
*
lJniversidade de Évrrra

Hanêsto Esrrrdo com La*ga Exp*El**cl. lllistur*do

Departamento de InÍormática

Visual Programming in a

Heterogeneous M ulti-core

Environment

Pedro Miguel Rito Guerreiro
<l I 8766@alunos.uevora.pt>

Supervisor: Salvador Abreu (Universidade de Évora, DI)

Érora

2009

Nota: Esta dissertação não inclui as críticas e sugestões feitas pelo júri.

,* lJniversidade de Évora
H*r,êsto Eet$do cam Langa *partê*cia rll|starada

Departamento de lrÍormática

Visual Programming in a

Heterogeneous M ulti-core

Environment

Pedro Miguel Rito Guerreiro
<l I 8766@alunos.uevora. pt>

Supervisor: Salvador Abreu (Universidade de Évora, DI)

2009

l+) 3))

Évora

Nota: Esta dissertação não inclui as críticas e sugestões feitas pelo júri.

Acknowledgments

First of all, I would like to give a big and deep thank you" to everyone who helped me durlng thls
journey of my llfe. Golng to Germany (first tlme outside Portugal) and lntegratlng myself ln the lBM lab
ln Bôbllngen would not have been so easy without the help of oreryone ln the Cetl/B.E. Test Team. Very

speclal thank to: M[o Safradln and Rul Machado, who helped me to lntegrate; Dr. Wemer t0lechbaum,

whose contrlbutlon and help durlng the development of thls thesls I cannot quantlfy; Dr. Salvador
Abreu, who made thls joumey come true; Valérlo Valério, for downloadlng some artlcles I needed;
Thomas Bodner, Johannes Bodner and Stephanie Bolllnger, fur thelr coÍrtrlbutlon to the proof readlng

and Hllário Fernandes, for helping me rrlth the paper stuff at the unlverctty whlle I was ln Germany.

And at last, but not least, thank to my family who always have supported me, no matter what.

Contents

t

2.1 Cell/Heterogeneous Multl-core Environment. 3

2.1.1 Cell/8.E. Overview...... ..3

2.L.2 Hardware Speclflcatlon

2.1.2.1 PowerProcessElement(PPE).................

2.1.2.2 SynerBlstlc Processor Element (SPE).............4

2.1.2.3 Element lnterconnect Bus (ElB)5

2.1.3 lmprovlng Performance5

2.L.3.t Dlúde and Conquer (Parallellzing)6

2.1.3,2 Compute as much as possible at a time (SlMDlmlzlng)...7

2.1.3.2.1 Scalar VS Vector SIMD: A code example........8

2.1.3.3 Use Tlme Wsely (Avoldlng Stalls)9

2.1.4 Programmlng Overvlew9

2.1.4.1 DlfferentProcessors,DlfferentCompilers......

2.1.4.1,.1 C-Language lntrinslcs.......

2.1.4.1.2 Portlng SIMD code from the PPE to the SPEs..............

2.1.4.2 Dlfferent Processors, Dlfferent Address Spacs

2.7,4,2.1 Parallel Programmlng:ATaxonomy

2.1.5 Summary

2.2 MsualProgrammlng...........

2.2.1 Overvlew

10

10

11

t2

13

14

L4

2.2.2 The orlglns of Vlsual Programming

2.2.2.1 TheVlsualBaslcPhenomenon..,

t4

2.2.3

2.2.3.L Programmlng 16

152.2.3.2 lnterpretlveVSCompiled......

2.2.3.3 MsualProgrammlng..........16

2.2.3.3,1 Msual Programmlng Language17

2.2,3,3.2 Msual Programmlng Enüronment.17

2.2.3.4 Program Vlsuatlzatlon........-.-.............17

2.2.3.5 Example-Based Programmlng18

2.2.4 Advantages of Uslnt Graphics 18

2.2.5 Some prlnclples for üsual language des1gn...........1!,

ll

íC

2.2.6 Appllcatlon Examples20

2.2.6.1 Prograph20

2.2,6.L.1 Related Work 2L

2.2.6.1.1,t Spreadsheets21

2.2.6.1.1.2 Umltatlons.... 22

22

23

23

2.2.6.2 tabVlEW

2.2.6.2.1 Related

2.2.6.3 JavaTown

2.2.6.3.1 lJmltatlons.... ,E

2.2.6.4 Devlce lndependent Generatlon of User lnterÍaces ,c

2.2.6.4.1 llmhatlons....

2.3.2 Data Model... 29

30

32

32

2.3.3 VlsualProgramEdltor............

2.3.4 Data hplorer Vlsualization

2.3.4.3 DlsplayModule......... :!4

2.3.5 Module Bullder.......... .,....y

2.3.6 OpenDX lnstallatlon ln CelUB.E.....35

3 Vlsuallzatlon ln Cell/B.E

3.1.1 Deffnlng lnput/Output

3.1.2 ModuleDescrlptlonFlle................

3.1.3 lmplemenüngtheModule -?q

3.1.4 Complllng and Runnlng.

3.1.5 Hello World Example........

3.1.5.2 Hello mdf

3.15.3 Hetlo lmplementatlon........41

3.15.4 Complllng and Runnlng the Hello Erample41

3.15.5 Msual Program Example Uslng Hello...42

3.2 Cetl/B.E. Appllcatlons ln OpenDX.....tt4

lu

EIi'I

3.2.1 Hello World45

3.2.1.1

3.2.4.4

3.2.4.5

3.2.4.6

3.2.5

3.2.5.1

3.2.5.2

3.2.5.3

Hello mdf 45

3.2.1.2.2 SPU Hello lmplementatlon

3.2.1.3 Complllng and Runnlng

3.2.!.4 HellolmplementatlonNotes.....

3.2.2.2 ,,--qí

3.2,2,3 Addlmplementatlon.......... 51

51

523.2.2.3.2 AuxlllaryFunctlons

3.2.2.3.2.2 Auxlllary SPU tunctlons _ _.---q?

3.2.2.3.3 PPU Add lmplementatlon

3.2.2.3.4 SPU Add lmplementation

3.2.2.4

3.2.2.5

3.2.2.6

3.2.3 il
a
65

65

3.2.3.1 Add2 mdf

3.2.3.2 Add2lmplementatlon........

3.2.3.3 ComplllngandRunnlngAdd2..................

3.2.3.4 Add2lmplementaüonNotes............67

3.2.3.5 Add2 Performance Study....67

3.2.4 Fast Fourler Transform ln the Wst (FFIIV)..........68

3.2.4.1 lnstalllntthe llbFFTW6E

3,2,4.2 FFTW mdf.....

3.2.4.3 FFTWlmplementatlon........

3.2.2.3.1 Add Shared Structure

RÂ

lmage Processlng ln Í!x

Gausslan mdf

Gausslan !mplementatlon.................

74

75

75

w

3.2.5.4 Complllng and Running Gaussian

3.2.5.5 GausslanlmplementatlonNotes.

78

80

3.3.1.2.1 GradlentCellSharedStructuE6

3.3.1.2.2 PPUGradlentCelllmplementatlon

3.3.1.2.3 SPU GradlentCell lmplementatlon...............

94

4.! Future Work. %

Glossary........99

v

List of Figures

Figure 2-1Cetl Broadband Englne OveMew......3

Flgure2-2 Processlng a sum ln a lnteger anay wtth 8OÍXXffi posltlons.......6

Flgure 2-3 Processlng the same sum as last flgure, but ln parallel.....................7

Flgure 24 Storage and domaln lnterfaces11

Flgure 2-5 Sutherland's dlagram for calculaüng a square root..............15

Flgure 2{ Prograph database operatlon Method lmplementatlon................20

Flgure 2-7 A Spreadsheet with lnterface Objects............... ..-..........-............21

Flgure 2€ Screenshot of a slmple tabVtEw protram23

Flgure 2-9 FullJavaTown Screen 1ayout...........25

Flgure 2-10 Transcoder archlteture................26

Flgure 2-11 A general vlew of vlsual programmlng envlronment to multldevlce.27

Flgure2-l2 OpenDX maln features29

Flgure 2-13 Exampte of a Fleld Object...........30

Flgure 2-14 Part of the DX vlsual program for the USA Census úsuallzatlon...........31

Fígure 2-15 Detalls of the module Maponstates-............32

Flgure 2-16 DX showlng the dlstrlbutlon of Amerlcan populatlon....33

Flgure2-L7 Contro! Panel for the USA Census program:I4

Flgure 2-18 DX Module Bullder..........35

Flgure 3-1 DX Startup w1ndow.............42

Flgure 3-2 Hello üsual program43

Flgure 3-3 DX Strlnt modu1e.........43

Flgurê 34 Oúput of the Hello üsual program........,..,.....M

Flgure 3-5 Double bufferlng scheme................50

Flgure 3{ Vlsual program uslng the Add modu1e.........59

Flgure 3-7 Construct module expanded.....

Flgure 3€ lnteger module expanded

Flgure 3-9 Message wlndow of the edd vlsual program61

Flgure 3-10 QS22 Add Module Performance.63

Flgure 3-11P§l Add Module Performance53

Flgure 3-1ll Vlsual program uslngthe Add2 module

Flpre 3-li! Message wlndow of the Add2 vlsual program

Flgure 3-14 QS22 Mdz Module Performance.67

Flgure 3-15 Msual program uslng the FFTW module

Flgure 3-16 Output dlsplay of the Vlsual pÍo$am ln Flgure 3-15

Flgure 3-17 QS22 FFTW Module Performance.

Flgure 3-18 Plxelorder ln DX

Flgure 3-1!l Msual program uslng the Gausslan and ConveÊer modules

Flgure 3-20 Dlsptay output 1from the vlsual program ln Flgure 3-1!l

Flgure 3-21 Dlsplay output 2 ftom the vlsual program ln Flgure 3-1!l

Flgure 3-22 Dlsplay ouçut 3 from the vlsual program ln Flgurc 3-1!,8Íl

Flgure !l-23 QS22 Gausslan Module Perfurmance.

Flgure 3-24 QS22 Gausslan Module Perfurmance (DX lmproved)

Flgure 3-25 Vlsual program for sound data vlsuallzatlon................&l

Flgure 3-26 Vlsual program to extract data from a sound file
Flgure3-27 Dlsplay output from the úsual ln Flgure 3-25..............84

7t
72

73

74

78

79)

79

vl

Flgure 3-28 Computatlon of a gradlent ln a 1-D fleld.E9

Flgure 3-29 Computation of a Gradlent in a 2-D ffeld90

Flgure 3-30 Vlsual program uslng the GradlentCell module

Figure 3-3 1 QS22 Gradlentcel I Modu le Performance

Flgure 3-32 QS22 GradlentCell Module Performance (2D lnput).....93

vu

List of Tables

Table 2-3 AlgorÍthm
Table 24 Supportlng structures for code and data.........13
Table 3-l Module Decrlpüon Flle (mdf)......38

YUI

Abstract

It ls knosín that nowadays technology develops really tat. New archltectures are created ln order to
proüde new soluüons for dlfferent technology llmÍtations and problerts. Sometlmes, thls evoluüon ls

paclflc and there ls no need to adapt to neu, technologls, but thlngs also may requlre a change every

once ln a whlle.

Programmlng languages have always been the communicatlon brldge between the progmmmer and the

Gomputer. New ones keep comlng and other ones keep lmproüng ln order to adapt to new concepB

and paradlgms. Thls requlres an extra-effurt for the protrammer, who always needs to be aware of

these changes.

Msual Programmlng may be a solutlon to thls problem. Expresslng funstlons as module boxs whlch

recetve determlned lnput and retum determlned output may help programmem acros the world by

gMng them the posslblllty to abstract from speclflc low-tevel hardware lssues.

Thls thesls not only shows how the CetUB.E. (whlch has a heterogeneous multl-core archltecture)

capablllües can be comblned wlth OpenDX (whlch has a üsual programmlng enüronment), but also

demonstrates that lt can be done wlthout loslng much performance.

lGyrords: Cell, Vlsual Programmlng, OpenDX

tx

Resumo

Programa$o visual numa arquitectrra muld-processador
heterogénea

É do conheclmento geral de que, hole em dla, a tecnologla evolul rapldamente. São crladas novas

arqultecturo para resolver determlnadas llmitaçôes ou problemas. Por vez6, essa evotução é pacÍflca e

não requer necssldade de adaptação e, por outras, essa evolução pode lmpllcar mudanças.

As llnguagens de programação são, desde sempre, o prlnclpal elo de comunlcação entre o programador

e o computador. Novas llnguagens contlnuam a aparecer e outras estão sempre em dsenvolümento
para se adaptarem a novos conceltos e paradlgmas. lsto requer um esforço e$ra para o programador,

que tem de etar sempre atento a estas mudanças.

A Programação Vlsual pode ser uma soluçâo para este problema. Exprlmlr funções como módulos que

recebem determlnado lnput e retomam determlnado output poderá aJudar os programadores

espalhados pelo mundo, através da posslbllldade de lhes dar uma margem para se abstraírem de

pormenores de balxo nfuel relaclonados com uma arqultectura especÍflca.

Esta tese não só mostra como comblnar as capacldades do CelUB.E. (que tem uma arqultectura multl-

processador heterogénea) com o OpenDX (que tem um amblente de programação üsual), como

também demonstra que tal pde ser fetto sem grande perda de performance.

x

1 Introducüon

C.omputer sclence only lndlcotq the rcüospectfue omnipotence ol our technologles. ln other words, an

infinlte copactty to process dota (but only dota - i.e. the olready glven) ond ln no sense o new vlslon.

Wtth thot sclence, we ore enterlng on eru of exhaustlvtty, whlch ls olso on era ol exhoustlon. - Jean

Baudrlllard 11929 - 2OO7l

It ls known that nowadays technototy develops really fast. Thls evolutlon brlngs more and more

computatlon power, but thls power ls useless lf we do not know how to use lt. Cell Broadband Englne

(CelUB.E.) is a heterogeneous multl-core archltecture proposed by Sony, Toshlba and IBM for computlng

lntenslve task. The ldea behlnd lts creatlon is to allow lmprovement of appllcatlons performance, by

computlng dlfferent tasks ln dlfferent cores.

New technologles also brlng new ways of thlnklng. Breaklng a llmÍtatlon usually lmplles breaklng a

paradlgm, and new paradlgms offer new solutlons, whlch may solve many problems.

However, adapdng to new concepB ls not so easy, especlally lf we are strongly connected to the "old"

ones. Cell/B.E. ls not any exceptlon and developlng new appllcatlons for it can be qulte challenglng.

On the other hand, there are applhatlons already developed for "oldef archltectures that help people

ln thelr dally routlns. OpenDX (DX) ls an open-source appllcatlon for data üsuallzaüon and lt goes ln the

dlrectlon of what Jean Baudrlllard was defendlng. lts goal is to grab/process data and glve a new lnslght

lnto ft, a meanlng.

Plus, DX uses an lnnovatlve way to manlpulate the data by the use of a Msual Programmlng

Envlronment. Thls approach ls very hlgh-lorel and DX users do not need to care about any low-level

issues related wlth the archltecture where the appllcatlon ls runnlng.

So, lf we can run a CelUB.E. appllcatlon on DX we can win three thlngs:

o Morê computlng power

o Ablllty to keep seeing the meanlng of data

o No needtochangeany paradlgm for DX users

The puçose of thls thesls ls to joln the capabllltles of CelUB.E. wlth the power of data vlsuallzatlon and

the slmpllclty of visual programmlng. Thls means not only runnlng a CelUB.E. applicatlon on DX, but also

showlng how performance oan be lmproved ln an already lmplemented module for DX.

There are two maln challenges when trylng to fulfllthls task the flrst one ls how to emM a CelUB.E.

appllcatlon ln DX and the second ls how to lmprove the performance of an already lmplemented

module.

Thls thesls ls organlzed as follorys:

Chaoter 2: Background provlds background informatlon about the three maln concepts ln thls

thesis: Cel/B.E., Vlsual Programmlng and OpenDX.

Chapter 3: Visualization in Cell/B.E. lnúoduces all the practlcal work lnvolved and puts together

the three maln concepts expsed ln chapter 2.

a

I

:l

o Chaoter 4: Conclusion summarlses the entlre thesis and dlscusses about the encountered
problems and llmltatlons durlng the development of the practlcat work. lt has one sub-chapter
whlch shows some ldeas for future work.

o Biblioqraohv contalns all the reference materlal.
o fu5gqg contalns a llst of terms and thelr deflnltlons.

2

2 Background

2.1 Cell I Heterogeneous Muld-core Environment

ln thls chapter the baslc concepts about the Cell/B.E. (Arewlo, et al. 2ütB) are descrlbed: hardwarg

capabllltles and programmlng envlronment

2.Lt Cel[B.EOvervtew

The Cetl/B.E. procersor ls the f,rst lmplementatlon of a new multlprocessor famlly conformlng to the C.ell

Broadband Englne Archltecture (CBEAI. The CBEA and the CelfB.E. processor are the reult of a

collaboraüon between Sony, Toshlba, and IBM known as Sfl, formally started ln early 2001.

The baslc conffguraüon ls a multl-core heterogeneous chlp that was deslgned to lmprove performance

in compuüng. Flgure 2-1 shours an overüew of the CelUB.E. lts maln components are:

o One maln processor: Power Processor Element (PPE)

o Elght ldenücalcomputlng-lntenslve proc€ssors: Synerglstlc Processor ElemenS (SPEs)

o One Memory lnterface Controller (MlC)

o One maln connector between all parts: Element lnterconnect Bus (ElB)

o Two yO lnterhces

+,--ii- G-l

Ffriki.

a
-t

I
I
I
I,I
,l
1
I
I'I
I

FhdÊtl
I

qí8 E offiúdgt§hs lrffiôá

The partlcular concept about tts mulü-cores ls related to the fact that the PPE ls a proce$or malnly

deslgned to controlthÍEads and the SPEs are malnly delgned for computlnt lntenslve tasks.

Hrc
PPÊ
RÂlI
trE&

EHEol@ír@ÉíBlE
@tNFb@BlF
lErmm

EI
EE
EE
HF

FIgure 2-1 Cel! Broadband Engine Ovendew

3

sDgr oPEq §FG§

EfF

EIB E
d

ulc

spEz §FE4 §PEÉ

Thls new concept not only opens new doors ln appllcatlon performance improvement but also break
some of the tradltlonal paradlgms ln programmlng. The nen three maln concepts must be kept in mlnd
whlle Cell/B.E. ls lntroduced: computlng parallellzatlon, DMÂ (Dlrect Memory Access) transftrs and
Vector SIMD (Slngle lnstmctlon Muhlple Data).

2,1,2 llardrvare§pedflcadon

Flgure 2-1 shows a hlgh-level block dlagram of the CetUB.E. processor hardware. There ls one ppE and
eight ldentical SPEs. Al! processor elements are connected to each other and to the onrhlp memory and
l/O controllers by the memory+oherent element lnterconnect bus (EtB).

PPE, SPE and ElB, the maln compnents of the processor, are dccrlbed below.

2.7.2.7 Power hocess Element(PPE)

The PPE contalns a 64-bh, dual-thread PowerPC Archttecture RISC core and supports a PowerPC vlrtual-
meÍnory subsystem. lt has 32 KB level-l (11) lnstructlon and data caches and a 512 KB level-2 (12)

unlffed (lnstructlon and data) cache. lt ls lntended prlmarlly for control processlng, runnlng operatlng
ffiems, managlng system reírurces, and managlng SPE threads. lt can run exlstlng PowerpC
Archltecture software and ls well-sulted to execuüng ffiem control code. The lnstructlon set for the
PPE ls a verslon of the PowerPC lnstructlon seü lt lncludes the vector/S|MD muldmedla extenslons and
assoclated C/C+r lntrlnslc extenslons.

2,7.2.2 SynergísticProcessor Element (SPE)

The elght ldentlcal SPEs are slngte-lnstructlon, multlpledata (SlMDl procesleor elements that are
optlmlzed for data-rlch operaüons allocatd to them by the PPE. Each SPE contalns a RISC core, 256 KB

software'controlled lS for lnstructlons and data and a 1il8-blt, lll&entry unlffed register flle. T?re SpEs

support a specla! SIMD lnstructlon set and a unlque set of commands íor managlng DMA transfers and
lnter-processor messaglng and control. SPE DMA transfers accesc maln storage uslng Powerpc êffectlve
addresses. As ln the PPE, SPE address transladon ls govemed by PowerPC Archltecture segment and
paSe tabls, whlch are loaded lnto the SPEs by prlúleged softtuare runnlng on the PPE. Ttre SpEs are not
lntended to run an op€ratlnt system.

The more slgnlflcant dlfÊrence between the SPE and PPE lle ln how they access memory. The ppE

access€Ei maln storage (the effectlve-address space| wlth load and store lnstructlons that move data
bettreen maln storage and a prlrrate reglster flle, the contents of whlch may b€ cached. PPE memory
accss ls llke that of a conventlonal processor technology, whlch ls fuund on conventlonal machlnes.

The SPEs, ln contrast, access maln storage wlth dlrect memory access (DMA) commands that move data
and lnstrucüons between maln storage and a prlvate local memory called a tocal store or local storate
(lSl. The SPE lnstructlon set accesses tts prlwte lS rather than shared maln storage and the lS has no
assoclated cache. This 3-level organlzatlon of storage (reglster flle, § maln storage), wlth asynchronous
DMA transferc between lS and maln storagg ls a radlcal break from conventlonal archltecture and

4

programming models because lt expllcltly paratlellzes computatlon wlth the üansfers of data and
lnstructlons that feed computatlon, and stores the results of computation ln maln storage.

An SPE controls DMA transfers and communlcats wlth the system by means of channets that are
implemented ln and managed by the SPE's memory flow conúoller (MFC). The channels are
unldlrectlonal message-passlng lnterfaces.

The PPE and other devlces ln the system, lncludlng other SPEs, can atso access thls MFC stâte through
the MFCs memory-mapped l/O (MMIO) reglsters and queues, whlch are vlslble to software ln the maln-
storage address space.

2.1.2.3 Elementlnterconnect Bus (EIB)

The EIB ls the communlcatlon path for commands and data between all processor etements ln the
CelUB.E. processor and the on-chlp controllers for memory and /O. The EtB supports full memory-
coherent and SMP operatlons. Thus, a CelUB.E. processor ls deslgned to be grouped coherently ndth
other Cell/B.E. processors to produce a cluster.

Úte EIB conslsts offour 16-byterrlde data rlngs. Each rlng transfers 1ll8 bytes (one PPE cache ltne) at a
üme. Processor elements can drlve and recelve data slmultaneously. Flgure 2-1 shows the unlt lD
numbers of each element and the order ln whlch the etements are connected to the EtB. The connectlon
order ls lmportant to protrammeB who are seeklng to mlnlmlze the tatency of transfers on the ElB. Ttre
latency ls a functlon of the number of connectlon hops, so that transfers between adfacent elements
have the shortest latencles, and transfers between elements separated by slx hops have the longest
latencles.

The lntemal maxlmum bandwldth of the EIB ls 96 bytes per processorclock cycte. Muldpte transfers can
be ln process concurently on each rln6 lncludlng more than l(X, ouBtandlng DMA memory úansfer
requsts betreen maln storage and the SPEs ln elther dlrectlon. Írese requests mlght also lnclude SpE

meÍnory to and from the l/O space. The EIB doe not support any partlcular qualÍtyof-servlce (eoS)
behavlour other than to guarantee forrrard progrcs.

However, a resource allocatlon management (RAM) faclllty, shoum ln Flgure 2-! resldes ln the ElB.
Prfulleged software can use lt to regulate the rate at whlch resource requsters (the ppE, SpEs, and l/O
devlces) can use memory and /O resources.

2.13 ImprovlngPerformance

The CelUB.E. ls malnly deslmed to lmprove performance ln computatlon, but that tmprovement dos
not come up by maglc. lf a performance lmprovement ls deslred for some appllcatlon, some changes to
tts structure must be made.

5

2.7,3.7 Divide and Conquer (Parallelizing)

The flrst thint to keep ln mlnd ls that SPES must be malnly used for computlng-lntenslve task. The
programmer must look for parts ln the code responslble for thls and see lf lt can be separated lnto
"independenf task. For examplg assumlng that there ls an integer array ln the code wlth 80(X)fiX)
positlons where each posltlon must be lncremented by one, whlch solutlon ls faster: do 80000ü)
Iterations summlng one ln each poslüon of the array or do the ssme operatlon ln 100fl)00 lteratlons by

summlng 8 poslüons per lteratlon? Flgure 2-2 and Flgure 2-3 lllustrate thls example:

Otd lilíay

o

o 1. -''- ,gs$tg,
Flgure 2-2 Processlng a sum ln a Integer array nrlth 80ÍXXm poslüons

/n

IiltrEE

rtrE

6

.+1

tl 72iUT
,xà

;29
$1

11"

I22,tl ,0 ,

6Í

a
33 ,uIt§ a

ts

+L

11

11/ü 24 14

Parallel

lOÚDD

ússà

qpgg rOEÍIX, rBwI9
6000000

§ êxEclr

IOIPDD

79!D9!p

qMED @lrr!ilE, 70mmo ,o&g!r}}

Hgute}-t PÍocesslnB the same sum as last figurg but ln parallel

Flgure 2-2 shows the "traditlonal" approach, whlch means lncremenüng the rÍalues ln the array one-by-

one. Flgure 2-3 shows the computatlon for the same anay spread lnslde 8 pn cessorc (only the flrst two

and the last two SPEs are shown), and each one protcses lüXXm posltlons.

