variables in a particular program state.

For graph programs, a different approach for assertional reasoning is
needed. Program states not mappings from locations to values, but rather
are graphs in G(L). The idea of reasoning about locations is not abstract
enough for our purposes; instead, we need a way to intuitively (but for-
mally) reason about properties of graphs. In the case of GP, we might want
to reason about structural properties of graphs, such as:

P1 “the graph is loop free”;

P2 “every node is incident to exactly one outgoing edge”;

P3 “the graph is undirected”;

but also it is important to be able to reason about properties of the labels,
the manipulation of which is an important practical feature of GP:

P4 “no two adjacent nodes have the same label”;

P5 “every node labelled by an integer i has an outgoing edge to a node
labelled 0 or j where j > i”;

P6 “all nodes are labelled by integers, and every pair of nodes has an edge
between them if the source label is smaller than the target label”.

The formalism we propose in this section – nested conditions with expressions
(short E-conditions) – allows for the expression of such properties about
both graph structure and relations between labels. E-conditions combine
ideas from (conditional) rule schemata, logic, and nested conditions (due
to [HP09, Ren04]), to be a formalism situated at the same level of abstrac-
tion as graph programs, whilst remaining intuitive for users with only a
basic understanding of logic. The level of abstraction is also key for the
constructions of the assertions Wlp, SE, and FE characterised in Section 3.4,
since the “interaction” between rule schemata and pre- and postconditions
can be studied using familiar techniques from graph transformation, e.g.
morphisms, pushouts.

4.1.1 E-Conditions by Example

Before considering the formal definitions of E-conditions and their satis-
faction relation, we want to convey an intuition as to how they can express
graph properties. We will do so by example, using the properties P1–P6

listed earlier in this section to introduce the features of the formalism. (For
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4.1. Nested Conditions with Expressions

simplicity, we take that P1–P6 refer only to the parts of graphs that are un-
marked.)

At their simplest, E-conditions have the form:

∃(C)

where C is a graph labelled with expressions. A graph G in G(L) satisfies
such an E-condition if there is an assignment α from variables inC to values
in L such that there is an injective morphism from Cα to G. We can use
Boolean negation ¬ to express the non-existence of such a morphism, and
so straight away express the property P1 with the E-condition:

¬∃( x

y

)

Here, x and y in the labels are variables that can be instantiated to any
value in L. A graph G will satisfy this if it does not contain a node incident
to a loop with any combination of labels. We can strengthen this to forbid
loops when either the node or edge are marked (or both) using Boolean
connectives:

¬∃( x

y

) ∧ ¬∃( x

y

) ∧ ¬∃( x

y

) ∧ ¬∃( x

y

)

It is important to note here that the xs and ys are not bound to each other:
the E-condition forbids the existence of any loop regardless of marking, and
regardless of label.

Remark 4.1 (Marked nodes and edges). In this thesis, unless a program is
explicitly utilising marked nodes or edges, for simplicity we will usually
write E-conditions about only the unmarked parts of the graph. When we
write that some E-condition expresses that “the graph has propertyX”, this
is really short for the more correct: “the graph – ignoring all marked edges,
marked nodes, and edges incident to them – has property X”. If no rule
schema of a program matches or creates marked items, then any marked
items in the input graph will be present and unchanged in the resulting
graph. Of course, if marked items are operated on, it will usually be neces-
sary to write E-conditions about those items when constructing interesting
proofs.

Property P2, “every node is incident to exactly one outgoing edge”, re-
quires a less simple E-condition. When descriptions of properties have the
pattern “every instance of some structure X should be within some partic-
ular context Y ” we require a combination of universal quantification and
nesting. Informally, the universally quantified part describes X , and then
a nested E-condition describes the required context Y . The following E-
condition describes property P2:

∀( x
1
, ∃( x

1

y
k

) ∧ ¬∃( x
1

y
k

j
))
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Chapter 4. Verification with E-Conditions

This E-condition is satisfied by any graph in which every node is incident
to an outgoing edge, but not incident to more than one. Numbers are used
to indicate which nodes are the same down the levels of nesting; here, the
node labelled x (which is universally quantified) appears in the nested E-
condition where information about its required context is given. Again, the
ks and ys in the nested E-condition are not bound together, but this time,
the xs are bound. Once a variable is used within an E-condition, every
other occurence of it down the levels of nesting evaluates to the same value
under an assignment. It can help to think of this nesting in E-conditions as
a tree of (injective) graph morphisms1 equipped with Boolean symbols, as
in Figure 4.1.

( x
1

,

( x
1

y
k

( x
1

y
k

j

∃ ¬∃

∧

∅

∀

Figure 4.1: Tree representation of the E-condition expressing P2

Property P3 can be expressed by an E-condition with nesting, too. Here,
we define undirected to mean that if there is an edge from some node v1 to
v2, then there is also an edge from v2 to v1:

∀( x
1

y
k

2
, ∃( x

1

y
k

j 2
))

Here, the xs (resp. ys, ks) are bounded.

Thus far, the graphs of our E-conditions have been labelled with vari-
ables distinct from each other and representing any combination of labels
from L. An important and powerful feature of E-conditions that we have
not yet discussed, is the ability to constrain what values in L these variables
represent. There are two ways of achieving this. One way is through using
expressions as labels, e.g. one node might have label x with another having
label x*x. Writing properties about nodes and edges with the same label is
even simpler, as this E-condition for P4 demonstrates:

¬∃( x x
k

)

1Actually, E-conditions are morphisms equipped with Boolean symbols (and assignment
constraints). We will properly reveal and discuss this technical detail shortly.
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Under any assignment both xs must be mapped to the same value in L,
hence this E-condition is only satisfied by graphs that have no two adjacent
nodes with the same value.

The other way of constraining the instantiation of variables is to add
so-called assignment constraints. Informally, assignment constraints are
simple Boolean expressions establishing relations between variables, and
restricting the types of values that variables can (or cannot) be instantiated
to. Given an assignment α for a graph, an assignment constraint must eval-
uate to true when interpreted with regards to α. Assignment constraints
can be written for each graph in each level of nesting of an E-condition;
they are displayed after a vertical bar (which can be read aloud as “where”
or “such that”). For example, property P5 is expressed by:

∀( x
1
| int(x), ∃( x

1

y
k

| y = 0 or y > x))

A graph will satisfy this E-condition, if every node with an integer label x
has an outgoing edge to a node labelled with 0 or some y that is larger than
x. The innermost assignment constraint is hopefully clear. The outermost
one, int(x), will evaluate to true under an assignment if x is mapped to
an integer; false if not. In rule schemata, such a predicate is unnecessary
because all variables are typed. In E-conditions however, it is important to
note that for notational simplicity, all variables are treated as untyped.

Remark 4.2 (Untyped variables). For notational simplicity, all of the vari-
ables appearing in the graphs and assignment constraints of E-conditions
are untyped. Rather, predicate symbols in the assignment constraints are
used to restrict the permissible values in L that a variable can be mapped
to. Type safety is imposed not at the syntactic level, but rather at the se-
mantic level: assignments are required to be “well-typed”. For example,
an assignment is not well-typed if it maps a variable to a string when that
same variable appears within an arithmetic expression.

Property P6 can be expressed by an E-condition exploiting several of
the features we have discussed:

¬∃( x | not int(x)) ∧ ∀( x
1

y
2
| x < y, ∃( x

1

y
2

k
))

The first conjunct is satisfied by graphs in which every node has an integer
label2. The second conjunct is satisfied if every pair of nodes has an edge
between them if the source label is smaller than the target label.

Up until now we have ignored an important technical detail: our E-
conditions for properties P1–P6 have all expressed properties about graphs,

2It might appear that universal quantification could remove the need for double nega-
tion. But such an E-condition without nesting, i.e. ∀(C | γ) is vacuously true – this will
become clear from the formal semantics of satisfaction.
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but actually, the formalism is more general than this, in that it expresses
properties about graph morphisms. As for nested conditions [HP09], E-
conditions can be seen as generalisations of graph consistency constraints
[HW95] and (negative) application conditions [HHT96].

As hinted towards in Figure 4.1, E-conditions are trees of (injective)
morphisms equipped with Boolean symbols and assignment constraints.
We have simply been following a convention (that we will continue) of
drawing only the codomain of morphisms. So whereas we wrote:

∀( x
1
, ∃( x

1

y
k

) ∧ ¬∃( x
1

y
k

j
))

for property P2, the same E-condition including the morphisms would be:

∀(∅ →֒ x
1
, ∃( x

1
→֒ x

1

y
k

) ∧ ¬∃( x
1
→֒ x

1

y
k

j
))

When expressing properties of graphs, the root in the tree of morphisms is
always the empty graph. E-conditions of this form are sometimes referred
to as E-constraints, a nod towards so-called graph constraints. When ex-
pressing properties about, e.g. matches for a rule schema with left graph L,
the root in the tree of morphisms would be L3.

4.1.2 Definition of E-Conditions

Having hopefully given an intuition for reading and writing E-conditions,
we now proceed to give in this subsection a formal definition. This defini-
tion relies however on two others: (1) the label alphabet for the graphs of
E-conditions; and (2) the abstract syntax of assignment constraints. These
are considered in order, before we formally give a definition of E-conditions
and discuss some notational conventions.

The label alphabet we fix for the graphs of E-conditions is very sim-
ilar to that for the graphs of rule schemata. This is intentional, to allow
for E-conditions to express properties about particular matches for rule
schemata. The only difference, as hinted towards in Section 4.1.1, is that
variables all belong to VarId, a class of untyped variable identifiers. This
allows for notational simplicity, avoiding the need to repeatedly declare
types of variables, instead only restricting possible assignments when nec-
essary through the assignment constraints. This approach simplifies the
presentation syntactically; but the need to, for example, avoid the xs in
x*x+5 being mapped to any value in L other than an integer, is now dealt
with in the semantics of satisfaction by requiring assignments to be well-
typed for expressions.

3Ignore the mismatch between variables in rule schemata and E-conditions for the mo-
ment. This will be addressed shortly.
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4.1. Nested Conditions with Expressions

Definition 4.3 (Graph labels for E-conditions). Let EC (for E-Conditions)
denote the label alphabet containing all expressions that can be derived
from the syntactic class ECLabel of Figure 4.2. Here, VarId is a class of
untyped variable identifiers. By G(EC) we denote the class of all graphs
labelled over EC.

Integer ::= Digit {Digit} | VarId | ’-’ Integer

| Integer ArithOp Integer

ArithOp ::= ’+’ | ’-’ | ’*’ | ’/’

String ::= ’ ” ’ {Char} ’ ” ’ | VarId | String ’.’ String

Atom ::= Integer | String | VarId

List ::= empty | Atom | VarId | List ’:’ List

ECLabel ::= List Mark

Mark ::= true | false

Figure 4.2: Abstract syntax of graph labels for E-conditions

For technical reasons, we treat VarId as a strict superset of the classes of
typed variables, as shown in the Venn diagram of Figure 4.3. This allows
us to, for example, use the left- and right-hand graphs of rule schemata in
E-conditions since G(RS) can now be viewed as a strict subset of G(EC).
We simply treat variables from LVar, AVar, SVar, and IVar as untyped when
they are used within the context of E-conditions (using assignment con-
straints when it is necessary to restrict assignments of variables to particu-
lar types).

LVar AVar SVar IVar

VarId

Figure 4.3: Venn diagram of the variable classes

Remark 4.4 (Naming of syntactic categories). Note that we use the same
names (List, Integer, etc.) for the syntactic categories of Figure 4.2 as we do
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for the grammar of Figure 2.11. This is for simplicity, since both grammars
generate identical expressions – modulo variable classes – and the correct
grammar can usually be inferred from the context (if not, we explicitly state
it).

Assignment constraints are simple Boolean expressions that form a com-
ponent of E-conditions. They allow for the restriction of possible values in
L that variables can be mapped to. This is achieved through simple rela-
tions – such as equality, greater than, less than – predicates about type, and
Boolean operators.

Definition 4.5 (Assignment constraint). An assignment constraint γ is sim-
ply a Boolean expression generated by the syntactic category AssCon of
Figure 4.4. All variables in expressions are untyped and belong to the class
VarId, and List, Integer are as defined in Figure 4.2.

AssCon ::= List (’=’ | ’\=’) List | Integer IntRel Integer | not AssCon
| AssCon (and | or) AssCon | Type ’(’ List ’)’ | true

IntRel ::= ’>’ | ’<’ | ’>=’ | ’<=’
Type ::= int | string | atom

Figure 4.4: Abstract syntax of assignment constraints

We will give a formal semantics of assignment constraints in Section
4.1.3, but the intended meaning of most constraints should be intuitively
clear from the syntax. Assignment constraints of the form t(l) with t in
Type, l in List, are to be interpreted as predicates4 (Boolean-valued func-
tions) and evaluate to true if the input is of the indicated type (false other-
wise).

Example 4.6 (Assignment constraints). Consider the assignment constraint:

a > b and c = a+b :d and atom(d)

where a, b, c, d are variables. The intended meaning, informally, is that c is
mapped to a list of length two: the first element the sum of two integers (the
first integer larger than the second), and the second element some atom (an
integer or string).

Notation 4.7 (Type predicate notation). For brevity, we introduce some no-
tation for when several variables are to be constrained to the same type.
For lists l1, . . . , ln and type t in Type, we allow:

t(l1, . . . , ln)

4In previous work, we were writing type(l) = t instead of predicates.
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to be short for:

t(l1) and . . . and t(ln).

With the label alphabet and assignment constraints defined, we now
can give a definition of E-conditions. Recall from Section 4.1.1 that E-
conditions are trees of injective graph morphisms equipped with logical
symbols and assignment constraints. We formalise these notions now and
discuss some conventions we use to write them as simply as possible.

Definition 4.8 (E-condition). A nested condition with expressions (short E-
condition) c over a graph P is of the form true or ∃(a | γ, c′), where a : P →֒
C is an injective graph morphism with P,C ∈ G(EC), γ is an assignment
constraint, and c′ is an E-condition over C.

Boolean formulae over E-conditions over P yield E-conditions over P ,
that is, ¬c, c1 ∧ c2, and c1 ∨ c2 are E-conditions over P if c, c1, c2 are E-
conditions over P .

We remark that the morphisms of E-conditions are injective5 because
matching in GP is injective.

Several important abbreviations of E-conditions are introduced (e.g. uni-
versal quantification, writing only codomains) in the following note, that
will be used extensively throughout the remainder of this thesis.

Notation 4.9 (Abbreviating E-conditions). For brevity, we write false for
¬true, c ⇒ d for ¬c ∨ d, c ⇔ d for c ⇒ d ∧ d ⇒ c, ∃(a | γ) for ∃(a |
γ, true), ∃(a, c′) for ∃(a | true, c′), and ∀(a | γ, c′) for ¬∃(a | γ,¬c′). In our
examples, when the domain of morphism a : P →֒ C can unambiguously
be inferred, we write only the codomain C. For instance, an E-condition
∃(∅ →֒ C, ∃(C →֒ C ′)) can be written as ∃(C, ∃(C ′)), where the domain of
the outermost morphism is the empty graph, and the domain of the nested
morphism is the codomain of the encapsulating E-condition’s morphism.

Since E-conditions are trees of morphisms, the domains of morphisms
along the nesting are easily inferred. The domain of the “outermost” mor-
phism, i.e. the root of the tree, can also be easily inferred depending on the
context. E-conditions expressing graph properties (e.g. properties P1–P6)
have as their root the empty graph, ∅ (these common types of E-conditions
are often referred to as E-constraints). E-conditions expressing properties
of graphs relative to some rule schema match (resp. comatch) will have the
left-hand (resp. right-hand) graph of the rule schema as their root.

5In Section 6.3 we show how node (or edge) identification can be represented in E-
conditions.
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Definition 4.10 (E-constraint). An E-condition c is an E-constraint if c =
true or if c = ∃(a : ∅ →֒ C | γ, c′). Boolean formulae over E-constraints
yield E-constraints, that is, ¬c, c1∧c2, and c1∨c2 are E-constraints if c, c1, c2
are E-constraints.

Example 4.11 (E-constraint). The E-condition:

∀( x y
1 2

k
| x > y, ∃( x y

1 2

l
k

))

(which is an E-constraint) expresses that every pair of adjacent integer-
labelled nodes with the source label greater than the target label has a loop
incident to the source node. The unabbreviated version of the condition is
as follows:

¬∃(∅ →֒ x
1

y
2

k
| x > y, ¬∃( x

1 2
yk
→֒

1
x

2
y

l
k

| true, true)).

Before we move on to the semantics of satisfaction, we introduce a nota-
tional convenience allowing us to express concisely facts and requirements
about variables present in graphs, morphisms, and E-conditions.

Definition 4.12 (Variable set vars(x)). We denote by vars(x) the set of all
variables appearing in x, where x can be a graph, graph morphism, rule
schema condition, (conditional) rule schema, assignment constraint, or E-
condition.

4.1.3 Semantics of Satisfaction

In this section we give a formal definition of satisfaction for E-conditions,
which we informally described for examples about graph properties in Sec-
tion 4.1.1.

In general, we are checking whether morphisms between graphs in
G(L) satisfy E-conditions (checking whether graphs satisfy E-constraints
is a particular instance of this task). Satisfaction relies on assignments un-
der which we evaluate the graphs of the E-condition and its assignment
constraint. It also relies on the notion of substitution to ensure equal as-
signment of variables along the nesting (or down the tree of morphisms).
We proceed first by defining assignments and substitution for E-conditions,
as well as defining how assignments and substitutions are applied to lists
and assignment constraints.

Definition 4.13 (Assignment for E-conditions; domain). An assignment α is
a partial function α : VarId → L. The domain of α, denoted by dom(α), is
the set of all variables for which α is defined.
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Recall that graphs in G(EC) may be labelled with expressions contain-
ing type-specific operators, e.g. x+y for integers, s.t for strings. Because in
E-conditions we do not consider variables as typed, we must handle type
safety at the semantic level by requiring that assignments for satisfaction
are well-typed. Intuitively, a well-typed assignment will not map any vari-
ables to values for which expressions and assignment constraints cannot be
semantically interpreted, e.g. a well-typed assignment for x+y (resp. s.t)
will map x, y to integers (resp. s, t to strings).

Definition 4.14 (Well-typed assignment). Let l denote a list. An assignment
α is well-typed for l, if (1) it is defined for all variables in l; (2) variables in
integer expressions are mapped to values in Z; and (3) variables in string
expressions are mapped to values in Char∗.

Given a graph G ∈ G(EC), an assignment α is well-typed for G if it is
well-typed for all of the lists occurring in G. Similarly, if g : G → H is a
morphism and G,H ∈ G(EC), then an assignment α is well-typed for g if it
is well-typed for G and H .

Let γ be an assignment constraint. An assignment α is well-typed for γ,
if (1–3) above hold for all lists occurring in γ, and moreover, variables in
integer relations are mapped to values in Z.

Next, we define the evaluation of labels and assignment constraints
with respect to well-typed assignments. Labels, graphs, and assignment
constraints respectively evaluate to values inL, graphs in G(L), and Boolean
values in B.

Definition 4.15 (Application of assignments). Let (l b) denote some label
with l a list (with untyped variables) and b a mark, and let α denote some
assignment well-typed for l. The application of α to (l b), denoted by (l b)α,
is defined analogously to Definition 2.38.

Given a graph G in G(EC) and an assignment α well-typed for G, we
write Gα for the graph in G(L) that is obtained from G by replacing each
label (l b) with (l b)α (note that Gα has the same nodes, edges, source and
target functions as G). If g : G → H is a graph morphism with G,H ∈
G(EC), then gα denotes the morphism 〈gαV , g

α
E〉 : G

α → Hα.

Let γ denote some assignment constraint, and α denote some assign-
ment well-typed for γ. The application of α to γ, denoted γα, is defined
inductively as follows.

1. If γ is true, then γα = true. If γ has the form l1 = l2 (resp. l1 \= l2)
with l1, l2 in List, then γα = true if lα1 = lα2 (resp. lα1 6= lα2 ), or false
otherwise. If γ has the form i1 ⊲⊳ i2 with i1, i2 in Integer and ⊲⊳ in
IntRel, then γα = true if iα1 ⊲⊳B i

α
2 where ⊲⊳B is the relation on integers

represented by ⊲⊳, and false otherwise.
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2. If γ has the form not γ1 with γ1 in AssCon, then γα = true if γ1 =
false, and false otherwise. If γ has the form γ1 and γ2 (resp. γ1 or γ2)
with γ1, γ2 in AssCon, then γα = true if γα1 = true = γα2 (resp. γα1 =
true or γα2 = true).

3. Finally, if γ has the form t(l) with l in List and t = int (resp. string,
atom), then γα = true if lα ∈ Z (resp. Char∗, Z ∪ Char∗), and false
otherwise.

We define substitutions for replacing variables with list expressions. The
notion is required (1) in the definition of satisfaction, for ensuring consis-
tency of labels down the tree of morphisms; and (2) in the construction of
weakest liberal preconditions.

Definition 4.16 (Substitution for untyped variables; domain). A substitu-
tion is a partial function σ : VarId → List where List is as defined in Figure
4.2. The domain of σ, denoted by dom(σ), is the set of all variables for which
σ is defined.

Substitutions also require the notion of well-typedness; without it, it
would be possible to transform lists such as x+5 into, e.g. ”Plump”+5, which
is a syntactically invalid list (and cannot be semantically interpreted).

Definition 4.17 (Well-typed substitution). Let l denote a list. A substitution
σ is well-typed for l, if (1) variables in integer expressions are mapped to
expressions in Integer; (2) variables in string expressions are mapped to
expressions in String.

Given a graph G ∈ G(EC), a substitution σ is well-typed for G if it is
well-typed for all of the lists occurring in G. Similarly, if g : G → H is a
morphism and G,H ∈ G(EC), then a substitution σ is well-typed for g if it is
well-typed for G and H .

Let γ be an assignment constraint. A substitution σ is well-typed for γ,
if (1–2) above hold for all lists occurring in γ, and moreover, variables in
integer relations are mapped to expressions in Integer.

Let c be an E-condition. A substitution σ is well-typed for c, if c = true,
or if c = ∃(a | γ, c′) and σ is well-typed for a, γ, c′, or if c is a Boolean
formula over E-conditions and σ is well-typed for each E-condition within
it.

The application of substitutions is defined simply as the in-place re-
placement of variables in lists and assignment constraints.

Definition 4.18 (Application of substitutions). Let (l b) denote some label
with l a list (with untyped variables) and b a mark, and let σ denote some
substitution well-typed for l. The application of σ to (l b), denoted (l b)σ,
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is defined (l b)σ = (lσ b). Here, lσ is obtained from l by replacing every
variable x for which σ is defined with σ(x).

Let G be a graph in G(EC) and σ be a substitution well-typed for G.
Then Gσ ∈ G(EC) is the graph obtained from G by replacing each label l b
with (l b)σ. If g : G → H is a graph morphism with G,H ∈ G(EC), then gσ

denotes the morphism 〈gV , gE〉 : G
σ → Hσ.

Let γ denote an assignment constraint γ, and σ a substitution well-
typed for γ. Then γσ is the assignment constraint obtained from γ by re-
placing each list l with lσ.

Let c denote E-conditions, and σ a substitution well-typed for c. Then
when c has the form true, cσ = true, and when c has the form ∃(a | γ, c′),
cσ = ∃(aσ | γσ, (c′)σ). If c is a Boolean formula over E-conditions, then σ is
distributed over the E-conditions, i.e. (¬c1)

σ = ¬cσ1 , (c1 ∧ c2)
σ = cσ1 ∧ c

σ
2 ,

and (c1 ∨ c2)
σ = cσ1 ∨ c

σ
2 .

We remark that in our definition, if a substitution is not defined for a
variable x, then xσ = x.

Finally, before defining the satisfaction relation, we define substitutions
induced by assignments, which we use to enforce the consistency of labels
down the tree of morphisms.

Definition 4.19 (Substitutions induced by assignments). Let α : VarId →
L denote some assignment. The substitution induced by α, denoted σα :
VarId → List, maps every variable x in the domain of definition of α to
the list that is obtained from α(x) by replacing integers and strings with
their syntactic counterparts.

Example 4.20 (Induced substitution). Consider the assignment α = (x 7→
23, y 7→ 56 : “York” : “cat”) where 23, 56 are integers and “York”, “cat” are
strings. Then the substitution induced by α would be σα = (x 7→ 23, y 7→
56 : ”York” :”cat”) where 23, 56 are syntactic digits, and ”York”, ”cat” are
syntactic strings.

With the concepts of assignment, substitution, and induced substitu-
tions now defined, we can proceed to define the satisfaction of E-conditions
by morphisms, and the special case of satisfying E-constraints by graphs.

Definition 4.21 (Satisfaction of E-conditions). We define inductively the
satisfaction of E-conditions by injective graph morphisms. Every such mor-
phism satisfies the E-condition true. An injective graph morphism s : S →֒
G with S,G ∈ G(L) satisfies the E-condition c = ∃(a : P →֒ C | γ, c′), de-
noted s |= c, if there exists an assignment α that is well-typed for a, γ and
is undefined for variables present only in c′, such that S = Pα, and such
that there is an injective graph morphism q : Cα →֒ G with q ◦ aα = s,
γα = true, and q |= (c′)σα . Here, σα is the substitution induced by α, which
we require to be well-typed for all morphisms and assignment constraints
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in c′. If such an assignment α and morphism q exist, we say that s satisfies
c by α, and write s |=α c. Figure 4.5 summarises s |=α c (assuming that
γα = true).

S = P
α

C
α

G

a
α

s

→֒

→֒ →֒=
q |= (c′)σα

Figure 4.5: Satisfaction of an E-condition

We write 2 and 2α in place of |= and |=α, respectively, when the satis-
faction relation does not hold for a morphism and E-condition.

The satisfaction of Boolean formulae over E-conditions is defined in-
ductively. We have s |= ¬c if s 2 c, and s |= c ∧ d (resp. s |= c ∨ d) if s |= c
and s |= d (resp. s |= c or s |= d). Given an assignment α, we have s |=α ¬c
if s 2α c, and s |=α c∧ d (resp. s |=α c∨ d) if s |=α c and s |=α d (resp. s |=α c
or s |=α d).

Definition 4.22 (Satisfaction of E-constraints). A graph G in G(L) satisfies
an E-constraint c, denoted G |= c, if iG : ∅ →֒ G |= c6.

Two E-conditions (resp. E-constraints) are said to be equivalent, if they
satisfy exactly the same morphisms (resp. graphs).

Definition 4.23 (Equivalent E-conditions). E-conditions c, d are said to be
equivalent, denoted c ≡ d, if for all injective graph morphisms s : S →֒ G
with S,G ∈ G(L), we have that:

s |= c if and only if s |= d.

4.1.4 Comparison with Nested Conditions

The question of the expressiveness of E-conditions is explored as part of
Chapter 6 – but more immediately one might wonder how the formal-
ism compares to the nested conditions described in [HP09]. In one sense,
E-conditions inherit the limitations present also in nested conditions, in
particular with what can be expressed structurally about a graph. Both
formalisms are only able to express local (in the sense of Gaifman, see
[Lib04, Gai82]) structural properties about graphs, and are unable to ex-
press “global” properties such as:

6The i naming the morphism stands for “initial”, as the empty graph is the initial object
in the category of graphs and graph morphisms. There is exactly one morphism from ∅ to
any graph G.
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• “the graph has a path of arbitrary length”;

• “the graph is connected”;

• “the graph contains a Hamiltonian cycle”.

E-conditions however enrich what can be expressed about structure by
allowing reasoning about data in labels. Relations between (potentially in-
finite sets of) labels can be expressed – which cannot be done so by nested
conditions – allowing for practical reasoning about programs that manipu-
late graph labels.

Moreover, when expressing properties that do not concern specific la-
bels, E-conditions have an advantage. The graphs in nested conditions
are labelled over the same, finite label alphabet as the graphs they express
properties about. The result is that to express a structural property regard-
less of labels, a disjunction over all possible combinations of labels is re-
quired. If the graphs of nested conditions are labelled over an infinite label
alphabet, such as L, then infinite disjunctions are required to express even
the most basic structural properties. For example, to express that there
exists an unmarked integer-labelled node, we would require the infinite
nested condition:

∃( 0 ) ∨ ∃( 1 ) ∨ ∃( -1 ) ∨ ∃( 2 ) ∨ ∃( -2 ) ∨ · · ·

whereas this can be expressed finitely using a variable in an E-condition:

∃( x | int(x)).

Another difference is in the types of morphism allowed in the two for-
malisms. In nested conditions, the graph morphisms are arbitrary. In E-
conditions however, we require that the morphisms are injective (since the
matching in GP is injective). The result is that it is not possible to merge
nodes and edges along the tree of morphisms as it is in nested conditions.
In Section 6.3 however, we show that this merging can be expressed indi-
rectly.

4.2 Proof Rules with E-Conditions

In this section we begin by defining E-constraints as an assertion language
in the Hoare-style verification framework of Chapter 3. We then study in-
stances of our Hoare proof rules specifically for E-constraints, discussing
and justifying some restrictions on the body of loops and conditionals that
allow us to define constructions for Wlp, SE, and FE.

We use the definition of E-constraints and their satisfaction relation to
formally define an assertion language – one that we fix for the rest of this
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chapter. Note that for simplicity we do not add a subscripted symbol after
the satisfaction relation (as was the convention in Chapter 3), since it is clear
in this chapter what assertions the relation gives meaning to.

Definition 4.24 (E-constraints as assertions). Let E denote the assertion lan-
guage 〈E, |=〉, where E is the set of all E-constraints, and |= ⊆ G(L) × E is
the satisfaction relation for E-conditions.

The model checking problem – the task of checking whether a graph
satisfies an assertion – is decidable for E-constraints. This of course is a
basic requirement for our verification calculus to be practical.

Fact 4.25 (Model checking decidable for E-constraints). Let G be a graph in
G(L) and c be an E-constraint. The decision problem:

Model Checking Problem (MCP) for E

Input: graph G, E-constraint c
Question: does G |= c?

is decidable.

Recall that the decidability of the model checking problem for the asser-
tion language of E-constraints tells us that SE and FE cannot be effectively
constructed for arbitrary programs and assertions (see Proposition 3.20). To
get around this problem we impose a restriction on the form of programs in
proof rules that require reasoning about successful and failing executions.
The intention being that a restriction allows for there to be constructions
for SE and FE, whilst not being so stifling to make the verification calculus
impractical.

The restriction we impose is that the bodies of loops and the “guards”
of conditionals are simply sets of (conditional) rule schemata, as opposed
to arbitrary programs. This does not affect the computational completeness
of GP (according to [HP01]), and in our experience, having arbitrary pro-
grams is not always necessary in loop bodies and guards: see for example
the programs we prove properties about in Chapter 5. Moreover, we feel
that being able to algorithmically construct assertions defining SE and FE
brings practical benefits that make up for convenience lost by disallowing
arbitrary programs in loop bodies and guards of conditionals.

Example 4.26 (Restricted graph programs). Consider for example the com-
mon pattern of graph program below (we do not specify particular rule
schemata or macros, but name them in a way to convey some intention),
which does not meet the restriction of our verification calculi:

if (computeSomething; checkSomething) then P else Q
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Here, the guard program begins by computing something on a graph, then
checking something about the result of the computation to inform which
branch of execution to follow next. For example, the guard program could
nondeterministically mark a node in an undirected graph7 and then repeat-
edly mark nodes adjacent to it. It could then, for example, check whether
any node remains unmarked, thus determining in this example whether
the graph is connected or not. Such programs can often be rewritten in the
form:

computeSomething; if checkSomething then P else Q; undoSomething!

Here, the first part of the guard program is moved out of the conditional.
The restriction is met, but now the effects of the computation must be “un-
done” at a later stage since computeSomething is no longer executed on a
copy of the graph. (Note that this is harder to do if the program is perform-
ing a destructive test on the graph.)

