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Abstract

Several large-scale computational scientific problems require high-end computing
systems to be solved. In the recent years, design of multi-core architectures delivers
on a single chip tens or hundreds Gflops of peak computing performance, with high
power dissipation efficiency, and it makes available computational power previously
available only on high-end multi-processor systems.

The aim of this Ph.D. thesis is to study the capability of multi-core processors
for scientific programming, analyzing sustained performance, issues related to multi-
core programming, data distribution, synchronization, in order to define a set of
guideline rules to optimize scientific applications for this class of architectures.

As an example of multi-core processor, we consider the Cell Broadband Engine
(CBE), developed by Sony, IBM and Toshiba. The CBE is one of the most power-
ful multi-core CPU current available, integrating eight cores and delivering a peak
performance of 200 Gflops in single precision and 100 Gflops in double precision. As
case of study, we analyze the performances of CBE for Monte Carlo simulations of
the Edwards-Anderson Spin Glass model, a paradigm in theoretical and condensed
matter physics, used to describe complex systems characterized by phase transitions
(such as the para-ferro transition in magnets) or model “frustrated” dynamics.

We descrive several strategies for the distribution of data set among on-chip
and off-chip memories and propose analytic models to find out the balance between
computational and memory access time as a function of both algorithmic and ar-
chitectural parameters. We use the analytic models to set the parameters of the
algorithm, like for example size of data structures and scheduling of operations, to
optimize execution of Monte Carlo spin glass simulations on the CBE architecture.





Contents

Introduction III

1 Multi-core Architectures 1
1.1 The Raise of Multi-Cores . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Toward Many-Cores . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Multi-Core Architectures in 2008 . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Cell Broadband Engine . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 Intel Nehalem . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.3 AMD Shangai and Istanbul . . . . . . . . . . . . . . . . . . . 20
1.3.4 NVIDIA GT200 . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.5 AMD ATI RV770 . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3.6 Many-core: Intel Larrabee . . . . . . . . . . . . . . . . . . . . 22

1.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Spin Glasses 25
2.1 The Edward-Anderson Model . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Metropolis Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3 The Binary Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.1 Data and Operations Remapping . . . . . . . . . . . . . . . . 32
2.3.2 Asynchronous Multispin Coding . . . . . . . . . . . . . . . . . 34
2.3.3 Synchronous Multispin Coding . . . . . . . . . . . . . . . . . 38
2.3.4 Mixed Multispin Coding . . . . . . . . . . . . . . . . . . . . . 38

2.4 Gaussian Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Spin Glasses on Multi-Core 41
3.1 An Abstract Multi-core Architecture . . . . . . . . . . . . . . . . . . 42
3.2 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Local Memory Version . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.1 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4 Main Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

I



3.5 Main Memory and Slices . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Spin Glasses on CBE 63
4.1 Core implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.1 Data Parallelism and SIMD-Granularity . . . . . . . . . . . . 66
4.1.2 Data Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.1.3 Random Number Generation . . . . . . . . . . . . . . . . . . 79
4.1.4 Local Memory: Computational Core . . . . . . . . . . . . . . 91
4.1.5 Main Memory: Performance and Data Access . . . . . . . . . 101
4.1.6 Memory Usage . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.2 Interaction Between Cores . . . . . . . . . . . . . . . . . . . . . . . . 104
4.2.1 Local Memory Version . . . . . . . . . . . . . . . . . . . . . . 106
4.2.2 Main Memory Version . . . . . . . . . . . . . . . . . . . . . . 108

4.3 Gaussian Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5 Spin Glasses Performance on CBE 117
5.1 Binary Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.1.1 Local Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.1.2 Main Memory Version . . . . . . . . . . . . . . . . . . . . . . 121
5.1.3 Performance Comparison . . . . . . . . . . . . . . . . . . . . . 125

5.2 Gaussian Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Conclusions 139

Bibliography 140



Introduction

Several large-scale computational scientific problems require high-end computing
systems to be solved, or in some cases the development of “application-driven“
machines, custom-designed computing systems optimized for the resolution of a
specific problem.

The huge amount of computational requirements and data to be processed have
made until the recent past years very hard, and sometimes impossible, the use of
commercial High Performance Computer (HPC) based on available standard com-
puting technology.

Typical examples of such applications comes from several scientific fields like
Earth Sciences (weather forecast, oceanography), Atrophysics (study of large-scale
structures), Quantum Physics, Fluidodynamics, Biology, Molecular Dynamics [1, 2].
The request of an high computational power raises from the large scale of the events
that have to be studied, and by the accuracy of the results to be achieved. Some of
such applications are defined as Grand Challenge Problems, which means that with
the actual technologies they may require years to be solved [3].

In the past, to solve this kind of problems two main categoires of computing
systems have been used: general-purpose HPC commercial systems and special-
purpose machines usually developed by research university groups. For example,
for applications like weather forecast or biology, computing systems like the Cray
machines and the IBM Power parallel systems have been extensively used with
reasonably performance. General purpose systems are designed to be used for a
wide range of applications, even for irregular applications where computing and
communication patterns can change dynamically.

For other interesting scientific application this approach has not been sufficient
and it required the design of specific computing architectures optimized for a par-
ticular application. A typical example of such applications is the Lattice Quantum
Chromodynamics (LQCD) which has triggered the development of several gener-
ations of massively-parallel machines like the APE family in Europe [4] and the
Columbia University systems, like QCDOC [5] or QCDSP [6], in the United States.
The case of LQCD is particular interesting because the experience of the Columbia
University has triggered the development of the IBM BlueGene systems, currently
the most used system from the LQCD community. Other interesting examples are
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IV Introduction

the GRAPE [7] system, developed in Japan for studying large gravitational systems,
and Spin Glass simulations for which two generations of special-pourpose computing
systems have been developed: SUE [8] and Janus [9].

The need of developing special-pourpose parallel machines which required the
design of the processor, was mainly due to the lack of commercial CPUs in terms
of performance/Watt and performance/cost ratios. Moreover, to allow the system
to scale in the strong regime, that is to scale among several processors keeping the
volume of the problem constant, it was also necessary to develop the interconnection
network. In most cases, the design of special purpose systems has been tuned
carefully to meet the computing requirements of the algorithms [10].

In the recent years, thanks to the raise of multi-cores architectures, a single
chip has tens or thousand of Gflops of peak performance, with an high efficiency in
power dissipation. This kind of processors are composed by cores strongly optimized
for SIMD floating-point intensive applications. They also have on-chip memory,
as well as efficient (in terms of latency and bandwidth) inter-core communication
mechanisms, that reduce the data-access bottlenecks that may be expected when a
very large number of operations is performed concurrently. The efficiency of inter-
core communications makes a multi-core processor faster than a multi-processor
system with an equivalent number of computing elements, as the low latency and
the high bandwith allows a strict coupling between the cores embedded in the same
chip. In this way it is possible to exploit a finer grain parallelism.

Nowadays there are essentially two different types of multi-core machine: proces-
sors with few (2 or 4) general purpose cores and a large amount of on-chip memory
(4 or 8 megabytes), and graphics processing units (GPU) that have hundreds of
special pourpose cores (although they are not independent unit and the naming
is quite ambiguous) and a hierarchy of fast on-chip memory optimized for graphi-
cal applications. Multi-core systems make available in a single chip computational
powers that previously were achieved only by HPC or special pourpose system, and
offer high-speed connection channels that promise to allows an efficient use of the
available parallelism. In effect, inter-core communications are more efficient in a
multi-core processor than in a multi-processor system. Although parallelism were
not largely available or well exploited in commodity processors, it is well known in
HPC field, so the experience matured in the last decades can be applied to multi-
core processors. For all these reasons multi-core processors are very interesting for
scientific computing.

However, the multi-core systems require a non trivial effort in the development
of applications, because an increase of performance can be expected only if the
parallelism is explicitly exploited. Until few years ago it was sufficient to wait for
a faster single-core processor to obtain a significant speedup. Nowdays compiler
technology not able to generate efficient parallel core, and the parallelization of the
algorithm and the distribution of data among the cores, ha to be done carefully
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tuned by the user.

The Cell Broadband Engine, developed by IBM, Sony and Toshiba, is one of
the first available multi-core processor, and it is a rare example of an heterogeneous
multi-core: it has a general purpose core based on PowerPC architecture and eighth
SIMD special purpose cores designed to achieve in computational-heavy workloads.
All the cores are connected together by an high-speed bus, and data transfers are
performed independently of computation by dedicated DMA engines. A peculiarity
of Cell is that the on-chip memory is software controlled and in general there are no
hardware for out-of-order execution or branch prediction: the computational core
have been kept as simple as possible, in order to be able to put an high number of
cores in a single chip and to achieve an high clock speed (3.2 GHz). As a conse-
quence, to achieve high performance it is necessary to develop software that (i) take
advantage of parallelism (due to the nine SIMD cores) (ii) is well optimized (because
hardware do not help) and (iii) explicitly manage data transfers. The peak perfor-
mance of Cell processor is greater than 200 Gflops in SP (AND 100 in DP), that are
an order of magnitude greater than those achievable few year ago. Moreover, it has
a relatively low power dissipation (80W), so in the optic of scientific programming
it is interesting as a basic block for both small cluster of 16-64 processor and for the
development of massively-parallel computers.

One of the most challenging scientific problems from the the computational point
of view is the simulation of spin models. Spin models are relevant in several areas of
condensed matter and high-energy physics. They describe systems characterized by
phase transitions (such as the para-ferro transition in magnets) or model “frustrated”
dynamics, which appears when the complex structure of the energy landscape of
the system makes the approach to the equilibrium state very slow. These systems
were extensively studied in the last two decades and are considered paradigmatic
examples of complexity. They have been applied to a large set of problems, such as
quantitative biology, optimization, economics modeling, social studies [11, 12, 13].

Spin glass models are defined on discrete, finite-connectivity regular grids (e.g.,
3-D lattices, when modeling experiments on real magnetic samples) and are usually
studied via Monte Carlo simulations. The dynamical variables of the systems are
“spins”, that are located at the edges of the lattice and assume a discrete and finite
(usually small) set of possible values. State-of-the-art simulations require at least
1010 Monte Carlo updates of the full lattice, and have to be repeated on hundreds
or thousands of different instantiations, called samples, and each sample must be
simulated more than once (replicas), as most properties of the model are encoded in
the correlation between independent histories of the same system [14]. For example,
a 3-D system of linear size 80 requires at least 1017 · · · 1018 spin updates, a major
computational challenge.

Several features of the relevant algorithms can be exploited to handle the com-
putational problem effectively. First of all, computational kernels have a large and
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easily-identified degree of available parallelism, associated to the large number of
samples and replicas that have to be independently simulated (referred to in spin
glass jargon as asynchronous parallelism). However, this kind of parallelism can be
managed running concurrently different instances of the problem on a set of ma-
chines, so it is not very interesting. For each given sample or replica the update of
up to one half of all spins can be executed in parallel (synchronous parallelism), if
enough computational resources are available. While asynchronous parallelism can
be obviously exploited by farming out the overall computation to independent pro-
cessors, the large available synchronous parallelism is poorly exploited by traditional
processor architectures, due to the difficulty to process single bit variables.

On of the major issue is the data representation. Spin variables can be coded
on short words, using a small number of bits (in the simplest models, spins are two-
valued, so they can be encoded by just one bit). The typical Monte Carlo simulation
updates all spins in the lattice in a regular sequence. Each update in turn involves
in most cases a sequence of logical operations on bit-valued variables, as opposed
to the long, integer or floating-point variables for which virtually each processor
is optimized. For this reasons, in the last two decades several application-driven
machines have been developed, strongly focused for spin glass simulations [8]. In
recent years, this approach has been based on FPGAs, on which a very large number
of processing cores each core being a spin-update engine can be easily implemented
[15].

However, spin glass simulations have many other features that make an efficient
implementation on parallel machines relatively easy to achieve:

• the computation can be easily partitioned among many computing cores: the
whole lattice can be divided in smaller equally-sized sub-lattices, and each one
can be assigned to a different core

• Single Instruction Multiple Data (SIMD) parallelism can be exploited to up-
date in parallel spins of a system, and in particular for computing random
numbers necessary by the Monte Carlo procedure

• the large data-words (16 bytes) available in modern processors can be used
efficiently thanks to multispin coding techniques, that allow to use all the
available bit to represent useful data

• data access patterns are regular and predictable, allowing data-prefetching to
avoid stalls of the processor

• only nearest-neighbor are required

While until few year ago the above underlined features would be exploited only
on HPC system or on clusters of commodity processors, recent developments in
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multi-core or many-core processor architectures make an high level of parallelism
available on commodity processors. Spin glass simulations can take advantage of
multi-core processors because it is a intrinsically parallel application, and as long as
the spins are two-valued, a large amount of them can be embedded in a single data
word, and there is a high chance that relevant lattice (e.g. lattice of side L=64)
can be completely stored in local memories. With previous architectures, where
on-chip memories were small and inter-core communications were slow, this was not
possible.

The level of exploitable parallelisms on multi-core processors will not probably
stretch to the level of custom engines, where more then thousands spins are updated
concurrently, however the much higher clock frequency of a state-of-the-art proces-
sor, as compared to an FPGA-based engine, may substantially close the performance
gap.

The aim of my Ph.D. thesis is to study the capability of multi-core processor in
the context of scientific programming and in the perspective for the development
of massively parallel systems able to solve Grand Challenges Problems. For this
purpose, I’ve studied one specific multi-core processor, the Cell Broadband Engine.
It is one of the first multi-core and today it is still the commercial processor with
the highest number of cores. To evaluate its capability I’ve used as a test bench
a scientific problem, the spin glass simulations, that it is very demanding from
the computational point of view but that is also intrinsically parallel. The step
required to evaluate processor are (i) to determine which absolute performance are
achievable for spin glass with the CBE processor, (ii) to evaluate the limits of the
architecture and the amount of required programming effort, and (iii) to collect a
set of techniques and strategies that allows to efficiently exploit the computational
power of CBE. The experience with this processor should allow to extrapolate a
more general view on the multi-core world: which are the benefits that they can
grant but also which challenge they offer to scientists and developers in order to
exploit all their capabilities.

The thesis is organized as follows. The first chapter describe the multi-core
world, analyzing the reasons behind the advent of multi-core architectures, propos-
ing a survey of the actual situation, and illustrating the problems that have to be
resolved in the next years. The second chapter introduces the Edward-Anderson
spin glass model and the Metropolis algorithm that is used to study the model. A
technique for the efficient use of “large“ data-words in Metropolis algorithm, called
multispin coding, is then described in details, as it represent the computational
kernel executed on each core. Chapter 3 discuss the implementation of spin glass
simulations on an abstract multi-core architecture (that is a simplification of Cell),
emphasizing the issues the distribution of data set among main and local memo-
ries. In particular balance equations predict the behavior of an ideal algorithm as
a function of parameters: the number of cores and the lattice linear size. The bal-
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ance equations depends on both algorithmic parameters (the size of the problem,
the SIMD-granularity) and on architectural parparametershe number of available
cores and the bandwidth of interconnection bus and memory). They are used to
determine the optimal sizes of the problem for which the computational time is
not dominated by the data access time, so that computational resources are effi-
ciently exploited. Chapter 4 describe the implementation of spin glass simulation
on Cell, analyzing the data layout issue, describing an efficient implementation of
random number generation and spin update code, with the support of many SIMD-
granularity. Moreover, various estimations of the performance of the computational
code are proposed, bases both on static analysis of assembler code and on run-time
measurements. The estimations are then applied to the balance equations determine
the sizes of the problems and the number of cores for which the global time is not
dominated by data transfers. Finally, chapter 5 shows the performance of the im-
plementations of the programs. In particular, the theoric estimations are compared
with the real performance, analyzing the overhead associated to data transfers and
synchronization between cores.



Chapter 1

Multi-core Architectures

The computer world is living an epochal change, as multi-core architectures have
become widely available. In this chapter the reasons that have caused the world
to turn multi-core will be described and analyzed. Later, we will introdue the
currently available multi-core architectures that promise to bring benefits in the
fields of High Performance Computing and more in general scientific programming.
We will emphasize their differences and similarities . Finally, the expected future
evolution will be discussed.

1.1 The Raise of Multi-Cores

According to Moore’s Law, in the last 30 years the density of microelectronic devices
in a chip has doubled every 18 months (Figure 1.1).

Thanks to Moore’s Law, for many years technological improvements were enough
to obtain better performance, due to the the increase of frequency associated to the
reduction of the size of transistors. Technological improvements were not the only
way to go faster, as there was also an architectural development. The instruction
level parallelism (ILP) in the past has taken advantage of the incrementing num-
ber of circuits that was possible to put in a single chip. Successfull techniques as
pipelining, superscalar processors, out-of-order execution, register renaming, specu-
lative execution and VLIW architectures were largely adopted. At the same time,
cache hierarchies have been used to mitigate the difference of speed between external
memories and the processor (the Memory Wall [16]), that was becoming larger and
larger. Both technological and architectural developments lead to the the improve-
ments of computing power shown Figure 1.2.

In the past, parallelization an exception : to increase the performance of a pro-
gram it was fairly more convenient to wait for a new faster processor than trying
to parallelize the code. When the main concern was the throughput (in terms of
number of task completed for unit of time), a solution was to adopt systems with
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Figure 1.1: The trend of the density of microelectronic devices inside a chip in the last decades..

Figure 1.2: The improvements of computing power of processors in the last 30 years (This figure
is Figure 1.1 in [17].
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multiple CPUs, to increase the number of tasks that could be processed concurrently.
Nonetheless, in HPC parallelism has always been widely exploited. During the

Eighties the HPC world was dominated by systems composed by few (four to sixteen)
vector processors (although the first vector processors appeared in the Seventies)
while the early Nineties saw the rise of Multiprocessors (MPP). However , until
it was easy to get more performance with a single processor, data and processor
parallelization was a concern only to specific fields, like high performance scientific
programming.

Both technological and architectural developments were aimed to get a better
performance with a single thread of execution, and both have now reached their
limits, or it is too expensive to further develop them. As a consequence paralleliza-
tion at each level seems the only viable way to continue to improve performance,
as very little improvements in serial performance of general purpose processors are
expected. To increase the performance of a processor has become harder and harder
for several causes:

• the Power Wall

• the Memory Wall

• the ILP Wall

Physical limits of semiconductor-based microelectronics have become quite crit-
ical under various aspects. Power dissipation is proportional to the clock frequency,
and as a consequence there is a natural limit to clock speed. More precisely, power
consumption typically rises as the square or cube of the frequency. With current
cooling systems and material technology, a significative increment of frequency is
not to be expected.

The increase of speed of processors was not matched by an equal increase of the
speed of memory. As a consequence, due to latency and bandwidth, it is difficult
to give the processor enough data to exploit its computational power. Usually this
kind of problem is mitigated with the use a hierarchy of caches, but actually the
cache occupies the higher fraction of a die and is responsible of a large amount of
heat dissipation. So, the Memory Wall is also one of the major responsible of the
huge power dissipation of modern processors.

The techniques for ILP exploitation are effective if the code is predictable and if
enough instructions are submitted to the processor. Both code and data suffer from
the Memory Wall bottleneck. Moreover, ILP require a super-linear increase of CPU
complexity and associated heat dissipation without granting linear speedup.

To summarize, power consumption rises as the square of cube of the frequency,
while the expected speedup is less than linear, so increasing the frequency is no longer
convenient. A more aggressive exploitation of ILP would require more complex
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hardware and as a consequence the power consumption is too heavy with respect
to the to achievable benefits. Moreover, feeding the processor with data is difficult
due to memory latency, that can be mitigated with caches, that also requires more
circuits and improve heat dissipation.

Given that the increase of the frequency or complicated ILP logic are no longer
a viable solution, possible solutions to obtain more performance are: production of
smaller chips, increase the amount of cache, addition of more cores or improvement
of memory bandwidth [18]. To balance these different options is not a trivial problem
and each CPU developer is proposing its own solution. Generally, the number of
cores have been incremented, and at the end of 2008 quad-core processors are the
standard and architectures with more cores are also available.

Typically the clock speed increase has been stopped, and in many cases it is
slower than those of the last uni-core CPUs. Commodity processors also have
adopted power saving technologies that in the past was exclusive of mobile and
embedded processor. Also the ILP hardware has been subject to minor refinements
and in most cases has been heavily simplified or removed (as in CBE and GPUs). In
general, there is more interest in data-level parallelism (the rise of SIMD ISAs) and,
as long as there are more cores, it can be exploited at a higher level of abstraction.
The memory wall is still a problem: memory is slowly becoming faster in terms of
bandwidth but, as there are more processor to feed, the problem can be worse than
before. Luckily, it is possible to put large on-chip caches that can help to mitigate
this problem. However, as have been observed in [19, 18, 20, 21] this problem is
expected to become worse and wors in next years, when there will be hundreds or
thousands of cores inside a single chip.

Multi-core processors have to be appropriately programmed to guarantee per-
formance improvements, and as a amtter of facts many applications have to be
reengineered and restructured as parallel programs. First of all, all the available
parallelism has to be exposed. Some applications are intrinsically parallel, while
other are less likely to take advantage of concurrency. The critical point is the rele-
vance of the parallelizable fractions of the program into respect of global execution
time [22]. The availability of many computational resources cannot be exploited if
an application is memory bound. In this case the bottleneck is represented by data
transfer channels, between computational cores and main memory of between cores.
From this point of view, multi-core processor have an interconnection infrastructure
that is more efficient than those available in many multi-processor machines, so is
more probable that computational resources can be efficiently used.
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1.2 Toward Many-Cores

It is expected that the number of cores inside a chip will double at each generation
and that in few years processors with 128 or more cores will be available. Processor
with hundreds or thousands of cores are classified as “many-core” [19]. Some special
purpose processors have already tents of cores, like the Cisco QuantumFlow 40-cores
newtwork processor (able to support up to 160 threads [23]) and, although this inter-
pretation is ambiguous, GPUs have already hundreds of independent computational
units.

Although many-cores do not still exists, it is possible to foresee that Memory
Wall will be the primary concern [24, 25, 18, 26, 27]. As reported in [28], traditionally
the CPU speed increases by 70 percent per year, while the bandwidth increases by
25 percent per year, and the memory latency shows the lowest improvement with a
modest decrease of the 5 percent. With the actual “few-core” machine data access
is a very important issues, and in many cases the computational resources are not
used efficiently. It the next year will be very important to find new strategies to
face the Memory Wall issue.

1.3 Multi-Core Architectures in 2008

At the end of 2008, multi-core architectures have become the standard. The two
extremes of the spectrum are the commodity processors from Intel and AMD on
one side, and the GPUs of NVIDIA and AMD (that has acquired ATI) on the other
side. In the middle, there are processors like the Cell Broadband Engine and many
other processors aimed at more specialized targets.

Commodity CPUs are largely based on the old single-core processor, which are
replicated two of four times inside a single chip. A major feature is the presence
of large shared caches between the cores, that are also connected by high-speed
on-chip buses. The cores inside a processors are homogeneous and, although their
ISA supports SIMD extensions, in principle they are multi-pourpose cores. While in
HPC context it is vital to be able to use all the cores in parallel to gain a speed-up
for a single program, theis chips are largely used as desktop or server processor,
where multiple tasks are run in parallel, so distributing processes among the cores
is sufficient to assure a performance gain.

At the other extreme, GPUs are based on arrays of simpler cores. Although the
definition of “core” in this context is quite ambiguous, the amount of exploitable
parallelism inside a GPU is much greater than those found in a multi-core CPU. To
be used efficiently, a GPU has to run a program that has been subdivided into many
subtasks. A basic concept of modern GPU is to run more threads than available
cores, in order to mitigate the inevitable stalls intrinsic in each sub-task. To succeed
in this purpose, in a GPU the context switch is very inexpensive. However, GPUs
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are highly specialized for compute-intensive and highly parallel applications so, while
they can deliver impressive performance in their specific area, they are not general
purpose processors.

GPU are aimed at a fine-grain parallelism, as the single core is very simple and it
is not flexible as a general pourpose processor. Multi-core CPU are instead oriented
to coarse-grain parallelism, as a single core is capable to run complete applications
(that it is not possible with the core of a GPU) and in some fields the presence of
multiple cores is simply exploited to improve the throughput of the system, intended
as the number of jobs completed for unit of time. At the other extreme, to obtain
high performance in a GPU it is necessary to subdivide a single job into many
threads that can are executed concurrently.

These two different philosophies are converging: in recent years specific-purpose
extensions were added to general purpose processors, while GPUs are trying to
become more general purpose in order to be used in scientific and multimedia pro-
gramming, and not only in 3-D graphics.

CPUs and GPUs also differs from the point of view of memory hierarchies. While
CPU are still based on caches to try to mitigate the Memory Wall, GPUs are based
on customized an special pourpose on-chip memories. Moreover, GPUs usually have
a dedicated Video RAM that is faster, although smaller and more expensive, than
the memory used by general pourpose processor (for example the latest Intel CPUs
can uses various GBytes of DDR3 memory with a bandwith of 32 GB/s, while the
last NVIDIA GPU uses GDDR3 memory with a bandwidth of 141.7 GB/s, but it is
limited to 4GB).

Both actual commodity CPUs and GPUs are homogeneous multi-cores, although
GPU in the past were composed by two types of specialized cores (vertex and pixel
shaders). Despite that, it is not obvious if homogeneous are better than heteroge-
neous multi-cores.

A notable exception is the Cell Broadband Engine, that was designed to run
the tasks of both a CPU and a GPU. As will be explained in details later, it has a
general purpose core that runs the operating system and a set of eight specialized
cores that are used for compute-intensive tasks. Originally the CBE was intended as
the only computational core of PlayStation 3, although later a GPU was added. For
many other aspects (the complexity of cores, the interconnection, the instruction set
and so on) Cell Broadband Engine stands in an hypothetical middle line between
CPUs and GPUs.

Another notable exception is the core used for Cray XD1 [29], that embeds an
FPGA, although this is more a co-processor than a true additional core.
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1.3.1 Cell Broadband Engine

The Cell Broadband Engine (CBE) is the first implementation of the Cell Broad-
band Engine Architecture (CBEA), developed by a collaboration of Sony Computer
Entertainment, Toshiba, and IBM (usually referred as “STI”). CBE is a rare case of
an heterogenous multi-core: a PowerPC (PPE) core and eight Synergistic Processor
Elements (SPE) are embedded into the same die.

Development began in late 2000 and the first processor were widely available
at the end of 2006, mainly as the PlayStation 3 processor. The CBEA has been
initially designed for game consoles and high-definition multimedia device, but it
has been extended to support a wider range of applications, like blade servers and
High Performance Computing [30].

The 64-bit PowerPC core is a two-way simultaneous multithreaded Power ISA
v.2.03 compliant core, and it is used to run the operating system and is primarily
intended as a dispatcher of workloads to SPEs and for top-level control of applica-
tions.

The Synergistic Processor Elements are the main source of computational power
of the processor. Their instruction set is optimized for SIMD operations and at
3.2 GHz they have a theoretical peak performance of 25.6 Gflops. Each SPE can
directly access a private high-performance memory of 256KB (Local Store) with a
constant latency, and cannot directly use the main memory. Data transfers between
local store and main memory are performed via DMA transfers.

The nine cores (one PPE and eight SPE) and the main memory are connected
together with the Element Interconnect Bus (EIB). The EIB is composed by eight
rings that allows parallel data transfers. Each ring provides a bandwidth of 25.6
GB/s. To allow simultaneous transfers each SPE has its own Memory Flow Con-
troller (MFC), a device that can perform DMA transfers autonomously, so that the
SPE can concurrently perform computations.

The project started with the main goal of obtaining a performance enhance-
ment of two order of magnitudes in respect to current game systems (in 2001, the
PlayStation 2 with its Emotion Engine processor), and to develop a processor well
suited for multimedia an floating-point intensive applications. The main target of
the new processor was clearly the PlayStation 3, but also Digital Entertainment
Center (as such devices and game console tend to converge in the last years), mul-
timedia devices in general, and finally High Performance Computing, because the
high computational power required by modern 3-D games is not too far from that
required by scientific application.