Theoreücalln the parallellzed verslon wlll be I tlmes faster slnce the SdXXlü) psltlons are computed ln

the same amount of tlme needed to compute lüXIm poslüons. Thls lncrease of performance ls purely

theoretlcal because Cell/B.E. requlres some tlrns to prepare the structnrs and start the parallellzed

threads (among other lssues).

2,7,3.2 Computc as much as possible at o üme (SlúDimizing)

Another lmprovement that Cell/B.E. offers ls the abll§ to use SIMD (slngle lnstnrctlon Multlple Datal

lnstructlons. SPEs have speclal vector reglsters wlth 128 btts Iength that can handle:

o

o

si99p

o

7

n

1

2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
I
9

. slxteen 8-btt values, signed or unslgned

o Elght lGblt values, slgned or unslgned

o Four 32-blt values, slgned or unslgned

o Four slngle-preclslon IEEE-754 floaüng-polnt values

o Two doublepreclslon IEEE-754 floatlnS'polnt Yalues

Baslcally, thls means that each SPE can handle at least 2 pleces of data at a tlme.

2.L.3.2.L Scalar VS Vector SIMD: A code example

SpEs can handle both vector and scalar codes, however vector code ls a better solutlon because it can

process 2 (or more) pleces of data at a üme, and lf we conslder the parallellzatlon of all the computetlon

across 8 SPEs (for example), that means 16 pleces of data can be computed at a tlme (8 SPES * 2 pleces

of data).

The tlme needed to start a SPE thread and to prepare the structurs needs to be taken lnto account, but

uslng the full Cell/B.E. capabllitlês stlll measurably lmproves the performance of an appllcatlon.

Example 2-l shows a sampte of a scalar C code whlch sums two aÍrays wfth four lntegers and puts the

result on a thlrd array:

Erempte 2-1 §ummlng 2 arrays wfth 4 etements (scalar verslon)

The compubüon f3r this program needs bur cyclee to comptete. Example 2-2 shorvB how to príbrm the

same computaüon in a SPE wtth only one cyde:

Example 2-2 §ummlng 2 vectorc wlth 4 etements (SIMD Yerslon)

Thls program example produces exactly the same output as the one ln the Example 2-1. The type

uec_tnt4 ls used to declare vectors wlth four 32-btt slgned lntegers, and the spu-add functlon ls the

lntrinslc used which performs the assembler lnstructlon responslble to add the four lnte8ers.

8

*include <stdio.h>
inü main (void)
{

inr at4l = 1.2, 2, 2, 21, b[4] = {L0, 20, 30, 40}, c[4], count;
for (count : 0; count < 4i count++)

c[countj : a [count] + blcountl ;
printf("c[41 = {Ed, Ed, 8d, ?d}\n",c[0],c[1],cÍ21,c[3]);
retuza 0i

)

*inelude <stdio.h>
Sinclude <spu_intrinsics. h>
iot maln (void)
{

vec_int4 a = 12, 2, 2, 21 ,
c = sPu_add(arb);
prlntf("ct4l = {8d, td, ?d,
returzr 0i

)

b = {10, 20, 30, 401, ci

8d) \n", c [0] , c [1] , cÍ.27, c [3]) ;

There ls no dlrect support ln C for the SPE lnstructlon set, but a serles of addltlonal commands called

"lntrlnslcs" can be used (lBM 2ü)7). tntrlnslcs allow the programmer to avold wrltlnt assembler code

and SPE C lntrlnslcs are the ones most used to progÍam for the SPEs. More detalls about C language

lntrlnslcs can be found ln chapter 2.1.4.1.1 C-lansuaqe lntrinsics.

2,7.3.3 UseTimeWsely (Avoídtng Stolls)

It ls true that SPEs offer a great ablllty for compudng-lntenslve tasks, but the programmer must know

that the computed data ls not avallable on-the-fly ln the SPE. The data must be copled from the maln

store to the local SPE store vla DMA transferc (see chapter 2.1.4.2 Dífferent Processors. Different

Address Spaces). What must be kept ln mlnd ln thls sub-chapter ls that thls procêss of copylng must be

planned. lf the computatlon ls stopped because the SPE ls waltlng for the data, then we are not taklng

admntage of thls architecture.

One posslble approaú ls to apply for two sets of data, compute the flrst one arrfulng and once lt ls
done, apply for the thlrd set and start computlng the second set (whlch must have arrlved meanwhlle).

Thls process ls called "Double Bufferlng3 and ls lntroduced ln chapter 3.2.2.1 Double Bufferins along

wtth the practlcal work.

z,li Programnlng0vervlew

Programmlng fur CelUB.E. can be qulte challenglng because lts archltecture requlres a dlfferent way of
thlnklng (Blachford 2@6). One lmpoÍtant thlng to know ls that whlle Cell/B.E. offers huge potenüal ln

computlng performancg tt does not comê free. Do not expect to get a maglc speedup from exlstlng

legacy code. lf code opümlzed for a regular PowerPC processor (or any other compatlble archltecture) ls

Just recomplled, lt wlll only run on the PPE and may actually run slower.

Cell/B.E. ls optlmlzed for certaln types of code and not e\rerythlng wlll be able to take advantage of lt
lmmedlately. The vast maJorlty of code runnlng on a GIUB.E. !s "control" code runnlng lnslde the PPE,

whlch does not lnvolve any dlfferent or new paradlgm ln programmlng.

SPE development may be more complex, but performance sensltlve code ls usually only a tlny
percentage of the code that runs. A lot of the code ln an appllcatlon ls Just glue code tylng thlngs

together. An erample for thls ls GUI (Graphlcal User lnterface) code whlch mostly conslsts of calls to
perform a funcdon when a gadget ls cllcked. Ttrls ls shown ln chapter 3 Visuallzation in Cell/B.E. where

the developed work ls lntroduced. Most of the code ls malnly rsponslble to guarantee that the lnput ls

conect (and launch excepüons ln case lt ls notl, ln contrast wlth the computatlonal part, whlch ls only

responslble for the computlng lntenslye tasks.

2,7.4.7 DifferentProcessors, Dffirent Compllers

Because the exlstlng dtfferences between the PPE and the SPE, there was a need to create dlfferent

compllers for these processors.

9

lJke shown before in chapter 2.1.4 Proerammins Overvíew, PPE (and lts compller) can handle all the
code optlmlzed for regular archltectures but, ln order to lmprove performancg some of thls code must
be ported to the SPE slde where lt ls treated dlfferently.

It ls true that the proSrammer can use the same programmlng language for the ppE and the spEs (ln thls
case, language c), but lt does not mean that programmlng for both sldes ls the same thlng. Thls happens
because the sPEs are malnly opümlzed for slMD lnstructtons, ln contrast to the ppE.

All the practlcal work lntroduced ln chapter 3 Visualization in Cell/B.E. shows how to complle and run
the code for the dlfferent lmplemented modules.

2.7.4.1.7 C-Languagelntrinsics

The lntrlnslcs are essentlally ln-tlne language lnstructlons ln the furm of C-language functlon ca1s. They
provlde the programmer wlth expllcft controt oyer the VectorAlMD and SpU lnstructlons whhout
dlrectly managlng reglsters.

ln a speclfic lnstructlon set, most lntrlnslc names use a standard preffx ln thelr mnemonlc, and some
lntrlnslc names lncorporate the mnemonlc of an assoclated assembly-tanguage lnstructlon. For exampte,
the vector/SIMD that lmplements úe add Vetor/SIMD assembty-tanguage lnstructlon ls named
vec-add, and the sPU lntrlnslc that lmptements the stop SPU assembly-language lnstructlon ls named
spu-stop.

The PPE's Vector/StMD lnstructlon set and the SPE's SpU lnstructlon set both have extenslons that
def,ne somewhat dlfferent sets of lntrlnslcs, but they all Íall lnto fuur types of lntrlnsics. These are ilsted
ln Table 2-1 (lBM 2007). Although the lntrlnslcs proüded by the two lnstructlon sets are slmllar ln
functlon, thelr namlng convenüons and functlon-cail forms are dlfferent.

Table 2-1 PPE and SPE Intrlnslc classes

2.7.4.1.2 Porting SIMD code from the ppE to rhe SpEs

For some programmers, Ít ls easler to sÍrlte stMD programs bry wrlüng them flrst for the ppE, and then
portlng them to the SPEs. Ihls approach postpones some SPE-related conslderadons llke deallng with
the local store slze, data movements, and debugglng untll after the port. The approach can also alow
partldonlng of the work lnto slmpler (perhaps more dlgestlbte) steps on the spEs.

Altematlvely, experlenced CetUB.E. programmers may prefer to sklp the vstor/stMD Multlmedla
Extemlon codlng phase and go dlrectly to sPU programmlng. ln some cases, SIMD programmlng can be
easler on an SPE than the PPE because ofthe SpE s unlfled reglster ftle.

Types of lntrlndc Dcfrnlüon PPE SPE
Speclf,c One-to-one mapplng to a slngle assembly-language instructlon. x x
Generic Map to one or more assembly-language lnstructlons, dependlng

on of x x
Composfte Construçted from a sequence of Speclflc or Generlc lntrlnslcs. x
Predlcates Evaluate SIMD condltlonals. x

t0

2.7.4,2 Different Processors, Different Address.Spaces

Two important issues about the Cell/B.E. are its layout of the memory and its address space. Figure 24

shows the two existing types of storage: one main-storage domain and eight SPE 15 domains:

Channel lntedacê Local Storagê Mtln Sloíago
(channet comírraíds) (locaf-ôddÍêss spac6) (êfrêclivG-tddÍ?ss §paÇe)

§PE
{1 oÍ 8}

MT!IO DMÂ
Conlíolkr

FPE

DBAM
Memoíy

DMA
ÊtB
LS
MFC
MMIO

Diíêct MêmoÍy Access
El€ment lnteíconnêct Bus
L9câl Storage
Memory Florv Csntroller
Memory-Mapped l/O

PPE
PP§S
PPU
3PE
SPU

fusêÍPC ProcessoÍ El€mant
Po§eíPC PÍoc6$oÍ §lorege Subsy§lêm
ForerPC Processor Unh
srnôÍgtstic Pr§coüsoÍ El€maíü
Syhsrgistlc Processor Unit

Figure 2-4 Storage and domain inteÍfaces

The main-storage domain, which is the entire effective-address space (EA), can be configured by PPE

privileged software to be shared by all processor €lements and memory-mapped devices in the system.

The layout shows that the SPE can access and modifo the data contained in this area (main-storage) but,

from the programmer's poínt of view, there are some aspects which the programmer must keep in

mind:

Data sharing and dependencies have to be carefully designed since all processors share the

same main memory;

References or pointers: a pointer passed from PPE to the SPE cannot just be dereferenced but

has to involve a DMA transfer;

Memory alignment: LS and main memory addresses must be aligned for DMA transfers;

a

ll

§PU

LS

MFC

uo

I

I
I

I

I

I
l
t

I
I
I

,
I
I
I
,
I
i
I
I
l
I
I
I
I
!
,
t
I

t
t
I
t

J

a

a

. The CetUB.E. Memory Flow Controtler (MFC) supports naturally allgned transfer sizes of 1,2, §,,

or 8 bytes, and multlples of 16 bytes, wÍth a maxlmum transfer size of 16KB;

o peak performance can be achleved when both the EA and l§A (local Storage Address) are 128-

byte allgrred and the slze of the transfer ls an even multlple of 128 bytes;

o DMA transfers should be SPE-lnlüated and be overlapped wlth computatlon (when posslble) to

avold stalls;

. And, SPE's Local Store has only 256 KB for data and code.

Assumlng that the programmer wanB to improye performance (uslng Cett/B.E.) on some algorlthm that

ls atready optlmlzed for a regular archltecture, the second and thlrd polnts can be qulte challenglng. The

programmer, most probably, will have to change the structures and the algorithm ln the computatlonal

part ln order to take adyantage of the Cell/B.E. Not only should the parallellzation of lt be consldered,

but also the v€tor SIMD capabllltles.

Concemlng the data sharlng and dependencles, a taxonomy deslgn ls lntroduced ln the chapter below to

glve a better ldea about parallel programmlng.

2.L.4.2.1 Parallel Programming: ATaxonomy

ln patterns for parallel Programmlng (Mattson, Massinglll and Sanderc 20041 there ls a deffnlüon of a

taxonomy of paratlet programmlng models. Flrst they deflne four "spaces" (descrlbed ln Table 2-2)

whlch the appllcatlon programmer must üslt.

Table 2-2 Four deslgn sPaces

ln the algorfthm spac€ tt ls proposed a look at three dlfferent ways of decomposlng the work, each wlth

nro modalltles. Thls Ieads to slx maJor algorlthm structurc, whlch are described ln Table 2-3.

Table 2-3 Àgortthm structuÍes

Task paralletlsm occurs when mulüple Independent tasks can be scheduted ln parallel. The dMde and

conquer structure ls applled when a problem can be recurslvely treatd by solüng smaller sub-

problems. Geometrlc decomposltion ls common when a partlal dlfferential equatlon that has been

made dlscrete on a 2-D or 3-D grld ls trled to be solved, and grid reglons are asslgned to pÍocessors.

Space Descrlpdon

Flndlng concurrency Flnd parallel tasks and Broup and order them

Algorlthm struchJre the tasks ln

supportlngstructure Code structures for tasks and data

lmplementatlon
mechanlsms

Low level mechanlsms fior managlng

threads as well as data communlcaüon
and synchronlzlng otecuüon

Ornanheüon prlndPle Orxanhaüon subtyPe Asortthm gtructuÍe

By tasla Unear Task parallellsm

Recurslve Dlvlde and conquer

By data decompslüon Unear Gometrlc decompo$tlqn-
Recurslve Tree

By data flow llnear Pipellne

Recurslve Event-based coordlnatlon

t2

Code strucürre Data §üucures

sln8le ProSram Multlple Data (SPMD) Shared data

Master/worker Shared queue

Loop oarallellsm Dlstrlbuted anay

ForUloln

As for the supportlnt structures, Mattson et al. ldentlfled four structures for organlzlng tasks and three

for organlzlng data. They are glven side by slde ln Table 24.

Table 24 Suppordnt structures for code and data

SpMD ls a code structure that ls well-known to MPI (Message Passlng lnterface) programmers. Althouth

Mpl does not lmpose the use of SPMD, thls ls a frequent construct. Master/worker ls sometlmes called

"bag of tasks" when a master task dlstributes work elements lndependently of each other to a pool of

workers. Loop parallellsm ls a low-tevel structure where the lteratlons of a loop are shared between

executlon threads.

For(loin ls a modelwhere a master execuüon thread calls (fork) multlple parallel executlon threads and

walts for thelr completlon (Joln) before contlnulng wlth the sequentlal executlon.

Shared data refers to the constructs that are necq$ary to share data between executlon threads.

Shared queue is the coordlnatlon among tasks to process a queue of work ltems. Dlstrlbuted arÍay

addresses the decomposltion of multldlmenslonal arrays lnto smaller sub-arrays that are spread across

multlple executlon unlts.

2.L.5 Summary

An overvlew of CelUB.E. was shown ln thls chapter.

A new archltecture concept wlth dlfferent processoris speclallzed for dlfferent tasks and the exlstence of

maln-storage and tocat-storage are the most lmportant concepts to keep ln mlnd when worklng wlth

Cell/B.E.

Thls dlfferent archhecture made It posslble to break three maln performance walls: power, memory and

frequency. The power wall ls broken by uslng dlfferent cors speclallzed for dlfferent tasks (PPE handles

control tasks and SPE handles compute lntenslve-tasks); the meÍnory wall ls broken bY the new layout

conceptlon for the mêmory (maln storage, lccal storage and larger reglster flles ln each SPE) and

asynchronous DMA transfers between the main storage and local storage. Thls allows the PPE and SPEs

to be dslgned for hlgh frequency wlthout excesslve overhead, breaklng the frequency llmltation wall.

Nevertheless, wlth new concepts also new ways of programmlng come up. Because the deep

dlfferences between the PPE and the SPE, It was needed to create dlfferent compllers for the dlfferent

processors. Also, the vector SIMD capabllltles brlng up a new way of thlnklng when programmlng, slnce

more than one data can be handled at a tlme. Thls means that the lmpronement ln performance does

not come up by maglc but lnstead an extra-efbrt ls requlred to the programmer to deal wlth thls new

technology.

But, ls there any way to make the programmlng for Cell/B.E. easler rather than harder and, at the same

üme, take prof,t of all lts capabllltles?

l3

2.2 Visual Programming

It ls well-known that conventlonal programmlng languages are dlfflcult to learn and use. Programmlng

for Cetl/B.E. does not make that task easler at all as lt requlres skllls that many people do not have
(tewls and Olson 1987). However, the number of appllcatlons that supports the act of programmlng by

user lnterfaces ls growlng. For example, the success of spreadsheets can be partlally attrlbuted to the
abllÍty of users to wrlte programs (as collection of "formulas").

!t is known that new technology ls developed really fast and lf we are almost sure that CelUB.E. ls one of
the best archltectures made for computlng lntensive tasks, today, that may not be true tomonow. lf a
new archÍtecture arrlves, most probably lt wlll brlng a new way of programmlng for lt. lt ls probable that
protrammeni wlll need to lnvest tlme to leam how to program for thls new solutlon.

So, lt would be good lf we could flnd a way to make not only the act of programmlng easler, but also to
avold the need of leamlng how to program for new terhnology every üme lt anlves. One approach to
thls problem is to lnvestlgate the use of graphlcs as the programmlng language. Thls has been called
lflsual Programmlng" (VP) or "Graphlcal Programming".

Thls chapter wlll glve a background about what does VP conslsts oft oveMew, hlstory deflnÍtlons,

exlstlng appllcatlons and dlfferences.

2.2.r, Overvlew

There has been a great lnterest ln systems that use graphics to ald ln the programmln6 debugglng, and

understandlng of computer programs. The terms lfisual ProgrammingS and "Program Msuallzatlon"
have been applled to these systems. Also, there has been a renewed lnterest ln uslng eremples to hetp
alleüate the complexÍty of programmlng. Thls technlque ls called "Programming by Exampte" (Koelma,

Balen and Smeulders 1992).

All these concepts have the maln purpose to focus the programmer more lnto problem solüng rather
than Just wrftlng programs.

Vlsual programmlng has many advantages over textual programmlng. Thelr twodlmenslonal layout and
use of lcons seem to be closer to the human way of thlnldng (Smlth, Pygmallon: a creaüve programmlng

enüronment 1975). Thls slmpllffes the translation of the representatlon used ln the mlnd, whlle thlnklng
about a problem, to the representatlon used ln programmlng a problem. The shorter translatlon
dlstance makes üsual languages easler to comprehend, learn, use, and remember. The use of plctorlal

elements is lmportant bemuse usually plctures convey more meanlng than text: a slngle plcture ls often
worth more than a thousand words. Furthermore, the twodlmenslonal layout Íacllttate the detestlon
of potentlal concurrency ln a program for parallel computatlon.

22.2 The ortglns of Vtsual Programmlng

Flowcharts are the flrst and best known dlagrams of softrrare. Goldsüne (Goldstlne ú72) clalms he
created the flrst flowchart for computers ln 1947, whlle he was worldng wÍth Von Neumann. Yet these

t4

early charts were entlrely decoupled from the computer lBelf. lt wes not untll the creatlon of graphlc

dlsplay technology in the 1960s that such a coupllng became posslble.

W. Sutherland, ln 1966, created the ffrst interactlve vlsual programmlng language. Flgure 2-5 (Curry

1978) shows his dlagram for calculatlng a square r@t:

ÊEGil

mr8úâe,
ã4oIÊ-

1

Ir8tt
Flgure 2-5 Sutherland's dlagram for calculaüng a square root

Startlng ln the early 1970s, researchers at Xerox PARC created the flrst üsual programmlng

envlronments. Bltmapped gnphlcs, mlce, and wlndow systems can be malnly credlted to thls research

laboratory. The culmlnaüon of the work came ln the form of Smalltalk, an operatlng

system/protrammlng envlronment/programmlng language (Goldberg and Robson 1!183). The present

graphlc user lnterhces dlffer llttle ln concept from the Xerox PARC üslon. !n the 1980s, Apple Computer,

Sun Mlcrosystemq and M.!.T. (X Wlndows) spread graphlc user lnterfaces to reseaÍEherc and

consumers; recently, the creatlon of worklng wlndowlng systeÍns for PG (Mlcrosoft, lBM, NeJff) has

created a flurry of systems based on graphlc user lnterfaces.

2.2.2.7 The Vísual Basic Phenomenon

Msual Baslc (today known as Vlsual Baslc .NET (Wlklpedla 2(Xl8)) ls one famous programmlng language

and ls generally associated to a vlsual programmlng language. By deflnltlon, lt ls not a pure üsual
language. lnstead of belng based on dlagrammatlc representatlon, tts underlylng language ls an

enhanced textual verslon of the Baslc language. ln ftont of thls tsxtual language ls a well-thought-out
graphlc user lnterfacg whlch allows the programmer to construct wlndows and all thelr correspondlng

componenB such as buttons, sllder bars, and menus by selectlng graphlc lcons and dragglng them onto

a graphlc representaüon of a wlndow. The programmer then wrftes textual source code fragments that
are essentlally eyent handlers for the dlfferent posslble mouse and keyboard events. Thls code ls llnked

to the graphic representatlon of the wlndow, so thet lnstead of scrolllng through long flles of source, a

programmer can access relevant code by cllcklng on a physlcal locatlon. ln other words, the lnterface
proüdes, ftrst of all, a way of constructlng the framework of a user lnterÍace by manlpulatlng graphlc

oblects, and, second of all, a way of separatlng access to the textual code that needs to be wrttten. Part

of the success of Msual Baslc ls the flatness of the language - many verbs are provlded, and many

software vendors have been encouraged to create modules that add more verbs.

I

u

t
ftr

l5

But, ln splte of lts success ln the past, lf Vlsual Baslc was a pure üsual programmlng languatg lt would

not have the problem of code-reÊactorlng wlth the exlstent last version of Vlsual Baslc .NET (VB6). This

happens because Vlsual Baslc, ln the end, ls code based and lts lnstructlons can change wtth newer

verslons, forclng the programmer to change his/her code to keep appllcations runnlng. The concept

behlnd a pure Vlsual Programmlng does not lnvolve code-refactorlng at all, because there ls no code,

only plctures.

2.2.3 lleffntüons

To better understand what Vlsual Programmlng ls lt ls necessary to know some related deffnitions ln

order to get a clearer plcture.

2,2.3.7 Programming

A computer "program" ls deflned as "a set of statements that cln be submltted as a untt to a computer

system and used to dlrect the behaylour of that system" (Dalntlth 1983). Whlle the ablllty to compute

"everythlngl ls not requlred, the system must lnclude the ablllty to handle varlables, condltlonals and

tteratlon, at least lmpllcltly.

2,2.3,2 InterpretÍve VS Compiled

Any programmlng language system may either be "lnterpretiye'or ocomplled" (Free On-llne Dlctlonary

of Computlng 2ü)7). A complled system has a large processlng delay before statements can be run whlle

they are converted lnto a lower-level reprsentatlon ln a batch Íashlon. An lnterpretlve system allows

statements to be executed when they are entered.

It takes longer to run a program under an lnterpreter than to run the complled code but lt can take less

tlme to lnterpret lt than the total requlred to complle and run lt. Thls ls especlally lmportant when
prototyplry and testlng code when an edlt-lnterpret-debug cycle can often be much shorter than an

edlt-complle-rundebug cycle.

2.2.3,3 VisualProgramming

The deflnltion of Vlsual Programmlng (VP) is separated ln two concepts: Vlsual Programmlng Language

and Vlsual Programmlng Envlronment.

16

2.2.3.3.7 Visual ProgrammingLanguage

lr'lsual ProgÍamming Language" (VPL) is any programmlng language that allows the user to speclfy a

program ln a two-(or more)-dlmensional way. Conventional textua! languages are not considered two-

dlmenslonal slnce the compller or lnterpreter processes them as one-dlmensional streams of characters.

A VPL allows programmlng wlth vlsual expresslons - spatlal arrangements of textua! and graphlcal

symbols.

VP[s may be further classifled, accordlng to the §pe and extent of vlsual expresslon used, lnto lcon-

based languages, form-based languages and dlagram languages.

2.2.3.3.2 VisualProgrammingEnüronment

"Vlsual Programmlng Envlronment'' (VPE) ls software whlch allows the use of vlsual expresslons (such as

graphlcs, drawlngs, anlmatlon or lcons) in the process of programmlng. These vlsual expresslons may be

used as graphlcal lnterfaces for textua! programming languages. They may be used to form the syntax of
new vlsual programmlng languages leadlng to new paradlgms such as programmlng by demonstratlon

or they may be used ln graphlcal presentatlons of the behavlour or structure of a program.

