

Acknowledgments

First of all, | would like to give a big and deep “thank you” to everyone who helped me during this
Journey of my life. Going to Germany {first time outside Portugal) and integrating myself in the IBM lab
in Bdblingen would not have been so easy without the help of everyone in the Cell/B.E. Test Team. Very
special thanks to: Mijo Safradin and Rui Machado, who helped me to integrate; Dr. Werner Kriechbaum,
whose contribution and help during the development of this thesis | cannot quantify; Dr. Salvador
Abreu, who made this journey come true; Valério Valério, for downloading some articles | needed;
Thomas Bodner, Johannes Bodner and Stephanie Bollinger, for their contribution to the proof reading
and Hilario Fernandes, for helping me with the paper stuff at the university while | was in Germany.

And at last, but not least, thanks to my family who always have supported me, no matter what.

Contents

1 Introduction
2 Background

2.11

21.2
2121
2.1.2.2
2.1.23

213
2.13.1
2.13.2

2133

214

2141

2.14.2

215

2.2 Visual Programming

221

2.2.2
2221

2.23
2231
223.2
2233

2234
2235
224

1

3

2.1 Cell / Heterogeneous Multi-core Environment 3
Cell/B.E. Overview 3
Hardware Specification 4
Power Process Element (PPE) 4
Synergistic Processor Element (SPE) 4

Element Interconnect Bus (EIB) 5
Improving Performance 5
Divide and Conquer (Parallelizing) 6
Compute as much as possible at a time (SIMDimizing) 7

2.13.2.1 Scalar VS Vector SIMD: A code example 8
Use Time Wisely (Avoiding Stalls) 9
Programming Overview 9
Different Processors, Different Compilers 9
2.1.4.1.1 C-language Intrinsics 10
2.1.4.1.2 Porting SIMD code from the PPE to the SPEs 10
Different Processors, Different Address Spaces 11

2.1.4.2.1 Parallel Programming: A Taxonomy 12
Summary 13

14

Overview 14

The origins of Visual Programming 14

The Visual Basic Phenomenon 15
Deflnitions 16
Programming 16
interpretive VS Compiled 16

Visual Programming 16
2.2.3.3.1 Visual Programming Language 17
2.2.3.3.2 Visual Programming Environment 17
Program Visualization 17
Example-Based Programming 18
Advantages of Using Graphics 18

Some principles for visual language design 19

225

il

2.2.6 Application Examples

2.26.1 Prograph

20
20

2.2.6.1.1 Related Work

2.2.6.1.1.1 Spreadsheets

2.2.6.1.1.2 Limitations

21
21
22

22

2.2.6.2 LabVIEW
2.2.6.2.1 Related Work

2.2.6.2.1.1 Survey

2.2.6.2.1.2 Limitations

23
23
24

2263 Java Town

24

2.2.6.3.1 Limitations

2.2.64 Device Independent Generation of User Interfaces
2.2.6.4.1 Limiations

26

27

2.2.7 Summary

23 OpenDX
231 OpenDX Overview

23.2 Data Model

233 Visual Program Editor

234 Data Explorer Visualization

27
28
29
29

30
32

2341 Image Window

2.34.2 Control Panels

2343 Display Module

235 Module Builder

2.3.6 OpenDX Installation in Cell/B.E.
Visualization in Cell/B.E.

3.1 Writing Modules for OpenDX

311 Defining Input/Output

3.1.2 Module Description File

313 Implementing the Module

3.14 Compiling and Running

315 Hello World Example

3.151 Hello Input/Output Definition

3.15.2 Hello mdf

3.153 Hello implementation
3154 Compiling and Running the Hello Example

3.155 Visual Program Example Using Hello

3.2 Cell/B.E. Applications in OpenDX

41
41
42

321
3211
3.2.1.2

3213
3214
3.2.2
3.2.21
3222
3223

3.224
3225
3.2.2.6
3.23
3.23.1
3.23.2
3233
3.23.4
3.235
3.24
3.24.1
3.24.2
3243
3.244
3.245
3.2.4.6
3.25
3.25.1
3.25.2

Hello World 45

Hello mdf 45

Hello Implementation 45
3.2.1.2.1 PPU Hello Implementation 45
3.2.1.2.2 SPU Hello Implementation 48
Compiling and Running Hello 49

Hello implementation Notes 49

Add 50
Double Buffering 50

Add mdf 51

Add Implementation 51
3.2.23.1 Add Shared Structure 51
3.2.2.3.2 Auxiliary Functions 52
3.2.2.3.2.1 Auxiliary PPU Functions 52
3.2.2.3.2.2 Auxiliary SPU Functions 53
3.2.2.3.3 PPU Add Implementation 53
3.2.2.3.4 SPU Add implementation 56
Compiling and Running Add 58

Add Implementation Notes 62

Add Performance Study 62

Add2 64

Add2 mdf 64

Add2 implementation 65
Compiling and Running Add2 65

Add2 Implementation Notes 67

Add2 Performance Study 67

Fast Fourier Transform in the West (FFTW) 68
installing the libFFTW 68

FFTW mdf 68

FFTW implementation 69
Compiling and Running FFTW 71

FFTW Implementation Notes 72

FFTW Performance Study 73
Gaussian Blur 74
Image Processing in DX 74
Gaussian mdf 75
Gaussian implementation 75

3.253

iv

3.254 Compiling and Running Gaussian

78

3.25.5 Gaussian Implementation Notes 80
3.2.5.6 Gaussian Performance Study 80

3.26 Extract Sound Data - A Different Example 82

3.3 Improving OpenDX Performance. 85
331 GradientCell 85
33.11 GradientCell mdf 85
33.1.2 GradientCell Implementation 86
3.3.1.2.1 GradientCell Shared Structure 86

3.3.1.2.2 PPU GradientCell Implementation 87

3.3.1.23 SPU GradientCell Implementation 89
3.3.1.23.1 1-Dinput Field 89

33.1.2.3.2 2-Dinput Field 90

3313 Compiling and Running GradientCell 91
33.14 GradientCell Implementation Notes 92
33.15 GradientCell Performance Study 92

4 Conclusion 94
4.1 Future Work 94
Bibliography 96
Glossary 99

List of Figures

Figure 2-1 Cell Broadband Engine Overview

Figure 2-2 Processing a sum in a integer array with 8000000 positions
Figure 2-3 Processing the same sum as last figure, but in parallel

N o0 w

Figure 2-4 Storage and domain interfaces
Figure 2-5 Sutherland's diagram for calculating a square root

Figure 2-6 Prograph database operation Method implementation

Figure 2-7 A Spreadsheet with Interface Objects

Figure 2-8 Screenshot of a simple LabVIEW program

Figure 2-9 Full JavaTown Screen Layout

Figure 2-10 Transcoder architeture

Figure 2-11 A general view of visual programming environment to multi-device

Figure 2-12 OpenDX main features

Figure 2-13 Example of a Field Object

Figure 2-14 Part of the DX visual program for the USA Census visualization

Figure 2-15 Details of the module MapOnStates

Figure 2-16 DX showing the distribution of American population

Figure 2-17 Control Panel for the USA Census program

Figure 2-18 DX Module Builder

11

20
21
23

26
27
29
30
31
32
33

35

Figure 3-1 DX Startup window

Figure 3-2 Hello visual program
Figure 3-3 DX String module

Figure 3-4 Output of the Hello visual program
Figure 3-5 Double buffering scheme

a2
a3
a3

50

59

Figure 3-6 Visual program using the Add module
Figure 3-7 Construct module expanded

59

Figure 3-8 Integer module expanded

Figure 3-9 Message window of the Add visual program

Figure 3-10 QS22 Add Module Performance

Figure 3-11 PS3 Add Module Performance

Figure 3-12 Visual program using the Add2 module

61
63

Figure 3-13 Message window of the Add2 visual program
Figure 3-14 QS22 Add2 Module Performance

Figure 3-15 Visual program using the FFTW module
Figure 3-16 Output display of the Visual program in Figure 3-15

Figure 3-17 QS22 FFTW Module Performance

Figure 3-18 Pixel order in DX images

Figure 3-19 Visual program using the Gausslian and Converter modules
Figure 3-20 Display output 1 from the visual program in Figure 3-19

Figure 3-21 Display output 2 from the visual program in Figure 3-19

NE28&G

gs 3 d

Figure 3-22 Display output 3 from the visual program in Figure 3-19
Figure 3-23 QS22 Gausslan Module Performance

Figure 3-24 QS22 Gaussian Module Performance (DX Improved)
Figure 3-25 Visual program for sound data visualization

Figure 3-26 Visual program to extract data from a sound file

Figure 3-27 Display output from the visual in Figure 3-25

EEBRRBI

vi

Figure 3-28 Computation of a gradient in a 1-D field

Figure 3-29 Computation of a Gradient in a 2-D field

Figure 3-30 Visual program using the GradientCell module

Figure 3-31 Q522 GradientCell Module Performance

Figure 3-32 QS22 GradientCell Module Performance (2D input)

vii

R88

92
93

List of Tables

Table 2-1 PPE and SPE intrinsic classes

Table 2-2 Four design spaces

Table 2-3 Algorithm structures

Table 2-4 Supporting structures for code and data

Table 3-1 Module Description File (mdf)

10

12

38

Abstract

it is known that nowadays technology develops really fast. New architectures are created in order to
provide new solutions for different technology limitations and problems. Sometimes, this evolution is
pacific and there is no need to adapt to new technologies, but things also may require a change every
once in a while.

Programming languages have always been the communication bridge between the programmer and the
computer. New ones keep coming and other ones keep improving in order to adapt to new concepts
and paradigms. This requires an extra-effort for the programmer, who always needs to be aware of
these changes.

Visual Programming may be a solution to this problem. Expressing functions as module boxes which
receive determined input and return determined output may help programmers across the world by
giving them the possibility to abstract from specific low-level hardware issues.

This thesis not only shows how the Cell/B.E. (which has a heterogeneous multi-core architecture)
capabilities can be combined with OpenDX (which has a visual programming environment), but also
demonstrates that it can be done without losing much performance.

Keywords: Cell, Visual Programming, OpenDX

Resumo

Programacgio visual numa arquitectura multi-processador
heterogénea

E do conhecimento geral de que, hoje em dia, a tecnologia evolui rapidamente. Sdo criadas novas
arquitecturas para resolver determinadas limitagdes ou problemas. Por vezes, essa evolugdo é pacifica e
n3o requer necessidade de adaptagHo e, por outras, essa evolugdo pode implicar mudangas.

As linguagens de programacgo sd3o, desde sempre, o principal elo de comunicag3o entre o programador
e o computador. Novas linguagens continuam a aparecer e outras estdo sempre em desenvolvimento
para se adaptarem a novos conceitos e paradigmas. Isto requer um esfor¢o extra para o programador,
que tem de estar sempre atento a estas mudangas.

A Programag3o Visual pode ser uma solu¢o para este problema. Exprimir fungBes como mddulos que
recebem determinado input e retornam determinado output poderd ajudar os programadores
espalhados pelo mundo, através da possibilidade de thes dar uma margem para se abstralrem de
pormenores de baixo nivel relacionados com uma arquitectura especffica.

Esta tese n3o s6 mostra como combinar as capacidades do Cell/B.E. (que tem uma arquitectura muiti-
processador heterogénea) com o OpenDX (que tem um ambiente de programagdo visual), como
também demonstra que tal pode ser feito sem grande perda de performance.

1 Introduction

Computer science only indicates the retrospective omnipotence of our technologies. in other words, an
infinite capacity to process data (but only data -- i.e. the already given) and In no sense a new vision.
With that sclence, we are entering an era of exhaustivity, which Is also an era of exhaustion. — Jean
Baudrillard (1929 - 2007)

it is known that nowadays technology develops really fast. This evolution brings more and more
computation power, but this power is useless if we do not know how to use it. Cell Broadband Engine
(Cell/B.E.) is a heterogeneous multi-core architecture proposed by Sony, Toshiba and 1BM for computing
intensive tasks. The idea behind its creation is to allow improvement of applications performance, by
computing different tasks in different cores.

New technologies also bring new ways of thinking. Breaking a limitation usually implies breaking a
paradigm, and new paradigms offer new solutions, which may solve many problems.

However, adapting to new concepts Is not so easy, especially if we are strongly connected to the “old”
ones. Cell/B.E. is not any exception and developing new applications for it can be quite challenging.

On the other hand, there are applications already developed for “older” architectures that help people
in their daily routines. OpenDX (DX) is an open-source application for data visualization and it goes in the
direction of what Jean Baudrillard was defending. Its goal is to grab/process data and give a new insight
into it, a meaning.

Plus, DX uses an Innovative way to manipulate the data by the use of a Visual Programming
Environment. This approach is very high-level and DX users do not need to care about any low-level
issues related with the architecture where the application is running.

So, if we can run a Cell/B.E. application on DX we can win three things:

e More computing power
e Ability to keep seeing the meaning of data
e No need to change any paradigm for DX users

The purpose of this thesis is to join the capabilities of Cell/B.E. with the power of data visualization and
the simplicity of visual programming. This means not only running a Cell/B.E. appiication on DX, but aiso
showling how performance can be improved in an aiready implemented moduie for DX.

There are two main challenges when trying to fulfii this task: the first one is how to embed a Celi/B.E.
application In DX and the second Is how to improve the performance of an already implemented
moduie.

This thesis is organized as follows:

e Chapter 2: Background provides background information about the three main concepts in this
thesis: Cell/B.E., Visual Programming and OpenDX.

e Chapter 3: Visualization in Cell/B.E. introduces aii the practicai work involved and puts together
the three main concepts exposed in chapter 2.

e Chapter 4: Conclusion summarises the entire thesis and discusses about the encountered
problems and limitations during the development of the practical work. it has one sub-chapter
which shows some ideas for future work.

¢ Bibliography contains all the reference material.

® Glossary contains a list of terms and thelr definitions.

2 Background

2.1 Cell / Heterogeneous Multi-core Environment

In this chapter the basic concepts about the Cell/B.E. (Arevalo, et al. 2008) are described: hardware,
capabilities and programming environment.