Usually, in the past, performance improvements were obtained with faster clock
frequencies, wider superscalar architectures, deeper pipelines and caches. In 2001 it
was clear that this path was paying diminishing returns. First of all, due to tech-
nological limitations incrementing clock frequencies lead to power consumption and
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dissipation problems. Moreover, as memory technology did not show comparable
speed enhancement in the last years, increasing the performance of a single core
leads to higher data access latency, that can make useless the speed enhancement
of a single core. In effect, much of the bandwidth of a system can only be used
speculatively, due to latency. Latency-hiding requires expensive and sophisticate
hardware, and makes nearly impossible for the programmers to perform low-level
optimizations.

The basic concepts that drove the development of the CBE where essentially
to use powerful but simple computational cores and to connect all the elements of
the system (including the memory) with a high-bandwidth interconnection bus. To
allow an effective use of the available bandwith, simultaneous direct memory access
can be performed without the assistance of computational cores.

More precisely, a general pourpose core (the PPE) is used to run the operating
system an all the normal activities. Computational load is managed by multiple
specialized cores (the SPEs), that are very fast and efficient for specific applications
( single-precision floating point intensive computations, with predictable branches)
but are not suited for general applications. Independent entities (the MFCs) perform
DMA data transfers, so that techniques as prefetching can be effectively used and
the impact of the latency is hidden.

Notably, each SPE can directly use only its 256KB local memory, and data
transfers between main and local memory have to be explicitly requested to the
MFCs. SPE have not cache hierarchies and do not support out-of order execution.
This simplifications allowed to multiply easily the number of cores embedded into a
single die.

Power Processor Element

PPE is a dual-issue, in order implementation of the IBM PowerPC Architecture,
with vector multimedia extensions (VMX). It includes a 32KB L1 cache for both
data and instructions and a 512KB L2 cache. The register file is composed by 32 x
64-bit general pourpose registers and 32 x 64-bit floating point registers. Moreover,
there are 32 VMX 128-bit registers. The PPE is able to interleave instructions from
two separated hardware threads. This means that state register are duplicated, but
functional units, caches and queues are shared. The pipeline depth is 23 stages,
considerably less than the previous implementation of PowerPC processors. Inte-
ger arithmetic and load instructions complete in two cycles, while double-precision
floating-point instruction requires ten cycles. [30] Although the primary target of
PPE is not computation, VMX extension allow a peak performance of 25.6 Gflops
in single-precision when running at 3.2 GHz.

The PPE has not an associated MFC, so to perform DMA transfers it has to
remotely access the MFC of the SPE involved in the data transfer.
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One of the major benefits of PPE is its backward compatibilyty with the Pow-
erPC software. In this way it was not needed to write the operating systems and
the toolchain from scratch, thus shortening the development of the processor and
allowing the CBE to run existing software once it was ready.

Synergistic Processor Element

A Synergistic Processor Element (SPE) contains a Synergistic Processor Unit (SPU)
and a Memory Flow Controller (MFC). The SPU is composed by the 256KB Local
Store and the SIMD functional units. The MFC is a DMA controller with a MMU
(to help address translations) and an atomic unit (to allow synchronizations). The
SPU and the MFC operate concurrently and independently.

As said earlier, a SPU does not need to run the operating system, so it does not
support mechanisms like address translation and protection (that are delegated to
the MFC). A SPU can operate only on data and instructions memorized into the
local store. It can communicate with the other elements of the system (including
main memory) only via DMA transfers performed by its own MFC or by one of the
other MFCs. A SPU sumbits DMA transfer requests to MFC through a channel
interface.

The instruction set of the SPEs is not the same of that of the PPE, although
it is quite similar to VMX extensions. In any case, binaries are not compatible. In
particular, the SPE ISA has specific instructions to issue commands to the MFC.

A SPU is essentially a SIMD architecture and it is organized around a 128bit
dataflow. It has a large unified register file composed by 128 SIMD registers 128-
bit wide, that allows deep unrolling to cover functional units latencies. It does
not supports out-of-order execution nor branch prediction but, because the local
store has a constant latency, its behavior is predictable and optimizations can be
performed at compile time.

A SPU supports various levels of SIMD-granularities:

• 16 × 8-bit integers (bytes)

• 8 × 16-bit integers (half-words)

• 4 × 32-bit integers (words)

• 2 × 32-bit single-precision floats

Each SPU has two separate pipelines, so it’s able to issue two SIMD instruc-
tions for each clock cycle if they are of different types. The “even” pipeline is able
to perform float and integer computation, while the “odd” pipeline is dedicated
to loads, store, branches and other operations that involve bits manipulations. A
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Figure 1.3: The SIMD-granularities supported by CBE. Note that each type of instructions sup-
ports only specific types of variables. For example, single-precision floating-point instructions
supports only the “word” (four 32-bit scalar variables) granularity. (Figure is from [31])

somple but very important implication is that load/stores instructions can in prin-
ciple be executed in parallel with computation, thus allowing a higher efficiency in
single-precision floating-point pipeline exploitation. Single-precision floating-point
instructions are executed in 6 cycles, while integer and logic instructions are per-
formed in only two cycles. In the first release double precision instructions are
not pipelined and require 7 cycles. When using single-precision floating point, if a
multiply-add is issued at each clock cycle, at 3.2GHz a peak performance of 25.6
Gflops can be achieved.

The register file has six 128-bit read-only and two 128-bit write only ports, that
are enough two feed two instruction that takes each one four operand (a multiply-add
in the even pipe and a shuffle in the odd pipe, for example). A 128-bit bidirectional
port connects the register file to the local store. A load/store instruction has a
fixed latency of six clock cycles. As said earlier, the fixed latency allows various
optimizations, but in principle local store access can be a bottleneck. However, the
size of the register files allows to store a large amount of variables, thus reducing
the local store access. Local store has also a 128-bytes read-only port used for
instruction fetching an to send data to the MFC and a 128-bytes write-only port to
get data from the MFC. However, the EIB can take only 8 bytes for cycle (which
means 25.5 GB/s for each direction), and in this way the local store can be accessed
only once every 8 cycles.

Unlike traditional processors, a SPE is not a scalar core with SIMD extension,
but is completely SIMD. Scalar programs simply use a single slot of the SIMD
registers. A SPE support only a single program context at any time. A context
can be a user application (“problem-state”) or operating system extension (“super-
visor”). Moreover, a “hypervisor” state allows multiple operating systems to run
concurrently.
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We have said that the MFCs move data across the system. In particular, there
are three different types of information exchange: signals, mails and regular DMA
transfers. Signals and mails are 32-bit messages that are stored in special-pourpose
queues, while regular DMA transfers are transfers take play between main and local
memory or between two local memories, and can range from 1 byte to 16 KBytes.
Although signals and mails are actually implemented as DMA transfers, in future
CBEA compliant processors they will have a dedicated data-path.

Element Interconnect Bus

The Element Interconnect Bus (EIB) consists of one address bus and four 16-bye
data rings, two of of them running clockwise and the other two counter-clockwise.
Each ring support up to three concurrent transfers if the paths do not overlap. The
EIB operates at half the speed of the cores, so at the reference clock speed of 3.2
GHz it can sustain a bandwidth B′ of

B′ = 3 × 4 rings × 16 bytes × 1.6 GHz = 307.2 GB/s (1.1)

Each element connected to the EIB can send and receive 16 bytes of data every bus
cycle, so the bandwidth at which each element can send or receive data is 25.6 GB/s
in both direction, for a total bandwidth of 51.2 GB/s.

The maximum bandwidth of the EIB is limited by the address snooping. Only
one 16 byte long data transfer can be snooped per bus cycle. Each snooped address
request can potentially transfer up to 128 bytes, so the theoretical peek is:

B = 128 bytes × 1.6 GHz = 204.8 GB/s (1.2)

To send data to another unit, each element makes a request to the data ring
arbiter on the the EIB. The arbiter decides which ring is granted and to which
requester in which time slot, trying to optimize the EIB usage. The higher priority
is given to the memory controller, because memory is a precious shared resource.
All other elements are treated with a round-robin priority.

Any requester can use any of the four rings, given that it does not interfere
with another transfer already in progress. Moreover, a ring is not assigned to a
requester if the transfer would cross more than halfway around the ring on its way
to destination.

Sustained bandwidth can be lower than the peak bandwidth because of several
factors: the relative positions of the sender and of the receiver (for example, a six
hops transfer inhibits the unit on the way to use the ring), the number of requests to
the same destination and the number of requests per direction. Moreover, the bus
efficiency is lowered when there are a large number of partial cache line transfers.

The EIB is coherent to allow a single address space shared by all the elements
connected to the bus.
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Memory

The internal memory controller (MIC) of the first implementation of CBE is con-
nected to the external Rambus XDR DRAM through two XDR controller I/O (XIO)
at 3.2 GHz. Each channel can support eight banks, for a maximum size of 512 MB.

The MIC manages independently the read and write requests queues for each
channel. Writes in the range 16-128 bytes can be directly written to memory using a
masked-write operation, while writes less than 16 bytes require a read-modify-write
operation. The peak raw memory bandwidth is 25.6 GB/s, although management
operations reduce it to 24.6 GB/s when all requests are of the same type. If reads
and writes are intermingled, the effective bandwidth is reduced to 21 GB/s, due to
the need to turning around the MIC-to-XIO bus.

The PowerXCell 8i implementation supports DDR2 memory instead of XDR
DRAM, supporting up to 32GB of memory with ECC and a bandwidth of 25.6
GB/s.

Flexible I/O Interface

The CBE has seven transmit and five receive 5GHz, byte-wide Rambus FlexIO links,
that are configured as two logical interfaces. When two processor are connected
together, data and commands are transmitted as packets using a coherent protocol
called “broadband interface” (BIF). BIF Operates over IOIF0.Typically the two
FlexIO links are configured is such a way that an IOF0 has 30GB/s outbound and
20 GB/s inbound bandwiths and IOF1 has 5 GB/s outbound and 5 GB/s inbound
and works in noncoherent mode. [32, 33] However, the flexibility of FlexIO allows to
support different system configurations, from a single-chip configuration with dual
I/O interfaces to a dual-processor configuration that does not require any extra chip
to connect the processors.

Addressing

A peculiarity of CBEA is the definition of a main and a local storage domains [34].
The main one contains the address space for main memory and memory-mapped
I/O registers and devices and is common to all the system. Each SPE has its own
local domain that refers to its local store, used for both data and instructions. Each
local domain is also mapped in main storage domain, in an address range called
local storage alias.

The instructions that compose a CBE program use the effective-address space,
while the processor itself supports the real-address space. A combination of hardware
and operating system support allows to also support a virtual-address (VA) space.
Both PPE and MFCs have dedicated hardware for address translation. The Cell
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Figure 1.4: Block diagram of the CBE processor. Figure is from [32].

Broadband Engine Architecture (CBEA) processors is compatible with the PowerPc
virtual-storage environment that is compatible with that defined by [35].

The real-address (RA) space is the set of all addressable bytes in physical memory
and on devices whose physical addresses have been mapped to the RA space (as the
SPEs local stores and MMIO registers).

The PPE uses effective-address (EA) address. Each SPE can access the EA
space through MFCs and use local-storage (LS) addresses to access its own local
store. Each MFC command has a pair of EA and LS addresses.

Virtual-address translation can be activated independently for instructions and
data. Each PPE program can access 264 bytes of EA space, that are a subset of 265

bytes of virtual-address (VA) space. A EA address is translated into a VA address,
and then in to a RA address. RA space is composed by 242 bytes. An overview of
address translation is shown in figure 1.5.

VA space is subdivided in protected and nonoverlapping segments of 256MB of
contiguous address, while RA space is subdivided in protected and nonoverlapping
pages that contain a number of consecutive address between 4KB and 16MB.

The conversion from EA to RA is performed in two steps: firstly, the EA is
converted to VA using the SLB (segmentation) and then the VA is converted to RA
using the page table (pagination).

The virtual-address mechanism allow to associate different restriction and dif-
ferent attributes (like cacheability and coherence) to each page or segment.
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Figure 1.5: PPE Address-Translation Overview. Figure is from [36].

In general CBE architecture makes all SPE resource available through MMIO.
There are three main classes of resources:

• Local Storage. The local stores of all SPEs. PPE can access to SPU’s local
storages using load and stores, but this process is fairly inefficient and is not
synchronized with SPU execution

• Problem State Memory Map. These resources are intended for use by the ap-
plication and includes MFC MMIO, mailbox channels and signals notification
channels

• Privilege 1 Memory Map. Resources for monitoring and control by the oper-
ating system of the execution of SPU programs

• Privilege 2 Memory Map. Resources for control of SPE by operating system

The local store of each SPE is mapped into main memory, for programming
convenience, but they are not coherent in the system. Figure 1.6 shows an overview
of the mapping of SPEs resources into effective address space.

MFC and DMA Transfers

DMA requests can be issued to MFC in various ways. The SPU of the same SPE
can use specific instructions to insert commands in the queues, or it can prepare a
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Figure 1.6: An overview of the mapping of SPEs resources into effective address space. Figure is
from [36].
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list of commands in the local store and issue a single “DMA list” command to the
MFC. These commands are issued using the channel interface.

Channels are unidirectional communication paths that work like fixed-size FIFO
queues. Each channel is either read-only or write-only, and can be blocking or
non-blocking. Each channel has an associated count that indicates the number
of elements in the queue. Three instructions allow the SPU to interact with the
channel interface: read channel (rdch), write channel (wrch) and read channel count
(rchcnt). The CBEA specifies the depth of some channels, while for the others it is
an implementation specific parameter (for further details see [37]).

All other elements connected to the EIB can insert commands in specific “proxy”
queues using memory-mapped (MMIO) registers (see section 1.3.1).

Each MFC processes two separate DMA command queues:

• MFC SPU command queue, that contains the command issued by the local
SPU

• MFC proxy command queue, for the commands issued using MMIO registers
by other elements connected to the EIB

The CBE architecture does not specify the size of the queues, but when they are full
the result is a performance degradation, as the core issuing commands stalls until
the queue is free. Alternatively, non blocking instruction are available to access the
queues. In the first implementation, the CBE, the MFC SPU queue contains 16
entries and the MFC proxy command queue eight entries.

A single DMA command can request the transfer of 1,2,4 or 8 bytes or a multiple
of 16 bytes, up to 16KB. A DMA command list, that is accepted only by MFC
SPU queue, can request up to 2048 DMA transfers. A DMA list is an array of
source/destination address and length tuples that is stored in the local memory.
Both source and destination addresses have to be 16 byte aligned. The hardware
can transfer only 128-byte aligned blocks of 128 bytes, so the peak performance is
achievable only if both addresses are 128-byte aligned and the length of the transfer
is a multiple of 128 bytes.

The MFC supports also two signaling channels. The SPU access the channels
using the channel interface, while the PPE has to use the MMIO registers. It is
possible to perfrom a logical OR of the signals of all the SPU of the system.

Each MFC has also three 32-bit mailbox queues: a four-entry, read-blocking
inbound mailbox and two single-entry, write-blocking outbound mailboxes. One of
the outbound mailboxes is able to generate interrupts to PPE when it is written by
the SPU. The PPE has to use MMIO registers to write the SPUs inbound mailboxes
or to read from SPUs outbound mailboxes. Mailboxes are well suited for one-to-one
communications, and the roundtrip time between two SPUs is approximately 300
ns ([33], or 960 clock cycles (at 3.2 GHz).



1.3. MULTI-CORE ARCHITECTURES IN 2008 17

PowerXcell i8

PowerXcell i8 is based on a 65nm process and the main difference with is prede-
cessor is the support of DDR2 memory and better performance for double-precision
floating-point operation.

DDR2 memory has been chosen because it allows the use of a greater amount
of memory per board. CBE was limited to 1GB per board, clearly insufficient for
HPC applications. Now a single processor supports up to 4 DIMM slots and up to
16GB of memory.

The peak bandwidth has been preserved by expanding the memory buses to
128-bit, although this implies an increase of pin count and pin incompatibility with
previous generations.

While in the first implementation of CBE double-precision floating-point perfor-
mance where fairly poor, now a single SPE is capable of 12.8 Gflops, which lead to
a peak performance of the whole processor of 102.4 Gflops [38].

While double-precision functional units are fully IEEE 754 compatible, single-
precision is not fully compliant due to truncations.

The next generation of CBE processor should be released in 2010. The number
of SPE should be expand to 16 or 32 using a 45nm process [38].

CBE blades

In IBM QS211 blades, two CBEs are configured as a two-way, symmetric multipro-
cessor (SMP). Each processor has its own directly connected Rambus XDR memory
and it is connected to a separate South Bridge.

The bandwidth of the interface between the CBE processor is 20 GB/s in each
direction, and it is realized through FlexIO.

The bandwidth of the South Bridge interface is (CIRCA) 1.0 GB/s in each
direction. The South Bridge 0 chip provide all the required features: a PCI-E
channel, a PCI bus interface, an IDE channel, a Gigabit Ethernet interface, USB
2.0 ports, a UART and an external bus controller. More details can be found in
[39].

An interesting feature of the dual-processor configuration is the possibility to
perform DMA transfers between the local stores of the SPEs belonging to different
processors. Moreover, a SPE can access both memories, although accessing the local
memory is faster.

QS22 is an updated version of QS21 with PowerXcell 8i processors and DDR2
memory. In each board there are two 3.2 GHz PowerXcell 8i connected via BIF
interface. Each processor can be equipped with up to 16GB of DDR2 memory.

An IBM BladeCenter H chassis can host up to 14 QS21 or QS22 blades.
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Figure 1.7: The organization of a QS21 Blade Server. Note that the two processors are directly
connected and that, although some resources are shared (as the PCI interface), each processor has
its own XDR memory, Gbit PHY and PCIe interfaces. Figure is from [39].
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Figure 1.8: The compile chain of CBE. Note that the executable of PPE and SPEs are compiled
independently, and that only in the linker phase are united into a single executable file. Figure is
from [39].

Application Development

The Cell Broadband Engine is supported by Linux, and the Cell Broadband Engine
(Cell/B.E.) Software Development Kit (SDK) provides all the tools needed to de-
velop an application for CBE. The two main alternative are the GNU Toolchain
or the IBM XLC/C++ compiler, although Fortran and ADA compilers are also
available.

The SDK include various libraries, including the SPE Runtime Management
Library that allow to run executables on the SPEs.

The CBE is an heterogeneous processor that supports two different instruction
sets. Two distinct toolchains are used for the two types of core, although both
toolchains produce executables in ELF format. An interesting feature is the CBE
Embedded SPE Object Format (CESOF), an application of the ELF of the PPE that
allows PPE executable objects to contain SPE executables [36, 40].

CBE Programming

The issue of efficiently programming the CBE has been widely analyzed in literature.
OpenMP [41] and MPI [42] have been ported to CBE, so it is possible to port old
programs with a relatively small effort (although efficiency is not guarantee) and it
is possible to continue to adopt these two well-known programming paradigms.
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As long as data-transfers and local memories usage is completely software con-
trolled, it is important to understand which is the best way to manage them [43].
There are also many researches in the field of compilers and automatic code gener-
ation [44, 45, 46, 47, 48], as CBE processor in-order hardware requires a non trivial
programming effort to produce optimized code. Many scientific application have
already been ported to CBE [49, 50, 51, 43, 52, 53, 54, 55, 56, 57, 58].

1.3.2 Intel Nehalem

Nehalem is the first Intel “real” quad-core processor and it is availabel since Novem-
ber 2008. In a single die are embedded four cores. Each core has 32 KBytes of L1
program cache and 32 KBytes of L1 data cache. Each core has also its own 256
KBytes L2 cache. The four cores also share 8MB of L3 cache. L3 cache is inclusive:
if a line is in L1 or L2, then it’s also in L3. This prevents the need to snoop L1 and
L2 of each core. The die also integrates the memory controller. Nehalem supports
DDR3 RAM with a bandwidth of 32 GB/s. In multiprocessor configurations, CPUs
are connected through the Quick Path Interconnect, that provides a bandwidth of
25.6 GB/s in both directions.

Each core supports hyper-threading and SSE4.2. It has also 4-wide dynamic
execution engine and has hardware dedicated to loop detection.

1.3.3 AMD Shangai and Istanbul

Shangai chips are the first AMD’s 45 nm processors and features 4 cores in a single
die. Three level of cache are present: 6 MBytes of L3cache are shared between the
cores, while each core has 512 KBytes of L2 cache and 64 KBytes of L1 data and
instruction cache.

DDR2 RAM is supported at up to 800MHz, while DDR3 RAM is not supported.
Only HyperTransport 2.0 (with a bandwidth of 8 GB/s) communication bus is
supported.

Shangai processors supports SSE and SSE3 SIMD instructions, and add the
support to AMD’s SSE4a, that are incompatible with Intel’s SSE4.1

In the second half of 2009 Istanbul processors will be available. They will feature
6 cores and will add the support for DDR3 RAM and HyperTransport 3.0 commu-
nication bus, with a bandwidth of 17 GB/s. The cache hierarchy will be unchanged,
and the die size will be of 300mm.

1.3.4 NVIDIA GT200

At the end of 2008 NVIDIA high-end GPU offer is the GT200 Series, that are used
across the GeForce, Tesla and Quadro product lines.
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As long as we are interested in computational peak performance, CUDA pro-
gramming model and implications will not be discussed.

A GT200 GPU is structured wtih many levels of hierarchy and a direct com-
parison with “standard” multi-core architectures is not always possible. A GT200
GPU is composed of 10 Thread Processing Clusters (TPC), each of one is made of
3 Streaming Multiprocessors (SM) and one memory pipeline. Each SM is composed
by 8 Streaming Processors (SP). An SP has a private program counter and a set
of registers, but it is not an independent core, as it lacks may features, like a fetch
unit, and it is equivalent to a scalar 32bit pipeline in a multi-threaded CPU.

The Streaming Multiprocessor is the smallest independent unit of the GPU, and
its similar to a single-issue processor with 8-way SIMD support.

NVIDIA defines its computational model as Single Instruction, Multiple Thread
(SIMT). The main difference with SIMD is that while SIMD exposes architectural
width and data must be packed into vectors and the same operations are applied to
all the scalars packed into a vector, in SIMT each thread works on it’s own data and
it’s possible for each thread to take independent branches (with a loss of performance
if the threads diverges).

Each SM has 64 KBytes register file (16 KBytes × 32bit) partitioned between
SPs, and a 16 KBytes shared memory with the same latency of the register file
for communication between threads. Data cannot be directly loaded from main to
shared memory. Data can be exchanged between the main memory and the register
file and between the shared memory and the register file, so a transfer between
shared and main memory requires an intermediate step into register file.

Each SM has a shared fetch unit and a set of eight 32bit ALU that can perform a
multiply-add between IEEE single-precision floating point in 4 clock cycles. More-
over, each SM includes a double-precision execution unit and a Special Function
Unit (SFU) for reciprocal, interpolation and other special functions. The SFU can
also be used to perform two extra 32bit madd.

Load/Store units are decoupled from the computational units. Each Thread
Processing Cluster (TPC), as said earlier, has three SMs and a texture pipeline
that is used to access the render output (ROP) units. Load/store instructions
are generated by SMs, but they are issued and executed by the texture pipeline.
The texture pipeline has two texture caches that, unlikely traditional caches, have
3-dimensional locality. Moreover, they are read-only and have no cache-coherency.
Texture caches are intended to save bandwith and power, and do not impact latency.
Each TCP embed 24 KBytes (8 KB for each SM) L1 caches, while a 32KB L2 cache
resides with the memory controller.

Main memory load/stores must be 4 bytes aligned. Load instructions of different
threads can be coalesced to reduce the total amount of transactions.

A GT200 chip requires 1.4 billions of transistors and is fabricated with 65nm
process. The die size is 583.2mm2. There are three independent clock domains:
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• graphics clock, used for texture pipeline, ROPs and SM (except SP functional
units)

• processor clock, the double of graphics clock, used for SPs

• memory clock, used for the GDDR3 memory controller

Typically the processor frequency is 1296MHz, while memory frequency is 1107MHz.
The peak performance is 933.1 Gflops in single precision and 77.8 Gflops in

double precision. The GT200 supports GDDR3 memory that allows a bandwidth
of 141.7GB/s. Typically 1GB is mounted on each board, but up to 64GB are
supported. The TDP 1 is of 236W under load, but it goes down to 25W when idle.

1.3.5 AMD ATI RV770

At the end of 2008 AMD high-end is represented by the RV700 GPU. An RV700
contains 10 SIMD cores. Each SIMD core is composed by 80 Stream Processors
Units grouped into 16 Stream Processors. A stream processor can execute up to 5
instructions in parallel if they belong to the same thread. Each SIMD core has also
4 Texture Address Units (TAU), 16KB L1 cache and 16KB of Global Data Share
memory. L1 cache bandwidth is 480 GB/s

In the chip are embedded 4 x 64bit memory controllers, that also integrate a L2
cache. The bandwith of transfers between L1 and L2 cache is 384 GB/s. Memory
controllers supports GDRR3/4/5. Hi-end boards mount 1GB of 900MHz GDRR5,
for a total bandwidth of 115.2 GB/s.

RV770 contains a PCI-e 2.0 bridge that allows a bandwidth of 10 GB/s for both
communications with the main memory and a second GPU in multi-chip configura-
tion. Moreover, two RV770 are also connected with a Sideport bus that allows an
extra bandwidth of 10.2 GB/s.

The die size is 256mm2 and there are 956M transistors. The TDP is 250 W.
In high end configuration the clock speed is 750 Mhz. If all Stream Processor Unit
are concurrently performing a multiply-add, its possible to achieve a single-precision
floating-point peak performance of 1.2 Tflops with a single GPU. Double-precision
performance is 240 Gflops.

1.3.6 Many-core: Intel Larrabee

Intel Larrabee is a project for a discrete GPU based on x86 cores. Presumably it
will be available at the end of 2009. The basic idea is to embed 32 or more cores
into a single die. While NVIDIA and ATI GPU are based on programmable but

1TDP is the Thermal Design Power and represents the maximum amount of power the cooling
system in a computer is required to dissipate.
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highly-specialized cores (stream processors), Larrabee will have very little graphic
specialized hardware, and each core supports the well-know x86 ISA, with the ad-
dition of a 512bit vector processor unit that can perform the same operation onto
16 independent floating point variables. The consequence is that Larrabee should
be more flexible than a traditional discrete GPU.

Concerning data model, while a traditional GPU highly-specialized memory,
Larrabee supports cache coherence between cores and it provides instructions for
cache manipulation. The cores are interconnected with a 1024-bit wide interconnect
bus.

1.4 Conclusions

Table 1.1 shows a comparison between the multi-core architectures available at the
beginning of 2009.

GPUs are very impressive, as they feature the highest number of cores (they
are the first example of many-core architectures), although they are designed for a
narrow range of applications. Howeverer, today there is a great interesting in the
General Purpose GPU programming (GPGPU). Both NVIDIA and AMD are try-
ing to introduce GPUs into to the world of high performance computing, proposing
two software infrastructures that allow to use GPUs for general purpose computa-
tion (NVIDIA CUDA [59] and AMD ATI [60]). The OpenCL (Open Computing
Language) framework has been proposed as a effective way to write programs that
executes across heterogeneous platforms as CPUs and GPUs.

Multi-core processors are more general purpose than GPUs, but they also suffer
from the relatively small bandwidth of main memory. Moreover, the relatively small
number of cores now available does not allow to fully take advantage of parallelism.
However, the future trend should for commodity processors should see a doubling of
the number of cores every 18 months, so that in 2015 general purpose many-cores
processor with 1024 cores should be available. For that time, it is not clear which
amount of parallelism will be achieved by GPUS, and if CPUs and GPUs will have
converged into a single type of device. In the next few years the first chips including
both CPU and GPU in a single die are expected.