2.2.3.4 ProgramVisualization

"Program Vlsuallzatlon" (PV) ls an entlrely dlfferent concept from Msual Programming. In Vlsual

Programmlng, the graphics are used to create the program itselí but ln Program Msuallzatlon, the
program ls speclfled ln a conventlonal, textual manner, and the graphlcs are used to lllustrate some

aspect of the program or lts run-tlme execution (Myers, Taxonomles of vlsua! programmlng and

program vlsuallzatlon 1990). Unfortunateln ln the past, many Program Msuallzaüon systems have been

lncorrectly labelled Vlsual Programmlng (Grafton and lchlkawa 1985). Program Vlsuallzatlon systems can

be classlfled uslng two axes: whether they lllustrate the code, data or algorlthm of the program, and

whether they are dynamlc or statlc.

"Data Msuallzatlon" systems show plctures of the actual data of the program. Slmilarln "Code

Vlsualizatlon" Illustrates the actua! program text by adding graphlcal marks to lt or by convertlng lt to a

graphlcalform (such as a flowchart).

Systems that lllustrate the "algorlthm" use graphlcs to abstractly show how the program operates. Thls

ls dlfferent from data and code vlsuallzatlon, slnce wlth algorlthm vlsuallzatlon the plctures may not

correspond dlrectly to data ln the program and changes ln the plctures mlght not correspond to speclffc

pleces of the code. For example, an algorlthm anlmatlon of a sort routlne mlght show the data as llnes

of dlfferent heights, and swaps of two ltems mlght be shown as a smooth anlmatlon of the llnes movlng.

The "swap" operatlon may not be expllcltly ln the code, however.

"DynamiC üsualizations refer to systems that can show an anlmatlon of the program runnin6 whereas

"statlC rystems are llmited to snapshots of the program at certaln polnts.

lf a program created uslng Vlsual Programmlng ls to be dlsplayed or debugged, clearly this should be

done ln a graphlcal manner, whlch mlght be consldered a form of Program Msuallzatlon. However, lt ls

t7

more accurate to use the term Msual Programmlng for systems that a!!ow the program to be created
uslng graphics, and Program Msualizatlon for systems that use graphics only for lllustratlng programs
after they have been created.

2.2.3.5 Fs«mple-Based Programming

A number of Msual Programming systems also use "Example-Based ProgrammingS. Example.Based
Programmlng refers to systems that allow the programmer to use examples of input and output data
during the programmlng process (Myers, Taxonomles of vlsual programming and program visualtzaüon
1990). There are two Upes of Example-Based Programmlng: "Programmlng by Example" and
"Programming wlth Example".

Programmlng by Example refers to systems that try to guess or lnfer the program ftom examples of
lnput and output or sample traces of executlon. Thls ls often called "automatlc programmlng" and has
generally been an area of Artlflclal lntelllgence research.

Programmlng wlth Example systems, howeyer, requires the programmerto speclfy everythlng about the
program (there ls no lnferenclng involved), but the programmer can work out the program on a speclffc
example. The system executes the programmer's commands normally, but remembers them for later
reuse. Halbert (Halbert 1984) characterlzes Programming wlth Examptes as "Do what ! Dld" whereas
inferentlal Programmlng by Example mlght be "Do What I Mean,.

2.2.4 AdvanAgesofUstngGlaphics

Msual Programmlng and Program Vlsuallzation are very appeallng ldeas for a number of reasons. The
human vlsual system and human visual informatlon processlng are clearly opümtzed for mulü-
dlmenslonal data. Computer programs, however, are conventlonalty presented ln a one-dtmenslonal
textual form, not uslng the full power of the braln. Two-dlmensionat dlsplays for programs, such as
flowcharts and even the lndentlng of btock structured programs have tong been known to be hetpful
alds ln program underctandlng (Smlth, Pygmallon: A computer program to Modet and Sümulate
Creatlve Thought 19771. A number of Program Vlsuallzatlon systems [(Myers, Chandhok and Sareen,
Automatlc data úsuallzatlon for novlce Pasca! programmers 1988), (Myers, INCENSE: A system for
dlsplaylng data structures 1983), (Baecker 1981) and (Brown and Sedgewlck $Ba)l have demonstrated
that turodlmensiona! plctorlal disptays for data structures, such as those drawn by hand on a
blackboard, are very helpful. Clarlsse (CIarlsse and Chang 1986) clalms that graphlcat programmlng uses
lnformation ln a format that ls closer to the user's mental representatlons of probtems, and wlll altow
data to be processed ln a format closer to the way obJects are manlpulated ln the real wortd. lt seems
clear that a more visual style of programmlng could be easler to understand for humans, especlatty for
nonprogrammerc or novlce programmers.

Another motlvatlon for uslng graphlo ls that it tends to be a hlgher-tevel descrlpüon of the deslred
actlons (often deemphaslzlng lssues of syntax and provldlng a hlgher level of abstractlon) and may
therefore make the programmlng task easier even for professiona! programmerc. Thts may be especlaly
true durlng debugglng, where graphlcs can be used to present much more lnformaüon about the
program state (such as curent varlables and data structures) than ls posslble wlth purely textual
dlsplays. Also, some §pes of complex programs, such as those that use concurrent processes or deal

l8

wlth real-tlme systems, are dlfflcult to describe wlth textual languages so graphlcal speclflcatlons may
be more approprlate.

The popularÍty of "direct manipulation" interfaces (Shneiderman 1987), where there are hems on the
computer screen that can be pointed to and operated on uslng a mouse, also contrlbutes to the deslre
for Vlsual Languages. Slnce many Vlsual l-anguages use icons and other graphlcal obJects, edÍtors for
these languages usually have a dlrect manlpulatlon user lnterface. The user has the lmpresslon of more
directly construcdng a protram rather than havlng to abstractly deslgn it.

2.2.1 Some prlndples for vlsual language destgn

Several prlnclples can gulde our search for the ldeal vlsual programmlng language and enable us to
compare and crltlclze exlstlng languages. Some of these prlnclples are:

a

a

a

Glve the úsual programmer flexlblllty over issues and layout rather than forclng her or hlm into
one ffxed way of dolng thlngs. For lnstance, lf all data llnes must go from the top of the screen

down, a programmer who thlnk of data flowlng left to rlghÇ or rlght to left, or even bottom to
top, wlll be forced lnto an unnatural mode of thought.

Visual programming languages should not rely too much on text but that does not mean
abandonlng all textual names. A úsuat prognm should not be a sequence of C statements wlth
ar?ows between them.

Coupled wlth the rlght use of text ls the rlght use of graphlcs and colour. A vlsual language

should enable the programmer to use colour meanlngfully and to lmport hls or her own lcons
to stand for the actlvtÇ points. For instance, the programmer mlght want to llnk the data
pãthways as water plpes lnstead of wíres.

Wlndows pose problems beyond thelr mere prollferatlon. When a wlndow refers to ltems ln
other wlndows, either by name or by üsual means such as a line, h forces a person to somehow
anange the wlndows on the screen so as to see the larger plcture. But wlndorvs usually overlap
each other, obscurlng part of the underlylng dlagram. A general prlnciple would be to allow the
üsual programmer to control the level of detall ln ways that permÍt hlm or her to lgnore flne
detall whlle at other tlmes to see that detall. Moreover, seelng the detail should be permfted
ln a varle§ of ways that allow easier placement wlthln the larger context.

ln spite of all the princlples when creatlng a visual language, there are stlll some limltatlons whlch must
be considered. Deutsch once sald somethlng llke:

"Well, this ls all flne and well, but the problem with vlsual programmlng tanguages ls that you cant have
more than 50 vlsual prlmltlves on the screen at the same tlme. How are you golng to wrlte an operatlnt
systemT

It polnts olrt the obüous density advantage of text. Thls barrler has become known as the "Deutsch
Umif (Wklpedla 2ü)9), stated as:

"The problem wtth visual programmlng is that you cant have more than 50 úsual prlmltlves on the
screen at the same tlme."

Thls ls clearly a problem with vlsual representâtlons. However, lt ls not lmmedlately clear that a slmllar
llmlt dos not also exlst ln textual languages. Msual programmlng languages and textual languages have
llmttatlons, but that does not mean tt cannot be worked out.

t9

:l

2.2.6 ApplicaüonExamples

2.2.6.1 Prograph

Prograph is a visual, object-oriented, dataflow, multi paradigm programming language that uses iconic
symbols to represent actions to be taken on data. Commercial prograph software development
envíronments such as Prograph Classic and Prograph CPX were available for the Apple Macintosh and
Windows platforms for many years but were eventually withdrawn from the market in the late 1990s.
support for the Prograph language on Mac oS X has recently reappeared with the release of the Marten
software development environment (Andescotia 200g).

Prograph introduced a combínation of object-oriented methodologíes and a completely visual
environment for programming. objects are represented by hexagons with two sides, one containing the
data fields, the other the methods that operate on them. Double-clicking on either side would open a
window showing the details for that object, for instance, opening the variables side would show class
variables et the top and instance variables below. Double-clicking the method síde shows the methods
implemented in thís class, as well as those inherited from the superclass. When a method itself is
double-clicked, it opens into another window displaying the logic.

ln Prograph a method is represented by a series of icons, each icon containing an instructions (or group
of them). Within each method the flow of data ís represented by lines in a directed graph. Data flows in
the top of the diagram, passes through various instructions, and eventually flows back out the bottom (if
there is any output).

operation Method implementation

§ort l:l
A Database

These sorts could be
executcd concurrrntfu
but updrting thc detúerç
is dependent on the sorts
completing cxecution.

Figure 2-6 Prograph database

20

This chapter introduces some examples of visual programming applications/prototypes and its
capabil ities/l imitations.

2.2.6.7.1 Related Work

2.2.6.1.1.1 Spreadsheets

One of the primary uses of spreadsheets is in forecasting future events. This ínvolves investigating
"whatif' scenarios, experimenting with different values for inputs, and observing how they affect the
computed values. Unfortunately, current spreadsheets provide little support for this type of interaction.
Data values must be typed in, and computed values can be observed only as numbers, or on simple
charts.

Smedley, Cox and Byrne [(Smedley, Cox and Byrne 1996) and (Cox and Smedley 1994)] proposed a

system which allows the user to create ínterface objects which interact directly with values in a
spreadsheet. For example, the user could create a spreadsheet where the results were displayed in a
chart, and then create graphical controls, such as dials, or sliders, that are connected to the inputs ofthe
computation, and then watch the effect on the chart as the inputs are varied by adjusting the scroll bar.
The purpose is to enhance the value of spreadsheets for investigating "what-if' scenarios. This is
achievable by implementing some extensions for prograph. tigure 2-l shows an example.

Figure 2-7 A Spreadsheet with lnteíace Obiects

I{

t2

t0

I

6

4

0
o eRs9B8P888

&.L F*tqi-3o'

2t

2.2.6.1.1.2 Limitations

R. Mark Meyer and Tim Masterson (Meyer and Masterson 2000) discuss some limitations of Prograph

and they implement an improved version from it called S|VL (Stmple Visual Language).

The main limitation is related with the size of the programs and its organization. One way to avoid
having spaghetti code is by having windows referring items to other windows and hiding some

structures, but this would bring the problem of not making the programmer see the "whole picture". For

example, a chunk of visual code could be delineated by a box, sort of like an in-line function. This chunk
could be the body of a loop or a case limb in a decision construct. lf the chunk can be visualized as a

black box whose inputs and outputs are the only concern, then the programmer can temporarily ignore
its innards. But the interior must be dealt with sometime. lt can be opened up as separate window, or it
could be expanded in place. Prograph gives the programmer only the first option of opening a separate

window, making it difficult to see the chunk of code in context. A better approach would be to allow the
programmer to make the interior visible as the chunk sits in the larger program, perhaps in muted
colours or as smaller icons and lines.

2.2.6.2 LabVIEW

LabVlEW (short for Laboratory Virtual lnstrumentation Engineering Workbench) is a platform and

development environment for a visual programming language from National lnstruments. The graphical

language is named "G". Originally released for the Apple Macintosh in 1986, LabVlEW is commonly used

for data acquisition, instrument control, and industrial automation on a variety of platforms including
Microsoft Windows, various flavours of UNIX, Linux, and Mac Os. The latest version of LabVlEW is

version 8.6, released in August of 2008 (Wikipedia 2008).

LabVlEW ties the creation of user interfaces (called front panels) into the development rycle. LabVlEW

programs/subroutines are called virtual instruments (Vls). Each Vl has three components: a block
diagram, a front panel, and a connedor pane. The last is used to represent the Vl in the block diagrams

of other, calling Vls. Controls and indicators on the front panel allow an operator to input data into or
extract data from a running virtual instrument. However, the front panel can also serve as a

programmatic interface. Thus a virtual instrument can either be run as a program, with the front panel

serving as a user interface, or, when dropped as a node onto the block diagram, the front panel defines
the inputs and outputs for the given node through the connector pane. This implies each Vl can be easily

tested before being embedded as a subroutine into a larger program.

Figure 2-8 shows a screenshot of a simple LabVlEW program that generates, synthesizes, analyzes and

displays waveforms, showing the block diagram and front panel. Each symbol on the block diagram
represents a LabVlEW subroutine (subVl) which can be another LabVlEW program or a LV library
function.

22

lt !.1 õ- S' e1

-
§iída&

ê â ê. ç- C.nedtê Ânrlrr. Aí|d Oi'9t.y s§üt'r Blqk Dingad

+ ,S ê ll r i. to (? l:6Ámtrrôí Ío.r - :.- õ. f.'

Figure 2-8 Screenshot of a simple LabVlEW protram

2.2.6.2.1, RelatedWork

2.2.6.2.1.1 Survey

K. N. Whitley and Alan F. Blackwell presented a paper with three surveys of beliefs about the cognitive
effects of visual programming (Whitley and Blackwell 2OO1). The first survey was aimed for the opinion
of visual programming academic researchers and the second and third surveys were aimed to users of
programming languages: professional programmers and LabVlEW programmers respectively.

The main conclusions are: students from the first survey revealed speculative, but optimistic views of
visual programming; professional programmers were the most sceptical and LabVlEW programmers
were confident that the visual programming language provided by LabVlEW is beneficial.

Academic researchers often have optimistic theories regarding the influence that new programming
languages can exert on the mental processes of the programmer.

Professional programmers, whether they are familiar with VPLs or not, tend to see the advantages of
new languages in different terms - they are more concerned with the potential improvements in
productivity that arise from straightforward usability issues, rather than from theories of cognition. The

9anrrat!t I puír
whit. signrlnoilC oí níi.blc Th. Itnolil rddodôormpllt!d.. útto tine.puÍe The

andwlth th.*llhout aíanol§a Íhownth!n tn domalntlmr an iiFTAddlttonally9.rph.
íot both $eaodJignôl! erar€!ult5 showhtheí rhrin domaiôuao<Yfraq gÍaoh. Notc

h.

I I
í#

$J.{'}

Bc

Fr&-AE;ÍÍffi
tl5ü.

ffitliÊãAw
EãÍiffituE

23

§ignals

à

Fírqurr(y Oo@lnE

i El-r

EI

professional programmers exhibit a preference for the tools that they have had most experience of
using.

This might produce significant biases when programmers are questioned about the value of their tools.

These biases can even extend to significant scepticism about the advantages of new techniques,

whether or not the programmer fully understands the technique being described.

However, experienced LabVlEW programmers admitted (when specifically prompted) the weaknesses of
their tool. Equally as interesting is the result that LabVlEW programmers rated the visual representation

of LabVlEW as more of an advantage that its reusability facilities.

2.2.6.2.1.2 Limitations

Some of the reported LabVlEW limitations (Wikipedia 2008) are

Small changes can pull complex restructuring. Always when a new Vl is inserted, it is needed to
reconnect all the "wires" and symbols in order to re-establish the system;

Unlike common programming languages, LabVlEW is not managed or specified by a third party

standards committee. Compiled executables produced by the Application Builder are not truly
standalone since they also require that the LabvlEW run-time engine be installed on any target

computer on which users run the application (National lnstruments 2006). The use of standard

controls requires a runtime library for any language and all major operating system suppliers

supply the required libraries for common languages such as "C". However, the runtime

required for LabVlEW is not supplied with any operating system and is required to be

specifically installed by the administrator or user. This requirement can cause problems if an

application is distributed to a user who may be prepared to run the application but does not
have the inclination or permission to install additional files on the host system prior to running

the executable;

The simple entrance into LabvlEW programming tempts to "simply straight on programming",

but also graphic programming does not replace the need to plan the project before starting to
proSram.

2.2.6.3 lava Town

JavaTown project (Feinberg 2007) began as an attempt to address students misunderstanding, in
introductory courses of Computer Science, about the natuÍe ofobject references (pointers) in Java.

Teachers started to notice this problem when students showed difficulties in assigning objects to
variables and passing them as method arguments. Usually, the approach to this kind of situations (since

an object reference is simply a memory address) is to show the students how objects and references are

actually represented in RAM, but this proved to be too technical and involved for an introductory
course.

The solution found was to develop a visual programming environment in which characters would be

shown performing computations - a sort of object oriented Little Man Computer (Madnick 1993).

a

a

a

24

The model is based on metaphors, which is most popular among the programmers, such as sending
messages and remembering values. objects are represented as people who live in numbered houses
where each home address mirrors an object's address in RAM. These people are exclusively referred by
their home address which is remembered by people and passed in messages to other people in the
same manner that pointer addresses are used by conventional programming languages. Although
students see addresses on screen, they quickly discover that such addresses never actually appear
directly in code. The execution of the code grows out of the collective interaction of the people living in
a group of houses, which is JavaTown.

The software was developed to bring JavaTown model to life. The programs executed by it are not
actually written in Java. lnstead, the software uses a language featuring only some of Java's syntax and
behaviours, in order to prepare students to use Java later in the course.

JavaTown is seen as a prototype to develop more comprehensive and production-quality visual
programming environ ments.

Figure 2-9 Full JavaTown Screen Layout

2.2.6.3.1, Limitations

The negative responses came from more experienced programmers, who felt that three weeks of
JavaTown was too much and were frustrated by JavaTown's restrictive and type-free syntax. A number

lpublic class Bor

F
priYale value;
public Borü) {Yalue = {}
public gelvalueO {relum yalu?;}

];
DeÍined class Box

b1 = new Box{1 0):

Oeíined class Copier
public class Copier

public copy(boD

{ retum new Box(box.getvatue0);)
l;
copier = new Copier0,
b2 = copier.copyftl):

ffranscript

25

{Nl

,. JavaTown 0.3

tod Cleã

,t0 r

r0

t4

#6

*8

c

*?

of students also suggested that JavaTown's dow execution speed to be adjustable. Another problem is
related with sometimes vague error messages, especially the ones regarding to parse errors.

2,2.6,4 Device Independent Generation of llser Interfaces

The promise of information anytime and anywhere has become a reali§. Today, it is possible to access
information through multiple kinds of devices. However, the design of user interfaces for such devices is
restricted to the use of specific ad- hoc programming languages that may vary from one device to the
other. ln this sense, the existence of generic programming languages for creating device-independent
user interfaces became a strong necessi§.

One emerging approach to device independent developments require the construction of generic
vocabularies for transcoding into specific target codes for web browsers, PDAs, voice systems, mobile
phones, etc. The authors of this work (Mayora-lbarra, et al. 2003) presented an authoring tool for
designing generic user interfaces with automatic transcoding to multiple target languages. The tool is a
visual programming environment with drag and drop generic widgets created in UIML and transcoded
into VoiceXML, J2ME, HTML and WML languages. This tool takes advantage of the UIML language and
visual programming paradigms for providing flexibili§, consistency and decrease in development time.

I***a§E?,,w

ffi ***

*\:w
"§ '{* g*1W,2â& ,.Wx*, &

tsfÍEftF*CE ÊErtEâCÊ F.ÍÊ*.**
Figure 2-10 Transcoder architeture

26

ní-mI I t-JLCt*,güw.e
weV&r*L.§É;W§E'

T*"

#xçr?** *§gâ
w&?*e*3

Archivo Editar Transcoder Ayuda

--atú Trânscode J2ME Transcode VXML

UIML Java 2 Micro Edition I

Figure 2-11 A general view of visual programming environment to multi-device

2.2.6.4.1, Limitations

The principal benefit of this approach consists on doing transcoders maintenance only and, if a new
target language is needed, the programmers just have to create the respective transcoder.

There are a few visual programming environments to develop multi-devices interfaces, such as

Harmonia Liquid (Harmonia, lnc. 2008). Harmonia have marked a good step with Liquid, but it has the
inconvenience of multiple kinds of "generic language" to obtain a target language (Mayora-lbarra, et al.

2003).

2.2.7 Summary

With the evolution of technology there is an increasing demand for software applications to work with
this technology. There are lot of causes behind a demand for a new/changed software application:
package update; new architecture; solving a problem; customer demands; etc.

27

J r x

Transcode HTMLÁ ÀíL

& fOitor Ull-tl - Untitled

Creating/changing a computer program often requires the act of programming and this task, beside the

possibility of being cumbersome and time-consuming, may require experienced technicians.

Visual Programming came up as a possible solution for this. lts purpose is to ease up the way of

programming which can save time and may allow end-users to create/change their programs.

Several princíples can guide our search for the ideal visual programming language and enable us to

compare and criticize existing languages. Some of these principles are analogous to those of current

text-based programming languages like, for example, the need for restricting the set of possible

structures to avoid spaghetti code.

It is possible to find around some Visual Programming applications in the market. Some of them are free

and open-source and some others are close-source and commercíal.

Anyhow, there is a long way to go for the proliferation of Visual Programming. Text+ode based

programming is still the preference among most of the programmers and some end-users find Visual

Programming difficult and not intuitive. One solution can use a mix solution, like the one offered by

Microsoft with Visual .NET, which combines visual and text code. Words exist for some reason and we

cannot pretend that we can live only with pictures. Text programming offers more flexibili§ and Visual

Programming offers more intuition so, why not combine both?

2.3 OpenDX

Now that the capabilities of Cell/B.E. and Visual Programming were introduced (see chapters 2.L Celi-:/

Heterogeneous Multi-core Environment and 2.2 Visual Programming), it is time to introduce the

platform chosen to connect these two concepts: Open Visualization Data Explorer (DX).

DX sounded a good candidate for Cell/B.E. for three main reasons:

has a Visual Programming Environment

handles huge data-sets

new modules for it can be implemented in C language

lf a user has a data-set and wants to apply a complex operation on ít in order to try to visualize

something different, then DX shows up as a possible solution. lt is used in many different areas and is

possible to find, among the DX community (lBM 1991), projects related with: weather forecasting;

physics and mathematics; oceanography; geographic information systems; data minin& chemistry;

biology; etc. These researchers can take much profit from the power of High Performance Computing

(HPC) since they can get their computing results much faster if Cell applications run with success in DX.

This chapter introduces the main topics about this application: overview; visual program editor; data

visualization; module builder and installation steps in a CelUB.E.

a

28

2.3.1 OpenDXOverview

Open Visualization Data Explorer (DX) was introduced by IBM Research in 1991 and it is open-source

software. DX is a portable, general-purpose software package for data analysis and visualization and

uses a Graphical User lnterface based on X windows and Motif.

The main idea behind the creation of DX was to try to give meaning to data. lf a user has a data-set and

wants to see beyond its values, then DX comes up as a possible solution. DX allows users to see data in

different colours, shapes, layouts, etc. Figure 2-12 shows a diagram about how does DX works:

(1) Data Modêl (a) Scripting Language

data visualization
program ----> lmage

(§l*!maqe Wndov

(e). coglol ftrre_fp

(10) Display Module

(2) Data PrompteÍ (§) _"yi§!ra| PÍagI_ala _Ed{qI

(Q)*Medules

(7) Module Builder

(3) Data Browser

Figure 2-12 OpenDX main features

The Data Model (1), Visual Program Editor (5), Module Builder (7), lmage Window (8), Control Panels (9)

and Display Module (10) are introduced in this chapter. The last three topics are introduced in the sub-

chapter 2.3.4 Data Explorer Visualization.

Details about the Modules (6) are presented in chapter 3.1 Writine Modules for OpenDX.

The remaining topics (2 to 4) will not be exposed in detail since they are not directly related with the

proposed work.

2.3.2 Data Model

The most important thing to know about DX's Data Model is that it is based in a Field structure. A Field

has three basic components: positions, connections and data.

The "positions" component is an Array Object specifoing a set of n-dimensional positions.

The "connections" component provides a means for interpolating data values between the positions.

The "data" component stores the user's data values. The data values can be position or connection

dependent. lf the values are position-dependent, then the "connections" component supplies a means

of interpolating data values between the samples. lf the values are connection-dependent, the data

value is constant for each interpolation element. Figure 2-13 shows an example of a Field object:

29

Ftrld
ms
'dltt'

'po8ltlotttr
tcotnagtlont'

thx'

lL v .À

v

Figure 2-13 Example of a Field Oblect

The Construct module in DX allows the user to create a Field (very easily and straightforward) and it is

introduced with the first practical example in chapter 3.2.2.4 Compiline and Runnins Add.

2.3.3 Visual Program Editor

The Visual Program Editor allows the users to create their Visual Programs. Figure 2-14 shows a program

sample in the Visual Program Editor:

tJpo - rÉltrtry
ítfi - 1§0m0

ültt -' '.

tlD. - florttil
Itm-B
dttt - ".

tupr - lilt{4l
Itut - 100000

dttt -- .

ttpo - flort[3!
Itlrt - 1E0000

dttr -' ' :

30

Figure 2-14 Part of the DX visual program for the USA Census visualization

ln the left is a "Tools" menu which allows the user to select the modules to connect. ln the middle is a

page used to connect the modules and the menu is in the top.