4.2.1 Partial Correctness Calculus

Let r (resp. R) range over conditional rule schemata (resp. sets of con-
ditional rule schemata), c, c′, d, d′, e, inv over E-constraints, and P,Q over
graph programs. The proof rules in Figure 4.6 (also presented for reference
in Figure B.1 of the appendix) together define a partial correctness calculus
– as introduced extensionally in Section 3.4 – but with E-constraints specif-
ically as the assertions. Additionally, Figure B.2 in the appendix defines
partial correctness proof rules for the derived commands of GP.

The intuition behind each of the proof rules was given in Section 3.4,
but we shall explain informally the realisations of Wlp, SE, and FE that are
present in the proof rules of Figure 4.6.

The axiom [ruleapp]wlp defines a weakest liberal precondition WlpE[r, c]
with a disjunction of two transformations: Pre(r, c) ∨ ¬App({r}). The for-
mer expresses the weakest properties that must be satisfied for successful
executions of r to establish the postcondition. The latter is used negated to
express the property that r is not applicable to the graph, in which case any
postcondition can be inferred (since r will fail on the graph). In practice, we
find it simpler to treat these two scenarios separately: we define [ruleapp]
for reasoning about successful executions of (conditional) rule schemata,
and [nonapp] for reasoning about failing executions (i.e. when failure is
implied by the precondition). We describe Pre and App informally in what
follows, but remark that formal definitions and proofs are given later in
Section 4.3.

The transformation Pre(r, c) of [ruleapp]wlp and [ruleapp] is informally
described by the following steps:

7That is, a graph satisfying property P3 in Section 4.1.
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[ruleapp]wlp
{Pre(r, c) ∨ ¬App({r})} r {c}

[ruleapp]
{Pre(r, c)} r {c}

[nonapp]
{¬App({r})} r {false}

{c} r {d} for each r ∈ R
[ruleset]

{c} R {d}

{c} P {e} {e} Q {d}
[comp]

{c} P ; Q {d}

{c ∧App(R)} P {d} {c ∧ ¬App(R)} Q {d}
[if]

{c} ifR then P else Q {d}

{c ∧App(R)} R; P {d} {c ∧ ¬App(R)} Q {d}
[try]

{c} tryR then P else Q {d}

{inv} R {inv}
[!]
{inv} R! {inv ∧ ¬App(R)}

c⇒ c′ {c′} P {d′} d′ ⇒ d
[cons]

{c} P {d}

Figure 4.6: Partial correctness rules with E-constraints for core commands

1. form a disjunction of E-conditions over the right-hand graph of r,
accounting for the possible ways in which c and comatches of r might
“overlap”;

2. shift this E-condition over to the left-hand graph of r; and

3. nest this within an E-constraint universally quantified over all possi-
ble matches of r (accounting also for its applicability).

The transformation App(R) of [ruleapp]wlp, [nonapp], [if], [try], and [!]
takes as input a set of conditional rule schemata R, and transforms it into
an E-constraint expressing that at least one of the rule schemata within the
set is applicable. (Again, this will be defined formally in Section 4.3.) If a
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graph G satisfies App(R), then there exists a direct derivation G⇒R H for
some graph H . If a graph G satisfies ¬App(R), then there is no such direct
derivation and executingR on G will lead to failure.

In [if], [try], and [!], SEE[c,R] (resp. FEE[c,R]) is defined by the conjunc-
tion of c and App(R) (resp. ¬App(R)). We remark that unlike for arbitrary
programs, there is no set of rule schemata R such that both SEE[true,R]
and FEE[true,R] can be defined by assertions satisfied by the same graph.
If R is applicable to a graph, then its execution will always be successful.
If R is not applicable to a graph, then its execution will always result in
failure. There cannot be both successful and failing execution paths when
we restrict to sets of rule schemata.

Finally, in [cons], the implications are expressed directly via a Boolean
formula over E-constraints, and the user is required to show outside the
calculus that the implications are valid in the following sense.

Definition 4.27 (Validity). Let c denote an E-constraint. We say that c is
valid, denoted |= c8, if for all graphs G ∈ G(L) we have that G |= c.

Automatically checking whether an E-constraint c ⇒ d is valid is not
considered in this thesis, but is important future work. This task has been
explored by Pennemann for nested conditions [Pen08, Pen09], for which a
resolution-like deduction calculus was proposed and prototyped. As for
nested conditions, the problem of deciding the validity of E-constraints is
not even semi-decidable. This is due to Trakhtenbrot’s theorem from finite
model theory (see e.g. [Lib04]), which applies in our context because the
structures we interpret E-constraints over are finite graphs.

Fact 4.28 (Validity is undecidable). Let c be an E-constraint. The decision
problem:

Validity Problem (VP) for E

Input: E-constraint c
Question: is c valid over all (finite) graphs, i.e. |= c?

is undecidable, and not even semi-decidable.

4.2.2 Total Correctness Calculi

Let r (resp. R) range over conditional rule schemata (resp. sets of con-
ditional rule schemata), c, c′, d, d′, e, inv over E-constraints, and P,Q over
graph programs. The proof rules in Figure 4.7 (also presented for reference
in Figure B.3 of the appendix) together define a weak total correctness cal-
culus – as introduced extensionally in Section 3.5 – but with E-constraints
specifically as the assertions. Additionally, Figure B.4 in the appendix de-
fines weak total correctness proof rules for the derived commands of GP.

8We sometimes omit |= when showing validity is clear, e.g. in [cons].
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[ruleapp]wlp, [ruleapp], [nonapp], [ruleset], [comp], [cons] of Figure
4.6, and:

{c ∧App(R)} P {d} {c ∧ ¬App(R)} Q {d}
[if]wtot

{c} ifR then P else Q {d}

{c ∧App(R)} R; P {d} {c ∧ ¬App(R)} Q {d}
[try]wtot

{c} tryR then P else Q {d}

⊢par {inv} R {inv} R is #-decreasing under inv
[!]wtot

{inv} R! {inv ∧ ¬App(R)}

Figure 4.7: Weak total correctness proof rules with E-constraints for core
commands

The intuition behind the weak total correctness proof rules (in the ex-
tensional approach) was given in Section 3.5, but we remark here on some
differences for E-constraints.

In the conditional proof rules [if]wtot, [try]wtot, we do not require a third
premise ⊢wtot {c} R {⊤E} (where ⊤E is defined by true). Because we are
restricting guard programs to sets of conditional rule schemata, it is un-
necessary to prove that R will terminate. By the semantics of GP, an ap-
plication of R either fails or results in a graph – there is no possibility of
divergence or getting stuck.

The iteration proof rule [!]wtot is defined as its partial correctness ver-
sion, with the additional premise that the iterating program – a set of rule
schemata – is #-decreasing under the invariant for some termination func-
tion #. Note that the first premise uses ⊢par whereas the extensional calcu-
lus uses ⊢wtot. This is because, for sets of rule schemata (but not arbitrary
programs), |=par {inv} R {inv} implies |=wtot {inv} R {inv}.

The proof rules in Figure 4.8 (also presented for reference in Figure B.5
of the appendix) together define a total correctness calculus – as introduced
extensionally in Section 3.5 – but with E-constraints specifically as the as-
sertions. Additionally, Figure B.6 in the appendix defines total correctness
proof rules for the derived commands of GP.

The implication demanded in the extensional version of [ruleset]tot is
realised here by the premise |= c⇒ App(R). See the discussion on validity
of E-constraints in Section 4.2.1.

As for the weak total correctness calculus, there is no need for a third
premise in [if]tot, [try]tot since the restriction to Rmeans that executions of
guard programs will never lead to non-termination.

100



4.3. Transformations of E-Conditions

[comp], [cons] of Figure 4.6, and:

c⇒ App(R) ⊢par {c} r {d} for each r ∈ R
[ruleset]tot

{c} R {d}

{c ∧App(R)} P {d} {c ∧ ¬App(R)} Q {d}
[if]tot

{c} ifR then P else Q {d}

{c ∧App(R)} R; P {d} {c ∧ ¬App(R)} Q {d}
[try]tot

{c} tryR then P else Q {d}

⊢par {inv} R {inv} R is #-decreasing under inv
[!]tot

{inv} R! {inv ∧ ¬App(R)}

Figure 4.8: Total correctness proof rules with E-constraints for core com-
mands

The iteration proof rule [!]tot is the same as [!]wtot, sinceR! will never re-
sult in failure. Note that the first premise is not ⊢tot {inv} R {inv} because
if |=tot {inv} R {inv} thenRwould never fail on graphs satisfying inv and
R! would never terminate.

4.3 Transformations of E-Conditions

In this section we give formal definitions of the transformations App and
Pre. They extend the basic transformations of nested conditions in [HP09],
adding support for expressions and assignment constraints in E-conditions,
as well as the additional features of our programming language.

4.3.1 Applicability of Sets of Rule Schemata

We define here the transformation App, which takes as input a set of rule
schemata, and returns an E-constraint expressing the weakest property that
a graph must satisfy for at least one rule schema in the set to be applicable
to it (i.e. at least one rule schema can be applied to the graph). For a rule
schema to be applicable to a graph, there must be an opportunity to apply
it without violating the dangling condition, and without violating any con-
straints the rule schema imposes over the instantiation of variables. The
definition of App makes use of two intermediate transformations, Dang
and τ , which respectively address these requirements.
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The transformation Dang takes as input a (conditional) rule schema
r = 〈L ⇒ R,Γ〉, and returns as output an E-condition that is satisfied by
morphisms q : Lα →֒ G that satisfy the dangling condition. The transforma-
tion τ takes as input a (conditional) rule schema r, returning an E-condition
that is satisfied by morphisms q : Lα →֒ G and assignments α that obey the
rule schema condition Γ.

The idea of transformation Dang is to generate a conjunction of negated
E-conditions, each one expressing some context (e.g. an edge incident to a
node that would be deleted by the rule), which if present around the image
of any q : Lα →֒ Gwould imply that the morphism is violating the dangling
condition. In other words, all the possibilities for violating the dangling
condition are generated, and if q does not satisfy any of them, then q must
satisfy the dangling condition.

We remark that Dang is adapted from the construction of Def in Theo-
rem 8 of [HP09].

Definition 4.29 (Transformation Dang). Let r = 〈L ←֓ K →֒ R,Γ〉 denote a
conditional rule schema. We define transformation Dang as:

Dang(r) =
∧

a∈A

¬∃a

where the index set A ranges over all9 injective graph morphisms a : L →֒
L⊕ such that the pair 〈K →֒ L, a〉 has no natural pushout complement, and
each L⊕ is a graph that can be obtained from L by adding either (1) a loop
labelled by (xm), (2) a single edge between distinct nodes labelled by (xm),
or (3) a single node and a non-looping edge incident to that node labelled
by (xm) and (y n) respectively; in all cases, x, y are variables distinct from
each other and all variables in L, and m,n are marks. If the index set A is
empty, then Dang(r) = true.

Example 4.30 (Transformation Dang). Consider the rule schema:

reduce(a, b, c : list) = 〈 a b
1

c
⇒ a

1
〉.

Applying Dang to reduce yields the following E-condition:

Dang(reduce)
=

∧

a∈A ¬∃a

= ¬∃( a b
1 2

c
→֒ a b

1 2

c

x

) ∧ ¬∃( a b
1 2

c
→֒ a b

1 2

c

x

)

∧ ¬∃( a b
1 2

c
→֒ a b x

1 2

c y
)

∧ ¬∃( a b
1 2

c
→֒ a b x

1 2

c y
)

∧ ¬∃( a b
1 2

c
→֒ a b

1 2

c
x

)

9We equate morphisms with isomorphic codomains, so A is finite.
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(Actually, in general, there are further conjuncts where the new edge and
nodes are marked and unmarked in all combinations. We omit them here
for simplicity, following the convention of Remark 4.1.)

Observe that the E-condition is expressing properties not about arbi-
trary graphs, but about morphisms with instantiations of the left graph of
reduce as their domain. Such morphisms will only satisfy the E-condition
if node 2 – which reduce would delete – is not incident to any edges. That
is, if the morphism satisfies the dangling condition.

The idea of transformation τ is to encode the rule schema condition us-
ing the assignment constraints and Boolean connectives of E-conditions –
the morphisms of which are simply identity morphisms on the left-hand
graph of the rule schema. The exception is the edge predicate, which is
represented in an E-condition by a new edge in the codomain of the mor-
phism.

Definition 4.31 (Transformation τ ). Let r = 〈L ←֓ K →֒ R〉 denote a rule
schema (i.e. no condition). We define the transformation τ in this case as:

τ(r) = true

Let r = 〈L ←֓ K →֒ R,Γ〉 denote a conditional rule schema. We define
the transformation τ in this case as:

τ(r) = τ ′(L,Γ)

where τ ′(L,Γ) is defined inductively as follows (see Figure 2.15 for the syn-
tax of rule schema conditions). If Γ has the form t(l1), l1 = l2, l1 \= l2, or
i1 ⊲⊳ i2 with t in Type, l1, l2 in List, i1, i2 in Integer, and ⊲⊳ in IntRel, then
τ ′(L,Γ) = ∃(L →֒ L | Γ).

If Γ has the form edge(n1, n2) with n1, n2 in Node, then τ ′(L,Γ) =
∃(L →֒ L+

u )∨∃(L →֒ L+
m) where L+

u (resp. L+
m) is a graph equal to L, except

for an additional unmarked (resp. marked) edge whose source is the node
with identifier n1, whose target is the node with identifier n2, and whose
label is a variable distinct from all others inL. The case when Γ has the form
edge(n1, n2, l) with l in List is analogous, except that the list component of
the label of the new edge is l.

If Γ has the form not c with c in Condition, then τ ′(L,Γ) = ¬τ ′(L, c).
If Γ has the form c1 and c2 (resp. c1 or c2) with c1, c2 in Condition, then
τ ′(L,Γ) = τ ′(L, c1) ∧ τ

′(L, c2) (resp. τ ′(L, c1) ∨ τ
′(L, c2)).

Example 4.32 (Transformation τ ). Consider the conditional rule schema:

reduce2(a, b, c : int) = 〈 a b
1

c
⇒ a

1
,Γ〉

where Γ = a < b and b < c. Applying τ to reduce2 yields the following
E-condition:
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τ(reduce2) = τ ′( a b
1 2

c
,Γ)

= τ ′( a b
1 2

c
, a < b) ∧ τ ′( a b

1 2

c
, b < c)

= ∃( a b
1 2

c
→֒ a b

1 2

c
| a < b)

∧ ∃( a b
1 2

c
→֒ a b

1 2

c
| b < c)

Now, we define the transformation App for expressing applicability of
sets of (conditional) rule schemata. The idea is to express through nesting
– for each rule schema – that there exists a morphism from an instantiation
of the left-hand graph that satisfies the dangling condition and rule schema
condition. We directly use the intermediate transformations Dang and τ in
the construction.

Definition 4.33 (Transformation App). Let R denote a set of (conditional)
rule schemata. If R is empty, define App(R) = false. Otherwise, if R =
{r1, . . . , rn}, define:

App(R) = app(r1) ∨ · · · ∨ app(rn)

where for each (conditional) rule schema ri = 〈Li ←֓ Ki →֒ Ri,Γi〉, define:

app(ri) = ∃(∅ →֒ Li | γri ,Dang(ri) ∧ τ(ri)).

Here, γri is a conjunction of type predicates restricting integer, string, and
atom variables in ri to their declared types.

Example 4.34 (Transformation App). Consider the conditional rule schema:

reduce3(a, b, c : int) = 〈 a b
1

c
⇒ a

1
,Γ〉

where Γ = a < b and b < c. Applying App to reduce3 yields the following
E-constraint:

App({reduce3})
= app(reduce3)

= ∃(∅ →֒ a b
1 2

c
| int(a, b, c),

Dang(reduce3) ∧ τ ′( a b
1 2

c
,Γ))

= ∃( a b
1 2

c
| int(a, b, c),

(¬∃( a b
1 2

c

x

) ∧ ¬∃( a b
1 2

c

x

) ∧ ¬∃( a b x
1 2

c y
)

∧¬∃( a b x
1 2

c y
) ∧ ¬∃( a b

1 2

c
x

))

∧ (∃( a b
1 2

c
| a < b) ∧ ∃( a b

1 2

c
| b < c)))

which can be simplified to the following equivalent E-constraint:
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≡ ∃( a b
1 2

c
| a < b and b < c,

¬∃( a b
1 2

c

x

) ∧ ¬∃( a b
1 2

c

x

) ∧ ¬∃( a b x
1 2

c y
)

∧¬∃( a b x
1 2

c y
) ∧ ¬∃( a b

1 2

c
x

))

(Again, as for Example 4.30, we omit for simplicity the conjuncts about
marked nodes and edges in the Dang(reduce3) part of the E-constraint.)

4.3.2 From Postconditions to Preconditions

In this subsection, we define the transformation Pre which takes as input
a (conditional) rule schema and a postcondition, returning as output an
E-constraint expressing the weakest property a graph must satisfy for suc-
cessful executions of the rule schema to establish the postcondition. The
transformation makes use of two intermediate transformations, A and L,
which are adapted from the basic transformations of nested conditions de-
scribed by Habel and Pennemann in [HP09].

The transformation A (short for “Application condition”) takes as in-
put a (conditional) rule schema and an E-constraint, and transforms the
E-constraint into an equivalent E-condition over the right-hand side of the
rule schema – equivalent here in the sense that a graph H satisfies the E-
constraint if and only if comatches from the right-hand graph to H satisfy
the E-condition generated. The transformation L (short for “Left”) takes an
E-condition over the right-hand graph, and shifts it along the rule schema
to become an E-condition over the left-hand graph. The construction for
Pre then nests this result within an E-constraint quantifying over all possi-
ble matches.

Remark 4.35 (Normalisation steps). The constructions of A and L require a
normalisation step for E-conditions: if an assignment constraint uses a vari-
able not already appearing in the morphism at that level, then further down
the nesting it may only appear in assignment constraints. E-conditions are
easily rewritten into this form, e.g. ∃(∅ | atom(x), ∃( x )) is equivalent to
∃(∅ | atom(x), ∃( y | y = x)).

A further normalisation step is required for the construction of A. The
graphs of E-conditions – by definition – are labelled over arbitrary expres-
sions. We can however assume without loss of generality that nodes and
edges are labelled only by distinct variables, since we can equate these vari-
ables with any other expression in the assignment constraint. For example,
the E-condition:

∃( x*x )

can be rewritten as the equivalent E-condition ∃( a | a = x*x).
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We consider first the transformation A, adapted from Theorem 5 of
[HP09]. The idea of A is to consider a disjunction of all possible “overlap-
pings” of the right-hand graph and the graphs of the E-constraint, account-
ing for cases when comatches might establish (or prevent the establishment
of) the postcondition, and also the cases when the images of comatches are
disjoint from parts of the graph related to the postcondition. In the con-
struction, these “overlappings” are generated by merging nodes and edges.
However, since distinct labels on the syntactic level (G(EC)) can be instan-
tiated to equal labels on the semantic level (G(L)), the construction in such
situations applies substitutions on syntactic graphs to facilitate merging.

Definition 4.36 (Transformation A). Let c denote an E-constraint normalised
according to Remark 4.35, and let r = 〈L ⇒ R〉 denote a (conditional) rule
schema sharing no variables with c10. We define:

A(r, c) = A′(∅ →֒ R, c)

where A′ is defined inductively as follows. For injective graph morphisms
p : P →֒ P ′ with P, P ′ ∈ G(EC), and E-conditions over P , define:

A′(p, true) = true,

A′(p, ∃(a : P →֒ C | γ, c′)) =
∨

σ∈Σ

∨

e∈εσ

∃(b | γσ,A′(s, (c′)σ))

where Σ, εσ, b, s are defined in the following. First, construct the pushout
(1) of p and a (see Figure 4.9) leading to injective graph morphisms a′ :
P ′ →֒ C ′ and q : C →֒ C ′.

P ′ P

C ′

(C ′)σ

C

Cσ

E

(1)

p

a′ a

q

e s

qσ
b

aσ
(a′)σ

Figure 4.9: Construction of A′

10It is always possible to replace the label variables in c with new ones that are distinct
from those in r.
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The finite double disjunction
∨

σ∈Σ

∨

e∈εσ
ranges first over substitutions

from the set Σ. We define this set to contain all possible substitutions σ
such that:

dom(σ) ⊆ vars(C)− vars(P ′)

and with images comprising lists e ∈ List such that each e is a list compo-
nent inP ′. (That is, all possible substitutions mapping variables in vars(C)−
vars(P ′) to list components of labels in P ′.)

For each σ ∈ Σ, the double disjunction then ranges over every surjec-
tive graph morphism e : (C ′)σ → E such that b = e ◦ (a′)σ and s = e ◦ qσ

are injective graph morphisms. The set εσ is the set of such surjective graph
morphisms for a particular σ, the codomains of which we consider up to
isomorphism11, and up to the redundancy check as follows. Given a surjec-
tive graph morphism e1 : (C

′)σ1 → E1, E1 is considered redundant and the
morphism is excluded from the disjunction if there exists a surjective graph
morphism e2 : (C

′)σ2 → E2, such that E2 ≇ E1, and there exists some σ ∈ Σ
such that Eσ

2
∼= E1.

Note that the definition of substitutions in Σ means that for any σ ∈ Σ,
P σ = P , and (P ′)σ = P ′. Note also that b and s are jointly surjective; the
idea is that each E contains an image of both P ′ and Cσ, with the substitu-
tions equating labels on the syntactic level and thus facilitatingEs in which
nodes and edges are merged.

The transformations A,A′ are extended for Boolean formulae over E-
conditions in the usual way, that is, A(r,¬c) = ¬A(r, c), A(r, c1 ∧ c2) =
A(r, c1) ∧ A(r, c2), and A(r, c1 ∨ c2) = A(r, c1) ∨ A(r, c2) (analogous for
A′).

We demonstrate the transformation A on an example rule schema and
E-constraint. This is the beginning of a running example, which will be
returned to for demonstrating transformation L and then finally Pre.

Example 4.37 (Transformation A). Let r denote the rule schema init of the
program colouring, given in Figure 2.19 and again below:

init(x : atom)

1

x ⇒
1

x :0

and let c denote the E-constraint:

∀( a
1
, ∃( a

1
| atom(a)) ∨ ∃( a

1
| a = b :c and atom(b) and c >= 0))

11Hence the disjunction is finite.
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expressing that “every (unmarked) node is labelled by either an atom or
a list comprising an atom followed by a natural number”. For brevity, in
what follows, we define:

c′1 = ∃( a
1
| atom(a))

and:
c′2 = ∃( a

1
| a = b :c and atom(b) and c >= 0).

With the definition of ∀, we can take c to be the equivalent E-constraint:

¬∃( a
1
,¬c′1 ∧ ¬c

′
2).

Now, applying transformation A to r and c, we get:

A(r, c)
= ¬A(r, ∃( a

1
,¬c′1 ∧ ¬c

′
2))

= ¬A′(∅ →֒ x :0
1
, ∃( a

1
,¬c′1 ∧ ¬c

′
2))

= ¬(
∨

σ∈Σ

∨

e∈εσ
∃(b | γσ,A′(s, (¬c′1 ∧ ¬c

′
2)

σ)))

= ¬(∃( x :0
1
→֒ x :0

1
a

2
,A′(s1,¬c

′
1 ∧ ¬c

′
2))

∨ ∃( x :0
1
→֒ x :0

1
,A′(s2, (¬c

′
1 ∧ ¬c

′
2)

(a7→x:0))))

= ¬(∃( x :0
1
→֒ x :0

1
a

2
,¬A′(s1, c

′
1) ∧ ¬A′(s1, c

′
2))

∨ ∃( x :0
1
→֒ x :0

1
,¬A′(s2, (c

′
1)

(a7→x:0)) ∧ ¬A′(s2, (c
′
2)

(a7→x:0))))

= ¬(∃( x :0
1
→֒ x :0

1
a

2
,

¬∃( x :0
1
a

2
| atom(a),A′(s11, true))

∧ ¬∃( x :0
1
a

2
| a = b :c and atom(b) and c >= 0,A′(s11, true)))

∨ ∃( x :0
1
→֒ x :0

1
,

¬∃( x :0
1
| atom(x :0),A′(s21, true))

∧ ¬∃( x :0
1
| x :0 = b :c and atom(b) and c >= 0,A′(s21, true))))

= ∀( x :0
1
→֒ x :0

1
a

2
,

∃( x :0
1
a

2
| atom(a))

∨ ∃( x :0
1
a

2
| a = b :c and atom(b) and c >= 0))

∧ ∀( x :0
1
→֒ x :0

1
,

∃( x :0
1
| atom(x :0))

∨ ∃( x :0
1
| x :0 = b :c and atom(b) and c >= 0))

where Σ = {(), (a 7→ x : 0)} (here, () denotes the empty substitution that
replaces no variables) and the particular instances of diagrams from the
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construction of A′ are as in Figure 4.10. Note that because c′1, c
′
2 contain

only identity morphisms (and hence their codomains do not introduce new
variables), each instance of A′(si, c

′
j) for i, j ∈ {1, 2} ranges over only one

substitution: the empty substitution.

∅

aa

a

∅

aa

s1 s2

aa

a

a
s1

s11

s2

s21

a

x :0

x :0

x :0x :0x :0

x :0

x :0

x :0

x :0

x :0

x :0

x :0

x :0

x :0

x :0

x :0

x :0

a !→ x :0

Figure 4.10: Instances of diagrams from the construction of A′

The E-condition arising from A(r, c) can be read as follows: “(1) ev-
ery node that is not in the image of the right-hand graph under the the
morphism is either labelled by an atom or an atom followed by a natu-
ral, and (2) the node in the image of the right-hand graph under the mor-
phism is either labelled by an atom or an atom followed by a natural”. Note
that we could already apply simplifications at this stage (e.g. the disjunct
∃( x :0

1
| atom(x :0)) can safely be discarded since it is unsatisfiable). How-

ever, we will wait until the end of this running example (i.e. once Pre(r, c)
is given) before applying any, so that the effects of the transformations can
be followed more easily.

We remark that in the worst case, transformation A can result in a fac-
torial blow-up of the size of an E-condition. One can construct an example
where graphs P ′ and C in Figure 4.9 both have n nodes and n edges, and
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Chapter 4. Verification with E-Conditions

there are more than n! pairwise non-isomorphic graphs E that satisfy the
conditions of the construction.

Now, we define the second of the intermediate transformations, L, which
we adapt from the construction of Theorem 6 in [HP09]. This takes as in-
put an E-condition over the right-hand graph of some (conditional) rule
schema, and transforms it into an E-condition over the left-hand graph. A
match satisfies this new E-condition if and only if comatches satisfy the
original one.

Definition 4.38 (Transformation L). Let r = 〈L⇒ R〉 denote a (conditional)
rule schema, and let c denote an E-condition over R normalised according
to Remark 4.35. The transformation L(r, c) is defined inductively as follows
(all graphs in the construction belong to the class G(EC)). We define:

L(r, true) = true

and:

L(r, ∃(a | γ, c′)) = ∃(b | γ,L(r∗, c′))

if 〈K →֒ R, a〉 has a natural pushout complement (1) with r∗ = 〈Y ←֓
Z →֒ X〉 denoting the “derived” rule by constructing natural pushout (2).
If 〈K →֒ R, a〉 has no natural pushout complement, then L(r, ∃(a | γ, c′)) =
false.

L K R

Y Z X

r :

r∗ :

〈

〈

〉

〉

(1)(2)b a

The transformation L is extended for Boolean formulae in the usual
way, that is, L(r,¬c) = ¬L(r, c), L(r, c1 ∧ c2) = L(r, c1) ∧ L(r, c2), and
L(r, c1 ∨ c2) = L(r, c1) ∨ L(r, c2).

Note that in the construction of L, whilst the morphisms are shifted
to the left-hand graph, no shift or change takes place in the assignment
constraints. The idea is somewhat analogous to the axiom of assignment in
classical Hoare logic: if the assignment constraint holds for the assignment
determined by the match, then it will still hold after the application of the
rule schema for that match.

Example 4.39 (Transformation L). Recall the rule schema init from Ex-
ample 4.37, and the E-condition over the right-hand graph of init given
below:

110



4.3. Transformations of E-Conditions

A(r, c)
= ∀( x :0

1
→֒ x :0

1
a

2
,

∃( x :0
1
a

2
| atom(a))

∨ ∃( x :0
1
a

2
| a = b :c and atom(b) and c >= 0))

∧ ∀( x :0
1
→֒ x :0

1
,

∃( x :0
1
| atom(x :0))

∨ ∃( x :0
1
| x :0 = b :c and atom(b) and c >= 0))

Applying transformation L to the rule schema and E-condition, we get:

L(r,A(r, c)) = ∀( x
1
→֒ x

1
a

2
,

∃( x
1
a

2
| atom(a))

∨ ∃( x
1
a

2
| a = b :c and atom(b) and c >= 0))

∧ ∀( x
1
→֒ x

1
,

∃( x
1
| atom(x :0))

∨ ∃( x
1
| x :0 = b :c and atom(b) and c >= 0))

where the diagrams arising from applications of the construction are as
given in Figure 4.11.

aaax

x

x

x

x :0

x :0

x :0

x :0

Figure 4.11: Instances of diagrams from the construction of L
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The transformation L gives us an E-condition against which we can
check particular matches. What we require – finally – for transformation
Pre, is an E-constraint reasoning about all possible matches of a (condi-
tional) rule schema in a particular graph. We want to assert that all possible
matches of a rule schema in some graph have a certain property with which
we can guarantee that the postcondition will hold after the rule schema is
applied. Note that we assert this only for images of the left-hand graph that
satisfy the dangling condition, rule schema condition, and variable types;
since otherwise, the rule cannot be applied there and it does not matter
whether it satisfies the properties or not.

Definition 4.40 (Transformation Pre). Let c denote an E-constraint, and r =
〈L⇒ R,Γ〉 denote a (conditional) rule schema. Define:

Pre(r, c) = ∀(∅ →֒ L | γr,Dang(r) ∧ τ(r)⇒ L(r,A(r, c)))

where γr is a conjunction of type predicates restricting integer, string, and
atom variables in r to their declared types (as in Definition 4.33).

Example 4.41 (Transformation Pre). Continuing from Examples 4.37 and
4.39, we get:

Pre(r, c) = ∀(∅ →֒ x
1
| atom(x),Dang(r) ∧ τ(r)⇒ L(r,A(r, c)))

= ∀( x
1
| atom(x),L(r,A(r, c)))

= ∀( x
1
| atom(x),

∀( x
1
a

2
, ∃( x

1
a

2
| atom(a))

∨ ∃( x
1
a

2
| a = b :c and atom(b) and c >= 0))

∧ ∀( x
1
, ∃( x

1
| atom(x :0))

∨ ∃( x
1
| x :0 = b :c and atom(b) and c >= 0)))

Since r does not delete any nodes, and does not have a rule schema condi-
tion, Dang(r) ∧ τ(r) = true, simplifying the nested E-constraint generated
by Pre. We can simplify Pre(r, c) further by hand to get:

Pre(r, c) ≡ ∀( x
1
a

2
| atom(x), ∃( x

1
a

2
| atom(a))

∨ ∃( x
1
a

2
| a = b :c and atom(b) and c >= 0))

4.4 Soundness

In this section we prove the soundness of our calculi with E-constraints, i.e.
proving a triple in a calculus for a notion of correctness implies its truth
with regards to that notion of correctness.
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We have already proved soundness for the extensional calculi in Theo-
rems 3.22, 3.23, and 3.24, and so the main task that remains to prove sound-
ness for our calculi with E-constraints is to show that:

1. c ∧App(R) defines SEE[c,R];

2. c ∧ ¬App(R) defines FEE[c,R]; and

3. Pre(r, c) ∨ ¬App({r}) defines WlpE[r, c].

The soundness proof will be presented as follows. First, we will state and
prove a lemma about induced substitutions and satisfaction that is useful
in later proofs. Then, we will prove the correctness of App and Pre in the
sense that they define the assertions in (1–3) above. Finally, the soundness
of our extensional calculi and the correctness of the transformations will be
used to prove the soundness of our verification calculi with E-constraints.