The CBE processor seems to take advantage from the best of the two world,
because it has more cores than a commodity processor and, although they are not
well suited for every type of applications, they are more general purpose than the
streaming processors included in GPUs. Moreover, the presence of on-chip memory
completely under software control should allow to refine compiler technology in
order to be able to automatically adapt the programs to the available resources.
However, the balance of computational power and data transfer channels is algorithm
dependent, so while CBE grant high computational power in some application, each
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CBE PowerXcell i8 Nehalem Shangai GT200 RV770
Cores 1+8 1+8 4 4 10 10
32bit-ways x core 4 4 4 4 24 80
32bit-ways x chip 32 32 16 16 240 800
SP Fops x chip 64 64 16 16 720 800
Clock (GHz) 3.2 3.2 3.2 2.7 1.3 1.5
Peak SP Gflops 230.4 230.4 51.2 43.2 933.1 1200
Peak DP Gflops 13+20 13+100 77.8 240
Process (nm) 90 65 45 45 65 55
Transistors (M) 241 250 731 758 1400 956
Die size (mm2) 235 212 246 243 583.2 256
TDP (W) 80 100 130 95 236 250
Memory XDR DDR2 DDR3 DDR2 GDDR3 GDDR5
Memory BW (GB/s) 25.6 25.6 32 25.6 141.7 115.2
L1 cache x core 256KB 256KB 32KB+32KB 128KB 24KB
L2 cache - - 4 x 256KB 4 x 512KB 256KB
L3 - - 8MB 6MB -
IEEE SP no yes yes yes yes no
IEEE DP no yes yes yes yes no
Speculative no no yes yes no no
Model SIMD SIMD SIMD SIMD SIMT

Table 1.1: A comparison of the main multi-core architectures available at the beginning if 2009.
The highest computational power are achieved by AMD ATI RV770 and NVIDIA GT200 GPU
architectures, although an high efficiency can be achieved only in specific applications. Note also
that the power dissipation of these devices is very high (at least the double of a processor) and
that they use very fast memories. Typically a graphic board has at most 1GB of memory, that
it is sufficient for video applications but much less than the amount of memory supported by a
traditional processors. Intel Nehalem and AMD Shanghai architectures have both four cores and
comparable amounts of on-chip memories. The cores of these devices are general-purpose processor,
that grant an high flexibility but that also are an order of magnitude slower than GPUs in single-
precision floating-point computations. Finally, CBE processors not only have 9 cores instead of
4, but also have a peak floating-point performance that is four times higher than those of Intel
and AMD processors, although the computational cores are efficient only in computing-intensive
applications.

case should be evaluated independently.



Chapter 2

Spin Glasses

Spin models describe systems characterized by phase transitions (such as the para-
ferro transition in magnets) or model “frustrated” dynamics, which appears when
the complex structure of the energy landscape of the system makes the approach
to the equilibrium state very slow. They are relevant in several areas of condensed-
matter and high-energy physics and have been successfully applied to a large set of
problems.

A spin glass is a disordered magnetic system in which the interaction between the
magnetic moments associated to the atoms of the system are mutually conflicting,
due to some frozen-in structural disorder [61]. The macroscopic consequence is that
it is difficult for the system to relax to its equilibrium state: glassy materials never
truly reach equilibrium on laboratory-accessible times, since relaxation times may
be, for macroscopic samples, of the order of centuries.

Short-ranged spin glass models are defined on discrete, finite-connectivity regular
grids (e.g., 3-D lattices, when modeling experiments on real magnetic samples) and
are usually studied via Monte Carlo simulation techniques. The dynamical variables
of the systems are “spins”, that sit at the vertices of the lattice and assume a discrete
and finite (and usually small) set of possible values. The nature of different couplings
and different allowed spins values give birth to different models of spin glasses (see
for example [62] or [63]).

State-of-the-art simulations may stretch for well over 1010 Monte Carlo updates
of the full lattice, and have to be repeated on hundreds or thousands of different
instantiations (samples). In addition, each sample must be simulated more than once
(replicas), as most properties of the model are encoded in the correlation between
independent histories of the same system. The physical events that are simulated
have a magnitude of 10−12 seconds, and it is interesting to analyze time periods that
go from 1 second to 100 seconds. As a consequence, 1012 · · · 1014 updates have to
be executed for each spin. For a 3-D system of linear size 80 this translates into
1017 · · · 1018 spin updates, a major computational challenge.

25
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The computational kernels have a large and easily-identified degree of available
parallelism, thanks to the fact that, for each given sample or replica, the update of up
to one half of all spins of a system can be performed concurrently, if computational
resources allow to do so. In spin glass jargon this is referred to as synchronous
parallelism. Yet more parallelism can be exploited thanks to the large number
of samples and replicas that have to be independently simulated. This is usually
referred to as asynchronous parallelism.

While asynchronous parallelism can be obviously exploited by farming out the
overall computation to independent processors, the large available synchronous par-
allelism is poorly exploited by traditional processor architectures. These problems,
and the fact that the computation is based on simple bit-wise logic operations, have
triggered, in the last two decades, the development of several application-driven ma-
chines, strongly focused for spin glass simulations [8]. In recent years, this approach
has been based on FPGAs, on which a very large number of processing cores – each
core being a spin-update engine – can be easily implemented [15].

The emerging multi-core processor architectures, like the IBM Cell Broadband
Engine, promise to offer a new opportunity for fast spin glass simulations. The large
and increasing number of cores, combined with the availability of SIMD instruction
set in each core, allows to exploit synchronous parallelism. Multi-core processors also
have a non negligible amount of on-chip memory (typically from 2 to 8 MBytes), as
well as efficient core-to-core communication mechanisms, that can reduce the data-
access bottlenecks that may be expected when a very large number of operations
is performed concurrently. The level of exploitable parallelisms on these processors
will not probably reach those of dedicated engines, where ' 1000 spins are updated
concurrently. For example, in chapter 4 we show that with a single CBE processor
it is possible to update at least ' 100 spins of the same system in parallel. However,
the clock frequency of a state-of-the-art processor is an order of magnitude faster
than those of a dedicated system, so it may substantially close the performance gap.
Moreover, price-performance ratio may also become very interesting, as multi-core
processors are already widely available and their are less expensive than a dedicated
system.

The following discussion will be focused on arithmetic performance on a single
core, assuming that all the data required to update a fraction of the lattice is avail-
able in local memory, a realistic assumption in the case of Cell Broadband Engine.
One of the features of Metropolis algorithm is data locality, because the update
procedure of a spins requires only its neighbors. The local memory of a SPE is
completely under programmer control, so it is possible to assure that it contain all
the required data. Moreover, local store accesses have a fixed latency so, as long as
the data is locally available, data access pattern do not affect performance, although
it can influence the addressing.
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Figure 2.1: An example of a 2-D lattice. Periodic boundary conditions are no reported.

2.1 The Edward-Anderson Model

The Edwards-Anderson (EA) model is a widely studied theoretical model of a typical
spin glass, namely a disordered magnet. The model is defined on a D-dimensional
square lattice of linear size L. Atoms sit at the vertexes of the lattice and their
magnetic moments are modeled by spins σ, discrete variables that take just two
values, σ = ±1 (in other similar models σ takes a larger set of values; for instance,
in the Potts model [64] spins are n-valued, with n typically ranging in 3 · · · 6). The
magnetic interaction between spins is modeled by an energy function that is a sum
of terms associated to all pairs of nearest-neighbor spins in the lattice. Interaction
terms between atoms that are not nearest-neighbor are neglected. Periodic boundary
conditions are usually applied, so the lattice takes the topology of a D-dimensional
discrete torus (this not only has physical relevance, making surface effects negligible,
but also simplifies computer coding, with a strong impact on performances).

For each pair of neighboring spins i and j an interaction term (coupling) Jij is
defined. The Jij are randomly assigned to all pairs in the system, mimicking the
structural disorder of the real system, and kept fixed during Monte Carlo evolution.
Figure 2.1 shows the example of a 2-D lattice.

Physically relevant results are obtained by averaging over a large number of dif-
ferent assignments for the Jij. The probability distribution from which the coupling
are extracted determines the properties of the system: in glassy systems one usually
takes Jij = ±1 with 50% probability (binary EA model) or samples a Gaussian
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Figure 2.2: Example of frustration: spin S0 and S2 satisfy their mutual coupling; spins S2 and S3
satisfy their mutual coupling; spin S1 cannot simultaneously satisfy the couplings with both spins
S0 and S2 because of concurrent values of coupling terms.

distribution with zero mean and unit variance (Gaussian EA model). Each given
assignment of all couplings defines a sample of the system. For each sample, we will
need to consider several replicas (that is several copies of the system that have the
same set of couplings and evolve independently of one another).

The energy function of the system is given by

E = −
∑
〈ij〉

Jijσiσj. (2.1)

Notation
∑

〈ij〉 denotes the sum on all nearest-neighbor spins. A positive coupling
will favor alignment of the corresponding coupled spins, while a negative one will
push for misalignment.

The randomness of the values of Jij has dramatic consequences on the dynamics
of the system, associated to the so-called “frustration”. If we consider the simple
spin system of Figure 2.2 it is easy to verify that no configuration of the four spins
can simultaneously satisfy all energy constraints of the system: in these cases the
system is said to be “frustrated”.

This structure means that the system has a very sluggish drift toward equilib-
rium, that computationally translates into the fact that finding the state of lowest
energy of the full system is an NP-hard problem.

In particular, for three-dimensional lattices, it has been showed that a graph-
theoretic problem known to be NP-complete 1, the task of finding a maximum set

1NP-complete is a subset of NP, the set of all decision problems whose solutions can be verified
in polynomial time; NP may be equivalently defined as the set of decision problems that can be
solved in polynomial time on a nondeterministic Turing machine. A problem p in NP is also in
NPC if and only if every other problem in NP can be transformed into p in polynomial time. A
problem H is NP-hard if and only if there is an NP-complete problem L that is polynomial time
reducible to H.
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of independent edges in a graph for which each vertex has degree 3, can be reduced
to the spin glass problem [65]. Further details about the NP-completeness of the
problem can be found in [66, 67, 68, 69].

The EA model is usually studied via canonical (i.e. fixed-temperature) Monte
Carlo simulations. The computational kernel of a Monte Carlo procedure, based on
the standard single spin-flip Metropolis algorithm [70], will be described in section
2.2 and then it will be described as it can be implemented in a processor architecture
that supports w-bit data-words, with w > 1.

2.2 Metropolis Algorithm

The basic computational kernel of a Monte Carlo procedure based on the standard
single spin-flip Metropolis algorithm consists in the following steps, to be repeated
many times. Note that a Monte Carlo step is defined as the update attempt of a
number of spins equal to the number of lattice spins.

1. pick one site at random

2. compute the local energy E, summing all contribution from nearest neighbor
spins and relative couplings

3. flips the value of the spin σ′ = −σ

4. compute the new local energy E ′

5. compute the energy change: ∆E = E ′ − E

6. if ∆ < 0 the new value of the spin σ′ is accepted

7. if ∆ ≥ 0 then the new state is accepted if ρ < e−β∆E, where ρ is a random
number (ρ ∈ [0, 1]) and β is defined as the inverse of the temperature

The actual order in which sites are visited is not important, as long as all sites
are visited an equal number of times on average, so any lexicographic order can be
followed. This brings to an important simplification: the steps from 2 to 7 outlined
above can be applied in parallel to all spins that do not share a coupling term in
the energy function. The cubic lattice is bipartite in a checkerboard scheme and the
algorithm can be applied first to all black sites and then to all white ones.

When studying the out-of-equilibrium dynamics of the model, one usually sim-
ulates very large systems (order 106 lattice sites) so that the equilibrium is never
reached, on relatively few samples(102-103). When instead one is interested in equi-
librium properties, small sizes (order 102-104 lattice sites) are mandatory in order
to keep equilibration times short. In this case it is necessary to simulate many
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more samples (104-105) to obtain good statistics, as usually interesting equilibrium
properties have strong sample-to-sample fluctuations.

The former task would require an intensive exploitation of all synchronous par-
allelism, as it is important to speed up the simulation of very few samples, and
asynchronous techniques would be of little use or degrade the performance; in the
latter one, parallelizing among different samples may be preferable, as the asyn-
chronous approach might be in some cases much more efficient in term of single
spin-flip time.

2.3 The Binary Model

In the binary Edwards-Anderson model both spins and couplings are two-valued:

• σi ∈ {−1, 1}

• Jij ∈ {−1, 1} foreach pair of nearest neighbors spins i and j

The local energy of interaction Ei of the spin σi is defined as:

Ei =
∑
<j>

σiJijσj (2.2)

The energy difference ∆Ei is the difference between energy Ei associated to σi

and the energy E ′
i associated to the spin σ′

i = −σi:

∆E = E ′
i − Ei (2.3)

The energy Ei can be rewritten as:

Ei =
∑
<j>

σiJijσj

= σi

∑
<j>

Jijσj

(2.4)

while E ′
i can be re-defined as:

E ′
i =

∑
<j>

σ′
iJijσj

= σ′
i

∑
<j>

Jijσj

= −σi

∑
<j>

Jijσj

= −Ei

(2.5)
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# -1 # 1 Ei

0 6 6
1 5 4
2 4 2
3 3 0
4 2 -2
5 1 -4
6 0 -6

Table 2.1: The values that can be assumed by energy Ei. The first two columns indicate the
number of equation (2.5) whose value is -1 or 1.

This implies that the energy difference ∆Ei is equal to:

∆Ei = (−Ei) − Ei

= −2Ei

(2.6)

Because Ei is a sum of six terms (one for each neighbor of the spin i) taken from the
set {−1, 1}, it can assume seven values, as shown in Table 2.1. As a consequence,
the energy difference ∆Ei can assume seven different integer values:

∆Ei ∈ {−12,−8,−4, 0, +4, +8, +12} (2.7)

As we will describe, this property allows to ..?
Data representation is a major issue. Spins and couplings can be represented by

a single bit, but actual architectures support word sizes of several bits, that in this
case would be wasted. Quite obviously, if more bits than necessary are used, more
data has to be transferred in the systems and less useful information is stored into
precious fast local memories. A trivial optimization would be data compression, so
that more than one spin or coupling is packed into registers, and computations are
performed on binary variables that have been extracted from data structures.

An interesting property of the Metropolis algorithm applied to the binary model
is that computation are performed between integer values that are representable
with very few bits. Moreover, operations between integer values such as sums,
multiplications and comparisons can be rewritten as logical bitwise instructions that
allow to concurrently apply the same operation on all the bits of the variables. In
this way bits that otherwise would have been wasted can be used to update in
parallel a set of spins, thus increasing parallelism.

The spins embedded in the same register can be corresponding spins of differ-
ent samples (asynchronous parallelism), or they can be different spins of the same
system, thus improving the spin update time of a single system (synchronous par-
allelism).
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Figure 2.3: An example of the representation of eight variables that assume values representable
with three bits. Each 8-bit data-word represent the corresponding bits of the eight variables

.

2.3.1 Data and Operations Remapping

A spin or a coupling can be represented by a single bit of a w-bit word. The
transformation we apply on spin and couplings is:

σi ∈ {−1, 1} → Si = (σi + 1)/2 ∈ {0, 1}
Jij ∈ {−1, 1} → Iij = (Jij + 1)/2 ∈ {0, 1}

E(σi) → X(Si) =
∑

j

Iij ⊕ Si ⊕ Sj =

= (6 − E(σi))/2

(2.8)

where ⊕ denotes the multiplication of corresponding bits inside the data words
and as will be soon clear, it is implemented as a logical XOR instruction. Please
note that we always have ∆E = −2E, so the quantity X is a positive integer
representation of ∆E that is the quantity of interest in the Metropolis algorithm.
Values as X can be stored using one w-bit word for each bit that is needed to
represent it. So, it is sufficient to define three words X0, X1, X2, one per bit of the
representation, from the least to the most significant bit respectively. Figures 2.3
and 2.4 show an example of this type of representation.

This type of representation allows to perform operations on the w bits of a
variable concurrently. To obtain such results, operations between integers have to
be remapped using bitwise logical operations.

A multiplication between two bits is still represented by one bit, and it is equiv-
alent to the logical XOR:

S = A × B → S = A XOR B (2.9)

The result of a sum between two bits requires two bits to be represented. So, if
A+B = S[2], where A and B are two w-bit data-words that embed w different spins
or couplings, and S is an array of two w-bit data-words, the result is computed as:

S[0] = A XOR B

S[1] = A AND B
(2.10)
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Figure 2.4: The example shows the different values that can assume each of the eight 3-bit variables
with this type of representation.

When adding two variables that have to be represented by more than one bit,
carry has also to be added to the most significant bit. For example, to add A and B,
that are represented with three data-words (because each embedded variable needs
three bits to be represented), the following operations have to be performed. The
result S requires four data-words to be represented, due to the carry.

S[0] = A[0] XOR B[0]

Carry[1] = A[0] AND B[0]

S[1] = A[1] XOR B[1]

S[1] = S[1] XOR Carry[1]

Carry[2] = S[1] AND Carry[1]

S[2] = A[2] XOR B[2]

S[2] = S[2] XOR Carry[2]

S[3] = S[2] AND Carry[2]

(2.11)

In general, each bit of the results of the sum of two words A and B is given by:

S[i] = A[i] XOR B[i] XOR Carry[i] (2.12)

where Carry[i] is the carry propagated from position i − 1 and is defined as:

Carry[i] =(A[i-1] AND B[i-1]) OR

(Carry[i-1] AND (A[i-1] OR B[i-1]) )
(2.13)

In Metropolis algorithm often a single-bit variable is added to a multi-bit variable.
In this case the sum is simpler. For example, if each variable embedded in A is
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represented by a single bit and B by three bits:

S[0] = A[0] XOR B[0]

Carry[1] = A[0] AND B[0]

S[1] = S[1] XOR Carry[1]

Carry[2] = S[1] AND Carry[1]

S[2] = S[2] XOR Carry[2]

S[3] = S[2] AND Carry[2]

(2.14)

Note that the previous representation does not make assumptions about the vari-
ables represented by the bits that compose each data-word, as they are completely
independent. Because of that, in the following discussion, talking of a 3-bit variable
is equivalent to say that three w−bit data-words are used to represent corresponding
bits of w different and independent variables.

2.3.2 Asynchronous Multispin Coding

Assuming that w corresponding spins of w different samples are embedded in the
same w-bit data-word, and that spins and couplings values have been remapped to
be represented with a single bit, then :

X(Si) =
∑

j

Iij ⊕ Si ⊕ Sj

X ∈ {0, 1, 2, 3, 4, 5, 6}
(2.15)

that is a remapping of equation 2.2 using logical bitwise operations instead of integer
operations, as described in section 2.3.1.

The variable X requires three bits to be represented, which means that there are
three w-bit data-words to memorize the three bits of X for each spin embedded in
a single data-word. The original energy difference ∆Ei is obtained by the following
translation function:

∆Ei = 4 × X − 12 (2.16)

Table 2.3.2 shows the values of X associated to each of the seven possible values of
∆Ei and Ei. Note that X is always positive.

Metropolis algorithm states that a spin-flip is triggered if one of the two following
conditions is met:

1. ∆Ei < 0

2. ρ < e−β∆Ei , where ρ is a random number such that ρ ∈ [0, 1]
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X 0 1 2 3 4 5 6
Ei -6 -4 -2 0 +2 +4 +6

∆Ei -12 -8 -4 0 +4 +8 +12

Table 2.2: The table shows the equivalence between ∆Ei and X.

Condition 1 is verified when X < 3, that is equal to say that the most significant
bit is equal to zero and in the two least significant bits there is at most only one bit
equal to one, as can be seen in Table 2.3. In practice, the spin has to be flipped if
the following equation is true:

(NOT X[2]) AND (NOT (X[1] AND X[0])) = 1 (2.17)

In the case that condition 1 is not true, then condition 2 has to be checked.
Taking X into account it is rewritten as:

ρ ≤ e−β∆Ei

ρ ≤ e−β(4X−12)

ρ ≤ e−4βX+12β

(2.18)

The inequality can be further manipulated, in order to obtain some convenient
properties:

• the computation of exponential function , that is expensive, is not required

• it is easy to check if the spin has to be flipped

• there are not negative values, because we can easily represent only positive
integer numbers

These convenient properties emerge if the inequality 2.18 is manipulated in the
following way:

log(ρ) ≤ −4Xβ + 12β

log(ρ) + 4βX ≤ 12β
(2.19)

We know that log(ρ) is negative, because ρ ∈ [0, 1]. To make it positive we divide
both terms by −4β:

− log(ρ)

4β
− X ≥ −3 (2.20)

However in the inequality there are still negative terms (−3 and −X). To make
them positive +7 is added to both sides:

− log(ρ)

4β
+ 7 − X ≥ 4 (2.21)
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∆E X not X 7 − X
-12 0 000 111 7 111
-8 1 001 110 6 110
-4 2 010 101 5 101
0 3 011 100 4 100

+4 4 100 011 3 011
+8 5 101 010 2 010

+12 6 110 001 1 001

Table 2.3: The relation between ∆E and X and shows the binary representation of X, that is
convenient to simplify the update procedure.

Note that the difference (7 − X) can be computed as the logic negation of the
value of X, as can be seen in Table 2.3. The inequality 2.18 can finally be rewritten
as:

− log(ρ)

4β
+ X ≥ 4 (2.22)

It can be easily seen that ∆Ei ≤ 0 only if the most significant bit of X is equal
to one. Note that this implies that to verify condition 1 (∆Ei < 0) it is no necessary
to check all the bits that represent X, but only the negation of its most significant
bit. If it is equal to one, the spin flips, otherwise the test with the random number
(condition 2) has to be performed.

Let us define R as the first term of inequality 2.22:

R =

[
− log(ρ)

4β

]
(2.23)

It is sufficient to take R and verify that the result of the sum (R + X) is greater or
equal than 4:

S = R + X ≥ 4 (2.24)

Because this test is performed only if X ≥ 3, to decide if the spin have to be
flipped, it is sufficient to perform the sum (R + X) and to check if the result is
greater or equal than 4. The result is greater of equal than 4 if its most significant
bit is equal to one.

To summarize, the spin-flip is realized performing a logical XOR between its
value and the one-bit variable C defined as:

C = (NOT X[3]) OR S[3]) (2.25)

that by definition (it is the OR of the two bits that are equal to one if the first and
the second spin-flip conditions are true) is equal to 1 only when the spin has to be
flipped.
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To obtain R it is not necessary to calculate a logarithm. It is sufficient to check
if R is in the set {0, 1, 2, 3}, because the case of R > 3 was already covered checking
S[3]. The three following inequalities allows to determine the value of R performing
comparison with β-dependent constant values:

− log(ρ)

4β
≥ 3 ⇒ ρ ≤ e−12β ⇒ R = 3

3 > − log(ρ)

4β
≥ 2 ⇒ e−12β ≤ ρ ≤ e−8β ⇒ R = 2

2 > − log(ρ)

4β
≥ 1 ⇒ e−8β ≤ ρ ≤ e−4β ⇒ R = 1

1 > − log(ρ)

4β
⇒ e−4β < ρ ⇒ R = 0

(2.26)

Note that the exponential comparison terms do not depend on spin value, so that
can be computed once for the whole lattice (until β remains constant). In practice
it is sufficient to execute a sequence of three comparisons, starting from the smallest
value e−12β to the largest e−4β:

1. R = ( ρ ≤ e−12β) ? 3 : R;

2. R = ( ρ ≤ e−8β) ? 2 : R;

3. R = ( ρ ≤ e−4β) ? 1 : 0;

or alternatively

1. R = ( ρ > e−4β) ? 0 : 1;

2. R = ( ρ > e−8β) ? R : 2;

3. R = ( ρ > e−12β) ? R : 3;

that is useful in those ISA that include only instructions for the “greater-than”
comparison.

Asynchronous multispin coding is convenient because a single random number
can be used to update in parallel all the spin embedded in a word. Using a trivial
integer coding, only 5 sums and 6 multiplications are needed to calculated ∆E, while
with asynchronous multispin coding 27 XORs and 9 ANDs are required. In most
modern architecture the cost of integer and logical operations is the same. However,
the generation of random numbers is heavier than spin update, and of we can expect
that additional instruction will be required in real code to calculate addresses and
load data.
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2.3.3 Synchronous Multispin Coding

The same type of representation can be used for synchronous multispin coding. In
this case neighbor spins are embedded into the same word, so to get their values
rotations inside the vector data-words are required. Moreover, a different random
number has to be computed for each spin of the same system. The energy differences
∆Ei can still be computed as in the asynchronous case and also the operation that
decide if the spins have to be flipped are unchanged. This means that if we put
V spins of the same systems are embedded in a vector data word, we obtain the
parallel update of V spins. However, random number generation is not so simple.
Because 32-bit random numbers are required, the concurrency of their generation is
fixed, and as a consequence for high SIMD-granularities V we can expect that the
random number generation to be the dominant fraction of the computational kernel
execution time.

2.3.4 Mixed Multispin Coding

Asynchronous multispin coding can assure the best asynchronous spin update time,
because a random number is shared between replicas and because data structures
allow to easily access to neighbors’ values. However, to make dynamic analysis
asynchronous parallelism is of a little use, and is better to exploit the synchronous
parallelism.

Actual SIMD architectures allow to perform operations on various scalar vari-
ables in parallel. It’s possible to use a mixed method that exploit SIMD features
to update spins of the same system in parallel (synchronous parallelism) and at the
same time embed more than one system in each scalar variable in order to update
several systems concurrently (asynchronous parallelism).

In addition, the same random number may be used to updated all the spins
of independent samples of one site at once, as the small correlation introduced is
compensated by being the sample coupling configurations completely uncorrelated.
This is a crucial point, as if the w bits represented on the same lattice or in different
replicas, using the same random number, that permits a considerable improvement
in performance, would violate the algorithm.

2.4 Gaussian Model

The main difference between the Binary and the Gaussian model is that in the Gaus-
sian model the couplings are no longer binary values, but are floating point numbers.
This implies that it is no longer possible to use the multispin coding technique to
update spins in parallel, because computations are done between floating-point vari-
ables. Because coupling are floating point number, ∆E is also a float variable, so it
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has to be compared with the logarithm of the random number.
In conclusion, no obvious optimizations are possible, but datatypes are well

mapped into actual words. Floating point instructions have to be used, and they
are typically slower than logical bitwise instructions. We expect a limited drop in
performance when considering a single system (synchronous parallelism), because
the pattern of memory access is unchanged and the latency of instructions should
be mitigated by pipelining.

2.5 Conclusions

In this chapter we have introduced the Edward-Anderson model for spin glasses
and the Metropolis algorithm that is used to study the problem. In principle the
algorithm is not efficient in current computer architecture, because its basic data
type, the spin, require much smaller memory than those available in the smaller
data-word available in a processor (usually a byte). We have presented a technique,
the multispin coding [71], that allows to embed more than one spin in a single data-
word and to update them in parallel. This technique can be used to implement
programs that update concurrently spins of the same lattice and also of different
samples, thus achieving a high degree of parallelism.

I’d like to express my gratitude to Andrea Maiorano for his work on multispin
coding, that was of inestimable value for the development of my Ph.D. thesis.





Chapter 3

Spin Glasses on Multi-Core
Architectures

Spin glasses simulations realized with the Metropolis algorithm are intrinsically par-
allel, as L3/2 spins can be concurrently updated. If enough resources, in terms of
memory and processing units, are available a very high degree of concurrency can be
exploited. For example, a cubic lattice of linear size L = 64 is composed by 262144
spins and 131072 of them can in theory be concurrently updated. None of the
currently available computer architecture allows such a large degree of parallelism
when using a single processor. However, as currently available multi-core systems
have high computing power and large embedded memories, there is nonetheless the
chance to exploit a high degree of parallelism.

This chapter is organized in the following way. In the first section, an abstract
multi-core architecture will be defined, followed by the description of the data struc-
tures that are used to describe the data set of a generic cubic lattice. Three different
implementations of Monte Carlo spin glass simulations on the abstract multi-core
architecture will be discussed and analyzed, in particular emphasizing the balance
between computational power and the amount of data that has to be exchanged.
In particular, we will propose balance equations that, taking into account both al-
gorithmic (the lattice size, the SIMD-granularity) and architectural (the number of
available cores, the bandwidth of inter-core and core-to-memory communications)
parameters describe the behaviour of and ideal case in which details concerning syn-
cronization and latency are not taken into account. The target of this model is to
determine in which cases the computational time is greater of data transfer time,
so that it is possible to efficiently use all the available cores. Finally, the difference
and the similarities of the strategies will be discussed.