2.1.1 Cell/B.E Overview

The Cell/B.E. processor is the first implementation of a new muitiprocessor family conforming to the Cell
Broadband Engine Architecture (CBEA). The CBEA and the Cell/B.E. processor are the result of a
collaboration between Sony, Toshiba, and IBM known as STI, formally started in early 2001.

The basic configuration is a muiti-core heterogeneous chip that was designed to improve performance
in computing. Figure 2-1 shows an overview of the Cell/B.E. Its main components are:

e One main processor: Power Processor Element (PPE)

e Eight Identical computing-intensive processors: Synergistic Processor Elements (SPES)
e One Memory Interface Controiler (MIC)

e One main connector between all parts: Element interconnect Bus (EIB)

e Two I/O Interfaces

VoD SPE1 | | SPE3 | | SPE5 | | SPET

- ¥
g
e o = B
(O g |1 UlioF o ik Flaxiis
1 X0 «» S T I O O 1
'-r—a ------- - - .'.-n:*ﬂ-.-",‘ﬂ"""",{"‘g
RAM
SPED | [SPE2 | |SPEA | | SPEG
X0 Rambus XDR KO (XIO) gl

Figure 2-1 Cell Broadband Engine Overview

The particular concept about its multi-cores is related to the fact that the PPE Is a processor mainly
designed to control threads and the SPEs are mainly designed for computing-intensive tasks.

This new concept not only opens new doors in application performance improvement but also breaks
some of the traditional paradigms in programming. The next three main concepts must be kept in mind
while Cell/B.E. Is Introduced: computing parallelization, DMA (Direct Memory Access) transfers and
Vector SIMD (Single Instruction Multiple Data).

2.1.2 Hardware Specification

Figure 2-1 shows a high-level block diagram of the Celi/B.E. processor hardware. There is one PPE and
eight identical SPEs. All processor elements are connected to each other and to the on-chip memory and
i/O controliers by the memory-coherent element interconnect bus (EiB).

PPE, SPE and EIB, the main components of the processor, are described beiow.

2.1.2.1 Power Process Element (PPE)

The PPE contains a 64-bit, dual-thread PowerPC Architecture RISC core and supports a PowerPC virtual-
memory subsystem. it has 32 KB level-1 (L1) instruction and data caches and a 512 KB level-2 (L2)
unified (instruction and data) cache. it is intended primarily for controi processing, running operating
systems, managing system resources, and managing SPE threads. it can run existing PowerPC
Architecture software and is well-suited to executing system control code. The instruction set for the
PPE is a version of the PowerPC instruction set. it inciudes the Vector/SIMD multimedia extensions and
associated C/C++ Intrinsic extensions.

2.1.2.2 Synergistic Processor Element (SPE)

The eight identical SPEs are singie-Instruction, muitipie-data (SIMD) processor elements that are
optimized for data-rich operations allocated to them by the PPE. Each SPE contalns a RISC core, 256 KB
software-controlled LS for instructions and data, and a 128-bit, 128-entry unified register file. The SPEs
support a special SIMD instruction set and a unique set of commands for managing DMA transfers and
Inter-processor messaging and control. SPE DMA transfers access main storage using PowerPC effective
addresses. As in the PPE, SPE address transiation Is governed by PowerPC Architecture segment and
page tables, which are loaded into the SPEs by privileged software running on the PPE. The SPEs are not
intended to run an operating system.

The more significant difference between the SPE and PPE iies in how they access memory. The PPE
accesses main storage (the effective-address space) with load and store instructions that move data
between main storage and a private register file, the contents of which may be cached. PPE memory
access [s like that of a conventional processor technology, which is found on conventional machines.

The SPEs, In contrast, access main storage with direct memory access (DMA) commands that move data
and instructions between main storage and a private local memory, called a local store or iocal storage
(LS). The SPE instruction set accesses its private LS rather than shared main storage and the LS has no
associated cache. This 3-ievel organization of storage (register file, LS, main storage), with asynchronous
DMA transfers between LS and main storage, is a radical break from conventionai architecture and

programming models because it explicitly parallelizes computation with the transfers of data and
instructions that feed computation, and stores the resuits of computation in main storage.

An SPE controls DMA transfers and communicates with the system by means of channels that are
implemented in and managed by the SPE’s memory flow controller (MFC). The channels are
unidirectional message-passing interfaces.

The PPE and other devices in the system, including other SPEs, can also access this MFC state through
the MFC’'s memory-mapped I/O (MMIO) registers and queues, which are visible to software in the main-
storage address space.

2.1.2.3 Element Interconnect Bus (EIB)

The EIB is the communication path for commands and data between aii processor elements in the
Cell/B.E. processor and the on-chip controllers for memory and i/O. The EIB supports full memory-
coherent and SMP operations. Thus, a Celi/B.E. processor is designed to be grouped coherently with
other Celi/B.E. processors to produce a cluster.

The EIB consists of four 16-byte-wide data rings. Each ring transfers 128 bytes (one PPE cache line) at a
time. Processor elements can drive and recelve data simuitaneously. Figure 2-1 shows the unit ID
numbers of each element and the order in which the elements are connected to the EiB. The connection
order Is important to programmers who are seeking to minimize the latency of transfers on the EIB. The
iatency Is a function of the number of connection hops, so that transfers between adjacent elements
have the shortest latencies, and transfers between elements separated by six hops have the longest
latencies.

The internal maximum bandwidth of the EIB is 96 bytes per processor-ciock cycie. Muitiple transfers can
be in process concurrently on each ring, inciuding more than 100 outstanding DMA memory transfer
requests between main storage and the SPEs in either direction. These requests might aiso include SPE
memory to and from the I/O space. The EIB does not support any particuiar quality-of-service (QoS)
behaviour other than to guarantee forward progress.

However, a resource aliocation management (RAM) facility, shown in Figure 2-1, resides in the EIB.
Privileged software can use it to regulate the rate at which resource requesters (the PPE, SPEs, and |/O
devices) can use memory and i/O resources.

2.1.3 Improving Performance

The Cell/B.E. is mainly designed to improve performance in computation, but that improvement does
not come up by magic. if a performance improvement is desired for some application, some changes to
its structure must be made.

2.1.3.1 Divide and Conquer (Parallelizing)

The first thing to keep in mind is that SPEs must be mainly used for computing-intensive tasks. The
programmer must look for parts in the code responsible for this and see if it can be separated into
“independent” tasks. For example, assuming that there is an integer array in the code with 8000000
positions where each position must be incremented by one, which solution is faster: do 8000000
iterations summing one in each position of the array or do the same operation in 1000000 iterations by
summing 8 positions per iteration? Figure 2-2 and Figure 2-3 illustrate this example:

Old Way

0 1 ol 1999@9
Figure 2-2 Processing a sum in a integer array with 8000000 positions

Parallel

PE 1) E2
12 -) an 7 2
12
999999
20
1000000
n.
- ‘m‘ m‘,
?
o .. - om0 1000000 - -~ 1999999 -
—} soo0000
— &
SP - m— | gaoso0
‘ -
45 - B3 3 11
600000! 70000p - f -~ ! 000000
n
1 -1,
n,
2 34 . - 12
6000000 - - 6999899 7000000 .. -~ JoUS90

Figure 2-3 Processing the same sum as last figure, but in parallel

Figure 2-2 shows the “traditional” approach, which means incrementing the values in the array one-by-
one. Figure 2-3 shows the computation for the same array spread inside 8 processors (only the first two
and the last two SPEs are shown), and each one processes 1000000 positions.

Theoretically, the parailelized version wili be 8 times faster since the 8000000 positions are computed in
the same amount of time needed to compute 1000000 positions. This Increase of performance is purely
theoretical because Cell/B.E. requires some time to prepare the structures and start the parallelized
threads (among other Issues).

2.1.3.2 Compute as much as possible at a time (SIMDimizing)

Another improvement that Cell/B.E. offers Is the ability to use SIMD (Single Instruction Multiple Data)
instructions. SPEs have special vector registers with 128 bits iength that can handle:

WLooONOOTVNAWNE

WoOoONOOTUVEAEWNER

e Sixteen 8-bit values, signed or unsigned

e Eight 16-bit values, signed or unsigned

e Four 32-bit values, signed or unsigned

e Four single-precision IEEE-754 floating-point values
e Two double-precision IEEE-754 floating-point values

Basically, this means that each SPE can handle at least 2 pleces of data at a time.

2.1.3.2.1 Scalar VS Vector SIMD: A code example

SPEs can handle both vector and scalar codes, however vector code is a better solution because it can
process 2 (or more) pieces of data at a time, and if we consider the parallelization of all the computation
across 8 SPEs (for example), that means 16 pieces of data can be computed at a time (8 SPEs * 2 pieces
of data).

The time needed to start a SPE thread and to prepare the structures needs to be taken into account, but
using the full Cell/B.E. capabilities still measurably improves the performance of an application.

Example 2-1 shows a sample of a scalar C code which sums two arrays with four integers and puts the
result on a third array:

Example 2-1 Summing 2 arrays with 4 elements (scalar version)

#include <stdio.h>
int main(void)
{
int a[4] = {2, 2, 2, 2}, b[4] = {10, 20, 30, 40}, c[4], count;
for (count 0; count < 4; count++)
c[count] a[count] + b[count]:
printf("c[4] = {%d, %d, %d, %d}\n",c[0],c[1l],c[2],c[3]);
return 0;

o

}

The computation for this program needs four cycles to complete. Example 2-2 shows how to perform the
same computation in a SPE with only one cycle:

Example 2-2 Summing 2 vectors with 4 elements (SIMD version)

#include <stdio.h>
#include <spu_intrinsics.h>
int main(void)
{
vec_int4 a = {2, 2, 2, 2}, b = {10, 20, 30, 40}, c;
c = spu_add(a,b};
printf("c[4] = {%d, %d, %d, %d}\n",c[0],c[1l],c[2],c[3]);
return 0;

}

This program example produces exactly the same output as the one in the Example 2-1. The type
vec_inta is used to declare vectors with four 32-bit signed integers, and the spu_add function is the
intrinsic used which performs the assembler instruction responsible to add the four integers.

There is no direct support in C for the SPE instruction set, but a series of additional commands called
“intrinsics” can be used (IBM 2007). Intrinsics allow the programmer to avoid writing assembler code
and SPE C intrinsics are the ones most used to program for the SPEs. More details about C language
intrinsics can be found in chapter 2.1.4.1.1 C-Language Intrinsics.

2.1.3.3 Use Time Wisely (Avoiding Stalls)

It is true that SPEs offer a great ability for computing-intensive tasks, but the programmer must know
that the computed data is not available on-the-fly in the SPE. The data must be copied from the main
store to the local SPE store via DMA transfers (see chapter 2.1.4.2 Different Processors, Different
Address Spaces). What must be kept in mind in this sub-chapter is that this process of copying must be
planned. If the computation is stopped because the SPE Is waiting for the data, then we are not taking
advantage of this architecture.

One possible approach is to apply for two sets of data, compute the first one arriving and once it is
done, apply for the third set and start computing the second set (which must have arrived meanwhile).
This process is called “Double Buffering” and is introduced in chapter 3.2.2.1 Double Buffering along
with the practical work.

214 Programming Overview

Programming for Cell/B.E. can be quite challenging because its architecture requires a different way of
thinking (Blachford 2006). One important thing to know is that while Cell/B.E. offers huge potential in
computing performance, it does not come free. Do not expect to get a magic speedup from existing
legacy code. If code optimized for a regular PowerPC processor (or any other compatible architecture) is
Jjust recompiied, it will only run on the PPE and may actuaily run slower.

Cell/B.E. is optimized for certain types of code and not everything will be able to take advantage of it
immediately. The vast majority of code running on a Cell/B.E. is “control” code running inside the PPE,
which does not invoive any different or new paradigm in programming.

SPE development may be more complex, but performance sensitive code is usually only a tiny
percentage of the code that runs. A iot of the code in an appliication is just glue code tying things
together. An exampie for this is GUI (Graphical User Interface) code which mostly consists of calls to
perform a function when a gadget Is ciicked. This is shown in chapter 3 Visualization in Cell/B.E. where
the developed work is introduced. Most of the code is mainly responsibie to guarantee that the input is
correct (and launch exceptions in case it is nat), in contrast with the computationat part, which Is oniy
responsible for the computing intensive tasks.

2.1.4.1 Different Processors, Different Compilers

Because the existing differences between the PPE and the SPE, there was a need to create different
compiiers for these processors.

Like shown before in chapter 2.1.4 Programming Overview, PPE (and its compiler) can handie all the
code optimized for regular architectures but, in order to improve performance, some of this code must
be ported to the SPE side where it is treated differently.

it is true that the programmer can use the same programming language for the PPE and the SPEs (in this
case, language C), but it does not mean that programming for both sides is the same thing. This happens
because the SPEs are mainly optimized for SIMD instructions, in contrast to the PPE.

All the practical work introduced in chapter 3 Visualization in Cell/B.E. shows how to compile and run
the code for the different implemented modules.

21411 C-Language Intrinsics

The intrinsics are essentially in-line language instructions in the form of C-language function calls. They
provide the programmer with explicit control over the Vector/SIMD and SPU Instructions without
directly managing registers.

In a specific instruction set, most intrinsic names use a standard prefix in thelr mnemonic, and some
intrinsic names incorporate the mnemonic of an associated assembly-ianguage instruction. For example,
the Vector/SIMD that impiements the add Vector/SIMD assembly-language instruction Is named
vec_add, and the SPU intrinsic that implements the stop SPU assembly-language instruction is named
spu_stop.

The PPE's Vector/SIMD instruction set and the SPE's SPU instruction set both have extensions that
define somewhat different sets of intrinsics, but they ali fali into four types of intrinsics. These are listed
in Tabie 2-1 (1IBM 2007). Aithough the intrinsics provided by the two instruction sets are similar in
function, their naming conventions and function-cail forms are different.

Table 2-1 PPE and SPE intrinsic classes

Types of Intrinsic | Definition PPE | SPE
Speclific One-to-one mapping to a single assembly-language instruction. X
Generic Map to one or more assembiy-language instructions, depending
X
on types of input parameters.
Composite Constructed from a sequence of Specific or Generic intrinsics. X
Predicates Evaluate SIMD conditionals. X

21412 Porting SIMD code from the PPE to the SPEs

For some programmers, it is easler to write SIMD programs by writing them first for the PPE, and then
porting them to the SPEs. This approach postpones some SPE-related considerations iike dealing with
the local store size, data movements, and debugging untii after the port. The approach can also allow
partitioning of the work into simpler (perhaps more digestibie) steps on the SPEs.