It is possíble to have more than one page in the visual program and these pages are separated by

different tabs and when that happens, the module referencing a different page has italic fonts and

thinner characters. The modules used for these operations are called Transmitter and Reâsrver. ln the

example of Figure 2-14, the normalized module is a Recelve1 because this module "receives"

information from another page, and the module colormap is a Transmitteri because it "transmits"

information to another page.

Each module can be seen as a "function call". The end-user just give the input to the module and it will
produce an output which can be used as input to another module and so on, but, instead of writing

code, the user has only to deal with graphics.

Left-clicking two times in a module opens a dialog box where the user can manage its details. Figure

2-15 shows the details of the module MapOnSÍates presented in the Figure 2-14.

3l

Vissal PÍogrem , x
gdrt Elats qsretln

Unltsd StatÊr.page nrpr tie rélecêd dati onto â m.p of t,la

i,laponstâtês (on elbal) xI

Figure 2-15 Details of thê module Maponstates

Here the user can: type/pick up specific inputs for the module; choose the cache procedure for the

output and see the module description.

2.3.4 Data ExplorerVisualization

DX offers different and flexíble ways to visualize the data through the use of: lmage Window; Control

Panels and Display Module. They are introduced in this sub-chapter.

2.3.4.7 Image Window

The lmage Window is an interactive window for viewing and modifoing the presentation of the image

produced by a visual program. For example, Figure 2-16 shows an image with the distribution of the USA

population in 1989 (census of 1990), produced by the visual program in Figure 2-14.

32

: ualur

j valm

llt:tút{ory

H-ffutoecalc

llollataValuc

tolor{onp

'd.tà"

ltt L

f,*ults -

1*P"

ficld

Stâti*r!illtg
RêsúIts

lir::í ií!ô;=ia.l

Iràmittd'

,-]utFut::
i{iF*
Pai*c6tntc

E
oo
o
_1
o
o

r

2.5et47

2.Oç+Q7

'l .5e+07

1.0e€7

5 . Oe+06

Figure 2-16 DX showing the distribution of American population

lmage Window allows the user to control:

. the object's appearance

. the colour(s) of an object

. the placement of axes around an object

ln order to be able to use such controls, the visual program created must use the lmage module for
rendering.

2.3.4.2 Control Panels

The Control Panels allow the user to change the parameter values used by a visual program. Figure 2-L7

shows the Control Panel for the Census program which have been shown along this chapter.

aaJJ

)

1_

Figure 2-17 Control Panel for the USA Census program

ln this example, the user can select, from the top selector, which type of information he/she wants to
see: age (selected), population, sex, income, etc., and, in the selector below, can be selected

information according to the first selector. ln this case, because age is selected, the options available

are: age_under_l; age_30_to_34 and age_over_8S. lmage displayed in Figure 2-16 will change

according to the selected inputs in the Control Panel.

2.3.4.3 Display Module

Display Module is an alternative to the lmage Window (see chapter 2.3.4.1 lmase Window) and, like its

name says, is used only to display images. This module does not offer the ability to "play'' with the
image like: rotating, zooming moving; etc.

2.3.5 Module Builder

The Module Builder is a user interface which allows the creation of customized modules to be used in

visual programs.

DX users have two main options when creating their own modules for their applications: they can use

this module builder or they can program them on their own using C language. ln fact, the builder does

not do anything more than just generating C code according to its inputs.

34

Exacute Panels

Control Penel x

r
Selector

age_under_1

Modúlê Builder {on Glb.ll :x

Fígure 2-18 DX Module Builder

Figure 2-18 show its interface. The Build menu on the top allows the user to generate the module

description file (mdf), C code and a Makefile for the module (after typing the necessary information).

Module Builder proved to be a good tool in the beginning since it made it easier to understand the

underlying DX structures, but it has some limitations about the specificity of the modules. So the best

option, for advanced programmers, is to write new modules on their own (see chapter 3.1 Writing

Modules for OpenDX). Examples using DX Module Builder are shown in chapter 3.2 Cell/B.E

Aoplications in OoenDX with more detailed explanation about how to use it

2.3,6 OpenDX Installation in Cell/B.E.

This practical work of this thesis was developed using OpenDX v4.4.4 in a Fedora-Core based Linux.

Besides a Fedora-Core minimal installation (with an X-server), the following packages must be installed:

. mesa

o glibc-devel

o freeglut-devel

o lesstif

o sqlite-devel

o expat-devel

o numatcl-devel
o libXp-devel

35

Irtdirt*ol PcqrctÉ

SrlelL vâle

lot rllrll.d

ro! T1"rf4 :

t*! rsFri.od

P@ltl6 r effitl@ -

llàt tgp"

0ôtà §h.pc

PGLiIG

CqIÊtiG

fl.lw!|, lyp{

IrmÊ q lLt?üt?

I!P.r!' ltrôrr'{ 1,}

D.§tttlm

f Rc,Blirêd

. llbxextdevel
o llbXlldevel
o libSM-devel

o llblCE-devel

It may also be requlred for the user to create an empty sys.tr flle ln "/usr/lnclude/lnuf. Compller may
complaln about ft ln spfte of not uslng lt.

For the rst "./configrrg ç6=ppu32-gcc O0(=ppu32-g++"; "make" and "make install" shoutd be enough
to complete the DX lnstallatlon.

36

3 Visualizaüon in Cell/B.E.

Cell/B.E., Vlsual Programmlng and OpenDX: how do thse three components tet together? ln thls
chapter all the practlcal work developed durlng thls thesls ls lntroduced. The matn goal ls to run Cel/B.E.
appllcations ln OpenDX and apply some data vlsualízatlon on lt (DX purpose). DX modutes are unltten tn

C language wlth the help of lts API and darelopment llbrary (tBM 1991).

Thls chapter flrst starts to lntroduce how to write modules for DX and then lntroduces the lmplemented
modules. Each module lncludes a performance study where the runtlme for each applicatlon ls

compared between runnlng ln the console and runnlng lnslde DX. The purpose ls to show that there ls

no blg loss of performance by swltchlng from textual to vlsual programmlng.

Then, at last, a case study about uslng the Cetl/B.E. capabllltles to lmprove DX performance ls

lntroduced. The module plcked up for thls study ls the Gradtent modute and lts performance study
compares tts run-tlme wlthout any optlmlzatlons wlth an optlmized verclon (uslng allthe ar/allable SPES).

Tests are performed ln a QS22 Bladg whlch has 2 ppE cores (3.2 GHz each one) and I SpE cores per ppE,

and ln a Playstatlon3, whlch has one PPE core (3.2 GHz too) and 8 SPE cores. Both archltecturs offer
512Kb of 12 cache fur the PPE and 256Kb of loca! store memory per each SpE.

3.1 l[Irldng Modules for OpenDX

After DX ls lnstalled, the next step for the proposed work ls to wrlte CelUB.E. applications ln furm of DX

module. DX Progrommer's Relerence (!BM 19!11) helps to achleve thls wlth the help of tutorlals and an
API.

There are two avallable ways to wrlte the modules: uslng DX Module Bullder or wrlting the modules
manually ln C language.

DX Module Bullder (see chapter 2.3.5 Module Bullder) ls recommended for beglnners ln DX

development. lt has a user lnterface and the user/programmer can speclfy the inputs/outputs for the
new modulg Íts name and descrlptlon. The bullder can generate the conespondlng C code for the
modulg lts conespondlng mdule desctptton l?Íp (mdf - see chapter 3.1.2 Module Description Filel
and a makeffle.

However, adnanced progÍammers may feel more comfortable wrltlng these modules manually. Manual
programmlng glves more flexlbillty to the programmer and lt ls posslble to speclfy thlngs abut the
modules whlch are not posslble uslng the DX Module Bullder.

Creatlng a module for DX lnvolves three steps (does not matter lf using DX Module Bullder or not):

o Deflne what ls the lnput/output of the module
. create (orgenerate) a múule de*ription í7te (md0
r Wrlte (orgenerate) the module ln C language

These steps are descrlbed durlng thls sub-chapter

37

3.1.1 Deftntnglnput/Output

Flrst step to do when lt ls pretended to wrlte a module for DX ls to clarlfy which ls the lnput and output
of the module. This part ls responslble for ptannlng the behavlour of the module before startlng to
lmplement lt.

The maln questlons ln thls phase are: what are the lnputs? what are the types for each one? What wlll
be the otrtput(s) and lts type(s)? lt ls dsirable, at this phase, that the programmer has an ldea about
what the module ls supposed to do and how lts behavlour is.

3.L2 ModuleDesalpüonFlte

The module descriptlon file (mdf) contalns lnformatlon about the modutes whlch wlll be processed by
DX. lt contalns lnformatlon llke: name of thê module; descrlptlon; flags; lndlcatlon of outboard or
loadable (lf none, lt ls assumed that ls lnboard); lnputs; optlons and outputs.

lts s,yntax ls:

MODU1Cname
CAIEGORY category nome
DESCmmOil module descrtptton
n

^cS
opttonol flogs

OUTBOARD'executoble" ; host
LOADABIE oexeafiobleo

INPIJÍ nome [vlslblel; type; deÍoult; dacrtptton
OPTIOi{§ optíont; optton2; ...;
OUTPUT narze [coche]; type; descrtptlon
REPEATn

Table 3-l shows a brlef descrlptlon of the componenB of an mdf:

Table !l-1 Module Descrlptlon FIle (mdf)

For the M0DUIE and CATEGORY, the user has only to speclfy a strlng name whlch must start wlth a
letter. tn the MODUIE case, lt may be only a slngle atphanumerlc word.

N'IME REqUNED DESCmmON
MODUI.E x a name to the module descrlbed.
CÂTEGORY x the moduleto a DX or user-deflned
DESCRIPTION Serves as a functlon.
FTAGS

OUTBOARD ldentlfles the module as a executable
ldentlfles the module as being runtlme loadable (1.e., complled

and loaded lnto DX ãt run
TOADABl"E

INPUT x

omoNs
ldentlffes a llst of posslble values for the parameter.
Thls llst can be accessed by cllcking on the o button to the rlght of
the Value fleld ln the module's box.

OUTPT'Í x

REPEAT
Speclfles some number of INPUT or OUTPUT statements to be
repeated.

38

For the INPUT the syntax ls as follows:
7. nome lol a parameter) must be one word and must conform to the executlve's lexlcal

conventions.

[vlslbl4 lsoptlona]. vlslble:n spelfles the accesslbllÍty and lnltlal vlslbtllty of lnput tabs:
0: Not lnltlally vlslble.
1: lnltlally Ylslble (deÍault).
2: Not avallable to the user lnterface.

2. type speclfles the type(sl ofthe lnput and ls used for type matchlng ln the Vlsual program
Edltor (see chapter 2.3.3 Msual prosram Editor). Ttre valld typelr are:
camera lnteger llst scalar ualue
freld mgtrü scalarllst ratue tbt
f,ag maúfi llst serles yectoÍ

tÍoup obleet strlry uector !tst
lnteter
To speclfy more than one type, the word or ls used as a separator.
lf the type of the lnput value ls not expllclt (e.g, a strlng wlthout quotaüon marlc or a vector
wlthout bracketsl, the user lnterface attempts to match the lnput agalnst the type(s) speclfled
ln the INPUT statement. lt reads ftom left to rlght and stops at the flrst successtrl match. For
thls reason, strlng should be speclf,ed last, berause any serles of characters can always be
converted to a strlng by addlng double4uotaüon marks.

3. defouk ldemlfle the value to be used lf none has been speclfled.
By conventlon, parentheses ldentlfy a descrlption of default behaúour rather than an actual
value. lf no default ls appllcable, (no deÍault) ls speclfled. lf the parsmeter ls requlred, (none) ls
speclfled. NOTEs thls part ls purely lnformal.

4. dercrtptlon should contaln a short phrase descrlblng the parameter.

For the ourPlrr there are only two small dlfferences compared to the tNpur:

o there ls no default optlon
. cac[re is optlonal. edre:n speclffes the cachlng to be perfurmed by the executlve:

0: Do not cache the o@ut
í: Cache allorÍputrs (detuult)
2: Cache the oueut from the last executon only.

In splte of the posslblll§ of appearlng ln the code, the remalnlng compnents are not dlscussed ln thls
thsls slnce they are not releyant for the proposed work. All lmptemented modules are lnboard
modules, whlch means that they are compiled and charged before starting DX. OmONS and REpEAT
are superfl uous components.

3.r.3 ImplementlngtheModule

The procedure after creatlng the mdf ls to lmplement the conespondlng modute ln C. DX offerc a llbrary
and an API to hetp ln thls task

Below ls a llst of the baslc steps when lmplementlng a modute for DX:

o DX header flle must be lncluded ln order to use the tlbrary (usually: fllnclude <drldx.h>)
o the "maln" functlon has type Enor and Íts name ls preceded by "m_" (fur emmple, tf the name

of the module ls "Hello", then the flte whlch lmptemenB thls modute must have a funcdon of
type Enor called "m_Hetlo"l

o the maln functlon havetwo argumenB:
o Flrst argument ls a polnter of the type OôlêúÍ to the tnput

39

o Second argument ls a polnter of the type Oôlecf to the output
rthe module ls computed whh success then lt must return "oKu, othenvlse "ERROR"

lmplementatlon speclflc detalls are lntroduced wtthln the case-study modute.

3.1.4 Comptllngan{fu1nnlng

In order to complle the moduls there are two steps whlch must bê taken:

o FlÍlit, the C flle wlth all the lnformaüon about the modules ln the mdf must be generated. ln
orderto do that, the next command must be performed:

S(aese/Utn/maZc na me_of_the1fl te. m df > na me_oÍ_theJfr te2.c

o the default BASE dlrectory ts lusr/realldx
o nome-of-the-file refers to the lnput mdf and a name_of_the:flle2ls generated ln Co Second, the complle procedure ls the same as complllng a regular C code. The generated C flle

(from the mdf) must be lncluded and the flag -tDX must be added ln order to access the DX
llbrary. Other llbrarle may be needed slnce the DX llbrary ts used (llke ltbGLU) and slnce these
pro8raÍns use SPU blnarles, the llbrarles llbspe2 and llbpthread also must be llnked

To start the appllcaüon, the user must type:

dx -mdf nome_of_the_1file.mdÍ +-xer. .l generoted_uecutoble

Thls command starts DX with all the lmplementd modules by the programmer

3.L5 Hellogorldnqample

Thls chapter shows how to lmplement a module whlch connects a strlng to the word "Helto" and then
an example of usage ln the Msual program Edltor of DX.

The steps are lntroduced as descrlbed ln pranlous chapter 3.1 Writine Modules for OoenDX"

3.7.5.7 Hello Input/OueutDefinition

Thls module receives an lnput strln& concatenates lt to th€ strlng "Hello" and then retums the string
"Hello" concatenated whh the input string.

3.7,5.2 Hellomdf

The proposed mdf, accordlng to thê syntar ln chapter 3.1.2 Module Descriptíon File. ts the followlng

a

one:

40

MODUlE
CâIEGORY

DESCmmON
INPUT

OUPUT

Hello
Greeüngs
Preflxes "hello" to the lnput strlnt
value; strlng "world"; lnput strlng
greetlnts; strlng; preflxed strlng

1

2
3
4
5
6
7
8
9

10
11
12
It
t4

Example !t-1 Hello mdÍ

The proposed name for thls flle ls hello.mdf and tt ls used to generate the C flle wlth the rnodules
infurmâtlon.

3.7.5.3 Hello Implementation

Now that the mdf ls deflned, the next step ls to lmplement the module uslng the C language:

Erample $2 Hello World lmplementaüon

Detalls regardlng the lmptementaüon of a mdule were lntroduced ln chapter 3.1.3 Implementlne the
Module.

lf no argument ls speclfled for yalue (see the mdf ln chapter 3.1.5.2 Hello mdfl, then tnlot ls NU]L and
the deÍault output ("hetlo world") ls placed ln message. lf an argument ls speclfled, a llbrary rouüne
(DlErlractStrlng) extracts lt from ln[O] and Srêcüng becomes a potnter to that strlng. tn llne 10, strlng
polnted bygrcGüq ls appended to "hello", creaüng nesage.

Thls flle ls named as hello.c and next chapter lnúoducs how to complte and run thls erample.

3,7.5.4 Comptling and ktnning the Hello brumple

!n order to complle and run the appllcatlon the followlng commands are performed:

(assumlnt g45g
= Tusrlocal/drl

df2c hello.mdf > hetto_mdf.c

ppu32ge -l Asr/lrcoUdxflnclude hello_mdf.c hellac <

*include <dx/dx.h>
Error n_Eello(Object *in, Object *out)
t

char message [30] , *greeting,-
if(!ln[0])

sprintf(message, "hel1o world") ;
elge
{

DXExtractString (in I 0 L &greeting) ;
sprintf (message, ,'8s 8s., ,hel1o',, greeting) ;

)
out[0] = DXNewString(message) ;
return OK;

)

4t

ppu32-g++ hello_mdf.o hello.o -L /usrllocol/dx/lib_linux -lDX -IGLU -exportdynomic -o dxexec

dx -mdf hello.mdf -exec ./dxexec

Compiling and running topics are introduced in chapter 3.1.4 Compiling and Running.

As stated in chapter 2.1.4.1 Different Processors, Different Compilers, compiling a regular C program in

the PPE can be done without changing code and compile flags.

3.1.5.5 Visual Program Example Using Hella

Figure 3-1 shows the main window when DX starts:

Figure 3-1 DX Startup window

Clicking on Edit Visual Programs... opens the Visual Program Editor where the user can connect the

modules. Figure 3-2 shows a visual program using the Hello module:

42

DataExplorer - D x

faport Bâtr.."

Eun lÍi*ua1 ProgrãE§..*

Edit Tisual Prograns"..

lles Visual Progrân"..

,-*!.sit* --i ---*J!elr-, -i

Visuat Program Editor: lhomê/guêrrêiÍoltêst-areâldxmod les/helloihello,net (on elbal) tx

Figure 3-2 Hello visual program

By double-clicking in the String module it is possible to specify the input which is used in the Hello

module.

Figure 3-3 shows the string dialo8 box:

Figure 3-3 DX String module

As may be noticed, the program recognizes that the input value is actually the Hello value since the

output of the Strlng module is connected to the input of lhe Hello module.

Selecting Execute Once from the Windows menu in the Visual Program Editor in Figure 3-2 produces the

output showed in Figure 3-4 which is created by the ,moge module present in the Visual Program Editor.

Hello value:

I'au*t "

43

.{, Eil* ldrl Egmtc lindrc Çorcctim

Text

lmage

ànd

Cmüml

I

r_Jh !

Figure 3-4 Output of the Hello visual program

3.2 Cell/B.E. Applications in OpenDX

After introducing how to write modules for DX, it is time to show how Cell/B.E. can interact with them.

For each implemented module this chapter introduces: its behaviour (what is the module supposed to

do); its implementation (and some notes after); how to compile and run and a performance study.

Regarding the implementation, there is a lot of code that is not shown during this chapter and big part

of it is related to the auto-generated code by the DX module builder. That code is responsible to check

the input and handle the errors if something is wrong, which is executed in the PPU side. lt is extensive

and responsible for some loss of performance during the execution, but the key question is: is this

overhead so much that it will not compensate the switch from a textual to a visual programming

environment?

The performance study will compare the performance between a standalone (console) C application and

the same application running inside of a DX module. The process taken to test this is very simple: for

each module, the SPU programs are the same both in the textual and visual programming environments

(which means: are the same both for the console and DX) and the PPU programs (which are responsible

to start the execution, check inputs and handle errors) are the ones where the key differences lies. A

PPU program for the console does not include extensive checks in the input (it is simply initialized and

then processed in the SPU side) contrasting to the PPU programs in DX.

44

á lmagc: hcllo/hcllo.net (on clbal)
Elscútú

3.2.1 HelloWorld

The flrst example ls very slmllar to the one Introduced ln chapter 3.1.5 Hello World Example. The user

glves a string as lnput to the module and the module concatenates the word "Hello" wlth the lnput

strlng ln one SPE, whlch glves back the result to the PPE. The maln purpose of thls module ls to show

how to start a sPE thread ln a DX module.

3.2.7.7 Hello mdf

The mdf for thls example ls the same as the one exposed ln chapter 3.1.5.2 Hello mdf slnce the module

ls the sâme.

3.2.7,2 Hellolmplementttion

The C code for this example ls sllghtly dlfferent ftom the one ln chapter 3.L.5.3 Hello lmplementation.

Slnce thls example uses a SPE and slnce that wlll requlre a proper code implementatlon for the SPE slde

(see chapter 2.L.4.L Dlfferent Processors, Dlfferent Compllers), thls chapter ls dlvlded lnto two sub-

chapters: PPU Hello lmplementatlon and SPU Hello lmplementatlon.

3.2.1.2.1 PPUHellolmplementation

The lmplementatlon ln the PPU slde computes the followlng steps: process the DX lnput; start a SPE

thread and walt for lts concluslon.

Erample !l-3 C code for the PPU Hello lmplementatlon

1,

2
3
4
5
6
7
8
9

10
11
t2
üt
t4
15
16
L7
18
19
20
2t

*include
#include
finc].ude
Sinc].ude
#incLude
#include
*include
#include

<dx/dx. h>
<stdlib. h>
<stdio. h>
(errno. h>
<1ibspe2. h>
<pthread. h>
<string. h>
<stdint. h>

êatêrn spe_program_handle_t hello_spu;
spe_context_ptr_t spe_ctx;
void *spe_ârÇtrp, *spe_envp;
ctrar str1256) attribute_ ((aligned(L6)));

/ / macro for rounding input value to the next higher multipl-e of
// either 16 or 128 (to fulfill MFC's Dt"{A requirements)
*define spu_mfc_ceill-28 (value) ((value + L27l e -L271
#define spu_mfc_cei116(value) ((value + 15) 6 -15)

void *trrtrnr_hellogtàread_firnot:Lon (void *.tg) {

spe_context_ptr_t ctxi

45

)

unsi.gaed iat entry = SPE_DEFAULT ENTRY;
ctx - * ((spe_context_ptr_t *)arg) ;
if (spe_context_run(ctxrtentry, 0, spe_argrp, spe_envp, NUI.L) < 0)

perror ("Eailed runnÍng context") i
exlt (1);

)
pthread_exit (NULL) ;

// ox Function with New Code
Error m_Eello(Object *in, Object *out)
{

if (!int0l)

sprintf (st.r, "he11o worId") i

else { ,// Process the stuff on the SPE
pthreaír:t thread;
char *message;

if (!DXExtractString(in[0], §message)) {
DXSetError (ERROR BAD PARAITIETER, "value must be a string") ;
retura ERROR;

)

/ / Prepare SPE parameters
strcpy (strrmessage) ;
spe_arç,p= (void*) str;
spê_ênvp= (void*) strlen (str) ;
spê_enw- (void*) spu_mfc_ce1116 ((ulnt32_t) spe_envp) ;

/* Create context *,/
if ((spê_ctx - spe_context_create (0, NUtt)) == NULL) {

perror ("Failed creating context") i
:cêturo ERROR,

)

/* Load program into context */
if (spe_program_Ioad (spe_ctx, &hello_spu))

perror ("Eailed loading program") ;
retuEa ERROR;

)

/* Create thread for each SPE context *,/
if (pthread_create (&thread,

NULL, eppu_hello_pthrearl function, espe_ctx))

perror ("Failed creating thread") ;
retura ERROR;

)

/* E{ait for SPU-thread to complete execution. */
if (pthread_Join (thread, NULL)) {

pemor ("Failed pthread j oin") ;
retura ERROR,

)

if (spe_context_destroy(spe_ctx)) {
perror("Failed spe context destroy") i
return ERROR;

)
)

M

83
u
85

out[0] = (Object) DXNewString(str) ;
return OKi

)

The flrst llbrary ls the DX llbrary and the three llbrarles followlng are lust standârd llbrarles.

The two tlbrarles ln llnc 5 and 6 are used to manage SPE threads and the last two llbrarles lncluded ln

llnes 7 and 8 are the String and lnt llbrarles. String llbrary ls used for a strlng copy command and the lnt

llbrarylsusedtospeclfyshortverslonsforthelntegertype(furexampleaunslgned64-bltlntegercan
be speclfled as ulnt64-t).

Flve varlables are deflned betneen llnes 10 and 13: hello-spu ls the name of the SPU blnary ffle and

exêcutable whlch runs the SPE thread; sps-cü ls a structure whlch contalns lnformâtlon about a SPE

thread; .spe_a4nr contalns the EA of a structure wlth all the lnformdlon needed to be copled to a SPE

lS (ln thls case wllllust be the address of the lnput strlng) and 'epe-envp contalns tts slze; flnally, silr ls

the strlng whlch ls copled to a SPE lS and ls 16-byte allgned.

Every tlme the programmer wants hls/her proBram to do transferc between the Maln Storage and a SPE

Local Storage, there ls one thlng that must be kept ln mlnd: the memory supposed to ba transfened

must be allmed both ln the PPE and ln the sPE sldes and the slze of the DMA transfer must heve at least

16 bytes and be a muhlpte of 16 (see chapter 2.1.4.2 Different Processors. Dífferent Address Spaces).