41
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3.1 An Abstract Multi-core Architecture

To analyze the implementation of Metropolis algorithm and its expected perfor-
mance we define an abstract multi-core processor described by the following prop-
erties:

• C cores are integrated on a single processor

• each core support SIMD-like vector instructions on W -bit vector data-words.
Each vector data-word can be partitioned in two or more scalar data-words of
different sizes. We call SIMD-granularity V the number of scalar data words
allowed within one vector data-word. For example, if a vector data-word of
128-bit can be partitioned in sixteen 8-bit scalar data-words, the processor has
SIMD-granularity V = 16

• each core has access to a local private memory (also referred to as onchip
memory)

• each core can access data stored on the local memories of the other cores

• all core shares an (arbitrarily) large main memory external to the chip (also
referred to as offchip memory)

• memory accesses and data-transfers can be performed concurrently with com-
putation

• memory access performance has a strong dependence on “distance”: latency
to the local memory is constant and small. Access to the local memories of
the other cores has a significantly longer latency, while access to the shared
memory is still much slower

The mapping on CBE is clear: ignoring the PPE, a chip has C = 8 SPEs with
their own 256 KBytes of local memory. Each core can access the local store of
other cores through the EIB, while data transfer are performed independently by
MFC. The mapping of the abstract architecture on CBE will be discussed in more
details is chapter 4. In any case, this abstract architecture is well suited for Cell
Broadband Engine, that does not have a complex hierarchy of caches and that allow
a complete software control of local memories. However, it is enough generic to
describe, with a sufficient grade of approximation, the main multi-core architectures
currently available, although much more accurate models have been proposed [72].
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Figure 3.1: An example of the mapping of w = 32 different systems into one W = 128-bit SIMD
vector data-word. Each vector represent V = 4 spins of each system.

3.2 Data Structures

For the Binary model, spins and couplings can be easily represented by a one-
bit variable. Commodity architectures do not support one-bit words, so spins and
couplings have to be allocated on scalar words of W/V bits, with V = 2, 4, 8, 16, . . .
strictly depending on the architecture, with a large waste of memory resources. This
naive representation can be improved if spin-values of different systems are allocated
in the same variable. For example, w corresponding spins of w different lattices can
be allocated on a single word of w = W/V bits. This allows to save space and to
update in parallel spins of different lattices as will be later described.

Following this approach, we allocate V spins of W/V different lattices on a single
W -bit vector data-word of a system with SIMD-granularity V , as shown in Figure
3.1. We then use SIMD instructions to update in parallel V spins of a single lattice
and to simulate concurrently w = W/V different lattices. In this approach – using
again spin glass jargon – we asynchronously handle w lattices and, at the same time,
we synchronously consider V spins of each lattice.

When considering the Gaussian model, it is no longer possible to embed corre-
sponding spins of different systems in the same scalar data-word, but we can still use
a vector data-word to represent V different spins or couplings of the same system.
Both spins and coupling have to be represented as 32-bit floating-point numbers, so
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the allowed SIMD-granularity is V = W/32. Given the fixed SIMD-granularity and
the absence of different samples, the considerations about balance between compu-
tations and data transfers are the same for both Binary and Gaussian model.

A cubic lattice of linear size L is represented by four data structures:

• S: L3 spins values

• Jx: L3 couplings between each spin and the first-neighbor in positive X direc-
tion (Jx)

• Jy: L3 couplings between each spin and the first-neighbor in positive Y direc-
tion (Jy)

• Jz: L3 couplings between each spin and the first-neighbor in positive Z direc-
tion (Jz)

Given a SIMD-granularity V and the consequent number of samples w, a lattice
requires M bits to be represented:

M = 4 × w × L3 (3.1)

For example, when L = 64 and w = 8, a very common case, 1 Mbyte of data is
required. There are essentially two correlated problems regarding data structures:
where to store them and how consequently distribute workload between cores.

One of the simplest way to distribute the workload among the cores is to assign
to each core a sub-lattice of L/C adjacent XY -planes (see Figure 3.2. A core is
responsible of the update of all the spins of is sub-lattice. The data set can be
allocated in main or local memories. Basically, if the data set is small enough, it
is allocated in local memories. Otherwise, the local memory is used to store only
the data required to update a fraction of the sublattice assigned to the core. We
will describe and analyze three main cases of allocation of data set on the storage
resources of the abstract multicore architecture:

1. data structures are small enough to be distributed between the local stores of
the used cores. Main memory access is not required

2. data structures are too big to fit in local memories, so the lattice has to be
stored in main memory. However, lattice is small enough to allow each core
to load into its own local memory enough data to update a whole plane.
Moreover, a large fraction of data can be reused to subsequently update an
adjacent plane, thus reducing data exchange between main memory and local
memories
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Figure 3.2: The cubic lattice is subdivided in sub-lattices of L/C XY planes, and each sub-lattice
is assigned to a different core. Note that in this figure each element of the lattice represents both
spins and couplings.
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3. data is stored in main memory, but it is not possible to load into each local
memory enough data to update a full plane of the lattice. Each plane is
splitted into several smaller slices that are small enough to allow each core to
load into its local store enough data to update a slice and then reuse some of
that data to update an adjacent slice

The amount of data that has to be exchanged is different in the three cases. How-
ever, when data is in local memories only core-to-core communication is required,
and in the case of CBE the EIB has a large aggregate bandwidth of more than 200
GB/s. In our implementations we extensively use latency-hiding techniques and
in particular data prefetching, so latency should not be an issue and the available
bandwidth is probably sufficient to avoid that data exchange is a bottleneck. When
data is stored in main memory, the available bandwidth is only 25.6 GB/s, so it is
more likely that it can be a severe bottleneck.

The distribution of data set to the cores is done along only one dimension in order
to minimize the interaction between cores: in this way each core has to exchange data
or to synchronize with only two neighbors. This it is not a limiting factor, because
our target linear lattice size (L ∈ [16, 128]), as will be later shown, can be managed
by a single CBE or by two-processors configurations in terms of local memories.
Systems with more than two processors have not be taken into consideration.

In the ideal case the lattice is stored in local memories, because they are fast and
because inter-core data exchanges are fast, but local memories are relatively small,
so they could not be able to store the whole lattice. If only a small fraction of the
data structures can be held in local memories, it is important to define a strategy
that minimizes data exchange.

Spins and couplings can be represented by the same primitive data type. In
this document the term element will be used to refer to a data-word that contains
w corresponding spins or couplings of w different samples. Because their memory
requirements are the same, it can be simpler to analyze memory usage and require-
ments in terms of elements rather than separate spins and couplings.

The spins and the couplings that form the lattice are divided in a checkerboard
style in two disjoint sets black and white. An important implication is that the
nearest neighbors of a “white spin” S(x, y, z) are all in the black set.

Checkerboard subdivision is useful because all the spin of the same color can
be concurrently updated, because spins of the same color do not share coupling
terms. Note that two spins cannot be updated in parallel only if they are nearest
neighbors, because they share couplings. The number of spins of a given color (L3/2)
is an upper bound of the achievable parallelism.

In our case, the original lattice of L3 spins is subdivided in two half-lattices of
L3/2 spins and the same subdivision is applied to all the couplings, as shown in
Figure 3.3.
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Figure 3.3: The checkerboard subdivision of spin and coupling data structures. Red and blue are
used in this and in the following figures instead of white and black.

We assume that the checkboard subdivision is done along the X axis. Due to
this subdivision, the concept of half-plane has to be introduced. Each half-plane is
the set of all the spins of a plane with the same color, so it contains L2/2 spins. In
terms of storage requirements, it needs 2 × w × L2 bits of memory to store all the
spins of the half-plane and the three couplings terms associated to each spin.

To preserve the semantics of the spin glass simulation, in a single Monte Carlo
iteration all the half-planes of a given color have to be updated before the half-planes
of the opposite color.

As said before, V spins of the same system are embedded in the same vector
data-word. We assume that in a vector data-word are embedded spins that are
in the same X-line in the half-plane. In other words, the same direction subject
to checkerboard subdivision is also subject to vectorization. As a consequence, a
half-plane is composed by (L/(4 × 2) × L) vector data-words. Note that black and
white subdivision implies that the spins embedded in a vector data-words are not
nearest neighbors, and later will be shown how this property can be exploited to
reduce storage requirements.

We can assume that the spins and the couplings of a lattice are basically stored
in main memory in eight different arrays:

• two arrays of L3/2 scalar elements that are used to represent the spins

• six arrays of V = L3/2 scalar elements that are needed to represent Jx, Jy and
Jz couplings

In the ideal case all the data required to update the lattice is available in local
memory, but the size of on-chip memory makes this assumption not realistic. Each
of the three proposed strategies of allocation of the data set assumes a fraction of the
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lattice as the basic updatable unit. To update a spin, that is the smallest updatable
unit, the following values are required:

• the value of the spin

• the values of its six first-neighbors spins

• the values of the six couplings that it shares with its first-neighbors

In total 13 elements are needed to generate a new spin value. The black and
white subdivision ensures that, for each spin:

• its value is not needed for the (potentially concurrent) update of other spins
of the same color

• its six first-neighbors are all of the opposite color

An important consequence is that the original value of a spin being updated
can be overwritten, because it is not required for the update of other spins of the
same color. Similarly, the values of its neighbors spins will be update only in the
next step, because they are all of the opposite color, so they are not overwritten
in thi step. This implies that separate output data structures are not needed, thus
reducing the storage requirements.

In terms of black and white half-planes, to update the z-th white XY half-plane,
the following half-planes are required:

• the white S half-plane (z)

• the black S half-planes (z − 1), (z) and (z + 1)

• the black and white Jx half-planes (z)

• the black and white Jy half-planes (z)

• the white Jz half-plane (z) and the black Jz half-plane (z − 1)

In total 10 half-planes are required to update an single half-plane. Given that
when considering a single spin as the minimum updatable unit 13 different elements
are required, it is convenient to assume that a half-plane as the minimum updatable
unit. It is not possible take a whole plane as basic updatable-unit, due to algorithmic
constraints (it is not possible to concurrently update spins that shares a couplings,
that would mean that they have the same color). Conveniently, the update of a half-
plane requires all data relative to the same (z) plane, plus three extra half-planes.
Working with half-planes also assures that all neighbors in the X and Y directions
are available.
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Figure 3.4: Each core loads into its local memory a sub-lattice of L/C XY -planes and some
additional border data. The sums of all the local memories allows to store the representation of
the whole lattice.

3.3 Local Memory Version

In this section will be described how to map the algorithm on the abstract multi-
core in the case in which data structures are small enough to be distributed among
local memories and main memory access is not required (or, more precisely, it is
required only at the start and at the end of a run to load/save data from/to the
mass storage).

As described earlier, the cubic lattice is subdivided in sub-lattices of L/C planes
and each sub-lattice is assigned and loaded into the local memory of a different core
(Figure 3.4).

As long as all the L/C planes are in local memory, it is possible to update the
whole sub-lattice without accessing main memory, given that:

• required border data can also be stored in each local memory

• after the update of all the same spins of a given color border data is exchanged
between cores

The half-planes that compose each sub-lattice are in the local range z ∈ [0, ((L/C)−
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1)]. As a consequence, the coordinates of each spin or coupling are in the following
ranges:

• x ∈ [0, L − 1]

• y ∈ [0, L − 1]

• z ∈ [0, (L/C) − 1]

Not all required data is included in this local coordinates system. The spin values
and Jz couplings relative to the plane (z = −1) are required to update the spins of
the plane (z = 0) and the spin values relative to the plane (z = L/C) are required
to update plane (z = (L/C)− 1). As a consequence, the following additional planes
are required to update the whole sub-lattice assigned to a core:

• spin plane z = (−1)

• spin plane z = (L/C)

• Jz coupling plane z = (−1)

From a high level of abstraction, the update procedure can be described as a
loop in which, for each Monte Carlo step, each core executes the following tasks:

1. Update the white spins of its own sub-lattice.

2. Exchange border data with the other cores.

3. Update the black spins of its own sub-lattice.

4. Exchange border data with the other cores.

In phases 1 and 3 each core updates ((L3/2C) spins of the same color.
Couplings are constants, so they can be loaded at the very start of the simulation,

and in phases 2 and 4 only spin values have to be exchanged between cores.
In particular, the just updated values of the spins on half-planes (z = 0) and

(z = (L/C) − 1) have to be sent to the previous core and the next core. The
previous and the next core are defined as the cores housing the two adjacent sub-
lattices. Using GETs instead of SENDs, half-planes (z = −1) and (z = L/C) have
to be get from the previous core and the next core, without changes in the sematic
of the scheme.

The previous core needs spin values of (z = 0) to update the spins of the opposite
color that lies on its plane (z = (L/C)−1), while the next core needs the spin values
of (z = (L/C) − 1) to update the spins of the opposite color that lies on its plane
(z = 0).



3.3. LOCAL MEMORY VERSION 51

Note that although it is necessary to wait the end of data transfers to update
the first and the last half-planes of a sub-lattice, the half-planes in the range z ∈
[1, (L/C)− 2] can be immediately updated. This implies that the transfer of border
half-planes and the update of internal half-planes can be performed concurrently.

The procedure for updating the spins of the same color of a sub-lattice can be
described in more details as the following sequence of steps:

1. Update the half-plane z = (0).

2. Send the half-plane z = (0) to the previous core.

3. Update the half-plane z = ((L/C) − 1).

4. Send the half-plane z = ((L/C) − 1) to the next core.

5. Update the half-planes in the range z ∈ [1, (L/C) − 2].

6. Wait the end of data transfers.

This scheme hides synchronization details and shows how steps 2 and 4 can be
overlapped with step 5. The time required to execute the algorithm (for the spins
of a given color) can be estimated:

T = T1 + T3 + max{(T2 + T4), T5} (3.2)

So a good balancing criteria requires that T2 + T4 = T5. Let us analyze in details
the time required to execute each step. The time required to update a half-plane is:

T1 = T3 = τ(V ) × L2

2
(3.3)

where τ(V ) is the time needed by each core to update one spin of a single system.
Note that, because all cores are independently and concurrently updating a different
half-plane, τ(V ) does not depend on the number of cores. However, the update of
the first and the last half-planes is not overlapped with data transfer, so it does
not influence the balance but has to be taken in account when calculating the total
execution time.

The time required to exchange all border data between cores is:

T2 = T4 =
w × C L2

B
(3.4)

where B is the aggregate bandwidth (in bits) of core-to-core communications. The
time to update all half-planes in the range [1, (L/C) − 2] is:

τ(V ) ×

(
L3

2 × C
− L2

)
(3.5)
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Now is is possible to define the equation (T2 + T4) = T5 that balance the system:

τ(V ) ×

(
L3

2 × C
− L2

)
=

w × C × L2

B
(3.6)

If T5 > (T2 + T4) processing is the bottleneck while, in the opposite case, data
transfers among cores limit the performance.

The procedure described above is realizable only if the data is small enough to
be stored into the local memories. Each local memory must be large enough to host
the following data structures:

1. the spin array S, that requires MS bits:

MC = w ×

(
L3

C
+ 2 × L2

)
(3.7)

2. the coupling array Jx, that contains Jxn elements:

MJx = w × L3

C
(3.8)

3. the coupling array Jy, that contains Jyn elements:

MJy = w × L3

C
(3.9)

4. the coupling array Jz, that contains Jzn elements:

MJz = w × L3

C
+ L2 (3.10)

Globally, M bits of local memory are required for each core:

M = w ×

(
4L3

C
+ 3L2

)
(3.11)

Note that this number depends on the number of cores C, so the number of used
cores directly influences the size of the maximum manageable lattice. For example,
for a lineare lattice size L = 16, a number of cores C = 8 and a SIMD-granularity
V = 4, in total M = 11264 bytes of local store space are required in each SPE, that
is the 23% of the available space. Extending lattice size to L = 40 would increase
the memory requirement to M = 147200 bytes, that is more than the 70% of the
available space.
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3.3.1 Synchronization

Data transfers between cores have to be synchronized, because each core can be seen
as both a producer and consumer of data. Data transfers can be realized as GET or
as RECEIVE data transfer operations that, except for some implementation details,
are equivalent for our purposes. If each core gets the half-planes from its neighbor it
must be sure that the half-planes have been already updated and it cannot overwrite
its own data structures if it isn’t sure that its neighbors have already got them.
Basically, the following operations have to be performed, assuming to use GETs to
perform data transfers:

1. update the white half-plane z = (0)

2. update the white half-plane z = ((L/C) − 1)

3. grant the previous core the authorization to get the white half-plane z = (0)

4. grant the next core the authorization to get the white half-plane z = ((L/C)−
1)

5. wait the authorization to read white half-plane z = (−1) from previous core

6. start to get the white half-plane z = (−1) from the previous core

7. grant the previous core the authorization to overwrite the white half-plane
z = (−1)

8. wait the authorization to read the white half-plane z = (L/C) from next core

9. start to get the white half-plane z = (L/C) from the next core

10. grant the next core the authorization to overwrite the white half-plane z =
(L/C)

11. update the white half-planes in the range z ∈ [1, (L/C) − 2]

12. wait the end of the transfer of the white half-plane z = (−1)

13. wait the end of the transfer of the white half-plane z = (L/C)

14. wait the authorization to overwrite the white half-plane z = (0) from previous
core

15. wait the authorization to overwrite the white half-plane
z = ((L/C) − 1) from next core.

16. swap colors
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Steps 12 and 13 are needed to assure that all data needed to update black spins
is available. Steps 14 and 15 are needed to be sure that neighbors has already got
border data so that, for example, after the update of the black spins it is possible
to proceed with another Monte Carlo step to change the values of the white border
spins.

To begin the update of the spins of a given color, the following conditions have
to be met:

• half-planes z = (−1) and z = (L/C) of the opposite colors have to be available

• neighbors cores have already got the current color half-planes z = (0) and
z = ((L/C) − 1)

After the update of the current color spins, there is no need to wait now for the
overwrite authorizations, because the current color spins will be overwritten only
after the update of the spins of the opposite color. Overwrite authorizations are
really needed only at the beginning of the next update of the spins of the same color.
Waiting overwrite authorizations so early implies a strong synchronization between
cores, because it assures that all the cores are always concurrently updating spins
of the same color.

3.4 Main Memory

In this section we assume that using C cores it is not possible to use only the local
memory to store a lattice of a given linear size L. In this case we assume that
each local memory is however large enough to store all the data needed to update a
half-plane and that, moreover, a large fraction of these data can be reused to update
another adjacent half-plane.

As seen in section 3.2, ten half-planes are required to update a single half-plane,
which implies that at least ten half-planes have to be stored in local memory. This
is obviously an upper bound to the size of L. Please note that, while in the local
memory version of the program each core had to store all its own sub-lattice in local-
memory, now the amount of data loaded into each local memory is independent by
the number of cores. The local memory usage for a lattice of linear size L is at least:

M = 5 × w × L2 (3.12)

Although this is an upper bound to the size of L, ten half-planes are not sufficient,
because data structures have to be dedicated to the data exchange between main
and local memory, so that computation and data transfers can be overlapped.

The main data structure, containing the values of all spins and all couplings,
resides in main memory and occupies 4 × w × L3 bits. A sub-lattice of L/C planes
is assigned to each core.
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Figure 3.5: Each cores has to update a sublattice of L/C XY -planes that is too large to be stored
in local memory. Instead, a set of half-planes is loaded from main to local memory to update a
single half-plane.
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The algorithm can be described as a loop where each core first updates all its
white half-planes in the range [0..(L/C)− 1], synchronizes with the other cores and
then repeat the same procedure to update the black half-planes. The update of each
half-plane (i) in the range [0..(L/C)− 1] is performed executing the following steps:

1. if i > 0, store half-plane (i − 1) into main memory

2. if i < (L/C) − 1, load plane (i + 2) from main to local memory

3. update half-plane (i) and proceed to half-plane (i) = (i + 1)

Computation and data transfers are overlapped, because while the half-plane (i)
is updated, half-planes (i− 1) and (i+2) are respectively stored to and loaded from
main memory.

When the half-planes of both colors have been updated, then the current Monte
Carlo iteration is over, and the procedure can be repeated for the next iteration.

Each core loads two planes z = (−1) and z = (L/C) that belong to its neighbors,
so synchronization is required: each core cannot update its border half-planes if the
neighbors have not read them yet. In practice it is sufficient to perform a global
barrier when swapping from a color to its opposite. This type synchronization
assures that cores are not concurrently updating spins of different colors. To update
a spin of a given color the values of its neighbors are required but, because of the
checkerboard subdivision, all neighbors are of the opposite color. So, if all cores
are updating spins of the same color, we are sure that the required data is not
concurrently overwritten.

The program is balanced if T1 + T2 = T3. The time required to store back a
half-plane to main memory is:

T1 =
w × C × L2

2 × B
(3.13)

where B is the bandwidth of main memory. The time required to load the next
eight half-planes from main memory is:

T2 =
8 × w × C × L2

2 × B
(3.14)

and time required to update a half-plane is:

T3 = τ(V ) × L2

2
(3.15)

Because all cores perform the update in parallel, in equation 3.15 the number of cores
C does not appear. Equations 3.13 and 3.14 assumes a main memory bandwidth
B (in bits), that is a resource shared between all the cores. As a consequence, the
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time required to transfer all the data depends on the number of cores C. The global
time required for data transfers is:

T1 + T2 =
9 × w × C × L2

2 × B
(3.16)

In a balanced system T1 + T2 = T3:

9 × w × C × L2

2 × B
= τ(V ) × L2

2
(3.17)

which implies:

τ(V ) =
9 × w × C

B
(3.18)

This formula shows how the balance does not depend on the lattice linear size L
and, given the spin update time τ(V ) and the bandwidth B of the main memory,
there is a number of cores C that keeps the system balanced.

To ensure the concurrency of computation and data transfers it is necessary to
allocate in local memory enough data structures to preload the half-planes that are
needed at the next updated step and to store the results, as shown in Figure 3.6.

More precisely, while updating the white half-plane (z) the following half-planes
have to be loaded from main to local memory:

• white spins half-plane (z + 1)

• black spins half-plane (z + 2)

• white and black Jx couplings half-planes (z + 1)

• white and black Jy couplings half-planes (z + 1)

• white couplings Jz half-plane (z + 1)

• black coupling Jz half-plane (z)

The same data structure can be used to store back to main memory the half-
plane (z−1) (that has been updated in the previous step) and then to load half-plane
(z + 2). In total eight half-planes are needed for data transfers, and consequently
eighteen half-planes have to be allocated into local memory. This implies that each
local memory has to be large enough to store M bits of data:

M = 9 × w × L2 (3.19)

In equation 3.19 the number of cores C does not appear, because the maximum
size of L does not depend on the number of cores, but only by the size of the
local memory. This implies that with this implementation the size of the largest
manageable lattice does not depend on the number of cores (as in the program that
use only local memories), but the number of cores that can efficiently used depends
on the linear size L and on the bandwidth B of the main memory.
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Figure 3.6: The buffers that have to be used to update a half plane while storing back a previously
update half-plane and loading from main memory the data required to update the next half plane
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Figure 3.7: A sub-lattice of L/C XY -planes is assigned to each cores. Half-planes are subdivided
in slices that are sequentially updated by the core in charge for that half-plane.

3.5 Main Memory and Slices

The largest lattice that can be updated with the strategy described in the previous
section is determined by the size of the local store, because enough planes have to
be available in local memory. The basic idea of this new strategy is that, although
the lattice the we want to update is so large that it cannot be managed by that
program, it is possible to define a smaller chunk of data, referred to as slice, that
can be stored and updated using the available local memory.

The update procedure is the same of the previous case, but it has to be repeated
p times, where p is the number of slices that compose a half-plane. Note that,
because the slice subdivision is limited to single planes, there is no need for extra
synchronization between cores, and a barrier is sufficient.

An ideal slice is composed by p × q spins, where p is a fraction of L/2 and q is
a fraction of L, but for our purposes it is sufficient for a slice to have L/2 spins in
the X direction (the same of the half-plane) and S = L/p spins in the Y direction.
In this way the complexity of the procedure is reduced while the size of the largest
manageable lattice is still large enough for our purposes.

An half-plane can be seen as splitted into p slices along the Y axis. To update
the first and the last X lines the first neighbors in the Y direction are required,
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so two border lines have to be available to update the slice. It is very important
that the X dimension of a slice be equal to the X dimension of the corresponding
half-plane, because a direct consequence is that border columns are not required
and less data have to be transferred.

A slice without borders is composed by (L/2) × S spins and requires 4 × w ×
(L/2) × S bits of memory when considering both spins and couplings. A slice
with borders is composed by (L/2) × (S + 2) spins and with the couplings requires
4 × w × (L/2) × (S + 2) bits of memory.

To update the z-th slice of white spins, the following slices are needed:

• the white spins slice (z) composed by S×L
2

spins

• the black spins slices (z−1), (z) and (z+1), each of one is composed by (S+2)×L
2

elements

• the black and white Jx slices (z) (S×L
2

elements each slice)

• the white Jy slice (z) ( (S+1)×L
2

elements)

• the black Jy slice (z) ( (S+1)×L
2

elements)

• the white Jz slice (z) (S×L
2

elements)

• the black Jz slice (z + 1) (S×L
2

elements)

As a consequence, at least M bits have to be allocated in each local store:

M =

(
9 × S

2
+ 4

)
× w × L (3.20)

Eight more slices have to be added to be allow the concurrent execution of data
transfer and computation, so in total M bits of local memory are required:

M = (9 × S + 6) × w × L (3.21)

The time required to update a slices is:

T = τ(V ) × S × L

2
(3.22)

While a core updates the white slices (z), the following slices are concurrently
loaded from main memory:

• the white spins slice (z + 1) composed by S×L
2

spins
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• the black spins slice (z + 2) composed by (S+2)×L
2

elements

• the black and white Jx slices (z + 1) (S×L
2

elements each slice)

• the white Jy slice (z + 1) ( (S+1)×L
2

elements)

• the black Jy slice (z + 1) ( (S+1)×L
2

elements)

• the white Jz slice (z + 1) (S×L
2

elements)

• the black Jz slice (z + 2) (S×L
2

elements)

Moreover, the white slice (z − 1) is stored back to main memory, so globally
Mdma bits of memory are globally transfered between main and local memories:

Mdma = (5 × S + 2) × w × C × L (3.23)

The system execution time is balanced if the following equation is true

τ(V ) × L × S

2
=

(5 × S + 2) × w × C × L

B
(3.24)

The number of slices that compose a half-plane is directly proportional to the
overhead of data transfer.

3.6 Conclusions

In this chapter we have analyzed three different strategies to map the Metropolis
Algorithm for spin glasses to an abstract multi-core architecture. As data exchange
is a major issue when dealing with multi-core architectures, emphasis has been put
on the problem of data allocation and distribution. The computational request has
been represented with a variable that will be analyzed more in detail in chapter
4, where we discuss the practical implementation of the algorithm on CBE. The
distribution of the data-set among the cores is done along only one dimension, that
allows to minimize the interaction between cores and it is not a limitation as we
expect that one or two CBE processors are enough to manage the lattices we are
interested to (L ∈ [16, 129]).

The equations that describe the balance between computations and data trans-
fers and show that the size of the problem can has a significant impact on perfor-
mance, because if data structures are not small enough or if border data is too large,
transfer time can be larger than computation time. However, the balance equations
have to be filled with the bandwidths of the real architectures and with the spin
update time τ(V ) that is achievable by the computational kernel.





Chapter 4

Spin Glasses on CBE

The global performance of spin glasses on CBE is given by the combination of three
factors: (i) the performance achievable with a single core, (ii) the interaction be-
tween cores and, in case it is used, (iii) the interaction with main memory. In chapter
3 we have analyzed the second and the third issues, proposing a theoric analysis of
the balance between data transfer and computation. The balance equations pro-
posed in that chapter depends on the spin update time τ(V ), determined by the
implementation of the actual code.

The value of τ(V ) is essentially determined by two fractions of code: the random
number generation and the effective spin update. With the term spin update pro-
cedure we refer to the set of instructions that update a vector data-word, including
the generation of the required random numbers, while with spin update we mean
the fraction of instructions that update the vector data-word assuming that random
numbers are already available.

The real τ(V ) differs from the theoric estimate due to overheads imputable to
data accesses, that will be discussed in detail in the first section of the chapter,
putting in evidence the difference between the ideal case and the real one, and
describing the behavior of the code in relation to the SIMD-granularity and the size
of the lattice.

The first section of this chapter is focused on the analysis of the performance of
single a core, proposing a static and a run-time estimate of the system spin update
time τ(V ). In the second section we will determine the cases in which computation
and data transfers are balanced, proposing equations that describe the behavior of
the program. Applying the estimates of τ(V ) to these equations allows to determine
which performance should be expected when updating a lattice of a given size L when
using C cores. The issues that can lead to a sub-optimal usage of the bandwidth
will be briefly described.