We remark that some of the proofs utilise basic definitions and facts
about pushout and pullback constructions. The essentials are presented
together in Appendix C.

4.4.1 Induced Substitutions and Satisfaction

In this subsection, we state and prove a lemma about the relationship be-
tween induced substitutions and satisfaction that is useful in later proofs.
Intuitively, if a substitution induced by an assignment is defined only for
variables in the graph that the E-condition is over, then the substitution can
be applied (or removed if already there) without affecting satisfiability.

Lemma 4.42 (Induced substitutions and satisfaction). Given an injective
morphism p : Pα →֒ G with P ∈ G(EC), G ∈ G(L), and α a well-typed
assignment with dom(α) = vars(P ), and given an E-condition c over P ,
we have that:

p |= c if and only if p |= cσα .

Proof. The definition of E-conditions gives rise to three cases.

Case One. Let c = true. We have trueσα = true. All morphisms satisfy
true.

Case Two. Let c = ∃(a : P →֒ C | γ, c′).

Only if. Suppose that p |= c. Then there is a well-typed assignment α′

such that Pα = Pα′

and γα
′

= true, and a morphism q : Cα′

→֒ G such that
q ◦ aα

′

= p and q |= (c′)σα′ . Since Pα = Pα′

, α′ must contain at least the
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Chapter 4. Verification with E-Conditions

mappings of α. Let σα be the substitution induced by α. By its definition,
for every variable x in its domain we have that σα(x)

α′

= α(x). Clearly,
p |=α′ ∃(aσα | γσα). The assumption that q : Cα′

→֒ G |= (c′)σα′ and the
definition of induced substitutions gives us:

q : (Cσα)α
′

→֒ G |= ((c′)σα)σα′ .

Together, and with the definition of satisfaction, we get the result that p |=
∃(aσα | γσα , (c′)σα) = cσα .

If. Suppose that p |= cσα . Then there is a well-typed assignment α′ such
that Pα = (P σα)α

′

and (γσα)α
′

= true, and a morphism q : (Cσα)α
′

→֒ G
such that q ◦ (aσα)α

′

= p and q |= ((c′)σα)σα′ . By the definition of induced
substitutions, for every variable x on which σα is defined, σα(x)

α′

= α(x). If
the mappings of α are added to α′, we then have that Pα = Pα′

, γα
′

= true,
and q : Cα′

→֒ G such that q ◦ aα
′

= p and q |= (c′)σα′ . Together, and with
the definition of satisfaction, we get the result that p |= ∃(a | γ, c′) = c.

Case three. Let c denote a Boolean formula over E-conditions over P .
The statement follows from the definition of satisfaction and the hypothe-
sis.

4.4.2 Applicability of Sets of Rule Schemata

In this subsection we will prove that App is “correct”, in the sense that with
negation and conjunction it defines the assertions SE and FE.

To prove the correctness of App we first prove the correctness of the two
intermediate transformations it uses: Dang and τ . Recall that the former is
satisfied by (potential) matches if they satisfy the dangling condition (i.e.
the application of a rule schema will only delete nodes if it will also delete
all edges incident to it), and that the latter is satisfied by (potential) matches
if the rule schema condition evaluates to true under the morphism and
assignment. We state these properties of the transformations formally and
prove them.

We remark that the proof is adapted from that of Theorem 8 in [HP09].

Lemma 4.43 (Dangling condition). For all (conditional) rule schemata r =
〈L ⇒ R,Γ〉, and all injective graph morphisms q : Lα →֒ G with α a well-
typed assignment and G ∈ G(L),

q |= Dang(r) if and only if q satisfies the dangling condition.

Proof. Only if. Assume that q |= Dang(r). By definition of |= and the con-
struction of Dang, we have q |= Dang(r) =

∧

a∈A ¬∃a where A ranges over
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morphisms a : L →֒ L⊕ such that 〈K →֒ L, a〉 has no (natural) pushout
complement. Each L⊕ is obtained from L by adding either (1) a loop, (2) an
edge between distinct nodes, or (3) a new node incident to a non-looping
edge (i.e. the three possible ways a single edge can be added to L). It fol-
lows that there is no assignment α′ and morphism q′ : (L⊕)α

′

→֒ G with
q′ ◦ aα

′

= q. The morphism q satisfies the dangling condition, because no
node in the image of q that would be deleted by r, is incident to an edge in
G outside of the image, i.e. the image of some edge from L⊕ − L in q′.

If. Assume that q : Lα →֒ G satisfies the dangling condition for r. Then
the pair 〈Kα →֒ Lα, q〉 has a pushout complement D ∈ G(L). We assume
that there is an a ∈ A from the construction such that 〈K →֒ L, a〉 has no
pushout complement, and some assignment α′ such that q |=α′ ∃a, then de-
rive a contradiction. This assumption gives us a morphism q′ : (L⊕)α

′

→֒ G
with q′ ◦ aα

′

= q. The assignment α′ is the same as α other than for hav-
ing mappings for the additional variables in L⊕ (i.e. a variable for the extra
edge to those in L, and possibly a variable for an extra node). Construct (2)
(see Figure 4.12) as a pullback of (L⊕)α

′

→֒ G ←֓ D. By the universal prop-
erty of pullbacks, there is a morphism Kα →֒ (K ′)α

′

such that the result-
ing diagrams commute. By the pushout-pullback decomposition, (1) + (2)
has a decomposition into pushouts (1) and (2), and 〈Kα →֒ Lα, aα

′

〉 has a
pushout complement. Clearly, before the application of assignments α and
α′, the pair of morphisms 〈K →֒ L, a〉 has a pushout complement in G(EC).
A contradiction. There is no assignment α′ such that q |=α′ ∃a. Hence we
derive q |=

∧

a∈A ¬∃a = Dang(r), i.e. the result that q |= Dang(r).

←֓

←֓

←

֓

←

֓

L
α

K
α

G D←֓

←

֓

←

֓
q
′

q (K ′)α
′

(L⊕)α
′

a
α

′ (1)

(2)

Figure 4.12: Diagram chasing for a contradiction

Lemma 4.44 (Rule schema condition). Let r = 〈L ⇒ R,Γ〉 denote a con-
ditional rule schema, and let αt denote an assignment for typed variables
defined for exactly the (typed) variables in L12. Let q : Lα →֒ G denote

12Note that vars(Γ) ⊆ vars(L) by definition of conditional rule schemata.
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an injective morphism with G ∈ G(L) and α a well-typed assignment such
that α(x) = αt(x) for every variable x in L. Then,

q |= τ ′(L,Γ) if and only if Γq,αt = true.

Proof. Induction basis. Suppose that Γ has the form t(l1), l1 = l2, l1 \= l2, or
i1 ⊲⊳ i2 with l1, l2 in List, i1, i2 in Integer, and ⊲⊳ in IntRel. Then τ ′(L,Γ) =
∃(L →֒ L | Γ). The assignment constraint is identical to the rule schema
condition, and since α(x) = αt(x) for all variables x in Γ, we have Γα =
Γq,αt . With the fact that q ◦ (L →֒ L)α = q the satisfaction relation |=α holds
always for q and ∃(L →֒ L), and thus the result that q |= τ ′(L,Γ) if and only
if Γq,αt = Γα = true.

Suppose that Γ has the form edge(n1, n2) with n1, n2 in Node. Then
τ ′(L,Γ) = ∃(au : L →֒ L+

u ) ∨ ∃(am : L →֒ L+
m) where L+

u (resp. L+
m) is a

graph equal to L, except for an additional unmarked (resp. marked) edge
whose source is the node with identifier n1, whose target is the node with
identifier n2, and whose label is a variable distinct from all others in L.
Then q |= τ ′(L,Γ) if and only if there is an assignment α′ and morphism
q′u : (L

+
u )

α′

→֒ G or q′m : (L+
m)α

′

→֒ G with q′ ◦aα
′

u = q or q′ ◦aα
′

m = q where α′

is equal to α but with an additional mapping for the new variable to the list
component of an edge in G from q(n1) to q(n2). Such an edge in G exists if
and only if Γq,αt = true. The case when Γ has the form edge(n1, n2, l) with
l in List is analogous, but with the additional requirement that q |= τ ′(L,Γ)
if and only if the new edge in G has as its list component lα = lαt which is
the case if and only if Γq,αt = true.

Induction step. Only if. Suppose that Γ has the form not c with c in Con-
dition. By construction and assumption we have that q |= ¬τ ′(L, c), and by
definition of satisfaction, q 2 τ ′(L, c). By induction hypothesis we get that
cq,αt = false. Together with the semantics of rule schema conditions, we
get the result that Γq,αt = true.

Suppose that Γ has the form c1 and c2 (resp. c1 or c2) with c1, c2 in Condi-
tion. By construction and assumption we have that q |= τ ′(L, c1) ∧ τ

′(L, c2)
(resp. τ ′(L, c1) ∨ τ

′(L, c2)). In both cases we can get the result by applying
the definition of satisfaction for Boolean formulae over E-conditions and
by applying the induction hypothesis.

Induction step. If. Assuming that Γq,αt = true, one can construct a similar
argument in the other direction yielding q |= τ ′(L,Γ).

Using the lemmata for Dang and τ , we prove that App correctly ex-
presses what must be satisfied for a set of conditional rule schemata to be
applicable to a graph.

116



4.4. Soundness

Proposition 4.45 (Applicability of a set of rule schemata). For any set of
(conditional) rule schemataR, and any graph G ∈ G(L),

G |= App(R) if and only if there exists a direct derivation G⇒R H

for some graph H ∈ G(L).

Proof. Define iG : ∅ →֒ G.

Only if. Assume that G |= App(R). By the definitions of |= and App, we
have that iG |= App(R) = app(r1) ∨ . . . ∨ app(rn) with each ri ∈ R. By
assumption, there is a (conditional) rule schema r = 〈L ⇒ R,Γ〉 in R,
and a well-typed assignment α such that iG |=α app(r) = ∃(a : ∅ →֒ L |
γr,Dang(r) ∧ τ(r)). There exists an injective graph morphism q : Lα →֒ G
with q ◦ aα = iG, q |= Dang(r)σα and q |= τ(r)σα . By Lemma 4.42, we have
q |= Dang(r) and q |= τ(r). By Lemma 4.43, the dangling condition is satis-
fied by q. By assumption we have γαr = true, so α adheres to the declared
types of variables, and so there exists an assignment αt for typed variables
such that αt(x) = α(x) for all variables x in L. With this and Lemma 4.44,
Γq,αt = true if τ(r) = τ ′(L,Γ) (i.e. if there is a rule schema condition).
Putting everything together, and by the semantics of rule schema applica-
tion, q is a match for r. Hence there is a direct derivationG⇒r,q H for some
graph H ∈ G(L). As r is in R, we get the result that there exists a graph H
such that G⇒R H .

If. Assume that there exists a graph H such that G ⇒R H . Then there is
a rule schema r ∈ R such that G ⇒r H . Hence there is some instantiation
of the typed variables in L by a typed assignment αt that gives a match
q : Lαt →֒ G for r, and Γq,αt = true if there is a rule schema condition Γ.
In this case, by Lemma 4.44, we have q |= τ ′(L,Γ), and then with Lemma
4.42 get q |= τ ′(L,Γ)σαt = τ(r)σαt . In the case when r has no condition,
this satisfaction relation still holds since τ(r) = true. The morphism q is
guaranteed to satisfy the dangling condition since direct derivations are
constructed with two natural pushouts. With Lemma 4.43 this gives us
that q |= Dang(r). Since αt is defined only for variables in L (variables
appearing in Γ must also appear in L, by the definition of rule schema
conditions), we get q |= Dang(r)σαt . By the definition of |=, we get q |=
Dang(r)σαt ∧ τ(r)σαt . From the construction we have that γr restricts the
instantiations of variables to the types that were declared in r, so clearly
we have that γαt

r = true. Bringing this all together, we have that iG |=αt

app(r) = ∃(∅ →֒ L | γr,Dang(r) ∧ τ(r)) since q ◦ (∅ →֒ Lαt) = iG and by
definition of |=, we get G |= app(r). As app(r) is a disjunct of App(R), by
the definition of disjunction we get the result that G |= App(R).

With this proposition about the transformation App, it is now easy to
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show how – with conjunction and negation – it defines exactly SE and FE
for the assertion language of E-constraints.

Theorem 4.46 (App and conjunction defines SE). For any set of (condi-
tional) rule schemataR, and any E-constraint c,

c ∧App(R) defines SEE[c,R].

Proof. Suppose that some G satisfies c ∧App(R). By definition of conjunc-
tion, this is the case if and only if G |= c and G |= App(R). By Proposition
4.45, G |= App(R) if and only if G ⇒R H for some H ∈ G(L), or by the
semantics of rule schema sets, there is some H ∈ JRKG. Together we get
that G |= c ∧ App(R) if and only if (G |= c and H ∈ JRKG for some graph
H). The E-constraint c ∧App(R) defines SEE[c,R] as characterised by Def-
inition 3.11.

Theorem 4.47 (Negated App and conjunction defines FE). For any set of
(conditional) rule schemataR, and any E-constraint c,

c ∧ ¬App(R) defines FEE[c,R].

Proof. Suppose that some G satisfies c ∧ ¬App(R). By definition of con-
junction, this is the case if and only if G |= c and G |= ¬App(R). By
definition of negation, G does not satisfy App(R). By Proposition 4.45,
G 2 App(R) if and only if G 6⇒R, and by the semantics of rule schema
sets, fail ∈ JRKG. Together we get that G |= c ∧ ¬App(R) if and only if
(G |= c and fail ∈ JRKG). The E-constraint c ∧ ¬App(R) defines FEE[c,R]
as characterised by Definition 3.12.

4.4.3 From Postconditions to Preconditions

In this subsection we will prove that Pre(r, c) is correct, in the sense that
with ¬App({r}) it defines the assertion WlpE[r, c].

To prove the correctness of Pre, we must first prove the correctness
of the two intermediate transformations it uses: A and L. Recall that the
former transforms an E-constraint into an E-condition over the right-hand
graph of a rule schema, and that the latter transformation then shifts it
along to be over the left-hand graph of the rule schema. We state proposi-
tions about A and L first and prove them, before proving the correctness of
Pre.
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Proposition 4.48 (From E-constraints to E-conditions overR). Let c be an E-
constraint normalised according to Remark 4.35. For all (conditional) rule
schemata r = 〈L ⇒ R,Γ〉 sharing no variables with c13, and all injective
graph morphisms h : Rα →֒ H with H ∈ G(L) and α a well-typed assign-
ment with dom(α) = vars(L),

h |= A(r, c) if and only if H |= c.

In order to prove Proposition 4.48, we first prove a lemma stating that
an E-condition c over P can be shifted along an injective graph morphism
p : P →֒ P ′ with P, P ′ ∈ G(EC). The proof is adapted from the proof of
Lemma 3 in [HP09]. On the one hand, it is simplified since we consider
only injective graph morphisms in our E-conditions, but on the other hand,
it is made more complicated by the separation of graphs over the syntactic
and semantic label alphabets.

Lemma 4.49 (Shifting E-conditions over morphisms). Let p : P →֒ P ′ and
p′′ : (P ′)α →֒ H denote injective morphisms with P, P ′ ∈ G(EC) and H ∈
G(L). Let c denote an E-condition over P in which the nodes and edges of
each graph (except those also in P ) are labelled by list components over dis-
tinct variables, and in which assignment constraints are normalised accord-
ing to Remark 4.35. Let α denote a well-typed assignment that is undefined
for variables only appearing in the nesting of c, and vars(C) − vars(P ′) 6⊆
dom(α) for all codomains C of the outermost morphisms of c. Then, we
have that:

p′′ |= A′(p, c)σα if and only if p′′ ◦ pα |= cσα .

Proof of Lemma 4.49. Induction basis. Let c = true. Then we have p′′ |=
A′(p, true)σα = true and p′′ ◦ pα |= true. All morphisms satisfy true.

Induction step. Let c = ∃(a : P →֒ C | γ, c′). Figure 4.13 contains the dia-
gram from the construction before and after the application of well-typed
assignments α and α′ in the following.

Only if. Assume that p′′ |= A′(p, c)σα , i.e.

p′′ |= A′(p, c)σα =
∨

σ∈Σ

∨

e∈εσ

∃(b : P ′ →֒ E | γσ,A′(s : Cσ →֒ E, (c′)σ))σα .

There exists at least one σ ∈ Σ and one e ∈ εσ such that:

p′′ : (P ′)α →֒ H |= ∃(b : P ′ →֒ E | γσ,A′(s, (c′)σ))σα .

13It is always possible to replace the label variables in c with new ones that are distinct
from those in r.
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Figure 4.13: Instantiating the construction with assignments

By definition of |= and induced substitutions, there exists a well-typed as-
signment α′ with dom(α) ⊆ dom(α′), such that:

p′′ |=α′ ∃(b | γσ,A′(s, (c′)σ)).

By definition of |=α′ and the fact that vars(P ′) ⊆ dom(α) ⊆ dom(α′), there
exists an injective graph morphism q′′ : Eα′

→֒ H with p′′ = q′′ ◦ bα
′

. Define
q′ = q′′ ◦ sα

′

and p′ = p′′ ◦ pα, both of which are injective since injectivity
is closed under composition. By construction, a′ ◦ p = q ◦ a is a pushout.
Since σ only replaces variables introduced in C, and thus also present in
C ′ but not P or P ′, we have that P σ = P , (P ′)σ = P ′, and (a′)σ ◦ p =
qσ ◦ aσ is a pushout. Clearly, applying α′ to the morphisms of this pushout
results in a pushout of graphs from G(L). By construction and application
of assignments, we have bα

′

= eα
′

◦ ((a′)σ)α
′

and sα
′

= eα
′

◦ (qσ)α
′

. With
everything together,

p′′ ◦ pα = q′′ ◦ bα
′

◦ pα

= q′′ ◦ eα
′

◦ ((a′)σ)α
′

◦ pα

= q′′ ◦ eα
′

◦ (qσ)α
′

◦ (aσ)α
′

= q′′ ◦ sα
′

◦ (aσ)α
′

= q′ ◦ (aσ)α
′

= p′

and thus p′ : Pα →֒ H |=α′ ∃(aσ : P →֒ Cσ | γσ).
By assumption we have:

q′′ : Eα′

→֒ H |= A′(s : Cσ →֒ E, (c′)σ)σα′
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and by induction hypothesis:

q′ : (Cσ)α
′

→֒ H |= ((c′)σ)σα′ .

With the definition of |= we get that:

p′ |=α′ ∃(aσ : P →֒ Cσ | γσ, (c′)σ).

Since α′ has at least the mappings of α, α is undefined for variables only
occurring within (c′)σ, and σ does not introduce variables not already in
P ′, we have that:

p′ |=α′ ∃(aσ : P →֒ Cσ | γσ, (c′)σ)σα .

Finally, note first that dom(σ) ⊆ vars(C) − vars(P ′) 6⊆ dom(α), and sec-
ondly, that one can always define an assignment that has the net effect of
first applying substitution σ and then α′. Then, we get the result that:

p′ = p′′ ◦ pα |= ∃(a | γ, c′)σα .

If. Assume that p′′ ◦ pα |= cσα , i.e.

p′′ ◦ pα |= ∃(a : P →֒ C | γ, c′)σα .

By definition of |= and induced substitutions, there exists a well-typed as-
signment α′ with dom(α) ⊆ dom(α′), such that:

p′′ ◦ pα |=α′ ∃(a : P →֒ C | γ, c′).

Define p′ = p′′ ◦ pα, which is injective since injectivity is closed under com-
position. By the definition of |=α′ , there exists an injective graph morphism
Cα′

→֒ H with (Cα′

→֒ H) ◦ aα
′

= p′. Consider substitutions σ ∈ Σ
where (γσ)α

′

= true, and injective graph morphisms q′ : (Cσ)α
′

→֒ H
with q′ ◦ (aσ)α

′

= p′ and q′ |= ((c′)σ)σα′ (α′ has mappings for additional
variables introduced by σ as by construction they must be in the domain of
p′′). At least one such morphism is guaranteed to exist (i.e. if σ is the empty
substitution, by assumption).

From the construction yield pushouts qσ◦aσ = (a′)σ◦pwith pushout ob-
jects (C ′)σ. Clearly, the morphisms under the assignment α′ yield pushouts
(qσ)α

′

◦ (aσ)α
′

= ((a′)σ)α
′

◦ pα. By the universal property of pushouts, for
each of the pushouts there is a unique morphism h : ((C ′)σ)α

′

→ H with
p′′ = h◦((a′)σ)α

′

and q′ = h◦(qσ)α
′

. Consider y◦x = h, a surjective-injective
factorisation of h with x : ((C ′)σ)α

′

→ X surjective, y : X →֒ H injective,
X ∈ G(L), and injective morphisms t = x◦(qσ)α

′

and u = x◦((a′)σ)α
′

. Now,
we argue that for whichever X ∈ G(L) is obtained from the factorisation,
the construction yields a graph E ∈ G(EC) such that Eα′ ∼= X .
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Suppose that x is an injective morphism, and hence an isomorphism
since it is also surjective, i.e. ((C ′)σ)α

′ ∼= X . The construction yields an
isomorphism, i.e. E ∼= Cσ. It follows that Eα′ ∼= X . Suppose now that
x is non-injective, i.e. some nodes (edges) in (Cσ)α

′

are merged. Since t, u
are injective, the images of (P ′)α and (Cσ)α

′

in X must overlap. Hence, at
least one variable in Cα′

must be instantiated to some list in (P ′)α such that
node (or edge) labels in the two graphs under α′ are equal. These nodes
(or edges) may not be possible to merge at the syntactic level (e.g. x*x and
a could evaluate to the same integer but are distinct expressions). How-
ever, for non-empty σ ∈ Σ, a variable a in C can be replaced by a list in
P ′ such that α′(a) = σ(a)α

′

. (Note in particular that the labels in C − P ,
to which σ is applied, are simply distinct variables and not composite ex-
pressions.) Now, with P ′ and C sharing at least one label, the construction
yields surjective morphisms e : Cσ → E where E ≇ Cσ and Eα′ ∼= X . The
construction gives us s = e ◦ qσ and b = e ◦ (a′)σ. It follows that eα

′

, q′′, sα
′

,
and bα

′

are equal to x, y, t, and u up to isomorphism.
In all cases,

p′′ = h ◦ ((a′)σ)α
′

= q′′ ◦ eα
′

◦ ((a′)σ)α
′

= q′′ ◦ bα
′

giving us:

p′′ |=α′ ∃(b | γσ).

In each case the assumption give us:

q′ : (Cσ)α
′

→֒ H |= ((c′)σ)σα′

and by induction hypothesis:

q′′ : Eσ →֒ H |= A′(s, (c′)σ)σα′ .

With the definition of satisfaction, we get:

p′′ |=α′ ∃(b | γσ,A′(s, (c′)σ)).

With the definition of |= and induced substitutions, and since α′ has at least
the mappings of α, we get:

p′′ |= ∃(b | γσ,A′(s, (c′)σ))σα

and finally, with the definition of |= for Boolean formulae over E-conditions,
we get the result that:
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p′′ |=
∨

σ∈Σ

∨

e∈εσ

∃(b | γσ,A′(s, (c′)σ))σα

= A′(p, c)σα .

When considering Boolean formulae over E-conditions, the statement
follows from the definition and induction hypothesis.

Now, we can easily prove Proposition 4.48 since it is simply an instance
of Lemma 4.49.

Proof of Proposition 4.48. From the construction of A in Definition 4.36, the
statement of Lemma 4.49, Lemma 4.4214, and that dom(α) ∩ vars(c) = ∅,
we get:

h |= A(r, c) if and only if

h |= A(r, c)σα iff

h |= A′(iR, c)
σα iff

h ◦ iαR |= cσα iff

iH : ∅α →֒ H |= cσα iff

iH : ∅ →֒ H |= c iff

H |= c.

Proposition 4.50 (E-conditions over R to over E-conditions over L). For
every (conditional) rule schema r = 〈L ←֓ K →֒ R,Γ〉, every E-condition
c over R normalised according to Remark 4.35, and every direct derivation
G ⇒r,g,h H with g : Lα →֒ G and h : Rα →֒ H where G,H ∈ G(L) and α is
a well-typed assignment with dom(α) ⊆ vars(L) ∪ vars(γ) for outermost
assignment constraints γ in c,

g |= L(r, c)σα if and only if h |= cσα .

14If vars(R) ⊂ vars(L), we make the assumption that dom(α) = vars(R) without loss of
generality, since no additional variables in L appear in c, nor can they be introduced by the
construction.
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Our proof of the proposition adapted from the proof of Theorem 6 in
[HP09]. As before, the proof is simplified by the restriction to injective
graph morphisms in E-conditions, but is made more complicated by the
separation of graphs over the syntactic and semantic label alphabets, the
use of partially labelled graphs, and the use of natural pushouts.

Proof. We prove the proposition using structural induction.
Induction basis. Let c = true. By construction, we get

L(r, c)σα = L(r, true)σα = true.

We have g |= true and h |= true. All morphisms satisfy true.

Induction step. For an E-condition c = ∃(a | γ, c′) over R, the construction
distinguishes two cases. On both sides of the statement, we will use α′ to
denote the satisfying assignment, which we assume to be minimal (in that
it is undefined for variables not appearing in the E-conditions), and also
that dom(α) ⊆ dom(α′). With the definition of induced substitutions, and
for E-conditions of this form, it is sufficient to show:

g |=α′ L(r, ∃(a | γ, c′)) if and only if h |=α′ ∃(a | γ, c′).

Let l and s denote the inclusions K →֒ L and K →֒ R, respectively. Let
(1) and (2) denote the natural pushouts of the construction, and (1)α

′

and
(2)α

′

denote the same diagrams but after the application of the well-typed
assignment α′ to the morphisms (as in Figure 4.14).
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Figure 4.14: Instantiating the construction with assignments

Case one. The morphisms 〈s, a〉 have a natural pushout complement. By
construction, we have L(r, ∃(a | γ, c′)) = ∃(b | γ,L(r∗, c′)) where b : L →֒ Y
and r∗ = 〈Y ←֓ Z →֒ X〉.

A. First, we show that given an injective graph morphism q′ : Y α′

→֒ G
with q′ ◦ bα

′

= g, there is a decomposition of the pushouts (see Figure
4.15) which yields the injective graph morphism q : Xα′

→֒ H with
q ◦ aα

′

= h (required to show that h |=α′ c holds). By Lemma C.5
there is a pullback of q′ and D →֒ G, obtaining the pullback object
F ∈ G(L⊥). By the universal property of (injective) pullbacks, there
is a unique (injective) graph morphism Kα →֒ F such that the aris-
ing diagrams commute. By the pushout-pullback decomposition of

124



4.4. Soundness

Lemma C.9, (2′) and (4′) are both natural pushouts. By construction
bα

′

must satisfy the dangling condition with respect to lα, and so by
Lemma C.7 a natural pushout complement is unique up to isomor-
phism. Hence F ∼= Zα′

and (2′) is equal to (2)α
′

from the construction
(up to isomorphism).
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Figure 4.15: Decomposing a rule application

Now construct the natural pushout (1′) of Kα →֒ F and sα. By
the uniqueness of natural pushout complements, (1′) equals (1)α

′

up
to isomorphism. By the universal property of pushouts, there is a
unique morphism q : Xα′

→ H with q ◦ aα
′

= h. By pushout decom-
position (Lemma C.8), diagram (3′) is also a pushout. Since q′ and
hence F →֒ D are injective, it follows that q is also injective.

B. Given an injective graph morphism q : Xα′

→֒ H with q ◦aα
′

= h, one
can yield q′ : Y α′

→֒ G with q′ ◦ bα
′

= g by instantiating (1), (2) into
(1)α

′

, (2)α
′

, and decomposing these into (1′)–(4′) as above, i.e. start
by constructing (3′) as a pullback of q and D →֒ H .

C. The induction hypothesis states that q′ : Y α′

→֒ G |= L(r∗, c′)σα′ if and
only if q : Xα′

→֒ H |= (c′)σα′ . Together with the definitions of L, |=,
and the statements A–B above, we have:

g |=α′ L(r, ∃(a | γ, c′)) = ∃(b | γ,L(r∗, c′))

iff γα
′

= true and there exists q′ : Y α′

→֒ G such that q′ ◦ bα
′

= g

and q′ : Y α′

→֒ G |= L(r∗, c′)σα′

iff γα
′

= true and there exists q : Xα′

→֒ H such that q ◦ aα
′

= h

and q |= (c′)σα′

iff h |=α′ ∃(a | γ, c′)

Case two. The morphisms 〈s, a〉 do not have a natural pushout complement.
By construction, we have L(r, ∃(a | γ, c′)) = false. The problem reduces
to showing that g |= false if and only if h |= ∃(a | γ, c′)σα . No morphism
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satisfies false, hence it is sufficient to argue that h does not satisfy ∃(a |
γ, c′)σα by any assignment.

Assume that h |= ∃(a | γ, c′)σα . Then there exists a well-typed assign-
ment α′ with dom(α) ⊆ dom(α′) such that h |=α′ ∃(a | γ, c′), and hence
an injective graph morphism q : Xα′

→֒ H with q ◦ aα
′

= h. Then, as in
case one, the pushout can be decomposed into pushouts (1′) and (3′). This
means that the morphisms 〈s, a〉 have a pushout complement, which con-
tradicts the assumption.

When considering Boolean formulae over E-conditions overR, the state-
ment follows from the definition and induction hypothesis.

We conclude this subsection by proving that Pre(r, c) defines a liberal
precondition, and then with ¬App({r}) defines a weakest liberal precondi-
tion WlpE[r, c]. Since the construction of Pre uses several transformations
considered already, our proof will directly use the propositions we have
been proving up to this point.

Theorem 4.51 (Pre defines a liberal precondition). Let c be an E-constraint,
the graphs of which are labelled with list components over (sequences of)
distinct variables (see Remark 4.35). For any (conditional) rule schema r,
Pre(r, c) defines a liberal precondition in the sense that for every direct
derivation G⇒r H ,

G |= Pre(r, c) if and only if H |= c.

Proof. Define iG : ∅ →֒ G.

Only if. Suppose that G |= Pre(r, c). Then by definition of |= and the
construction of Pre, there is no assignment α such that:

iG |=α ∃(∅ →֒ L | γr,Dang(r) ∧ τ(r) ∧ ¬L(r,A(r, c)))

Observe that removing the conjunct ¬L(r,A(r, c)) yields the E-constraint:

∃(∅ →֒ L | γr,Dang(r) ∧ τ(r)) = app(r) = App({r})

i.e. an E-constraint satisfied by a graph G if there is a morphism Lα →֒ G
for some α that is a match for r, i.e. there is a direct derivation G⇒r H (by
Proposition 4.45). Hence Pre(r, c) expresses that there is no match for r that
does not also satisfy L(r,A(r, c))σα , i.e. by definition of |=, there is no match
q : Lα →֒ G 2 L(r,A(r, c))σα . Hence for all matches q,
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q : Lα →֒ G |= L(r,A(r, c))σα

iff h : Rα →֒ H |= A(r, c)σα

iff h : Rα →֒ H |= A(r, c)

iff H |= c

by Lemma 4.42, Proposition 4.48, and Proposition 4.50.