Alternatively, experienced Celi/B.E. programmers may prefer to skip the Vector/SIMD Muitimedia
Extension coding phase and go directly to SPU programming. In some cases, SIMD programming can be
easier on an SPE than the PPE because of the SPE’s unified register fiie.

10

e The Cell/B.E. Memory Fiow Controller (MFC) supports naturally aligned transfer sizesof 1, 2, &,
or 8 bytes, and multiples of 16 bytes, with a maximum transfer size of 16KB;

e Peak performance can be achieved when both the EA and LSA (Local Storage Address) are 128-
byte aligned and the size of the transfer is an even muitiple of 128 bytes;

e DMA transfers should be SPE-initiated and be overlapped with computation (when possible) to
avoid stalls;

e And, SPE’s Local Store has only 256 KB for data and code.

Assuming that the programmer wants to improve performance (using Cell/B.E.) on some algorithm that
is already optimized for a regular architecture, the second and third points can ke quite challenging. The
programmer, most probably, will have to change the structures and the algorithm in the computational
part in order to take advantage of the Cell/B.E. Not only should the parallelization of it be considered,
but also the vector SIMD capabilities.

Concerning the data sharing and dependencies, a taxonomy design Is introduced in the chapter below to
give a better idea about parallel programming.

2.1.4.21 Parallel Programming: A Taxonomy

In Patterns for Parallel Programming (Mattson, Massingill and Sanders 2004) there is a definition of a
taxonomy of parallel programming models. First they define four “spaces” (described in Table 2-2)
which the application programmer must visit.

Table 2-2 Four design spaces

Space Description

Finding concurrency Find parallel tasks and group and order them

Algorithm structure _Organize the tasks in processes

Supporting structure Code structures for tasks and data

Implementation tow level mechanisms for managing and synchronizing execution
mechanisms threads as well as data communication

In the algorithm space It Is proposed a look at three different ways of decomposing the work, each with
two modalities. This leads to six major algorithm structures, which are described in Table 2-3.

Table 2-3 Algorithm structures

Organization principle Organization subtype | Algorithm structure

By tasks Linear Task parallelism
Recursive Divide and conquer

By data decomposition Linear Geometric decomposition
Recursive Tree

By data flow Linear Pipeline
Recursive Event-based coordination

Task parallelism occurs when muitiple independent tasks can be scheduled in parallel. The divide and
conquer structure Is applied when a problem can be recursively treated by soiving smaller sub-
probiems. Geometric decomposition is common when a partial differential equation that has been
made discrete on a 2-D or 3-D grid is tried to be solved, and grid regions are assigned to processors.

12

As for the supporting structures, Mattson et al. identified four structures for organizing tasks and three
for organizing data. They are given side by side in Table 2-4.

Table 2-4 Supporting structures for code and data

Code structures Data structures

| Single Program Muitiple Data (SPMD) Shared data
Master/worker Shared queue
Loop parallelism Distributed array
Fork/join

SPMD is a code structure that is well-known to MPI {Message Passing Interface) programmers. Although
MPi does not impose the use of SPMD, this is a frequent construct. Master/worker is sometimes calied
“bag of tasks” when a master task distributes work elements independently of each other to a pool of
workers. Loop paralielism Is a low-level structure where the iterations of a ioop are shared between
execution threads.

Fork/join Is a model where a master execution thread cals {fork) muitipie paraiiel execution threads and
walits for their compietion (join) before continuing with the sequential execution.

Shared data refers to the constructs that are necessary to share data between execution threads.
Shared queue is the coordination among tasks to process a queue of work items. Distributed array
addresses the decomposition of multidimensional arrays into smalier sub-arrays that are spread across
muitipie execution units.

2.1.5 Summary

An overview of Cell/B.E. was shown in this chapter.

A new architecture concept with different processors specialized for different tasks and the existence of
main-storage and local-storage are the most important concepts to keep in mind when working with
Ceii/B.E.

This different architecture made it possible to break three main performance walis: power, memory and
frequency. The power wall is broken by using different cores specialized for different tasks (PPE handies
control tasks and SPE handles compute intensive-tasks); the memory wali is broken by the new layout
conception for the memory (main storage, local storage and larger register files in each SPE) and
asynchronous DMA transfers between the main storage and local storage. This allows the PPE and SPEs
to be designed for high frequency without excessive overhead, breaking the frequency limitation wail.

Nevertheless, with new concepts also new ways of programming come up. Because the deep
differences between the PPE and the SPE, it was needed to create different compiiers for the different
processors. Aiso, the vector SIMD capabiiities bring up a new way of thinking when programming, since
more than one data can be handied at a time. This means that the improvement in performance does
not come up by magic but instead an extra-effort Is required to the programmer to deal with this new
technoiogy.

But, is there any way to make the programming for Celi/B.E. easier rather than harder and, at the same
time, take profit of ali its capabiiities?

13

2.2 Visual Programming

It is well-known that conventional programming languages are difficult to learn and use. Programming
for Cell/B.E. does not make that task easier at all as it requires skills that many people do not have
(Lewis and Olson 1987). However, the number of applications that supports the act of programming by
user interfaces is growing. For example, the success of spreadsheets can be partially attributed to the
ability of users to write programs (as collection of “formulas”).

It is known that new technology is developed really fast and if we are almost sure that Cell/B.E. Is one of
the best architectures made for computing intensive tasks, today, that may not be true tomorrow. If a
new architecture arrives, most probably it will bring a new way of programming for it. it is probable that
programmers will need to invest time to learn how to program for this new solution.

So, it would be good if we could find a way to make not only the act of programming easler, but also to
avoid the need of learning how to program for new technology every time it arrives. One approach to
this probiem is to investigate the use of graphics as the programming language. This has been called
“Visual Programming” (VP) or “Graphical Programming”.

This chapter will give a background about what does VP consists of: overview, history, definitions,
existing applications and differences.

2.2.1 Overview

There has been a great interest in systems that use graphics to aid in the programming, debugging, and
understanding of computer programs. The terms “Visual Programming” and “Program Visualization”
have been applied to these systems. Also, there has been a renewed interest in using examples to help
alleviate the complexity of programming. This technique is called “Programming by Example” (Koelma,
Balen and Smeulders 1992).

All these concepts have the main purpose to focus the programmer more into problem solving rather
than just writing programs.

Visual programming has many advantages over textual programming. Their two-dimensional layout and
use of icons seem to be closer to the human way of thinking (Smith, Pygmalion: a creative programming
environment 1975). This simplifies the translation of the representation used in the mind, while thinking
about a problem, to the representation used in programming a problem. The shorter translation
distance makes visual languages easier to comprehend, learn, use, and remember. The use of pictorial
elements is important because usually pictures convey more meaning than text: a single picture is often
worth more than a thousand words. Furthermore, the two-dimensional layout facilitates the detection
of potential concurrency in a program for paraliel computation.

222 The origins of Visual Programming

Flowcharts are the first and best known diagrams of software. Goldstine (Goldstine 1972) claims he
created the first flowchart for computers in 1947, while he was working with Von Neumann. Yet these

14

early charts were entirely decoupled from the computer itself. it was not until the creation of graphic
display technology in the 1960s that such a coupling became possible.

W. Sutherland, in 1966, created the first interactive visual programming language. Figure 2-5 (Curry
1978) shows his diagram for calculating a square root:

.(_ o ~ |j: Hi
' “‘:""_l_,w
£

—t i x
Figure 2-5 Sutherland's diagram for calculating a square root

L gucss

Starting in the early 1970s, researchers at Xerox PARC created the first visual programming
environments. Bitmapped graphics, mice, and window systems can be mainly credited to this research
laboratory. The culmination of the work came in the form of Smalitalk, an operating
system/programming environment/programming language (Goldberg and Robson 1983). The present
graphic user interfaces differ little in concept from the Xerox PARC vision. In the 1980s, Apple Computer,
Sun Microsystems, and M.LT. (X Windows) spread graphic user Interfaces to researchers and
consumers; recently, the creation of working windowing systems for PCs (Microsoft, IBM, NeXT) has
created a flurry of systems based on graphic user interfaces.

2.2.2.1 The Visual Basic Phenomenon

Visual Basic (today known as Visual Basic .NET (Wikipedia 2008)) is one famous programming language
and Is generally associated to a visual programming language. By deflnition, it is not a pure visual
language. Instead of being based on diagrammatic representation, its underlying language is an
enhanced textual version of the Basic language. In front of this textual language Is a well-thought-out
graphic user interface, which allows the programmer to construct windows and all their corresponding
components such as buttons, slider bars, and menus by selecting graphic icons and dragging them onto
a graphic representation of a window. The programmer then writes textual source code fragments that
are essentially event handlers for the different possible mouse and keyboard events. This code is linked
to the graphic representation of the window, so that instead of scrolling through long files of source, a
programmer can access relevant code by clicking on a physical location. In other words, the interface
provides, first of all, a way of constructing the framework of a user interface by manipulating graphic
objects, and, second of all, a way of separating access to the textual code that needs to be written. Part
of the success of Visual Basic is the flatness of the language - many verbs are provided, and many
software vendors have been encouraged to create modules that add more verbs.

15

But, in spite of its success in the past, if Visual Basic was a pure visual programming language, it would
not have the problem of code-refactoring with the existent last version of Visual Basic .NET (VB6). This
happens because Visual Basic, in the end, is code based and its instructions can change with newer
versions, forcing the programmer to change his/her code to keep applications running. The concept
behind a pure Visual Programming does not involve code-refactoring at all, because there is no code,
only pictures.

2.2.3 Definitions

To better understand what Visual Programming is it is necessary to know some related definitions in
order to get a clearer picture.

2.2.3.1 Programming

A computer “program” is defined as “a set of statements that can be submitted as a unit to a computer
system and used to direct the behaviour of that system” (Daintith 1983). While the ability to compute
“everything” is not required, the system must include the ability to handle variables, conditionals and
iteration, at least implicitly.

2.2.3.2 Interpretive VS Compiled

Any programming language system may either be “interpretive” or “compiled” (Free On-line Dictionary
of Computing 2007). A compiled system has a large processing delay before statements can be run while
they are converted into a lower-level representation in a batch fashion. An interpretive system allows
statements to be executed when they are entered.

It takes longer to run a program under an interpreter than to run the compiied code but it can take iess
time to interpret it than the total required to compiie and run it. This is especiaily important when
prototyping and testing code when an edit-interpret-debug cycie can often be much shorter than an
edit-compile-run-debug cycle.

2.2.3.3 Visual Programming

The definition of Visual Programming (VP) is separated in two concepts: Visual Programming Language
and Visual Programming Environment.

16

2.23.3.1 Visual Programming Language

“Visual Programming Language” (VPL) is any programming language that allows the user to specify a
program in a two-(or more)-dimensional way. Conventional textual languages are not considered two-
dimensional since the compiler or interpreter processes them as one-dimensional streams of characters.
A VPL allows programming with visual expressions — spatial arrangements of textual and graphical
symbols.

VPLs may be further classified, according to the type and extent of visual expression used, into icon-
based languages, form-based languages and diagram languages.

2.23.3.2 Visual Programming Environment

“Visual Programming Environment” (VPE) is software which allows the use of visual expressions {such as
graphics, drawings, animation or icons) in the process of programming. These visual expressions may be
used as graphical interfaces for textual programming languages. They may be used to form the syntax of
new visual programming languages leading to new paradigms such as programming by demonstration
or they may be used in graphical presentations of the behaviour or structure of a program.

2.2.3.4 Program Visualization

“Program Visualization” (PV) is an entirely different concept from Visual Programming. In Visual
Programming, the graphics are used to create the program itself, but in Program Visualization, the
program is specifled in a conventional, textual manner, and the graphics are used to illustrate some
aspect of the program or its run-time execution (Myers, Taxonomies of visual programming and
program visualization 1990). Unfortunately, in the past, many Program Visualization systems have been
incorrectly labelled Visual Programming {Grafton and Ichikawa 1985). Program Visualization systems can
be classified using two axes: whether they illustrate the code, data or algorithm of the program, and
whether they are dynamic or static.

“Data Visualization” systems show pictures of the actual data of the program. Similarly, “Code
Visualization” illustrates the actual program text by adding graphical marks to it or by converting it to a
graphical form (such as a flowchart).

Systems that illustrate the “algorithm” use graphics to abstractly show how the program operates. This
is different from data and code visualization, since with algorithm visualization the pictures may not
correspond directly to data in the program and changes in the pictures might not correspond to specific
pieces of the code. For example, an algorithm animation of a sort routine might show the data as lines
of different heights, and swaps of two items might be shown as a smooth animation of the lines moving.
The “swap” operation may not be explicitly in the code, however.

“Dynamic” visualizations refer to systems that can show an animation of the program running, whereas
“static” systems are limited to snapshots of the program at certain points.

If a program created using Visual Programming is to be displayed or debugged, clearly this should be
done in a graphical manner, which might be considered a form of Program Visualization. However, it is

17

more accurate to use the term Visual Programming for systems that allow the program to be created
using graphics, and Program Visualization for systems that use graphics only for illustrating programs
after they have been created.

2.2.3.5 Example-Based Programming

A number of Visual Programming systems also use “Example-Based Programming”. Exampie-Based
Programming refers to systems that allow the programmer to use examples of input and output data
during the programming process (Myers, Taxonomies of visual programming and program visualization
1990). There are two types of Example-Based Programming: “Programming by Example” and
“Programming with Example”.

Programming by Example refers to systems that try to guess or infer the program from examples of
input and output or sample traces of execution. This is often called “automatic programming” and has
generally been an area of Artificial Intelligence research.

Programming with Example systems, however, requires the programmer to specify everything about the
program (there is no inferencing invoived), but the programmer can work out the program on a specific
example. The system executes the programmer's commands normally, but remembers them for later
reuse. Halbert (Halbert 1984) characterizes Programming with Examples as “Do What | Did” whereas
inferential Programming by Example might be “Do What | Mean”.