For examplg ls posslble to transfer 4 lntegerc ln a DMA transfer ff ls assumed that each lnteger occuples

four bytes (4 lnteters t 4 bytes/nteger = 16 bytes), but lt ls not posslble to transfer one, hflo or three

lntegers (and not any number of lntegers not multlpte of four). lf the programmer wanB to transfur an

amount of data not multlple of 16 httes (4 lntegerc ln the last examplel ftom the SPE to the PPE, then

the macro ln llne 18 (spu_mfc_ceil16) can be called to ffnd the next multlple slze of 15 bpes. The mmro

ln llne 17 (spu_mft_cell128) does the same tor tl28 bytes. NOIE: The progtrammer must be sure that

there ls extra allocated memory on the PPU slze to handle wlth lt, dherwlse an exceptlon may come up.

The functlon defrned ln Ilne 20 ls respnslble to run a SPE thread (spe-context-run does the maglcl.

The remalnlng codq startlng tn line 32, ls responslble to handle the lnput and consponds to the maln

functlon. lf no lnput ls glven, then the returnlng string ls "hello world". Othetwlse, the strlng ls extracted

from the lnput uslng DlErtractstrlng (see chapter 3.1.5.3 Hello lmolementationl and then lt ls copled to

str. The reason fur thls copy ls because there ls a need to assure a proper allgnment of the strlng to
perfurm a clean copy from the Maln Storage to the LGâl Storage. Slnce the memory layout for the strlng

polnted W message may not fulfll thls rqulrement, the copy ls then performed (silrcpy) to another

space and thls one (gtr) ls then used for the output.

After processlng the lnput, the protram prepares the structure 6r the SPE thread and then runs lt and

wal6 for lts concluslon. The prcess of staÍtln& runnlng and flnlshlng SPE threads ls as follows (usually):

1. create a SPE context

2. load the SPE blnary flle
3. creãtetheSPEthread

4. call pthrcadJoln to walt for the executlon of the SPE thread

5. clean up ttre context lnfurmatlon uslng spe-conteüt-de§ürov

Flnalln the program puts the strlng ln the output and the executlon, íor thls module, flnlshes. The

fotlowlng sub-chapter shows the SPU hello lmplementaüon.

47

1

2
3
4
5
6
7
8
9

10
7t
ú2
13
t4
15

16
17
18
1!'
20
2l
22
23
24
25
26
27
2E

29
30
31
32
33v
35
35
37
38
39
40
4L
42
43
4
45
tt6
47
tt8

49
50
51

3.2.1.2.2 SPUHellolmplementation

The SPU lmplementatlon ls dMded ln stralghtforward steps: the progÍam starB ln the maln functlon;

uses a DMA transfer to get the data ftom the maln memory; computes lt and then puts the result back.

The lmplementatlon ls below:

Example it-4 C code for the SPU Hello lmplementãdon

*inolude <stdio.h>
fiaclude <stdlib.h>
flinclude <string.h>
flinclude <spu_mfcio.h>

// Ytacro for waiting to completion of DMA group related to input tag:
// l. [rlrite tag mask
// 2. Read status which is blocked until aI1 tag's DI'íA are completed
0define wai-tag (t) mfc-write-tag-mask (1<<t) ; mfc-read-tag-status-a11 O ;

/ / nacxo for rounding input value to the next higher multiple of
// either 16 or 1.28 (to fulfill MFCrs Dt'{A requirements)
*defiae spu_mfc_ceil128 (value) ((value + L27l e -1271
üdefíne spu_mfc_ceill-6(value) ((va1ue + 15) e -15)

// LocaL store buffer: DMA address and size alignment:
/ / - MUST be 168 aligned otherwise a bus error is generated
/ / - may be L28B aligned to get better performance
// tn this case $re use L6B because we dontt care about performance
char str [256] _attri5ute- ((allgned(16))) ;
cbar msg[256] _attribute_ ((allgned(1'6))),

/ / axgp - effective address pointer to the string in main storage
/ / eravp - síze of string in main memory in bytes
iat maLn (uint64_t spuid attriJcute- ((-unused-)) ,

uínt64_t argP , ulnt64_t envP)

{
uint32_t tag_id - mfc_ta9_reserveO ;
void *sizei

/ / resexve a tag from the tag manager
if (tag_1d==MFC_TAG_INVAIID) {

prlntf('SPE: ERROR can't allocate tag ID\n") i
retura -1;

)

/ / get data from main storage to local store
mfc_get((void *) (str) t àxÇ[Pt (uint32_t)eDVP,

// waíL for all the DMA corunands to complete.
waltag (tag_id) ;

tag_id, 0, 0),

wait only this tag_id.

// append 'hello" to the string
sprintf(msg, "8s 8s","he1lo", str) ;

/ / put data to maj-n storage from local store
size : (void *)strlen(msg);
size = (void *) spu_mfc_ce1116((uint32_t) slze) ;
nfcaut((void *) (msg)r âEÇtrpe (uint32_t)slze, tag-ld, 0, 0);

// wai-t for all the DMA couunands to complete. Vüait on this tag-id-

48

52
53
il
55
56
57

waitag (tag_id) ;

/ / release the tag from the tag manager
mfc_tag_relêase (tag_id) ;
retura (0);

There are two maln arrays whlch are used for thê DMA transftrc: str and msg.

The program starts to get the lnformatlon from the maln storage uslng the arguments glven (mft-get

command), copylng the lnput strlng from the maln storage to str. Then the same strlng ls concatenated

to the word "hello" and the rsult ls sayed ln nr& and tts contents are copled back to the maln storage,

more speclftcally to the same addrss glven by the argument ln the beglnnlng of the appllcatlon.

3.2.73 Compiltng andRunníng Hello

The procedure to complle the PPU program was already lntroduced ln chapter 3.1.5.4 Comoiline and

Runnlne the Hello Examole. However, a few changes are needed ln order to lnclude the SPU program ln

the PPU program.

Assumlng the SPU Hello lmplementatlon ls stored ln a ffle hello-opu.c, then the compllatlon process ls

as follows:

spugrc-W -Wdll-Wlnline -Wnomoln-|. -l/usrkpufinclude -l fiisrflocol/drfinclude -O3 + hello-spu.c
spu{cc -l /usr/lnclude o hello-spu hello-spu.o -Wl,-N
ppu-embedspu -mi2 hello_spu hello_spu hello_spu*mbed.o
p pu-o r Aa I I b_he I I o-sp u. o h e I I o_s p u < m be d. o

The blnary f,le hello_spu ls the one whlch ls called ln the PPU pÍogram and the Ilbrary llb_hello_spu.a ls

lncluded ln the PPU compllatlon process for hello.c (assumlng that ls the name fur the PPU Hello

lmplementaüon):

/usrfiuol/dx/bln/mdf2c hello.mdf > hello-mdf .c
ppu32gcc g -O3 -D_GNU_SOURCE -l /usr/locol/dúnclude + hello_mdf.c hello,c
ppu32g* hello_mdf.o hello.o -L /usrfloal/dx/llb_llnux -lDX -R

spu/llb_hello_spu.o -IGLU -lpthreod -lspeZ -uportiynomlc a dxexec

Chapterc 3.1.5.4 Comoilinq and Runnine the Hetlo Examole and 3.1.5.5 Msual Prosram Examole Usine

!g!!g already descrlbed how to run and use thls exsmple.

3.2.7.4 Hello Implementadon Notes

Thls example ls a reference about how to start a SPE-thread and how to work thG memory allgnment.

These two lsues are the baslc to know when programmlng for the Cell/B.E. The programmer must plan

whlch data ls shared, prepare the structure, create the SPE thread, copy the data to the SPE lS, prcss
It and then wrlte the rsults back to the maln storage.

49

)

The next module (Add) lntroduces (among others) the parallellzatlon and SIMD (Slngle lnstructlon

Multlpte Data) lnstructlons. Fully understandlng all those concepts glves the programmer the baslc

knowledge and sklllfor CelUB.E. and parallel programmlng.

32.2 Add

The Add module prqrentd ln thls sub-chapter lntroduces the use of parallellzation, SIMD lnstructlons

and also the double bufferlng technlque.

Its lnput data ls: a ffeld wlth a 1-D vector of lntegers; an lnteger to sum to each posltlon ln the vector

and another Integer where user can speclfy how many SPEs shall be used. Thls example was

theoretlcally lntroduced ln chapter 2.1.3 lmoroving Performance.

All the data ln the vector ls summed wlth the lnteger lnslde the SPEs and the results are transfened back

to the maln storage and then the appllcatlon moves on.

Thls module was lmplemented wtth the help of the DX Module Bullder (see chapter 2.3.5 Module

Builder). lnputs and outputs were speclfled there and then the mdf and C code were generated from tts

speclflcatlons.

3.2.2.7 DoubleBufrering

The goal of the double bufferlng technlgue ls to avoid stalls (a stall happens when the computatlon

stops because the appllcstlon ls waltlng for data). Baslcally, thls technlque conslsts of gettlng the next

buffer of data whlle processlng the current one. When the current buffer is processed then the prrgram

staÍts processlng the next buffer and applles for another set of data at the same tlme, and so on, untll

the end.

Double bufferlng ls a prlnate class of multl bufferlng, whlch extends thls ldea by uslng muhlple buffers ln

a clrcular queue lnstead of only two buffers. ln most cases, the usage of two buffers ln the double

bufferlng case ls enough to guarantee overlapping between the computatlon and data transfer. ln thls

examplg slnce lt ls for demonstraüng purposes lnstead of performance lmprovemen! only double

bufferlng ls used.

Flgure 3-5 shows a double bufferlng scheme:

Flgure !l-5 Double bufferlng sdreme

hffillliAffi
tunEAtol-Sb/mrBg

I'ffibDMAffi
frunEAbLShfrrBl

HhnÊrDüÀtan#r
bhlffiEgbcmglcilc

CqÍEÊmdahh
hrffiq

CsrrtrIEorrurnh
txrtuE1

tliffituDUAtEGÉr
tohffiftburqd6

úl@ÍlllAüuÉ
ümEAbUShlÉrBO

50

I
2
3
4
5
6
7
8
9

10
11
t2

3.2.2.2 Addmdf

The mdf for the Add module was generated using DX Bullder (see chapter 2.3.5 Module Builderl. Its

descrlptlon ls bellow:

Enmple !l-5 Add mdf

(nonel value ln the flrst lnput means lt ls requlred.

lvblblefl ln the last input was added after the mdf was generated. lt means that when the module ls

opened, thls lnput ls lnvlslble and can only be seen If the module ls expanded. The deÍauh rralue for tt ls

1ô whlch actually ls the maxlmum number of SPEs ln the Cell/B.E. f there are less SPEs avallable than

delre{ then the program only uses the avallable ones.

3.2.2.3 Addlmplementaüon

ln splte of the C code for thls module belng generated, lts lmplementaüon has some partlcularltles.

Some are related to the module ltself and some others are related to CelfB.E. programmlng so thls

chapter ls dlüded lnto four sectlons: shared structure; auxlllary functlons; ppu program and spu

pn gram.

3.2.2.3.7 Add Shared Strucurre

Slnce the PPE and the dlfferent SPEs share lnfurmatlon contalnd ln the maln storage (whlch means ln

the Effectlve Address Space), thls lnformatlon must be well structuÍed and deflned ln order to assure

pn per DMA transfers from the maln storage to the SPE local storage. The proposed structure ls the

followlng:

Emmple !16 Add shared structurê

MODULE

CÂIEGORY

DESCmmON
INPUT

INPUT
INPUT

OUIPT'T

Add
Cell

Adds a single number to each data value of a set

data; fleld; (none); lnput data
v'alue; IntegeD 0; value to add
M0(-SPU-T}IREADS [vlslble:Ol; lnteger; 16; maxlmum numberof SPEsto use

resuk; fleld; new data

*ifndef ADD H
*define ADD:H:
tlpadef êtruct {

iat spu_numi
int data_knt;
int *data_datai
iot valuei
int result_knt;
int *result_data;
int resulti
uneigmd char padt100l,

) add workeri
/* pad to a full cache Iine */

5l

13 *eadif /* ADD H */

Thls structure contalns all the needed lnformatlon for the SPE when Ít starts runnlng: spu-num

ldentlfles whlch SPE ls processlng the data; data-knt refers to how much data ls golng to be processed;

d8ta_dãta ls a polnter contalnlng the EA of the flrst element of data to process; raalue ls the value to be

summed to allthe data; resutt-h (not needed, bm since the DX Bullder generates thls lnfurmatlon the

declslon was to share lt) has the same value as data-h and contalns the number of output data and

result_daE polnts to the EA of the flrst output data. For allgnment purposes, thls structure has a slze of
1ll8 bytes and to guarantee that an unsigned char pad ls added to the structure wlth the remalnlng slze

untll ü18 bytes.

3.2.2.3.2 ÂuxiliaryFunctions

Some functlons are needed across all the practlcal work, so a header flle was created with these

functlons. There ls one fur the PPU slde and other for the SPU slde.

3.2.2.3.2.1. AuxiliaryPPU Functions

Emmple !l-7 Audllary frmctlons for the PPU

Flrst, the structure param_contêrt ls the structure contalnlng all the context lnformatlon needed for the

PPU to start a SPU thread.

ppu-pürread-frmcdon is responslble to run the SPU program. lts argument ls the address of a

param-corut yarlable (h ls slmllar wlth the ppu-hellolthread-funcüon ln chapter 3.2.1.2.L PPU

Hello lmolementationl.

The last two functlons are used to defne how much data ls golng to be processed ln each SPU.

f,nd_ncrt_muhlple retums the next n multlple of s (lt ls deslred that the shard amounts of data are

multlple of 4) and round2 ls a very slmple macro whlch aonverts a float lnto a rounded lnteger.

1
2
2

4
5
6
7
I
9

10
11
12
13

t4
15

Sif,adef, AUX H
*defiue -aUX-tt-

Sinclude <libspe2.h>
*include <pthread.h>
f-1padaf, etnrct {

spe_context_ptr_t spe_ctx i
pthread_t thread;
void *spe_arçJpi

) param_contexti
void *trr;nr-5rthread_fuaotLon (void *".9) ;
iut f,iad_aertrulüiple(int n, int s);
int rouadil(float f);

$endif /* AIIX H * /

52

1
2

3
4
5
5
7
8
9

10
tt
t2
13
t4
15
16
t7
18
1!'

3.2.2.3.2.2 AuxiliarySPUFunctions

Erample 3{ Aurdllary funcdons íor t;he SPU

Àl macros were used ln the SPU Hello lmplementatlon (see chapter 3.2.1.2.2 SPU Hello

lmplementationl.

ueltBg macro ls used to know when determlned DMÂ transfer ls completed. lf a transfer ls completed

then the program g06 on, othendse the program stays blocked untll the transfer ls done.

spu-rnlb-cell rounds the lnput vâlue to the next hlgher multlple of 16 or 1i18.

EIEIí-PER-BIOCI(definc the slze of the buffers used ln DMA transíers.

3.2.2.3.3 PPUAddlmplementaüon

Slnce the DX Bullder was used to lmplêment thls rnodule, only the manlpulatlon of the data ls

lntroduced.

The flrct thlng to know ls: when the DX Bullder generetes the C code for the module, ft creates a user

functlon where the programmer decldes how to handle the data. Ihe fullowlng user functlon wa
created ftom the speclf,catlon glven ln the module (whlch generated the mdf too, see chapter 3.2.2.2

Add mdfl:

Erample !I.9 Genereted C code for the PPU Add lmplemenlatlon

int
Àdd_rorLer(

int data_knt, int *data_daLa,
int value_knt, int *value_data,
int IBX_SPU_THREADS_knt, iat *I{AX_SPU_THREADS_data,

int result_knt, iat *result_data)
{

1
2
3
4
5
6
7
I

Sifndef _A[X_SPU_H_
Sdefine _AUX_SPU_H_

*include <spu_mfcio.h>

/ / Macxo for waj-ting to completion of DMA group related to input tag:
// l. $lrite tag mask
// 2. Read status which is blocked until a1I tagrs DMA are complet,ed
Sdefine waitag (t) mfc_write_tag_mask (1<<t) ; mfc-read-tag-status-a11 () ;

/ / macxo for rounding input value to the next higher multiple of
// eiLher 76 or 128 (to fulfill ME.C's DMA requirements)
Sdef,ine spu_mfc_ce11128(value) ((value + t27l e -1271
*dafiae spu_mfc_ce1116(value) ((va1ue + l-5) e -15)

/ / Size of the buffers for DI'[A transfers
$define ELEM PER BTOCK 4096

flendif /* AUx sPU H * /

53

9
10
7t
L2

13
t4
15
t6
!7
18
t9
20
2t
22
23
24
25
26

* Conunents describing the variables"., "

* Userts code goes here

* successful completion

return 1i

* unsuccessful completion

error:
retura 0i

)

The functlon proúdes a polnter fur each lnput and output to lts data and an lnteger wlth the number of

Items for each polnter. The name before -tnt and -data ls the name glven by the user to the varlable ln

the DX Bullder. The data provlded by DX through the polnters ls word allgned, whlch conforms to the

DMA transfers requlrements.

Once the code for the module ls generated, the prognmmer can start wíltlng tts code after the

comment whlch seys "User's code ges herC.

So, to start processlng and summlng allthe valus glven ln the lnput data and then store the results In

the output data, the followlng step§ are taken:

o determlne how many SPEs are avallable

o determlne how much data wlll be procesed ln each SPE

o prepare the arguments forthe SPEs

. start the SPE threads and walt for thelr completlon

To determlne how many SPEs are ayallable, the functlon spe-cpu-lnfolet ls called. lf there are more

SPEs arnllable than deslred, only the requested number ls used.

After knowlng how many SPEs are golng to be used, lt ls tlme to deftne how much data ls golng to be

processed ln each SPE. lf there was no requlsltes for the DMA transferc (see úapter 2.1.4.2 Different

Processors. Different Address Spaces), then the solutlon would be as slmple as dMdlng the amount of

data to process by the number of SPEs. But, slnce that ls not enough, after dlvldlng and gettlng the

result, the next muhlple of four of that r6ult ls found and then: the flrst N-l SPES handle the multlple of
four amount of data and the last SPE takes the remalnlng data. Why multlple of Íour? Because a DMA

transfer must handle at least 16 b,ytes of data lt ls only posslble to transfer the mlnlmal amount of 4

lntegers (32-bft slze) per each DMA transfer.

Preparlng th€ arBuments for the SPEs ls as slmple as allmatlng one add-worker structure (see chapter

3.2.2.3.1 Add Shared Structurel for each SPE and then gMng the proper rnlues: dab-data polnts to the

ÍneÍnoÍy posftlon where the SPE starts handllng the data along dea-lnt pusltlons and the reults are

stored staÍtlng ln the address provlded by rosuh-data.

Flnally, the SPE threads are started. Thelr argument ls a polnter to the maln storage where the

add_sorker structure ls stored wÍth all the needed lnfurmatlon. The PPU then watts for the threads to
flnlsh and retums succesúrl or unsuccessful completlon.

54

1.

2
3
4
5
6
7
I
9

10
11
t2
13
L4
15
16
t7
18
1!'
20
2t
22
23
24
25
26
27
28
29
30
31
32
33v
35
36
37
:ts
39
tto
4t
42
43
4
45
6
47
/t8

49
50
51
52
53v
55

I

:

{
,l

I
I

í
,{

,{

{
I

d

I
j)

'l'l

The code for thls task ls below. Slnce the SPU threads handllnt was already lntroduced ln the Hello

World Example (see chapter 3.2.1.2 Hello lmolementation), only the flrst three §teps are shown:

Eremple $10 C cde for tte PPU Add lmplementadon

/** Userts code goes here

int NIAX SPU THREADS, value;

/ / llow many SPEs
It{N(SPU THREADS = (MAI(_SPU_THREADS_knt == 0) ?

16 : MA)(SPU THREADS data[O];

/ / vaLue to sum with the 'data'
value = (valuê_knt =- 0) ? 0 : value data[0];

volatile add-worker stuff IMAK-SPU-THREADS]
-attribute((altgned(L281));

êxt€ra spe_program_handle-t add-spu;
paran_context param I!,IN(-SPU-THREADS] ;

int i, spu_threads, nltems;

/* Determine the number of SPE threads to create */
spu_threads = spe-cpu-info-get (SPE-COUNT-USABLE-SPES, -1) ;
if (spu_threads > MÀI(_SPU-THREADS)

spu_threads = IvAK_SPU_THREADS,

,// nltems to process in each SPE. Must be a mul-tiple of 4

nltems - round2 ((float)data_knt / (float) spu_threads) ;
nltêms = find next multiple(nItemsr4);

for (i
{

= 0; i < spu threads, i++)

/ / Prepare SPE parameters
stuff [i] .spu_nurn - i;
stuff tll .datà_d392- (void *) &data-data [i*nltems] ;
stuff Ii] . value=valuei
stuff tll .result-dags= (void *) Eresult-data Ii*nltens] ;
if (i == spu_threads - 1)

{
stuf f I i] . data-knt - data-knt-nltems* (spu-threads-l) ;
stuff [i] .result knt = result-knt-nltems* (spu-threads-1) ;

)
else
{

stuff I i I . data_knt=nltems i
sLuff [1] .result knt=nltems;

)

stuff [1] .result=O; //Assuming'Eailure. . .'

paramlil .spe_argp=(void *) estuff [1];

/* Create context, Ioad program, create thread *,/
)

/* waíl- for the threads tion and destroy context */

55

3.2.2.3.4 SPUAddlmplementation

The program ln the SPE slde lmplements the followlng steps:

1" get the aÍgument lnformatlon

2. getthelirstbufferof data

3. lf there ls more buffers to get, apply for the next one (lf not, step 7)

4. compute the data ln the current buffer

5. put the rsult data on the maln storage

6. gotothe next bufferand repeatthethlrd step

7. compute the current buffer and put the result on the maln storage

8. termlnde the appllcatlon

The lmptementatlon for thls program ls not much dlfferent from a regular C program. The key

dlfferences are the DMA transfers (wlth the double bufferlng technlque, see chapter 3.2.2.1 Doubte

Bufferinsl and the SIMD lnstrucüons.

The commands rrftjet and nrftJout are used to get and put data repectively from/n the maln

storage and the data ls stored ln slMD vectors ln order to sum more than one plece of data at a tlme by

uslng the lntrlnslc spu_add (see chapterc 2.1.3.2.1 Scalar VS Vector SIMD: A code examole and 2.1.4.1.1

C-lansuase lntrinsicsl.