If. Suppose that H |= c where G ⇒r,q,h H for any pair of matches
q : Lα →֒ G and comatches h : Rα →֒ H with α an assignment for typed
variables. The following is true of all matches q by α. Since the variables
of α correspond with the types in r, γαr = true. If there is a rule schema
condition Γ, then Γq,α = true and so by Lemma 4.44 we have that q |=
τ ′(L,Γ) = τ(r). (If there is no rule schema condition, then trivially q |=
τ(r).) By Lemma 4.43 we have that q |= Dang(r).

By Lemma 4.42, Proposition 4.48, and Proposition 4.50:

H |= c

iff h |= A(r, c)

iff h |= A(r, c)σα

iff q |= L(r,A(r, c))σα

i.e. there is no match q that does not satisfy L(r,A(r, c))σα . Together, and
with the definition of satisfaction and the fact that q ◦ (∅ →֒ L)α = iG,

iG |= ¬∃(∅ →֒ L | γr,Dang(r) ∧ τ(r) ∧ ¬L(r,A(r, c)))

which we rearrange and abbreviate to the result that:

G |= ∀(L | γr,Dang(r) ∧ τ(r)⇒ L(r,A(r, c))).

Corollary 4.52 (Pre and App define a liberal precondition). Let r denote
a (conditional) rule schema and c and E-constraint. Then we have that
Pre(r, c) ∨ ¬App({r}) is a liberal precondition relative to r, c.

Theorem 4.53 (Pre and App define a weakest liberal precondition). Let r
denote a (conditional) rule schema, c an E-constraint, and a a liberal pre-
condition relative to r, c. Then,

a⇒ Pre(r, c) ∨ ¬App({r})

i.e. Pre(r, c) ∨ ¬App({r}) defines a weakest liberal precondition WlpE[r, c].
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Chapter 4. Verification with E-Conditions

Proof. Let G denote any graph in G(L) and assume that G |= a.

Case one. Suppose that there exists a direct derivation G⇒r H for some
H . By the definition of liberal preconditions, H |= c, and by Theorem 4.51,
G |= Pre(r, c). Together and with the definition of disjunction, we get that
G |= a⇒ Pre(r, c) ∨ ¬App({r}).

Case two. Suppose that there does not exist a direct derivation from G
via r. By Proposition 4.45, G |= ¬App({r}) and so G |= a ⇒ Pre(r, c) ∨
¬App({r}).

Hence for any graph G satisfying a liberal precondition a, we can de-
duce that G satisfies Pre(r, c) ∨ ¬App({r}) in both the case that r is ap-
plicable and r is not, and so we get the result that |= a ⇒ Pre(r, c) ∨
¬App({r}).

4.4.4 Soundness Theorems

Finally, we state the soundness theorems for our verification calculi with E-
constraints. Soundness here follows from the soundness of our extensional
calculi in Chapter 3, as well as the results about defining Wlp, SE, and FE
with E-constraints.

Theorem 4.54 (Soundness for partial correctness). For all (restricted) graph
programs P and E-constraints c, d,

⊢par {c} P {d} implies |=par {c} P {d}.

Proof. The soundness of [ruleapp]wlp, [ruleset], [comp], [if], [try], [!], and
[cons] follows from the soundness of the extensional calculus for partial
correctness (Theorem 3.22), and from Theorems 4.53, 4.46, and 4.47 about
defining Wlp, SE, and FE.

The soundness of [ruleapp] (resp. [nonapp]) follows from that of the
axiom [ruleapp]wlp by dropping the disjunct ¬App({r}) (resp. dropping
the disjunct Pre(r, c) and setting c = false).

Theorem 4.55 (Soundness for weak total correctness). For all (restricted)
graph programs P and E-constraints c, d,

⊢wtot {c} P {d} implies |=wtot {c} P {d}.

Proof. Follows from Theorems 3.23, 4.53, 4.46, 4.47, and from the fact that
sets of (conditional) rule schemata always terminate (with a graph or fail-
ure).

128



4.5. The Completeness Problem

Theorem 4.56 (Soundness for total correctness). For all (restricted) graph
programs P and E-constraints c, d,

⊢tot {c} P {d} implies |=tot {c} P {d}.

Proof. Follows from Theorems 3.24, 4.53, 4.46, 4.47, and from the fact that
sets of (conditional) rule schemata always terminate (with a graph or fail-
ure).

4.5 The Completeness Problem

Having shown the soundness of our calculi with E-constraints, the natu-
ral next question to ask is whether they are also relatively complete, i.e.
whether all true Hoare triples can be proven in the calculi relative to an
oracle for deciding the validity of assertions.

In Section 3.6.3 we proved the relative completeness of our extensional
partial correctness calculus. This proof however assumed that the asser-
tion language was expressive, i.e. able to express weakest liberal precon-
ditions relative to arbitrary programs and postconditions. With a proof of
expressiveness for E-constraints, we would inherit the relative complete-
ness result for the partial correctness calculus of this chapter (albeit for the
restricted definition of graph programs that we use.)

E-constraints however are not expressive because nested conditions are
not: there are iterated programs and postconditions for which we cannot
express the weakest precondition. Example 5.22 of [Pen09] demonstrates
this, requiring a weakest precondition e that expresses: “the number of
nodes is even”. This cannot be expressed by nested conditions, nor E-
constraints; it is a non-local property.

However, the fact that E-constraints are not expressive does not nec-
essarily mean that we do not have relative completeness. We cannot, for
example, even denote e in a specification as an E-constraint, so we cannot
claim that some triple |= {e} P {d} is some counterexample to relative com-
pleteness! Hence it remains an open question as to whether all denotable
valid triples |= {c} P {d} can be proven ⊢ {c} P {d}; we just cannot inherit
relative completeness from the extensional calculi since we do not have
expressiveness. (Although, an interesting item of future work would be
to attempt to determine a minimum extension of E-conditions that would
make it expressive: path properties, counting?)

Note that while the question of relative completeness remains open, we
do still however have completeness for termination, the proof of which
did not require any assumptions (e.g. expressiveness) about the assertion
language.
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4.6 Comparison to the Oldenburg Approach

The most closely related work to our own is that which originated from An-
negret Habel’s group at the Carl von Ossietzky University of Oldenburg,
whilst Karl-Heinz Pennemann was working there as a Ph.D. student; hence
dubbed in this thesis as the “Oldenburg15 approach”. They laid the foun-
dations for assertional reasoning about programs based on graph transfor-
mation (see e.g. [HP09, Pen09]), contributing weakest precondition calculi
for proving correctness relative to first-order structural properties. Our ap-
proach of course is adapted from theirs: in the following we make a com-
parison and discuss where we have gone beyond.

A first comparison to be made is in the programs we considered. Al-
though their programs are based on the same minimal and complete core
as GP [HP01], they consider graphs over finite label alphabets, they do
not support the relabelling DPO approach, and do not support expressions
over labels (attributes) as in the rules of GP (although they do allow nodes
and edges to be selected and unselected). While Pennemann does show
in Fact 4.20 of [Pen09] that relabelling of nodes can be simulated by pro-
grams in his framework, such simulations are not practical in our setting of
expressions and infinite label alphabets (a rule that relabels, for example,
an integer label x of some node to x+1 would require an infinite number
of simulations as described in Fact 4.20). A contribution we thus made
beyond the Oldenburg work is the ability to reason about and prove prop-
erties not just about graph structure, but also about data, i.e. relations and
constraints between labels drawn over an infinite label alphabet. Hence
we have expanded the class of problems we can model and reason about
as graph programs (many graph algorithms, for example, exploit informa-
tion encoded as labels, such as colours and weights). We also argue that
our approach simplifies reasoning about properties that are completely in-
dependent of labels (e.g. “the graph is non-empty”): we would write an
E-condition with its graphs labelled over distinct and unconstrained vari-
ables (representing any labels in L), as opposed to a disjunction of nested
conditions over all combinations of the entire label alphabet.

A second comparison is to be made in how our program specifica-
tions are proven correct. Whereas we adopted a Hoare-style approach,
Habel, Pennemann, and Rensink followed Dijkstra [Dij75, Dij76] and de-
fined weakest precondition calculi for graph programs [HPR06]. To prove
a specification ⊢tot {c} P {d} they require one to show the validity of c ⇒
Wp(P, d), where Wp is a transformation from programs and postcondi-
tions to weakest preconditions. The idea is to automate as much as possi-
ble, handing the task of deciding validity over to a theorem prover [Pen08,
Pen09]. In the context of finite graphs, the problem is undecidable (and not

15Some collaborators were otherwise affiliated, e.g. Arend Rensink.
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even semidecidable): should automation then fail, we might be left with
a difficult implication to try and prove (or refute) by other means. With
Hoare logic we instead aim from the outset for human-guided composi-
tional reasoning in proofs: we ultimately envisage as much of this reason-
ing implemented as possible (e.g. in Isabelle), with human input required
for isolated, difficult parts of the proof (e.g. finding invariants). Both of our
approaches of course suffer from the difficulty of finding invariants for it-
eration constructs. In the weakest precondition calculi, the construction for
iterated programs generates an infinite conjunction of nested conditions.
Indeed, it is argued that this is a necessity for expressing the weakest pre-
conditions of such programs. We however prefer to require that loop in-
variants remain finite E-conditions – even at the expense of not being able
to express certain weakest preconditions (and only approximate them) –
because infinite E-conditions are a strictly more expressive formalism. One
could, for example, express the existence of an arbitrary-length path by an
infinite disjunction of E-conditions (each disjunct expressing the existence
of an i-length path, for all 1 ≤ i).

A final comparison to make is in the generality of our work. Whereas
our work is tailored to graphs and GP, the Oldenburg approach is presented
for more abstract objects than graphs, so that their results can be applied in
other graph-like settings. Our work generalises in a different way, in that
our calculi are extensional and allow for user-defined assertion languages
to be “plugged in”, and – subject to showing certain conditions – inherit
properties like soundness. In particular, our framework does not even re-
quire that assertions be logical ones: it is quite fine, for example, to use
graph grammars, graph reduction specifications [BPR04b], or even graph
programs themselves.

4.7 Related Work

The basic ideas of E-conditions originated in the 90s with negative applica-
tion conditions and graph consistency constraints [HHT96, HW95]. Neg-
ative application conditions have the form ¬∃(L → C) or ¬∃(R → C),
and are given with rules r : 〈L ⇒ R〉 to restrict the permissible contexts
of matches and comatches. Graph consistency constraints have the form
∀(∅ → C, ∃(C → C ′)). Rensink in [Ren04] generalised these concepts, and
showed how first-order logic (over edge-labelled graphs without parallel
edges) has an equivalent representation as a recursively nested set of mor-
phisms. Along the lines of Rensink, nested conditions (allowing parallel
edges) were described in [HPR06, HP09] in which they were used to define
a weakest preconditions semantics for high-level programs – see Section
4.6. We proposed E-conditions in [PP10a, PP12] as an extension of nested
conditions – adding expressions – allowing us to target the verification of
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a graph transformation language that manipulated labels as well as struc-
ture. A similar approach was used earlier by Orejas [Ore08] for attributed
graph constraints, but lacked for example the nesting of E-conditions (but
on the other hand, they were able to define a sound and complete inference
system for their fragment of graph constraints [OEP10]).

Efforts have been made to lift these specification formalisms to more
general objects than graphs. For example, nested conditions have been
considered in the framework of weak adhesive HLR categories [HPR06,
HP09], making the results applicable for other graph-like structures such as
Petri-nets and hypergraphs. Some classical results from graph transforma-
tion (e.g. local Church-Rosser, local confluence, embedding) have already
been generalised to high-level transformation systems with nested condi-
tions [EGH+13, EGH+12]. Bruggink et al. [BCHK11] lifted nested appli-
cation conditions to the categorical setting of reactive systems (as defined
by Leifer and Milner), and showed that several constructions (e.g. comput-
ing weakest preconditions) can be defined more elegantly in this general
setting.

Habel and Radke in [HR10] extended nested conditions with hyperedge
replacement systems (as in [Hab92]), making the formalism more expres-
sive and able to capture several non-local properties (e.g. arbitrary-length
paths, connectedness). With a generalisation of the transformation Pre (ef-
forts are underway [Rad10]), the formalism could be plugged in to our ex-
tensional calculi to allow for practical proofs more powerful than those pre-
sented in this thesis.

4.8 Summary

In this chapter we have:

• extended the graph conditions specification formalism with expres-
sions (E-constraints) to allow for graphical reasoning about the struc-
ture and data of graphs;

• instantiated our extensional Hoare calculi with E-constraints;

• defined transformations Pre and App (for a restricted class of pro-
grams) which define the assertions Wlp, SE, and FE;

• proven the correctness of these transformations and hence the sound-
ness of the calculi with E-constraints;

• discussed the open problem of whether or not our calculi with E-
constraints are relatively complete;

• compared our approach with the weakest preconditions approach
from Oldenburg.
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Chapter 5

Verification Examples

In the previous two chapters we have described (1) extensional Hoare cal-
culi – axiomatic semantics – for graph programs with three notions of cor-
rectness; and (2) an assertion language for these calculi expressive enough
to define the special assertions Pre, SE, and FE (under certain restrictions).
Up to this point we have demonstrated the concepts, definitions, and trans-
formations on small and partial examples. This is fine, of course, for help-
ing to explain particular technical details. But what we have not attempted
to show just yet is that our ideas can be used together to verify interesting
properties of interesting graph programs.

This chapter revisits and introduces some graph programs, and veri-
fies a number of partial, weak total, and total correctness specifications. We
focus on using our proof calculi with E-constraints, but later consider a pro-
gram and specification that require an assertion language more expressive.

5.1 Computing a Graph Colouring

First, we return to the graph colouring1 program introduced in Chapter 2,
and use our proof calculi with E-constraints to prove that given a suitable
input graph, any output graph is correctly coloured. Moreover, we prove
that the program is totally correct, i.e. will always terminate and never fail.

We give the program colouring again in Figure 5.1. Given a graph in
which all (unmarked) nodes are labelled with atoms, recall that the pro-
gram first appends an initial colour of 0 to each node label, before repeat-
edly matching adjacent nodes with the same colour and incrementing the
colour of the target. At termination, the graph is returned with a colouring
encoded into the labels.

1Recall that a colouring is an assignment of natural numbers to nodes such that no two
adjacent nodes have the same colour.
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main = init!; inc!

init(x : atom) inc(i : int; k : list; x, y : atom)

1

x ⇒

1

x :0 x :i y :i

1 2

k ⇒ x :i y :i+1

1
2

k

Figure 5.1: The program colouring

Example 5.1 (Partial correctness of colouring). We begin by formalising a
partial correctness specification of colouring using E-constraints:

Precondition “every (unmarked) node is labelled by an atom”

∀( a
1
, ∃( a

1
| atom(a)))

Postcondition “every (unmarked) node is labelled by a list b : c with b
an atom and c a natural number, and adjacent nodes are distinctly
coloured”

∀( a
1
, ∃( a

1
| a = b :c and atom(b) and c >= 0))

∧ ¬∃( x :i y :i
k

| atom(x, y) and int(i))

Note that the specification we are proving does not guarantee anything
about marked nodes, or nodes linked by marked edges. We could write a
stronger specification that requiring their absence, but we choose not to in
order to keep the example simple.

We give a proof tree for this specification in Figure 5.2, with the precon-
dition, program, and postcondition forming the triple at the root of the tree.
For clarity, we split the postcondition into two parts: d and ¬App({inc}).
This makes clear the insight that part of the postcondition is a direct result
of the non-applicability of inc once the iteration terminates. The assertion
d itself is an invariant for inc, and is inferred from the invariant of init
and the non-applicability of that rule schema once its iteration terminates.

Note that we give simplified (by hand) E-constraints from Pre in Figure
5.2. The actual results of the transformation are given in full in Figure 5.3.

The three applications of [cons] have side conditions to be shown, i.e.
implications that must be shown to be valid. We argue that this is the case
for the non-trivial implications:
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[ruleapp]
{Pre(init, e)} init {e}

[cons]
{e} init {e}

[!]
{e} init! {e ∧ ¬App({init})}

[cons]
{c} init! {d}

[ruleapp]
{Pre(inc, d)} inc {d}

[cons]
{d} inc {d}

[!]
{d} inc! {d ∧ ¬App({inc})}

[comp]
⊢par {c} init!; inc! {d ∧ ¬App({inc})}

c = ∀( a
1
, ∃( a

1
| atom(a)))

d = ∀( a
1
, ∃( a

1
| a = b :c and atom(b) and c >= 0))

e = ∀( a
1
, ∃( a

1
| atom(a))

∨ ∃( a
1
| a = b :c and atom(b) and c >= 0))

¬App({init}) = ¬∃( x | atom(x))

¬App({inc}) = ¬∃( x :i y :i
k

| atom(x, y) and int(i))

Pre(init, e) ≡ ∀( x
1
a

2
| atom(x), ∃( x

1
a

2
| atom(a))

∨ ∃( x
1
a

2
| a = b :c and atom(b) and c >= 0))

Pre(inc, d) ≡ ∀( x :i y :i
1 2

k
| atom(x, y) and int(i),

∀( x :i y :i a
1 2 3

k
,

∃( x :i y :i a
1 2 3

k
| a = b :c and atom(b)

and c >= 0))

∧ ∃( x :i y :i
1 2

k
| i >= 0))

Figure 5.2: A partial correctness proof tree for the program colouring

Validity of e ⇒ Pre(init, e). If e is satisfied by a graph, then every
(unmarked) node is either labelled with an atom, or a list b : c with b an
atom and c a natural number. Such a graph will also satisfy Pre(init, e),
which expresses the same requirement of every node distinct from matches
of atom-labelled nodes. Hence the implication is valid.

Validity of d ⇒ Pre(inc, d). If d is satisfied by a graph, then every (un-
marked) node is labelled by a list b :cwith b an atom and c a natural number.
Such a graph will also satisfy Pre(inc, d), which expresses that (1) the prop-
erty is true of every node outside matches of inc; and (2) that the colours
i in matches of inc are natural numbers (this must be the case since d ex-
presses that all nodes are coloured, and all colours are natural numbers).
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Pre(init, e)

= ∀( x
1
| atom(x),

∀( x
1
a

2
, ∃( x

1
a

2
| atom(a))

∨ ∃( x
1
a

2
| a = b :c and atom(b) and c >= 0))

∧ ∀( x
1
, ∃( x

1
| atom(x :0))

∨ ∃( x
1
| x :0 = b :c and atom(b) and c >= 0)))

Pre(inc, d)

= ∀( x :i y :i
1 2

k
| atom(x, y) and int(i),

∀( x :i y :i a
1 2 3

k
,

∃( x :i y :i a
1 2 3

k
| a = b :c and atom(b) and c >= 0))

∧ ∀( x :i y :i
1 2

k
,

∃( x :i y :i
1 2

k
| x :i = b :c and atom(b) and c >= 0))

∧∀( x :i y :i
1 2

k
,

∃( x :i y :i
1 2

k
| y :i+1 = b :c and atom(b) and c >= 0)))

Figure 5.3: Non-simplified E-constraints arising from Pre

Hence the implication is valid.

Validity of c⇒ e. A graph satisfying c does not contain any (unmarked)
nodes labelled with non-atomic lists. Such a graph will also satisfy e be-
cause of its first nested disjunct. Hence the implication is valid.

Validity of e ∧ ¬App({init}) ⇒ d. Every (unmarked) node in a graph
satisfying e is either labelled by an atom (first nested disjunct) or an atom
followed by a natural number (second nested disjunct). If such a graph also
satisfies ¬App({init}), which contradicts the first nested disjunct of e, it
must then be the case that every (unmarked) node is labelled by an atom
followed by a natural number – exactly what the E-constraint d expresses.
Hence the implication is valid.

Thus far we have proven that, given a graph containing only atom-
labelled (unmarked) nodes, colouring will only ever result in graphs that
are correctly coloured. However, we have not proven that colouring actu-
ally ever will return a graph. Certainly, the program will not fail: this we
get immediately from the fact that as-long-as-possible iteration does not
fail. However, we need some more effort to prove that the program will
always terminate eventually.
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Example 5.2 (Total correctness of colouring). Our total correctness proof
for colouring is much the same as our partial correctness one in Example
5.1, but augmented with termination functions for init and inc. Recall that
in Example 3.18 we gave already a termination function for the latter. This
termination function however requires that graphs satisfy the invariant for
inc described below (in English):

“every node label has the form x : i for some atom x, and
colour i (which is a natural number). Moreover, there is
a sequence 0 � · · · � n for n ≥ 0, including each of the
colours used in the graph, where p � q holds if q = p or
q = p+ 1.”

The invariant d in Example 5.1 expresses only the first sentence of the
above, and hence is too weak for our total correctness proof. We strengthen
it to the following for this example, to require also the existence of such a
sequence of colours:

d = ∀( a
1
, ∃( a

1
| a = b :c and atom(b) and c >= 0))

∧ ∀( b :c
1
| atom(b), ∃( b :c

1
| c = 0)

∨ ∃( b :c
1
d :c-1 | atom(d)))

i.e. unless the colour c of a node is 0, then some other node in the graph has
colour c− 1.

With a stronger invariant in the part of the proof tree about inc, we
can prove a total correctness specification for the whole program with a
stronger postcondition than before:

Precondition “every (unmarked) node is labelled by an atom”

∀( a
1
, ∃( a

1
| atom(a)))

Postcondition “every (unmarked) node is labelled by a list b : c with b an
atom and c a natural number, adjacent nodes are distinctly coloured,
and unless the colour c of a node is 0, then there is another node with
colour c− 1”

∀( a
1
, ∃( a

1
| a = b :c and atom(b) and c >= 0))

∧ ∀( b :c
1
| atom(b), ∃( b :c

1
| c = 0) ∨ ∃( b :c

1
d :c-1 | atom(d)))

∧ ¬∃( x :i y :i
k

| atom(x, y) and int(i))
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[ruleapp]
{Pre(init, e)} init {e}

[cons]
⊢par {e} init {e} X

[!]tot
{e} init! {e ∧ ¬App({init})}

[cons]
{c} init! {d}

[ruleapp]
{Pre(inc, d)} inc {d}

[cons]
⊢par {d} inc {d} Y

[!]tot
{d} inc! {d ∧ ¬App({inc})}

[comp]
⊢tot {c} init!; inc! {d ∧ ¬App({inc})}

X : init is #init-decreasing under e; Y : inc is #inc-decreasing under d

Figure 5.4: A total correctness proof tree for the program colouring

We give a proof tree for this total correctness specification in Figure 5.4,
with the precondition, program, and postcondition forming the triple at the
root of the tree. The E-constraints are given in Figure 5.5, and the termina-
tion functions are defined in the text that follows.

We define #init : G(L) → N to map graphs G to the total number of
(unmarked) nodes labelled by an atom inG. The rule schema init is clearly
#init-decreasing under e since every application of init replaces an atomic
label of a node with a (non-atomic) list. We define #inc : G(L) → N for a
graph G ∈ G(L) as:

#inc(G) =

|VG|
∑

i=0

i−
∑

v∈VG

colour(v)

where colour(v) for a node v ∈ VG is defined:

colour(v) =

{

i if lG(v) = x : i with x ∈ Z ∪ Char∗, i ∈ N;
0 otherwise.

The intuition behind this termination function, and a proof that inc is #inc-
decreasing under d is given in Example 3.18.

The implications arising from applications of [cons] follow the same
pattern as in Example 5.1, though we mention one case:

Validity of c ⇒ e. In the total correctness proof tree, e now has two
conjuncts. The first is implied by c by the same argument of the partial
correctness case. The second conjunct, expressing a property about every
list b : c with b an atom, is vacuously true if c holds because c asserts that
every (unmarked) node label is an atom.
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5.2. Finding a 2-Colouring

c = ∀( a
1
, ∃( a

1
| atom(a)))

d = ∀( a
1
, ∃( a

1
| a = b :c and atom(b) and c >= 0))

∧ ∀( b :c
1
| atom(b), ∃( b :c

1
| c = 0)

∨ ∃( b :c
1
d :c-1 | atom(d)))

e = ∀( a
1
, ∃( a

1
| atom(a))

∨ ∃( a
1
| a = b :c and atom(b) and c >= 0))

∧ ∀( b :c
1
| atom(b), ∃( b :c

1
| c = 0)

∨ ∃( b :c
1
d :c-1 | atom(d)))

¬App({init}) = ¬∃( x | atom(x))

¬App({inc}) = ¬∃( x :i y :i
k

| atom(k, x, y) and int(i))

∨ ∃( x
1
a

2
| a = b :c and atom(b) and c >= 0))

Pre(inc, d)

≡ ∀( x :i y :i
1 2

k
| atom(x, y) and int(i),

∀( x :i y :i a
1 2 3

k
,

∃( x :i y :i a
1 2 3

k
| a = b :c and atom(b) and c >= 0))

∧ ∃( x :i y :i
1 2

k
| i >= 0)

∧ (∃( x :i y :i
1 2

k
| i = 0) ∨ ∃( x :i y :i

1 2

k
d :i-1 | atom(d)))

∧ ∀( x :i y :i b :c
1 2 3

k
| atom(b),

∃( x :i y :i b :c
1 2 3

k
| c = 0) ∨ ∃( x :i y :i b :c

1 2 3

k
d :c-1 | atom(d))))

Figure 5.5: Selected E-constraints for the proof tree of Figure 5.4

5.2 Finding a 2-Colouring

For the next proofs, we continue with the theme of colouring, but consider
a slightly more difficult program that introduces a (potential) failure point
and a conditional. Again, we apply our verification calculi to prove some
partial, weak total, and total correctness specifications.

In this section we will consider the program 2colouring, given in Fig-
ure 5.6. The program attempts to compute a 2-colouring for a graph of un-
marked nodes and edges, i.e. an assignment of colour 0 or 1 to every node
such that no two adjacent nodes have the same colour. If such a colouring
is computed, the graph (with colours added to lists) is returned to the user.
If such a colouring is not computed, then all of the colours are removed
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before the graph is returned. We remark that this particular version of the
program requires input graphs to be connected.

In an execution of 2colouring, an unmarked node is nondeterministi-
cally chosen and coloured with 0 (this is a potential failure point if no such
node is in the input graph). Then, the rule schemata colour1 and colour2

are iteratively applied for as long as possible. These match a coloured
and uncoloured node adjacent to each other, take the colour of the former,
change 0 to 1 or 1 to 0, and apply that new colour to the latter node. Af-
ter the iteration, the program attempts to match two adjacent nodes with
the same colour. If it finds two such nodes, it iteratively removes all of the
colours and returns the graph. Otherwise, it returns the graph with the
2-colouring computed displayed in the labels.

main = choose; colour!; if illegal then undo!
colour = {colour1, colour2}

choose(x : atom) undo(i : int; x : atom)

1

x ⇒

1

x :0

1

x :i ⇒

1

x

illegal(i : int; k : list; x, y : atom)

x :i y :i

1 2

k
⇒ x :i y :i

1 2

k

colour1(i : int; k : list; x, y : atom)

x :i y

1 2

k
⇒ x :i y :1-i

1
2

k

colour2(i : int; k : list; x, y : atom)

x :i y

1 2

k
⇒ x :i y :1-i

1
2

k

Figure 5.6: The program 2colouring

Example 5.3 (Partial correctness of 2colouring). We begin by formalising
a partial correctness specification of 2colouring using E-constraints. (Note
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5.2. Finding a 2-Colouring

that for simplicity we reason only about the unmarked nodes and edges of
the graphs.)

Precondition “no atom-labelled node is already coloured”

¬∃( x :i | atom(x) and int(i))

Postcondition “either the precondition holds, or every atom-labelled node
with a colour has colour 0 or 1, and no two adjacent nodes have the
same colour”

¬∃( x :i | atom(x) and int(i))

∨

(∀
1

x :i | atom(x) and int(i), ∃( x :i
1
| i = 0 or i = 1))

∧ ¬∃( x :i y :i
k

| atom(x, y) and int(i)))

We give a proof tree for this partial correctness specification in Figure 5.7,
and separately, all of the E-constraints used as assertions in Figures 5.8 and
5.9, the latter providing the E-constraints generated by Pre. The postcondi-
tion is split into two E-constraints and given as c ∨ d, to make explicit that
part of the postcondition – c – is the same as the precondition.

The side conditions of [cons] and [if2] require us to show the validity of
several E-constraints of the form c⇒ d. We argue for the validity of all but
the most trivial cases:

Validity of c ⇒ Pre(choose, f). The first conjunct of the nested part
of Pre(choose, f) is clearly satisfied by any graph. The second conjunct
demands that there is not a distinct (unmarked) node from node 1 that is
atom-labelled and tagged with a colour. E-constraint c expresses that no
atom-labelled node is coloured, hence the whole implication is valid.

Validity of e ⇒ Pre(colour1, e). For Pre(colour1, e) to be satisfied by
a graph, for every possible match of colour1, node 1 must be coloured 0
or 1, and every coloured atom-labelled node outside of the match must be
coloured 0 or 1. Additionally, the colour that node 2 will be assigned after
the application of colour1 must also be 0 or 1 (which it will be if i is as-
signed to 0 or 1, by 1-i in the assignment constraint). The E-condition e is
satisfied if and only if every coloured atom-labelled node has colour 0 or 1,
so the whole implication must be valid.

Validity of e⇒ Pre(colour2, e). Analogous to the above.
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Subtree A Subtree B[comp]
⊢par {c} choose; {colour1, colour2}!; if illegal then undo! {c ∨ d}

where Subtree A is:

[ruleapp]
{Pre(choose, f)} choose {f}

[cons]
{c} choose {f}

[ruleapp]
{Pre(colour1, e)} colour1 {e}

[cons]
{e} colour1 {e}

[ruleapp]
{Pre(colour2, e)} colour2 {e}

[cons]
{e} colour2 {e}

[ruleset]
{e} {colour1, colour2} {e}

[!]
{e} {colour1, colour2}! {e ∧ ¬App({colour1, colour2})}

[cons]
{f} {colour1, colour2}! {e}

[comp]
{c} choose; {colour1, colour2}! {e}

and Subtree B is:

[ruleapp]
{true} undo {true}

[!]
{true} undo! {¬App({undo})}

[cons]
{e ∧App({illegal})} undo! {c ∨ d}

[if2]
{e} if illegal then undo! {c ∨ d}

Figure 5.7: A proof tree for the program 2colouring
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c = ¬∃( x :i | atom(x) and int(i))

d = (∀
1

x :i | atom(x) and int(i),

∃( x :i
1
| i = 0 or i = 1))

∧ ¬∃( x :i y :i
k

| atom(x, y) and int(i)))

e = ∀(
1

x :i | atom(x) and int(i),

∃(
1

x :i | i = 0 or i = 1))

f = ∃( x :0 | atom(x))

∧ ¬∃( x :i y :j | atom(x, y) and int(i, j))

¬App({colour1, colour2})

= ¬∃( x :i y
k

| atom(x, y) and int(i))

∧ ¬∃( x :i y
k

| atom(x, y) and int(i))

App({illegal}) = ∃( x :i y :i
k

| atom(x, y) and int(i))

¬App({undo}) = ¬∃( x :i | atom(x) and int(i))

Figure 5.8: E-constraints c, d, e, f and App( ) from Figure 5.7

Validity of f ⇒ e. For e to be satisfied, every coloured atom-labelled
node in the graph must be coloured with 0 or 1. If f is satisfied, then
one such node is coloured 0, but there are not two coloured atom-labelled
nodes, i.e. only one atom-labelled node is coloured and it has colour 0.
Hence, every such node has colour 0 or 1, and the implication is valid.

Validity of e∧¬App({illegal})⇒ c∨ d. This E-constraint arising from
[if2] is valid because e∧¬App({illegal}) is the same E-constraint as d.

Example 5.4 (Weak total correctness of 2colouring). The specification we
considered in Example 5.3 can be shown to be weak totally correct as well
as partially correct. Revising the proof tree for this is straightforward, and
is achieved first by replacing [if2] with [if2]wtot, which, in the verification
calculi for E-constraints (though not in the extensional calculi) is the same
as its partial correctness counterpart other than for the implicit ⊢wtot rather
than ⊢par. Then, replace the two instances of [!] with [!]wtot, using the sim-
ple termination functions described in what follows.