63
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4.1 Core implementation

Programming the CBE is not a trivial task. In order to achieve an efficient use of a
SPE, many levels of parallelism have to be exploited:

• Instruction Level Parallelism, to effectively hide the latencies of the instruc-
tions

• Dual-issue Parallelism, to overlap calculations and data manipulations

• Data Parallelism, to exploit the SIMD capabilities of the architecture

Instruction level parallelism, that in CBE is obtained putting the the instruc-
tions into pipelines, is exploited not only avoiding all the false dependences between
accesses to variables (that of course should always be avoided), but more impor-
tantly keeping as much data as possible in the (large) register file. This type of
parallelism is available in virtually all the processors designed in the last twenty
years. However, the peculiarity of CBE is to provide a large amount of general
purpose registers (128 x 128-bit vector register), so that many instructions can be
executed concurrently. However, if the code contains too much dependences that
force the compiler to strictly serialize the order of local memory accesses (and as a
consequence the order of the instructions), it is not possible to take advantage of
the presence of such a large register file.

The existence of two heterogeneous pipelines (that dual issue parallelism) in each
SPE allows basically to hide the latency of load/store instructions and in general of
data permutations. In Table 4.1 the types of instructions that can be executed by
the two pipelines is shown. Note that the even (0) pipe is able to perform float and
integer arithmetic, while the “odd” (1) pipe executes load and stores. Obviously,
besides load and stores there is a number of operations not needed by the algorithm
but required by the real code, that cannot be completely hidden by the presence
of two pipelines. For example, the instructions used to calculate memory addresses
and to pack scalar words into vector data-words are typically instructions executed
by the even pipeline, that also performs integer and floating point arithmetic. As
a consequence, a certain amount of cycles have to be dedicated to the execution
of these instruction and the computations of the algorithm have to be postponed.
Although the two pipelines do not allow a complete overlap of computations and
data access, they are nonetheless a key issue to optimize a program for the CBE
processor.

Data parallelism is granted by the multispin coding technique that, as seen in
Chapter 2, allows to update V different spins of the same system and w systems
concurrently. Exploiting data parallelism is fundamental to properly exploit the
available computational resources, and an appropriate value of V has to be chosen
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Instruction Class Pipe Execution timing

Double-precision floating-point 0 7+13 cycles
Integer multiply 0 7 cycles
Integer interpolate 0 7 cycles
Integer/float conversion 0 7 cycles
Single-precision floating-point 0 6 cycles
Element rotate/shift, special byte operations 0 4 cycles
Integer add/subtract 0 2 cycles
Load immediate 0 2 cycles
Logical operations 0 2 cycles
Sign extend 0 2 cycles
Count leading zeros, select bits, carry/borrow generate 0 2 cycles

Loads/stores 1 6 cycles
Branch hints 1 6 cycles
Channel operations 1 6 cycles
Move to/from SPR 1 6 cycles
Branch 1 4 cycles
Shuffle bytes, quadword rotate/shift 1 4 cycles
Estimate 1 4 cycles
Gather, form select mask 1 4 cycles
Generate insertion control 1 4 cycles

Table 4.1: SPU instructions classification based on pipeline and latency.
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to benefit of synchronous data parallelism, according to the result that we want to
achieve.

4.1.1 Data Parallelism and SIMD-Granularity

Asynchronous parallelism is a type of data parallelism that does not directly take
advantage of the SIMD nature of the ISA 1, as it simply allows to update a given
number of spins in parallel using scalar variables. In effect, in the context of mul-
tispin coding, the SIMD instructions improve the performance of the production
of random numbers and provide an efficient way to compose the vector data-words
that are compared to the energy difference vectors. The spin update fraction of the
procedure, however, is performed independently for each bit of the 128-bit vector
data-words of CBE, including the final comparison with the two vectors derived
from the 32-bit random numbers, and from a computational point of view does not
take any advantage of SIMD instructions. However, if the w-bit scalar word used to
represent corresponding spins of w different systems matches one of the scalar sizes
supported by the architecture, then data permutations are more efficient, as we will
see later.

Although CBE supports only SIMD-granularities V = 2, 4, 8, 16, as long as they
do not have an impact on the efficiency of the spin update fraction of code, in princi-
ple it is possible to use every SIMD-granularity in the range V = 1, . . . , 128. Smaller
granularities grant a better asynchronous parallelism, due to the high parallelism
of the spin update code and to the small amount of random numbers that have
to be generated. High granularities, instead, allow to reach a better synchronous
parallelism, according with our target to go as fast as we can for the update of a
single system.

Let us discuss briefly the implications of a small granularity, to explain why
it will no longer be taken into account. With V = 1 only one 32-bit random
number is needed to update a vector data-word: the equivalence of vector and scalar
data-words makes the retrieval of neighbor spins and coupling terms relatively easy,
and the code is presumably very efficient. However, such a scenario it is not very
interesting, not only because this strategy does not allow to obtain the best possible
synchronous parallelism (that is our target), but also because its main benefit is
only to produce a high amount of statistics. The same result can be simply achieved
running many instances of the problem on a large set of commodity processors.
In this case we are not really exploiting the capabilities of CBE, in particular the
relatively high amount of cores CBE by an high-speed interconnect bus, that is a key
difference between the CBE and a simple collection of single or “few-core” machines.

There also some drawbacks: first of all, the presently largest number of samples
(w = 128) implies that the “local memory” strategy can be adopted in very few cases,

1Instruction Set Architecture
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as the local store space required is directly proportional to w. If main memory is
used and only a small fraction of the lattices can be held in local stores, the amount
of data that have to be exchanged between memories would saturate the bandwith
with a few cores, because the sizes of data transfers also directly proportional to w.
For all these reasons, in our implementations we set the lower boundary of SIMD-
granularity to V = 4, that is the smaller granularity supported by the architecture
for integer arithmetic, and incidentally it is also the same granularity of random
number generation code (so in this case it has to execute very few permutations of
data).

The highest theoric SIMD-granularity of our implementation (but not of the
processor) is V = 128. Since the random number generation procedure is bound to
Vr = 4, it has to be repeated R = V/4 = 32 times in sequence to produce enough
random numbers. We can expect some improvement in the time needed to generate
a scalar 32-bit random number due to pipelining, but probably it is possible to find
a practical R′ = V ′/4 that saturates the pipelines (or at least one of them). For
an higher SIMD-granularity V ′′ > V ′ the procedure has to be repeated R′′ = V ′′/4
times, with R′′ > R′, which implies that ∆V = V ′′ − V ′ = ((R′′ − R′)/4) additional
random numbers have to be produced after the first V ′ random numbers.

Because the instructions generating the first V ′ random numbers saturate at
least one pipeline, the execution of the instructions that generate the ∆V additional
random numbers has to be postponed. However, the additional instructions can
overlap each other. As a consequence, producing more than V ′ = R′ ∗ 4 random
numbers should not be a significant advantage nor a disavantage for the performance.
In general, it would be interesting to determine if the speed-up of the spin update
procedure granted by a SIMD-granularity V higher than Vr can notably improve
the performance, and also if global time wold be dominated by random number
generation time (that cannot be reduced, because of the definition of R′). From this
point of view, the spin update code should be performed with a SIMD-granularity
of at least V ′ = (4 × R′) and the convenience of even higher granularities has to be
evaluated.

To allow the comparison between random numbers and spin vector data-words
with with SIMD-granularity V > 4, data permutations are required. The shuffle

instruction is very efficient and convenient for this pourpose, but it operates only
at byte level, that correspond to maximum SIMD-granularity V = 16. For higher
granularities, we need to use additional instructions to operate at bit level that, in
turn, could make the generation of random numbers less efficient.

Another important issue is that both memory occupation and data transfers size,
as shown by the balance equations, are inversely proportional to V , so a high SIMD-
granularity allows to store larger lattices into local memories, and even when the
lattices are so large that have to been stored into main memory, the amount of data
that has to be transferred between cores and main memory is proportionally reduced,
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thus decreasing the pressure over main memory, that is a potential bottleneck.
In conclusion, since our target is to achieve the best possible system spin update

time, we need to adopt the highest possible SIMD-granularity. Using a granularity
not directly supported by the architecture could introduce overheads that need to
be analyzed and evaluated.

4.1.2 Data Layout

Data layout has a heavy impact on performance in a SIMD program because, if
the operands are not located in corresponding scalar slots, a number of data move
instructions have to be executed before and after the effective computation.

In the case of a spin glass program there are various possible data layouts, but
we start from the assumption that the basic elements are scalar values containing
w corresponding spins or coupling terms of w different system. In principle, it is
possible to define as basic data type a structure composed by four scalar variables
used to represent a spin and its three associated coupling terms. In a trivial im-
plementation, four scalar variables can be embedded in a single vector data-word,
but this implies a fixed value of w = W/4 and an effective granularity V = 1, so we
discard this strategy.

A possible improvement is to define the structure as composed by four vector
data-words that represent spins and couplings, so that there are no limitations on
SIMD-granularity. In this way the lattice is composed as a pair of white and black
half-lattices that are defined as arrays of structures. However, this strategy has two
major drawbacks. First of all, as we have seen in chapter 3, when the lattice is
small enough to be kept in local memories the cores need to exchange the values
of the spins that lie in the border planes. If spins and coupling terms are stored
in adjacent locations, then it is not possible to perform efficient DMA transfers,
because the couplings are transferred with the spin values, and as a consequence the
volume of data exchange is four times greater than the optimal one. If instead only
the spins are transferred, as they are small variables in non adjacent position, they
do not match the properties of EIB channels, so we can expect poor performances
(it is likely that a number of tricks are needed if spins are not 16-byte aligned).

The second drawback is that, even in the case of the lattice stored in main mem-
ory, although both spins and coupling terms need to be loaded into local memory,
only the spins need to be stored back to main memory. Again, if spins and couplings
are embedded in the same struct, DMA transfers are not efficient as they can be.

In general, an constraint for the data layout is the 16 byte alignment for both
data transfers and computations. The start address of a DMA transfer must be 16
bytes aligned and the length of the transfer must be a multiple of 16 bytes (if it
is longer than 16 bytes). 16 bytes is also the size of a vector data-word, so it is
important the use a layout that allow to use a vector data-word as a basic element,
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Figure 4.1: Distribution of the spins of a plane among vector data-words. The numbers inside the
square indicate the X coordinates of the w spins embedded in that scalar element.

avoiding separate accesses to its components.

For all these reasons, we use instead a structure of arrays, keeping eight separate
arrays for black and white spins and coupling terms to represent a lattice or a sub-
lattice. Each array is composed by vector elements that contains V scalar variables
representing w spins or coupling terms. In this way we can separately transfer spins
or coupling terms without overheads concerning the addressing, as a spins and its
associated couplings are located at the same offset inside the arrays. Moreover, each
vector data word can be used as a primitive unit containing only spins or couplings.

Note that in chapter 3 the same data structure was implicitly assumed, but in
that chapter the details of communication channels were ignored, as an abstract
multi-core architecture was taken in consideration. Moreover, issues as the address-
ing and the location of scalar elements were not taken in consideration: it was only
necessary to allow separated accesses to the data structures containing spins and
coupling terms of a given half-plane of a given color. As we describe now, the
proposed data layout matches those requirements.

In the case of our spin glass implementation, all the X-lines of the lattice are
splitted into half-lines of L/2 spins due to the checkerboard subdivision, with the
consequence that in corresponding positions of an half-line there can be spins with
even or odd X coordinates. Each half-line is composed by LV = L/(2 × V ) vector
data-words (for sake of simplicity we do not consider line lengths that are not a
multiple of V ). The access to the neighbors of the V scalar elements of a vector
data-word can introduce a non negligible overheaded if they are stored in multiple
vectors data-words or they are not located in the same scalar slots.

The checkerboard subdivision implies that the L half-lines that compose an half-
plane contain alternatively spins with even X coordinates and spins with odd X
coordinates. For example, assuming a trivial distribution of scalar elements into
vectors, a half-plane with 4 vector data-words in the X direction and 64 spins in
the Y direction is subdivided in the way shown in Figure 4.1.
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Figure 4.2: The arrows indicate the location of the neighbors in the Y direction of the pair of
half-lines (y = 1).

Note that neighbor spins and coupling terms in Y and Z directions are con-
veniently located in corresponding scalar slots, so the vector data-words can be
directly used for computation, without the need to rearrange scalar elements. More
precisely, for all the V scalar elements of a vector data word (x, y, z) that contains
spin values, the neighbor spins in Y and Z directions are located in same scalar
position inside the vector data-words with coordinates (x, y − 1, z), (x, y + 1, z),
(x, y, z − 1) and (x, y, z + 1). In the same way, coupling terms for the positive Jy
and Jz directions are located in the same scalar slots of the vector-data words with
coordinates (x, y, z), while coupling terms for negative Jy and Jz directions are in
the vector data-words with coordinates (x, y − 1, z) and (x, y, z − 1) respectively.
Figure 4.2 shows an example of the location of neighbors spins in Y direction.

The invariance of scalar slot position is not preserved along X direction due to
the packing of scalar elements into vector data-words. The location of neighbors
along X direction essentially depends on:

• the oddness of the X coordinate of the spins and coupling terms embedded in
the vector data-word

• the length of the line
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Figure 4.3: The location of the neighbor spins in X direction of a pair of white and black half-lines.

• the position of the vector data-word inside the line

The location of predecessors and successors of the spins of a “white odd” X-line
is shown if Figure 4.3. If a line contains odd spins, then their predecessors are located
in the same scalar slots, while their successors are in two different vector data-words
and the scalar elements have to be rotated or shuffled. In the opposite case, when
the line contains even spins, rotations are not needed to get the successors, while
are required to get the predecessors. The shuffle instruction is able to produce an
output vector in which each byte is got from an arbitrary position of two input data
words, so a single shuffle instruction is able to collect the neighbors of a vector
data-words as illustrated in Figure 4.3.

The location of the coupling terms required to update a pair of white and black
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Figure 4.4: The location of the coupling terms required to update an X-line.

half-lines is shown in Figure 4.4. Both the predecessors and successors of the even
half-line are in corresponding scalar slots, while the predecessors of the odd half-line
are distributed among two different vector data-words. In this case it is necessary to
reshuffle data, thus incrementing the overhead associated to the load of input data.
In conclusion, specific vector data-words require more than one shuffle instructions
to collect all the data required for their update.

To make the access to neighbors in the X direction more efficient, an alternative
way to embed scalar data into vector-data words in shown in Figure 4.5. Vectoriza-
tion is made along Y direction instead that along the X direction.

Unfortunately, in this case the predecessors (or successors) in the X direction
are always located in two different vector data-words, so the access to neighbors is
not more efficient than in the previous case. Moreover, to access the neighbors along
Y direction now permutations are required, while previously it was not necessary.
So, we can discard this strategy and assume that vector data words always contain
elements that are located in the same X line.

In order to reduce the number of instructions and the latency associated to the
load of the neighbor data, we propose a new distribution of spin and coupling terms
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Figure 4.5: A distribution of the spins of a plane among vector data words. In this case the scalar
elements of a vector are adjacent in the Y directions instead that the X direction.

Figure 4.6: New distribution of the spins of a plane among vector data-words. In the same vector
data-word are embedded spins which X distance is (2 × (L/(2 × V ).

that lies on the same line. The basic idea is to store in the scalar slots of each vector
data-word spins with a distance of (2×NV ) along X direction, where NV = L/(2×V )
is the number of vector data-words that compose a half-line (see Figure 4.6). In the
previously described trivial case, the distance of the elements embedded in the same
vector was only 2, which means that in the context of the associated color they were
adjacent.

The new ordering assures that in the most common case, that is a vector data
word that is not at the end nor at the beginning of a half-line, predecessors and
successors are located in corresponding scalar slots, so that shuffling is avoided.
An example of the location of neighbor spins is shown in Figure 4.7, while the
distribution of coupling terms is illustrated in Figure 4.8.

The removal of the shuffle instruction not only reduces the total instruction
count, but also allows to use a data-word for calculation as soon as it is loaded into
local store. Otherwise, before using a data-word that contains neighbors, it was
necessary to wait for the load of two different words and their shuffling.
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Figure 4.7: The location of neighbor spins when using a data displacement that reduces the
permutations. In contrast with 4.3, it is never necessary to compose scalar elements of two different
vector data-words and a single rotation is required.
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Figure 4.8: The location of required coupling terms when using a data displacement that reduces
the reordering. In contrast with 4.4, it is never necessary to compose scalar elements of two different
vector data-words and only a rotation is needed.

.
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A vector data-word of a X-line can only be in one of the following four condition:

1. it is the unique vector of the half-line

2. it is the first vector of the half-line

3. it is the last vector of the half line

4. it is not the first nor the last nor the unique vector of the half-line

In each case the position of the neighbor spins and of coupling terms is different.
Moreover, the oddness of the x coordinate of the spins also makes a difference. Let
us define a even half-line as a line that contains spins with even x coordinates, and
in the same way an odd half-line as a line of spins with odd x coordinates. The
predecessor of a vector data-word A is a vector data-word that contains in each
scalar slot a spin which, in terms of x coordinates, is the predecessor of the spin
contained in the corresponding scalar slot of A. The successor of a vector data-word
A as a vector data-word that contains in each scalar slot a spin which, in terms of
x coordinates, is the successor of the spin contained in the corresponding scalar slot
of A.

Figure 4.9 shows the example of the special case of half-lines composed by only
one vector data-word. The location of neighbor spins is illustrated in Figure 4.10,
while Figure 4.11 shows the position of coupling terms. In this peculiar case the
location of data depends only on the oddness of the half-line:

• if the line is even, the vector data word with the same Y and Z coordinates
and the opposite color is the successor, while the same vector right rotated by
one scalar position is the predecessor. The Jx couplings with the predecessors
are obtained left rotating by one scalar position the corresponding vector for
the opposite color

• if the line is odd, the vector with the same X and Z coordinates is the pre-
decessor, while the same vector has to be left rotated by one scalar position
to become the successor. The Jx couplings with the predecessors are int the
corresponding vector for the opposite color

In a more general case, each half-line is composed by at least two vector data-
words. A vector data-word can be the first or the last vector of the half line, or it can
be an internal vector. It is however possible to individuate general rules concerning
the position of neighbor spins and of coupling terms that do not depend on the
position of the vector data word inside the half-line:

• both predecessor and successor spins are in the half-line with the opposite
color
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Figure 4.9: The composition of a pair of white and black half planes when L = 8.

Figure 4.10: The location of neighbor spins in the case of a pair of black and white half-planes
when L = 8.
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Figure 4.11: The location of the required coupling terms in the case of a pair of black and white
half-planes when L = 8.

• the coupling terms shared between the current spins and their predecessors
are in the coupling half-line with the opposite color

• the coupling terms shared between the current spins and their predecessors
are in the coupling half-line of the same color

The previous general rules tell us in which data structures the required data
is located, but then it is necessary to make distinctions based on the position of
the vector and its oddness. For internal vector data-word (Vx) of a half-line, with
Vx ∈ [1, L/(2 × V ) − 2]:

• if (Vx) contains even spins, the predecessor and successor spins are located in
the the vectors (Vx−1) and (Vx) of the half-line of the opposite color, respec-
tively. The coupling terms shared with predecessors are stored in the vector
data-word (Vx−1) in the half-line of opposite color

• if (Vx) contains odd spins, the predecessor and the successor are stored into
the vectors (Vx) and (Vx+1) of the half-line of the opposite color. The coupling
terms shared with predecessors are stored in the vector data-word (Vx) in the
half-line of opposite color

In any case the coupling terms shared with the successors are always in the vector
data-word (Vx) of the coupling half-line of the same color.
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The previous rules are still applicable in the case of the first and the last vector
data-word of a half-line, given that if (Vx−1) < 0, then the last vector of the half-
line, right rotated by one scalar slot, is used instead. In the same way, if (Vx+1) >
0L/(2 × V ), then the first vector of the half-line is taken instead, rotated by one
scalar position to the left.

In conclusion, the proposed data layout minimizes the permutations associated
to the access of input data, and keeps spin and coupling vector data-words separated,
so that the minimal amount of data has to be exchanged between the cores and the
main memory.

4.1.3 Random Number Generation

Multispin coding allows to use the same random value to update corresponding
spins of independent systems, while independent random numbers are mandatory
when updating different spins belonging to the same lattice. This allows to reduce
the impact of random number generation on the global system spin update time, in
particular when using a high number of samples w. As long as our goal is to exploit
synchronous parallelism, we aim to use the lowest possible sample number. In turn
this implies that, as long as a large quantity of random numbers has to be produced
(up to 128), their generation may have a heavy impact on performances.

As said earlier, random number generation and spin update fractions of the code
do not need to adopt the same SIMD-granularities. In particular, the spin update
code is invariant with to respect of V and in principle it is not required that V
matches one of the SIMD-granularities supported by the architecture. The random
numbers must have an adequate size to guarantee the correctness of the algorithm
so, given a fixed size W of vector data-words, there is a limit to the amount of
random numbers that can be concurrently generated. In the following we will call
Vr the SIMD-granularity of random number generation and V the SIMD-granularity
of spin update fraction of code.

In this work we have used the Parisi-Rapuano [73] generator, which is a popular
choice for spin glass simulations. It is defined by the following equations:

I(k) = I(k − 24) + I(k − 55) (4.1)

R(k) = I(k) ⊕ I(k − 61)

where I(k) is a circular array of random unsigned integers and ⊕ indicates the
logical XOR. In most cases, 32-bit random numbers are used, and we also adopt
this choice, which implies a SIMD-granularity Vr = 4 in CBE. Though, as long as
the comparison between the random number and the energy differences ∆E of the
spins embedded in a vector data-word with V 6= 4 can be done in parallel thanks
to multispin coding, the spin update procedure can be executed with any SIMD-
granularity. Sets of Vr random numbers are sequentially generated, until V random
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numbers are available, and then they are rearranged in order to be compared with
the energy difference vector data-word.

The Parisi-Rapuano generator requires a mix of integer, floating-point and bit-
wise logical instructions. It is computationally quite inexpensive, because only an
integer sum, a XOR and a floating-point multiplication are required, but it also
needs to write and read the circular array (hereafter referred as to IRA), so three
LOADs, one STORE and at least four couples of integer sums and modulus (to
update the four pointer to the array) are unavoidable.

Note that the sequence of the random numbers that are produced depends on the
initialization values of the array, so if each core loads a different starting sequence
from main memory, the semantic of the algorithm is preserved.

For our purposes we can subdivide the generation of V random numbers in two
distinct phases:

• generation phase: the generation of V 32-bit random numbers in the range
[0, 1]. The random numbers are embedded in V/Vr = V/4 vector data-words.
Each vector data-word contains four scalar 32-bit random numbers

• shuffling phase: Each scalar 32-bit random number is compared with three
values , and the resulting vectors are shuffled to produce the vector data-
words R0 and R1 that will be used for comparison with energy differences (see
2.3.2 and note that R0 and R1 are used to respresent respectively the least and
the most significant bits of the variable R)

The first phase corresponds to the equation 4.2 applied to an array of SIMD
data-word of four 32-bit unsigned int scalar data-words. The random number
R(k) have to be converted from unsigned int to float, and then be multiplied
by (1/(232 − 1)), in order to be normalized into the range [0, 1]. In total four
instruction are required, neglecting memory accesses and the related addressings.
Trivially, the generation of a vector of four 32-bit random numbers can be realized
with the following fragment of code:

ui_rnd = spu_xor ( IRA[ip++] = spu_add (IRA[ip1++], IRA[ip2++]),

IRA[ip3++] );

f_rnd = spu_mul ( spu_convtf (ui_rnd, 0), C_inv_max_rand );

Given a SIMD-granularity V , Table 4.2 shows how many instructions are ideally
needed for the generation phase. Because a SIMD-granularity Vr = 4 is mandatory
in our implementation of spin glasses on CBE processor, the number of instances of
a type of instruction depends on SIMD-granularity V .

The optimal scheduling of this fragment of code is shown in Table 4.3, while the
scheduling obtained with gcc 4.1.1 is displayed in Table 4.4. In both tables the
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Randon Number Generation
Type Pipe Number

ADD even 1 × (V/4)
XOR even 1 × (V/4)
FMUL even 1 × (V/4)

Even total 3 × (V/4)
Odd total 0

Total (3 × (V/4))

Table 4.2: The ideal number of instructions required to produce V scalar 32-bit random numbers.
Note that instructions of odd pipeline are not required.

last instruction is the multiplication that normalizes the random number, which has
a latency of six cycles. Some extra instructions also appears in the tables: they are
needed to load/store data from/to the local store and to perform type conversions.
Additional instructions, like integer sums and rotations, that are used to calculate
memory addresses, are not shown.

Note that there is a trivial false dependence between the store instruction and
the last load. The compiler cannot foresee the access pattern of the array, so it
simply sequentialize load/store instructions. However this can be avoided if all the
required values are loaded in registers before calculating the random number and
the result is stored back to the array only at the end of the update procedure. This
is a technique that we will use pervasively in our implementation, because it allows
to expose all the possible concurrency between instructions to the compiler.

Another issue that does not allow to obtain an optimal scheduling is the com-
putation of memory addresses. To help the compiler to use the minimum number
of instructions, it is a good practice to use the lowest possible level of abstraction
when dealing with pointers arithmetics. In our case we have used byte resolution,
that allows to obtain the scheduling shown in Table 4.5.

The shuffling phase takes V/4 random number vector-data words as input, and
the following comparisons are performed in sequence to obtain a vector data-word
IDXi from each input vector data-word Ri:

1. IDX = 0

2. If Ri > e−4×β then IDXi = 1

3. If Ri > e−8×β then IDXi = 2

4. If Ri > e−12×β then IDXi = 3
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Cycle Even Pipe Odd Pipe
0 lqx $36, $43, $10
1 lqx $37, $42, $10
2 lqx $34, $26, $10
3
4
5
6
7 a $33, $36, $37
8
9 xor $31, $33, $34 stqx $33, $32, $10

10
11 cuflt $27, $31, 0
12
13
14
15
16
17
18 fm $24, $27, $17

Table 4.3: The optimal scheduling of the instructions required to generate a vector data-word
containing four 32-bit scalar random numbers. Note that, assuming that local store addresses
are available, the three loads lqxs are started consecutively. The first arithmetic instruction, the
integer add a at cycle 7, starts just after the completion of the second load, due to data dependency.
The XOR, the conversion cuflt and the float multiplication fm cannot start consecutively due to
data dependency. The store stqx has to wait the completion of the integer sum. Note that there
are 12 stall cycles over 19 total cycles, although instructions used for data addressing are not taken
into consideration.



4.1. CORE IMPLEMENTATION 83

Cycle Even Pipe Odd Pipe
0 lqx $37, $43, $9
1 lqx $38, $42, $9
2
3
4
5
6
7 a $29, $37, $38
8
9 stqx $29, $35, $9

10 lqx $25, $34, $9
11
12
13
14
15
16 xor, $27, $29, $25
17
18 cuflt $26, $27, 0
19
20
21
22
23
24
25 fm $23, $26, $16

Table 4.4: The scheduling of reference code used to generate a single vector data-word containing
four 32-bit random numbers, obtained with gcc compiler. Note that the second LOAD is delayed
due to address calculation (not shown) and that the third is placed after the STORE due to a
false dependence. As a consequence the XOR is also delayed but it starts as soon as the LOAD is
complete. The other instructions are in the expected locations.
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Cycle Even Pipe Odd Pipe
0 lqx $42, $16, $8
1
2 lqx $43, $16, $9
3 lqx $41, $16, $13
4
5
6
7
8 a $40, $42, $43
9

10 xor $38, $40, $41 stqx $40, $16, $14
11
12 cuflt $34, $38, 0
13
14
15
16
17
18
19 fm $28, $34, $20

Table 4.5: The scheduling obtained with gcc compiler of the optimized random number generation
code. The three LOADs are not consecutive due to additional instructions (not shown) required for
addressing, but all other instructions are started as soon as possible, allowing a scheduling very
similar to the ideal one.
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IDXi R0 R1

0 0x00...00 0x00...00

1 0xff...ff 0x00...00

2 0x00...00 0xff...ff

3 0xff...ff 0xff...ff

Table 4.6: Generation of vector data-words R0 and R1, used to concurrently compare the energy
differences of all the spins embedded in a scalar variable with the random numbers contained in
the corresponding scalar slot of IDX.