Bellow ls the SPU Add lmplementatlon:

Erample !I11C cde Íorthe SPU Add lmplementadon

t
2
3
4
5
6
7
8
9

10
11
t2
13

t4
É
16
t7
18
1!)
20
2t
22
23
24
E
26
27
28
29
30
31

*iaclude
*include
*iaclude
*iaolude
*inalude
*include
*iaclude
*ioclude

'. . /add.h"
'aux_spu. h'
<stdio. h>
<stdlib. h>
<string. h>
<spu_mfcio. h>
<spu_intrinsics . h>
<math.h>

volatile add_worker stuff attribute_ ((allgned(L28ll),
volatile vec_int4 l-s_data_dataÍ21 IELEM_PER_BIOCK / 4] _attriSute_((aligned(L28lll,
volatile vec_int4 ls_result_data[2] [ELEM_PER_BL@K / 4] attriSute_
((allgned(L28llli

/ / axgp - effective address pointer to the *SPE stuff'
iat urin (uint64_t spuid _attribute ((_unused_)) ,

ulnt64_t ãr!trp , ulnt64_t envp _attribute_ ((_unused_))

{
uint32_t tag_id[2j;

volatile int *data_data, *result_data, *nxt_data, *nxt_resulti
vec_int4 valuei
int data_knt, Ieft, buf, nxt_left, nxt_buf, i, spu*nuru
void *sizei

tag_ld[0] = mfc_tag_reserve o
tag_id[1] = mfc_tag_reserve o

/ / resexve a tag from the tag manager
if (tag_id[0] =-14pa_tAG_INVAIID) {

56

32
33
u
35
36
37
38
39
N
47
42
43
4
45
46
47
48
49
50
51
52
53v
55
56
57
58
s9
60
61
62
63
u
65
66
67
68
69
70
7t
72
73
74
75
76
T'
78
79'
80
81
82
83
84
85
85
87
88
8Í'
90
91
92

prlntf("SPE: ERROR cantt allocate tag fD\n");
retura -1i

)

/ / xeserve a tag from the tag manager
if (tag_id[L]=-MFc TAc_lNvAlID) {

prlntf('SPE: ERROR can't allocate tag ID\n");
return -Li

)

/ / get data from main storage to local store
mfc_get ((void *) & (stuff), arg'p, eizaof (add_worker), tag_1d [0], 0, 0) ;

// waít for the conunand to complete. wait on Ehis tag id.
waitag(tag_id[0]);

/ / ínLtíalize the parameters
sPu_num = stuff . spu_numi
data_data = stuff .data_data;
result_data = stuff . result_data;
data_knt : stuff.data_knt;
value = (vec_int4) { stuff . value, stuff . va}ue, stuff . value, stuff . value } ;

left - (data_knt < ELEM_PER_BI@K) ? data_knt : ELEM_pER_BLOCK,

/ / adapt the size in order to fulfil-I the alignment requirements
size = (void *) (Ieft*sizeof(int));
size : (void *) (spu mfc cei116((ulnt32 t)size));

// Pxefetch first buffer of input data
buf = 0;
nfc_getb((void *) Ls_data_data, (uint32_t) (data_data),

(uint32_t)sLze, tag_id[0], 0, 0);

whila (left. < data_knt) {
data knt -= left;

nxt_data -
nxt_result
nxt_Ieft =

data_data + left;
- result_data + left;
(data_knt < ELEM_PER_BLOCK) ?

dala Knt : ETEM PER BLOCK,

/ / adapt the size in order to fuIfiII the alignment requirements
size = (void *) (nxt_1eft*sizeof (int)) ;
slze - (void *) (spu mfc ce1L16((ulnt32 t)slze));

/ / Prefelch next buffer so the data is avail-able for computation
// on next loop iteration.
// tne first DMA is barriered so that we donrt cET data before the
// pxevíous iteratj-on's data is PUT.
nxt_buf = buf^l-,.
nfc_getb((void *) (e1s_data_data[nxt_buf] [0]),

(ulnt32_t) (nxt_data) , (ulnt32_t) size,tag_ldlnxt buf LO,0l t

/ / waít for previously prefetched data
waitag(tag idlbufl);

for (1 = 0i i < Ieft / 4i i++1
Is result_data[buf] til = spu_add(ls_data_data[buf] [i], value);

// Put the buffer's position data back into system address space

57

93
94
95
96
97
98
9Í'

100
101
!o2
103
tu
105
106
to7
108
1(B
110
ttt
tLz
113
tt4
115
115
tt7
118
11!'
120
121
122
123
124
tzs
126
x27
128
1:29

130
131

mfc_putb((void *) (&1s_result_datalbufl [0]),
(uint32_t) (result_data) , Ieft*eizeof (int) , tag_id [buf] , 0, 0) ;

data data = nxt data;
resuft_data - nft_result;

buf = nxt_buf;
left = nxt left;

)

/ / waít for previously prefetched data
waitag(tag_id[buf]);

// process buffer
for (i : 0; i < (int)ce1l((float)LefL/ (float)4); i++)

ls_result_data[buf] [i] = spu_add(1s_data_datalbufl [i], value) ;

/ / adapt the size in order to fullfiL the alignment reguirements
size = (void *) (Ieft*sizeof(int));
size = (void *) (spu_mfc_cei116 ((uint32_t) size)) ;

// put the buffer's position data back into system address space
/ / Put barrier to ensure aII data i written to memory before writing
.// status
mfc putb((void *) (els_result_datalbufl [0]), (uint32_t) (result_data),

(uint32_t) sLze,tag_id lbuf], 0, 0) ;
waitag (tag_idlbufl) ;

stuff.result = 1i

mfc_put ((void *) §stuff , ar9p, eizeof (add_worker), tag_id [buf], 0, 0) ;

waltag (tag_idlbufl) ;

mfc_tag_release (tag_1d t 0 I)
mfc_tag_release (tag_Id [1])

retura (0);
)

The first step goes from llne 43 untll 54. Ttre progÍam gets the arguments and lnltlallzes the varlables.

Second step ls performed untll llne 65 and here the appllcatlon gets the flm buffer of data. Thlrd step
starts then and tt ls repeded as long as there are more buffers to apply. Steps 3, d 5 and 6 run lnslde

the cycle and once the program gets out of it, the last two steps are then performed.

Befure all the mft commands lt ls notlceabte that the she of the transfur ls always rounded. Thls process

ls only needed ln the last procesed buffer ln the last SPE slnce thls one may not have the requlred slze

for a DMA transfer, but ln order to keep the program slmple that detall was left aslde.

3.2.2.4 Compiltng and Pi,tnnlng Add

To complle the add module, the same procedure ls fullowed as ln the Hetlo Example (see chapter 3.2.1.3

Comoiline and Runnine Hello). An example of a vlzual progÍam uslng thls module ls shown ln Flgure 3.6:

58

f visual Progrem Editor!

tl.ndo*s

The Add module has two (visible) inputs and one output.

The first input is given by the Grnstruct module and its expansion is showed in Figure 3-7

Figure 3-7 Construct module expanded

Since the data shape specified for the first input is a 1-D vector, the origin must be a 1-D point ("0" in

this case).

59

.{, ftl+ Êlccutc

Construct

Add

Print

EX

foolc

Figure 3-6 Visual program the Add module

Construct (on elball xI

§ <r*
§ çqntc

§ d.ü.

Cççtrtrctl

ualrr

ftddo.rtfltt

{ uírctot

súctoa.

Ir.atctrtnf

The deltas can be omitted sinc: they do not have influence in this module. ln this case it means that the

next position is one point ahea I of the current one.

The lengh of the data is 16MB (stated in counts) and its values go from 0 until L6777275 (stated in

data).

The second input of the Add m rdule is just an integer and is showed in Figure 3-8:

Figure 3-8 lnteger module expanded

Finally, the output of the Ádd module is connected to a print module which prints the contents of the

field in the message window:

60

w

{i-u >
Add value:

Panel (on elbal) x

I

f.ile Edit. Ex,rcutp f,onnands [ptions]leIp

Exccution

Hnnount of
ffnnount of
Ênnount of

rlata to pr{rcesa = 1Ê777Ê16

'lata to Frocaas in the fir*t 15
,{ata to proce$§ in the last SPE

SPEs = L048576
= 104857Ê

:first 25 and las:. E5 data values onlu:
,5
6
t7
;8
:9
,10
.1t
,L?

:rs
:1{
:15
:16
:t7
:19
:15
:20
i?1,
z?
:,23

,24
25
26
:27
:28
2S

',LGT?7Lgl6
l16777197

cutpontrnt§+

Figure 3-9 Message window of the Add visual program

6l

4

Window (on:lbat) EX

Figure 3-9 also shows that the adding operation is performing well (in terms of results consistency) since

the Construct module stated data between 0 and t6777215 and the data obtained after computing the

Add module is between 5 and 76777220.

3.2.2.5 Add Implementation Notes

The Add module was the first module implemented using parallelization and SIMD instructions. This

brought some issues during the implementation.

The first one is related to the control structure, which is shared between the PPU and the SPU. lf the size

of this structure is not a power of two or properly aligned, the first attempt to start the parallelization

fails.

The second one is related to the use of SIMD instructions. The data is stored in 128 bit vectors where

each one contains four 32-bit integers. Adjusting the program to support any size and distributing the

computation in an equivalent form for each SPE is cumbersome. The implemented solution was to make

sure that the computed size is a multiple of four. lf not, then the program finds the next higher size

which makes this true. This did not prove to be a problem sínce DX allocates more memory than

requested, so no bugs were found because of using data addresses bigger than the size requested in the

allocation process.

The last issue is related to the compilation process. lf the user decides to use a 64 bit compiler instead of

the 32 bit, some problems may occur since the size of the pointers is different in each version which

may provoke conflicts in the DMA transfers (because of the use of pointers by the shared structure).

3.2.2.6 Add Petformance Study

The approach taken to measure the performance is composed by one SPU program and two "different"

PPU programs: the regular PPU program for the DX module and its console version.

The console program, responsíble to perform the same computation than the DX module, has a very

simple structure: allocate memory and compute. Basically, 95% of its implementation is the same that is

inside the user code for the Add module (see chapter 3.2.2.3 Add lmolementation) and the main

difference resides in the fact that there is no input checking. Compiler flags are also the same for both

sides.

Memory is allocated using posix_memalign (from stdlib.h). This function provides a way to allocate

aligned memory, which is very useful for the DMA transfers between the PPE and the SPEs.

tettimeofday (from sys/time.h) is the function used to measure the performance and is called in the

beginning and end of the computation of both console and DX module programs. The goal is to

demonstrate that the performance, from the user's point of view, is not heavily compromised when

there is a switch from a console environment to a visual programming environment (DX). A deeper study

may count the clock cycles for the computation but that does not give the desired perspective since

time is more intuitive than clock cycles in order to understand the real difference.

62

Figure 3-10 and Figure 3-11 show the performance results for the Add module in both QS22 Blade and

Playstation3 (PS3):

QS22 Add Module Performonce --6>qs22 console
--4- ç22 dx

2.O

5

't ,0

5

OON+
Size (MB)

Figure 3-10 qS22 Add Module Performance

PS5 Add Module Performonce -€- ç22 console
-4-q222 dx

ooooNra+
Size (MB)

Figure 3-11 PS3 Add Module Performance

The X-axis corresponds to the input size (in Megabytes) for the operation, which follows the pattern in

Figure 3-7. lt is composed by a single array of integers which goes from 0 until the size of the input.

a

0)
E
'É

1

0

o(o

40

30

0,

o20
E
t-

10

0

63

The Y-axis corresponds to the time required (ín seconds) to do the computation depending on the size of
its input.

The plot in Figure 3-10 (QS22 case) shows a small difference for the computation tíme between the

console and DX. ln spite of the growing difference, it can be reduced. The code used to implement this

module was generated with the DX Module Builder and this code is far away from being optimized.

Besides, this example is very simple and does not involve too much complex computatÍon. The more

complex the computation, the less impact will have the input checking, performed by DX, in the
performance measurement.

Figure 3-11 does not show what is expected due to some particularities related with the PlayStation3:

small RAM memory (256M8) and the use of a native hypervisor.

The lack of memory explains why the computation time grows exponentially faster in DX than in the

console. Since DX uses the x-server and lots of memory, the program easily runs out of memory when

some computation is performed. Since a console environment uses less memory, then the computation

can finish faster for bigger inputs.

The native hypervisor is also responsible for the dow performance since it controls all the access to the

hardware. This means that it occupies a layer between the hardware and the running operating system

kernel. Since the Cell/B.E. SDK is optimized for Fedora and once that Fedora does not have direct access

to the hardware, this compromises all performance tests which can be made wíth the PS3.

This means that the PS3 can be used for demonstration purposes but the QS22 Blade is a better choice if
more computing power is desired. lt is possible to improve performance in the PS3 if the DX server
(using the X-windows) runs in a different system and then, by defining clusters, use one (or more) PS3

with a clean system to perform the computation. lt is possible do define in DX which modules run in

which system but the main server must be running the user interface and the remaining clients can be

running only in script mode.

ln order to keep performance tests simple, the remaining ones for the other modules are evaluated only

in a QS22 Blade.

3.2.3 Addz

The Add2 module is not much different from the Add module (see chapter 3.2.2 Add). lnstead of
summing all the positions of a 1-D array with an integer, it sums two 1-D arrays with the same size and

position by position. For example, if A and B are the input arrays, R is the output array and I is an

integer which goes from the beginning until the end of the array, then R[i] = t111 * t,',.

3.2.3.1 Add? mdf

The only difference between the Add2 mdf and the Add mdf (see chapter 3.2.2.2 Add mdf) is the second

input, which is a field instead of an integer:

Example 3-12 Add2 mdf

MODULE Add2

64

CATEGORY

DESCRIPflON
!NPUT
It{PUT

!NPUT

OUTPUT

Cell

Adds two data sets
datal; field; (none); first data set
data2; field; (none); second data set
MAX_SPU_THREADS [visible:0]; integer; 16; maximum number of SPEs to use
result; field; summed data sets

3.2.3.2 Add2Implementqtion

The main differences in the Add2 module implementatíon compared with the Add module
implementation (see chapter 3.2.2.3 Add lmolementation) are:

The shared structure has the size of the second ínput and a pointer for it, instead of a single

integer.

Because the shared structure is a little different, the PPU program will have to handle it when
initializing the structure.

The SPU program will process 2 buffers at a time instead of one (double buffering on two sets

of data).

Apart from these three differences, the implementation is exactly the same as the Add module
implementation. lt uses the same auxiliary functions and the PPU code was also generated using the DX

Module Builder (see chapter 2.3.5 Module Builder).

3.2.3.3 Compiling and Running AddZ

Compiling this module is not any different from the other presented modules. Below is a visual program

in DX using the Add2 module:

Figure 3-12 Visual program using the Add2 module

a

a

a

65

(on x

{rrfEff! EdIt E!EUt Ii.ú... Sptim

Construct

rd Éqct

T@L
f,t

Íhe Construct and Print modules have the same input as the visual program example using the Ádd

module inFigure 3-6. Figure 3-13 shows the program output:

f.llc Edlt Elocutc §onlrands §ptlonc]lelp

Enacution

f,nrount of dota to procãs§ = 16777Ê16
ftmount of data to procae* in thç first 15 SPEe = 10118576
flntount of data üo procase in the last $PE = 10t1857S

'Lret 25 and Iast Ê5 data valuos onlg:

l.rlld. 4 conponcnts.

Figure 3-13 Message window of the Add2 visual progÍam

66

The results look consistent since the output values go two by two from 0 to 33554430 which is the

expected result since the summed arrays go from 0 to 167772L5.

3.2.3,4 Add2 Implementqtion Notes

This example does not bring much new stuff. The shared structure was modified and the SPU processes

two buffers at a time (and because of that is used one more tag for DMA transfers).

The main reason behind the implementation of this module is not the challenge or its utility, but to

conduct a performance study which is introduced in the next sub-chapter.

3.2.3.5 AddZ Performance Study

Figure 3-14 shows the results of running the Add2 module in a QS22 blade:

QS22 Add2 Module Performonce --e- +22 console
--4- ç22 dx

2

3

1

a

CJ

E.F

o
N
Size

oo+(o
(rú B)

Figure 3-14 QS22 Add2 Module Performance

The input sizes ín the plot refer to each argument for the Add2 module. For example, for a 16MB input it

means 16MB size for each input.

67

Basically the plot shows the same as in the Add module example. There is some loss of performance but

not enough to argue that visual programming is not worth it.

The example introduced in the next sub-chapter not only is more computing intensive, but also uses a

optimized memory structure (created by the DX developers), so it is expected that the difference

between console and DX is much smaller.

3.2.4 Fast Fourier Transform in úe West (FFTW)

FFT5 (Fast Fourier Transforms) are used in many applications that process raw data looking for a signal.

There are many FFT algorithms ranging from relatively simple powers-of-two algorithms to powerful,

but CPU intensive, algorithms capable of working on arbitrary inputs. FFT alSorithms are well suited to

the Cell/g.E. processor because they are floating point íntensive and exhibit regular data access

patterns.

The next module consists of porting a real CelUB.E. application to a DX module. The FFTW library (Frilo

and Johnson 2008) is used in the implementation process. lt supports FFTs of any size and takes

advantage of the Cell/8.E. capabilities.

Since DX has already a module to compute FFTS then its code is reused to implement the FFTW module,

instead of implementing it from the scratch.

3.2.4.7 lnstalling the libFFTW

tnstalling the libFFTW with Cell/B.E. support is very straightforward. Version used is 3.2 and it can be

installed by typing the following commands in the shell console:

./configure -enable-cell *enable'single -enable-altivec
make

make install

The reason for installing only single-precision is to keep the same configuration both in the Cell QS22

Blade and in the PS3. QS22 supports double-precision but the PS3 does not. lf different configurations

were used, this could complicate the demonstration issues performed with the PS3.

Also, if a comparison between CelUB.E. and other architecture is desired, then making the single-

precision a standard for the tests is a good choice since most of the architectures support it.

3.2.4.2 FFTW mdf

The mdf for the FFTW module is the same as the DX mdf for the FFT module:

Example 3-13 FFIW mdf

MODUTE FFTW

CATEGORY Cell

a

68

DESCRIPTION

INPUT
INPUT

"backward"
INPUT

OUTPUT

Computes the Fast Fourier Transform using the LIB FFTW

field; field; (none); input data
direction; string; "forward"; direction of the transform: "forward", "inverse" or

center; flag; 0; center the result of the transform
result; field; computed field

. inf o-)counts [0] ,'

. j-nfo->counts [1] ;

.info->counts [2] ,'

: data
= data
= data

1
2

3
4
5
6
7
8
9

10

11

t2
13

14
15
16
L7

18
19
20
2L
22

23
24
25
26
27
28
29
30
31
32
33
34

Besides computing a forward FFT, the FFTW module can also compute an inverse FFT.

The center flag is used mainly for visualization purposes.

3.2.4.3 FFTW Implementation

Browsing and understanding the DX code for the FFT module can be a cumbersome task. Anyhow, after

all the code which handles the input, there is one function called Transfosnlggregate which is

responsible for the FFTs computational part. FFTW lmplementation replaces the code in this function

with the libFFTW functions and puts the results in the output buffer.

The code bellow shows the implementation for a regular FFT for a 1-D input field:

Example 3-14 C code for the FFTW lmplementation

static Error
TrancforoAggregate (Fie1dInfo *f, XFArgs *xfa)
i

XFData data;
int dims;
int i,), k, D, counts[3];
Error ret = ERROR;

data.args = *xfai
data.info : f;
data.procs = DXProcessors (0);

dims = f->ndims;

/* New code starts here */
,/* DXGetArrayData returns a pointer to the fiel-d's data */
float *out data = 1fIoat, *) DXGetArrayData(data.info->data);

/* FFTW uses its own structures to compute the data *,/
fftw_complex *ini
/* fftw_p1an specifies which kind of FFT is performed */
fftw3lan p;

counts [0]
counts [1]
counts [2]

if (dims == 3)
{

if (counts[2] > L) {

/* Compute the 3D field */
)

else if (counts[1] > 1) {

69

/* Compute the 2D field */

elee { //Compute the 1D fi-eld
n : counts [0];

,/* allocate input (and output) data */
in : (fftw_complex*) fftw_malloc(n * sizeof (fftw_complex)) ;

if (!data.args.inverse) {
/** Here is specified which kind of FFT j-s
* going to be performed: input size j-s n; in contains
* the input data and the output data j-s saved in the
* same area,' FFT_FORWARD means a regular FET is going
* to be computed and FFT!ü_ESTIMÀTE means the library* processes the FFT on-the-f1y without much
* optimizations
*/

p = fftw_plan_dft_Ld (n, in, in, FFT!{_FORWARD, FFTi{_ESTIMATE) ;
for(i : 0; i < n, i++) {

//inlr)tg1 contains the real component
//inlí)ÍL) contains the imaginary component
in [i] t0l : out-data Í2*í) ;
intil t1l : 0.0f;

)
)
else {

/* instead, compute a inverse FET * /
p : f ftw_plan_dft_1d (n, in, in, FFTITI_BACKI{ARD,

FFTW ESTIMATE);
for(i : 0; i < n, i++) {

/*
* Contrastj-ng the IibFFThl, DX saves complex
* information in a row, which means the fir:st* real- and imagj-nary components are the first 2
* sets of data in the array, and so on...

in [i] t0l
in til tl-l

)
)

fftw_execute (p); //compute the FFT

if (tdata.args.center && !data.args.inverse)
{

/* Copy the results back to the DX output */
for(i : 0; i < n; i++) {

out_data[2*i] = inlil [0],'
out_data[2*i+l] : intil [1];

else

,/" Take care of the other cases * /

fftw_destroy_plan (p) ;
fftw_free (in) ;

: out_data 12*i);: out data[2*i+1];

)

)

70

)

96
97
98
99

100
101
t02
103
104

ret : OKi

else
DXSetError (ERROR BÀD PARAMETER, "unsupported dimensionality") ;

return (ret);

The code is very simple and straightforward. The other cases are not much different from this one and

can be seen on the source code.

3.2.4.4 Compiling and Running FFTW

The important thing to keep in mind when compiling the FFTW module is to add the flag -lfftw3 in the

compilation process.

Figure 3-15 shows a visual program using the FFTW module:

Figure 3-15 Visual program using the FFÍW module

ln this example an FFT of an image is compute. On one side the DX DFT module (Discrete Fourier

Transform) is used and in the other the FFTW module is used.

Both of them receive a field with the colour data of an image as first input. This data is composed by a 3-

D vector (red, blue and green) with the type unsigned byte, which means that each value goes from 0 to
255.

Second input is a predefined one, which means a forward FFT is computed and the third input is an

activated flag in order to centralize the results.

7t

)

Visual (on elbal) -trx

-

Mark

FFTW
rlllfudo*r

üútrol

Control
md Export

The Compute module applies the mathematical absolute function to all the given values (converting the
negative values into positive ones) and lhe AutoColor module, like the name suggests, colours the
results.

Figure 3-16 shows the output images from the two Disploy modules

Figure 3-16 Output display of the Visual program in Figure 3-15

Since the outputs from both displays are the same for the same input image (this was widely tested with
different images and by comparing the numerical values of the results), it is possible to say that the
results are consistent.

3.2.4.5 FFTW lmplementfltion Notes

There are some issues regarding the implementation of the FFTW module.

The first one is related with the centring of data. This process is optimized for 1-D input fields, but for 2-
D and 3-D it is not quite like that. Some cycles could be cut out from the process but the main objective
here is to show that it is possible to run an optimized Cell/B.r. FFT inside DX with accurate results, so the
performance tuning for this small operation was left aside. Besides, this fact does not influence the
performance study since both console and DX module programs use the same algorithm for the
computation part.

The second issue is related to the lnverse FFT. Since a computed FFT always has the data spe coMptEx
(which means real and imaginary floating point components), even after applying an inverse FFT, a small
module called Converter was created. This module converts COMPLEX data into REAL data with the spe
unsigned byte. Using this module makes it possible to compute a forward FFT in an image and then get
the image back by computing an inverse FFT on the forward FFT results.

72

Eilc !indo.r*
qptims

3.2.4,6 FFTW Performance Study

The performance study for this module is not much different from the previous cases. Since the FFTW
library takes care of all the computation, one standalone C console application was written to run the
FFT, processing the same input as the one inside DX. Then, both applications were executed and run-
time results were compared.

The input follows the same line as the Ádd module case (see chapter 3.2.2.6 Add performance Studv),
which means that it is composed of íntegers from 0 until the size which is going to be tested.

Figure 3-17 shows the performance results in a QS22 Blade for computing a 1D forward FFT:

QS22 1D FffW Module Performonce --ç-- qs22 console
-_3-ç22 dx

4A

2A

10

OON$
Size (MB)

Figure 3-17 QS22 FFTW Module Performance

This example Soes more inside the purpose of this thesis. Switching from the console to DX environment
to perform a 1D forward FFT does not affect the performance at all, no matter the size of the input
arrey.

One particular observation for a 64 MB input: it runs faster inside DX than in the console. Furthermore,
it computes faster than the previous case with a smaller input (48 MB). Unfortunately, the FFTW library
does not support bigger inputs (maybe a bug), so ít is not possible to study what happens further.
Anyway, in spite of being a weird result, this still shows that switching from a console to a visual
programming environment does not affect the performance very badly.

30
a

o
E'a

O(o

73

3.2.5 Gaussian Blur

Gaussian blur describes blurring an image. lt is a widely used effect in graphics software, typically to

reduce image noise and detail. The visual effect of this blurring technique is a smooth blur resembling

that of viewing the image through a translucent screen.

This process is achieved by the convolution of a Gaussian kernel with the data of an input image'

cell/B.E. Example Library, which comes with the sDK (lBM 2008), offers a set of functions to perform

convolutions and DX offers a way to access image data, so the only thing left to implement is a

connecting bridge between these two "sides". The Gaussian kernel used for the convolution is a 3x3

matrix obtained from the following formula (Wikipedia 2008):

1
G(x,y) = ffi"

with a standard deviation (o) of 0.8a089642 (x and y are integers which go from -1 to 1). This module

serves merely for demonstration purposes, so no options were íntroduced to change the size of the

kernel and the standard deviation.

3.2,5.7 Image Processing in DX

Before going fonrrrard in this chapter, it is important to understand how DX process images. Figure 3-18

shows the pixel order of an image:

height

01
wi*h

Figure 3-18 Pixel order in DX images

pixels are processed from the lower left corner to the top right corner. Each line has a width size and a

height number of lines.

Each pixel is composed of three elements: one for red, another for green and another for blue. Each

element has the §pe unsigned byte, which means that each value goes from 0 to 255.

So, for example, if it is desíred to access the contents of the first pixel in the second line, then the pixel

which should be looked for is the number width (pixels in the first line goes from 0 to width - 1). But,

since each pixel has three elements, the desired pixel is in the position wadth'3. Wldth*3 contains the

red element, width*3 + I contains the green element and widthr3 + 2 contains the blue element. The

three elements totether form the first pixel in the second line.

ln resume, to access the red value of a pixel on a i position inside of an image: red-val = image[3*i]. For

the green value: green-val = image[3*i+1] and for the blue value: blue-val = image[3*i+2]'

,2 +v2
262

74

3.2.5.2 Gaussian mdf

The mdf for the Gaussian module is pretty straightforward. Only one input field and one output field'

The ínput must be a field image or a computed FFT field of an image and the output is a field with the

same attributes as the inPut one:

Example 3-15 Gaussian mdÍ

3.2.5.3 GaussíanlmPlementation

The implementation for this module does not reuse any code, so this time everything was implemented

from the scratch.

Again, a small part of the code is responsible to handle the input. lf everghing is fine, then the program

creates a pointer to the Ínput and another one to the output and calls one of two functions:

dogaussian or doSaussian-complex. Both have the same behaviour but work with different types of

data. First one handles unsigned byte data (type of data used to process images in DX) and the second

one handles floating point data (one is a real component and the other is the imaginary component, like

the output from the FFT).