For {colour1, colour2}we can define the termination function #colour :
G(L) → N which for a graph G ∈ G(L) returns the total number of un-
marked nodes with a list component that is an atom (i.e. an integer or
string). Clearly, {colour1, colour2} is decreasing for this termination func-
tion since a successful application of either rule schema reduces the number
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Pre(choose, f) = ∀(
1

x | atom(x),

(∃(
1

x y :0 | atom(y)) ∨ ∃(
1

x | atom(x)))

∧ (¬∃(
1

x y :i z :j | atom(y, z) and int(i, j))

∧ ¬∃(
1

x z :j | atom(x, z) and int(0, j))

∧ ¬∃(
1

x y :i | atom(y, x) and int(i, 0))))

Pre(colour1, e) = ∀(
1

x :i y
2

k
| atom(x, y) and int(i),

∀( x :i
1

y
2
z :j

3

k
| atom(z) and int(j),

∃( x :i
1

y
2
z :j

3

k
| j = 0 or j = 1))

∧ ∀( x :i
1

y
2

k
| atom(x) and int(i),

∃(
1

x :i y
2

k
| i = 0 or i = 1))

∧ ∀(
1

x :i
2

y
k

| atom(y) and int(1-j),

∃(
1

x :i
2

y
k

| 1-i = 0 or 1-i = 1)))

Pre(colour2, e) = ∀(
1

x :i y
2

k
| atom(x, y) and int(i),

∀( x :i
1

y
2
z :j

3

k
| atom(z) and int(j),

∃( x :i
1

y
2
z :j

3

k
| j = 0 or j = 1))

∧ ∀( x :i
1

y
2

k
| atom(x) and int(i),

∃(
1

x :i y
2

k
| i = 0 or i = 1))

∧ ∀(
1

x :i
2

y
k

| atom(y) and int(1-j),

∃(
1

x :i
2

y
k

| 1-i = 0 or 1-i = 1)))

Figure 5.9: E-constraints generated by Pre from Figure 5.7

of such list components by one, replacing an atom y with a list y : i of length
two.

For undo define the termination function #undo : G(L) → N which for
a graph G ∈ G(L) returns the total number of unmarked nodes with a list
component of the form x : i, with x an atom and i an integer. Clearly, undo
is decreasing for this termination function since each application of the rule
schema removes the colour i of such a node, leaving it with only the atom
x.

Example 5.5 (Total correctness of 2colouring). The specifications of the
previous two examples are not totally correct, because the empty graph
would satisfy the precondition, yet executing choose on the empty graph
would cause the program to fail. Hence we strengthen the precondition to
additionally assert that choose is applicable.
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Precondition “there exists at least one atom-labelled node, and no atom-
labelled node is already coloured”

∃( x | atom(x))

∧ ¬∃( x :i | atom(x) and int(i))

Postcondition “either the precondition holds, or every atom-labelled node
with a colour has colour 0 or 1, and no two adjacent nodes have the
same colour”

¬∃( x :i | atom(x) and int(i))

∨

(∀
1

x :i | atom(x) and int(i), ∃( x :i
1
| i = 0 or i = 1))

∧ ¬∃( x :i y :i
k

| atom(x, y) and int(i)))

We give a proof tree for this total correctness specification in Figure 5.10,
where

b = App({choose}) = ∃( x | atom(x))

and all other E-constraints are as in Figures 5.8 and 5.9. To avoid clutter, we
do not give the termination functions for [!]tot in the proof tree, but remark
that they are the same as those in Example 5.4.

The total correctness proof adds one further implication to be proven
valid from the application of [ruleset]tot, but it is easily discharged.

Validity of b ∧ c ⇒ App({choose}). We get validity immediately from
the fact that b = App({choose}).

5.3 Existence of a Path

Now, we consider the program reachable? of Figure 5.11, which checks
whether a path exists (along unmarked nodes and edges) between two
nodes distinguished in the input graph (distinguished by the user, or per-
haps by some other program). Like 2colouring, the program reachable?
can fail on some input graphs, in particular, input graphs omitting the pair
of distinguished nodes (although the failure point is not right at the begin-
ning of the command sequence this time).

The program is intended to operate on graphs in which nodes and
edges are unmarked, and in which nodes are labelled with atoms, with the
exception of two distinguished nodes. Exactly one node should have a list
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Subtree A Subtree B[comp]
⊢tot {b ∧ c} choose; {colour1, colour2}!; if illegal then undo! {c ∨ d}

where Subtree A is:

[ruleapp]
⊢par {Pre(choose, f)} choose {f}

[cons]
⊢par {b ∧ c} choose {f}

[ruleset]tot
⊢tot {b ∧ c} choose {f}

[ruleapp]
⊢par {Pre(colour1, e)} colour1 {e}

[cons]
⊢par {e} colour1 {e}

[ruleapp]
⊢par {Pre(colour2, e)} colour2 {e}

[cons]
⊢par {e} colour2 {e}

[ruleset]
⊢par {e} {colour1, colour2} {e}

[!]tot
⊢tot {e} {colour1, colour2}! {e ∧ ¬App({colour1, colour2})}

[cons]
⊢tot {f} {colour1, colour2}! {e}

[comp]
⊢tot {b ∧ c} choose; {colour1, colour2}! {e}

and Subtree B is:

[ruleapp]
⊢par {true} undo {true}

[!]tot
⊢tot {true} undo! {¬App({undo})}

[cons]
⊢tot {e ∧ App({illegal})} undo! {c ∨ d}

[if2]
⊢tot {e} if illegal then undo! {c ∨ d}

Figure 5.10: A total correctness proof tree for the program 2colouring
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main = propagate!; (if reachable then skip else addlink); undo!

propagate(a : list; x, z : atom; y : int) undo(x : atom)

x :y z

1 2

a
⇒ x :y z :0

1 2

a

1

x :0 ⇒

1

x

where y=1 or y=0

reachable(a : list; x, z : atom; y : int)

x :y z :2
1 2

a
⇒ x :y z :2

1 2

a

addlink(x, y : atom)

x :1 y :2

1 2

⇒ x :1 y :2

1 2

Figure 5.11: The program reachable?

component of the form x : 1, and exactly one node should have a list com-
ponent of the form y : 2 (where x, y are atoms). The program reachable?
then checks whether or not there is a path from the former node to the lat-
ter node, and if not, adds an edge from the former to the latter. It does so
first by iterating propagate, which “tags” nodes adjacent to the first distin-
guished node with 0, and then iteratively tags all nodes adjacent to those.
Then, it checks whether or not there is an edge directly from such a node
to the second distinguished node. If there is, then there must be a path be-
tween the distinguished nodes already. If there is not, then addlink adds
an edge directly between them. Finally, all of the 0s added to list compo-
nents are removed, returning the input graph if there was a path between
the distinguished nodes, otherwise the input graph augmented with a new
edge between them.

The most interesting partial correctness specifications for reachable?
– e.g. a postcondition expressing that there is a path between the two dis-
tinguished nodes – cannot be expressed using E-constraints, because such
properties are non-local and hence beyond the expressive power of the for-
malism. We can however prove the total correctness of the program with
respect to a precondition (that is also a program invariant) expressing that
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all nodes are atom-labelled apart from the two distinguished nodes.

Example 5.6 (Total correctness of reachable?). We start by formalising a
total correctness specification for reachable?. (Again, marked nodes and
edges are not considered in the specification as the program does not oper-
ate on them.)

Precondition “all nodes are atom-labelled, except for two distinguished
nodes which have list components of the form x : 1, y : 2 with x, y
atoms”

∃( x :1
1
y :2

2
| atom(x, y),¬∃( x :1

1
y :2

2

p | not atom(p)))

Postcondition “the precondition holds” (i.e. it is a program invariant)

∃( x :1
1
y :2

2
| atom(x, y),¬∃( x :1

1
y :2

2

p | not atom(p)))

We give a proof tree for this specification in Figure 5.12, with a (partial) list
of E-constraints in Figure 5.13. For clarity, we let visited(p) abbreviate:

p = a :0 and atom(a)

where a is a fresh variable.
From instances of [cons] we get some implications to discharge as valid.

(For simplicity we omit most of the E-constraints generated by Pre in this
example, but the implications involving them are easy to discharge.)

Validity of c⇒ e. The E-constraint c expresses the existence of the distin-
guished nodes, and that all other nodes are atom-labelled. The E-constraint
e expresses the same, except that all other nodes are either atom-labelled or
“visited” (i.e. tagged with 0). Hence, e must follow from c.

Validity of e∧¬App({undo})⇒ c. If a graph satisfies e, then there are the
two distinguished nodes, with all other nodes either atom-labelled or “vis-
ited” (i.e. nodes that have list component x : 0 with x an atom). However,
if that graph also satisfies ¬App({undo}), then there are no such visited
nodes in the graph. Hence that graph must also satisfy c, which expresses
the existence of the distinguished node but also that all other nodes are
atom-labelled.

The termination functions required for the instances of [!]tot are simple.
For propagate (resp. undo), we define the termination function #p : G(L)→
N (resp. #u) to return the number of (unmarked) nodes in a graph that are
labelled by an atom (resp. number of atom-labelled nodes tagged with a 0).
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Let P = if reachable then skip else addlink

[ruleapp]
{Pre(propagate, e)} propagate {e}

[cons]
⊢par {e} propagate {e}

[!]tot
{e} propagate! {e ∧ ¬App({propagate})}

[cons]
{c} propagate! {e} Subtree X

[comp]
⊢tot {c} propagate!; P ; undo! {c}

Subtree X :

[skip]
{e} skip {e}

[cons]
{e ∧App({reachable})} skip {e} Subtree Y

[if]
{e} P {e}

[ruleapp]
{Pre(undo, e)} undo {e}

[cons]
⊢par {e} undo {e}

[!]tot
{e} undo! {e ∧ ¬App({undo})}

[cons]
{e} undo! {c}

[comp]
{e} P ; undo! {c}

Subtree Y :

e ∧ ¬App({reachable})⇒ App({addlink})

[ruleapp]
{Pre(addlink, e)} addlink {e}

[cons]
⊢par {e ∧ ¬App({reachable}} addlink {e}

[ruleset]tot
{e ∧ ¬App({reachable})} addlink {e}

Figure 5.12: Total correctness proof tree for the program reachable?
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c = ∃( x :1
1
y :2

2
| atom(x, y),

¬∃( x :1
1
y :2

2

p | not atom(p)))

e = ∃( x :1 y :2 | atom(x, y),

¬∃( x :1 y :2 p | not atom(p)

and not visited(p)))

App({reachable}) = ∃( x :y z :2
a

| atom(x, z) and int(y))

App({addlink}) = ∃( x :1 y :2 | atom(x, y))

¬App({propagate}) = ¬∃( x :y z
a

| atom(x, z),

∃( x :y z
a

| y = 1)

∨ ∃( x :y z
a

| y = 0))

¬App({undo}) = ¬∃( x :0 | atom(x))

Pre(undo, e) ≡ ∀( x :0 | atom(x), ∃( x :0 y :1 z :2 | atom(y, z),

¬∃( x :0 y :1 z :2 p | not atom(p)

and not visited(p))))

Figure 5.13: Partial list of E-conditions for Figure 5.12

Both termination functions exploit that each application of their respective
rule schema explicitly reduces the number of remaining matches.

The application of rule schema addlink is the only potential failure
point of the program, and is addressed in the proof tree with the instance
of [ruleset]tot. It must be shown that the precondition at that point im-
plies the applicability of addlink, i.e. that e ∧ ¬App({reachable}) implies
App({addlink}):

Validity of e ∧ ¬App({reachable}) ⇒ App({addlink}). If e is satisfied
then clearly there is a pair of (unmarked) nodes with list components x : 1,
y :2 with x, y atoms. Hence App({addlink}), which expresses the existence
of such two nodes, must also be satisfied.

5.4 Connectedness: Speculative Proof

In the previous section we verified a total correctness specification of the
program reachable?, but noted that the most useful specifications would
require a stronger assertion language – one able to express non-local prop-
erties. In this section, we consider another program for which non-local
specifications are the most interesting. This time however, we provide a
partial proof tree, in which the assertions are E-constraints that can also
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express the existence of arbitrary length paths between nodes. We do not
formally define this assertion language, and so indeed only sketch a proof
tree. We focus in this section on showing how – if such a language is de-
fined and if Pre is extended – it can be “plugged in” to our extensional
calculi to allow a proof in the same spirit as those with just E-constraints.

The program we consider is connected?, first given in Figure 2.20, but
given again here in Figure 5.14. The program takes a graph (that does not
contain unmarked nodes or edges), and checks whether it is connected or
not, i.e. whether there is a path between every pair of nodes in the graph
(ignoring the directions of edges). If a graph is connected, the program
creates a new node labelled “yes”. If it is not, it indicates as such with a
new node labelled “no”. (See Example 2.44 for a description of how the
program works.)

main = init; {prop1, prop2}!; if unmarked then no else yes; undo!

init(x : list) unmarked(x : list)

1

x ⇒

1

x

1

x ⇒

1

x

prop1(k, x, y : list) prop2(k, x, y : list)

x y

1 2

k ⇒ x y

1 2

k
x y

1 2

k ⇒ x y

1 2

k

yes() no()

∅ ⇒ ”yes” ∅ ⇒ ”no”

undo(x : list)

1

x ⇒

1

x

Figure 5.14: The program connected?

Example 5.7 (Partial correctness proof sketch for connected?). E-constraints
are not expressive enough to be able to specify the most interesting proper-
ties of connected?, as they require reasoning about global properties of the
graph. For example, it would be desirable to prove that if a graph is con-
nected, the program will terminate and contain a “yes” node; in the other
case a “no” node. We could express that there is a path between every pair
of nodes of up to length k (where k is a fixed natural number), however,
we cannot express that there is a path of arbitrary length between every
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pair of nodes, and hence we cannot express that a graph of arbitrary size is
connected.

Though we have focused on verification with E-constraints in this the-
sis, given our extensional proof rules we do not have to be limited to them:
we can simply “plug in” a more powerful assertion language. Using the
hyperedge-replacement conditions of [HR10], for example, we would be
able to write the specifications for connected? that we want, but then hit
the problem of extending the transformation Pre (which for this formal-
ism in particular appears to be difficult). For this example we are a little
more conservative and simply extend E-constraints to allow the expression
of arbitrary-length paths between nodes, which is exactly what we need.
Again, we have the problem of extending Pre. We do not address this here,
leaving the proof as only a sketch to convey the idea, and leave the study
of such a formalism as future work (note the discussion in Section 7.2.3).

For this example we (informally) extend E-conditions with a wavy ar-
row ;, which if present between two nodes, expresses the existence of an
arbitrary-length path (across both marked and unmarked items) from the
first node to the second. For example, the assertion:

∃( x
1

x
2

; )

can be interpreted as: “there exists a pair of unmarked nodes with the same
list component, such that there is a path from node 1 to node 2”. (We con-
tinue to require injective matching, so 1 6= 2 in the image of the morphism.)

This extension is enough to allow us to write an interesting specification
about connected?. For simplicity, we consider only the first part of the
program:

init; {prop1, prop2}!

but choose a postcondition which clearly informs the if-then-else condi-
tional to execute yes.

Precondition “(1) all nodes and non-looping edges are unmarked; and (2)
every pair of nodes has a path between them in at least one direction”

¬∃( x ) ∧ ¬∃( x y
k

)

∧ ∀( x
1
y

2
,

∃( x
1

y
2

; ) ∨ ∃( x
1

y
2

; ))

Postcondition “the rule schema unmarked is not applicable”

¬∃( x )
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Note that the precondition is slightly stronger than what we need, since
connected? disregards the direction of edges. But this specification is sim-
pler and remains true. We provide the assertions in Figure 5.15, and a proof
tree separately in Figure 5.16. The soundness of the proof rules is inherited
in part by the soundness of the extensional proof rules, as well as the result
that App is used to define SE and FE (since these can be expressed with
basic E-constraints, clearly they can also be expressed with our speculative
extended assertion language).

c = ¬∃( x ) ∧ ¬∃( x y
k

)

p1 = ∀( x
1
y

2
,

∃( x
1

y
2

; ) ∨ ∃( x
1

y
2

; ))

p2 = ∀( x
1
y

2
,

∃( x
1

y
2

; ) ∨ ∃( x
1

y
2

; ))

∧ ∀( x
1
y

2
,

∃( x
1

y
2

; ) ∨ ∃( x
1

y
2

; ))

App({unmarked}) = ¬∃( x )

¬App({prop1, prop2})

= ¬∃( x y
k

) ∧ ¬∃( x y
k

)

Figure 5.15: Partial list of assertions for Figure 5.16

The key idea of the proof is that from a connected graph of unmarked
nodes, as the nodes are gradually marked, an invariant is maintained that
the graph remains connected regardless of whether nodes are marked or not.
Then once the iteration finishes, there cannot remain any unmarked nodes
in the graph, because the graph is connected but prop1 and prop2 (which
match a marked node linked to an unmarked node) cannot be applied.

What remains missing from this proof tree are assertions in place of
X,Y, Z in the instances of [ruleapp]. One possibility is to manually provide
some assertions and prove, one-by-one, that they define a (weakest) liberal
precondition with respect to the rule schemata and postconditions. For
X , for example, a suitable assertion might be ∀( x

1
, c′), where c′ places

p1 ∧ p2 in the context of node 1 and considers all cases in which they might
“overlap”.

It would clearly be more ideal however to extend the transformation
Pre to handle E-constraints augmented with paths. We leave this as future
work (see Section 7.2.3), but can envisage how such a construction might
work, e.g. extending the disjunction in transformation A to account for the
possibility of comatches being partially or totally within paths described
by assertions. This could cause assertions generated by Pre to become very
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[ruleapp]
{X} init {p1 ∧ p2}

[cons]
{c ∧ p1} init {p1 ∧ p2}

[ruleapp]
{Y } prop1 {p1 ∧ p2}

[cons]
{p1 ∧ p2} prop1 {p1 ∧ p2}

[ruleapp]
{Z} prop2 {p1 ∧ p2}

[cons]
{p1 ∧ p2} prop2 {p1 ∧ p2}

[ruleset]
{p1 ∧ p2} {prop1, prop2} {p1 ∧ p2}

[!]
{p1 ∧ p2} {prop1, prop2}! {p1 ∧ p2 ∧ ¬App({prop1, prop2})}

[cons]
{p1 ∧ p2} {prop1, prop2}! {¬App({unmarked})}

[comp]
⊢par {c ∧ p1} init; {prop1, prop2}! {¬App({unmarked})}

Figure 5.16: Partial correctness proof tree for the program connected?



5.5. Summary

large, and would make the need for mechanical support in discharging
implications a more urgent priority.

5.5 Summary

In this chapter we have:

• considered a selection of data-manipulating graph programs;

• demonstrated the use of our calculi with E-constraints by variously
proving partial, weak total, and total correctness;

• shown how our extensional calculi could be used in proving correct-
ness relative to more powerful assertion languages; and

• motivated the need to extend E-constraints with paths, which will
allow for proofs of interesting and useful non-local specifications in
the same style as our proofs with basic E-constraints.
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Chapter 6

A Many-Sorted Logic for
Graph Programs

In Chapters 4 and 5 we discussed the verification of graph programs using
our graphical E-conditions as the assertions. Some issues arise however
when considering practical aspects of E-conditions, motivating the study
of an assertion language more traditional and textual. In this chapter, we
define and study a many-sorted first-order predicate logic as an alternative
assertion language for verifying graph programs. We show its expressive
equivalence to E-conditions by defining and proving correct translations
between the two formalisms. With these translations, we show how E-
conditions can express e.g. the identification of node (edge) variables, and
formulae of arbitrary first-order arithmetic.

6.1 Motivation and Introduction

E-constraints differ from the assertion languages in conventional Hoare cal-
culi in the sense that they are based on graph morphisms, and are not for-
mulae in some traditional logic. While the use of graph morphisms brings
a number of advantages – for example, being able to define Pre and App at
the level of abstraction of rule schemata – they bring two key problems:

(1) Programmers may find it difficult to specify pre- and postconditions
of their graph programs as E-constraints. On the one hand they are
graphical, yet on the other it might be difficult to interpret their pre-
cise meaning without a basic understanding of concepts such as graph
morphisms1.

1The terminology alone in graph transformation – often implying its connection to cate-
gory theory – might be off-putting. See “The Pushout Scare” in [Ren10].
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Chapter 6. A Many-Sorted Logic for Graph Programs

(2) Implementing a verification system for graph programs in an interac-
tive proof assistant such as Isabelle [NPW02] or Coq [BC04] requires a
front end for editing E-conditions and translating them into a textual
logic that can be processed by the proof assistant.

In this chapter, we address these issues by designing a many-sorted
predicate logic for graphs. The formulae are textual, with a syntax and
semantics familiar to anyone with some knowledge of classical first-order
logic. Moreover, they are suitable to be embedded as a theory in a system
like Isabelle or Coq, thus laying some groundwork for the formalisation of
our verification calculi and practical assistant-guided proofs.

The main technical contributions of this chapter are the constructions
of two translations: from E-conditions to many-sorted formulae, and vice
versa, such that an E-condition (resp. many-sorted formula) is satisfied by
a graph if and only if its translation is also satisfied by that graph. Thus,
E-conditions and many-sorted formulae are equivalent in power and can
both be used as assertions for graph programs:

assertions

E-conditions
(morphism-based)

many-sorted formulae
(textual)

In particular, many-sorted formulae can be used as assertions in the proof
rules of Chapter 3, resulting in textual Hoare calculi that are sound with
respect to the operational semantics of GP. The assertions Wlp, SE, and FE
are defined by translations to E-conditions and back via the transforma-
tions Pre and App of Chapter 4.

Whereas the expressions in E-conditions are untyped, the expressions in
our logic are many-sorted to distinguish clearly and easily between nodes,
edges and lists. Moreover, expressions for lists are hierarchically structured
into subsorts which reflect the list subtypes of GP:

List

Atom

Integer String

⊆

⊆
⊇
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The subsort hierarchy allows us to compare arbitrary labels with subsort
expressions, as in the formula

∀v :V. l(v) = ”abc” ∨ ∃x :I. l(v)= x ∗ x

which states that every node (vertex) v is labelled with the string ”abc” or
with the square of some integer x.

In general, many-sorted logics enjoy some well known advantages over
unsorted logics, including improved readability of specifications, early er-
ror detection, and more efficient deduction procedures due to a reduced
search space (see for example [Man96, BHP+92, GM92]).

The rest of this chapter is organised as follows. In Section 6.2 we de-
fine the syntax and semantics of our many-sorted logic. In Section 6.3 we
define and prove correct a translation from many-sorted formulae to E-
conditions. Following this we show in Section 6.4 that there is a transla-
tion from E-conditions to many-sorted formulae, establishing the expres-
sive equivalence of the formalisms. In Section 6.6 we discuss related work,
before summarising in Section 6.7.

Remark 6.1 (Contribution of syntax). We remark that the abstract syntax
of the many-sorted logic – described in the following section – was con-
tributed by Detlef Plump.

6.2 Syntax, Semantics, and Sort Hierarchy

We begin in this section by defining the syntax of our many-sorted logic,
before defining how formulae are to be interpreted over graphs.

6.2.1 Abstract Syntax

First we define the expressions (or terms) of our logic. We do so by a gram-
mar, which – similarly to those defining the syntax of graph programs –
aims to guarantee that all expressions are well-typed. For example, the
grammar enforces that the arguments to arithmetic operators are integer
expressions, whose variables (if any) will only ever be interpreted as inte-
gers. This contrasts with E-conditions, for which well-typedness is only a
concern at the semantic level.

Note that for simplicity we use the same variable categories for label
variables as we do for the graphs of rule schemata. There are however two
new categories of variables: for nodes and edges.

Definition 6.2 (Many-sorted expressions). The grammar in Figure 6.1 de-
fines six syntactic categories of expressions: Edge, Vertex, Integer, String,
Atom and List. These respectively contain disjoint syntactic categories of
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variables: EVar, VVar, IVar, SVar, AVar, LVar. Note that we have the follow-
ing inclusions among expressions:

Integer ∪ String ⊆ Atom ⊂ List.

Expression ::= Edge | Vertex | List

Edge ::= EVar

Vertex ::= VVar | (s | t) ’(’ Edge ’)’

Integer ::= Digit {Digit} | IVar | ’-’ Integer

| Integer ArithOp Integer

ArithOp ::= ’+’ | ’-’ | ’*’ | ’/’

String ::= ’ ” ’ {Char} ’ ” ’ | SVar | String ’.’ String

Atom ::= Integer | String | AVar

List ::= empty | Atom | LVar | l ’(’ Vertex ’)’ | m ’(’ Edge ’)’

| List ’:’ List

Figure 6.1: Abstract syntax of many-sorted expressions

The symbol empty and symbols in Digit {Digit} and ’ ” ’ {Char} ’ ” ’ are
constant symbols, here syntactic representations of the empty list, integers,
and character strings. The symbols s, t, l, m, and -, are function symbols of
arity one, and are syntactic representations source, target, node labelling,
and edge labelling functions. The symbols ., :, and the symbols in ArithOp
are function symbols of arity two, representing concatenation, appending
lists, and the obvious arithmetic operations. (Note that the function symbol
’-’ is overloaded.)

We attach different sorts (or types) to expressions generated from our
grammar, depending on whether they are generated by Edge, Vertex, or
List. For expressions in List, we have a hierarchy of sorts. For example, we
attach different sorts to digits and character strings, while recognising that
both remain lists. While this hierarchy is implicit from the grammar (for
example, only expressions from Integer may be arguments to symbols in
ArithOp, yet any two labels are allowed as arguments to ’:’), we make the
hierarchy explicit by a subsort relation, which proves to be useful in later
definitions.

Definition 6.3 (Sorts, sort function, and subsort relation). Every expression
is associated with a sort (or type), determined by the smallest syntactic cate-
gory it is contained within. Given an expression whose smallest containing
syntactic category is Edge, Vertex, List, Atom, Integer, or String, we use the
name of that category to denote its sort. The function:

sort : Expression→ {Edge,Vertex,List,Atom, Integer, String}
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is the sort function, that takes an expression as input and returns its sort.
Given two sorts s1, s2, we say that s1 is a subsort of s2, denoted s1 ⊑ s2, if
s1 = s2, or if s1 ⊑ s2 in the following hierarchy (which is transitive):

List

Atom

Integer String
⊑

⊑ ⊑

Example 6.4 (Expression and sorts). An example of an expression is:

-1 : x.”ab”.y : n+2 : l(s(e))

provided that x, y ∈ SVar, n ∈ IVar and e ∈ EVar. The sort of the expression
is List; ”ab”, 1, and 2 are constant symbols; and -, :, ., +, l, and s are
function symbols.

On the other hand, the following:

n+2 : n.”a”

is not an expression and cannot be generated by our grammar, because n

cannot be both an integer and a string variable (the categories IVar and
SVar are required to be distinct).

The formulae of our logic are, like expressions, defined by a grammar.
Again, the idea is to enforce at the syntactic level that formulae are well-
typed. It is not possible, for example, to generate a formula e1 > e2 for
edges e1, e2, since > is later interpreted as a Boolean-valued function on
integers.

Definition 6.5 (Many-sorted formulae). Figure 6.2 defines many-sorted for-
mulae, short formulae.

The symbol = and the symbols in IntRel are predicate symbols of arity
two, and are syntactic representations of the obvious Boolean-valued func-
tions. The symbols in Type and marked are predicate symbols of arity one,
the former to be interpreted as in assignment constraints, and the latter to
be interpreted as a Boolean function evaluating to true if the input item is
marked.

The operators and quantifiers are given the usual precedence, that is,
¬,∨,∧,→,↔, ∀, ∃ from high to low. Brackets are used to resolve ambiguity.
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Formula ::= true | false | Type ’(’ List ’)’ | Integer IntRel Integer

| Edge ’=’ Edge | Vertex ’=’ Vertex | List ’=’ List

| marked ’(’ (Edge | Vertex) ’)’

| ’¬’ Formula | Formula BoolOp Formula

| Quantifier (VVar ’:V’ | EVar ’:E’

| IVar ’:I’ | SVar ’:S’ | AVar ’:A’

| LVar ’:L’) ’.’ Formula

IntRel ::= ’>’ | ’<’ | ’>=’ | ’<=’

Type ::= int | string | atom

BoolOp ::= ∧ | ∨ | ⇒ | ⇔

Quantifier ::= ∀ | ∃

Figure 6.2: Abstract syntax of many-sorted formulae

Example 6.6 (Many-sorted formulae). Examples of formulae are

∀v:V. ∃x:I. l(v)= x ∗ x and ∃e:E. ∃x:I. m(e) = x ∧ x < 0,

whereas ∃e:E. m(e) < 0 is not a formula and cannot be generated by our
grammar, because m(e) is not of sort Integer.

The free variables of a formula are those that are not bound by a quanti-
fier. Note that such variables still have sorts, determined by our grammar
for expressions. If a formula contains no such free variables, then we call it
a sentence.

Definition 6.7 (Sentence). A sentence (or a closed formula) is a formula that
contains no free variables.

Expressions can be substituted for free variables. We give the definition
of such substitutions, which follows standard logic textbooks other than
for the requirement that the expression’s sort is a subsort of the variable’s
sort. This requirement ensures that the resulting formula is well-typed. It
prevents, for example, a character string to be substituted for an integer
variable in the argument of an arithmetic operator, yet allows a variable of
sort List to be replaced by an expression lower in the sort hierarchy (such
as a string expression).

Note that substitutions for formulae differ from substitutions for E-
conditions. In the latter, variables are simply replaced in-place regardless of
context. In formulae, only free variables can be replaced – and sort matters
– so context is important. To avoid confusing the two definitions, rather
than using ϕσ to denote the application of a substitution, we write ϕ[t/x]
specifying the particular replacements in square brackets.
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Definition 6.8 (Substitution of free variables). Let t be an expression of sort
st, and x be a variable of sort sx such that st ⊑ sx.

Given an expression e, the result of substituting t for a variable x in e,
denoted e[t/x], is defined inductively. If e is a variable y, then e[t/x] = t
if x = y, otherwise e[t/x] = e. If e is a constant symbol c, then e[t/x] = c.
If e has the form f(e1, . . . , en) with f a function symbol and each ei an
expression, then e[t/x] = f(e1[t/x], . . . , en[t/x]).

Let ϕ be a formula. The result of substituting t for a variable x in ϕ,
denoted ϕ[t/x], is defined inductively. If ϕ is true or false, then ϕ[t/x] =
ϕ. If ϕ is p(e1, . . . , en) with p a predicate symbol and each ei an expression,
then ϕ[t/x] = p(e1[t/x], . . . , en[t/x]). If ϕ is ¬ψ with ψ in Formula, then
ϕ[t/x] = ¬ψ[t/x]. If ϕ is ψ1 ⊕ ψ2 with ψ1, ψ2 in Formula and ⊕ in BoolOp,
then ϕ[t/x] = ψ1[t/x] ⊕ ψ2[t/x]. If ϕ is Qy : s. ψ with Q in Quantifier, y
a variable, and ψ in Formula, then ϕ[t/x] = Qy : s. ψ if x = y, otherwise
ϕ[t/x] = Qy : s. ψ[t/x].

Let ϕ be a formula, t1, . . . , tn be expressions with each ti having sort sti ,
and x1, . . . , xn be variables with each xi having sort sxi such that sti ⊑ sxi .
Then, the result of the substitution ϕ[t1/x1, . . . , tn/xn] is given by:

ϕ[t1/x1][t2/x2] · · · [tn/xn].