The SPE instruction set allows to execute comparisons and assignments indepen-
dently for each scalar slot of vector data-words. Each scalar data-word embedded
into vector data word IDX can assume values in the set 0, 1, 2, 3 and it is used to
produce two scalar data-words embedded in two the vector data-words R0 and R1.
Each pair of corresponding bits from R0 and R1 represents the least and the most sig-
nificant bits of a scalar slot of IDX, and correspond to the variable R[2] introduced
in section 2.3.2.

Because random numbers are shared between samples, w = W/u spins shares
the same value of a scalar slot of IDX, so for each scalar data-word embedded in IDX

w bits of R0 and R1 have to be set in the way shown in Table 4.6

If V = 4, 8, 16 (SIMD-granularities supported by the architecture), then the
shuffle instruction can be used to compose the IDX vector. The shuffle instruc-
tion takes three vectors as arguments: two input data vectors and a mask. The
results is a vector composed by bytes from the two input vectors mixed in the way
specified by the mask argument. Figure 4.12 shows how in the case of Vr = 16 four
random vector data-words are manipulated to produce a single IDX vector.

After shuffling, the vector IDX is splitted into R0 and R1 vectors using two AND

and two CMPEQ instructions, that operate independently on each scalar slot. The
two ANDs allows to isolate the first or the second bit of the value represented by IDX.
The CMP instructions allows to replicate the same bit on all the w bits of a scalar
variable (because they share the same random number). This is possible because
the CMPEQ instruction sets to 1 all the bit of the scalar slot if the condition is met
for that slot:

R0 = spu_and (IDX, one_v);

R1 = spu_and (IDX, two_v);

R0 = spu_cmpeq (R0, one_v);

R1 = spu_cmpeq (R1, two_v);
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Figure 4.12: The shuffling of Vr× 32-bit random numbers, to compose the vector data-word IDX
that is used to perform comparison with the energy differences vectors.

If V is not supported by the architecture, then it is possible to to produce
V/4 vector data-words of 32-bit random numbers. The same procedure used when
V = 16 is used to produce V/16 independent couples of R0 and R1 vectors. Finally,
a single pair of R0 and R1 is obtained using the SEL instruction, that is similar
to the shuffle but operates at bit level. However, in this way we are not taking
full advantage from the SIMD nature of the architecture, so overheads have to be
expected.

Table 4.7 shows the scheduling obtained with the real code to generate random
numbers when V = 4. As we can see, although this is the simplest case, the
generation of R0 and R1 take a non negligible amount of cycles.

In general, the overhead caused by addressing and stall cycles can be mitigated
when SIMD-granularities higher than V = 4 are used. The code that generates one
random vector data-word has to be repeated two or more times, and as a consequence
stall cycles are reduced due to pipelining. The ideal number of instructions needed to
generated V scalar 32-bit random numbers and to generate the vector data-words
R0 and R1 is shown in Table 4.8. The instructions needed to read and write the
local store are not counted, as they are implementation dependent. In the real code
additional load/store, integer and logical instructions are used to exchange data
between the register file and the local store. The performance of this fraction of
code is expressed in terms of the number of nanoseconds required to generate a 32-
bit random number (ns/rnd), that is directly comparable to the system spin update
time (ns/spin).

Table 4.9 shows the the behavior of actual code when generating different quan-
tities of random numbers, corresponding to increasing SIMD-granularities, and to
compose the R0 and R1 vectors. Note that the pipelining and the partial overlapping
of the instruction used to generate independent random number vector data-words
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Cycle Even Pipe Odd Pipe
0 lqx $42, $16, $8
1
2 lqx $43, $16, $9
3 lqx $41, $16, $13
4
5
6
7
8 a $40, $42, $43
9

10 xor $38, $40, $41 stqx $40, $16, $14
11
12 cuflt $34, $38, 0
13
14
15
16
17
18
19 fm $28, $34, $20
20
21
22
24
25 fcgt $29, $28, $30
26
27 selb $26, $11, $18, $29
28 fcgt $27, $28, $29
29 fcgt $24, $28, $26
30 selb $25, $10, $26, $27
31
32 selb $4, $17, $25, $24
33
34 and $22, $4, $11
35 and $21, $4, $10
36 ceq $2, $22, $11
37 ceq $3, $21, $10

Table 4.7: The scheduling of the actual random number generation code. Instructions used for
addressing are not shown. Note that the loads are not consecutive, although only a stall cycle is
present, which means that the addressing is not too heavy. The other instructions are started as
soon as possible, as we expected.
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Instruction Pipe V=4 V=8 V=16 V=32 V=64 V=128

ADD even 1 2 4 8 16 32
XOR even 1 2 4 8 16 32
FMUL even 1 2 4 8 16 32
SEL even 3 6 12 26 54 126
AND even 2 2 2 4 8 16
CMP odd 5 8 14 28 56 112
SHUFFLE odd 0 1 3 6 12 24

Total Even 8 14 26 54 110 238
Total Odd 5 9 17 34 68 136

ns/random 0.63 0.55 0.51 0.53 0.54 0.58
speed-up 1.15 1.26 1.19 1.17 1.09

Table 4.8: The ideal number of instructions required to produce V scalar 32-bit random numbers
and the consequently generate R0 and R1 vector data-words. Note that the code is always dominated
by the instructions of the even pipeline, so that the estimate of the nanoseconds required to generate
a single 32-bit random number is obtained by multiplication the number of even instruction by the
length of a clock cycle, and then dividing the result by V .

allows to obtain a better usage of the odd pipeline when increasing V , which implies
that the time required to produce a scalar 32-bit random number slightly decrease.

The odd pipe is not heavily used and the program is dominated by the even
pipe instructions. In particular the even pipe is almost full starting from V = 4
and as a consequence the performance gain of higher SIMD granularities is quite
limited. Note that the data manipulation is tipycally performed by instruction of
the even pipe, so for higher values of V there is an increase in the number of odd
pipe instructions and the pipe as a higher usage percentage. In conclusion, we can
assume that higher SIMD-granularities are the best choice, although the gain is
not dramatic. Table 4.10 shows the results of compiling the same code with the
IBM XLC V9.0 compiler. Although the behavior is similar to the previous case,
in general there is much more overhead and the time required to generate a scalar
32-bit random number is slightly higher.

Finally, Table 4.11 shows the count of instruction of real code. The number of
instructions increases as expected, although there are much more ADDs and XOR than
expected, and they constitutes the higher fraction of the addressing overhead.

In conclusion, as random number generation is a fraction of the spin update
procedure, we have obtained a lower bound for the system spin update time τ(V )
for a set of different SIMD-granularities. When in the next section an estimate
of the performance of the fraction of code that performs the spin update will be
proposed, we will be able to compare it with the amount of time taken by random



4.1. CORE IMPLEMENTATION 89

V IE E% IO O% D% I cycles ns/rnd S.up

4 35 87 8 20 16 43 40 3.1
8 55 100 14 25 25 69 55 2.2 1.4
16 90 100 27 30 30 117 90 1.8 1.7
32 168 100 49 29 29 217 168 1.6 1.9
64 324 100 103 32 32 427 324 1.6 1.9
128 636 100 201 32 32 837 636 1.6 1.9

Table 4.9: The behavior of the code that produces V scalar 32-bit random numbers and generates
the R0 and R1 vector data-words. For each pipe, the number of instructions (IE and IO) and
the pipeline usage (E% and O%) are reported. The first column (V ) indicates he quantity of
32-bit random number that are generated. The sixth column (D%) allows to evaluate how well
the concurrency between the two pipelines is exploited. Finally, the number of total cycles allows
to determine how many nanoseconds are required to generate a scalar 32-bit random number.
The final columns report the speedup that is achieved pipelining the generation of an increasing
quantity of random numbers. The best performance is achieved when generating 32 or more
random numbers.

V IE E% IO O% D% I cycles ns/rnd S.up

4 29 53 28 51 32 57 55 4.3
8 65 100 19 29 30 84 65 2.5 1.7
16 100 100 36 33 36 146 110 2.2 2.1
32 204 100 65 32 31 269 205 2.0 2.2
64 392 100 144 37 36 536 394 1.9 2.3
128 768 100 273 36 36 1041 768 1.9 2.3

Table 4.10: The details of the code that produces V scalar 32-bit random numbers and generates
the R0 and R1 vector data-words, compiled with IBM XLC compiler. The results should be compared
with those of Table 4.9. Note that the performance are worse, although the behavior in function
of V is very similar.
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Instruction Pipe V=4 V=8 V=16 V=32 V=64 V=128

ADD even 7 13 23 43 83 163
SUB even 2 2 2 2 2 2
AND even 8 12 20 38 74 146
XOR even 3 4 6 10 18 34
FMUL even 1 2 4 8 16 32
FCMP even 3 6 12 24 48 96
CMP even 2 2 2 4 8 16
BSEL even 3 6 12 26 54 110
ROTATION even 1 1 1 1 1 1
SHIFT even 2 2 2 2 2 4
CUFLT even 1 2 4 8 16 32
NOP even 2 3 2 2 2 2

SHUFFLE odd 0 1 3 6 12 24
LOAD odd 3 6 12 24 48 96
STORE odd 3 4 6 10 18 34
BRANCH HINT odd 2 2 2 3 3 3
LNOP even 0 1 4 6 22 42

STALLS 3 0 0 0 0 0

Total Even 35 55 90 168 324 638
Total Odd 8 14 27 49 103 199

Table 4.11: The number of each type of instruction in the code that generate V scalar 32-bit
random numbers and to compose R0 and R1 vector data words. Note that the number of XORs
scales as expected, if we trascurate two extra XORs that are present in all the cases. There are more
integer sums than those strictly required for the random number generator, but this is expected,
because they are also used for addressing. Note that their number almost doubles at the doubling
of V . There is a large number of ANDs, used for addressing. The other instructions show the
predicted behavior, although is some cases there are a few more instructions than expected. Note
that there are two extra STOREs to save R0 and R1 vector-data words (the output of this fragment
of code), that in the spin update procedure are only two temporary values.



4.1. CORE IMPLEMENTATION 91

number generation, in order to discover the real amount of performance gain that
can expected when increasing the SIMD granularity.

4.1.4 Local Memory: Computational Core

Now the spin update procedure will be analyzed in order to estimate the number
of instructions that it requires and the consequent system spin update time for
different couples of SIMD-granularities and lattice sizes (V, L). The Figure 4.13
show a theoretic DAG 2 of the spin update procedure. As we can see, to calculate
the value of ∆E at least 13 instructions are needed, and additional instructions are
required to decide if the spin has to be flipped and (possibly) to calculate the random
numbers. Probably some operations can be mapped into MULADDs, thus decreasing
the number of total instructions .

Ignoring latencies and random number generation phase, at least 13 LOADs are
required to get the 13 input vectors, and extra instructions are needed to determine
memory addresses. As a consequence, given that the instructions needed to perform
real computations are ≤ 13, it is likely that the spin update fraction of code will be
dominated by local store accesses.

Multispin coding translates integer operations into a larger set of bitwise logical
instructions. From the point of view of the input data access time, there are no
differences when packing one spin or w spins inside a scalar data-word, while the
increase of the number of instructions performing computations can negatively im-
pact performance. However, multispin coding has two advantages. Firstly, in CBE
processor integer multiplications takes 6 cycles to complete, while all the logical
instructions have a very small latency of only 2 cycles, so pipeline stalls are less
probable. Moreover, integer arithmetic is supported only up to a SIMD-granularity
V = 16, so multispin coding, that does not have such limitation, allows a better
exploitation of synchronous parallelism.

The ideal number of instructions required to implement the multispin coding
update procedure for a single vector data-word, given that random numbers have
already been calculated and packed, is shown in Table 4.12. The procedure does
not depend on V , so the number of instruction is constant.

At least 43 instructions are required to update a vector data-word, and if we
assume that they are perfectly pipelined and if we ignore their latencies, so that
each instruction requires only one cycle, it is possible to estimate another lower
bound for the system spin update time (that have to be added to the lower bound
determined for random number generation, in order to obtain a global estimate), as
shown in Table 4.13.

Although this estimate is ideal and does not take into account the overheads
associated to data access, it allows to evaluate the impact of random number gen-

2DAG is a Direct Acyclic Graphs that represents the dependency between instructions
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Figure 4.13: The DAG of the spin update procedure. Note that the dotted lines indicate operations
that can in principle be executed in parallel, so that instruction level parallelism can be exploited.
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spin update
Type Pipe Number

XOR even 28
AND even 12
OR even 3

Even total 43
Odd total 0
Total 43

Table 4.12: The number of instruction required to update a vector-data word, given that a vector
containing enough random numbers is available. The instruction count does not depend on SIMD-
granularity V . Data access is ignored, as long as it is implementation-dependent. As a consequence
there are not odd pipe instructions.

Ideal spin update

V 4 8 16 32 64 128

ns/spin 3.36 1.68 0.84 0.42 0.21 0.10

Table 4.13: An estimate of the performance of the spin update fraction of the code, in terms of
nanoseconds needed to update a spin of a single system. The basic idea is that the code in invariant
with respect to V , so the performance should scale linearly to it. However, these estimates do not
take into account addressing, data access and (by definition) random number generation, so they
are only an upper bound for the performance achievable with the real program.



94 CHAPTER 4. SPIN GLASSES ON CBE

Ideal spin update time τ (V )
V RE RO RT R% UE UO UT U% TotE TotO τ (V ) S.up

4 8 5 0.63 0.16 43 0 3.36 0.84 50 1 3.98 1.00
8 14 9 0.55 0.25 43 0 1.68 0.75 53 3 2.23 1.79
16 26 17 0.51 0.38 43 0 0.84 0.62 59 5 1.35 2.96
32 54 34 0.53 0.56 43 0 0.42 0.44 75 10 0.95 4.21
64 110 68 0.54 0.72 43 0 0.21 0.28 107 20 0.75 5.33
128 238 136 0.61 0.85 43 0 0.10 0.15 171 40 0.71 5.61

Table 4.14: A comparison between the ideal number of instructions required for random number
generation and spin update fractions of code. RE and RO indicate respectively the number of
instructions of the even and of the odd pipe used for the random number generation. RT indicates
the time required to generate a 32-bit random number and R% is the fraction of global time
occupied by random number generation. UE , UO, UT and U% give the same informations for the
spin update fraction of code. Finally, TotE , TotO are the total number of even and odd instruction,
while τ(V ) is an ideal estimate of the system spin update time (in (ns/spin)).

eration on system spin update time. Table 4.14 summarizes the number of even
and odd pipe instructions required to execute the whole update procedure with in-
creasing SIMD-granularities, taking into account the ideal number of instructions
for both random number generation and spin update fractions of code.

Up to V = 64 a higher SIMD granularity implies a better system spin update
time, although the transition from V = 16 to V = 32 reverses the balance between
the two phases and random generation takes the predominant fraction of time.

Data Access

The actual code for the generation of random numbers is several times slower than
its ideal estimate, although its efficiency increase with SIMD-granularity. The code
that performs the spin update also has a certain amount of overhead associated
data access, but as long as the number of instructions is invariant into respect of
SIMD-granularity, it should scale linearly with it. We can expect that the difference
between the theoretic system spin update time τ(V ) and the one of the actual code
is determined by:

• load/store instruction;

• integer and bitwise logic instructions used for addressing

The previous estimates of the ideal number of instructions assumed that all the
input data-words were already loaded into the register file, but in real implementa-
tion the access to local store data structures is not negligible. To update a single
vector data-word, at least eight different half-planes are accessed, as shown earlier,
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so we should assume that at least eight data pointers are used. Because thirteen
vector data-words containing spins or coupling terms constitute the input data set
(neglecting the special cases), it is safer to assume that the program has to keep
track of at least thirteen pointers while updating the vector data-words that com-
pose a half-plane. Moreover, to generate a vector of four 32-bit random numbers
four offsets are used to access the IRA array used by the random number generator.
As the latter is a circular array with 256 vector entries, modulus is required, that
can simply be implemented with logical ANDs.

The data set can be accessed with a quite regular pattern, because the data
layout that we have proposed implies that the relative positions of neighbor spins
and coupling terms is the same for all the internal vector data-words of a half-line.
In our code we use thirteen pointers, to independently point to input data, and each
pointer is simply incremented of one position after the update of a data-word, thus
avoiding the using of multiplications in addressing. The use of C-style array indexes
would have required several sums and multiplications.

Another interesting property is that input data-words are relatively near, in
terms of memory address, because they are neighbors in the lattice and because
the local store is relatively small. In particular, when we are updating a white spin
vector data word, its neighbors spins are all located in three adjacent half-planes,
so there is the chance to use a single pointer, with different offsets computed at
compile-time, to load all the required data-words.

The SPU ISA supports the d-form to compose the address used by a load or by
a store instruction [31]:

lqd RT,symbol(RA)}

where the address is obtained by adding the 10-bit signed value of symbol, with
4 zero bits appended, to the value in the preferred slot of register RA and forcing the
least significant 4 bits of the sum to zero. The 16 bytes at the computed address
are placed into register RT.

The d-form is interesting because the register can be the address of the black
spin half-planes. The offsets required to access black spins data-words are known at
compile-time. An offset is expressed in terms of quadwords, and a signed value of
10-bit allows to load data-words that are within a distance of 512 quadwords. For
example, if L = 64 and V = 16 then each half-plane is composed by only 128 vector
data-words, so it is effectively possible to use the d-form.

The simplest way to analyze the overhead associated with data access is the
determination of the difference between the ideal number of instructions required
by spin update procedure and the number of instructions and stalls of the actual
code. The instructions used to generate memory address typically are:
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• integer instructions (sums, multiplications, . . . )

• shifts (for fast multiplication and division by powers of 2)

• logical instruction (ANDs, . . . )

We should expect that the actual mode has much more instructions of this type
then the optimal one, while the other types of instructions should scale as estimated.
To analyze the real code, for several combinations of V and L we have isolated the
innermost section of code (intended as a set of instructions with only an entry point
and one exit point) that performs the update of one or more vector data-words.
As seen in section 4.1.2 the location of the neighbors varies with the position and
the oddness of the vector data-words and with the length of the half-line. As a
consequence, there are different access patterns to take in consideration:

• if a half-line is composed by a vector data-word only, the section contains only
the update of that vector and shuffling is needed. As we are not implementing
unrolling along Y or Z directions, it is not possible to exploit pipelining with
the update of other data-words

• if a half-line is composed by two vector data-words, the instructions that up-
date the two vectors are inside the same section and can be pipelined. A cer-
tain amount of manipulation of input data is needed, as not all the required
data-words are located in the correct scalar slots

• if a half-line is composed by three vector data-words, they can be updated
within a single section and the corresponding instruction can be pipelined.
Permutations of input data are required

• if a line is composed by four or more vector data-words, a basic section is rep-
resented by the code that performs the update of a internal vector data words.
For this vector permutation of input data is not needed, but the instruction
cannot be pipelined with those that update other vectors. If the internal loop
is unrolled, then there is the chance of a better instruction level parallelism,
but the case of even and odd number of vector data-word per line have to be
separated

Odd and even half-lines require have different memory access patterns, so the
compiler may produce separate sections of code for the two cases. In CBE processor
the cost of branches is quite high, because they cause the pipelines to be emptied,
so it is very important to keep the code that loads data as linear as possible [74].

To benefit from the potential better scheduling allowed by the presence of in-
dependent update procedures inside the same section, it is necessary to expose to
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the compiler the independence of instructions, so it is important to avoid variables
reuse at to keep access to arrays outside the core computations. All the required
black and white spins and coupling terms can be loaded at the start of the section
and stored back to local store only at the end of computations. The generation of
random numbers have instrinsically a sequential nature due to the access to IRA ar-
ray, so there an unavoidable degree of sequentially in the generation of independent
random numbers, but since it do does not occupies a predominant fraction of time,
it should not prevent pipelining.

Now we will analyze the behavior of the code when using the three SIMD-
granularities supported by the architecture. In principle the number of instructions
of the update code does not depend on V , but the performance should scale linearly
with V . We have already seen that random number generation is better for high
SIMD-granularities but does not scale linearly, so we do not expect the system spin
update time to be simply inversely proportional to V .

The results are shown in Table 4.15. This version of the program is very simple
and does not use a different set of variables for each vector data-word of a half-line.
An improved implementation was developed, using a dedicated set of variables for
each vector data-word and explicitly unrolling the update of a line up to four vectors,
and adding the support SIMD-granularities higher than those of the architectures.
The results are shown in Table 4.16.

The comparison between the two tables makes it clear that the pipeline is so full
that there are very little improvements when unrolling the inner computational cycle.
The benefits, although measurable, generally decrease the system spin update time
of less than 10%. As a consequence, it is presumable that more aggressive unrolling
does not grant enough benefits. We will do not explicitly unroll the loops along Y
and Z directions.

The performance extrapolated from real code can be used to evaluate the behav-
ior of the fraction of instructions dedicate to spin update. Table 4.17 extrapolates
the subtracting from the global time the random number generation time shown in
Table 4.9. We can observe that the update time scales more than linearly, probably
because the update instructions have been overlapped to the instruction used to
generate random numbers.

To evaluate the overhead associated with data access, Table 4.18 shows the
number of instructions required to update a vector data-word with increasing SIMD-
granularities. Note that most instructions scales in the correct way, but there are
much more integer ADDs and logical ANDs than expected . There is a STORE for
each random number vector produced plus a final STORE to save the update spin
vector, but there are too many LOADs, which means that the procedure requires
more variables than those that can be kept into the register file, so some of them
have to be loaded just before their usage without being modified, as the are there
no additional STOREs.
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On-Chip Memory: static estimate τS(V ) (not optimized)

V L I IE E% IO O% D% cycles τS(V ) S.up

4 8 121 91 93 30 31 25 98 7.7
4 16 228 166 92 62 35 29 178 7.0 1.1
4 24 316 231 93 85 34 28 249 6.5 1.2
4 32 220 166 94 54 31 26 176 6.9 1.1

8 16 139 105 100 34 32 32 105 4.1
8 32 266 197 100 69 35 35 197 3.9 1.0
8 48 382 281 100 101 36 36 281 3.7 1.1

16 32 193 142 99 51 36 36 143 2.8
16 64 372 269 99 103 38 38 273 2.7 1.0

Table 4.15: The analysis of the performance of the actual code that uses on local memories. The
column labeled as I indicates the total number or instructions, while IE and IO are respectively
referred to the number of instructions of the even and odd pipelines. Columns E% and O% indicates
the usage of the two pipelines, while D% indicates the percentage of dual issues. τ(V ) is an
esistimation of the system spin update time (in ns/spin) based on the analysis of assembler code.
Note that the code si dominated by the instruction of the even pipeline, that has an high usage
percentage, indicating that there are not many stall cycles. Note also that the lattice linear size L
has a very little impact on performance.

Finally, Table 4.19 shows a comparison between the best system spin update
times obtained with the static analysis of assembler code with with the best times
obtained effectively running the program on the hardware (in this case a QS22 blade
server) and measuring only the time required to perform the isolated computational
kernel. The time measurements are taken using the decrementer register, that is
readable and writeable through the channel interface of each SPE. The decrement
register decrements is value timebase times in a second. The timebase differs in
each version of CBE processor. The CBEs of QS22 blades have a timebase value
of 26664863, which implies that it the decrementer registers decrements each R ns:

R =
1 × 109 ns

26664863
= 37.5 ns (4.2)

As this is a relatively large amount of time (it is equivalent to 120 clock cycles),
it is better measure the update of large lattices. The computation time is dominated
by the update of internal half-planes. Moreover, the update of an half-plane requires
to repeat the procedure that updates a half-line L times, so at least L − 1 jumps
are required, which can cause a high overhead, because it interrupts the pipelines.
Although we can choose an L that keeps constant the number of vector data-words
inside a half-line independently by SIMD-granularity V , the size of the lattice in-
creases proportionally to V , so a high granularity implies a higher number of internal
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On-Chip Memory: static τS(V ) estimate

V L I IE E% IO O% D% cycles τS(V ) S.up

4 8 121 91 93 30 31 25 98 7.6
4 16 216 162 99 54 33 33 164 6.4 1.2
4 24 302 231 99 71 30 30 233 6.0 1.3
4 32 474 306 100 168 55 55 306 6.0 1.3

8 16 141 107 100 34 32 32 107 4.2
8 32 260 196 99 64 32 32 198 3.9 1.1
8 48 372 281 100 91 32 32 281 3.7 1.1

16 32 193 142 100 51 36 36 142 2.8
16 64 362 267 100 95 35 35 268 2.6 1.1

32 64 297 221 100 76 35 35 221 2.2

64 128 509 377 100 132 35 35 377 1.8

128 256 924 688 99 236 34 34 692 1.7

Table 4.16: An analysis of the performance of actual code that uses only on-chip memory. The
inner computational cycle, that updates an X line, has been explicitly unrolled, and the support
to SIMD-granularities higher than V = 16 has been added. See the caption of Table 4.15 for
the meaning of column headings. τS(V ) is a static estimate of the system spin update time (in
ns/spin) based on the analysis of the assembler code. Note that the code is dominated by the
instruction of the even pipeline, that has an high usage percentage. The lattice linear length L has
a little impact on performance (as expected), and the higher SIMD-granularity allows to achieve
the best performances.

On-chip memory: static τS(V ) estimate

V τS(V ) RT R% UT U% RS.up US.up τS(V )S.up

4 7.6 3.1 41 4.5 59
8 4.2 2.2 53 2.0 47 1.4 2.2 1.8
16 2.8 1.8 64 1.0 36 1.7 4.5 2.7
32 2.2 1.6 73 0.6 37 1.9 7.5 3.4
64 1.8 1.6 89 0.2 11 1.9 22.5 4.2
128 1.7 1.6 94 0.1 6 1.9 45.0 4.7

Table 4.17: A static analysis of the scaling of spin update time τ(V ), dividing the fractions of time
spent generating the random numbers and updating the spins. RT and UT indicate respectively the
time required to generate a 32-bit random number and to update a single spin of a system, while
R% and U% show their percentage into respect of system spin update time τ(V ). RS.up, US.up and
τ(V )S.up shows the speedup of random number generation, spin update and τ(V ) when increasing
the SIMD-granularity V . Note that starting from V = 32 the random number generation time is
predominant and its performance do not increase for higher granularities. Spin update, instead,
improves significatively when using high values of V , thus allowing a better spin update time.
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Instruction pipe V=4 V=8 V=16 V=32 V=64 V=128

ADD even 15 20 30 50 90 170
SUB even 3 3 3 2 2 2
AND even 18 22 30 48 84 156
OR even 3 4 3 3 4 3
XOR even 29 30 32 36 44 60
FMUL even 1 2 4 8 16 32
FCMP even 3 6 12 24 48 96
CMP even 4 6 4 6 10 18
BSEL even 10 13 19 33 61 117
ROTATION even 3 3 3 3 3 3
SHIFT even 0 0 1 4 5 5
CUFLT even 1 2 4 8 16 32
NOP even 4 1 5 2 1 52

SHUFFLE odd 0 1 3 6 12 24
LOAD odd 19 20 30 42 66 115
STORE odd 2 3 5 9 17 34
BRANCH HINT odd 2 3 3 3 3 2
LNOP even 2 2 0 7 24 0

STALLS 1 0 0 0 0 3

Table 4.18: The number of instructions of the actual code that updates a vector data-word with
SIMD-granularity V .
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On-chip memory: TS(V ) Vs. TR(V )

V L τS(V ) τR(V ) Overhead(%)

4 32 6.0 6.3 5
8 64 3.7 3.8 3
16 64 2.6 2.8 8
32 64 2.2 2.3 5
64 128 1.8 1.9 6

Table 4.19: A comparison between the the static τS(V ) and the run-time τR(V ) estimates of system
spin update time The static one is obtained analyzing the scheduling of the code, while the second
one is obtained measuring (with the decrementer register) the execution time of the computational
kernel. Note that the difference between the two estimates is alway under 10% and that we used
the largest possible line lattice sizes.

half-planes, thus increasing the precision of measurements. Table 4.19 compares the
static and run-time analysis of system spin update time. Note that in the case of
static analysis it was to possibile to assume linear sizes L and SIMD-granularities V
that in pratice are not applicable due to memory constraints or because are beyond
our targets (like L ≥ 256 and V = 128).

For small SIMD-granularities there is a large difference between the two esti-
mates, but it can probably be attributable to the precision of the measurements.
These estimates of the system spin update time τ(V ) will be later applied to the
balance equations to determine which lattice sizes allows to completely hide data
transfers time inside computation time.