224 Advantages of Using Graphics

Visual Programming and Program Visualization are very appealing ideas for a number of reasons. The
human visual system and human visual information processing are clearly optimized for muiti-
dimensional data. Computer programs, however, are conventionally presented in a one-dimensional
textual form, not using the full power of the brain. Two-dimensional displays for programs, such as
flowcharts and even the indenting of block structured programs have long been known to be helpful
aids in program understanding (Smith, Pygmalion: A Computer Program to Model and Stimulate
Creative Thought 1977). A number of Program Visualization systems [(Myers, Chandhok and Sareen,
Automatic data visualization for novice Pascal programmers 1988), (Myers, INCENSE: A system for
displaying data structures 1983), (Baecker 1981) and (Brown and Sedgewick 1984)] have demonstrated
that two-dimensional pictorial displays for data structures, such as those drawn by hand on a
blackboard, are very helpful. Clarisse (Clarisse and Chang 1986) claims that graphical programming uses
information in a format that is closer to the user's mental representations of problems, and wili allow
data to be processed in a format closer to the way objects are manipulated in the real world. It seems
clear that a more visual style of programming could be easier to understand for humans, especially for
nonprogrammers or novice programmers.

Another motivation for using graphics is that it tends to be a higher-level description of the desired
actions (often deemphasizing issues of syntax and providing a higher level of abstraction) and may
therefore make the programming task easier even for professional programmers. This may be especially
true during debugging, where graphics can be used to present much more information about the
program state (such as current variables and data structures) than is possible with purely textual
displays. Also, some types of complex programs, such as those that use concurrent processes or deal

18

with real-time systems, are difficult to describe with textual languages so graphical specifications may
be more appropriate.

The popularity of “direct manipulation” interfaces (Shneiderman 1987), where there are items on the
computer screen that can be pointed to and operated on using a mouse, also contributes to the desire
for Visual Languages. Since many Visual Languages use icons and other graphical objects, editors for
these languages usually have a direct manipulation user interface. The user has the impression of more
directly constructing a program rather than having to abstractly design it.

2.2.5 Some principles for visual language design

Several principles can guide our search for the ideal visual programming language and enable us to
compare and criticize existing languages. Some of these principles are:

* Give the visual programmer flexibility over issues and iayout rather than forcing her or him into
one fixed way of doing things. For instance, If ali data lines must go from the top of the screen
down, a programmer who thinks of data flowing left to right, or right to left, or even bottom to
top, wili be forced into an unnatural mode of thought.

¢ Visual programming languages should not rely too much on text but that does not mean
abandoning ali textual names. A visual program should not be a sequence of C statements with
arrows between them.

® Coupled with the right use of text Is the right use of graphics and colour. A visual language
should enable the programmer to use colour meaningfully and to import his or her own icons
to stand for the activity points. For instance, the programmer might want to link the data
pathways as water pipes instead of wires.

¢ Windows pose probiems beyond their mere proliiferation. When a window refers to items in
other windows, either by name or by visual means such as a line, it forces a person to somehow
arrange the windows on the screen so as to see the larger picture. But windows usually overiap
each other, obscuring part of the underlying diagram. A general principle wouid be to aliow the
visuai programmer to control the level of detail in ways that permit him or her to ignore fine
detall whiie at other times to see that detali. Moreover, seeing the detail should be permitted
in a variety of ways that allow easier piacement within the iarger context.

In spite of aii the principies when creating a visual language, there are stiil some limitations which must
be considered. Deutsch once said something iike:

“Well, this is all fine and well, but the probiem with visual programming ianguages is that you can't have
more than 50 visual primitives on the screen at the same time. How are you going to write an operating
system?”

It points out the obvious density advantage of text. This barrier has become known as the “Deutsch
Limit” (Wikipedia 2009), stated as:

“The problem with visual programming is that you can't have more than 50 visual primitives on the
screen at the same time.”

This is clearly a probiem with visual representations. However, it Is not immediately clear that a similar
limit does not aiso exist in textual languages. Visual programming languages and textual languages have
limitations, but that does not mean it cannot be worked out.

19

e libXext-devel

e |ibX11l-devel
o |ibSM-devel
e [ibiCE-devel

it may also be required for the user to create an empty sys.h file in “/usr/include/linux”. Compiler may
complain about it in spite of not using it.

For the rest: “./configure CC=ppu32-gcc CXX=ppu32-g++”; “make” and “make install” should be enough
to complete the DX installation.

36

3 Visualization in Cell/B.E.

Cell/B.E., Visual Programming and OpenDX: how do these three components get together? In this
chapter all the practical work developed during this thesis is introduced. The main goal is to run Cell/B.E.
applications in OpenDX and apply some data visualization on it (DX purpose). DX modules are written in
C language with the help of its AP and development library {(IBM 1991).

This chapter first starts to introduce how to write modules for DX and then introduces the implemented
modules. Each module includes a performance study where the runtime for each application is
compared between running in the console and running inside DX. The purpose is to show that there is
no big loss of performance by switching from textual to visual programming.

Then, at last, a case study about using the Cell/B.E. capabilities to Improve DX performance is
introduced. The module picked up for this study is the Gradient module and its performance study
compares its run-time without any optimizations with an optimized version (using all the avallable SPEs).
Tests are performed in a QS22 Blade, which has 2 PPE cores (3.2 GHz each one) and B SPE cores per PPE,
and In a Playstation3, which has one PPE core (3.2 GHz too) and 8 SPE cores. Both architectures offer
512kKb of L2 cache for the PPE and 256Kb of local store memory per each SPE.

3.1 Writing Modules for OpenDX

After DX Is Installed, the next step for the proposed work is to write Cell/B.E. applications in form of DX
module. DX Programmer’s Reference {(IBM 1991) helps to achieve this with the help of tutorials and an
API.

There are two available ways to write the modules: using DX Module Bullder or writing the modules
manually in C language.

DX Module Builder (see chapter 2.3.5 Module Bulider) is recommended for beginners in DX
development. It has a user interface and the user/programmer can specify the inputs/outputs for the
new module, its name and description. The builder can generate the corresponding C code for the
module, its corresponding module description file (mdf — see chapter 3.1.2 Module Description File)
and a makefile.

However, advanced programmers may feel more comfortable writing these modules manually. Manual
programming gives more flexibility to the programmer and it is possible to specify things about the
modules which are not possible using the DX Module Builder.

Creating a module for DX involves three steps (does not matter If using DX Module Builder or not):

¢ Define what Is the input/output of the module
* Create (or generate) a module description file (mdf)
e Write (or generate) the module in C language

These steps are described during this sub-chapter.

37

3.1.1 Defining Input/Qutput

First step to do when it is pretended to write a module for DX Is to clarify which is the input and output
of the module. This part is responsible for planning the behaviour of the module before starting to

implement it.

The main questions In this phase are: what are the Inputs? What are the types for each one? What will
be the output(s) and its type{s)? It is desirable, at this phase, that the programmer has an idea about
what the module is supposed to do and how its behaviour is.

3.1.2 Module Description File

The module description file (mdf) contains information about the modules which will be processed by
DX. It contains information like: name of the module; description; flags; indication of outboard or
loadable (if none, it is assumed that is inboard); inputs; options and outputs.

Its syntax is:

MODULE name
CATEGORY category name
DESCRIPTION module description
FLAGS optional flags
OUTBOARD “executable”; host

LOADABLE “executable”

INPUT name [visible]; type; default; description
OPTIONS optioni; option2; ...;

OUTPUT name [cache]; type; description

REPEAT n

Table 3-1 shows a brief description of the components of an mdf:

Table 3-1 Module Description File (mdf)

NAME REQUIRED | DESCRIPTION

MODULE X Assigns a name to the module being described.

CATEGORY X Assigns the module to a DX or user-defined category.

DESCRIPTION Serves as a help function.

FLAGS

OUTBOARD Identifies the module as a separate executable program.

LOADABLE Identifies the module as being runtime loadable (i.e., compiled
separately and loaded into DX at run time).

INPUT X
Identifies a list of possible values for the parameter.

OPTIONS This list can be accessed by clicking on the “...” button to the right of
the Value field in the module’s configuration dialog box.

OUTPUT X

REPEAT Specifies some number of INPUT or OUTPUT statements to be

repeated.

For the MODULE and CATEGORY, the user has only to specify a string name which must start with a
letter. In the MODULE case, it may be only a single alphanumeric word.

38

For the INPUT the syntax is as follows:
1. name (of a parameter) must be one word and must conform to the executive's lexical
conventions.
[visible] Is optional. visible:n specifies the accessibility and Initial visibility of input tabs:
0: Not initially visible.
1: initiaily visible (defaulit).
2: Not available to the user interface.
2. type specifies the type(s) of the input and is used for type matching In the Visual Program
Editor (see chapter 2.3.3 Visual Program Editor). The valid types are:

camera integer list scalar value
field matrix scalar list value list
fiag matrix list series vector
group object string vector list
integer

To specify more than one type, the word or Is used as a separator.
if the type of the input value is not explicit (e.g., a string without quotation marks or a vector
without brackets), the user interface attempts to match the input against the type(s) specified
in the INPUT statement. it reads from left to right and stops at the first successful match. For
this reason, string should be specified last, because any series of characters can always be
converted to a string by adding doubie-gquotation marks,

3. default identifies the value to be used if none has been specified.
By convention, parentheses identify a description of default behaviour rather than an actual
value. If no default is applicable, (no defauit) is specified. If the parameter is required, (none) is
specified. NOTE: this part is purely informal.

4. description should contain a short phrase describing the parameter.

For the QUTPUT there are only two small differences compared to the INPUT:

o thereis no default option

» cache is optional. cache:n specifies the caching to be performed by the executive:
0: Do not cache the output
1: Cache ali outputs (defauit)
2: Cache the output from the last execution only.

In spite of the possibility of appearing in the code, the remaining components are not discussed in this
thesis since they are not relevant for the proposed work. All implemented modules are inboard
modules, which means that they are complled and charged before starting DX. OPTIONS and REPEAT
are superfluous components.

3.1.3 Implementing the Module

The procedure after creating the mdf Is to impiement the corresponding module in C. DX offers a library
and an API to help in this task.

Below Is a list of the basic steps when implementing a module for DX:

® DX header file must be included in order to use the library (usually: #include <dx/dx.h>)

e the “main” function has type Error and its name Is preceded by “m_“ (for example, if the name
of the module Is “Hello”, then the file which implements this module must have a function of
type Error called “m_Helio”)

¢ the main function have two arguments:

o First argument is a pointer of the type Object to the input

39

o Second argument is a pointer of the type Object to the output
¢ if the module is computed with success then it must return “OK”, otherwise “ERROR”

Implementation specific details are introduced within the case-study module.

3.1.4 Compiling and Running

In order to compile the modules there are two steps which must be taken:

® First, the C file with all the information about the modules in the mdf must be generated. In
order to do that, the next command must be performed:

S$(BASE)/bin/mdf2c name_of the_file.mdf > name_of the > file2.c

o the defauit BASE directory is /usr/local/dx
© name_of_the_file refers to the input mdf and a name_of the_file2 is generated in C
® Second, the compile procedure is the same as compiling a regular C code. The generated C file
(from the mdf) must be included and the flag -IDX must be added in order to access the DX
library. Other libraries may be needed since the DX library is used (like libGLU) and since these
programs use SPU binaries, the libraries libspe2 and libpthread also must be linked

To start the application, the user must type:
dx -mdf name_of the_file.mdf -exec ./generated_executable

This command starts DX with all the implemented modules by the programmer.

3.1.5 Hello World Example
This chapter shows how to implement a moduie which connects a string to the word “Hello” and then

an example of usage in the Visual Program Editor of DX,

The steps are introduced as described in previous chapter 3.1 Writing Modules for OpenDX.

3.1.5.1 Hello Input/Output Definition

This module receives an input string, concatenates it to the string “Hello” and then returns the string
“Hello” concatenated with the input string.

3.1.52 Hello mdf

The proposed mdf, according to the syntax in chapter 3.1.2 Module Description _File, is the following
one:

Example 3-1 Hello mdf

MODULE Hello

CATEGORY Greetings

DESCRIPTION Prefixes “hello” to the input string
INPUT value; string; “world”; input string
OUPUT greetings; string; prefixed string

The proposed name for this file is hello.mdf and it is used to generate the C file with the modules
information.

3.1.5.3 Hello Implementation

Now that the mdf is defined, the next step is to implement the module using the C language:

Example 3-2 Hello World Implementation

#include <dx/dx.h>
Error m Hello(Object *in, Object *out)
{
char message([30], *greeting;
if(!in{0])
sprintf (message, "hello world"):;
else
{
DXExtractString(in{0], &greeting);
sprintf(message, "%s %s", "hello", greeting):
}
out{0] = DXNewString(message);
return OK;

}

Detalils regarding the implementation of a module were introduced in chapter 3.1.3 Implementing the
Module.

if no argument is specified for value (see the mdf in chapter 3.1.5.2 Hello mdf), then in[0] is NULL and
the defauit output (“hello world”) is placed in message. if an argument is specified, a library routine
(DXExtractString) extracts it from in[0] and greeting becomes a pointer to that string. In line 10, string
pointed by greeting is appended to “hello”, creating message.

This file is named as hello.c and next chapter introduces how to compile and run this example.

3.1.5.4 Compiling and Running the Hello Example

In order to compile and run the application the following commands are performed:
(assuming BASE = /usr/local/dx)
S(BASE)/bin/mdf2c heilo.mdf > hello_mdf.c

ppu32-gee -1 fusr/local/dx/finclude hello_mdf.c hello.c —¢

41

WoONOOUVHWNR

10

3.2.1 Hello World

The first example is very similar to the one introduced in chapter 3.1.5 Hello World Example. The user
gives a string as input to the module and the module concatenates the word “Hello” with the input
string in one SPE, which gives back the result to the PPE. The main purpose of this module is to show
how to start a SPE thread in a DX module.

3.21.1 Hello mdf

The mdf for this example is the same as the one exposed in chapter 3.1.5.2 Hello mdf since the module
is the same.