A code sample for the function doSaussian is bellow:

Example 3-16 C code for the Gaussian lmplementation

1
2

3
4
5
6
7
8
9

10
11

L2
13
t4
15

16
L7

18
19

20
2L
22

int do gauasian(ubyte *in-data, int in-data
ubYte *out data, int out data s

size,
)-ze,

(aligned(16))

(a1j-gned(16))
(aligned(16))

(aligned(16
(aligned(16
(aligned(16
aligned (16
aligned (16
aligned (16)

int width)

int i, j, width2 : find-next-muItiple(width,16);

* Three 1lnes of data for each color (red, green and bl-ue)
* are processed at a time

float 1ine1r [width2 J
-attribute-fLoat line2r [width2J
-attribute-float line3r [width2 J
-attributefloat linelglwidth2 I
-attributê-float line2g [width2]
-attribute-fLoat line3g[width2 l
-attribute-float linelb[width2J
-attribute-float line2b[width2]
-attribute-float line3blwidth2 I
-attribute-

* Each convolution returns a output line for each color

MODUTE

CATEGORY

DESCRIPTION

INPUT

OUTPUT

Gaussian

Cell

Applies the Gaussian smoothing to a image

data; field; NULL; input image

result; field; new image

75

{

(

(

(

(

(

(

(

(

(

* The function which processes the convol-ution requires
* the data to be 16 bytes aligned for both i-nput and output
* and the size of the line must be a multiple of 16

float outr
float outg
float outb

twidth2 l
lwidth2 l
Iwidth2]

_attribute
_attribute
attribute

((aligned(16))

((aligned(16))

((aligned(16))

* The 3*3 Kernel. All the values must be replicated al-ong* all the vector. Matrix ca1culatecj. using the Gaussian* function with a standard devj-atiorr of t).84089642

vec_float4 m[9];
mt0l t0l : 0.0671783991; mt0l [1] : 0.0671783991; mt0l t2l =

0.0671783991; m[0] t3l : 0.0671783991;
m[1] [0
mÍ2
m[3
m[4
m[5
m[6
m[7
m[8

0

0

0

0

0

0
0

line1r Ij]
Iine2r I j]
1j-ne3r I j]
1ine19 [j]

1ine2q Ij]

line3g I j]
1ine1b Ij]

line2b I j]

Iine3b I j]

0.1,23431354'7 ;
0. 0671783991,-
0.723437354"7 ;
0.2375369846;
0.L23437354'7;
0.0671783991;
0.123431354't ;
0.0671783991;

//Repl-icate. . .

,/,/Replicate. ".
,//Replicate. ".
//Replicat-e...
/,/RepIicate. . .

,//Replicate. . .

,/,/Replicate. . .

,/,/Replicate. . .

in_data [3 *

//Unused positions are filled wj-th neutra-I val-ues
for (i : width; i < width2, i++)

{
line1rtil : L27.0;
line2rtil : L2'1.0;
line3rtil : L27.0;
linelgtil = 127.0;
line2gtil : L27.0;
li-ne3glil = L27 .0;
linelblil = L27.0;
line2blil = 127.0;
tine3bIi] = L27.0;

/ /Load the first three lines
i : width;
for (j : 0; j < I^ridth; j ++)

{
= (floar)
= (floar)
= (floar)
= (floar)
= (floar)
= (ftoar)
= (floar)
= (float)
= (float)

in_da
in da
in da
in da
in da
in_da
in_da
in_da

ta [3*
ta[3*
ta [3*
ta[3*
ta [3*
ta [3*
ta [3*
ta [3*

(i+width+j) l;
(i+i11'
(i-width+j) I ;
(i+width+j) +11 ;
(i+j)+11;
(i-width+j) +11 ;
(i+width+j) +21 ;
(i+j)+21;
(i-width+j) +2) ;

)

Each variable contains three pointers for three 1ines.
One varlable for each col-or

const float *inr[3],
inr [0] = alinelr [0] ;
inr [1] = cline2r [0] ;

*ing [3] , *inb [3] ;

76

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
LO2

103
to4
105
106
107
108
109
110
111
7L2
113
LL4
115
116
LL7
118
119
L20
LzL
t22
L23
L24
L25
t26
L27
128
129
130
131
L32
133
134
135
136
L37
138
139
140
L4t
L42
143
L44

inr[2]
ing[0]
i-ng [1]
ing [2]
inb[0]
i-nb [1]
inb [2]

= cline3r [0] ;
= clinelg [0] ;
: ctine2g [0] ;
= ç11ne3g [0] ;: clinelb [0] ;
: ç1ine2b [0] ;
: cline3b [0] ;

/ /Start the computation
float *tempr, *tempg, *tempb;
for (i : wÍdth; i < in data size - width; i += width)

conv3x3_1f (J-nr, outr, m, width2) ;
conv3x3_1f (ing, outg, m, width2) ;
conv3x3_1f (inb, outb, m, width2) ;
for (j : 0, j < width; j++)
{ / /Convert the floats into ubytes

out_data t3* (i+j) I = (ubyte) outr Ij] ,
out_data [3* (i+j) +]-l : (ubyte) outg Ij] ;
out_data [3* (i+j) +2] = (ubyte) outb Ij] ;

)

/ /Prepare the next computation
tempr : (float *)inr[2];
inr[2] = inrlll; //"Ihe new 3rd l-ine is the previous 2nd line
inr[1] = inrl}l; //Tlte new 2nd line is ttre previous 1st line
inrtOl = tempr; //Tne new l-st line needs to be loaded
tempg : (float *)ing[2];
insÍ21 = ins[1];
ing[1] = ing[0];
ingtOl = tempg,
tempb : (float *)inb[2],'
inb[2] = inb[1];
inb[].1 = inb[0];
inb[O] = tempb;

for (j = 0, j < $ridth,' j++) //Load the new l-ine
{

temprtj I : in_data[3* (i+width+j)],'
tempgtj I = in_data [3* (i+width+j) +1],'
tempb tj I : in_data [3* (i+width+j) +2j ;

)

* No transformation performed in the first and last
* lines of the image

for (i : 0; i < width; i++)
{

out
out
out

)
for

{

(i = in data sj-ze - width; i < in data size; i++)

._data

._data

. data

out_da
out_da
out_da

[3*i] : in-data[3*i];
[3*i+]-l = in_data [3*i+1] ;
[3*i+2] = in data[3*i+2];

ta [3*i]
ta [3*i+1]
ta [3*i+2]

in_data [3*i
= in_data[3
: in_data[3

l;
*i
*i

+11 ;
+21 ;

)

77

145

L46
rêturn OK;

3.2.5.4 Compiling and Running Gaussían

The only thing needed to do when compiling this module is to add the libimage.a to the linked libraries

(usua lly fou nd i n : I opt/ cell / sdkl usr/l i b/libi mage.a).

Figure 3-19 shows an example of a visual program using the Gaussian module (and also the Converter

module, see chapter 3.2.4.5 FFTW lmolementation Notes):

Figure 3-19 Visual program using the Gaussian and Converter modules

This program produces three display outputs: the first output (Figure 3-20) is the original image; the
second output (Figure 3-21) is the previous image transformed after processing a Gaussian Blur effect
and the third output (Figure 3-22) is the result image after applying a fonarard FFT, then a Gaussian Blur

and finally an lnverse FFT. A Converter module is used in this last example in order to transform the
floats from the inverse FFT back to unsigned byte data.

Uprp

ControlIntcrfrcr

Execute lindonc üonntction 0ptions

§trrrcturirq

=0XLink

llcllo

:J: { RLL)
,:: ffnnotstion

fdd
ftdde

l:, Tronrfornatlon
i:,lllndors

0cbuggin3
Flos Control
Inpu't and Er*port
Intâ'ôctor

Z Vasqal Program Editor: lhome/guerreiro/test-area/dxmodules/imageslrgb4.net

78

ãx
.Íl ftta

FFTW

Mark

FFTW

fools

l{acros

Figure 3-20 Display output 1 from the visual program in Figure 3-19

Figure 3-21 Display output 2 from the visual program in Figure 3-19

79

ton x

(on -ax
flte Egeante lfiftdo*s lonnection $tlons &lp

7

Figwe 3-22 Display output 3 from the visual program in Figure 3-19

3.2.5.5 GaussianlmplementationNotes

There is not much to discuss about the implementation of this module. The main issue is to manage the

pixels and apply the convolution.

ln order to keep the program simple, there is no policy regarding the sharps of the image (like the first

and last lines and the first and last columns). First and last lines are not computed and for the first and

last columns the default policy of the CelUB.E. SDK Example library, which calculates an average value to

these positions, is used.

Concerning the returning floats from the convolution function, the results are directly converted (and

possibly rounded) back to unsigned bytes. For example, if a returning value from the convolution

operation is lower than O then it is rounded to 0 and if it is bigger than 255, then it is rounded to 255.

Returned values between 0 and 255 are rounded to units.

3.2.5.6 Gaussian Performance Study

The Gaussian Blur effect in different images with different sizes was computed for this case study'

Figure 3-15 and Figure 3-19 show a module called Readlmoge in the top of the visual program. This

module makes life easier when reading images inside DX, but a solution had to be found in order to

perform the same computation in the console side. So, with the help of the Export module it was

80

Bisplay: -rx

possible to create an output file with all the colours for all the pixels inside of an image. The number of

lines of this output file is the same number as input pixels and each line has 3 integers: one for the red

value; another for the green value and the last one for the blue value. This file is loaded in the console

program before computing the Gaussian blur.

Since this process of loading the image in the console side takes too much tíme, this time is not counted.

1me starts counting right after the image is loaded and stops until the output buffer is loaded with the

returning values.

Figure 3-23 shows the performance results for running the Gaussian in the QS22 Blade:

QS22 Goussion Module Performonce --A-qs22 console

-4- ç22 dx

z

O
N

O+
Size (MB)

Figure 3-23 QS22 Gaussian Module Performance

The size of the images referenced in the X-axis refers to images of type TIFF. lmages of this type occupy

more space in disk but work on-the-fly inside DX.

Looking to the plot, this case shows up as the worst example among the all modules. The difference of

the computing time between the console and DX keeps increasing as the input sizes increases.

This difference is absolutely not related to the input checking that DX performs, but to its processing.

Copying the input data from the data structure given by DX to the Gaussian input structure is the

operation which consumes most of the time. Copying the Gaussian output data back to the DX output

structure consumes the remaining difference.

Figure 3-24 shows a different approach on this test. lnstead of using DX structures for input and output,

the program uses allocated local structures. The image is loaded using the same method as in the

console and, again, the time needed to load the image is not counted.

a

o
E'tr

2

1

0
O(o

8l

QS22 Goussion Module Performonce --+- qs22 consolÊ

--g- ç22 dx

1.0

0.5

O
N

O+
(t'/B)S ize

Figure 3-24 QS22 Gaussian Module Performance (DX lmproved)

The test in Figure 3-24 shows no significant difference between the console and DX in the stated
conditions.

Nevertheless, it is always possible to optimize DX structures and the way they organize themselves in
the memory. The FFTW performance case study in Figure 3-17 proves it. Such structures are not easy to
implement and future work can be developed to ease this process, but most importantly it is possible.

3.2,6 ExtractSound Data - A Different Example

Besídes all the background work developed in this thesis exploring the advantages of the visual
programming, this small sub-chapter introduces one practical case study about how visual programming
can make some task easier,

The proposed situation is to visualize the FTT of three different musics and compare their signals. lf the
approach taken to do so ís based in an implementation of a standalone console program, then the
programmer has to code: the loading method of the musics into memory; the FFT of the musics and a

visualization method. Also, the programmer must implement a set of flags to define which type of FFT

shall be performed and how the visualization of it look.

ln DX, the user only needs to connect the modules without worrying about the computation and inside
these modules it is possible to set different flags defining how the computation is processed. For
computing the FFT and to visualize the data the necessary tools are already implemented, so the only
thing left to do is to create a module which loads music.

1.5

a

()
E'a

O(o

82

Íhe ExtroctsoundDoto module generates a floating point l-D field from a sound file (specified in the
input) which can then be used by the FFT module (or any other compatible one). The libsoundfile (Mega

Nerd 2008) is used in the implementatíon for this module"

The visual program in Figure 3-25 extracts the information from three music files, performs a forward
FFT and then displays a plot with the signal of the three different music files:

Figure 3-25 Visual program for sound data visualization

The modules Music_7, Music*2 and Music_i have exactly the same structure. Only the path to the Ínput
music in the ExtroctSoundDoto module differs. Figure 3-26 shows the visual program for the Music_l
module:

83

visüâl (onEditor: x

.& ftlr Edrt ftscütü UÍd** §prmirtm qprtil.

lmage

& fila EdÍt Elccrnc |rÍldo.c lorsctian Qptione

Color

I

f,r)
lmrú { llrslrr

net (on elbal) - E x

Figure 3-26 Visual program to extract data from a sound file

The plot in Figure 3-27 is generated when the computation finishes:

Figure 3-27 Display output from the visual in Figure 3-25

q)
!
=!
ô.
E

20000

1 0000

(o
o
+oo
lí)

Poi

o
+q)
o
?
O

(oo
+()oq
N

r.'o
+
q)
oq

brp

400 00

0

n

(oo
+o(f
ur-

r..

q

fuÉt

--Noroh
JonÉ - SunrÍsê

-
Mlchocl Jocbon - B.ot lt

-Shfuorêà
- Godnlght Moon

soooo
E-

_ax

Visual Editorl

Uplp

FFTW

Options

Curtrol

FFIII

Gradtantllaàog

(or êlbàl1

84

The plot shows the slgnal for the three dlfferent muslc flles. The important thlng here ls not what these
rsults mean, but how slmple can ft be to lmplement a program uslng a vlsual programmtng

envlronment.

3.3 Improving OpenDX Performance

The semnd part of the practlcal work ln thls thesls ls to show how OpenDX performance can be
lmproved uslng the CelUB.E. capabllltls.

The process conslsts of grabblng an already lmplemented DX module and then optlmlzê Íts code.
Unfortunateln lt ls not posslble to slmply complle and run a DX module lnslde a SPE because of tts
dlfferences s'lth the PPE (see chapter 2.1 Cell / Heteroseneous Multi-core Environmentl.

The Gradlent module lmlde DX ls a good candldate slnce its computatlon resldes lnslde a loop applylng
an algortthm to each element of an anay. Dlvldlng and parallellzlng thls loop lnto dlfferent cores, ai
dlfferent and lndependent tasks, may lmprove the performance.

Thls chapter lntroduces the GradlentCell module whlch ls an optlmlzed verslon of the Gradlent module.
Uke the structure for each lmplemented module ln the chapter 3.2 Cell/B.E. Apolications in OpenDX. thls
case sh/dy shows the GradlentCetl: module descrlptlon flle; lmplementatlon; how to complle and run;
lmplementatlon notes and performance study.

3.3.1 GradlentGell

The approach taken to optlmlze thls module does not lnvolve a deep knowledge of the Gradlent
operatlon. There ls a paÍt ln the code whlch has a computlng-lntenslve cycle and lts number of lteraüons
depends on the slze of the lnput, so the goa! ls to: dlvlde and parattellze thls cycle across the SPEs (ln

slmultaneous tasks); put the result back ln the maln memory and then chak whether the resutts are
conslstenL

Only l-D and 2-D regular flelds were opümlzed. The remalnlng code ts unchanged.

3.3.7.1 Gradienúellmdf

Íte mdf for the GradlentCell module does not lntroduce anythlng new when compared wfth the regular
Gradlent module, so lts contenB (except the name) are eractly the same:

Erample !l-17 GradlentCell mdf

MODUlE
CATEGORY

DESCRIPIlON

rNPlÍÍ

GradlentCell
Cell
C.omputs the gradlent of a scalar fleld
data; scalar fleld; NULU fleld to compute gradlent of

85

INPUT

OUTPUT
method [úslble:OI; strlng; omanhattan"; method to use
gradleng vector fleld; gradlent fleld

I
2
3
4
5
6
7
8
9

10
11
t2
13

t4
15

16
t7
18
1!)
20
2t
22
?3
24
25
26
27
28
29
30
31
32
33
u
35
36
37
38
39

3.3.7.2 Gradienúell Implementation

Llke the Add module (see chapter 3.2.2 Add), the lmplementdon for the Gradlentce[module ls dlüded
ln three sectlons: GradlentCetlshared Structure; PPU GradlentCetl lmptementaüon and SpU GradlentCell
lmplementatlon.

3.3.L.2.1 GradientCellsharedSructure

Bellow ls the shared structure betureen the ppE and the SpE:

Erample }lE GradlentGell shared structure

*ifndef GRADIENT H
Sdefine GRÀDIENT-H-

sinolude <dx,/dx_spu.h> /* sPU may need some i-nformation from here */

typdef stnrct {
void *data_addressi
void *vectors addressi
float *deltas-address i
iat *permute_ãddress;
iat data_nltemsi
Tlpe data_tlpe,
iat nDim,
int pFlag;
int first_cycle;
int last_cyc1e;
int spe_num;
int xl(nt;
iat yl(rrt;
int zKnt;
int start;
int offset;
unsigmd char pad[64];

) spu,

typedef uaion
{

uaoigad long loag u11;
unsigmd lnt ui [2];

)
addr64; ,/* linkage stuff used when calling the SpU program */

$define ELEM PER BLOCK 1024
*define uex §pu Esnraos fe

*define spt' mfc_cell128 (value) ((value + L27)
fldefiae sp"fmfc_ce1116(vaIue) ((value + 15) §

// caLcul.ates the n:(x,y)

86

e -1271
_1s)

40
47
42
43
M
45
6
47
48
49
50
51
52
53
54
55
56
57

/ / inpuE: r: and y- axÍs size
void find_2D-ooord.Lnatêo(int n, int y-síze, ir.'E *x, i'-nt *y)
{

int pos_x - abs(n/y_size);
intpos_y=nBy_size;

if (Pos_Y == 0) {
pos_x--i
pos_y=y_size-1;

)
elso

pos_y--;

x[0] = pos_xi
yt0l = pos_y,

)

endif / GRADIENT H * /

Thls structure may look confusln& but everythlng mak6 sense when the PPU and SPU GradlentCell

lmplementatlom are lntroduced ln the next sub-chapter.

The structure contalns four addrssc to the maln memory: dcta-sddrcs contains the addres for the

lnput value (whlch have a daE_typel; vectors-addres contalns the address for the output wlues;

deltas_addres contalns the addrss for the delta values and FÍmute-addÍess contalns the address for

permutlng v-alues whlch may be used or not (dependlng on the pFlag wlue). The remalnlng values are:

dsta_nttems, whlch contalns the lnput's number of ltems; orffset, whlch descrlbs how many values are

golng to be computed ln the correspondlng spe-num; nDlm, whlch contalns the dlmenslon of the lnput

fleld (must be 1-4 2-D or 3-D); flm-cycla and tast-cyctg whlch are actlvated flap ln the case of the

conespondlngly flrst or last set of data ls computed ln the SPE; rl(nü yl(llt and d0tt, whlch

conespondlngly contaln the slze of the X-axls, Y-axls and Z-axls and staG whlch contalns the staÍtlng

polnt for the computaüon ln the §PE.

The funcüon f,nd-2D-ooordlnstes ls used ln a 2-D regular fleld lnput case. lt transforms a speclffed

anay poslüon lnto the conespondlng (x,y) coordlnates to the Dx data structure.

3.3.L.2.2 PPU GradientCell Implementation

Flrst of all, t'he orlglnal computatlon for the Gradlent lnslde a fleld ls dMded ln two cass: regular or

lnegularfleld. lf the fletd ls lnegularthen úe code ls unchanged.

Othenrvlse, the structure ln the prwlous chapter ls lnltlallzed and the computaüon staÍts the SPE

threads. The funcüon docradhmRegular lnslde the flle gradlent c ln the source code ha a macro called

RUN-SPU respnslble for that:

Enmple i!'19 C code forthe PPU GradlentCell lmplementatlon

define RUN_SPU(ttee)
{

type *data,'

vectors = (float *) DXGetArrayData(outArray) ;
data - (tlpe *) DXGetArrayData(tnÀrray);

!
2
3
4
s
6
7

\

E7

I
9

10
tt
t2
13
L4

15
16
!7
18
Í,
20
2t
22
23
24
25
26
27
28
29
30
31
32
33
u
35
36
37
38
39
40
4t
42
43
M
45
46
47
tl8
49
50
51
52

int acc : 0;
for (i = 0, i < spu_threads, i++)

(

stufflil.spe_num - i;
stuff It]
stuff Ii]
stuff [1]
stuff Ii]
stuff Ii]
stuff [1]
stuff Ii]

.permute_address = permutei

.data_address = (void *)data,

.vectors_address : (void *)vectors;

.data_nltems = nftems;

.nDim = nDim,

.deltas_address = deltas;

.offset = offseti

if(i-=0)
stuff [1] .first_cyc]e - 1;

else
stuff[1].first cycle = 0;

acc +- offset;
switoh (nDim)
{

oase 1:
if(i-=spu_threads-1)
{

stuff [1] .last_cyc1e = 1;

)
else
{

)
break;

stuff[1] .xl(nt - nltems-offset* (spu_threads-1) ;\
\
\
\

stufflil.last_cycle = 0; \
stuff [i].xl(nt = offset , \

\
\

\
case 2:
stuff [i] .start = acc-offsêt+li
stuff [1].xl(nt = counts[0];
stufflil .yKnt = counts [1];

)
param [1] . spe_argpEestuff [1],
/* Omitted code to start and run the SPE threads */

* Omitted code to wait for the SPE threads */
* to complete and destroy the context information */

l

Allthe values except epu_türeads, stuff and ofhet already exlst ln the orlglnal code verslon and that ls

the reason why the shared structure ln the prodous chapter (see 3.3.1.2.1 GradientCell Shared

Structurel looks so confuslng. These values are necesary ln the computaüona! part and must be copled

from the maln memory to the SPE lS.

The new values: spu-thrcads contalns the number of SPUs to use; stuff referc to a varlable ofthe type

spu whlch ls the prevlously lntroducd shared structure and ofrcÊ contalns the number of ltems to
pn cess ln determlned SPE.

Allúe computatlon whlch ls supposed to be taken ln thls sectlon (ln the orlglnal verslon) is "postponed"
to the SPE5 erccutlon.

)

tt

3.3.1.2.3 SPUGradientCelllmplemenEtion

On the SPU slde one of three thlngs can happen: the lnput conesponds to a 1-D, 2-D or 3-D fleld. lf lt ls
3-D flel{ then no computatlon ls made slnce thls procss is not optlmlzed.

3.3.1.2.3.1 l-D lnput Field

For the l-D fleld lnput case, the computatlon works ln the fullowlng way: assumlng lnput as the lnput
array and output as the output array, then for each posltlon I (from the beglnnlng to the end of array):
outptttfl] = (lnptrt[+l1- lnput[-ll] ' value, where value ls a preüous calculated number. lf I equals the
flm posltlon or the last posftlon of the array, then the flrst or the tasÊ posltlons are usd ln the formula.

Flgure 3-28 lllustrates the computatlon procedure:

lnput Arrsy
1 7 I 5 I 10 ü a4

Output Aülmy [valuê,.= I]'

Flgure i!-2t Computaüon of a gradlent ln a l-D f,eld

Thls brlngs up a problem when lmplementlng the DMA transfers to prepare the data fur the
computaüonal parL Slnce the DMA transfers g€t dsta from polnt A to plnt B, then computlng the polnt
A can be cumbersome betause the dãta rlght before A ls needed. The same happens for computlng the
polnt B, slnce the yalue rlght after B ls also needed.

So, for each DMA transfer (exceptlng the f,rst one and the last one), two more DMA transfers are
performed to get the data befure A and after B ln order to perfurm the computatlon. The varlabte wlth
the lnformatlon needed by polnt B ls called spedal-one and the yarlable wlth the lnformatlon needed
by polnt A ls called spedat_tuo.

Besldes the Double Bufferlng technlque (see chapter 3.2.2.1 Double Bufferinel, the remalntng code to
compute the Sradlent, even ln the SPE slde, ls the same. Thls means that no vector SIMD ls used.

A 6 a .x. 5 4 '3

89

3.3.1.2.3.2 2-DInputField

For a 2-D lnput fletd, the lmplementatlon gets more complex.

Flrst of all, the output slze ls two times blgger than the lnput slze and, fur each computed rralue, two
output slots are used.

The computatlon takes two emMded cycles where the ffrst cycle goes from o untll the slze of rl(nt and
the embedded cycle lnslde goes hom 0 untll the slze of yKm. These varlables are lnslde of the shared
strucüIre (see chapter 3.3.1.2.1 GradientCell Shared Structurel and conespond to the slze of the X and y
axls.