4.1.5 Main Memory: Performance and Data Access

The previous considerations about the ideal number of instructions required to up-
date a vector data-word are still valid for the implementation of the program that
keeps the data set in main memory, but as long as the data structures are different,
we can expect a impact of addressing on performance. It does not make sense to
use the main memory strategy for small lattices that can be kept in local memories,
because they can obviously be updated faster using only local resources. The target
of this version of the program is to update bigger lattices, keeping in mind that
the upper bound is always L = 128. Not only this strategy allows to update larger
lattices, but also allows to update a small lattice with less cores than when using
local memory, that can be useful in those cases that can be managed by local mem-
ory version only using dual-processors configurations. Incidentally, it also allows to
update small lattices with a higher number of samples, but although the increase of
statistics is useful, as already remarked it is not our main target.

When the lattice is stored in main memory the local store data structures are
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Off-chip memory: static τS(V ) estimate

V I IE E% OE O% D% cycles τS(V ) S.up

4 105 81 96 24 26 27 84 6.6
8 127 98 100 29 30 30 98 3.8 1.7
16 181 136 100 45 33 33 136 2.7 2.4
32 289 217 100 72 33 33 217 2.1 3.1
64 499 373 100 126 34 34 373 1.8 3.7
128 913 685 100 228 33 33 685 1.7 3.9

Table 4.20: τS(V ) is a static estimate of spin update time τ(V ). In this case the lattice data is
stored in main memory. The table refers to the update of a single vector data-word. As in the case
of local memory, the instruction of the even pipe dominates the code, and that pipeline is almost
full. The system spin update time, as expected, is only a little higher then those estimated when
using local memories (Table 4.16), due to the different data structures.

essentially the buffers containing the spins and the coupling terms, that are rotated
at the end of the update of each half-plane, so we can expect a relatively complicated
access pattern and more instructions associated to addressing than in previous case.
We can also expect that the synchronization between cores and that the management
of DMA transfer decrease the system spin update time, but this issues will be
analyzed later.

Table 4.20 shows the behavior of the computational core of the program that
stores the data set in main memory. In particular, the number of instructions, the
pipelines usage and the total cycles of the actual code that updates a vector-data
word are illustrated. Although higher, the system spin update time is comparable
to those of local memory program.

Table 4.21 compare the estimate of system spin update time τS(V ) based on
static assembler analysis with those measured run-time. Only the best times have
been taken into consideration, because they are obtained with the longest sections of
code, that minimize the overheads and allow to make run-time measurements with
more precision. In particular, the larger lattices allow to measure longer periods
of time, thus reducing the inaccuracy related to the resolution of the decrementer
register. Moreover, as each line is composed by more vector data-words, the impact
of the branch instruction at the end of the update of each line is less relevant. As a
consequence, the difference between the two type of estimate of τ(V ) is very small.

4.1.6 Memory Usage

As previously stated, a very important programming technique consists in loading
all the data from arrays (that are allocated in local store) to local variables at the
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Off-chip memory: TS(V ) Vs. TR(V )

V L τS(V ) τR(V ) Overhead(%)

4 72 6.6 8.8 33
8 96 3.8 4.0 5
16 128 2.7 2.8 4
32 128 2.1 2.2 5
64 128 1.9 1.9 0
128 256 1.7 1.7 0

Table 4.21: A comparison between the static and the run-time estimate of τ(V ) for the program
that use main memory to store lattice data. Note that the run-time overhead is very small. Except
the case of V = 4, the overhead is generally smaller that those of the on-chip memory program
(see Table 4.19) because in this case it is possible to manage bigger lattices, that allow to reduces
the impact of branches and to measure longer periods of time.

begin of a procedure, performing the computations and storing the results back to
data array only at the end . Keeping input and temporary data into local variables
avoids ambiguity regarding the memory accesses (that might require with very com-
plicate addressing and pointers arithmetic), so that a very compact scheduling can
be achieved. The drawback is that if too much variables have to be kept into the
register file, then there can be a performance drop due to register spilling 3. For
these reasons, it is important to make an estimate of the number of local variables
that are required to update a single vector data-word. The spin update procedure
require at least:

• 7 spins (the current one and its six first neighbors)

• 6 coupling terms between the spin and its neighbors

• 1 register containing the combination of V random numbers

• at least 5 temporary variables for random number generation (that increase
when V > 4).

• at least 8 temporary variables for the computation of ∆E

We can estimate that at least 27 variables are needed to update a single vector
data-word. Moreover, there are at least 8 pointers to data structures, and various
physics parameters that are likely to be kept in register file. Additional registers are
needed when the SIMD-granularity V 6= 4, due to the random number vectors that

3Register spilling occurs where there are more live variables than machine registers, and as a
consequence variables have to be temporary moved into memory
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have to be independently generated and combined together. We can realistically
estimate that at least 40 variables are required to update a single vector data word.
Most of the variables are mapped into registers as long as they are required to
perform calculation, and as a consequence at a given instant it is likely that less
than 40 register are required. We expect that register file is large enough to support
short loop unrolling so that, if the pipelines are enough free, 2 or 4 vector data-
word are independently updated in the same section. The CBE ABI [75] states
that registers in the range [R3, R79] can be used as local variables of the current
function, while registers in the range [R80, R127] must be preserved across function
call. In our case, the computational kernel can be embedded in a single function,
using macros or inline functions, we can expect that the compiler can almost use
the whole register file to perform computations.

Table 4.22 shows the local store usage of our two programs. As we can see,
to manage lattices in our target range (L ∈ [16, 128]) it is not necessary to take
into consideration the slice version of the main memory program. Because the
computational cores would be the same, and only larger data transfers would be
required, it will no longer be taken into consideration.

With this table it is possible to determine, given the tuple (V, L,C), if it is
possible to use only local memories and thus get the best performan, or if it is
necessary to use main memory.

4.2 Interaction Between Cores

In this section we will apply the estimate of system spin update time τ(V ) to the
balance equations proposed in chapter 3. We will take in consideration only ideal
bandwidths. The behavior of CBE for data transfers between main and local mem-
ory is well documented in [76, 49, 56, 57, 33]. It is not trivial to exploit the peak
bandwidth. First of all, the addresses involved in DMA transfer should be 128-byte
aligned, and the transfer size should be a multiple of 128-byte, to match the underly-
ing hardware. As a general rule, a high number of transactions should be issued. In
particular, when accessing the main memory, the peak 25.6 GB/s bandwidth cannot
be achieved using a single SPEs. The benchmarks shows that all the SPEs have to
be used and the data transfer have to be at least of 2 KBytes.

In our programs the basic data transfer unit is always the half-plane, that occu-
pies w×L2/2 bits of memory. Note that in our data structures the vector data-words
that compose a half-plane are always in consecutive memory locations. Table 4.23
shows the size of half-planes for different SIMD-granularities V and lattice linear
sizes L. As we can see, only for value of L ≥ 32 a half plane is greater than 2K,
so for smaller lattices we have to expect a sub-optimal usage of bandwidth. For the
larger lattices, insted, half-planes are bigger than the maximum length of a single



4.2. INTERACTION BETWEEN CORES 105

Local Store usage (in KBytes) for each SPE

V=4 V=8 V=16 V=32 V=64
L C LM MM LM MM LM MM LM MM LM MM

8 8 2 2

16 8 1 9 5 4

24 8 34 20

32 8 76 36 38 18 19 9

40 8 144 56

48 8 243 81 121 40
48 16 135 810

56 8 110
56 16 110

64 8 144 280 72 140 36 70 18
64 16 144 152 72 38 18

72 8 182
72 16 182

80 8 537 112
80 16 287 112

96 8 918 162 459 81
96 16 486 162 243 81

112 8
112 16

128 8 1072 144 536 72 268 36
128 16 560 144 280 72 140 36

Table 4.22: The local store space required (in KBytes) bye each SPE for several tuples (V,L,C)
when using only local memories (LM) or also main memory (MM). Only the cases reported with
boldface fonts are valid (data is small enough to stay in local store).
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Half-planes sizes (bytes)

L V=4 V=8 V=16 V=32 V=64

8 128
16 512 256
32 2048 1024 512
48 4608 2304
64 8192 4096 2048 4096
72 10368 5184
80 12800 6400
96 18432 9216 4608
112 25088 12544
128 32768 16384 8192 16384 8192

Table 4.23: The size in bytes of a half-plane for several combinations of linear lattice size L and
SIMD-granularity V . A half-plane is a basic data transfer unit: if it is smaller that 16384 bytes it
is transferred with a single DMA operation, otherwise it is splitted in smaller transfers. Because
an high efficiency in DMA operantions is achieved only when transferring at least 2048 bytes, we
cannot expected to be able to exploit the full bandwith for smaller lattice (L ≤ 32).

DMA transfers (16384 bytes), so they cannot be transferred with a single operation.

4.2.1 Local Memory Version

When the data set is stored in local memories, the transfer of data is overlapped to
the update of the internal half-planes, so the estimates of τ(V ) allow to compute
the minimum value of L that keeps equation (3.6) balanced given a V and C:

L =
16 × C

τ(V ) × V × B
+ 2 × C (4.3)

Table 4.24 shows the minimum value of L for various SIMD-granularities V and
number of cores C and reports the minimum L that keeps the equation balanced
and shows the range of available L, taking into account the minimum L that guar-
antee balance for the low boundary and the local store occupation for the high one.
Moreover, other constraints are taken into account: L must be a multiple of 2 × V
and L/C ≥ 2. The value of τ(V ) used for the estimate is the one measured run-time,
because although it does not take into account all the overheads of the program, it
is the more realistic estimate available.

Figure 4.14 describes an example of the sequence of steps needed to perform a
full Monte Carlo step.
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On-chip memory: min L

V C τR(V ) min L L range

4 2 5.5 4.0 8 - 24
4 4 5.5 8.1 8 - 32
4 8 5.5 16.5 32 - 40
4 16 5.5 33.8 40 - 48

8 2 3.8 4.0 16 - 32
8 4 3.8 8.1 16 - 32
8 8 3.8 16.3 32 - 48
8 16 3.8 33.3 40 - 64

16 2 2.8 4.0 32
16 4 2.8 8.1 32
16 8 2.8 16.2 32 - 64
16 16 2.8 32.9 64 - 80

32 4 2.3 8.0 64

32 8 2.3 16.1 64
32 16 2.3 36.7 64

64 16 1.9 32.3 128

Table 4.24: The minimum lattice size L that keeps the system balanced with given values of
SIMD-granularities V and of number of cores C.
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Off-chip memory: max C

V τR(V ) max C L range

4 8.0 5.7 16 - 72
8 4.9 7.0 32 - 96
16 3.4 9.7 64 - 128

Table 4.25: For several SIMD-granularities V , the maximum amount of cores C that, according to
the balance equation, can access the main memory while completely overlapping the data transfer
time into computation time. To compute the value of C the run-time estimate τR(V ) of the system
spin update time has been used, while the main memory peak bandwith has been assumed.

4.2.2 Main Memory Version

When the lattice is stored into main memory, all the cores concurrently access this
shared resource to load data in their local memories and to store the updated half-
planes. For this reason, the key of balance is the number of cores that, given a
system spin update time τ(V ), main memory bandwidth is able to satisfy. Using
the equation (3.18) it is possible to determine the highest number of cores that keeps
the system balanced:

τ(V ) =
τ(V ) × B × V

144
(4.4)

The results are shown in Table 4.25. Only with a SIMD-granularity of at least
V = 16 it is possible to use the eight cores of a CBE processor. However, as
the ideal bandwith will probably not be achieved, we can expect that in the real
programs the main memory bandwith is not sufficient to feed all the available cores.
This topic will be discussed in more detail in the next chapter.

Finally, Figures 4.15, 4.16, 4.17 and 4.18 shown an example of the steps that a
core performs to execute a Monte Carlo step on its white half-planes. Note that
at the start and at the end of the procedure data transfers are not overlapped, so
at least the transfer of some half-planes it is not overlapped to computations, thus
increasing the total time.

For each Monte Carlo iteration, when a core has update all its planes of a given
color, it has to synchronize with its two neighbors before to proceed to the other
color or to the next iteration. In practice each core send to each neighbor a mail that
notifies the availability of the just update data. Then, the core waits for analog mails
from its neighbors. However, before the send of the mail, and mfcsyn instructions
has to be issue, to ensure that all data transfers have complete (i.e. alla data is
available in main memory).



4.3. GAUSSIAN MODEL 109

Gaussian Model
On-chip Memory

L τS(V ) τR(V ) Overhead (%)

16 5.2 7.2 38
24 4.7 6.3 34
32 4.7 9.2 34
40 5.9 9.2 56
48 5.9 9.2 56

Table 4.26: The comparison between the static and run-time estimates of the system spin update
time τ(V ), for Gaussian model when the lattice data is stored in local memory. In this case the
inner loop is not unrolled, so the code is more efficient for very small lattice sizes, when an half-line
can be updated without branches. However, for τS(V ) the difference between the best and the
worst cases is under the 15%.

Gaussian Model
On-chip Memory

V C min L L range

4 8 18.1 16-40
4 16 42.2 16-48

Table 4.27: Balancing of processing and communication for the Gaussian model for the case of the
whole lattice stored into local memory.

4.3 Gaussian Model

All the previous considerations are valid for Gaussian model fixing V = 4 and using
all the 128/V = 32-bit of each scalar data-word to represent spins and couplings as
32-bit floating point numbers. An estimate of spin update time when using local
memory is given in Table 4.26, while Table 4.27 lists the ranges of L that balance
data transfer and computation times.

Finally, Table 4.28 shows an estimate of spin update time when keeping lattice
data structures in main memory.

The estimate of the system update time applied to the balance equation shows
that in all cases at most C = 3 can be used. The code that implements the Gaussian
model is faster than the Binomial code for V = 4, so the bottleneck represented by
the concurrent access to main memory is more critical. However, the Binomial model
takes advantage from higher SIMD-granularities, that allow to obtain both a faster
computational code and to significatively reduce the amount of data transfers.
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Gaussian Model
Off-chip Memory

L τS(V ) τR(V ) Overhead (%)

16 4.5 5.4 20
24 4.2 4.9 17
32 4.1 4.6 12
40 4.2 4.7 12
48 4.2 4.6 10
56 4.3 4.7 9
64 4.0 5.2 30
72 3.9 4.9 26
80 3.9 4.9 26

Table 4.28: Static and run-time estimates of the spin Update Time τ(V ) for the Gaussian Model
when lattice data is stored into main memory.

4.4 Conclusions

In this chapter we have described the development and analyzed the performance
of the spin update procedure for a wide range of SIMD-granularities V and for
different lattice linear sizes L, for both local and main memory strategies. The
run-time estimates of system spin update times τR(V ) have been applied to the
balance equations introduced in chapter 3 to evaluate in which cases data transfers
do not dominate the execution time of the program, in order to deteremine which
parameters make it possible to efficiently use all the availabel cores.

In the next chapter the run-time performances of the programs, including data
exchange between cores and main memory, will be illustrated, discussed an compared
to the estimates presented in this chapter.



Figure 4.14: The basic step needed to perform a complete Monte Carlo update on a whole lattice
stored in local memories when L = 8 and C = 2, and the range of lattice sizes that can be managed
with a given SIMD-granularity V .
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Figure 4.15: Steps 1, 2 and 3 of the update of the half-planes of a core. In the first step they have
to be loaded from main to local memory, and no computations are performed.
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Figure 4.16: Steps 4,5 and 6 of the update of the half-planes of a core. This is the most common
case: while a half-plane is updated, 9 half-planes are concurrently exchanged with main memory.
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Figure 4.17: Steps 4,5 and 6 of the update of the half-planes of a core. Data transfers and
computations are still concurrent.
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Figure 4.18: The final step of the update of the half-planes of a core. All the half planes have been
updated and the last one is stored back to main memory.
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Chapter 5

Spin Glasses Performance on CBE

In this chapter the run-time performance of the spin glass programs will be measured
and compared with the behavior predicted in the previous chapters. For tests we a
single IBM BladeCenter QS22, which has two directly connected IBM PowerXCell
8i processors. In this configuration, it is possible to use up to 16 cores, although
each SPE can exchange data at full speed only with the SPEs and the main memory
of the same processor.

We have made extensive performance tests of most allowed combinations of linear
lattice size L, SIMD-granularity V and number of cores C. We expect large variation
in overall efficiency as we move in this parameter space, due to the strong dependency
of the balance with the parameters V and C, as seen in balance equations, that
reflects the constraints of the architecture.

When not specified, the programs were compiled using the GCC toolchain provided
with IBM SDK for Multicore Acceleration Version 3.1.

5.1 Binary Model

In this section we will measure the run-time performance of both local and main
memory version of the program that implements the Binary model. In particular we
will determine the impact of SIMD-granularity on systems spin update time τ(V ).

Note that all the tests were performed with al lest two cores (C ≥ 2), because
using only one core it is not considered an interesting case, as it does not expose teh
concurrency between cores.

5.1.1 Local Memory

Let us analyze the performance when lattice data is stored only in local memories.
The values reported in Table 5.1 are measured on PPE side, and are comprensive
of synchronization between cores and of data transfers that do not overlap with

117
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computations (i.e. when the balance is not guaranteed). For each linear lattice
length L, the performance obtained with all the possible combinations of SIMD-
granularity V and number of cores C are shown. some tuples (L, V, C) may be
missing due to the two constraints of the program: at least two planes have to
be assigned to each core, and L has to be a multiple of C (in order to assign
homogeneously distribute the plane among cores). Note that the table also takes
into consideration tuples (V,C) for which we previously predicted that data transfer
should dominate computation time.

On-Chip Memory
System Spin Update Time (ns/spin)

C V=4 V=8 V=16 V=32 V=64

L = 16
2 3.753 2.561 × × ×
4 2.051 1.404 × × ×
8 1.135 0.834 × × ×
16 1.480 1.169 × × ×

L = 32
2 m 2.072 1.550 × ×
4 1.590 1.058 0.787 × ×
8 0.807 0.542 0.406 × ×
16 0.499 0.357 0.263 × ×

L = 64
4 m m m 0.576 ×
8 m m 0.348 0.289 ×
16 m 0.244 0.179 0.149 ×

L = 128
16 m m m m 0.120

Table 5.1: The system spin update time τ(V ) of several tuples (L, V,C) when storing lattice data
in local memories. The tuples that required too much local store space are labeled with m, while
the invalid combination of L and V are indicated with the symbol ×. The invalid combinations of
L and C are not reported.

To analyze more in more detail the behavior of performance, Table 5.2 compares
the system spin update times obtained with eight cores (usually the best option
when using a single processor) to those that would be obtained using only one core,
while Table 5.3 depicts the slow-down in respect to the system spin update time
predicted in the previous chapter.

In an ideal case we would assume that system spin update time is inversely pro-
portional to C, if data transfers and synchronization are not a bottleneck. Although
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C L V=4 V=8 V=16 V=32

8 16 9.080 6.672
8 24 6.752
8 32 6.456 4.336 3.248
8 40 6.272
8 48 3.856
8 64 2.784 2.312

Table 5.2: The system spin update time for a single core, computed as τ(V ) × C, when using all
the SPEs of a single CBE processor. The values in bold are relative to the tuples (L, V,C) in
which we expect that the global time in dominated by computation, as calculated from balance
equations.

L C V=4 V=8 V=16 V=32

16 8 1.65 1.76
24 8 1.23
32 8 1.18 1.4 1.16
40 8 1.14
48 8 1.0
64 8 1.0 1.2

Table 5.3: An estimation of the overhead of the run-time measured system spin update time τ(V )
with respect of the static one determined in Chapter 4. The values in bold are relative to the
tuples (L, V,C) that, according to balance equations, should be dominated by computation time
and, as a consequence, a very little overhead in terms of data transfers and synchronization, when
using all the available SPEs. The measured system spin update time confirms our prediction, as
in most cases the overhead is less than 20%.

for L = 16 the performance is different from that expected, in the other cases the
overhead is quite limited, usually under 20%. The behavior is coherent with our
predictions: Table 4.24 of Chapter 4 indicates that for V = 4, 8, 16 the balance is
assured if L ≥ 32, confirmed by the low overheads of the run-time tests.

The behavior of the system spin update time τ(V ) as function of the number of
cores C is shown Figure 5.1. As we can see, except for the smallest lattice L = 16,
adding cores always gives better performance, and it is also possible to go faster
using a dual-CBE configuration.

In Figure 5.2 is emphasized the difference between the speed-up obtained adding
more cores and the ideal speed-up. As we can see, in most cases the difference is
under the 50%.

The difference into respect of the ideal scaling when the number of cores C is
fixed and the SIMD-granularity V varies is illustrated in Figure 5.4. The results
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Figure 5.1: System Spin update time τ(V ) in function of the number of cores C for several linear
lattice sizes L and SIMD-granularities V .
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are not too different from what expected, because for high granularities the random
number generation time is the dominant fraction, so there are little improvements
when increasing granularites, but it is nonetheless better to use the highest possibile
SIMD-granularity.

To individuate the origin of the overheads, the time dedicated by a SPE to
pure computation has been measured at run-time with the decrementer register.
The results are shown in Table 5.4. Note that the fraction of time dedicated to
computation is better for larger lattices, because the basic unit of data transmission,
the half-plane, is bigger and allows a better usage of the EIB (see Table 4.23 from
Chapter 4).

5.1.2 Main Memory Version

When lattice data is stored in main memory, for a given SIMD-granularity V we
expect that the main memory bandwidth to be large enough to feed a certain number
of cores C, as seen in Table 4.25. Given that the theoric bandwith is achievable only
with lar ge lattices, we expect worse system spin update time for smaller lattices
(L ≤ 32), according to Table 4.23. However, in those cases it is preferable to use
only local memories, the allow better performances.

The system spin update times for many of the possible tuples (L,C, V ) are shown
in Table 5.5.

The system spin update time τ(V ) as a function of the number of cores C is
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Figure 5.4: The overhead of the system Spin update time τ(V ) in to respect of the ideal one
(assuming perfect scaling) as a function of SIMD-granularity V for several linear lattice sizes L
and number of cores C.

shown in Figure 5.5 for three representative lattices of linear size L = 64, 96, 128.
As we can see, the best performance is achieved when using all the eight cores of a
CBE, while the two processors configuration not only does not grant any benefit, but
due to memory bandwidth saturation leads to worse performances. The overheads
with respect of ideal scaling is shown in Figures 5.6, where SIMD-granularity is fixed
to V = 16 and three different lattices are taken into consideration. In Figure 5.7.
only L = 128 is taken into account, but SIMD-granularity is V = 64. As we can see,
a high granularity highly reduce the overhead, because it implies a much smaller set
of data to be exchanged between local and main memories.

Note that for small lattices the performances are not comparable to those of
the local memory implementation, while for L ≥ 64 the overhead is much smaller.
Tables 5.6 and 5.6 show the difference the fraction of the global time dedicated
to computation, measured on a SPE with the decrementer register. As expected,
the fraction is smaller when using a large number of cores, due to the conflicting
memory accesses and to synchronization. However, for L ≥ 4, the time dedicated to
computation is always above the 50% when using eight cores. Moreover, for large
lattice the computation fraction is proportional to SIMD-granularity V , because
less data has to be transferred between main and local memories. Note also that
the use of two processors grant none or little improvements. This is expected for
many reasons: first of all, the SPEs of the second CBE have to use a non-local
memory, with the bottleneck of the connection between the two processors. Also,
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On-Chip Memory
Computation %

C V=4 V=8 V=16 V=32 V=64

L = 16
2 88.36 83.60
4 78.83 71.80
8 65.74 56.36
16 50.08 44.00

L = 32
2 97.28 96.50
4 96.49 94.53 92.90
8 92.67 89.68 86.63
16 74.32 69.20 63.51

L = 64
4 98.78
8 97.94 97.53
16 95.77 94.29 93.15

L = 128
16 97.02

Table 5.4: The percentage of the global time of a SPE dedicated to the execution of the computa-
tional core. The code is the same used in Chapter 4 to estimate the ideal system spin update time
τ(V ), so a high fraction implies that the performance of the whole program are near to the ideal
one.

using more SPEs increases the pressure on main memory, and the balance equations
have already shown that at most 9 SPEs can be efficiently used (Table 4.25).

Table 5.7 shows the fraction of global time used to wait the end of data transfers
(also called stall time). This time is determined by the data transfers that cannot
complete in time or that are only partially overlapped to computations. The first
case is relateted to the possible unbalance of compututations and data transfers. If
the bandwidth is not efficiently exploited or there is too much data too transfers
due to the algorithmic parameters, after the end of computations it is necessary to
wait the end of all DMA transfers, thus introducing an overhead. The second case,
instead, refers to the start-up sequence of each Monte Carlo iteration, when the
first three half-planes are loaded into local memories: until all the required data is
available, computations cannot begin. Moreover, after the update of the last half-
plane, it is necessary to wait the end of the transfer before to proceed to the other
color or to the next Monte Carlo iteration.

The Table shows that for high SIMD-granularities and large lattices the stall time
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Off-Chip Memory
System Spin Update Time (ns/spin)

C V=4 V=8 V=16 V=32 V=64

L = 32
2 3.630 2.365 1.825 × ×
4 1.953 1.283 1.042 × ×
8 1.759 1.052 0.673 × ×
16 2.047 0.958 0.585 × ×

L = 64
2 3.480 2.096 1.445 1.180 ×
4 1.968 1.147 0.744 0.601 ×
8 1.683 0.874 0.435 0.323 ×
16 1.866 1.044 0.476 0.230 ×

L = 96
2 m 2.079 1.426 × ×
3 m 1.407 0.957 × ×
4 m 1.063 0.723 × ×
6 m 0.821 0.496 × ×
8 m 0.799 0.419 × ×
12 m 0.798 0.408 × ×
16 m 1.028 0.499 × ×

L = 128
2 m m 1.402 1.101 0.957
4 m m 0.712 0.557 0.482
8 m m 0.416 0.288 0.246
16 m m 0.535 0.253 0.135

Table 5.5: The system spin update time τ(V ) when the lattice data set is stored in main memories,
for several tuples (L, V,C).

is less than 10%, when using at most eight cores. Finally, in Table 5.8 the fractions
of the global time, measured on the SPE side, dedicated to synchronization between
cores, are illustrated. They are always less than 10% and for L ≥ 80 they are always
less than 1%, so they do not represent a performance bottleneck.

5.1.3 Performance Comparison

For spin glasses we have two important terms of comparisons: a program based on
the same multispin coding principles compiled and executed on high-end commodity
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Figure 5.7: The system spin update time overhead as a function of the number of cores C with
fixed SIMD-granularity V = 64 and lattice linear size L = 128.

processors, and Janus, a FPGA-based massively parallel machine developed specif-
ically for spin glass simulations. The first one allows to make a comparison with
widely available architectures of a comparable price, to evaluate the value of CBE
in this context, and to a special pourpose machine, that today is able to achieve
state-of-the-art performance in this specific application.

Let us start with the binary model. On an Intel Xeon 3.0 GHz processor a
Metropolis Monte Carlo routine implementing synchronous multi-spin coding and
processing 64 spins of a single system of linear size 64 parallel performs at 4.8 ns/spin
(system spin update time). Note that lattice size does not impact performance as
long as a large cache memory is available and that the program runs on a single core
and does not explicitly make use of SIMD instructions.

Note that when C = 16 and V = 64 the number of spins of the same system
concurrently update is 1024, that is comparable to those of Janus. However, due to
random number generation and to data access (that requires many instructions for
both addressing and for load/stores), the high clock speed of CBE it is not sufficient
to achieve the performance of a dedicated architecture.

Comparing the Xeon performance with the one given in the previous chapter for
the CBE, we conclude that one CBE is approximately 5-19 times faster than one
Xeon processor when considering the system update times, depending on lattice size.
The dual-CBE configuration are directly usable without changes in the programs,
and as a result it is possible to go up to 40 times faster than a single Xeon core.
However, the benefits of using two processors are significative only for lattices with
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Off-Chip Memory
Computation %

C V=4 V=8 V=16 V=32 V=64

L = 32
2 86.80 82.14 77.28
4 80.09 75.40 67.86
8 44.95 48.98 52.42
16 19.48 26.60 30.43

L = 64
2 93.93 92.79 93.36 92.43
4 82.74 84.16 90.55 91.04
8 47.66 57.24 78.27 83.88
16 18.16 23.61 35.90 60.76

L = 96
2 66.89 94.99
3 94.63 94.30
4 93.40 93.74
6 81.35 91.19
8 62.48 81.82
12 41.82 55.51
16 24.30 34.37

L = 128
2 94.10 91.50 87.66
4 96.03 96.37 96.76
8 82.14 93.13 94.55
16 31.93 53.35 86.40

Table 5.6: The percentage of the global time of a SPE dedicated to the execution of the computa-
tional core for several tuples (L, V,C).

linear sizes such that high SIMD-granularities (V = 32 and V = 64) can be used,
because they minimize the volume of data transfers.