To simplify the presentation of formulae with multiple quantified vari-
ables, we let ∃x1,x2, . . . xn : s abbreviate ∃x1 : s. ∃x2 : s. . . . ∃xn:s where
all variables are of the same sort. In addition, we let ∃x1 : s1,x2 : s2, . . . xn :
sn abbreviate the formula ∃x1 : s1. ∃x2 : s2. . . . ∃xn : sn where the sorts of
variables need not be the same. An analogous notation is permitted for ∀.

6.2.2 Semantics of Sentences

Our logic is given its semantics by interpretation functions. We begin by
defining what an interpretation function is, before defining what is means
for such a function to satisfy a sentence of our logic. Then, to allow sen-
tences to be interpreted over a particular graph (i.e. to define the meaning
of G |= ϕ), we define the notion of interpretation functions induced by
graphs, which capture information about their structure and labelling.

Definition 6.9 (Satisfaction of sentences). An interpretation function I is a
mapping from (1) sorts to semantic domains, (2) constants of sort s to ele-
ments in I(s), (3) expressions f(e1, . . . , en), with f a function symbol and
each ei an expression, to functions of arity:

I(sort(e1))× · · · × I(sort(en))→ I(sort(f(e1, . . . , en))),
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and (4) formulae p(e1, . . . , en), with p a predicate symbol and each ei an
expression, to Boolean-valued functions of arity:

I(sort(e1))× · · · × I(sort(en))→ B

where B = {true, false}.
Let I be an interpretation function, and ϕ be a sentence. The satisfaction

of ϕ by I , denoted I |= ϕ, is defined inductively as follows.

If ϕ is true (resp. false), then I |= ϕ (resp. I |= ϕ does not hold). If
ϕ is p(e1, . . . , en) with p a predicate symbol and each ei an expression, then
I |= ϕ if I(p)(I(e1), . . . , I(en)) = true.

Let ϕ1, ϕ2 be sentences. If ϕ is ¬ϕ1, then I |= ϕ if I |= ϕ1 does not hold.
If ϕ is ϕ1 ∧ ϕ2 (resp. ϕ1 ∨ ϕ2), then I |= ϕ if I |= ϕ1 and (resp. or) I |= ϕ2. If
ϕ is ϕ1 → ϕ2, then I |= ϕ if I |= ¬ϕ1 or I |= ϕ2. If ϕ is ϕ1 ↔ ϕ2, then I |= ϕ
if I |= ϕ1 → ϕ2 and I |= ϕ2 → ϕ1.

Let x be a variable of sort s, and ϕ1 be a formula with x as its only free
variable. Let also S denote the symbol that corresponds with sort s. If ϕ
has the form ∃x : S. ϕ1, then I |= ϕ if there is some a ∈ I(s) such that
Ix7→a |= ϕ1 where Ix7→a is equal to I but with the addition that I(x) = a. If
ϕ is ∀x : S. ϕ1, then I |= ϕ if for every a ∈ I(s), Ix7→a |= ϕ1.

Definition 6.10 (Satisfaction of sentences by graphs). Let G be a graph and
ϕ be a sentence. We say that G satisfies ϕ, denoted by G |= ϕ, if IG |= ϕ,
where IG is the interpretation function induced by G, defined as follows:

Sorts. We define IG(Edge) = EG, IG(Vertex) = VG, IG(List) = L,
IG(Atom) = Z ∪ Char∗, IG(Integer) = Z, and IG(String) = Char∗.

Constant symbols. For a constant symbol c, IG(c) is the value in L corre-
sponding to c2.

Function symbols. We define IG(s) = sG and IG(t) = tG. We define IG(l)
and IG(m) to be the functions lG and mG respectively but returning the list
component only. For ⊕ in ArithOp, IG(⊕) = ⊕Z where ⊕Z denotes the
obvious operation on integers corresponding to ⊕. For the arity one func-
tion symbol -, we define IG(-) to be the function that returns the value of
its integer input multiplied by −1. We define IG(.) to be the function that
returns the string resulting from the concatenation of its first argument fol-
lowed by its second argument. Finally, we define IG(:) = append, where

append : L× L→
⋃

n>1

(Z ∪ Char∗)n

returns the list resulting from appending its second argument to the end of
its first argument (i.e. a so-called tagged label).

2That is, IG(c) is the value cα for any assignment α.
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Predicate symbols. We define IG(=) to be equality in the standard sense.
For ⊲⊳ in IntRel, IG(⊲⊳) = ⊲⊳B where ⊲⊳B denotes the obvious Boolean-valued
function on integers corresponding to ⊲⊳. We define IG(marked) to be the
function that returns true if the mark component of its input is true, and
false otherwise. We define IG(int) = int, IG(string) = string, and finally
IG(atom) = atom where int, string, atom : L → B returns true if its input is
in IG(Integer) (resp. IG(String), IG(Atom)), otherwise it returns false.

Validity of sentences is defined analogously to validity of E-constraints,
i.e. a sentence is valid if every graphs in G(L) satisfies that sentence.

Definition 6.11 (Valid sentences). Let ϕ be a sentence. We say that ϕ is valid,
denoted |= ϕ, if for all graphs G ∈ G(L), G |= ϕ.

6.3 From Many-Sorted Formulae to E-Conditions

We prove in this section that every sentence of our logic has an equiva-
lent E-constraint, by defining and proving correct the transformation Cond
from formulae to E-conditions. We also demonstrate the transformation by
applying it to two example formulae and showing the steps.

The transformation is defined inductively for all the possible forms that
a formula may take, according to the grammar of Figure 6.2. It is more
general than the corresponding transformation in [HP09]: this translated a
single-sorted logic with a finite alphabet into nested conditions; here, we
must handle an infinite label alphabet, the expressions of E-conditions, and
the fact that the morphisms of E-conditions are injective. As a result, our
transformation and technique differs in a number of ways. We can exploit
the sorts of variables to simplify the E-conditions we generate (avoiding
situations like in the single-sorted logic when a variable may be interpreted
as either a node or an edge). However, because the morphisms are injective,
we cannot use the technique of identifying items in the codomain when
m = n appears in the logic. Instead, when a node (or edge) is declared in
a formula, the corresponding E-condition is a disjunction anticipating all
possible identifications of nodes (or edges). If later in the formula there is
an identification such as m = n, the corresponding E-condition is then simply
true or false depending on the context (i.e. disjunct) it is considered within.

A corollary resulting from our transformation is that first-order arith-
metic can be expressed by E-conditions (the same is not true for nested
conditions), which may be helpful in investigating the expressiveness of
E-conditions as an assertion language (an expressiveness proof in [Win93]
for a different assertion language relies on using arithmetic to encode as-
sertions).
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Before we define the construction of E-conditions from sentences, we
remark upon an important correspondence it uses between variables in for-
mulae, node and edge identifiers, and the variables in the list components
of those items. Then, we define two helper functions that the construction
uses.

Remark 6.12 (Corresponding variables, identifiers, and labels). A key idea
in the transformation from many-sorted formulae to E-conditions is to con-
struct and exploit a correspondence between node and edge variables in
formulae, node and edge identifiers in the graphs of the morphisms, and
the labels of those nodes and edges (which are just variables in VarId). The
typeface and whether or not the symbol is primed, in the context of this
transformation, implies which part of the correspondence it refers to. The
table below, for example, summarises the symbols used in the transforma-
tion when a node or edge variable x is declared in a formula:

Symbol Correspondence

x node or edge sorted variable in formula

x node or edge identifier in graph

x′ variable in VarId labelling x

Figure 6.3 shows this correspondence for nodes. For edge variables x, we
additionally use the symbols sx, tx as the identifiers of the edge’s source
and target nodes, and s′x, t

′
x to denote respectively their list components in

VarId. This correspondence is shown by Figure 6.4.

x : V x′

x

!

Figure 6.3: Correspondence between node variables and nodes

!x : E
x′

x

sx tx

s
′

x
t
′

x

Figure 6.4: Correspondence between edge variables and edges

The first helper function VertexID takes a Vertex expression as input,
returning the node identifier that would be associated with it in a graph
exhibiting the correspondence described in Remark 6.12.
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Definition 6.13 (Helper function VertexID). Let t denote an expression in
Vertex. We define:

VertexID(t) =







v if t = v with v ∈ VVar
se if t = s(e) with e ∈ EVar
te if t = t(e) with e ∈ EVar

The second helper function AC (for Assignment Constraint) takes as
input a many-sorted expression from List, returning an equivalent assign-
ment constraint but with labelling functions (unavailable in assignment
constraints) replaced by the variables labelling items according to the cor-
respondence of Remark 6.12.

Definition 6.14 (Helper function AC). Let t denote a many-sorted expres-
sion in List. Then we define:

AC(t) =































v′ if t = l(v) with v ∈ VVar
s′e if t = l(s(e)) with e ∈ EVar
t′e if t = l(t(e)) with e ∈ EVar
e′ if t = m(e) with e ∈ EVar
AC(t1) : AC(t2) if t = t1 : t2 with t1, t2 ∈ List
t otherwise

Now, we are ready to define the transformation Cond from many-sorted
formulae to E-constraints. We require that the formulae do not contain any
variables that are primed (since these have special meaning in the transfor-
mation), and require also that the same variable is not quantified more than
once. It is easy to rename variables to get arbitrary formulae into this form.

Theorem 6.15 (Sentences can be expressed as E-constraints). Let ϕ denote a
sentence without primed variables and without variables quantified more
than once. There is a transformation Cond such that for all graphs G ∈
G(L),

G |= ϕ if and only if G |= Cond(ϕ).

Construction. For all sentences ϕ, let Cond(ϕ) = Cond′(ϕ, ∅). The trans-
formation Cond′ takes the formula that remains to be translated as its first
input, and the domain of the next morphism in the generated E-condition
as its second input. We define it inductively over the abstract syntax of
formulae (Figure 6.2) and expressions (Figure 6.1).

Let X denote a graph in G ∈ G(EC). Let ϕ′, ϕ1, ϕ2 denote formulae (not
necessarily sentences).
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If ϕ = true (resp. false), then Cond′(ϕ,X) = true (resp. false). If
ϕ = ¬ϕ′, then Cond′(ϕ,X) = ¬Cond′(ϕ′, X). If ϕ = ϕ1 ⊕ ϕ2 with ⊕ ∈
BoolOp, then Cond′(ϕ,X) = Cond′(ϕ1, X)⊕ Cond′(ϕ2, X).

If ϕ = ∃x : L. ϕ′, then

Cond′(ϕ,X) = ∃(X →֒ X | bound(x),Cond′(ϕ′, X))

where bound(x) is an alias for x = x. (This assignment constraint is trivially
satisfied by any assignment to x, but more importantly, forces satisfying
assignments to have a mapping for x, which is then equally assigned down
the nesting. This is necessary if the nested part is a Boolean formula over
E-conditions.)

If ϕ = ∃x : S. ϕ′ with S ∈ {I, S, A}, then:

Cond′(ϕ,X) = ∃(X →֒ X | t(x),Cond′(ϕ′, X))

where t is respectively int, string, or atom for the three sorts.
If ϕ = ∃v : V. ϕ′, then:

Cond′(ϕ,X) =
∨

X′∈VMerge(X,v)

∃(X →֒ X ′ | v′ = lX′(v),Cond′(ϕ′, X ′))

where lX′ returns the list component only. Here, VMerge(X, v) is the (fi-
nite) set of graphs in G(EC) containing exactly the graph obtained from X
by disjointly adding an unmarked node v, the graph obtained from X by
disjointly adding a marked node v, and every graph obtainable from these
by identifying a node with v; in the two cases with no merging, label v
with variable v′. (Observe that the assignment constraint – in cases when v
is identified with another node – enforces that v′ is always the same as the
list component of that node.)

If ϕ = ∃e : E. ϕ′, then:

Cond′(ϕ,X) =
∨

X′∈EMerge(X,e)

∃(X →֒ X ′ | e′ =mX′(e),Cond′(ϕ′, X ′))

where mX′ returns the list component only, and where EMerge(X, e) is the
(finite) set of graphs in G(EC) defined as follows. Let X∗ denote a graph
obtained from X by disjointly adding nodes with identifiers se, te and an
edge with identifier e such that sX∗(e) = se, tX∗(e) = te, lX∗(se) = s′e,
lX∗(te) = t′e, and mX∗(e) = e′ (these labels being distinct variables in
VarId). The set EMerge(X, e) contains all such graphs X∗ for all combi-
nations of mark components, and all other graphs obtainable from eachX∗

by identifying e, se, te with all possible nodes and edges – with their list
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components replacing e′, s′e, t′e. (Note that se and te can also be identified,
if their mark components are the same, to create a loop.)

If ϕ = ∀x : S. ϕ′, then:

Cond′(ϕ,X) = Cond′(¬∃x : S. ¬ϕ′, X).

If ϕ = e = f with e, f ∈ EVar, then:

Cond′(ϕ,X) = true

if edges e, f are identified in X , otherwise false.

If ϕ = v1 = v2 with v1, v2 in Vertex, then:

Cond′(ϕ,X) = true

if VertexID(v1), VertexID(v2) are identified in X , otherwise Cond′(ϕ,X) =
false.

If ϕ = marked(e) with e in EVar (resp. marked(v) with v in Vertex),
then Cond′(ϕ,X) = true if e in EX is marked (resp. VertexID(v) in VX is
marked), and false otherwise.

If ϕ = t(l) where t ∈ Type and l ∈ List. Then,

Cond′(ϕ,X) = ∃(X →֒ X | t(AC(l))).

If ϕ = i1 ⊲⊳ i2 with i1, i2 ∈ Integer and ⊲⊳ ∈ IntRel, then:

Cond′(ϕ,X) = ∃(X →֒ X | i1 ⊲⊳ i2).

Finally, if ϕ = l1 = l2 with l1, l2 ∈ List, then:

Cond′(ϕ,X) = ∃(X →֒ X | AC(l1) = AC(l2)).

We demonstrate the construction of Cond step-by-step on two examples
of sentences. The second of the examples is more complicated, quantifying
more than one node variable and using node identification.

Example 6.16. Consider the sentence:

ϕ = ¬∃v : V. ∃i : I. l(v) = i ∧ i < 0.

For a graph to satisfy ϕ, it must not contain a node that has a negative
integer as its list component.

Applying Cond to ϕ results in the following E-constraint:
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Cond(ϕ) = Cond′(ϕ, ∅)
= ¬Cond′(∃v : V. ∃i : I. l(v) = i ∧ i < 0, ∅)
= ¬∃( v′ v

| v′ = v′,Cond′(∃i : I. l(v) = i ∧ i < 0, v′ v
))

∧ ¬∃( v′ v
| v′ = v′,Cond′(∃i : I. l(v) = i ∧ i < 0, v′ v

))
= ¬∃( v′ v

| v′ = v′, ∃( v′ v
| int(i),

Cond′(l(v) = i ∧ i < 0, v′ v
)))

∧ ¬∃( v′ v
| v′ = v′, ∃( v′ v

| int(i),
Cond′(l(v) = i ∧ i < 0, v′ v

)))
= ¬∃( v′ v

| v′ = v′, ∃( v′ v
| int(i),

Cond′(l(v) = i, v′ v
) ∧ Cond′(i < 0, v′ v

)))
∧ ¬∃( v′ v

| v′ = v′, ∃( v′ v
| int(i),

Cond′(l(v) = i, v
′

v
) ∧ Cond′(i < 0, v

′

v
)))

= ¬∃( v′ v
| v′ = v′, ∃( v′ v

| int(i),
∃( v′ v

| v′ = i) ∧ ∃( v′ v
| i < 0)))

∧ ¬∃( v′ v
| v′ = v′, ∃( v′ v

| int(i),
∃( v′ v

| v′ = i) ∧ ∃( v′ v
| i < 0)))

Several simplifications can clearly be made to yield an equivalent, and
more readable E-constraint:

≡ ¬∃( i | i < 0) ∧ ¬∃( i | i < 0).

This can be read as: “there does not exist a node with an integer less than
zero as its list component”. Here, int(i) is not required, since only assign-
ments of i to integers are well-typed for i < 0.

Example 6.17. Consider the sentence:

ϕ = ∃v : V. l(v) = 5 ∧ ∀w : V.
(¬v = w⇒ ∃x : S. l(w) = x) ∧ (l(w) = l(v)⇒ v = w).

For a graph to satisfy ϕ, it must be the case that there is a node v labelled
by the integer 5, and that for any other node, being distinct from v implies
that it is labelled by a string, and having the same label as v implies that it
is the same node as v.

Define the following abbreviations:

ϕ′
1 = (¬v = w⇒ ∃x : S. l(w) = x)

ϕ′
2 = (l(w) = l(v)⇒ v = w)

ϕ′ = ∀w : V. ϕ′
1 ∧ ϕ

′
2.

Applying the transformation Cond to ϕ results in the E-constraint of Fig-
ure 6.5 (note that we exclude the marked nodes from the disjunctions for
simplicity of presentation).
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Cond′(ϕ, ∅) = ∃( v′ v
| v′ = v′,Cond′(l(v) = 5, v′ v

)
∧ Cond′(ϕ′, v

′

v
))

= ∃( v′ v
| v′ = v′, ∃( v′ v

| v′ = 5)
∧ ¬∃( v′ v w′ w

| w′ = w′,¬Cond′(ϕ′

1
∧ ϕ′

2
, v′ v w′ w

))
∧ ¬∃( v′ v=w

| w′ = v′,¬Cond′(ϕ′

1
∧ ϕ′

2
, v′ v=w

)))
= ∃( v′ v

| v′ = v′, ∃( v′ v
| v′ = 5)

∧ ¬∃( v′ v w′ w
| w′ = w′,¬(

(¬false⇒ Cond′(∃x : S. l(w) = x, v′ v w′ w
))

∧(∃( v′ v w′ w
| w′ = v′)⇒ false)))

∧ ¬∃( v′ v=w
| w′ = v′,¬Cond′(ϕ′

1
∧ ϕ′

2
, v′ v=w

)))
= ∃( v′ v

| v′ = v′, ∃( v′ v
| v′ = 5)

∧ ¬∃( v′ v w′ w
| w′ = w′,¬(

(¬false⇒ Cond′(∃x : S. l(w) = x, v′ v w′ w
))

∧ (∃( v′ v w′ w
| w′ = v′)⇒ false)))

∧ ¬∃( v′ v=w
| w′ = v′,¬(

(¬true⇒ Cond′(∃x : S. l(w) = x, v′ v=w
))

∧ (∃( v′ v=w
| w′ = v′)⇒ true))))

= ∃( v
′

v
| v′ = v′, ∃( v

′

v
| v′ = 5)

∧ ∀( v′ v w′ w
| w′ = w′,

∃( v′ v w′ w
| string(x), ∃( v′ v w′ w

| w′ = x))
∧ ¬∃( v′ v w′ w

| w′ = v′))
∧ ∀( v′ v=w

| w′ = v′,
(true ∨ ∃( v′ v=w

| string(x), ∃( v′ v=w
| w′ = x)))

∧ (¬∃( v′ v=w
| w′ = v′) ∨ true)))

= ∃( v′ v
| v′ = v′, ∃( v′ v

| v′ = 5)
∧ ∀( v′ v w′ w

| w′ = w′,
∃( v′ v w′ w

| string(x), ∃( v′ v w′ w
| w′ = x))

∧ ¬∃( v′ v w′ w
| w′ = v′)))

Figure 6.5: Derivation of the E-condition Cond(ϕ) from Example 6.17

The E-constraint of Figure 6.5 can be simplified further to the equivalent
E-constraint:

≡ ∃( 5
v
, ∀( 5

v w′ w
, ∃( 5

v w′ w
| string(w′)))).

This can be read as: “exactly one node in the graph is labelled with the
integer 5, and all other nodes are labelled with strings”.

Including marked nodes, the final (simplified) E-constraint would be:

≡ ∃( 5
v
, ∀( 5

v w′ w
, ∃( 5

v w′ w
| string(w′)))

∧ ∀( 5
v w

′

w
, ∃( 5

v w
′

w
| string(w′))))

∃( 5
v
, ∀( 5

v w′ w
, ∃( 5

v w′ w
| string(w′)))

∧ ∀( 5
v w

′

w
, ∃( 5

v w
′

w
| string(w′))))

In order to prove the statement of Theorem 6.15 to be correct, we must
first generalise it so that we can apply structural induction. (The formulae
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in the theorem are sentences, but their sub-formulae need not be.) Hence
we prove that many-sorted formulae in general can be expressed as E-
conditions. The difference is that the interpretation function for the for-
mer maps free variables to particular nodes, edges, and labels, and must
correspond to the domain of the morphism satisfying the latter. Then, the
correctness of Theorem 6.15 follows from the fact that it is just a particular
instance, i.e. no free variables and the empty graph as the domain of the
morphism.

Lemma 6.18 (Formulae can be expressed as E-conditions). Let ϕ denote a
formula without primed variables and variables quantified more than once.
For all injective graph morphisms z : Xα →֒ G with X,α corresponding to
the free node and edge variables of ϕ as in Remark 6.12, and α a well-typed
assignment such that no variable in dom(α) is quantified in ϕ, we have
that:

Iz,αG |= ϕ if and only if z : Xα →֒ G |= Cond′(ϕ,X)σα .

Here, Iz,αG is defined as IG but with the following mappings for free vari-
ables in ϕ: (1) for each variable x in dom(α), Iz,αG (x) = α(x); (2) for each
node v inX , Iz,αG (v) = z(v); and (3) for each edge e inX , Iz,αG (e) = z(e).

Proof. See Appendix D.1.

Now, we prove the correctness of Theorem 6.15 by showing that it is
simply an instance of Lemma 6.18.

Proof of Theorem 6.15. We prove the correctness of the theorem by showing
that it is an instance of Lemma 6.18. Define i : ∅ →֒ G and αǫ the assignment
undefined on all variables, i.e. dom(αǫ) = ∅. Then, by the definition of |=,

the observation that IG = I i,αǫ

G , and Lemma 6.18, we have that:

G |= ϕ iff IG |= ϕ

iff I i,αǫ

G |= ϕ

iff i : ∅αǫ →֒ G |= Cond′(ϕ, ∅)σαǫ

iff i : ∅ →֒ G |= Cond′(ϕ, ∅)

iff G |= Cond(ϕ).

The result that formulae can be transformed into E-conditions means
also that E-conditions can express arbitrary sentences of first-order arith-
metic (i.e. sentences in which all variables are of sort Integer). Arithmetic
expressions and relations appear in the assignment constraints of such E-
conditions, and nesting is used to handle variable quantification; the mor-
phisms are all from ∅ to ∅, meaning that if an E-condition is satisfied by one
graph, it is satisfied by all graphs.
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Corollary 6.19 (E-constraints can express first-order arithmetic). For all sen-
tences ϕ containing only variables of sort Integer, there is an E-constraint c
such that:

|= ϕ if and only if |= c.

Construction. For all sentences ϕ, take Cond(ϕ) to be c.

Proof. Since the variables ofϕ can only be interpreted as integers, and hence
the sentence cannot express anything about graph structure, if one graph
satisfies ϕ then so do all graphs (the semantics of lists are fixed across all
graphs). The same is true for the satisfaction of c = Cond(ϕ), since by the
construction of the transformation, the resulting E-condition’s morphisms
are all ∅ →֒ ∅, and there is an injective graph morphism from the empty
graph to any graph (in categorical terms it is an initial object). Together
with Theorem 6.15 we have the result.

6.4 From E-Conditions to Many-Sorted Formulae

We prove in this section that every E-constraint has an equivalent sentence
in our many-sorted logic, by defining and proving correct a transformation
from E-conditions to logic. We demonstrate the transformation by applying
it to two example E-constraints and showing the steps.

To simplify the transformation, we define for E-conditions a normal
form, and show how arbitrary E-conditions can be rewritten as equiva-
lent ones that adhere to it. The normal form isolates expressions to the as-
signment constraints, substitutes false for E-conditions that have no well-
typed assignment, and also decomposes the morphisms such that each
level of nesting adds only one node or edge at a time. The idea is that
each level of nesting corresponds to the quantification of a new node or
edge variable.

6.4.1 Normal Form for E-Conditions

We propose a normal form for E-conditions, where (1) nodes and edges
are labelled with distinct variables (and “unbounded” variables are used
at most once across Boolean connectives); (2) assignment constraints are
many-sorted formulae; and (2) the codomains of morphisms at each level
of nesting contain only one more item (i.e. node or edge) than their do-
mains. We then prove that all E-conditions can be replaced by equivalent
E-conditions in normal form, and then use the assumptions allowed to us
by the normal form to define a transformation to many-sorted formulae.
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Definition 6.20 (Normal form for E-conditions). Let c denote an E-condition.
If c = true, then it is in normal form. If c = ∃(a : P →֒ C | γ, c′), then c is in
normal form if all of the following hold:

1. The morphism a is an inclusion, i.e. for all nodes and edges x, a(x) =
x;

2. The list components of all labels in P,C are single variables that are
distinct from each other, and distinct from other variables (unless the
node or edge is the same);

3. All variables in P,C, γ are sorted (i.e. belong to LVar, AVar, IVar, or
SVar) and γ is a many-sorted formula (up to a renaming of and for ∧,
or for ∨, etc.);

4. The morphism a is either an identity morphism (i.e. P = C), or C is
the graph P but with one additional item (either a node or edge, but
not both); and

5. The E-condition c′ is in normal form.

If E-conditions c, d are in normal form, then so is ¬c and c∧ d (similarly for
other Boolean formulae over E-conditions).

If an E-condition c can be rewritten as an equivalent E-condition c̄ in
normal form, we say that c has been normalised to c̄.

We show that arbitrary E-conditions can be rewritten as equivalent ones
in normal form, addressing the five requirements in order. That morphisms
can be replaced by inclusions is obvious, but the latter requirements are less
so.

Fact 6.21 (Replacing morphisms with inclusions). E-conditions containing
morphisms that are not inclusions can be replaced by equivalent ones con-
taining only inclusions (by a consistent renaming of identifiers).

The requirement that the list components of all labels along the mor-
phisms are just distinct variables is achieved by replacing lists with fresh
variables, and equating these variables with the previous lists in the assign-
ment constraints. This results in a convenient separation of information:
the morphisms describe graph structure and whether items are marked or
not, whereas the assignment constraints describe all the information about
about list components. Hence the transformation to formulae can handle
them separately.

Lemma 6.22 (Replacing lists). Let c denote an E-condition. There is a trans-
formation Relabel that yields an E-condition meeting the second require-
ment of Definition 6.20, such that for all injective graph morphisms s over
G(L),

s |= c if and only if s |= Relabel(c).
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Construction. Consider c as a tree of morphisms equipped with assignment
constraints and Boolean symbols (as in Section 4.1.1). First, consistently
rename variables (to fresh variables) if they appear elsewhere in the tree
but do not originate from the same parent. Then, every time a new node
or edge is added along the tree, replace its list component l with a fresh
variable x (consistently replacing the same node or edge label along the
morphisms), and replace the assignment constraint γ at that level of the
tree with x = l and γ. Take the E-condition that results to be Relabel(c).

Proof. See Appendix D.2.

We illustrate this relabelling transformation on an example.

Example 6.23. Consider the E-condition:

c = ∃( x x
1 2

x+x
| int(x),¬∃( x x

1 2

x+x
z

)) ∨ ∃( x
1
| string(x)).

We apply the transformation Relabel to c. First, since x appears twice in the
tree (but does not originate in the root), we apply a substitution to one side
of the disjunction to yield:

c̄ = ∃( x x
1 2

x+x
| int(x),¬∃( x x

1 2

x+x
z

)) ∨ ∃( y
1
| string(y)).

Then, we consistently relabel the nodes and edges along the morphisms
with fresh variables to yield:

Relabel(c̄) = ∃( a c
1 2

b | a = x and b = x+x and c = x and int(x),

¬∃( a c
1 2

b
d

| d = z))

∨ ∃( e
1
| e = y and string(y))

We could simplify this E-condition (e.g. we could remove d = z), but we
opt instead to show the full result of the transformation which makes no
assumptions about how variables and labels might be used further down
the tree. Note that this E-condition is not unique: there are infinitely more
equivalent E-conditions (by a consistent renaming of variables).

Now, we address the third requirement of normalised E-conditions. Re-
call the Venn diagram of variable classes in Figure 4.3. We replace variables
with typed variables, i.e. variables belonging to:

LVar ∪AVar ∪ IVar ∪ SVar

and make assignment constraints many-sorted (up to the minor syntactic
differences, e.g. and instead of ∧). The idea is to exploit that, when variables
are sorted, assignment constraints are a subset of the many-sorted formulae
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(again, up to minor syntactic differences). Where assignment constraints
however cannot be made to be correctly sorted, we replace the E-condition
with false, since it will not be satisfiable by any assignment.

In the transformation from E-conditions to formulae, the assumption
that assignment constraints are already sorted is a very convenient one:
whereas variable types only concern us at the semantic level of E-conditions,
in formulae types are already important at the syntactic level.

Lemma 6.24 (Sorting assignment constraints). Let c be an E-condition ad-
hering to the first two requirements of normal form (Definition 6.20). There
is a transformation Sort which yields an E-condition meeting the third re-
quirement, such that for all injective graph morphisms s over G(L),

s |= c if and only if s |= Sort(c).

Construction. Consider c as a tree of morphisms equipped with assignment
constraints and Boolean symbols (as in Section 4.1.1).

(1) Traverse down the tree and note for every variable x whether it ap-
pears in an expression only derivable from Integer (resp. String).

(2) For each variable x in the graphs and assignment constraints of each
level, replace x with a fresh variable xI ∈ IVar (resp. xS ∈ SVar, xL ∈
LVar) if x was noted only for Integer (resp. only for String, neither
Integer nor String) in (1). If x was noted for both Integer and String in
(1), then replace the E-condition at that level of the tree with false.

(3) Take the E-condition that results to be Sort(c).

Proof. See Appendix D.2.

We demonstrate Sort on two E-conditions: one which is satisfiable, and
one which is not.

Example 6.25. Consider the E-constraint:

∃( x y
1 2

| x = y, ∃( x y
1 2

| x+5 = 4) ∨ ∃( x y
1 2

z
| x < z)).

Traversing the tree we find x, z in expressions only derivable from Integer,
and y in no expressions derivable only from Integer or String. Hence ap-
plying Sort to the E-condition gives us:

∃( xI yL
1 2

| xI = yL, ∃( xI yL
1 2

| xI+5 = 4) ∨ ∃( xI yL
1 2

zI
| xI < zI))

with xI, zI ∈ IVar and yL ∈ LVar.

176



6.4. From E-Conditions to Many-Sorted Formulae

Example 6.26. Consider the E-constraint:

∃(∅ | atom(x), ∃(∅ | x < y) ∨ ∃(∅ | x.”ch” = w)) ∧ ∃(∅ | atom(z)).

Traversing the tree we find x in expressions only derivable from Integer
and String, y from Integer, and w, z from neither Integer nor String. Hence
applying Sort to the E-condition gives us:

false ∧ ∃(∅ | atom(zL))

with zL ∈ LVar. (Note that the first disjunct was unsatisfiable because x

cannot represent both an integer and string.)

Next, we show that E-conditions can be decomposed into equivalent
ones with morphisms that add at most one item (node or edge) to their
codomains.

Lemma 6.27 (Decomposing morphisms). Let c be an E-condition. There is
a transformation Decomp which returns an E-condition meeting the fourth
requirement of normal form (Definition 6.20), such that for all injective
graph morphisms s over G(L),

s |= c if and only if s |= Decomp(c).

Construction. If c = true, then Decomp(c) = true. If c = ∃(a | γ, c′), then

Decomp(c) = ∃(a1, ∃(a2, · · · , ∃(an−1, ∃(an | γ,Decomp(c′))) · · · )),

where a1, . . . , an is a (finite) decomposition of a such that the codomain of
each ai is equal to its domain or contains one additional node or edge.

