115 research outputs found

    Can we apply accelerator-cores to control-intensive programs?

    Get PDF
    There is a trend towards using accelerators to increase performance and energy efficiency of general-purpose processors. So far, most accelerators have been build with HPC-applications in mind. A question that arises is how well can other applications benefit from these accelerators? In this paper, we discuss the acceleration of three benchmarks using the SPUs of a Cell-BE. We analyze the potential speedup given the inherent parallelism in the applications. While the potential speedup is significant in all benchmarks, the obtained speedup lags behind due to a mismatch between micro-architectural properties of the accelerators and the benchmark properties

    Optimizing sorting algorithms for the Cell Broadband Engine

    Get PDF
    The quest for higher performance in computationally intensive tasks is and will always be an ongoing effort. General purpose processors (GPP) have not been sufficient for many of these tasks which has led to research focused towards computing on specialty processors and graphics processing units (GPU). While GPU provide sufficient speedups for some tasks, other specialty processors may be better suited, more economical, or more efficient for different types of tasks. Sorting is an important task in many applications and can be computationally intensive when dealing with large data sets. One such specialty processor that has proven to be a viable solution for sorting is the Cell Broadband Engine (CBE). The CBE is being used as the main platform for this thesis since there are already applications for it that require sorting software. The Cell processor is a general purpose processor that combines one master PowerPC core with eight other vector processors connected via a high bandwidth interconnect bus. The user must explicitly manage the communication, scheduling, and load-balancing between the vector processors and the PowerPC processor to achieve the highest efficiency. By optimizing the sorting algorithms for the vector processors, large speedups can be achieved because multiple operations occur simultaneously. Optimized sorting software is often sought when sorting is not the main purpose of the application. This keeps overheads low so that the performance gains can be realized from the actual code that is to be optimized on specialty processors. Often having sorted datasets enable algorithms to run faster and are more predictably. The motivation behind this thesis is that there is currently no standard library of sorting algorithms that have been optimized for the CBE. Lack of standard libraries makes writing code for the CBE difficult. Results from previous works have also not been sufficient in providing specific measurements of sorting performance. This thesis will explore the development and analysis of a variety of optimized parallel sorting algorithms written for the Cell processor. This thesis will focus on the sorting of both individual elements within vectors as well as sorting entire vectors within arrays. The sorting algorithms, written in C++, that will be optimized and analyzed include, but are not limited to bitonic sort, heap sort, merge sort, and quick sort. A communication management framework will also be created as a main focus of this thesis in order to better understand the architecture of the processor

    Mixing multi-core CPUs and GPUs for scientific simulation software

    Get PDF
    Recent technological and economic developments have led to widespread availability of multi-core CPUs and specialist accelerator processors such as graphical processing units (GPUs). The accelerated computational performance possible from these devices can be very high for some applications paradigms. Software languages and systems such as NVIDIA's CUDA and Khronos consortium's open compute language (OpenCL) support a number of individual parallel application programming paradigms. To scale up the performance of some complex systems simulations, a hybrid of multi-core CPUs for coarse-grained parallelism and very many core GPUs for data parallelism is necessary. We describe our use of hybrid applica- tions using threading approaches and multi-core CPUs to control independent GPU devices. We present speed-up data and discuss multi-threading software issues for the applications level programmer and o er some suggested areas for language development and integration between coarse-grained and ne-grained multi-thread systems. We discuss results from three common simulation algorithmic areas including: partial di erential equations; graph cluster metric calculations and random number generation. We report on programming experiences and selected performance for these algorithms on: single and multiple GPUs; multi-core CPUs; a CellBE; and using OpenCL. We discuss programmer usability issues and the outlook and trends in multi-core programming for scienti c applications developers

    Monte Carlo Simulations of Spin Glasses on Cell Broadband Engine

    Get PDF
    Several large-scale computational scientific problems require high-end computing systems to be solved. In the recent years, design of multi-core architectures delivers on a single chip tens or hundreds Gflops of peak computing performance, with high power dissipation efficiency, and it makes available computational power previously available only on high-end multi-processor systems. The aim of this Ph.D. thesis is to study the capability of multi-core processors for scientific programming, analyzing sustained performance, issues related to multicore programming, data distribution, synchronization, in order to define a set of guideline rules to optimize scientific applications for this class of architectures. As an example of multi-core processor, we consider the Cell Broadband Engine (CBE), developed by Sony, IBM and Toshiba. The CBE is one of the most powerful multi-core CPU current available, integrating eight cores and delivering a peak performance of 200 Gflops in single precision and 100 Gflops in double precision. As case of study, we analyze the performances of CBE for Monte Carlo simulations of the Edwards-Anderson Spin Glass model, a paradigm in theoretical and condensed matter physics, used to describe complex systems characterized by phase transitions (such as the para-ferro transition in magnets) or model “frustrated” dynamics. We descrive several strategies for the distribution of data set among on-chip and off-chip memories and propose analytic models to find out the balance between computational and memory access time as a function of both algorithmic and architectural parameters. We use the analytic models to set the parameters of the algorithm, like for example size of data structures and scheduling of operations, to optimize execution of Monte Carlo spin glass simulations on the CBE architecture