3.2.1.2 Hello Implementation

The C code for this example is slightly different from the one in chapter 3.1.5.3 Hello Implementation.
Since this example uses a SPE and since that will require a proper code implementation for the SPE side
(see chapter 2.1.4.1 Different Processors, Different Compilers), this chapter is divided into two sub-
chapters: PPU Hello Implementation and SPU Hello Implementation.

3.2.1.21 PPU Hello Implementation

The implementation in the PPU side computes the following steps: process the DX input; start a SPE
thread and wait for its conclusion.

Example 3-3 C code for the PPU Hello Implementation

#include <dx/dx.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
finclude <libspe2.h>
f#linclude <pthread.h>
#tinclude <string.h>
#include <stdint.h>

extern spe program handle_ t hello spu;
spe_context ptr t spe ctx;

void *spe_ argp, *spe_envp;

char str{256] __ attribute ((aligned(16)}));

// macro for rounding input value to the next higher multiple of
// either 16 or 128 (to fulfill MFC's DMA requirements)

#define spu_mfc_ceill28 (value) ((value + 127) & ~127)

fidefine spu_mfc_ceill6(value) ((value + 15) & ~15)

void *ppu hello pthread function(void *arg) {
spe_context ptr t ctx;

45

unsigned int entry = SPE DEFAULT_ ENTRY:

ctx = *((spe_context ptr t *)arg);

if (spe_context run(ctx,&entry, 0, spe_argp, spe_envp, NULL) < 0)
perror ("Failed running context"};
exit (1):;

}

pthread exit (NULL) ;

}

// DX Function with New Code
Error m Hello(Object *in, Object *out)
{
if (!in[0])
sprintf(str, "hello world"):;

else { // Process the stuff on the SPE
pthread t thread;
char *message;

if (!DXExtractString(in[0], &message)) ({
DXSetError (ERROR_BAD PARAMETER, "value must be a string");
return ERROR;

}

// Prepare SPE parameters

strcpy (str,message);

spe_argp=(void*) str;

spe_envp=(void*) strlen(str);
spe_envp=(void*)spu mfc ceill6((uint32_t)spe_envp);

/* Create context */

if ((spe_ctx = spe_context_create (0, NULL)) == NULL) ({
perror ("Failed creating context");
return ERROR;

}

/* Load program into context */

if (spe_program load (spe_ctx,&hello_spu)) {
perror ("Failed loading program");
return ERROR;

}

/* Create thread for each SPE context */
if (pthread_create (&thread,
NULL, &ppu_hello_pthread_function,&spe_ctx)) {
perror ("Failed creating thread");
return ERROR;
}

/* Wait for SPU-thread to complete execution. */
if (pthread join (thread, NULL)) {

perror ("Failed pthread join");

return ERROR;
}

if (spe_context_destroy(spe_ctx)) {
perror ("Failed spe context destroy"):;
return ERROR;
}
}

83
84
85

|}

out[0] = (Object)DXNewString(str):
return OK;

The first library Is the DX library and the three libraries following are just standard libraries.

The two libraries in lines 5 and 6 are used to manage SPE threads and the last two libraries included in
lines 7 and 8 are the String and Int libraries. String library is used for a string copy command and the Int
library is used to specify short versions for the Integer type (for example, a unsigned 64-bit integer can
be specified as uint64_t).

Five variables are defined between lines 10 and 13: hello_spu is the name of the SPU binary file and
executable which runs the SPE thread; spe_ctx is a structure which contains information about a SPE
thread; *spe_argp contains the EA of a structure with all the information needed to be copied to a SPE
LS (in this case will just be the address of the input string) and *spe_envp contains its size; finally, str is
the string which is copied to a SPE LS and Is 16-byte aligned.

Every time the programmer wants his/her program to do transfers between the Main Storage and a SPE
Local Storage, there s one thing that must be kept in mind: the memory supposed to be transferred
must be aligned both in the PPE and in the SPE sides and the size of the DMA transfer must have at least
16 bytes and be a muitiple of 16 (see chapter 2.1.4.2 Different Processors, Different Address Spaces).
For example, Is possibie to transfer 4 integers in a DMA transfer if Is assumed that each integer occupies
four bytes (4 integers * 4 bytes/integer = 16 bytes), but it is not possible to transfer one, two or three
integers (and not any number of integers not muitiple of four). if the programmer wants to transfer an
amount of data not muitiple of 16 bytes (4 integers in the last example) from the SPE to the PPE, then
the macro In line 18 (spu_mfc_ceil16) can be cailed to find the next muitipie size of 16 bytes. The macro
in fine 17 (spu_mfc_ceii128) does the same for 128 bytes. NOTE: The programmer must be sure that
there is extra allocated memory on the PPU size to handie with it, otherwise an exception may come up.

The function defined in line 20 Is responsible to run a SPE thread (spe_context_run does the magic).

The remaining code, starting in fine 32, is responsible to handle the input and corresponds to the main
function. If no input is given, then the returning string is “hello world”. Otherwise, the string is extracted
from the input using DXExtractString (see chapter 3.1.5.3 Hello implementation) and then it is copied to
str. The reason for this copy Is because there is a need to assure a proper alignment of the string to
perform a clean copy from the Main Storage to the Local Storage. Since the memory iayout for the string
pointed by message may not fuifli this requirement, the copy is then performed (strcpy) to another
space and this one (str) is then used for the output.

After processing the input, the program prepares the structure for the SPE thread and then runs it and
walts for its conclusion. The process of starting, running and finishing SPE threads is as follows (usually):

create a SPE context

load the SPE binary file

create the SPE thread

call pthread_join to wait for the execution of the SPE thread
ciean up the context informatlon using spe_context_destroy

s wh e

Finally, the program puts the string in the output and the execution, for this module, finishes. The
foilowing sub-chapter shows the SPU hello impiementation.

47

CoONOTUVLWNR

3.21.2.2 SPU Hello Implementation

The SPU implementation Is divided in straightforward steps: the program starts in the main function;
uses a DMA transfer to get the data from the main memory; computes it and then puts the result back.
The implementation is below:

Example 3-4 C code for the SPU Hello Implementation

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <spu _mfcio.h>

// Macro for waiting to completion of DMA group related to input tag:
// 1. Write tag mask

// 2. Read status which is blocked until all tag's DMA are completed
#define waitag(t) mfc_write_tag_mask(1l<<t); mfc_read_tag_status_all();

// macro for rounding input value to the next higher multiple of
// either 16 or 128 (to fulfill MFC's DMA requirements)

#define spu_mfc_ceill28(value) ((value + 127) & ~127)

#define spu_mfc _ceill6(value) ((value + 15) & ~15)

// Local store buffer: DMA address and size alignment:

// - MUST be 16B aligned otherwise a bus error is generated

// - may be 128B aligned to get better performance

// In this case we use 16B because we don't care about performance
char str([256] __ attribute ((aligned(16)})):

char msg[256] _ attribute _ ((aligned{(16)));

// argp - effective address pointer to the string in main storage
// envp - size of string in main memory in bytes
int main(uinté4_t spuid __ attribute__ ((__unused_)} ,
uint64_t argp , uinté4_t envp)
{
uint32_t tag_id = mfc_tag_reserve():
void *size;

// reserve a tag from the tag manager

if (tag_id==MFC_TAG_INVALID) {
printf ("SPE: ERROR can't allocate tag ID\n");
return -1;

}

// get data from main storage to local store
mfc_get((void *) (str), argp, (uint32_t)envp, tag_id, 0, 0);

// wait for all the DMA commands to complete. wait only this tag_id.
waitag(tag_id);

// append "hello" to the string
sprintf (msg, "%s %s","hello™, str);

// put data to main storage from local store

size = (void *)strlen(msg):

size = (void *)spu_mfc_ceillG((uint32_t)size);

mfc_put((void *) (msg), argp, (uint32_t)size, tag_id, 0, 0);

// wait for all the DMA commands to complete. Wait on this tag_id.

48

52
53

55
56
57

waitag(tag_id);

// release the tag from the tag manager
mfc_tag_release(tag_id);
return (0);

}

There are two main arrays which are used for the DMA transfers: str and msg.

The program starts to get the information from the main storage using the arguments given (mfc_get
command), copying the input string from the main storage to str. Then the same string Is concatenated
to the word “hello” and the result is saved in msg, and its contents are copied back to the main storage,
more specifically to the same address given by the argument In the beginning of the application.

3.2.1.3 Compiling and Running Hello

The procedure to complile the PPU program was aiready introduced In chapter 3.1.5.4 Compiling and
Running the Hello Example. However, a few changes are needed in order to include the SPU program in
the PPU program.

Assuming the SPU Hello Impiementation is stored in a file hello_spu.c, then the compilation process is
as follows:

spu-gcc -W -Wall -Winline -Wno-main -1. -1 fusr/spu/include -1 fust/local/dx/Include -O3 -¢ hello_spu.c
spu-gcc -1 Jusr/include -o hello_spu hello_spu.o -WIi,-N

ppu-embedspu -m32 hello_spu hello_spu hello_spu-embed.o

ppu-ar -qcs lib_hello_spu.a hello_spu-embed.o

The binary file hello_spu Is the one which is called in the PPU program and the library lib_hello_spu.a is
included in the PPU compilation process for hello.c (assuming that Is the name for the PPU Hello
Implementation):

/usr/local/dx/bin/mdf2c hello.mdf > hello_mdf.c

ppu32-gcc -g -03 -D_GNU_SOURCE -| fusr/local/dx/include ¢ hello_mdf.c hello.c
ppu32-g++ hello_mdf.o hello.o -L /usr/local/dx/lib_linux -IDX -R
spu/lib_hello_spu.a -IGLU -Ipthread -Ispe2 -export-dynamic -o dxexec

Chapters 3.1.5.4 Compiling and Running the Hello Example and 3.1.5.5 Visual Program Example Using
Hello aiready described how to run and use this example.

3.2.1.4 Hello Implementation Notes

This example Is a reference about how to start a SPE-thread and how to work the memory alignment.
These two issues are the basic to know when programming for the Celi/B.E. The programmer must plan
which data s shared, prepare the structure, create the SPE thread, copy the data to the SPE LS, process
it and then write the resuits back to the main storage.

49

The next module (Add) introduces (among others) the parallelization and SIMD (Single Instruction
Muitiple Data) instructions. Fully understanding all those concepts gives the programmer the basic
knowledge and skill for Cell/B.E. and parallel programming.

322 Add

The Add module presented in this sub-chapter introduces the use of parallelization, SIMD instructions
and also the double buffering technique.

its input data is: a field with a 1-D vector of integers; an integer to sum to each position in the vector
and another integer where user can specify how many SPEs shall be used. This example was
theoretically introduced in chapter 2.1.3 Improving Performance.

All the data in the vector is summed with the integer inside the SPEs and the results are transferred back
to the main storage and then the application moves on.

This module was implemented with the help of the DX Module Builder (see chapter 2.3.5 Module
Builder). Inputs and outputs were specified there and then the mdf and C code were generated from its
specifications.

3.2.2.1 Double Buffering

The goal of the double buffering technique Is to avoid stalls (a stall happens when the computation
stops because the application is waiting for data). Basically, this technique consists of getting the next
buffer of data while processing the current one. When the current buffer is processed then the program
starts processing the next buffer and applies for another set of data at the same time, and so on, until
the end.

Doubte buffering is a private class of multi buffering, which extends this idea by using muitiple buffers in
a circular queue instead of only two buffers. in most cases, the usage of two buffers in the double
buffering case is enough to guarantee overlapping between the computation and data transfer. in this
example, since it is for demonstrating purposes instead of performance improvement, only double
buffering is used.

Figure 3-5 shows a double buffering scheme:

Initiate DMA transfer
from EA to LS buffer 8
y
Initiate DMA transfer \Wait for DMA transfer | Compute andatain
from EA to LS bufter B4 to bufter By to complete 7 buffer Bg
Compute on data in Wait for DMA trensfer |, Initiate DMA transfer
buffer 84 to buffer B4 to complete from EA to LS buffer By

Figure 3-5 Double buffering scheme

50

Bpes
L OWoNOAOUMHEWNRE

3.222 Add mdf

The mdf for the Add module was generated using DX Builder (see chapter 2.3.5 Module Builder). Its
description is bellow:

Example 3-5 Add mdf

MODULE Add
CATEGORY Cell
DESCRIPTION Adds a single number to each data value of a set

INPUT data; field; (none); input data

INPUT value; integer; 0; value to add

INPUT MAX_SPU_THREADS {visible:0]; integer; 16; maximum number of SPEs to use
OUTPUT result; field; new data

{none) value in the first input means it is required.

[visible:0] in the last input was added after the mdf was generated. It means that when the module is
opened, this input Is invisible and can only be seen if the module is expanded. The default value for it is
16, which actually is the maximum number of SPEs in the Celi/B.E. If there are less SPEs available than
desired, then the program only uses the availabie ones.

3.2.2.3 AddImplementation

In spite of the C code for this module being generated, its implementation has some particularities.
Some are related to the moduie itself and some others are related to Celi/B.E. programming, so this
chapter s divided into four sections: shared structure; auxiliary functions; ppu program and spu
program.

3.2.2.3.1 Add Shared Structure

Since the PPE and the different SPEs share information contained In the main storage (which means in
the Effective Address Space), this information must be well structured and defined in order to assure
proper DMA transfers from the main storage to the SPE local storage. The proposed structure Is the
following:

Example 3-6 Add shared structure

#ifndef ADD H_
#define ADD H_
typedef struct
int spu_num;
int data_knt;
int *data_data;
int value;
int result_knt;
int *result_data;
int result;
unsigned char pad[100]; /* pad to a full cache line */
} add worker;

51

13 | #endif /* ADD_H_ */

CRrbREBoveovauvnswnek

This structure contains all the needed information for the SPE when it starts running: spu_num
identifies which SPE s processing the data; data_knt refers to how much data is going to be processed;
data_data Is a pointer containing the EA of the first element of data to process; value is the value to be
summed to all the data; result_knt (not needed, but since the DX Builder generates this information the
decision was to share it) has the same value as data_knt and contains the number of output data and
result_data points to the EA of the first output data. For alignment purposes, this structure has a size of
128 bytes and to guarantee that an unsigned char pad Is added to the structure with the remaining size
untii 128 bytes.