For Boolean formulae over E-conditions, Decomp is defined in the usual
way, that is, Decomp(¬c) = ¬Decomp(c), Decomp(c ∧ d) = Decomp(c) ∧
Decomp(d), and Decomp(c ∨ d) = Decomp(c) ∨Decomp(d).

Proof. Follows from the fact that:

Decomp(c) ≡ ∃(an ◦ an−1 ◦ · · · ◦ a1 | γ, c
′).

We demonstrate the transformation on a simple E-constraint. (Note that
for a given E-condition c, Decomp(c) is not unique, but it is well-defined.)

Example 6.28. Consider the E-condition:
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c = ∀( x
1

a

| int(a, x), ∃( x c
1

b
a

))

≡ ¬∃( x
1

a

| int(a, x),¬∃( x c
1

b
a

)).

Applying the transformation Decomp to c yields the following equivalent
E-condition:

Decomp(c) = ¬Decomp(∃( x
1

a

| int(a, x),¬∃( x c
1

b
a

)))

= ¬∃( x
1
, ∃( x

1

a

| int(a, x),Decomp(¬∃( x c
1

b
a

))))

= ¬∃( x
1
, ∃( x

1

a

| int(a, x),¬Decomp(∃( x c
1

b
a

))))

= ¬∃( x
1
, ∃( x

1

a

| int(a, x),¬∃( x a
1 2

a

, ∃( x c
1 2

b
a

))))

≡ ∀( x
1
, ∀( x

1

a

| int(a, x), ∃( x a
1 2

a

, ∃( x c
1 2

b
a

)))).

We have addressed the individual requirements of normal form. Fi-
nally, we state and prove that these steps can be combined to transform an
arbitrary E-condition into one that is in normal form.

Proposition 6.29 (E-conditions can be normalised). There is a transforma-
tion Norm, such that for all morphisms s over G(L), and all E-conditions c,
Norm(c) is in normal form and:

s |= c if and only if s |= Norm(c).

Construction. Define Norm(c) = Decomp(Sort(Relabel(c̄))) where c̄ is c but
with all morphisms inclusions.

For Boolean formulae over E-conditions, Norm is defined in the usual
way, that is, Norm(¬c) = ¬Norm(c), Norm(c ∧ d) = Norm(c) ∧Norm(d),
and Norm(c ∨ d) = Norm(c) ∨Norm(d).

Proof. Follows from the definitions of and lemmata for the intermediate
transformations.

We now demonstrate all steps of the normalisation on an E-constraint.
(Note that the result is not unique.)

Example 6.30. Consider the E-condition (assume that the morphisms are
inclusions):

c = ∀( x :y
1

| x > y, ∃( x :y z
1 2

b | z = x + y)).

Applying the transformation Norm to c yields the following equivalent E-
condition:
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Norm(c) = Decomp(Sort(Relabel(c)))

≡ Decomp(Sort(∀( a
1
| a = x :y and x > y,

∃( a z
1 2

b | z = x + y))))

= Decomp(∀( aL
1
| aL = xI :yI and xI > yI,

∃( aL zL
1 2

bL | zL = xI + yI)))

= ∀( aL
1
| aL = xI :yI and xI > yI,

∃( aL zL
1 2

, ∃( aL zL
1 2

bL | zL = xI + yI)))

with aL, bL, zL ∈ LVar and xI, yI ∈ IVar.

6.4.2 Normalised E-Constraints to Formulae

Since we have shown that arbitrary E-constraints can be replaced by equiv-
alent ones in the normal form of Definition 6.20, our transformation to
many-sorted formulae exploits the characteristics that can be assumed of
normalised E-constraints. Nodes and edges are quantified one at a time –
once per level of nesting in the E-condition – and assignment constraints,
which alone express relations between list components of labels, are al-
ready formulae (up to minor syntactic differences).

Proposition 6.31 (Normalised E-conditions to logic). There is a transfor-
mation Form, such that for all normalised E-constraints c, and all graphs
G ∈ G(L),

G |= c if and only if G |= Form(c).

Construction. For all E-constraints c, we define

Form(c) = Form′(c, {})

where the second parameter will carry variables that have already been
quantified by the transformation. Let V in the following denote a set of
sorted variables.

If c = true, then Form′(c, V ) = true. If c = ∃(a | γ, c′), then there
are three possible outputs for Form′(c, V ) defined for the three forms that
a may take in normal form.

Suppose that c = ∃(id : P →֒ P | γ, c′), i.e. an E-condition with a mor-
phism that is an identity. Then, Form′(c, V ) is equal to:

Quant(vars(γ)− V ). γ∗ ∧ Form′(c′, V ∪ vars(γ)).

Here and in later cases,

Quant({x, y, . . . }) = ∃x : Sx. ∃y : Sy . . .
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where Sx is the symbol corresponding to the sort of x (i.e. L, I, S). Moreover,
γ∗ denotes the assignment constraint γ with and, or, not replaced respec-
tively by ∧,∨,¬.

Suppose that c = ∃([va] : P →֒ P ′ | γ, c′), where [va] denotes a mor-
phism with codomain P ′ equal to domain P except for an additional un-
marked node v labelled by variable a. Then, Form′(c, V ) is equal to:

∃v : V.
∧

v′∈V ∩VVar ¬v = v′ ∧ ¬marked(v)

∧ Quant([vars(γ) ∪ {a}]− V )

. l(v) = a ∧ γ∗ ∧ Form′(c′, V ∪ vars(γ) ∪ {v, a})

The first line above demands the existence of an unmarked node that is dis-
tinct from others already quantified. The second line quantifies new vari-
ables in the assignment constraint, as well as the new variable a labelling v.
The third line establishes that a comprises the list component of v, enforces
the relations of the assignment constraint, and transforms the nested part
of the E-condition.

Suppose that c = ∃([euva] : P →֒ P ′ | γ, c′), where [euva] denotes a
morphism with codomain P ′ equal to domain P except for an additional
unmarked edge e, with source node u, target node v, list component vari-
able a. Then, Form′(c, V ) is equal to:

∃e : E.
∧

e′∈V ∩EVar ¬e = e′ ∧ ¬marked(e)

∧ Quant([vars(γ) ∪ {a}]− V )

. s(e) = u ∧ t(e) = v ∧ m(e) = a

∧ γ∗ ∧ Form′(c′, V ∪ vars(γ) ∪ {e, a})

Note that this exploits the correspondence between node identifiers and
node variables established in the previous case.

For cases when the morphism introduces a marked node or edge, then
Form′(c, V ) is as above but without negating the marked predicate.

For Boolean formulae over E-conditions, Form’ is defined in the usual
way, that is, Form′(¬c, V ) = ¬Form′(c, V ), Form′(c ∧ d, V ) = Form′(c, V ) ∧
Form′(d, V ), and Form′(c ∨ d, V ) = Form′(c, V ) ∨ Form′(d, V ).

Example 6.32. We take the normalised E-condition from Example 6.30:

c = ∀( aL
1
| aL = xI :yI and xI > yI,

∃( aL zL
1 2

, ∃( aL zL
1 2

bL | zL = xI + yI)))

≡ ¬∃( aL
1
| aL = xI :yI and xI > yI,

¬∃( aL zL
1 2

, ∃( aL zL
1 2

bL | zL = xI + yI))).
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Define c′′ = ∃( aL zL
1 2

bL | zL = xI + yI) and c′ = ¬∃( aL zL
1 2

, c′′). Applying
the transformation Form to c results in the following sentence:

Form(c)

= Form′(c, {})

= ¬∃v : V. ¬marked(v)

∧ Quant({aL, xI, yI})

. l(v) = aL ∧ aL = xI :yI ∧ xI > yI

∧ Form′(c′, {v, aL, xI, yI})

= ¬∃v : V. ¬marked(v)

∧ ∃aL : L, xI : I, yI : I

. l(v) = aL ∧ aL = xI :yI ∧ xI > yI

∧ Form′(c′, {v, aL, xI, yI})

= ¬∃v : V. ¬marked(v)

∧ ∃aL : L, xI : I, yI : I. l(v) = aL ∧ aL = xI :yI ∧ xI > yI

∧ ¬∃w : V. ¬w = v ∧ ¬marked(w) ∧ ∃zL : L. l(w) = zL

∧ Form′(c′′, {v, aL, xI, yI, zL})

= ¬∃v : V. ¬marked(v)

∧ ∃aL : L, xI : I, yI : I. l(v) = aL ∧ aL = xI :yI ∧ xI > yI

∧ ¬∃w : V. ¬w = v ∧ ¬marked(w) ∧ ∃zL : L. l(w) = zL

∧ ∃e : E. ¬marked(e) ∧ ∃bL : L. s(e) = v ∧ t(e) = w

∧ m(e) = bL ∧ zL = xI + yI

The resulting sentence can be simplified further using standard manipula-
tion laws for predicate logics.

≡ ∀v : V, xI : I, yI : I. (¬marked(v) ∧ l(v) = xI : yI ∧ xI > yI)

⇒ ∃w : V, e : E. ¬w = v ∧ l(w) = xI + yI

∧ s(e) = v ∧ t(e) = w

To prove the statement of Proposition 6.31, we first state and prove a
more general lemma for E-conditions (not only E-constraints) and Form’ for
which we can apply structural induction. Here, we consider satisfaction by
morphisms and interpretation functions, rather than only graphs. We show
that Proposition 6.31 is simply an instance of the more general lemma.
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Lemma 6.33 (E-conditions can be expressed as formulae). For every E-
condition c in normal form, and all injective graph morphisms p : Pα →֒ G
with P ∈ G(EC), G ∈ G(L), and α a well-typed assignment, we have that:

p : Pα →֒ G |= cσα if and only if Ip,αG |= Form′(c,dom(α) ∪ P ∗)

where P ∗ is the set of node and edge variables corresponding to the iden-
tifiers in P . Additionally, Ip,αG is defined as IG but with the following map-
pings: (1) for each variable x in dom(α), Ip,αG (x) = α(x); (2) for each node v
in P , Ip,αG (v) = p(v); and (3) for each edge e in P , Ip,αG (e) = p(e).

Proof. See Appendix D.3.

We now prove the correctness of Proposition 6.31 by showing that it is
simply an instance of Lemma 6.33.

Proof of Proposition 6.31. To prove the correctness of the proposition, we show
that it is an instance of Lemma 6.33. Define i : ∅ →֒ G and αǫ the assignment
undefined on all variables, i.e. dom(αǫ) = ∅. Then, by the definition of |=,

the observation that IG = I i,αǫ

G , and Lemma 6.33, we have that:

G |= ϕ iff i : ∅ →֒ G |= c

iff i : ∅αǫ →֒ G |= cσαǫ

iff I i,αǫ

G |= Form′(c,dom(αǫ) ∪ ∅)

iff IG |= Form′(c, {})

iff IG |= Form(c)

iff G |= Form(c).

Finally, we state the main result of this section: that any E-constraint
(whether normalised or not) can be transformed into a semantically equiv-
alent many-sorted sentence.

Theorem 6.34 (E-constraints can be expressed as sentences). Given any E-
constraint c, there is a transformation from c to a sentence ϕ such that for
any graph G ∈ G(L),

G |= c if and only if G |= ϕ.

Construction. Take ϕ = Form(Norm(c)).

Proof. By Propositions 6.29 and 6.31.
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6.5 Verification with Many-Sorted Formulae

This chapter has contributed a characterisation of E-constraints in terms
of a classical logic, which may be more understandable for programmers
unfamiliar with graph transformation, and may be be more practical for
theorem proving technology. Much of the effort has been in showing their
expressive equivalence, but in doing so, we have obtained another result
for “free”: that is, additional sound Hoare calculi for proving the correct-
ness of graph programs.

The first presentation of the Hoare calculi (Chapter 3) was given in
an extensional style (i.e. without a specified assertion language). Since
there are instances of the calculi for E-constraints (in particular, there are
transformations defining Wlp, SE, FE), and since there are transformations
from many-sorted formulae to E-conditions and back, we can define Wlp,
SE, and FE for many-sorted formulae simply by transforming them to E-
conditions first.

Definition 6.35 (Many-sorted formulae as assertions). Let M denote the
assertion language 〈M, |=〉, where M = {ϕ ∈ Formula | ϕ is a sentence}
and |=⊆ G(L)×M is the satisfaction relation for sentences.

Definition 6.36 (Hoare calculi with many-sorted sentences). Let r (resp.R)
range over conditional rule schemata (resp. over sets of conditional rule
schemata), c, c′, d, d′, e, inv over assertions in M, and P,Q over graph pro-
grams. Our Hoare calculi with assertions in M for partial, weak total, and
total correctness comprise the proof rules of Appendix B but with:

1. Form(Norm(Pre(r,Cond(c)))) replacing Pre(r, c); and

2. Form(Norm(App(R))) replacing App(R).

If a triple {c} P {d} can be instantiated from any of the partial correctness
axioms, or derived from a combination of axioms and inference rules, we
denote this by ⊢par {c} P {d}. (Analogous for wtot, tot.)

Note that the calculi of Definition 6.36 inherit the restrictions of the cal-
culi with E-constraints, that is, the restriction to programs with sets of (con-
ditional) rule schemata in the guards of conditional constructs (as opposed
to arbitrary programs).

Soundness of the calculi is a direct result of the soundness of the calculi
with E-constraints, and the correctness of the transformations between the
two assertion languages.

Theorem 6.37 (Soundness). Let s denote par, wtot, or tot. Given a program
P and assertions c, d from M,

⊢s {c} P {d} implies |=s {c} P {d}.
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Proof. Follows from the soundness Theorems 3.22, 3.23, 3.24, the results for
Cond, Norm, and Form (Theorem 6.15, Propositions 6.29, 6.31), and the
results that Pre and App define the special assertions of the extensional
calculi (Theorems 4.46, 4.47, 4.51).

These calculi for many-sorted formulae might be more well-suited as
a “front end” in some implementation of our work in a proof assistant,
with the generation of Wlp, SE, and FE occurring behind the scenes via E-
conditions and pushout constructions. However, for non-trivial assertions,
it is likely that the formulae resulting from this process are likely to be quite
large as a result of the translations and normalisations. Hence, there are two
avenues of further work that might help:

1. finding direct transformations for Wlp, SE, and FE without first trans-
lating to E-conditions; and

2. devising and implementing inference rules for automatically simpli-
fying formulae.

6.6 Related Work

Rensink [Ren04] showed how first-order logic could be represented as a
recursively nested set of graph morphisms – an idea which became central
to nested conditions, and hence also E-conditions. Rensink’s paper defined
transformations back and forth between these two representations.

Habel and Pennemann explored the expressiveness of graph conditions
in [HP09], and in particular, gave translations between graph conditions
and a logic very similar to the first-order graph formulae studied by Cour-
celle ([Cou90, Cou97, CE12]), showing that the formalisms are expressively
equivalent. Unlike our approach, they quantify over variables that can be
interpreted as either nodes or edges, and because they consider only finite
label alphabets, they introduce a unary predicate for every symbol of the
alphabet (e.g. labb(d) is interpreted as true over a graph if node or edge d
is labelled with b). Because variables are untyped, they require an axioma-
tisation for automated theorem provers with statements such as “source
and target nodes cannot be edges” (such formulae cannot be written in our
many-sorted logic).

Habel and Radke have been studying the relationship of Courcelle’s
logics with a formalism similar to nested conditions but extended with hy-
peredge replacement grammars, which allows for the expression of non-
local properties (e.g. paths, connectedness). In [HR10] they give a transla-
tion from monadic second-order (MSO) logic to their formalism, and show
that there cannot be a another translation back (there are certain count-
ing MSO properties that it can express). In [Rad13], Radke shows that the
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formalism can be translated to full second-order logic over graphs, and
though he also gives a translation in the other direction from node-counting
MSO formulae, the question of whether there is a translation from second-
order formulae or not remains open.

6.7 Summary

With this chapter we have:

• defined3 a many-sorted first-order logic for the graphs of GP;

• shown its expressive equivalence with E-constraints, by defining and
proving correct translations between them;

• shown how sentences of the logic can be “plugged in” to our exten-
sional calculi, providing an alternative assertion language for verifi-
cation that does not rely on abstract notions like morphisms; and

• pointed to some related work on graph logics and their connections
to formalisms based on graph morphisms.

3The abstract syntax of the logic was contributed by Detlef Plump.

185



Chapter 6. A Many-Sorted Logic for Graph Programs

186



Chapter 7

Conclusions and Future Work

In this chapter we draw the thesis to a close, first with some conclusions,
and then with some suggestions for interesting future work.

7.1 Conclusions

In Section 1.2 we proposed a research hypothesis:

The graph transformation language GP 2 can effectively be equipped
with a reasoning system based on Hoare logic, facilitating proofs about
both structural properties of graphs and relations between their labels.

and some criteria of such a reasoning system that would support it:

• sound: every specification one can prove in the system must be valid
with respect to the semantics of the language;

• realistic: in that it does not require impractical assumptions or restric-
tions on programs;

• practical: it can effectively reason about interesting partial correct-
ness and termination properties of structure- and data-manipulating
graph programs;

• general: it should not be fixed to particular assertion languages, and
hence should be easy to extend.

We believe that the contributions of this thesis do satisfy these criteria, and
hence support the hypothesis. In particular: we presented Hoare calculi for
verifying partial correctness and termination properties of graph programs,
and did so in an extensional style to allow their re-use with any assertion
language satisfying certain conditions (general). We proved these calculi to
be sound, relatively complete, and complete for termination. We explored
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the relationship between what assertion languages could define and the
decidability of the model checking problem, justifying a minor but realistic
restriction of graph programs for verification. We presented E-conditions,
a graph specification formalism allowing for the expression of properties
about both structure and data. We instantiated our extensional calculi with
E-conditions as the assertions, and demonstrated its practical use in rea-
soning about properties of a number of data-manipulating programs that
up until now were only verifiable in an ad hoc way. The constructions
and transformations presented are all effective (algorithmic) and could be
implemented in a straightforward way. We also studied a classical many-
sorted logic over graphs, defining effective translations to E-conditions and
back, providing another front-end to the reasoning system that could be in-
tegrated with proof assistants (general).

Of course, in considering these criteria, we are not claiming to have
equipped GP 2 with the most effective reasoning system based on Hoare
logic. Indeed, much work remains to be done in addressing the deficien-
cies, amongst which the lack of non-local properties in assertions, and the
lack of means to relate input and output graphs, stand out as two of the
most pressing – we go into more detail in the following section. But, we
hope that this thesis represents a reasonable step in the right direction, and
has gone some way to widening the class of problems that we can model
and reason about as graph programs.

7.2 Future Work

Here, we discuss some potential avenues of interesting future research,
including strongest postconditions, relative completeness, augmenting E-
constraints with paths, tracking the nodes and edges of graphs from the
input to the output state, applying separation logic, formalising our work
in a proof assistant, and larger case studies.

7.2.1 Strongest Postconditions

We defined the core axiom [ruleapp] of our calculi to require the construc-
tion of a weakest precondition of a (conditional) rule schema with respect
to a postcondition. This followed from the “backwards reasoning” ap-
proach of Hoare [Hoa69] (and several successive authors), in which the
axiom of assignment takes a postcondition and simply applies a substi-
tution to obtain the precondition. The original semantics of assignment,
due to Floyd [Flo67]), instead went in the other direction: from an assign-
ment and a precondition, one obtains a postcondition. For assignments
however, the forward semantics appears more complicated than the simple
backwards, substitution semantics, because it requires an existential quan-
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tification. Hence, the backwards semantics of assignment is more typically
known and implemented in provers.

Gordon and Collavizza [GC10] compare and contrast the two semantics
of assignment, and more generally, the uses of weakest preconditions and
strongest postconditions in verification. They argue that whereas the back-
wards semantics of weakest preconditions appears simpler, there is a case
for using the forward semantics of strongest postconditions, e.g. in discov-
ering potential postconditions of legacy code, and in unifying deductive
methods for proving correctness with automatic property checking based
on symbolic execution. Hence, it is natural to wonder whether a “forwards
version” of [ruleapp] would prove useful in the context of verifying graph
programs.

Actually, for ordinary rules (i.e. not rule schemata), Habel and Penne-
mann [HP09] have shown that computing the strongest postcondition of
a rule with respect to a precondition is simple, and can utilise the same
transformations for computing the weakest precondition. This relies com-
pletely on the fact that rules in the DPO approach can be reversed, i.e. if
r : 〈L ⇒ R〉 is a rule, then so is r−1 : 〈R ⇒ L〉, and if G ⇒r H , then there
is always some direct derivation H ⇒r−1 M such that M ∼= G. Conditional
rule schemata, labelled over expressions, clearly cannot be reversed in this
way (in general). Hence, it is not currently clear how one would define a
forwards version of [ruleapp] for graph programs, and hence we leave it as
future work.

Apart from the benefits to our verification calculi, being able to reverse
(conditional) rule schemata in general is likely to be important for the static
analysis of rule schemata, and more generally, graph programs. To give
an example (without a full explanation), the existence of a pair of paral-
lel independent derivations via ordinary DPO rules implies the existence
of sequentially independent derivations in which one of those rules is re-
versed. Studying such properties of derivations involving rule schemata
might make interesting future work, especially within the context of check-
ing confluence.

7.2.2 Relative Completeness

In Section 4.5 we discussed the completeness problem for our calculi with
E-constraints, noting that while it is clear the assertion language is not ex-
pressive, it remains open as to whether our calculi with E-constraints are
relatively complete or not. Investigating this problem would hence be in-
teresting future work, as would exploring whether there is a minimum ex-
tension to E-constraints that would make the assertion language expressive
(whilst maintaining the definability of Wlp, SE, and FE).
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7.2.3 Expressing the Existence of Paths

In Chapter 5 we demonstrated the use of E-constraints in verifying a num-
ber of graph programs, but hit their limits when we came to consider pro-
grams in which global properties of the graph are more important. In
connected? for example, the most interesting specifications require a way
to reason about the connectedness of a graph, i.e. getting the right outcome
according to whether or not the input graph is connected. Connectedness
is defined in terms of the existence of arbitrary-length paths between all
pairs of nodes, which is a property that E-constraints cannot express. This
is certainly a weakness, because several properties of graphs are indeed de-
fined in terms of paths (see e.g. [Har69]). Indeed, paths can be thought of a
transitive closure property, and several other domains in computer science
(e.g. relational databases) have shown the importance of supporting them.

We sketched already an informal proof for connected?, using an en-
visaged extension of E-constraints for arbitrary-length paths. The example
suggests that it would be worthwhile to further study such a formalism, in
particular, extending the transformation Pre as a basis for practical proofs.
While this conservative extension of E-constraints will lack much of the
expressiveness of more powerful formalisms like hyperedge replacement
conditions [HR10], it should be easier to define and prove correct an ex-
tension to Pre for paths, and we feel that paths alone will allow for the
verification of many interesting non-local properties.

7.2.4 Tracking the Graph

In Chapter 5 we proved a number properties about graph programs, guar-
anteeing to programmers that if the input graph they provided had prop-
erty X , then any output graph(s) would have property Y . We were able
to prove, for example, that the program colouring resulted in a correctly
coloured graph. What we were not able to prove however, is that the cor-
rectly coloured graph had any relation at all to the provided input graph.
To take an extreme example, the empty graph ∅ is certainly a correctly
coloured graph – but unless the input graph is also the empty graph, then
it is certainly not an output of colouring that we want to see!

The empty graph is an extreme example, because it would be very clear
from that proof tree if it is always going to be the output: the “correctly
coloured” postcondition would likely be implied, in some application of
[cons], from a postcondition that states that the graph is empty. It does
however illustrate our point that there is a disconnect between the input
state and the output state. In classical program logics we can relate Hoare
triples using, for example, ghost variables. But in the context of GP, where
programs operate on graphs, we need a different way of relating triples.
(One possibility might be to look at the so-called “program conditions” of
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[AH08], which can express some useful properties about the relationship
between input and output graphs, such as “all nodes and edges are pre-
served”.)

For the colouring program we want to be able to additionally assert
that any output graph – ignoring node labels – will always be the same as
the input graph. For other programs in which label manipulation plays a
key role, it may also be helpful to express that all of, some of, or none of the
output graph is preserved from the input graph. Moreover, we could write
stronger termination functions, e.g. node X is labelled with an integer that
decreases by one after each execution. Generally speaking, we want to be
able to track changes to the graph as rule schemata are applied to it. An
extension of our calculi to allow such reasoning would make interesting
further work.

7.2.5 Separation Logic and the Frame Rule

Separation logic [ORY01, Rey02] is an extension of Hoare logic allowing for
compositional reasoning about heap-manipulating programs. It supports
the idea of local reasoning, i.e. specifying and verifying program compo-
nents with respect to the portion of the heap they use – as opposed to the
global state – allowing for the approach to scale more easily. Separation
logic has been a “hot topic” of research for more than a decade, and has
been the foundation of impressive advances in both the theory and prac-
tice of program verification.

A possible topic for future work might be to investigate whether ideas
or principles from separation logic might lead to useful extensions in our
verification calculi for graph programs. To take a simple example: suppose
some part of a graph program operates exclusively on unmarked nodes,
and the marked nodes are not altered in any way. Can we use the sepa-
rating conjunction to describe completely and separately the two parts of
the graph, and then use the frame rule to focus on proving a triple about
specifically the unmarked part of the graph?

There are several issues to consider that might make such an approach
difficult – or perhaps not even useful for graph program verification. Rule
schema application might in fact be simpler to reason about in the con-
text of the global state: its application is nondeterministic, there could be
several matches, and it might not be so easy to carve the graph into dis-
tinct parts (except for simple cases such as the one described in the pre-
vious paragraph). This is perhaps reflected in the Pre construction for
E-constraints, in which we quantify over every possible match of a rule
schema. Moreover, graph programs can increase the size of the state – sim-
ply by adding nodes and edges – for as long as they like. Hence a program
could be said to operate on some distinct subgraph of the graph, but might
then add nodes and edges which no longer belong to that part of the graph
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(as described by the separating conjunction). Moreover still, consideration
would need to be given as to how a graph can be split into two disjoint
parts. For example, can edges be left dangling?

It might be interesting to investigate separation logic further in the con-
text of graph transformation (related work has already explored a relation-
ship between separation logic and hyperedge-replacement systems [DP09]).
We suspect that it will likely not work in the context of our verification cal-
culi, but it would be nice to have a better understanding as to why. A key
issue seems to be that we cannot assume a fixed size of program state, be-
cause graph programs can add nodes or edges without end.

7.2.6 Formalisation in Proof Assistants

Automatically checking whether implications c ⇒ d of E-constraints are
valid could be tackled in at least two ways. One approach would be to use
our translation from E-constraints to many-sorted first-order formulae, and
pass the implication to a first-order theorem prover. Pennemann explored
this approach for (untyped) first-order formulae equivalent to nested con-
ditions, but found that several valid implications could not be proven be-
cause he needed to restrict the provers to graphs via axioms, and these
axioms became part of the problem to solve. Hence in [Pen08] he proposed
a calculus of deductive rules operating directly on nested conditions them-
selves. Extending his calculus for E-constraints would make interesting
future work, and an implementation would help to make the verification
calculi more practical (almost every proof tree requires the checking of im-
plications).

A challenging task for future work would be the formalisation of our
verification calculi in some interactive proof assistant, e.g. Isabelle [NPW02]
or Coq [BC04]. One reason to do this would be to check the soundness of
our calculi, including the theorems and lemmata about the transformations
Pre and App. (We believe they are correct – and hope that you think so too
– but the agreement of a theorem prover adds that extra assurance!) An-
other reason is to make our theoretical work practical. Constructing proofs
by hand can be tedious and error prone, and in the context of E-constraints,
applying Pre to postconditions with several levels of nesting is difficult to
do by hand, sometimes resulting in large disjunctions of E-conditions. An
interactive proof system like Isabelle requires human intervention and cre-
ativity to guide the search for proofs, but can often assist with automation
(e.g. a higher-order version of resolution, a term rewriting engine, and a
semantic tableaux prover). Thus it should be an appropriate system to for-
malise our work in, with the user providing input for tasks difficult to fully
automate (e.g. finding loop invariants), and the proof assistant attempting
to automatically discharge others (e.g. applying transformations App and
Pre, discharging implications arising from [cons]).
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Implementing our calculi in such a proof assistant would require a lot
of work. Before even considering the semantics of graph programs and
the soundness of our proof rules, we would need to formalise graph trans-
formation itself (in particular the DPO approach with relabelling), which
in turn requires the formalisation of e.g. graphs, graph morphisms, and
pushouts. How to best complete these tasks is not obvious, and existing
work on formalising graph transformation (see e.g. [Str08]) does not ad-
dress the DPO approach. A complete formalisation of these foundational
concepts would not just be useful for the verification of GP, but for other
researchers in graph transformation who would seek the use of a proof as-
sistant in their work.

7.2.7 Larger Case Studies

In Chapter 5 we demonstrated our verification calculi on a number of pro-
grams, going beyond previous work in graph transformation verification
by statically verifying properties that related data in labels with structural
properties of graphs. However, the programs we demonstrated our work
on were not large ones, and moreover, were limited to computing (or check-
ing) graph properties.

An interesting task for future work would be to apply our techniques
to verification problems that could be abstracted to graphs and graph pro-
grams. One idea would be to apply the work to verifying abstract represen-
tations of pointer operations (already graph transformation can naturally
specify classes of pointer structures, e.g. [BPR04b]). Another idea would be
to model and verify garbage collection algorithms as graph programs.