    Efficiently mapping high-performance early vision algorithms onto multicore embedded platforms

    Get PDF
    The combination of low-cost imaging chips and high-performance, multicore, embedded processors heralds a new era in portable vision systems. Early vision algorithms have the potential for highly data-parallel, integer execution. However, an implementation must operate within the constraints of embedded systems including low clock rate, low-power operation and with limited memory. This dissertation explores new approaches to adapt novel pixel-based vision algorithms for tomorrow's multicore embedded processors. It presents : - An adaptive, multimodal background modeling technique called Multimodal Mean that achieves high accuracy and frame rate performance with limited memory and a slow-clock, energy-efficient, integer processing core. - A new workload partitioning technique to optimize the execution of early vision algorithms on multi-core systems. - A novel data transfer technique called cat-tail dma that provides globally-ordered, non-blocking data transfers on a multicore system. By using efficient data representations, Multimodal Mean provides comparable accuracy to the widely used Mixture of Gaussians (MoG) multimodal method. However, it achieves a 6.2x improvement in performance while using 18% less storage than MoG while executing on a representative embedded platform. When this algorithm is adapted to a multicore execution environment, the new workload partitioning technique demonstrates an improvement in execution times of 25% with only a 125 ms system reaction time. It also reduced the overall number of data transfers by 50%. Finally, the cat-tail buffering technique reduces the data-transfer latency between execution cores and main memory by 32.8% over the baseline technique when executing Multimodal Mean. This technique concurrently performs data transfers with code execution on individual cores, while maintaining global ordering through low-overhead scheduling to prevent collisions.Ph.D.Committee Chair: Wills, Scott; Committee Co-Chair: Wills, Linda; Committee Member: Bader, David; Committee Member: Davis, Jeff; Committee Member: Hamblen, James; Committee Member: Lanterman, Aaro

    Visual programming in a heterogeneous multi-core environment

    Get PDF
    É do conhecimento geral de que, hoje em dia, a tecnologia evolui rapidamente. São criadas novas arquitecturas para resolver determinadas limitações ou problemas. Por vezes, essa evolução é pacífica e não requer necessidade de adaptação e, por outras, essa evolução pode Implicar mudanças. As linguagens de programação são, desde sempre, o principal elo de comunicação entre o programador e o computador. Novas linguagens continuam a aparecer e outras estão sempre em desenvolvimento para se adaptarem a novos conceitos e paradigmas. Isto requer um esforço extra para o programador, que tem de estar sempre atento a estas mudanças. A Programação Visual pode ser uma solução para este problema. Exprimir funções como módulos que recebem determinado Input e retomam determinado output poderá ajudar os programadores espalhados pelo mundo, através da possibilidade de lhes dar uma margem para se abstraírem de pormenores de baixo nível relacionados com uma arquitectura específica. Esta tese não só mostra como combinar as capacidades do CeII/B.E. (que tem uma arquitectura multi­processador heterogénea) com o OpenDX (que tem um ambiente de programação visual), como também demonstra que tal pode ser feito sem grande perda de performance. ABSTRACT; lt is known that nowadays technology develops really fast. New architectures are created ln order to provide new solutions for different technology limitations and problems. Sometimes, this evolution is pacific and there is no need to adapt to new technologies, but things also may require a change every once ln a while. Programming languages have always been the communication bridge between the programmer and the computer. New ones keep coming and other ones keep improving ln order to adapt to new concepts and paradigms. This requires an extra-effort for the programmer, who always needs to be aware of these changes. Visual Programming may be a solution to this problem. Expressing functions as module boxes which receive determined Input and return determined output may help programmers across the world by giving them the possibility to abstract from specific low-level hardware issues. This thesis not only shows how the CeII/B.E. (which has a heterogeneous multi-core architecture) capabilities can be combined with OpenDX (which has a visual programming environment), but also demonstrates that lt can be done without losing much performance
    corecore