On the other hand, the dedicated Janus machines outperforms the CBE imple-
mentation approximately by a factor 15 - 53, depending on the lattice size, when
using a single processor, and by a factor, 8 - 53 for dual-processor configurations.
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Off-Chip Memory
Stall %

C V=4 V=8 V=16 V=32 V=64

L = 32
2 5.01 6.35 8.71
4 10.60 11.27 17.04
8 44.23 41.07 32.18
16 44.40 40.86 29.24

L = 64
2 3.99 3.63 1.99 1.963
4 14.82 12.04 3.94 3.384
8 49.16 39.04 12.74 8.448
16 53.40 49.40 30.36 14.986

L = 96
2 16.59 1.86
3 3.22 2.56
4 4.44 3.09
6 16.12 5.23
8 33.61 11.98
12 31.85 15.30
16 45.90 35.55

L = 128
2 3.02 3.27 3.54
4 2.62 1.87 1.29
8 14.19 4.76 3.25
16 38.67 18.58 4.85

Table 5.7: The percentage of the stall time in to respect of the global time of a SPE. It measures
the time in which a SPE is not performing useful computations but it is only waiting the and of
DMA transfers.

5.2 Gaussian Model

Finally, let’s consider the Gaussian model. In this case the SIMD-granularity is
fixed to V = 4, so we can expect overheads related to data transfers. The results
for the implementation that uses only local memory are illustrated in Table 5.10.
The spin update time achieved by a single core is extrapolated from the global time,
and compared with the theoric value estimated in the previous chapter. As we can
see, the difference between the real and the ideal cases are quite small. Although
the fixed SIMD-granularity does not allow to reduce the amount of transferred data
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Off-Chip Memory
Synchronization %

C V=4 V=8 V=16 V=32 V=64

L = 32
2 0.61 1.84 1.21
4 1.94 4.03 2.95
8 3.59 2.15 4.35
16 3.54 3.97 4.92

L = 64
2 0.15 0.32 0.29 0.53
4 0.67 0.23 0.36 0.47
8 0.23 0.39 1.05 2.12
16 0.37 0.75 1.47 2.25

L = 96
2 0.59 0.59
3 0.17 0.17
4 0.22 0.22
6 0.28 0.28
8 0.26 0.26
12 0.14 0.14
16 0.13 0.13

L = 128
2 0.10 0.19 0.33
4 0.14 0.18 0.07
8 0.221 0.12 0.15
16 0.173 0.21 0.38

Table 5.8: The percentage of the global time of a SPE dedicated to the synchronization with the
other cores. No Computations or data transfers are performed during this fraction of time.

using a higher value of V , the time required to perform computations is long enough
to effectively mask data transfers. Figure 5.8 shows the behaviour of the spin update
time for several lattice manageable with the local memory version of the program.
On a Xeon processor, using a single core, the best achieved spin update time is 65
ns, so when using local memories the CBE implementation is 64-100 times faster.

To manage larger lattices it is necessary to use the main memory. The perfor-
mance achieved in this case are illustrated in Table 5.2. The best spin update time
is 1.7 ns/spin, which make this program 38 times faster than the Xeon counterpart.
Note that with C = 4 the main memory bandwith is saturated, because there is no
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System Spin Update Time

Memory CBE Xeon CBE Janus CBE
L C V Type τ(V ) τ(V ) vs. Xeon τ(V ) vs. Janus

(ns/spin) (ns/spin) speed-up (ns/spin) speed-up

16 8 8 on-chip 0.834 4.8 5.76 0.016 0.019
16 16 8 on-chip 1.169 4.8 4.10 0.016 0.014

24 8 4 on-chip 0.844 4.8 5.69 0.016 0.019
24 12 4 on-chip 0.738 4.8 6.50 0.016 0.022

32 8 16 on-chip 0.406 4.8 11.82 0.016 0.039
32 16 16 on-chip 0.263 4.8 18.25 0.016 0.061

40 8 4 on-chip 0.784 4.8 6.12 0.016 0.020
40 10 4 on-chip 0.641 4.8 7.49 0.016 0.025

48 8 8 on-chip 0.482 4.8 9.96 0.016 0.033
48 16 8 on-chip 0.252 4.8 19.05 0.016 0.064

64 8 32 on-chip 0.289 4.8 16.60 0.016 0.055
64 16 32 on-chip 0.149 4.8 32.22 0.016 0.107

80 8 8 off-chip 0.823 4.8 5.83 0.016 0.019
80 10 8 off-chip 0.797 4.8 6.02 0.016 0.020

96 8 16 off-chip 0.419 4.8 11.46 0.016 0.038
92 12 16 off-chip 0.408 4.8 11.77 0.016 0.039

112 8 8 off-chip 0.800 4.8 6.00 0.016 0.020
112 14 8 off-chip 0.907 4.8 5.30 0.016 0.018

128 8 64 off-chip 0.246 4.8 19.12 0.016 0.065
128 16 64 on-chip 0.120 4.8 40.00 0.016 0.130

Table 5.9: The comparison between the system spin update time τ(V ) achieved with CBE, Xeon
and Janus. For each linear lattice size L are reported the results obtained using one and two
CBE processors. For the cases in which both local and main memory versions where available, we
reported only the fastest one.
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Gaussian Model
On-Chip Memory

System Spin Update Time

C (ns/spin) overhead speed-up

L = 16
2 3.131 1.0
4 1.689 1.1 1.85
8 1.003 1.3 3.12
16 1.341 3.4 2.34

L = 24
3 2.295
4 1.722 1.33
6 1.180 1.95
8 0.890 2.58
12 0.769 2.98

L = 32
4 1.269 1.02
8 0.648 1.04 1.96
16 0.422 1.36 3.02

L = 40
5 1.480 0.99
8 0.931 1.00 1.59
10 0.768 1.03 1.93

L = 48
12 0.531 1.03
16 0.402 1.04 1.32

Table 5.10: The spin update time τ(V ) for the Gaussian model, when data set is distributed among
the local stores of the SPEs. The overhead in to respect of the ideal performance estimated in
Chapter 4 is also illustrated. In the last column we report the speed-up achieved incrementing
the number of cores, referred to the performance obtained using the minimum possible number of
cores. Note that the cases in which the size of the local memories was too small to store the whole
lattice are not reported.

(or a very little) improvement when using more cores.

The scaling of the spin update time τ(V ) as a function of the number of cores C
is shown in Figure 5.9. The best performance are obtained with all the eight core
of a CBE, while the two-processors configurations are not very useful.
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Gaussian Model
Off-Chip Memory

System Spin Update Time

C (ns/spin) overhead speed-up

L = 40
2 2.681 1.13
4 1.787 1.51 1.500
5 1.707 1.80 1.571
8 1.674 2.83 1.602
10 1.645 3.48 1.630

L = 48
2 2.604 1.13
3 1.937 1.27 1.344
4 1.746 1.52 1.491
6 1.660 2.17 1.569
8 1.659 2.89 1.570
12 1.654 4.32 1.574
16 2.103 7.33 1.238

L = 64
2 3.423 1.33
4 1.960 1.52 1.746
8 1.709 2.65 2.003
16 2.235 6.93 1.532

L = 80
2 2.943 1.20
4 1.770 1.44 1.663
8 1.588 2.59 1.853
16 2.102 6.85 1.400

The spin update time τ(V ) for the Gauss model, when data set is stored in main
memory. The overhead into respect of the ideal performance and the speed-up
obtained using more cores are also reported.

5.3 Conclusion

In this chapter we have shown the measurements of the performance achieved exe-
cuting the programs on a dual-processor CBE system, for several combinations of
the linear lattice size L, the number of cores C and the SIMD-granularity V . The
results confirms what we predicted with the proposed balance equations. If the data
set fits the local memories, we can expect to efficiently use all the available core,
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while if data have to be exchanged with main memory the SIMD-granularity V be-
come a critical parameters, as higher granularities allows to reduce the amount of
data that have to be transferred, so that in many cases it is still possible to balance
computations ad data transfers. Incidentally, an high SIMD-granularity also allow
to obtain better performance in the update of the spins of a single spins, that is one
of our main targets.

Finally, the Gaussian model is constrained to a SIMD-granularity that does not
fit very well the properties of the hardware, so in the case that main memory has
to be used there is a notable performance degradation.
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Multi-core architectures delivers into a single chip tens or hundreds Gflops of peak
computing performance, with high power dissipation efficiency, and they make avail-
able computational power previously available only on high-end multi-processor sys-
tems. As a consequence, multi-core processors are very interesting in the perspective
of scientific programming. However, the sustained performance and the program-
ming efforts needed to exploit their power have to be carefully evaluated.

As a test bench for the study of multi-core processors, in my Ph.D. thesis I have
considered Monte Carlo simulations of spin glasses, that is a very computing de-
manding scientific application, and I have optimized it for Cell Broadband Engine,
that is one of the first available and most interesting multi-core processors. In par-
ticular, the target was to determine the sustained performance that can be achieved
with this class of processors, to analyze the issues and the constraints that have to
be faced in order to exploit their capabilities, and to individuate a set of techniques
and strategies that should be adopted when programming multi-core processors.

In the context of spin glass simulations, the target was to achieve the highest
possible speed for the update of a single system with linear lattice size in the range
L = 16 · · · 128. We have defined a performance metric for the problem, the system
spin update time τ(V ), that is useful to evaluate the achieved performance into
respect of two available terms of comparison. The first one is a program based
on the same multispin coding principles described in Chapter 2, but compiled and
executed on a high-end commodity processor, in order to evaluate the benefits of
CBE into respect of traditional architectures. The second term of comparison is
Janus, a FPGA-base massively parallel machine designed specifically for spin glasses
simulations and that today is able to achieve state-of-the-art performance in spin
glass simulations.

When considering Binary model, one CBE processor is approximately 5 · · · 19
times (depending on lattice size) faster than a single core of a Xeon processor running
at 3.0 GHz, while dual-CBE configurations allow to go up to 40 times faster than
a Xeon core. On the other hand, the dedicated Janus machine outperforms the
CBE implementation approximately by a factor 15 · · · 53, depending on the lattice
size, when using a single CBE processor, and by a factor 8 · · · 53 for dual-processor
configurations.

135
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For the Gaussian model, the CBE processor is 64 · · · 100 times faster than a
Xeon core if the lattice can be stored in local memories, while it is 38 times faster
if main memory has to be used. Gaussian model is very interesting because it is
floating-point arithmetic intensive, so it is the type of applications the CBE was
designed for. Although in this case data transfers have an heavier impact on global
time than in the case of Binary model, the performance improvement into respect
of traditional architectures is notable. As a consequence, the CBE processor should
be well suited for general- purpose massively-parallel machines, as high-performance
floating-point computations are an essential key of many scientific applications.

Given the obtained results, the performance/price ratio of CBE is very interesting
for spin glasses, in particular when considering the PlayStation 3, that allow to buy
a complete system (although with only six cores) for less than 400 $. We expect
that in the near future very large simulations in spin glass will still be dominated
by dedicated machines, but smaller simulation campaigns will benefit heavily from
the use of CBE based machines, as they allow to build small clusters of 16 · · · 64
machines with a very convenient performance/price ratio.

The first issue in optimizing spin glass simulations for CBE was to define a
data layout and a data transfer scheme that allows the distribution of the data set
among local an main memories. Local memories have a key role into achieving high
performance, but they are able to manage only a limited range of lattice sizes, so we
identified two main cases: (i) data set can be stored using only local memories or
(ii) main memory is required. In both cases we assume that at a given instant each
cores has in its local memory enough data to update a partition of the lattice. Each
core updates its partition as fast as possible, while MFCs independently prefetch
the data required to perform the next step of the algorithm (that is the update
of either the same or another sublattice). Our target was to overlap data transfer
and computation, in order to exploit the computational power of all the available
cores. When only local memories are used, a potential bottleneck is inter-core data
transfers, while if main memory is used the concurrent accesses performed by cores
can saturate the bandwidth.

To evaluate the balance between computation and data transfer we defined sim-
ple models that take into account both algorithmic parameters (linear lattice size
L, SIMD-granularity V and the system spin update time τ(V )) and architectural
parameters (the number of cores C and the bandwidths of inter-core communication
and of main memory). The models allow to determine the combination of algorith-
mic parameters for which the global time is not dominated by data transfer, so that
the computational power of all the cores is exploited. The models neglect details
such as synchronizations and latencies and it assumes ideal bandwiths, so the results
extrapolated from them are an upper bound of what can be expected running real
programs.

The programming efforts were headed into two directions: to obtain the high-
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est possible speed with a single core, and to try to minimize the impact of data
transfers. Today it is not realistic to expect for a compiler to be able to exploit
all the parallelism available in a multi-core processor, so programs have to be writ-
ten explicitly exposing the parallelism. Moreover, in the case of CBE all the data
transfers have to be mananged by the software, so a remarkable effort is required to
the programmer. However, the need to deal with low-level details allows to design
programs that matches the properties of the hardware.

The exploitation of the capability of a core has to deal with architectural con-
straints and with the problem of mapping the intrinsic concurrency of the algorithm
into the two the functional units of a core. As in CBE applications the data layout
has to respect 16 bytes alignment to match the properties of the SIMD functional
units, the order of the spins inside the lattice has been rearranged to minimize the
permutations required by data access. The operations needed to update the spins
have been mapped into logical instructions according to multispin coding, with the
support of multiple SIMD-granularities, and intrinsics [77] have been explicitly used.
Random number generation procedure has been written in a way that takes advan-
tage of SIMD-instructions and with the support of several SIMD-granularties. It
was also possible to distribute the instructions almost equivalently between the two
pipelines of a SPE. Several techniques were useful to improve the performance: the
low-level addressing, the partial unrolling of the inner loop, the intensive use of lo-
cal variables to reduce the access to the local store and to expose to the compiler
the independence of the instructions. Several macros have been defined, to perform
compile-time optimizations based onto parameters such as linear lattice size, SIMD-
granularity and the number of cores. The quality of the code and of instruction
scheduling produced by the compiler has been statically analyzed using the tools of
the SDK and also some scripts that we were specifically developed. As a results,
the code reacts to the varying of the parameters accordingly to our prediction and
the achieved perforamcne are reasonably close to the ideal estimates. The estimates
of the performance parameter τ(V ) on a single core were applied to our models to
predict the balance of computations and data transfers.

The distribution of the data set among memories and the definition of data
structures determines the impact of data transfers on global time. It is important
to organize the algorithm in a way that allows to minimize the data transfers that
cannot be executed concurrently to computations. According to this target, we
used double-buffering techniques and inside each local memory we reserved enough
space to support both the storing of previously computed results and the prefetch
of the data required by the following update step. When only local memories are
used, to allow the concurrency of computations and data transfers it is necessary to
rearrange the order in which the spins are updated, while when using main memory
the algorithm has been organized in a way that allows to fetch each half-plane only
once to update 3 different half-planes.
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The development of spin glass simulations for CBE allowed to learn which are
the constraints that have to be faced when programming CBE and to define several
guidelines that should be followed when developing and application for this proces-
sor. The need to explicitly manage data transfers requires an additional effort to the
programmer, but gives the opportunity to efficiently use the available local memory,
as it is possible to prefetch the required data, minimizing the impact of data access,
even when the data transfer time is higher than computational time. However, in
some cases the bandwith of main memory can be too small to feed all the eight
cores.

The key factor in CBE programming is how much data can be kept into local
memories. It is fundamental to define which fraction of the data set can fit the local
memories, and to specify the algorithm that transfers data between main and local
memories, because they constraint the amount of the computational power of the
cores that can be reasonably exploited. In this optic, the definition of an analytic
model is fundamental to determine the impact of data access into respect of the
execution time, as the use of main memory instead of local memory can imply
a notable drop of performance. Moreover, if the analytic model shows that the
application is memory-bounded, a high optimization of the computational kernels
is not useful.

The presence of the MFCs, that allows to move data independently by com-
putations, makes very convenient techniques such as double and multi-buffering to
mitigate the impact of data transfers. Access to main memory should be always
avoided when inter-core data transfers are instead possible, because (i) main mem-
ory is a shared resource and (ii) several inter-core transfers can occur in parallel.
Because the global ordering of data transfers is not guaranteed in CBE, it can be
necessary to explicitly require a local or global ordering to ensure the correctness of
the program. The synchronization should be distributed: instead of using a global,
centralized synchronization involving PPE, it is better to directly synchronize small
sets of cores, because in this way the time spent by cores waiting each other is
reduced.

The optimization of the computational kernels that run on a single core requires
to explicitly expose parallelism, but there are some techniques that proved to be
successfull. First of all, the data layout has to be defined in a way that minimize
the data access. If the scalar variables have to be rearranged into vector registers,
there can be a performance drop. The large register file of the SPE can be exploited
to efficiently pipeline instructions, so the access to arrays or to data structures
with complicated address should be minimized inside the computational kernel, that
should operate on local variables, that avoid false dependences and can directly be
mapped into registers, avoiding unnecessary load and store instructions. SPEs do
not support branch speculation, so the code should be kept as linear as possible.
In particular, the computational kernel should not include function calls and also
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conditional assignments should always be made using specific SIMD-instructions
that avoid branches. For the same reason, loop unrolling can improve performance,
although the size of the executable code should be kept small, in order to store as
much data as possible into local memories.

We conclude that the parallelism of an algorithm can be effectively exploited by
CBE architecture, if the balancing criteria between computing power and bandwidth
of inter-core and core-to-memory communications are satisfied and if the computa-
tional kernels are opportunely optimized. Applications for CBE cannot be designed
aiming to high flexibility and generality, because the CBE is very sensitive to the
size of the problem, and there are considerable performance drops if access to main
memory are too frequent. In a massively-parallel machine, however, it is likely that
the data set can be distributed among the local memories of all the processors, that
is the best case. The performance/Watt and performance/cost ratios of CBE are
good enough to trigger the development of CBE-based massively parallel machines,
and two have already been developed: RoadRunner [78], that is built around a
standard interconnection network based on InfiniBand, and QPACE [79], that is
equipped with a custom network designed for a specific application (the LQCD).

From this study of CBE processor we can conclude that with multi-core architec-
tures it is effectively possible to achieve a very high computational power. However,
to obtain such results it is necessary to explicitly expose the parallelism of the ap-
plication and to optimize the computational kernels at low-level. Moreover, the
applications should have a balance between computations and data transfers that
fits the properties of the hardware. In particular, the bandwidth of main memory
may be too small for several applications, and probably this will be one of the main
concern of the next years, as the processors will be include more and more cores.
However, the balance between data and computations it is not the only challenge
of the future. The effort required to efficiently program the CBE is considerably
higher than those needed for a standard processor. As the multi and many-core will
dominate the near future, it is fundamental to develop adequate tools to develop ap-
plication for these machines as efficiently and as fast as possible. As a consequence,
we expect to see a burst of compiler technology in the next years.
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[11] M. Mézard, G. Parisi, and M. Virasoro. Spin Glass Theory and Beyond. World
Scientific, 1987.

[12] M. Schulz. Statistical Physics and Economics: Concepts, Tools, and Applica-
tions. Springer, 2003.

141



142 Bibliography

[13] D. L. Stein. Spin Glasses and Biology. World Scientific, 1992.

[14] F. Belletti, M. Cotallo, A. Cruz, L. A. Fernandez, A. Gordillo-Guerrero,
M. Guidetti, A. Maiorano, F. Mantovani, E. Marinari, V. Martin-Mayor,
A. Munoz Sudupe, D. Navarro, G. Parisi, S. Perez-Gaviro, J. J. Ruiz-Lorenzo,
S. F. Schifano, D. Sciretti, A. Tarancon, R. Tripiccione, J. L. Velasco, and
D. Yllanes. Nonequilibrium spin glass dynamics from picoseconds to 0.1 sec-
onds. Physical Review Letters, 101:157201, 2008.

[15] F. Belletti et al. Simulating Spin Systems on Ianus, an FPGA-Based computer.
Comp. Phys. Comm., (178):208–216, 2008.

[16] Wm Wulf and Sally A. McKee. Hitting the Memory Wall: Implications of the
Obvious. Technical report, Charlottesville, VA, USA, 1994.

[17] John L. Hennessy and David A. Patterson. Computer Architecture: A Quanti-
tative Approach (The Morgan Kaufmann Series in Computer Architecture and
Design). Morgan Kaufmann, 2007.

[18] McCalpin John, Moore Chuck, and Hester Phil. The Role of Multicore Pro-
cessors in the Evolution of General-Purpose Computing. CTWatch Quarterly,
Volume 3(Number 1), February 2007. http://www.ctwatch.org/quarterly/

articles/2007/02/.

[19] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis,
Parry Husbands, Kurt Keutzer, David A. Patterson, William Lester Plishker,
John Shalf, Samuel Webb Williams, and Katherine A. Yelick. The Landscape
of Parallel Computing Research: A View from Berkeley. Technical Report
UCB/EECS-2006-183, EECS Department, University of California, Berkeley,
Dec 2006.

[20] Thomas Sterling, Peter Kogge, William J Dally, Steve Scott, William Gropp,
David Keyes, and Pete Beckman. Multi-core for HPC: breakthrough or break-
down? In SC ’06: Proceedings of the 2006 ACM/IEEE conference on Super-
computing, page 73, New York, NY, USA, 2006. ACM.

[21] William Gropp. Half full or half empty? SC06 (International Conference for
High Performance Computing, Networking, Storage and Analysis).

[22] M. D. Hill and M. R. Marty. Amdahl’s law in the multicore era. Computer,
41(7):33–38, 2008.

[23] The Cisco QuantumFlow Processor: Cisco’s Next Generation Network Proces-
sor.



Bibliography 143

[24] Dongarra J., Gannon D., G. Fox, and Kennedy K. The Impact of Multicore
on Computational Science Software. CTWatch Quarterly, Volume 3(Number
1), February 2007. http://www.ctwatch.org/quarterly/articles/2007/

02/the-impact-of-multicore-on-computational-science-software/.

[25] Manferdelli John L. The Many-Core Inflection Point for Mass Market Computer
Systems. CTWatch Quarterly, Volume 3(Number 1), February 2007. http:

//www.ctwatch.org/quarterly/articles/2007/02/.

[26] Turek Dave. High Performance Computing and the Implications of Multi-
core Architectures. CTWatch Quarterly, Volume 3(Number 1), February 2007.
http://www.ctwatch.org/quarterly/articles/2007/02/.

[27] John Shalf and David Patterson. Confronting Parallelism: The View from
Berkeley, 2007. http://www.hpcwire.com/features/17897779.html.

[28] John Owens. Streaming architectures and technology trends. In SIGGRAPH
’05: ACM SIGGRAPH 2005 Courses, page 9. ACM, 2005.

[29] Cray XD1 Datasheet. www.cray.com.

[30] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and
D. Shippy. Introduction to the cell multiprocessor. IBM J. Res. Dev.,
49(4/5):589–604, 2005.

[31] Synergistic Processor Unit Instruction Set Architecture. http://www-128.ibm.
com/developerworks/power/cell/documents.html.

[32] T. Chen, R. Raghavan, J. N. Dale, and E. Iwata. Cell Broadband Engine
Architecture and its first implementation: a performance view. IBM J. Res.
Dev., 51(5):559–572, 2007.

[33] Michael Kistler, Michael Perrone, and Fabrizio Petrini. Cell Multiprocessor
Communication Network: Built for Speed. IEEE Micro, 26(3):10–23, 2006.

[34] C. R. Johns and D. A. Brokenshire. Introduction to the Cell Broadband Engine
Architecture. IBM J. Res. Dev., 51(5):503–519, 2007.

[35] PowerPC Architecture book: Book III: PowerPC Operating Environment Ar-
chitecture. International Business Machines Corporation (IBM).

[36] Cell Broadband Engine Programming Handbook Including the PowerXCell 8i
Processor. International Business Machines Corporation (IBM), 2008.

[37] IBM Cell Broadband Engine Architecture. http://www-128.ibm.com/

developerworks/power/cell/documents.html.



144 Bibliography

[38] Richard Walsh, Earl C. Joseph, Steve Conway, and Jie Wu. With Its New
PowerXCell 8i Product Line, IBM Intends to Take Accelerated Processing into
the HPC Mainstream, 2008.

[39] A. K. Nanda, J. R. Moulic, R. E. Hanson, G. Goldrian, M. N. Day, B. D.
D’Arnora, and S. Kesavarapu. Cell/B.E. blades: building blocks for scalable,
real-time, interactive, and digital media servers. IBM J. Res. Dev., 51(5):573–
582, 2007.

[40] Programming the Cell Broadband Engine Architecture: Examples and Best
Practices. IBM Redbooks.

[41] Kevin O’Brien, Kathryn O’Brien, Zehra Sura, Tong Chen, and Tao Zhang.
Supporting OpenMP on Cell. Int. J. Parallel Program., 36(3):289–311, 2008.

[42] M. Ohara, H. Inoue, Y. Sohda, H. Komatsu, and T. Nakatani. MPI Microtask
for programming the Cell Broadband Engine Processor. IBM Syst. J., 45(1):85–
102, 2006.

[43] Pramod K. Bhatotia, Sanjeev K. Aggarwal, and Mainak Chaudhuri. Compiling
Irregular Accesses for the Cell Broadband Engine.

[44] A. E. Eichenberger, J. K. O’Brien, K. M. O’Brien, P. Wu, T. Chen, P. H.
Oden, D. A. Prener, J. C. Shepherd, B. So, Z. Sura, A. Wang, T. Zhang,
P. Zhao, M. K. Gschwind, R. Archambault, Y. Gao, and R. Koo. Using ad-
vanced compiler technology to exploit the performance of the Cell Broadband
Engine architecture. IBM Syst. J., 45(1):59–84, 2006.

[45] Alexandre E. Eichenberger, Kathryn O’Brien, Kevin O’Brien, Peng Wu, Tong
Chen, Peter H. Oden, Daniel A. Prener, Janice C. Shepherd, Byoungro So,
Zehra Sura, Amy Wang, Tao Zhang, Peng Zhao, and Michael Gschwind. Op-
timizing Compiler for the CELL Processor. In PACT ’05: Proceedings of the
14th International Conference on Parallel Architectures and Compilation Tech-
niques, pages 161–172, Washington, DC, USA, 2005. IEEE Computer Society.

[46] Alastair Donaldson, Paul Keir, and Anton Lokhmotov. Compile-time and run-
time issues in an auto-parallelisation system for the Cell BE processor. In Pro-
ceedings of the 2nd Workshop on Highly Parallel Processing on a Chip (HPPC),
Lecture Notes in Computer Science. Springer, 2008.

[47] Yuan Zhao and Ken Kennedy. Dependence-based Code Generation for a CELL
processor. In Proceedings of the 19th International Workshop on Languages
and Compilers for Parallel Computing (LCPC 2006). Springer-Verlag, Lecture
Notes in Computer Science, 2006.



Bibliography 145

[48] Chen-Yong Cher and Michael Gschwind. Cell GC: using the Cell synergistic
processor as a garbage collection coprocessor. In VEE ’08: Proceedings of the
fourth ACM SIGPLAN/SIGOPS international conference on Virtual execution
environments, pages 141–150, New York, NY, USA, 2008. ACM.

[49] F. Belletti, G. Bilardi, M. Drochner, N. Eicker, Z. Fodor, D. Hierl, H. Kaldass,
T. Lippert, T. Maurer, N. Meyer, A. Nobile, D. Pleiter, A. Schaefer, F. Schifano,
H. Simma, S. Solbrig, T. Streuer, R. Tripiccione, and T. Wettig. QCD on the
Cell Broadband Engine, 2007.

[50] Khaled Z. Ibrahim and Francois Bodin. Implementing Wilson-Dirac operator
on the Cell Broadband Engine. In ICS ’08: Proceedings of the 22nd annual
international conference on Supercomputing, pages 4–14, New York, NY, USA,
2008. ACM.
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