3.2.23.2 Auxiliary Functions

Some functions are needed across all the practical work, so a header file was created with these
functions. There is one for the PPU side and other for the SPU side.

322321 Auxiliary PPU Functions

Example 3-7 Auxiliary functions for the PPU

#ifadef AUX H_
fidefine _AUX H_

ftinclude <libspe2.h>
fiinclude <pthread.h>
typedef struct {
spe_context_ptr_t spe_ ctx;
pthread t thread;
void *spe_ argp;
} param_context;
void *ppu_pthread function(void *arg):
int find next multiple(int n, int s);
int round2(float f);

fendif /* AUX H */

First, the structure param_context is the structure containing ail the context information needed for the
PPU to start a SPU thread.

ppu_pthread_function is responsible to run the SPU program. Its argument is the address of a
param_context variable (it is similar with the ppu_hello_pthread_function in chapter 3.2.1.2.1 PPU

Helio Impiementation).

The last two functions are used to define how much data is going to be processed in each SPU.
find_next_multiple returns the next n muitipie of s (it is desired that the shared amounts of data are
muitipie of 4) and round2 is a very simple macro which converts a float into a rounded integer.

52

GRERRBovevauswnm

ONOUV L WNR

322322 Auxiliary SPU Functions

Example 3-8 Auxiliary functions for the SPU

§ifndef AUX SPU H_
$#define AUX_SPU_H

#include <spu mfcio.h>

// Macro for waiting to completion of DMA group related to input tag:
// 1. Write tag mask

// 2. Read status which is blocked until all tag's DMA are completed
f#define waitag(t) mfc_write_tag mask(1l<<t); mfc read tag_status_all():;

// macro for rounding input value to the next higher multiple of
// either 16 or 128 (to fulfill MFC's DMA requirements)

#idefine spu_mfc_ceill28(value) ((value + 127) & ~127)

#define spu mfc ceillé(value) ((value + 15) & ~15)

// Size of the buffers for DMA transfers
fidefine ELEM PER BLOCK 4096

#ondif /* AUX SPU_H_*/

All macros were used in the SPU Hello Implementation (see chapter 3.2.1.2.2 SPU Hello
implementation).

waltag macro is used to know when determined DMA transfer is completed. If a transfer is completed
then the program goes on, otherwise the program stays blocked until the transfer is done.

spu_mfc_cell rounds the input value to the next higher multiple of 16 or 128.

ELEM_PER_BLOCK defines the size of the buffers used in DVIA transfers.

3.2.23.3 PPUAdd Implementation

Since the DX Builder was used to implement this module, only the manipulation of the data is
introduced.

The first thing to know is: when the DX Bullder generates the C code for the moduie, it creates a user
function where the programmer decides how to handie the data. The following user function was
created from the specification given in the moduie (which generated the mdf too, see chapter 3.2.2.2

Add mdf):

Example 3-9 Generated C code for the PPU Add Implementation

int
Add_worker (
int data_knt, int *data_data,
int value_knt, int *value_data,
int MAX SPU_THREADS knt, int *MAX SPU_THREADS data,
int result_knt, int *result_data)

/*

53

10
11

13
14

16
17
18

20
21
22
23
24

26

* Comments describing the variables...
*/

/*
* User's code goes here
*/

/*

* successful completion
*/

return 1;

/*
* unsuccessful completion
*/
error:
return 0;

}

The function provides a pointer for each input and output to its data and an integer with the number of
items for each pointer. The name before _knt and _data is the name given by the user to the variable in
the DX Builder. The data provided by DX through the pointers is word aligned, which conforms to the
DMA transfers reguirements.

Once the code for the module is generated, the programmer can start writing its code after the
comment which says “User's code goes here”.

So, to start processing and summing all the values given in the input data and then store the resuits in
the output data, the following steps are taken:

e determine how many SPEs are available

e determine how much data will be processed in each SPE
e prepare the arguments for the SPEs

e start the SPE threads and wait for their completion

To determine how many SPEs are available, the function spe_cpu_info_get is called. if there are more
SPEs available than desired, only the requested number is used.

After knowing how many SPEs are going to be used, it Is time to define how much data is going to be
processed in each SPE. If there was no requisites for the DMA transfers (see chapter 2.1.4.2 Different
Processors, Different Address Spaces), then the solution would be as simple as dividing the amount of
data to process by the number of SPEs. But, since that is not enough, after dividing and getting the
result, the next muitiple of four of that result is found and then: the first N-1 SPEs handle the multiple of
four amount of data and the last SPE takes the remaining data. Why multiple of four? Because a DMA
transfer must handle at least 16 bytes of data it is only possible to transfer the minimal amount of 4
integers (32-bit size) per each DMA transfer.

Preparing the arguments for the SPEs is as simple as allocating one add_worker structure (see chapter
3.2.2.3.1 Add Shared Structure) for each SPE and then giving the proper values: data_data points to the
memory position where the SPE starts handling the data along data_knt positions and the results are
stored starting in the address provided by result_data.

Finally, the SPE threads are started. Their argument is a pointer to the main storage where the
add_worker structure is stored with all the needed information. The PPU then waits for the threads to
finish and returns successful or unsuccessful completion.

54

The code for this task is below. Since the SPU threads handling was already introduced in the Hello
World Example (see chapter 3.2.1.2 Hello implementation), only the first three steps are shown:

Example 3-10 C code for the PPU Add Implementation

1 /*
2 * User's code goes here
3 */
4
5 int MAX SPU_THREADS, value;
6
7 // How many SPEs
8 MAX_ SPU_THREADS = (MAX_ SPU_THREADS knt == 0) ?
9 16 : MAX SPU_THREADS_data{0];
10
11 // value to sum with the "data"
12 value = (value_knt == 0) ? 0 : value_data[0];
13
14 volatile add_worker stuff[MAX SPU_THREADS] __ attribute
15 ((aligned(128)));
16 extern spe_program handle_t add_spu;
17 param_context param[MAX SPU_THREADS];
18
19 int i, spu_threads, nltems;
20
21 /* Determine the number of SPE threads to create */
22 spu_threads = spe_cpu_info_get (SPE_COUNT_USABLE_SPES, -1);
23 if (spu_threads > MAX_SPU_THREADS)
24 spu_threads = MAX SPU_THREADS;
25
26 // nItems to process in each SPE. Must be a multiple of 4
27 nItems = round2((float)data_knt / (float)spu_threads);
28 nItems = find next multiple(nItems,4);
29
30 for(i = 0; i1 < spu_threads; i++)
31 {
32 // Prepare SPE parameters
33 stuff(i].spu_num = i;
34 stuff(i].data_data=(void *)&data_data[i*nItems];
. 35 stuff(i].value=value;
‘q 36 stuff[i) .result_data=(void *)&result_data[i*nItems];
37 if (i == spu_threads - 1)
38 {
; 39 stuff[i] .data_knt = data_knt-nItems*(spu_threads-1);
40 stuff[i).result_knt = result_knt-nItems*(spu_threads-1);
41 }
42 else
A 43 {
{ 19 stuff[i] .data_knt=nltems;
B 45 stuff({i] .result_knt=nItems;
¥ 46 }
: 47
48 stuff[i] .result=0; //Assuming "Failure...”
49
50 param{i].spe_argp=(void *)&stuff[i];
51
52 /* Create context, load program, create thread */
53 }
54
55 /* wait for the threads completion and destroy context */

35

LoONOAUVIH WNER

BREERER
BWNRO

32234 SPUAdd Implementation

The program In the SPE side implements the following steps:

get the argument information

get the first buffer of data

if there is more buffers to get, apply for the next one (if not, step 7)
compute the data in the current buffer

put the result data on the main storage

go to the next buffer and repeat the third step

compute the current buffer and put the result on the main storage
terminate the application

O NOUV A WN R

The implementation for this program is not much different from a regular C program. The key
differences are the DMA transfers (with the double buffering technique, see chapter 3.2.2.1 Double
Buffering) and the SIMD Instructions.

The commands mfc_get and mfc_put are used to get and put data respectively from/in the main
storage and the data is stored in SIMD vectors in order to sum more than one piece of data at a time by
using the intrinsic spu_add (see chapters 2.1.3.2.1 Scalar VS Vector SIMD: A code example and 2.1.4.1.1
C-Language Intrinsics).

Bellow is the SPU Add Implementation:

Example 3-11 C code for the SPU Add Implementation

#include "../add.h"
#include "aux_spu.h”
finclude <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <spu mfcio.h>
#include <spu_intrinsics.h>
#include <math.h>

volatile add_worker stuff __ attribute ((aligned(128))):

volatile vec_int4 1s_data_data[2] [ELEM_PER_BLOCK / 4] _ attribute _
((aligned(128)));

volatile vec_int4 1ls_result_data(2] [ELEM _PER BLOCK / 4] _ attribute
((aligned(128)));

// argp - effective address pointer to the "SPE stuff”
int main(uint64_t spuid __attribute__ ((__unused_)) ,
uint64_t argp , uint64_t envp _ attribute ((__unused)))
{
uint32_t tag_id[2];

volatile int *data_data, *result_data, *nxt_data, *nxt_result;
vec_int4 value;

int data_knt, left, buf, nxt_left, nxt buf, i, spu_num;

void *size;

tag_id[0]
tag_id[1]

mfc_tag_reserve();
mfc_tag_reserve();

L]

// reserve a tag from the tag manager
if (tag_id[0]==MFC_TAG_INVALID) {

56

printf ("SPE: ERROR can't allocate tag ID\n"):;
return -1;

}

// reserve a tag from the tag manager

if (tag_id[1}==MFC_TAG_INVALID) {
printf("SPE: ERROR can't allocate tag ID\n");
return -1;

}

// get data from main storage to local store
mfc_get((void *)s&(stuff),argp,sizeof (add_worker),tag _id[01,0,0);

// wait for the command to complete. wait on this tag_id.
waitag(tag_id[0}l);

// initialize the parameters

spu_num = stuff.spu num;

data_data = stuff.data_data;

result_data = stuff.result data;

data_knt = stuff.data_knt;

value = (vec_int4) {stuff.value,stuff.value,stuff.value,stuff.value};

left = (data_knt < ELEM PER_BLOCK) ? data_knt : ELEM PER BLOCK;

// adapt the size in order to fulfill the alignment requirements
size = (void *) (left*sizeof (int));
size = (void *) (spu_mfc_ceill6((uint32_t)size));

// Prefetch first buffer of input data

buf = 0;

mfc_getb((void *)1s_data data, (uint32_t) (data_data),
(uint32_t)size, tag_id[0], O, 0);

while (left < data_knt) {
data_knt -= left;

nxt_data = data_data + left;

nxt result = result data + left;

nxt left = (data_knt < ELEM_PER BLOCK) ?
data_knt : ELEM_PER BLOCK;

// adapt the size in order to fulfill the alignment requirements
size = (void *) (nxt_left*sizeof (int));
size = (void *) (spu_mfc ceill6((uint32_t)size));

// Prefetch next buffer so the data is available for computation
// on next loop iteration.
// The first DMA is barriered so that we don't GET data before the
// previous iteration's data is PUT.
nxt_buf = buf*l;
mfc_getb ((void *) (§1ls_data_data[nxt_buf] [0]),

(uint32_t) (nxt_data), (uint32_t)size,tag_id[nxt_buf},0,0);

// wait for previously prefetched data
waitag(tag_id[bufl);

for (i = 0; i < left / 4; i++)
1s_result_data[buf] [i] = spu_add(ls_data_datal[buf] [il, value);

// Put the buffer's position data back into system address space

57

113
114
115
116
117
118

120
121
122
123
124
125
126
127
128
129
130
131

}

mfc_putb ((void *) (&ls_result_data[buf] (0]),
(uint32_t) (result_data),left*sizeof (int),tag_id[buf],0,0);

data_data = nxt_data;
result_data = nxt_result;

buf = nxt buf;
left = nxt_left;
}

// Wait for previously prefetched data
waitag(tag_id[buf]);

// process buffer
for (i = 0; 1 < (int)ceil((float)left/(float)4); i++)
1ls_result data[buf] [i] = spu_add(ls_data_data[buf] {i], value);

// adapt the size in order to fullfil the alignment requirements
size = (void *) (left*sizeof (int));
size = (void *) (spu mfc ceill6((uint32_t)size));

// Put the buffer's position data back into system address space

// Put barrier to ensure all data i written to memory before writing

// status

mfc_putb((void *) (&ls_result_data{buf][0]), (uint32_t) (result_data),
(uint32_t)size,taqg_id[buf},0,0);

waitag(tag_id[buf]);

stuff.result = 1;
mfc put((void *) &stuff,argp,sizeof (add_worker),tag_id[bufl,0,0);
waitag(tag_id[buf]);

mfc_tag release(tag_id[0]

)i
mfc_tag_release(tag_id[1l]);

return (0);

The first step goes from line 43 until 54. The program gets the arguments and initializes the variables.
Second step is performed until line 65 and here the application gets the first buffer of data. Third step
starts then and It is repeated as long as there are more buffers to apply. Steps 3, 4, 5 and 6 run inside
the cycle and once the program gets out of it, the last two steps are then performed.

Before all the mfc commands it Is noticeable that the size of the transfer is always rounded. This process
is only needed in the last processed buffer in the last SPE since this one may not have the required size
for a DMA transfer, but in order to keep the program simple that detail was left aside.

3.2.2.4 Compiling and Running Add

To compile the add module, the same procedure is foliowed as In the Hello Example (see chapter 3.2.1.3
Compiling and Running Hello). An example of a visual program using this module is shown in Figure 3-6:

58

The plot shows the signal for the three different music files. The important thing here is not what these
resuits mean, but how simple can it be to implement a program using a visual programming
environment.

3.3 Improving OpenDX Performance

The second part of the practical work in this thesis is to show how OpenDX performance can be
improved using the Cell/B.E. capabilities.

The process consists of grabbing an already implemented DX module and then optimize fts code.
Unfortunately, it is not possible to simply compile and run a DX module inside a SPE because of fts

differences with the PPE (see chapter 2.1 Cell / Heterogeneous Multi-core Environment).

The Gradient module inside DX is a good candidate since its computation resides inside a loop applying
an algorithm to each element of an array. Dividing and parallelizing this loop into different cores, as
different and independent tasks, may improve the performance.