While our work allows us to go beyond the case studies of [HP09] and
verify programs in which data manipulation plays a role, a problem is the
limitation of our E-constraint calculi to verifying only local properties. In
the two future case studies we suggested, there will be several non-local
specifications about the programs that would be desirable to verify. Hence,
such case studies are likely to be more successful after first extending E-
constraints and their associated transformations with at least paths (see
Section 7.2.3), a fundamental non-local property which would be certain
to significantly broaden what we can verify about graph programs.
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Appendix A

Extensional Proof Rules

[ruleapp]wlp
{WlpA[r, c]} r {c}

{c} r {d} for each r ∈ R
[ruleset]

{c} R {d}

{c} P {e} {e} Q {d}
[comp]

{c} P ; Q {d}

{SEA[c, C]} P {d} {FEA[c, C]} Q {d}
[if]

{c} if C then P else Q {d}

{SEA[c, C]} C; P {d} {FEA[c, C]} Q {d}
[try]

{c} try C then P else Q {d}

{inv} P {inv}
[!]
{inv} P ! {FEA[inv, P ]}

impl(c, c′) {c′} P {d′} impl(d′, d)
[cons]

{c} P {d}

impl(a1, a2) : prove that G |=A a1 implies G |=A a2 for all G ∈ G(L)

Figure A.1: Partial correctness proof rules for core commands
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[skip]
{c} skip {c}

[fail]
{c} fail {d}

{c} P {d} {c} Q {d}
[or]

{c} P or Q {d}

{SEA[c, C]} P {d} impl(FEA[c, C], d)
[if2]

{c} if C then P {d}

{SEA[c, C]} C; P {d} impl(FEA[c, C], d)
[try2]

{c} try C then P {d}

{SEA[c, C]} C {d} impl(FEA[c, C], d)
[try3]

{c} try C {d}

impl(a1, a2) : prove that G |=A a1 implies G |=A a2 for all G ∈ G(L)

Figure A.2: Partial correctness proof rules for derived commands

[ruleapp]wlp, [ruleset], [comp], [cons] of Figure A.1, and:

{c} C {⊤A} {SEA[c, C]} P {d} {FEA[c, C]} Q {d}
[if]wtot

{c} if C then P else Q {d}

{c} C {⊤A} {SEA[c, C]} C; P {d} {FEA[c, C]} Q {d}
[try]wtot

{c} try C then P else Q {d}

{inv} P {inv} P is #-decreasing under inv
[!]wtot

{inv} P ! {FEA[inv, P ]}

Figure A.3: Weak total correctness proof rules for core commands
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[skip], [fail], [or] of Figure A.2, and:

{c} C {⊤A} {SEA[c, C]} P {d} impl(FEA[c, C], d)
[if2]wtot

{c} if C then P {d}

{c} C {⊤A} {SEA[c, C]} C; P {d} impl(FEA[c, C], d)
[try2]wtot

{c} try C then P {d}

{c} C {⊤A} {SEA[c, C]} C {d} impl(FEA[c, C], d)
[try3]wtot

{c} try C {d}

impl(a1, a2) : prove that G |=A a1 implies G |=A a2 for all G ∈ G(L)

Figure A.4: Weak total correctness proof rules for derived commands

[comp], [cons] of Figure A.1, and:

impl(c, SEA[c,R]) ⊢par {c} r {d} for each r ∈ R
[ruleset]tot

{c} R {d}

⊢wtot {c} C {⊤A} {SEA[c, C]} P {d} {FEA[c, C]} Q {d}
[if]tot

{c} if C then P else Q {d}

⊢wtot {c} C {⊤A} {SEA[c, C]} C; P {d} {FEA[c, C]} Q {d}
[try]tot

{c} try C then P else Q {d}

⊢wtot {inv} P {inv} P is #-decreasing under inv
[!]tot

{inv} P ! {FEA[inv, P ]}

impl(a1, a2) : prove that G |=A a1 implies G |=A a2 for all G ∈ G(L)

Figure A.5: Total correctness proof rules for core commands
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[skip], [or] of Figure A.2, and:

⊢wtot {c} C {⊤A} {SEA[c, C]} P {d} impl(FEA[c, C], d)
[if2]tot

{c} if C then P {d}

⊢wtot {c} C {⊤A} {SEA[c, C]} C; P {d} impl(FEA[c, C], d)
[try2]tot

{c} try C then P {d}

⊢wtot {c} C {⊤A} {SEA[c, C]} C {d} impl(FEA[c, C], d)
[try3]tot

{c} try C {d}

impl(a1, a2) : prove that G |=A a1 implies G |=A a2 for all G ∈ G(L)

Figure A.6: Total correctness proof rules for derived commands
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Proof Rules with E-Constraints

[ruleapp]wlp
{Pre(r, c) ∨ ¬App({r})} r {c}

[ruleapp]
{Pre(r, c)} r {c}

[nonapp]
{¬App({r})} r {false}

{c} r {d} for each r ∈ R
[ruleset]

{c} R {d}

{c} P {e} {e} Q {d}
[comp]

{c} P ; Q {d}

{c ∧App(R)} P {d} {c ∧ ¬App(R)} Q {d}
[if]

{c} ifR then P else Q {d}

{c ∧App(R)} R; P {d} {c ∧ ¬App(R)} Q {d}
[try]

{c} tryR then P else Q {d}

{inv} R {inv}
[!]
{inv} R! {inv ∧ ¬App(R)}

c⇒ c′ {c′} P {d′} d′ ⇒ d
[cons]

{c} P {d}

Figure B.1: Partial correctness proof rules with E-constraints for core com-
mands
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[skip]
{c} skip {c}

[fail]
{true} fail {false}

{c} P {d} {c} Q {d}
[or]

{c} P or Q {d}

{c ∧App(R)} P {d} c ∧ ¬App(R)⇒ d
[if2]

{c} ifR then P {d}

{c ∧App(R)} R; P {d} c ∧ ¬App(R)⇒ d
[try2]

{c} tryR then P {d}

{c ∧App(R)} R {d} c ∧ ¬App(R)⇒ d
[try3]

{c} tryR {d}

Figure B.2: Partial correctness proof rules with E-constraints for derived
commands
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[ruleapp]wlp, [ruleapp], [nonapp], [ruleset], [comp], [cons] of Figure
B.1, and:

{c ∧App(R)} P {d} {c ∧ ¬App(R)} Q {d}
[if]wtot

{c} ifR then P else Q {d}

{c ∧App(R)} R; P {d} {c ∧ ¬App(R)} Q {d}
[try]wtot

{c} tryR then P else Q {d}

⊢par {inv} R {inv} R is #-decreasing under inv
[!]wtot

{inv} R! {inv ∧ ¬App(R)}

Figure B.3: Weak total correctness proof rules with E-constraints for core
commands

[skip], [fail], [or] of Figure B.2, and:

{c ∧App(R)} P {d} c ∧ ¬App(R)⇒ d
[if2]wtot

{c} ifR then P {d}

{c ∧App(R)} R; P {d} c ∧ ¬App(R)⇒ d
[try2]wtot

{c} tryR then P {d}

{c ∧App(R)} R {d} c ∧ ¬App(R)⇒ d
[try3]wtot

{c} tryR {d}

Figure B.4: Weak total correctness proof rules with E-constraints for de-
rived commands
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[comp], [cons] of Figure B.1, and:

c⇒ App(R) ⊢par {c} r {d} for each r ∈ R
[ruleset]tot

{c} R {d}

{c ∧App(R)} P {d} {c ∧ ¬App(R)} Q {d}
[if]tot

{c} ifR then P else Q {d}

{c ∧App(R)} R; P {d} {c ∧ ¬App(R)} Q {d}
[try]tot

{c} tryR then P else Q {d}

⊢par {inv} R {inv} R is #-decreasing under inv
[!]tot

{inv} R! {inv ∧ ¬App(R)}

Figure B.5: Total correctness proof rules with E-constraints for core com-
mands

[skip], [or] of Figure B.2, and:

{c ∧App(R)} P {d} c ∧ ¬App(R)⇒ d
[if2]tot

{c} ifR then P {d}

{c ∧App(R)} R; P {d} c ∧ ¬App(R)⇒ d
[try2]tot

{c} tryR then P {d}

{c ∧App(R)} R {d} c ∧ ¬App(R)⇒ d
[try3]tot

{c} tryR {d}

Figure B.6: Total correctness proof rules with E-constraints for derived
commands



Appendix C

Facts about Pushouts and
Pullbacks

This appendix is a reference for some well-known definitions and facts
about pushout and pullback constructions. These are made use of in some
of the constructions and proofs given for transformations of E-conditions in
Chapter 4. We do not cover the double-pushout approach to graph trans-
formation rules in this appendix, which is covered more throughly in Chap-
ter 2.

The definitions and facts presented here are given in [HMP01, HP02].
The first of the papers contains in its own appendix several more facts
which, while not required for this thesis, may help to provide a broader
understanding of the constructions. Readers interested in category theory
– the theoretical background of these concepts – can consult a number of
text books, for example, [Lan98, Awo10].

Assume that in the graphs that follow, edges are totally labelled but
nodes are partially labelled.

Definition C.1 (Pushout). Given graph morphisms A → B and A → C,
the pushout (1) of these morphisms is formed by the graph D and graph
morphisms B → D and C → D as in Figure C.1 if the following properties
are satisfied:

Commutativity. A→ B → D = A→ C → D.

Universal Property. For all graph morphisms B → D′ and C → D′ such
that A→ B → D′ = A→ C → D′, there is a unique graph morphism
D → D′ such that B → D → D′ = B → D′ and C → D → D′ = C →
D′.
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A B

C D

(1)

A B

C D

D
′

=

=

=

Figure C.1: A pushout and the universal property of pushouts

Definition C.2 (Pushout complement). Given graph morphisms A → B
andB → D, a pushout complement of these morphisms is a graphC together
with two morphisms A→ C and C → D if the resulting diagram (as in (1)
of Figure C.1) is a pushout.

Definition C.3 (Pullback). Given graph morphisms B → D and C → D,
the pullback (1) of these morphisms is formed by the graph A and graph
morphisms A → B and A → C as in Figure C.2 if the following properties
are satisfied:

Commutativity. A→ B → D = A→ C → D.

Universal Property. For all graph morphisms A′ → B and A′ → C such
that A′ → B → D = A′ → C → D, there is a unique graph morphism
A′ → A such that A′ → A → B = A′ → B and A′ → A → C = A′ →
C.

A B

C D

(1)

A B

C D

=

=
=

A
′

Figure C.2: A pullback and the universal property of pullbacks

Definition C.4 (Natural pushout). A diagram (1) as in Figure C.1 is a natu-
ral pushout if it is both a pushout and a pullback.

Lemma C.5 (Existence of pullbacks). Given graph morphisms B → D and
C → D, there exists a graph A and morphisms A → B and A → C such
that the arising diagram is a pullback.
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Proof. By Lemma 1 of [HP02].

The following lemma describes the conditions necessary for a pushout
to exist for our graphs with partially labelled nodes. For simplicity, we
give a more restricted version of the lemma in the cited paper, since the
rules in this thesis comprise injective morphisms only, and both L and R
are required to be totally labelled.

Lemma C.6 (Existence of pushouts). Given an injective graph morphism
A →֒ B with B totally labelled, and an injective morphism A →֒ C that
preserves undefinedness, there exists a graph D and morphisms B →֒ D
and C →֒ D such that the arising diagram is a pushout.

Proof. By Lemma 2 of [HP02].

Lemma C.7 (Existence, uniqueness of natural PO complements). Given an
injective graph morphisms A → B and B → D with B,D totally labelled.
There exists a graph C with injective morphisms A → C and C → D such
that the arising diagram is a natural pushout if and only if B → D satisfies
the dangling condition with respect to A→ B. In this case, C is unique up
to isomorphism.

Proof. By Lemma 4 of [HP02].

The following lemmata are particularly useful in the correctness proofs
for transformations of E-conditions.

Lemma C.8 (Basic decompositions). The following decomposition prop-
erties relate to the commutative diagram in Figure C.3, in which all mor-
phisms are injective, and all graphs are from G(L⊥).

Pushout decomposition If (1)+(2) and (1) are pushouts, then (2) is also a
pushout.

Pullback decomposition If (1)+(2) and (2) are pullbacks, then (1) is also a
pullback.

Proof. Diagram chase (see e.g. [Awo10]).

The following decompositions are more specialised to our context, in
that they consider whether morphisms preserve undefinedness and also
the naturalness of pushouts.

Lemma C.9 (Special decompositions). The following decomposition prop-
erties relate to the commutative diagram in Figure C.3, in which all mor-
phisms are injective, and B,D, F are totally labelled.
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A B

C D

(1)

E F

(2)

Figure C.3: Commutative diagram of morphisms

Pushout-pullback decomposition If (1)+(2) is a pushout with A → C →
E undefinedness preserving and (2) a pullback, then (1) and (2) are
natural pushouts.

Pullback decomposition If (1)+(2) and (1) are pushouts and A → C → E
is undefinedness preserving, then (1) and (2) are pullbacks.

Proof. The paper [HP12] proves that the category of partially labelled graphs
and their morphisms form a so-called M,N -adhesive category. The de-
composition properties are properties ofM,N -adhesive categories (see The-
orem 1 in [HP12]1).

1The second property is given only in the long version of the authors’ paper.
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Additional Lemmata

This appendix contains some additional technical lemmata applied in proofs
within the main text.

D.1 Additional Lemmata for Cond

Lemma D.1 (Many-sorted expressions to assignment constraints). For all
many-sorted expressions t in List, and all injective graph morphisms z :
Xα →֒ G with X,α corresponding to the free node and edge variables of ϕ
as in Remark 6.12, and α a well-typed assignment such that no variable in
dom(α) is quantified in ϕ, we have that:

Iz,αG (t) = AC(t)α.

Here, Iz,αG is defined as IG but with the following mappings for free vari-
ables in ϕ: (1) for each variable x in dom(α), Iz,αG (x) = α(x); (2) for each
node v inX , Iz,αG (v) = z(v); and (3) for each edge e inX , Iz,αG (e) = z(e).

Proof. We prove that the equality holds for all expressions that tmight take.
Suppose that t = l(v) for some v in VVar. With the definition of graph
morphisms and assignment:

Iz,αG (t) = lG(z(v)) = lXα(v) = lX(v)α = (v′)α = AC(t)α.

The proof is analogous for the cases when t is l(s(e)) and l(s(e)).
Suppose that t = m(e) with e in EVar. With the definition of graph

morphisms and assignment:

Iz,αG (t) = mG(z(e)) = mXα(e) = mX(e)α = (e′)α = AC(t)α.

All other cases follow from the induction hypothesis, the definition of Iz,αG ,
and the definition of assignment.
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Lemma D.2 (Formulae can be expressed as E-conditions). Let ϕ denote a
formula without primed variables and variables quantified more than once.
For all injective graph morphisms z : Xα →֒ G with X,α corresponding to
the free node and edge variables of ϕ as in Remark 6.12, and α a well-typed
assignment such that no variable in dom(α) is quantified in ϕ, we have
that:

Iz,αG |= ϕ if and only if z : Xα →֒ G |= Cond′(ϕ,X)σα .

Here, Iz,αG is defined as IG but with the following mappings for free vari-
ables in ϕ: (1) for each variable x in dom(α), Iz,αG (x) = α(x); (2) for each
node v inX , Iz,αG (v) = z(v); and (3) for each edge e inX , Iz,αG (e) = z(e).

Proof. Induction basis. Assume that Iz,αG |= ϕ. Suppose that ϕ is equal to
true or false; the statement trivially holds.

Suppose that ϕ is equal to t(l) with t in Type and l in List. By the
definition of |=, Lemma D.1 and the semantics of assignment constraints:

Iz,αG (t)(Iz,αG (l)) = t(AC(l))α.

By construction, Cond′(ϕ,X)σα = ∃(idX : Xσα →֒ Xσα | t(AC(l))σα).
Since for any assignment α′, z ◦ idα

′

X = z, the satisfaction of the E-condition
depends entirely on the assignment constraint t(AC(l))σα , which evalu-
ates to true under any assignment if and only if Iz,αG |= ϕ.

Suppose that ϕ is equal to i1 ⊲⊳ i2 (resp. l1 = l2) with i1, i2 in Integer and
⊲⊳ in IntRel (resp. l1, l2 in List). Cases follow analogously to the previous
one.

Suppose that ϕ is equal to e = f with e, f in EVar. Then by the definition
of Iz,αG , the injectivity of z, and the construction:

Iz,αG (=)(Iz,αG (e), Iz,αG (f)) = (z(e) = z(f)) = (e = f) = Cond′(ϕ,X)α

hence Iz,αG |= ϕ if and only if z |= Cond′(ϕ,X)σα .

Suppose that ϕ is equal to v1 = v2 with v1, v2 in Vertex. The case follow
analogously to the previous via the helper function VertexID.

Finally, suppose that ϕ is equal to marked(e) with e in EVar. Then by
the definition of Iz,αG and the construction:

Iz,αG (marked)(Iz,αG (e)) = (lG(z(e)) = ( true))

= (lXα(e) = ( true))

= Cond′(ϕ,X)α

hence Iz,αG |= ϕ if and only if z |= Cond′(ϕ,X)σα .
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Induction step. Only if. Assume that Iz,αG |= ϕ. For cases when ϕ is equal
to ¬ϕ1 or ϕ1⊕ϕ2 with ϕ1, ϕ2 in Formula and⊕ in BoolOp, the proof follows
in the standard way via the induction hypothesis.

Suppose that ϕ is equal to ∃x : L. ϕ′ with ϕ′ in Formula. Then there

is some l ∈ L such that Iz,α
′

G |= ϕ′ where α′ is equal to α but with the
additional mapping x 7→ l. By induction hypothesis, z : Xα′

→֒ G |=
Cond′(ϕ′, X)σα′ . With the construction, the fact that x = x under α′ eval-
uates to true, that Xα = Xα′

, z ◦ idα
′

X = z, and the definition of |=, we
get:

z : Xα →֒ G |=α′ ∃(idX : X →֒ X | x = x,Cond′(ϕ′, X)) = Cond′(ϕ,X).

and then using the definition of induced substitutions, the result that z |=
Cond′(ϕ,X)σα .

For cases when atom, integer, or string variables are existentially quan-
tified, the proofs follow analogously, using the fact that the sorting forces
variables to be interpreted as elements of the domains with which the cor-
responding type predicates evaluate to true.

Suppose that ϕ is equal to ∃v : V. ϕ′ with ϕ′ in Formula. Then there
is a node x ∈ VG such that Iz,αG ∪ {v 7→ x} |= ϕ′. That node could already
be in the image of z; but it might instead be outside of it. If the former,
i.e. there is some node y ∈ VX such that z(y) = x, then define X ′ to be
X but with y and v identified. If the latter, disjointly add v to X to yield
X ′. Define lX′(v) = v′ and α′ to be α with the additional mapping v′ 7→
lG(x). (Clearly, X ′, α′ conform to Remark 6.12.) Define z′ : (X ′)α

′

→֒ G as

z but with z′(v) = x. We have that Iz
′,α′

G |= ϕ′; by induction hypothesis,
z′ : (X ′)α

′

→֒ G |= Cond′(ϕ′, X ′)σα′ . Furthermore, (v′ = lX′(v))α
′

= true,
Xα = Xα′

, and z′ ◦ (X →֒ X ′)α
′

= z; together we get that:

z : Xα →֒ G |=α′ ∃(X →֒ X ′ | v′ = lX′(v),Cond′(ϕ′, X ′))

i.e. a disjunct of Cond′(ϕ,X). With the definition of induced substitutions,
we get the result that z |= Cond′(ϕ,X)σα .

Suppose that ϕ is equal to ∃e : E. ϕ′ with ϕ′ in Formula. The proof for
this case follows analogously to the previous one.

Finally, suppose that ϕ is equal to ∀x : S. ϕ′ with ϕ′ in Formula and S
any of the sort symbols. The result follows in the standard way via the in-
duction hypothesis and the well-known property of universally quantified
formulae.

Induction step. If. Assume that z : Xα →֒ G |= Cond′(ϕ,X)σα . For cases
when ϕ is equal to ¬ϕ1 or ϕ1⊕ϕ2 with ϕ1, ϕ2 in Formula and⊕ in BoolOp,
the proof follows in the standard way via the induction hypothesis.

Suppose that ϕ is equal to ∃x : L. ϕ′ with ϕ′ in Formula. By construction
and assumption, z : Xα →֒ G |=α′ ∃(idX : X →֒ X | x = x,Cond′(ϕ′, X))σα
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where α′ is defined as α but with an additional mapping x 7→ l for some
l ∈ L; in particular, z ◦ idα

′

X = z and z : Xα′

→֒ G |= Cond′(ϕ′, X)σα′ . By

induction hypothesis, Iz,α
′

G |= ϕ′. Extracting the mapping for x, Iz,αG ∪ {x 7→
l} |= ϕ′; by definition of |=, we get Iz,αG |= ϕ, the result.

For cases when atom, integer, or string variables are existentially quan-
tified, the proofs follow analogously, using the fact that the type predicates
correspond to the sorts of the variables in the many-sorted formulae.

Suppose that ϕ is equal to ∃v : V. ϕ′ with ϕ′ in Formula. By construction
and assumption, z : Xα →֒ G |=α′ ∃(X →֒ X ′ | v′ = lX′(v),Cond′(ϕ′, X ′))σα ,
where the E-condition is a disjunct arising from Cond′(ϕ,X),X ′ is asX but
containing a new node identifier v (either identified with an existing node,
or a distinct node), and α′ is defined as α but with an additional mapping
v′ 7→ l for some l ∈ L. In particular, there is a morphism q : (X ′)z,α

′

→֒ G
such that q′ ◦ (X →֒ X ′)α

′

= z, and q |= Cond′(ϕ′, X ′)σα′ . (Clearly, by the
construction and assignment constraint, X ′, α′ conform to Remark 6.12.)

By induction hypothesis, Iq,α
′

G |= ϕ′. Extracting the node v from q, we get

Iz,α
′

G ∪ {v 7→ v} |= ϕ′; by definition of |=, and the assumption that ϕ′ is free
from primed variables, we get Iz,αG |= ϕ, the result.

Suppose that ϕ is equal to ∃e : E. ϕ′ with ϕ′ in Formula. The proof for
this case follows analogously to the previous one.

Finally, suppose that ϕ is equal to ∀x : S. ϕ′ with ϕ′ in Formula and S
any of the sort symbols. The result follows in the standard way via the in-
duction hypothesis and the well-known property of universally quantified
formulae.

D.2 Additional Lemmata for the Normalisation of E-

Conditions

Lemma D.3 (Replacing lists). Let c denote an E-condition. There is a trans-
formation Relabel that yields an E-condition meeting the second require-
ment of Definition 6.20, such that for all injective graph morphisms s over
G(L),

s |= c if and only if s |= Relabel(c).

Proof. Define s : Pα →֒ G with G ∈ G(L) and α a well-typed assignment.
We proceed by structural induction.

Induction basis. Let c = true. By construction, Relabel(c) = true. Triv-
ially the statement holds.

Induction step. Only if. Assume that s |= c = ∃(a : P →֒ C | γ, c′),
i.e. there exists a well-typed assignment α (we overload the assignment
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in s) and morphism q : Cα →֒ G such that q ◦ aα = s, γα = true, and
q |= (c′)σα . Clearly we also have q |= c′ with a satisfying assignment that
has least the mappings of α; applying the induction hypothesis gives us
q |= Relabel(c′)σα .

Define a : P →֒ C where P ,C are P,C but with all list components re-
placed by fresh and distinct variables. Define γ as a conjunction of γ with
lC(v) = lC(v) for all nodes v in C where lC(v) 6= lC(v) (and analogously
for edges). Define c′ to be c′, but for the nodes and edges of its morphisms
that are also in C, replace their labels with the corresponding labels of C
(recall that the morphisms are inclusions). There is a well-typed assign-
ment α′ with at least the mappings of α such that γα

′

= true, aα
′

= aα,
and σα′(lC(v)) = lC(v)

σα for all nodes v in C (and analogously for edges).
Together we get that s |=α′ ∃(a | γ,Relabel(c′)); we take this to be the E-
condition from the construction, and hence the result that s |= Relabel(c).

Induction step. If. Assume that s |= Relabel(c). The proof is similar to
the “only if” direction, but simpler, as the assignment by which s satisfies
Relabel(c) is also an assignment by which s satisfies c (due to the conjuncts
in the assignment constraints added by the construction).

For Boolean formulae over E-conditions, the result follows from the
construction and induction hypothesis.

Lemma D.4 (Sorting assignment constraints). Let c be an E-condition ad-
hering to the first two requirements of normal form (Definition 6.20). There
is a transformation Sort which yields an E-condition meeting the third re-
quirement, such that for all injective graph morphisms s over G(L),

s |= c if and only if s |= Sort(c).

Proof sketch. The statement follows easily when it is observed that (1) Sort
replaces variables with fresh variables, which can be mapped to the same
values in L; and (2) it is impossible to satisfy an E-condition ∃(a | γ, c′) if
a variable appears in both a string and an integer expression in a or γ, and
moreover, if it appears in both types of expressions in c′ (since substitutions
induced by satisfying assignments must be well-typed, by definition of |=).

That the assignment constraints of Sort(c) are many-sorted (up to a re-
naming of and, or for ∧,∨) can be shown by appealing to the subsort hierar-
chy, the definition of assignment constraints, the definition of many-sorted
formulae, and the fact that E-conditions containing variables in both types
of expressions are replaced by false.
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D.3 Additional Lemmata for Form

Lemma D.5 (E-conditions can be expressed as formulae). For any given E-
condition c in normal form, and all injective graph morphisms p : Pα →֒ G
with P ∈ G(EC), G ∈ G(L), and α a well-typed assignment, we have that:

p : Pα →֒ G |= cσα if and only if Ip,αG |= Form′(c,dom(α) ∪ P ∗)

where P ∗ is the set of node and edge variables corresponding to the iden-
tifiers in P . Additionally, Ip,αG is defined as IG but with the following map-
pings: (1) for each variable x in dom(α), Ip,αG (x) = α(x); (2) for each node v
in P , Ip,αG (v) = p(v); and (3) for each edge e in P , Ip,αG (e) = p(e).

Proof. Induction basis. Let c = true. Then by the construction and defini-
tion of |=, the statement trivially holds.

Induction step. Only if. Assume that p : Pα →֒ G |= cσα . Suppose that
c = ∃(id : P →֒ P | γ, c′). Then there exists a well-typed assignment α′

such that p ◦ idα
′

= p, γα
′

= true, and p : Pα′

→֒ G |= (c′)σα′ . By induction

hypothesis, Ip,α
′

G |= Form′(c′,dom(α′)∪P ∗). We assume that α′ is minimal,
in that it only introduces mappings for variables in γ not also in P ; hence
dom(α′) ∪ P ∗ = dom(α) ∪ P ∗ ∪ vars(γ) and:

Ip,α
′

G |= Form′(c′,dom(α) ∪ P ∗ ∪ vars(γ)).

With the assumption that γα
′

= true and the definitions of γ∗, |=, we get:

Ip,α
′

G |= γ∗ ∧ Form′(c′,dom(α) ∪ P ∗ ∪ vars(γ)).

Finally, we “extract” the additional mappings of α′ for γ∗ via the definition
of |= to get:

Ip,αG |= Quant(vars(γ)−[dom(α)∪P ∗]). γ∗∧Form′(c′,dom(α)∪P ∗∪vars(γ))

which is the formulae from the construction, i.e. the result that Ip,αG |=
Form′(c,dom(α) ∪ P ∗).

Suppose that c = ∃([va] : P →֒ P ′ | γ, c′) with P ′ equal to P except
for an additional unmarked node v labelled by variable a. Then there ex-
ists a well-typed assignment α′ and morphism q : (P ′)α

′

→֒ G such that
q ◦ [va]α

′

= p, γα
′

= true, and q : (P ′)α
′

→֒ G |= (c′)σα′ . By induction hy-

pothesis, Iq,α
′

G |= Form′(c′,dom(α′)∪ (P ′)∗). We assume that α′ is minimal,
in that it only introduces mappings for a and variables in γ not also in P ;
hence dom(α′) ∪ (P ′)∗ = dom(α) ∪ P ∗ ∪ vars(γ) ∪ {v, a} and:

Iq,α
′

G |= Form′(c′,dom(α) ∪ P ∗ ∪ vars(γ) ∪ {v, a}).
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For brevity in the following, let F ≡ Form′(c′,dom(α) ∪ P ∗ ∪ vars(γ) ∪

{v, a}). With the assumption and definition of γ∗, Iq,α
′

G |= γ∗. With the

definitions of Iq,α
′

G and label preservation of morphisms, we have:

Iq,α
′

G (=)(Iq,α
′

G (l(v)), Iq,α
′

G (a)) = (lG(q(v)) = α′(a))

= (lG(q(v)) = l(P ′)α
′ (v))

= true

and so Iq,α
′

G |= l(v); together we get:

Iq,α
′

G |= l(v) ∧ γ∗ ∧ F.

“Extracting” the additional mappings (as in the previous case) yields:

Iq,αG |= Quant([vars(γ) ∪ {a}]− dom(α) ∪ P ∗). l(v) ∧ γ∗ ∧ F.

For brevity let F ′ denote this E-condition. Since v in P ′ is unmarked and
morphisms are label preserving, q(v) is also unmarked. Hence:

Iq,αG (marked)(Iq,αG (v)) = (lG(q(v)) = ( true)) = false

and so Iq,αG |= ¬marked(v). Moreover, since v is distinct and q is injec-
tive, q(v) is distinct from all other nodes in the image of p, and so Iq,αG |=
∧

v′∈P ∗∩VVar ¬v = v′. “Extracting” q(v) and with the definition of |=, we get:

Ip,αG |= ∃v :V.
∧

v′∈P ∗∩VVar

¬v = v′ ∧ ¬marked(v) ∧ F ′

which is the E-condition from the construction, i.e. the result that Ip,αG |=
Form′(c,dom(α) ∪ P ∗).

For other cases – when P ′ introduces a marked node, marked edge, or
unmarked edge – the proof follows analogously to the previous case.

If. Assume that Ip,αG |= Form′(c,dom(α) ∪ P ∗). Suppose that c = ∃(id :
P →֒ P | γ, c′). Then, by the construction, we have:

Ip,αG |= Quant(vars(γ)−[dom(α)∪P ∗]). γ∗∧Form′(c′,dom(α)∪P ∗∪vars(γ)).

With α′ denote the assignment comprising the mappings of α, and also
additional mappings for variables in γ∗ such that:

Ip,α
′

G |= γ∗ ∧ Form′(c′,dom(α) ∪ P ∗ ∪ vars(γ)).

From the assumption, and the definition of γ∗, it is clear that γα
′

= true.
By the induction hypothesis, p : Pα′

→֒ G |= (c′)σα . Together with the facts
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that Pα = Pα′

, p ◦ idα
′

= p, and α denotes a subset of the mappings of α′,
we get the result that p : Pα →֒ G |= cσα .

Suppose that c = ∃([va] : P →֒ P ′ | γ, c′) with P ′ equal to P except
for an additional unmarked node v labelled by variable a. Then, by the
construction, we have:

Ip,αG |= ∃v : V.
∧

v′∈V ∩VVar ¬v = v′ ∧ ¬marked(v)

∧ Quant([vars(γ) ∪ {a}]− dom(α) ∪ P ∗)

. l(v) = a ∧ γ∗ ∧ Form′(c′,dom(α) ∪ P ∗ ∪ vars(γ) ∪ {v, a})

By the definition of |=, there is a morphism q, the domain of which contains
P and some node v, and the codomain of which is G. From the definition
of Iq,αG and the assumption that:

Iq,αG |=
∧

v′∈V ∩VVar

¬v = v′ ∧ ¬marked(v)

it must be the case that q(v) is unmarked and distinct from all nodes in the
image of p, i.e. q is injective. Moreover, there is an assignment α′ comprising
at least the assignments of α such that:

Iq,α
′

G |= l(v) = a ∧ γ∗ ∧ Form′(c′,dom(α) ∪ P ∗ ∪ vars(γ) ∪ {v, a})

With the semantics of Iq,α
′

G , the first conjunct informs us that lG(q(v)) =
α′(a); and hence we can take (P ′)α

′

to be the domain of q : (P ′)α
′

→֒ G,
with q ◦ [va]α

′

= p. Moreover, with the assumption and definition of γ∗, we
get γα

′

= true. Finally, noting that:

dom(α) ∪ P ∗ ∪ vars(γ) ∪ {v, a} = dom(α′) ∪ (P ′)∗

we apply the induction hypothesis to get q : (P ′)α
′

→֒ G |= (c′)σα′ . To-
gether, and with the fact that α denotes a subset of the mappings of α′, we
get the result that p : Pα →֒ G |= cσα .

For other cases – when P ′ introduces a marked node, marked edge, or
unmarked edge – the proof follows analogously to the previous case.

For Boolean formulae over E-conditions, the result follows from the
construction and induction hypothesis.
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[SWZ99] Andy Schürr, Andreas Winter, and Albert Zündorf. The PRO-
GRES approach: Language and environment. In H. Ehrig,
G. Engels, H.-J. Kreowski, and G. Rozenberg, editors, Hand-
book of Graph Grammars and Computing by Graph Transformation,
volume 2, chapter 13, pages 487–550. World Scientific, 1999.

[Tae04] Gabriele Taentzer. AGG: A graph transformation environ-
ment for modeling and validation of software. In Applica-
tions of Graph Transformations With Industrial Relevance (AG-
TIVE 2003), Revised Selected and Invited Papers, volume 3062
of LNCS, pages 446–453. Springer, 2004.

225



Bibliography

[TP12] Hanh Nhi Tran and Christian Percebois. Towards a rule-level
verification framework for property-preserving graph trans-
formations. In Proc. ICST Workshop on Verification and Vali-
dation of Model Transformations (VOLT 2012), pages 946–953,
2012.

[Ues78] Tadahiro Uesu. A system of graph grammars which generates
all recursively enumerable sets of labelled graphs. Tsukuba
Journal of Mathematics, 2:11–26, 1978.

[vO01] David von Oheimb. Hoare logic for Java in Isabelle/HOL.
Concurrency and Computation: Practice and Experience,
13(13):1173–1214, 2001.
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