This chapter introduces the GradientCell module which is an optimized version of the Gradient module.
Like the structure for each implemented module in the chapter 3.2 Cell/B.E. Applications in OpenDX, this
case study shows the GradientCeli: module description file; implementation; how to compiie and run;
impiementation notes and performance study.

3.3.1 GradientCell

The approach taken to optimize this module does not invoive a deep knowledge of the Gradient
operation. There Is a part in the code which has a computing-intensive cycle and its number of iterations
depends on the size of the input, so the goai is to: divide and parallelize this cycie across the SPEs (in
simuitaneous tasks); put the resuit back in the main memory and then check whether the resuits are
consistent.

Only 1-D and 2-D regular fields were optimized. The remalning code is unchanged.

3.3.1.1 GradientCell mdf

The mdf for the GradientCeli module does not introduce anything new when compared with the regular
Gradient module, so its contents {except the name) are exactly the same:

Example 3-17 GradientCell mdf

MODULE GradientCeli
CATEGORY Celi
DESCRIPTION Computes the gradient of a scalar fieid
INPUT data; scalar fieid; NULL; field to compute gradient of

85

INPUT method [visible:0}; string; "manhattan”; method to use

OUTPUT gradient; vector fleld; gradient field

3.3.1.2 GradientCell Implementation

Like the Add module (see chapter 3.2.2 Add), the implementation for the GradientCell module is divided
in three sections: GradientCell Shared Structure; PPU GradientCell Implementation and SPU GradientCell

Implementation.

3.3.1.21 GradientCell Shared Structure

Bellow is the shared structure between the PPE and the SPE:

Example 3-18 GradientCell shared structure

#ifndef GRADIENT H_
#idefine GRADIENT H_

#include <dx/dx_spu.h> /* SPU may need some information from here */

typedef struct {
void *data_address;
void *vectors_ address;
float *deltas address;
int *permute_address;
int data_nItems;
Type data_type:
int nDim;
int pFlag;
int first cycle;
int last_cycle;
int spe_num;
int xKnt;
int yKnt;
int zKnt;
int start;
int offset;
unsigned char pad[64];
} spu;

typedof union

{
unsigned long long ull;
unsigned int ui(2];

}

addr64; /* linkage stuff used when calling the SPU program */

fidefine ELEM PER BLOCK 1024
f#define MAX SPU THREADS 16

fidefine spu mfc_ceill28(value) ((value + 127) & ~127)
#define spu mfc ceillé(value) ((value + 15) &

// calculates the n=(x,y)

86

41
42
43

45

47

49
50
51
52
53
54
55
56
57

NOUVHWNER

// input: n and y--axis size

void find 2D coordinates(int n, int y size, int *x, int *y)

{
int pos_x = abs(n/y_size);

int pos_ y = n % y_size;

if (pos_y == 0){
pos_X--=;
pos_ y = y_size - 1;
}

else
pos_y--;
x[0] = pos_x:
y[0] = pos_y;
}

#endif /* GRADIENT H_ */

This structure may look confusing, but everything makes sense when the PPU and SPU GradientCell
implementations are introduced in the next sub-chapter.

The structure contains four addresses to the main memory: data_address contains the address for the
input values (which have a data_type); vectors_address contains the address for the output values;
deltas_address contains the address for the delta values and permute_address contains the address for
permuting values which may be used or not (depending on the pFlag value). The remalning values are:
data_nitems, which contains the input’s number of items; offset, which describes how many values are
going to be computed in the corresponding spe_num; nDim, which contains the dimension of the input
field (must be 1-D, 2-D or 3-D); first_cycle and last_cycle, which are activated flags in the case of the
correspondingly first or last set of data is computed in the SPE; xKnt, yKnt and zKnt, which
correspondingly contain the size of the X-axis, Y-axis and Z-axis and start, which contains the starting
point for the computation in the SPE.

The function find_2D_coordinates Is used in a 2-D regular field input case. it transforms a specified
array position into the corresponding (x,y) coordinates to the DX data structure.

3.3.1.22 PPU GradientCell Implementation

First of ali, the original computation for the Gradient inside a field is divided in two cases: regular or
irreguiar field. If the field is irregular then the code Is unchanged.

Otherwise, the structure in the previous chapter is initialized and the computation starts the SPE
threads. The function doGradientRegular inside the file gradient.c in the source code has a macro cailed
RUN_SPU responsible for that:

Example 3-19 € code for the PPU GradientCell Implementation

define RUN_SPU(type)
{
type *data;

vectors = (float *)DXGetArrayData(outArray):
data = (type *)DXGetArrayData(inArray):;

Pl il

87

}

int acc
for (i

{

}

=0;

= 0; i < spu_threads; i++)

stuff[i].spe num = i;

stuff[i] .permute address = permute;
stuff[i].data_address = (void *)data;
stuff[i].vectors_address = (void *)vectors;
stufffi].data_nItems = nItems;
stuff{i] .nDim = nDim;
stuff[i].deltas address = deltas;
stuff{i] .offset = offset;

if (i ==0)

else

stuff[i].first cycle = 1;

stuff[i].first _cycle = 0;

acc += offset;
switch (nDim)

{

}

case 1:
if (i == spu_threads - 1)
{
stuff[i].last_cycle = 1;

stuff[i].xKnt = nItems-offset*(spu_threads-1);\

else
{
stuff[i].last_cycle = 0;
stuff[i] .xKnt = offset ;
}
break;
case 2:

stuff{i].start = acc-offset+l;
stuffii] .xKnt = counts[0};
stuffii] .yKnt = counts[1};

param[i] .spe_argp=&stuff{i];
/* Omitted code to start and run the

SPE threads */

/* Omitted code to wait for the SPE threads */
/* to complete and destroy the context information */

PP

PPl P P i A L A A A 4 G A A A A A

PP Al AP i P P A A PP P AP P

All the values except spu_threads, stuff and offset already exist in the original code version and that is
the reason why the shared structure in the previous chapter (see 3.3.1.2.1 GradientCell Shared
Structure) looks so confusing. These values are necessary in the computational part and must be copled
from the main memory to the SPE LS.

The new values: spu_threads contains the number of SPUs to use; stuff refers to a variable of the type
spu which is the previously introduced shared structure and offset contains the number of items to
process in determined SPE.

All the computation which is supposed to be taken in this section (in the original version) is “postponed”
to the SPEs execution.

33.1.23 SPU GradientCell Implementation

On the SPU side one of three things can happen: the input corresponds to a 1-D, 2-D or 3-D field. if it is
3-D field, then no computation is made since this process is not optimized.

3.31.23.1 1-DInput Field

For the 1-D field Input case, the computation works In the following way: assuming Input as the input
array and output as the output array, then for each position i (from the beginning to the end of array):
output(i] = (input(i+1] - input[i-1]) * value, where value is a previous calculated number. If | equals the
first position or the last position of the array, then the first or the last positions are used in the formula.

Figure 3-28 illustrates the computatlon procedure:

Input Array

37| 9] 5|8 |10]11]i14

Output Array (value = 1)

a6 |2|a]|s]|3|a]|s3

A Y

-3+ [FG-9s] [GFinei]
Figure 3—2§ Computation of a gmdient ina 1-D fleld

This brings up a problem when implementing the DMA transfers to prepare the data for the
computational part. Since the DMA transfers get data from point A to point B, then computing the point
A can be cumbersome because the data right before A is needed. The same happens for computing the
polnt B, since the value right after B is also needed.

So, for each DMA transfer (excepting the first one and the last one), two more DMA transfers are
performed to get the data before A and after B in order to perform the computation. The varlable with
the Information needed by point B Is called special_one and the variable with the Information needed
by point A is called special_two.

Besides the Double Buffering technique (see chapter 3.2.2.1 Double Buffering), the remaining code to
compute the gradient, even in the SPE side, Is the same. This means that no vector SIMD Is used.

89

331232 2-DInput Field

For a 2-D input field, the implementation gets more complex.

First of all, the output size is two times bigger than the input size and, for each computed value, two
output slots are used.

The computation takes two embedded cycles where the first cycle goes from 0 until the size of xKnt and
the embedded cycle inside goes from 0 until the size of yKnt. These variables are inside of the shared
structure (see chapter 3.3.1.2.1 GradientCell Shared Structure) and correspond to the size of the X and Y
axis.

For example, computing the gradient for a 2*5 input Field (size of X axis is 2 and size of Y axis is 5) with
the data {3, 7, 9, 5, 8, 10, 11, 14, 15, 17} and assuming a constant value = 1 results in the following
output:

® For the Y values (second component) the computation stays the same as in the 1-D case. Then
the output for the Y values is: {4, 6, -2, -1, 3, 1, 4, 4, 3, 2} (NOTE: there are two Y arrays with 5
elements each one)

e For the X values the computation is a little bit different. Instead of getting the previous and
following values, the algorithm gets the Y size (in this case 5) previous value and the Y size
following value for the current computation. Like the 1-D case, if the cycle is in the beginning,
then the previous value is the current value and If the cycle is in the end, then the current value
is used instead of a following one. The output for the X values are: {7, 4, 5, 10, 9, 7, 4, 5, 10, 9}

Figure 3-29 Illustrates the example:

Input Array

xzo | 3|7 |95 |e=

x=1 [0 |11] 16|15 |ar

Output Array (value = 1)

Kvalues | 7 41 5 1w} 9 7 4|1 5|10} 9

yvalues. | 4 6 2| a3 1 alal 3 t:-i:‘

[Fa-5 1] =(al-10*1]
Figure 3-29 Computation of a Gradient in a 2-D field

This Issue makes the DMA transfers even more complicated. Besldes the special_one and speclal_two
(see chapter 3.3.1.2.3.1 1-D Input Field), two more DMA transfers are used In order to compute the X

90

4 Conclusion

Two different concepts were introduced in this thesis: Cell/B.E. and visual programming. Cell/B.E. came
up as a solution to improve application performance, but programming for it can be quite challenging.
On the other side, visual programming demonstrated to be an easier and intuitive programming

paradigm.

So, combining these two concepts without losing performance offers the programmers around the
world an easier way to take advantage of the Cell/B.E. capabilities. OpenDX was the platform chosen in
order to do so since It Is possibie to impiement modules for it in C language, which Is supported by
Cell/B.E.

Several modules were then implemented: Hello, Add, Add2, FFTW and Gaussian. Hello module
introduced how to start SPE threads. Add and Add2 modules introduced parallelization and SiMD
instructions. FFTW and Gausslan moduies introduced the use of existing libraries, which are optimized
for Celi/B.E. All this modules show that it Is possibie to use the fuii Celi/B.E. capabiiities inside a visual
programming environment. The final user of the application just connects the modules without caring
about particularities regarding the architecture where the application is running.

For each implemented module a performance study comparing their run-times (in a QS22 blade)
between running them inside console or DX was introduced. The study showed that it is possible to
switch the environment without losing performance, but attention must be paid to the memory
structures. DX memory structures carry the inputs and outputs from module to module without
problems, but they must be optimized in order to not lose performance. That is proven by FFTW and
Gausslan modules performance study. The first one uses an optimized memory organization and therels
no big loss of performance and the second one only achieves that by using locai memory structures,
which have the probiem to not transmit the output along the visual program. It is possibie to write a
module with an optimized memory organization inside DX, but that requires an extra effort.

At last, a case study using the Gradient module was presented in order to show how performance of an
already implemented module can be improved. The process consisted in parallelizing a big ioop
responsible for the computational part of the module and results showed some gaining in performance
in spite of not being used all the Cell/B.E. capabilities. This process was far from easy and a possible
better solution may be to re-implement the module from the scratch.

4.1 Future Work

in spite of DX optimistic results, there is still work that can be done in order to ease some tasks for users
and developers.

The code generator of the DX Module Builder (see chapter 2.3.5 Module Builder) is a great tooi and it
should introduce a few more features. it would help DX developers if this bullder could generate
Cell/B.E. code In the user’s function. For example, generate code to start, run and finish SPE-threads,
and also generate a header file with a structure containing pointers to all the inputs and outputs, and
integers with their size. This would give an easier way for Celi/B.E. developers to write modules.

Another Issue regarding the DX Module Builder is the DX memory structure. Generating code with
optimized memory structures would be a big help for the developers to keep a good performance on
the Cell/B.E. applications.

The DX Compute module is a great tool and it should be a case study. Giving this module the ability to
compute whatever the user wants in his/her data using the full Cell/B.E. capabilities would allow the
computing of any Cell/B.E. optimized mathematical expression simply by typing it in the module.

At last, remaining future work may focus on the user interface of DX in order to make the act of visual

programming more intuitive (see chapter 2.2.5 Some principles for visual ianguage design). Some

suggestions on this field are:

e Expand DX moduie transmitters and receivers in the main window by double ciicking on them
(instead of forcing the user to search for the corresponding tab)

s Option to attribute personaiized icons to the moduies and colours to the visual programs

e Option to edit the source code of the module in the visuai program and recompile it on-the-fly

95

Bibliography

Agilent Technologies Inc. Vee Pro User's Guide. 2008. http://www.home.agilent.com/agilent/home.jspx
{(accessed February 16, 2009).

Andescotia. Marten IDE 1.4. 2008. http://www.andescotia.com/products/marten/ (accessed February
16, 2009).

Arevalo, Abraham, et al. Programming the Cell Broadband Engine — Examples and Best Practices. New
York: IBM Redbooks, 2008.

Baecker, R. “Sorting out Sorting.” ACM SIGGRAPH '81. Dallas, TX: ACM, 1981. Sound film, 25 minutes,
16mm color.

Blachford, Nicholas. Programming The Cell Processor - Part 1: What You Need to Know. 2006.
http://www.blachford.info/computer/articles/CellProgramming1.html (accessed October 6, 2008).

Brown, Marc H., and Robert Sedgewick. “A system for algorithm animation.” ACM SIGGRAPH Computer
Graphics, Volume 18, Issue 3, 1984: 177-186.

Clarisse, O., and S. K. Chang. “VICON: A Visual Icon Manager.” Visual Languages. New York: Plenum
Press, 1986. 151-190.

Cox, Philip T., and Trevor J. Smedley. “Using visual programming to extend the power of spreadsheet.”
Proceedings of the workshop on Advanced visual interfaces. Bari, ltaly: ACM, 1994. 153-161.

Curry, Gael A. Programming by Abstract Demonstration. Dissertation, Washington: University of
Washington, 1978.

Daintith, John. Oxford dictionary of computing. New York: Oxford University Press, 1983.

dalke scientific. Visual dataflow programming. 22 September 2003.
http://www.dalkescientific.com/wrltings/diary/archive/2003/09/22/VisualProgramming.html (accessed
August 20, 2008).

Feinberg, Dave. “A visual object-oriented programming environment.” ACM SIGCSE Bulletin, Volume 39,
Issue 1, 2007: 140-144.

Free On-line Dictionary of Computing. 26 May 2007. http://foldoc.org/ (accessed October 8, 2008).

Frigo, Matteo, and Steven G. Johnson. Fastest Fourier Transform in the West. November 2008.
http://www.fftw.org/ (accessed February 16, 2009).

Goldberg, Adele, and David Robson. Smalitaik-80: The language and its implementation. New York:
Addison-Wesley, 1983.

Goldstine, Herman H. The Computer from Pascal to von Neumann. Princeton, NJ: Princeton University
Press, 1972.

Graduate Education and Research Services - Penn State. “Open Visualization Data Explorer.” Special
Projects Group. 2008. http://gears.aset.psu.edu/sp/software/opendx/details.shtml (accessed February
16, 2009).

96

Grafton, Robert B., and Tadao Ichikawa. “Visual Programming - Guest Editor's introduction.” Computer,
Volume 18, Issue 8, ISSN: 0018-9162, 1985: 6-9.

Halbert, Daniel C. Programming by example. Dissertation, Berkeley, CA, USA: University of California,
1984.

Harmonia, inc. Harmonia. 2008. http://www.harmonia.com/ (accessed February 16, 2009).

IBM. Cell BE Programming Tutoriai, 19 October 2007. http://www-
01.ibm.com/chips/techlib/techlib.nsf/techdocs/FC857AESS0F7EB83872571AB0061F788 (accessed
February 16, 2009).

—. Cell SDK. 2008. http://www.ibm.com/developerworks/power/cell/ (accessed February 16, 2009).
—. OpenDX. 1991. http://www.opendx.org/ (accessed February 16, 2009).

Koelma, Dennis, Richard V. Balen, and Arnold Smeulders. “SCIL-VP: a multi-purpose visual programming
environment.” In Proceedings of the 1992 ACM/SIGAPP Symposium on Applied Computing: technological
challenges of the 1990's. ACM, 1992. 1188-1198.

Lewis, Clayton, and Gary Olson. “Can principles of cognition lower the barriers to programming?” In
Emplrical studies of programmers: second workshop, ISBN:0-89391-461-4, by Ablex Serles Of
Monographs, 248-263. Norwood, NJ, USA: Ablex Publishing Corp., 1987.

Madnick, Stuart. “Understanding the Computer (Little Man Computer).” Unpublished manuscript. 1993.

Mattson, Timothy G., Berna L. Massingill, and Beverly A. Sanders. Patterns for Paraliel Programming.
Addison Wesley, ISBN 0321228111, 2004.

Mayora-lbarra, Oscar, Oscar de la Paz-Arroyo, Edgar Cambranes-Martinez, and Alejandro Fuentes-
Penna. “A visual programming environment for device independent generation of user interfaces.”
Proceedings of the Latin American conference on Human-computer interaction. Rio de Janeiro, Brazil:
ACM, 2003. 61-68.

Mega Nerd. libsndfile. 2008. http://www.mega-nerd.com/libsndfile/ (accessed February 16, 2009).

Meyer, Robert M., and Tim Masterson. “Towards a better visual programming language: critiquing
Prograph's control structures.” Journal of Computing Sciences in Coileges, Volume 15, Issue 5, 2000: 181-
193.

Myers, Brad A. “INCENSE: A system for displaying data structures.” ACM SIGGRAPH Computer Graphics,
Volume 17, Issue 3, 1983: 115-125.

Myers, Brad A. “Taxonomies of visual programming and program visualization.” Journal of Visual
Languages and Computing, Volume 1, Issue 1, 1990: 97-123.

Myers, Brad A., Ravinder Chandhok, and Atul Sareen. “Automatic data visualization for novice Pascal
programmers.” Visual Languages, 1988., IEEE Workshop on. Pittsburgh, PA: IEEE, 1988. 192-198.

National Instruments. Using the LabVIEW Run-Time Engine. 2006. http://zone.ni.com/reference/en-
XX/help/3713618-01/lvhowto/using_the_Iv_run_time_eng/ {accessed October 20, 2008).

Nickerson, Jeffrey. Visual Programming Ph.D. Dissertation. 1994,
http://www.nickerson.to/visprog/visprog.htm (accessed October 8, 2008).

97

Roy, Geoffrey G., loel Kelso, and Craig Standing. “Towards a Visual Programming Environment for
Software Development.” Software Engineering: Education & Practice, 1998. Proceedings. 1998
international Conference. Dunedin: IEEE, 1998. 381-388.

Shneiderman, Ben A. “Direct manipulation: A step beyond programming languages.” In Human-
computer interaction: a multidisciplinary approach, ISBN:0-934613-24-9, by Willlam A. S. Buxton, 461-
467. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1987.

Smedley, Trevor J., Philip T. Cox, and Shannon L. Byrne. “Expanding the utility of spreadsheets through
the integration of visual programming and user interface objects.” Proceedings of the workshop on
Advanced visuai interfaces. Gubbio, italy: ACM, 1996. 148-155.

Smith, David C. Pygmalion: A Computer Program to Modei and Stimuiate Creative Thought. Basel,
Stuttgart: Birkhauser, 1977.

Smith, David C. Pygmalion: a creative programming environment. Dissertation, Stanford, CA, USA:
Stanford University, 1975.

Tritera. The State of Prograph/CPX. 19 April 2005. http://www.tritera.com/prograph.html (accessed
October 23, 2008).

Ward, Matthew. “Data Visualization.” Worcester Polytechnic Institute, Computer Science Department.
http://www.dalkescientific.com/writings/diary/archive/2003/09/22/VisualProgramming.html (accessed
August 18, 2008).

Whitley, Kirsten N., and Alan F. Blackwell. “Visual Programming in the wild: A survey of labview
programmers.” Journal of Visual Languages and Computing, Voiume 12, Issue 4, 2001: 435-472.

Whitley, Kisrten M., and Alan F. Blackwell. “Visual programming: the outlook from academia and
industry.” Papers presented at the seventh workshop on Emplirical studies of programmers, ISBN:0-
89791-992-0. Alexandria, Virginia, United States: ACM, 1997. 180-208.

Wikipedia. Deutsch Limit. 10 lanuary 2009. http://en.wikipedia.org/wiki/Deutsch_Limit (accessed
February 22, 2009).

—. Gaussian blur. 2008. http://en.wikipedia.org/wiki/Gaussian_blur (accessed January 26, 2009).

—. Hypervisor. 2008. http://en.wikipedia.org/wiki/Hypervisor (accessed February 16, 2009).

—. LabVIEW. 2008. http://en.wikipedia.org/wiki/LabVIEW (accessed October 20, 2008).

—. Visual Basic .NET. 2008. http://en.wikipedia.org/wiki/Visual_Basic_.NET (accessed October 8, 2008).
—. Visualization. 2008. http://en.wikipedia.org/wiki/Visualization (accessed August 20, 2008).

Young, Mark, Danielle Argiro, and Steven Kubica. “Cantata: Visual programming environment for the
Khoros system.” Computer Graphics, 1995: 22-24.

98

Glossary

CBEA

Cell Broadband Engine Architecture.

Cell/B.E.

Cell Broadband Engine. The Cell Broadband
Engine is one implementation of the Cell
Broadband Engine Architecture (CBEA).

Data Explorer

Data Explorer allows the users to manipulate
their data and create visualizations by using a
visual programming environment.

DMA

Direct Memory Access. A technique for using a
special-purpose controller to generate the
source and destination addresses for a memory
or i/O transfer.

DX (or OpenDX)

See Data Explorer.

Effective-address space (EA)

An address generated or used by a program to
reference memory. A memory-management
unit translates an effective address (EA) to a
virtual address (VA), which it then transiates to
a real address (RA) that accesses real (physicai)
memory. The maximum size of the effective
address space Is 2* bytes.

Element Interconnect Bus EIB

Element Interconnect Bus. The on-chip
coherent bus that handles communication
between the PPE, SPEs, memory, and I/O
devices (or a second Cell Broadband Engine).
The EIB is organized as four unidirectional data
rings (two clockwise and two counter
clockwise).

Example-Based Programming

Example-Based Programming refers to systems
that allow the programmer to use examples of
input and output data during the programming
process.

Field

A self-contained collection of information
necessary to represent scientific data. A Data
Explorer Field typically is made up of a series of
components and other information as required.
It inciudes the data itself in the form of a “data”
component, a set of sample points in the form
of a “positions” component, optionaily, a set of
interpolation elements in the form of a
“connections” component, and other
information as needed.

Graphical Programming

See Visual Programming.

/o

Input/Output.

intrinsic

A C-language command, in the form of a
function call, that is a convenient substitute for
one or more inline assembly-language
instructions. Intrinsics make the underlying ISA
(Instruction Set Architecture) accessible from
the C and C++ programming languages.

Local Store

The 256-KB local store (LS) associated with each
SPE. It holds both instructions and data.

LS

See Local Store.

Main Memory

See Main Storage.

Main Storage

The effective-address (EA) space. It consists
physically of real memory (whatever Is external
to the memory-interface controller, including
both volatile and nonvolatile memory), SPU LSs,

memory-mapped registers and arrays,
memory-mapped /O devices (all /O is
memory-mapped), and pages of virtual

memory that reside on disk. It does not Include
caches or execution-unit register files. See also
local store.

mdf

See module description file.

100

MFC

Memory Flow Controller. It is part of an SPE
and provides two main functions: moves data
via DMA between the SPE's local store (LS) and
main storage, and synchronizes the SPU with
the rest of the processing units in the system.

Module Builder

A graphical user interface to assist in the
creation of user-defined modules. °

module description file

A module description file Is used by a
programmer who is adding a module to Data
Explorer to describe information about the
module that Is needed by the system.

A module description file contalns the name of
the module, a short description of it, a category
for the user interface to put the module in, and
the names and descriptions of the input and
output parameters. The module description file
is used by the executive and the user interface
to name parameters. The module description
file is also used by the graphical user interface
to form a tool icon in the proper category with
the right number of input and output tabs.

PPE

Power Process Element. The general-purpose
processor in the Cell Broadband Engine.

PPU

PowerPC Processor Unit. The part of the PPE
that includes the execution units, memory-
management unit, and L1 cache.

Program Visualization

Programming environment which uses graphics
to illustrate some aspect of the program or its
run-time execution.

RISC

Reduced Instruction Set Computing. Represents
a CPU design strategy emphasizing the insight
that simplified Instructions that "do less” may
stll provide for higher performance if this
simplicity Is used to execute instructions faster.

SIMD

Single Instruction Multiple Data. Processing In
which a single Instruction operates on multiple
data elements that make up a vector data-type.
Also known as vector processing. This style of
programming implements data-level
parallelism.

SIMDize

To transform scalar code to vector code.

hypervisor

A control (or virtualization) layer between
hardware and the operating system. It allocates
resources, reserves resources, and protects
resources among (for example) sets of SPEs
that may be running under different operating
systems. The Cell Broadband Englne has three
operating modes: user, supervisor and
hypervisor. The hypervisor performs a meta-
supervisor role that allows multiple
independent supervisors’ software to run on
the same hardware platform. For example, the
hypervisor allows both a real-time operating
system and a traditional operating system to
run on a single PPE. The PPE can then operate a
subset of the SPEs In the Cell Broadband Engine

101

with the real-time operating system, while the
other SPEs run under the traditional operating
system.

SPE

Synergistic Processor Element. It includes an
SPU, an MFC, and an LS.

SPE thread

(a) A thread running on an SPE. Each such
thread has Its own 128 x 128-bit register file,
program counter, and MFC Command Queues,
and it can communlcate with other execution
units (or with effective-address memory
through the MFC channel Interface). (b) A
thread scheduled and run on an SPE. A program
has one or more SPE threads. Each thread has
its own SPU local store (LS), register file,
program counter, and MFC command queues.

SPU

Synergistic Processor Unit. The part of an SPE
that executes Instructlons from its local store
(Ls).

thread

A sequence of Instructions executed within the
global context (shared memory space and other
global resources) of a process that has created
(spawned) the thread. Muitlple threads
(Including muiltiple instances of the same
sequence of Instructions) can run
simultaneously if each thread has its own
architectural state (registers, program counter,
flags, and other program-visible state). Each
SPE can support only a single thread at any one
time. Muitlple SPEs can simultaneously support
multiple threads. The PPE supports two threads
at any one time, without the need for software
to create the threads. It does this by duplicating

the architectural state. A thread is typically
created by the pthreads library.

uimL

User interface Markup Language. Is an XML
language for defining user interfaces on
computers.

vector

An instruction operand containing a set of data
elements packed into a one-dimensional array.
The elements can be fixed-point or floating-
point values. Most Vector/SIMD Multimedia
Extension and SPU SIMD instructions operate
on vector operands. Vectors are also called
SIMD operands or packed operands.

Vector/SIMD

The SIMD instruction set of the PowerPC
Architecture, supported on the PPE.

Visual Program

A user-specified interconnected set of Data
Explorer (DX) modules that performs a
sequence of operations on data and typically
produces an image as output.

Visual Program Editor

Data Explorer (DX) window used to create and
edit visual programs and macros.

Visual Programming (VP)

The Visual Programming concept Is split in two:
Visual Programming Language (VPL) and Visual
Programming Environment (VPE).

102

Visual Programming Environment

Visual Programming Environment (VPE) is
software which allows the use of visual
expressions (such as graphics, drawings,

animation or icons) in the process of
programming.
Visual Programming Language

Visual Programming Language (VPL) is any
programming language that allows the user to
specify a program in a two-{or more)-
dimensional way.

VPE

See Visual Programming Environment.

VPL

See Visual Programming Language.