For examplg computlng the gradlent for a 235 lnput Fletd (slze of X arls ls 2 and slze of Y axls is 5) wlth
the data 13,7,9,5, 8, 10, 7-]-, !4, 15, í-7l and assumlng a constant yatue = I results ln the fullowlng
output:

For the Y rnlues (second component) the computaüon stays the same as ln the l-D case. Then
the output for the Y values ls: {4 O -2, -!,3, !, 4,4,3, 2} (NOfE: there are hiro y arrays wlth s
elements each one)

For the X values the computatlon ls a llttle bit dlfferent. lnstead of getting the prevlous and
followlng values, the algorlthm gets the Y slze (ln thls case 5) prwlous value and the y slzê
followlng mlue for the current computatlon. LJke the l-D case, lf the qrcle ls ln the beglnnln&
then the prevlous value ls the current value and lf the cycle ls ln the end, then the current r/alue

ls used lnstead of a followlng one. The oúput for the X wlues are: O,4,5, !0,9,7,4,5, !O,gl

Flgure 3-29 lllustrates the example:

lnput Array

,x:ip 3 1 I 5

10 1tr 1o .X,5, ,l?

Output Army,(value, = U
Íriàlri€

ÍtFllts

Flgure !l-29 Computaüon oí a Gradlent ln a 2-D field

Thls lssue makes the DMA üansfers even more compllcated. Besldes the spedal_one and spclet-trro
(see chapter 3.3.1.2.3.1 1-D lnput Fieldl, tuo more DMA transferc are used ln order to compute the X

a

'r-=1

I 4 5 9 I 4 .5 lo .9

.4

ú,x

trEEEtrtrtrtrE

90

:l

10.

values. lf the current buffer corresponds to data in the middle of the X axis, then Y size previous and

following values are also transferred. ln resume, for each computed buffer four DMA transfers (on the

most) are performed in order to get: the value right before the beginníng of the buffer; the value right

after the end of the buffer; Y size values before the beginning of the buffer and Y size values after the

end of the buffer (NOTE: the first two DMAs can be omitted but that would require a big restructure on

the code without implying a big performance improvement).

Also, a function was implemented which transforms a l-D coordinate into a 2-D coordinate in order to

keep the original algorithm and code in the computational part. For the previous example, the 6'h

element (which is 10) corresponds to the point (1,0). This means first point (0) in the second line (1).

This implementation also uses Double Buffering (see chapter 3.2.2.1 Double Bufferins) and the rest of

the code is unchanged.

3.3.1.3 Compiling and Running GradientCell

Compiling the GradientCell module is not any different from the Hello Example (see chapter 3.1.5.4

Compiline and Runnine the Hello Examole). Figure 3-30 shows an example of a visual program using the

GradientCell module:

Figure 3-30 Visual program using the GradientCell module

The Construct module creates a 1-D field with 67108864 integers (il MB) which have values reaching

from 3 to 67108866. The input is given to the implemented module and to the GrodientDebug module.

This last module, which has exactly the same code of the original Grodient module, was implemented in

order to compare the run-time for the performance study (see chapter 3.3.1.5 GradientCell

Performance Studv).

9l

r!x(on clbal) -Vísu àl EditoÍ:

.& Eü" Edit lllndo.§ E ttúô XtrP

Print

Construct
[L]

Íolr

Íhe Print module prints the contents for both the computations and is used in order to verify that the

GrodientCellmodule returns the same output asthe GrodientDebug module.

3.3,1.4 GradientCell Implementation Notes

The input size for the GradientCell module must be a multiple of the number of SPEs used. Contrasting

to the implementation of the other modules, this module is not prepared to parallelize any input size.

This sub-chapter demonstrated how CelUB.E. can be used in order to optimize some implemented

applications. The implementation of this module consisted of optimizing some already written code, but

another approach could be to write the application from the scratch.

The implemented solution took an easy approach, but far away from taking advantage of all the

Cell/B.E. capabilities. Better results may appear if all the code is written from the scratch (but that also

may consume more time and resources). When the programmer wants to improve the performance of

an already existent application using the Cell/B.E. capabilities he/she must decide which option is the

best depending on the main objectíves.

3,3,7.5 GradientCell Performance Study

The performance study for the GradientCell module is based on a comparison between its run-time and

the run-time of the original Gradient module, ín the QS22 Blade. Gradient module runs only inside the

PPE and the GradientCell module uses all the available SPEs.

Figure 3-31 shows the gradient performance graph for a 1-D field input:

+ eodicnt
QS22 Grodient Module Pcrfoímonce 3- O6di6tc.ll

ÔO(\s
Size (MB)

Figure 3-31 QS22 GradientCell Module Performance

a

o
E
i:

4

J

2

o(o

92

Likealltheotherperformancestudytestspresentedinchapter@,the
Size axis refers to the input size in Megabytes, which is composed by integers going from 0 until Size-l,

and the Time axis refers to its execution time in seconds.

Figure 3-31 shows that there is some performance improvement by the GradientCell module. For a

60MB input this difference is more than 2 seconds.

Figure 3-32 shows the same performance study for a 2-D input field:

QS22 2D Grodient Module Períormonce +Oodr6t
--À- eodi6tc4ll

10

ooN+
Size (ue)

O(o

Figure 3-32 QS22 GradientCell Module Performance (2D lnput)

ln this example, the difference gets bigger in spite of the input size being the same. For the 60MB infiut

case, the run-time difference between the GradientCell module and the Gradient module is more than 4

seconds.

It is possible to argue that the effort taken to optimize the performance for this module is not worth it,

but there are a couple of things that must be kept in mind:

r No vector SIMD instructions were used;

. Memory organization could be re-arranged;

o Only a small part of the code was optimized.

It is possible to get better performance results, but an extra effort is required for the programmer ín

order to do so. Also, it may be a better idea to re-implement the module from the scratch instead of

optimizing already written code.

a

o
E

't--

8

6

4

2

93

4 Gonclusion

Two dlfferent concepts were lntroduced ln thls thesis: CelUB.E. and üsual programmlng. Cell/B.E. came

up as a soluüon to lmprove appllcaüon performance, but programmlng for ft can be quÍte challenglnS.

On the other slde, üsual programmlng demonstrated to be an easler and lntultlve programmlng

paradlgm.

So, comblnlng these tuo concepts wlthout loslng perfurmance offers the programmers around the

world an easler way to take advantage of the Cell/B.E. capabllltles. OpenDX was the platform chosen ln

order to do so slnce lt ls posslble to lmplement modules for lt ln C lantuagg whlch ls supported by

Cell/8.E.

Senerat modules were then implemented: Hellq Add, Add2, FFTW and Gauslan. Hello module

lntroduced how to start SPE threads. Add and Add2 modules lnüoduced parallellzatlon and SIMD

lnstructlons. FFTW and Gausslan moduls lntroduced the use of exlstlng llbrarle+ whlch are optlmlzed

for CelUB.E. Alt thls modules show that lt ls posslble to use the tutl CelUB.E. capabllltles lnslde a üsual

programmlng envlronment. The flnat user of the appllcatlon Just connects the modules wlthout Garlng

about partlcularltles regardlng the archltecture where the appllcatlon ls runnlng.

For each lmplemented module a performance study comparlng thelr run-tlmes (ln a QS22 blade)

betrteen runnlng them lnside console or DX nas lntroduced. The study showed that lt ls posslble to

swltch the enüronment wlthout loslng performance, but attenüon must be pald to the memory

structures. DX memory structurs carry the lnputs and outputs from module to rnodule wtthout

probtems, but they must be optlmlzed ln order to not lose performance. That ls proven by FFTW and

Gausslan modules performance study. The flrst onê uses an optlmlzed memorY organlzatlon and there ls

no blg loss of performance and the second one only achlores that by uslng local memory structures,

whlch have the problem to not transmlt the output along the üsual program. lt ls posslble to wrtte a

module wlth an optlmlzed memory orBanlzaüon lnslde DX, but that requlres an extra effort.

At last, a case study uslng the Gradlent module was presentd ln order to show how performance of an

already lmplemented rnodute can be lmproved. The process conslsted ln parallellzlng a blg loop

repnslble for the computatlonat part of the module and results showed some galnlng ln performance

ln spite of not belnB used all the Celt/B.E. capablllües. Thls process was far from easy and a posslble

better sotutlon may be to re-lmplement the module ftom the scratch"

4.1 Future Work

In sphe of DX optlmlstlc resul§ there ls stlll work that can be done ln order to ease some tasks fur userc

and developers.

The code generator of the DX Module Bullder (see chapter 2.3.5 Module Builderl b a Sreat tool and lt

should lntroduce a ftw more features. lt would help DX developers lf this bullder could generate

Cel[B.E. code ln the use/s funcdon. For example, generate code to staÍt, run and finlsh SPE-threads,

and also generate a header ffte wlth a structure contalnlng polnters to all the lnputs and outtpuB, and

lntegerc with thelr slze. Thls would glve an easler way for Cell/B.E. dwelopers to wrlte moduls.

94

Another lssue regardlnt the DX Module Bullder is the DX memory structure. Generating code wlth

optlmlzd memory structurs would be a blg help for the developers to keep a god performance on

the Cell/8.8. appllcatlons.

The DX Gompute module ls a treat t@l and lt should be a case study. GMng thls module the ablllty to

compute whatever the user wants ln hls/her data uslng the full CelUB.E. capabllltles would allow the

computlng of any Cett/B.E. optlmlzed mathematlcal expresslon slmply by typlng tt In the module.

At last, remalning future work may focus on the user lnterÍace of DX ln order to make the act of Úsual

programmlng more lntultlve (see chapter 2.2.5 Some princioles for vísual languaee deslsn). Some

suggestlons on thls fleld are:

. Expand DX module transmltterc and recelvers ln the maln wlndow by double cllcklng on them

(lnstead of forclng the user to search for the conespondlng tab)

o Opüon to attrlbute personallzed lcons to the modules and colourc to the üsual programs

o Optlon to edlt the source code of the module ln the vlsual program and recomplle lt on-the-fly

95

Bibliography

Agllent Technologles lnc. Vee Pro lJser's Gutde.2OO8. http://wrrw.home.agllent.com/aglleníhomeJspx

(accessed February 16, 20Gr).

Andescotla. Morten IDE 7.4.2008. http://www.andescotla.com/produc,ts/marten/ (accessed Februar}

16,2m9).

Arevalo, Abraham, et al. Progromming the Cell Broodbond Engine - Exomples and Best Proct ces. New

York IBM Redbooks, 2ü)8.

Baecker, R. "sorting out Sorting." ACM STGGRAPH '87. Dallas, TX: ACM, 1981. Sound ftlm, 25 mlnutes,

16mm color.

Blachford, Nlcholas. Programming The Cell Processor - Port 7: Whot You Need to Know. 2OO6.

http://www.blachford.lnfo/computer/artlcles/CellProgrammlngl.html (accessed October ô 200E).

Brown, Marc H., and Robert Sedgewick. "A system for algorithm anlmatlon.' ACM SIGGRAPH Camputer

Grophla, Volume 78, lssue 3, t984: tTl -L86.

Clarlsse, O., and S. K. Chang. "VICON: A Msual lcon Manager." Vlsuol languoges. New York Plenum

Press, 1986.151-190.

Cof Philip T., and Trevor J. Smedley. "Using úsual programming to extend the power of spreadsheet."

Proceedtngs of the workshop on Advonced visuol interfaces. Barl, ltaly: ACM, 1!194. 153-151.

Curry Gael À. Progromming by Abstroct Demonstration Dlssertatlon, Washintton: Unlversl§ of

Washington, 1978.

Dalntlth, John . OxÍord dtAionory of computiag. New York Oxford Unlvenlty Press, 1!183.

dalke sclentlffc. Vtsuol dotoflow progrommlng. 22 September 2003.

http://wrrvw.dalkesclentiffc.com/wrltlngs/dlarylarchivel2@3lB9l22f{lsualProgrammlng.html (accessed

August 20,2008).

Felnberg Dave. "A visual obJectoriented programming environment." ActrI gG6lE Bulletln, Volume 39,

lssue 7,2007:t4O-144.

Free On-llne Dlctlonary of C.omputing. 26 May 2OO7.hfip'.lltoldoc.orgr/ (accessed October 8,2ü18).

Frlgo, Matteo, and Steven G. Johnson. Fostest Fourler Tmnslorm ln the Wer,t, November 2ü)8.

http://www.fftw.orB/ (accessed February 16, 2m9).

Goldberf Adele, and Davld Robson. Smalttotk-&l: The longuoge ond lB lmplementotlon. New York:

Addlson-Wesley, 1983.

Goldstlng Herman H. The @mputer from Poscol to von Neumann Prlnceton, fÜ: Prlnceton Unfuerslty

Press, 1972.

Graduate Educatlon and Research Serüces - Penn State. "Open Msuallzatlon Data EÇtorer." Spedol

ProJet Group. 2@8. http://gears.aset.psu.edu/sp/software/opendídetalls.shtml (accessed February

16,2009).

96

Grafton, Robert 8., and Tadao Ichlkawa. "\y'isual Programmlng - Guest Editor's lnúoductlon." C.omPuter,

Volume lS, lssue I, ISSN: ú)78-9162, 1985: 6l9.

Halbert, Danlel C. Progmmming by exomple. Dissertatlon, Berkeley, CA, USA: Unlverslty of Gllfomla,

1984.

Harmonla, lnc. Ha rmo n lo. 2(}()E. http://www.harmonla.com/ (accessed February 10 2009).

!BM. Catt BE Progromming Tutorial. 19 October 2OO7,

01.lbm.com/chlps/techllb/techllb.nsf/techdocs/FC857AE550F7E88387257tiA0AGl,FlÍd8

February 16,2m9).

http://rvwnt-
(accessed

-. C.ctt SDK 2008. http://unrw.lbm.com/developelorks/poweúelfl (accessed February 16, 2(X)9).

-. OpenDX 1!D1. http://unvw.opendx.org/ (accessed February 16, 20Gr).

Koelma, Dennis, Richard V. Balen, and Amold Smeulders. "SCIL-VP: a mulü-purpose üsual programmlng

enüronment" tn Proceedlngs oÍ the 1gg2 ACM/SIGAPP Symposlum on Applled @mputlng: technologlcol

challenges oÍthe 79%)'s. AcM, 1992. 1188-1198.

Lewls, Cla6on, and Gary Olson. "Can principles of cognitlon lower the barriers to programmlngl ln

Emptrtcol studts of programmerc: second workshop, |SBN:0A$974674, by Ablex Serles Of

Monographs, 24€.-263. Nonvood, lü, USA: Ablex Publlshlng Corp., 1987.

Madnick, Stuart. "Understandlng the Computer (Linle Men Crmputerl." llnpubllshed monusalpL 75193.

Mattson, Tlmothy G., Berna L Massinglll, and Beverly A. Sanders. Pottems for Porollel Progmmmlng.

Addlson Wesley, ISBN 0321228t.lÍ-, 2044.

Mayora-tbarra, Oscar, Oscar de la Paz-Anoyo, Edgar Cambrans-MartÍnez, and AleJandro Fuentes-

penna. "A vlsual programming envlronment for device lndependent generaüon of user lntêrfaces."

Proceedlngs oÍ the Lottn Amerlcon conÍerence on Humon+nmquter lntemction. Rlo de Janelro, Brazll:

ACM,2003.61-68.

Mega Nerd. lthsndfile.20Í)8. http://wwrr.mega-nerd.com/lbsndflle/ (accessed February 16, 2@9).

Meyer, Robert M., and Tlm Masterson. ^towards a better üsual programmlng language: critlqulng

Prograph's control structures." Joumol of Computlng &;tenÉ ln @lleger,, Volume 7í lssue 5,2üD: 181-

193.

Myers, Bnd À "INCENSE: A system for displaying data structures." AGIú SrcGRAPH Computer Groqhlís,

Volume 77,lssue 3,1983: 115-125.

Myerc, Brad A Taxonomles of úsual programming and program üsuallzatlon." toumol oÍ Wsuol

Longuaga ond Computlng, Volume t lssue 7, t990:97'1i23.

Myers, Brad À, Raünder Chandholç and Atul Sareen. "Automatlc data vlsuallzaüon for novlce Pascal

programmers." Wsuol Longuoges, 798., IEEE Workshop on PtttsburBh, PA: IEEE, 1988. 1!12-198.

Natlonal lnstruments. llslng the lÃbvtEw Run-Tlme Engtne. zffi,, hltp:llzone.nl.com/reference/en-

)0íhelp/37136t8-0ulvhouno/uslng_the_lv-run_tlme-en8/ (accessd october 2o 20Í181.

Nlckerson, Jeffrey. Vlsuol Progrommlng Ph.D.

http://rrruw.nlckerson.to/vlsprog/vlsprog.htm (accessed October & 2@81.

97

Dlssettadon. t994.

Roy, Geoffrey G., Joel Kelso, and Craig Standlng. "Towards a Vlsual Programmlng Envlronment for
Software Development." Software Englneering: Educotlon & Proúlce, 7998. Prueedlngs. 7998

lntemotlonol @nference. Dunedln: IEEE, 1998. 381-388.

Shnelderman, Ben A "Direct manipulatlon: A step beyond programmlng languages." ln Humon-

comptrtet lnteroctlon: o mukidl*lplinory opprooch, ISBN:0-9i14673-2tt-9, by Wlllam A. S. Buxton, 461-
It67. San Franclsco, CÂ, USA: Morgan Kaufmann Publlshers lnc., 1987.

Smedley, Trevor J., Phllip T. Cof and Shannon L Byme. "Expanding the utlllty of spreadsheets through
the lntegration of üsual programmlng and user lnterface objects." Proeedlngs oÍ the workshop on
Advonced vlsuol lnterfoces. Gubblo, ltaly: ACM, 1996. 1tA-§5.

Smlth, Davld C. Pygmolion: A Computer Progrom to Model and Stimulote Crcotlve Thought. Basr:l,

Strrttgart Blrkhauser, 1977.

Smlth, Davld C Pygmollon: o creotive progrommlng envlronment. Dlssertatlon, Stanford, CA, USA:

Stanford Unlverclty, 1975.

Tritera. The Stote oÍ Progroph/CPX. 19 Aprll 2@5. http.//wrvw.trltere.com/prograph.html (accessed

october 23,2(x)8).

Ward, Matthew. "Data Visuallzation." Worcester Polytechnic lnstttute, @mputer Sclence Deportment.

http.//rnrw.dalkesclentlflc.com/wrÍtlngs/dluylarchlvelàO03lífll,lzzfVlsudProgrammlng.html (accessed

August 18,200E).

Whltley, Klrsten N., and Alan F. Blachrell. "lÚisual Programmlng ln the wlld: A survey of labüew
programmerc ," tournol of Wsuol Longuoges ond Computing, Volume 72, lssue 4,2007rz 435472.

Whftley, Klsrten M., and Alan F. Blachrell. "lflsual programmlng: the outlook from academla and
industry." Paprs pÍesented ot the swenth workhop on Emplrlml studla of progrommeA ISBN:O-

89797-9924. Alexandrla, Vlrglnla Unlted States: ACM, 1!)97. 180-208.

Wklpedla. Deuhch LimÍt. lO January 2m9. http.//en.wlHpedla.orClwlld/Deutsch-lJmlt (accessed

February 22, 2üXl).

-. Gousslan blur.2@8. http://en.wlklpedla.orglwlkl/Gausslan-btur (accessed January 26 2üD).

-, Hyprvlar.2(X)8. http://en.wiklpedla.org/wlk/Hypervlsor (accessed February 16, 2OÍt91.

-. LobwEltl.2ü)8. http://en.wlklpedla.orglwlkl/tabvtEW (accessed October 2O 2üt8).

-. Vbuol tuslc .NET.200E. http://en.wlklpedla.orglwlkly'Vlsual_Baslc_.NET (accessed October 8, 2@81.

-.Wsuollzotloa. 2ü)8. http://en.wlklpedla.org/wikl/Vlsuallzatlon (accessed August 20,2fl!81.

Youn6 Mark, Danlelle Arglro, and Steven Kublca. "Cantata: Vlsual programmlng enüronment for the
Khoros system ." Computer Graphla, 1995:.22-24.

98

GIossary

CBEA

Cell Broadband Englne Architecture.

celUB.E.

Cell Broadband Englne. The Cell Broadband

Englne ls one lmplementatlon of the Cell

Broadband Englne Archftecture (CBEA).

Data Eçlorer

Data Explorer allom the users to manlpulate

thelr data and create vlsuallzatlons by uslng a

vlsual programmlng envlronment.

DM'\

Dlrest Memory Access. A technlque for using a

speclal-purpose controller to generate the
source and destlnatlon addresses for a memory

or l/O transfer.

DX(orOpenDX)

*Doto Etrplorer.

EfÍesüw-address space (EA!

An address generated or used by a program to
reference memory. A memory-management

unlt translstes an effectlve address (EA) to a

úrtual address (VA), whlch lt then translates to
a real address (RA) that aocesses real (physlcal)

memory. The maímum slze of the effecdve

addrss space ls 2s by,ts.

Element lnterconnect Bus EIB

Element lnterconnect Bus. The on-chlp

coherent bus that handles communlcatlon

between the PPE, SPEs, memory and l/O

deúces (or a second Cel! Broadband Englne).

The EIB ls organlzed as four unldlreetlonal data

rlngs (nro clochrlse and turo counter

clochrlse).

Eomple-Based Programmlng

Example-Based Progfammlng referc to systems

that allow the programmer to use examples of
input and output data durlng the programmlng

process.

Fleld

A self-cont lned collectlon of lnformatlon

necessâry to represent scientlfic data. A Data

Explorer Fleld typlcally ls made up of a seris of
components and other lnformatlon as requlred.

!t lncluds the data ltself ln the form of a "data"
compnent, a set of sample polnts ln the fiorm

of a "posltlons" component, optionally, a set of
lnterpolatlon elements ln the furm of a

"connectloní component, and other

lnformatlon as neded.

Graphlcal Programmlng

*Wsuol Progrommlng.

Vo

tnpuvOutput.

»

u5

lntrlnslc

A C-language command, in the form of a

functlon call, that ls a convenlent substltute for

one or more lnllne assembly-language

lnstructlons. lntrlnslcs make the underlylng ISA

(lnstructlon Set Archltecture) accesslble ftom

the C and C++ programming languages.

Lml Store

The 25&KB local store (lS) assoclated wlth each

SPE. lt holds both lnstructlons and data.

Srcl.oimlStore.

Maln Memory

SreMolnStoroge,

Maln Storage

The effecüve.address (EA) space. lt conslsts

physlcally of real memory (whatever ls extemal

to úre memory-lnterÍace controller, lncludlng

both volaüle and nonvolatlle memory), SPU lSs,

memorpmapped reglsterc and âffiyS,

memory-mapped VO devlcs (all VO ls

mernory-mapped), and pag6 of vlrtual

mernory that reslde on dlsk. lt doe not lnclude

cache or execuüon-unlt reglster flles. See also

leal store.

mdf

*e mdule d*crlptlon flle.

MFC

Memory Flow @ntroller. lt ls part of an SPE

and provldes two maln functlons: moves data

úa DMA between the SPE's local store (§) and

main storage, and s,ynchronlzes the SPU s'lth

the rest of the processlng unlts ln the system.

Module Bullder

A graphlcal user lnterface to asslst ln the

creaüon of userdeflned moduls.

module descrlptlon f,le

A module description f,le ls used by a

programmer who ls addlng a module to Date

Explorer to descrlbe lnformatlon about the

module that ls needed by the system.

A module descrlptlon flle contalns the name of

the module, a short descrlptlon of lt, a cate8ory

for the user lnterface to put the module ln, and

the names and descrlptlons of the lnput and

output parameters. The module descrlpüon file

ls used by the erecuttve and the user lnterface

to name parameters. The module descrlptlon

flle ls also used by the graphlcal user lnterface

to furm a tool lcon ln the proper category wtth

the rlght number of lnput and output tabs.

PPE

Power Process Element The general-puÍpse
prccessor ln the Cell Broadband Englne.

PPU

PowerPC Proc6sor UntL The part of the PPE

that lncludes the execuüon untB, memory-

management unlt, and Ll cache.

lm

Program Vlsuallzatlon

Programmlng enüronment whlch uss graphlcs

to lllustrate some aspect of the program or tts
run-üme executlon.

Rrsc

Reduced lnstructlon Set Computlng. Represents

a CPU deslgn strategy emphaslzlng the lnslght

that slmpllfled lnstructlons that 'do less" may

stlll provlde for hlgher performance lf thls

slmpllclty ls used to execute lnstructlons faster.

SIMD

Slngle lnstructlon Multlple Data. Processlng ln

whlch a slngle lnstructlon operats on mulüple

data elements that make up a vector data-type.

Also known as vector processlng. Ihls style of
programmlng lmplement data-level

parallellsm.

SIMDIze

To transform scalar code to vector code.

hyperüsor

A control (or vlrtuallzaüon) layer between

hardware and the operaüng system. lt allocates

resources, reserves resources, and protecB

resources among (for eramplel s€ts of SPES

that may be runnlng under dlffureÍt operatlng

systems. The Cell Broadband Englne has three

operadng modes: user, superüsor and

hypeMsor. The hypervlsor perfurms a meta-

superúsor role that allour multlple

lndependent superüsors' software to run on

the same hardruare platfurm. For example, the
hypervlsor allows both a real-üme operatlng

system and a tradhlonal operaünt sFtem to
run on a slngle PPE. The PPE can then operatê a

subset ofthe SPEs ln the Cell Broadband Englne

wtth the real-tlme operatlng sptem, whlle the

other SPEs run under the tradÍtlonal operaüng

system.

SPE

Synerglstlc Pr@essor Element. lt lncludes an

SPU, an MFÇ and an IS.

sPE thÍead

(a) A thread runnlng on an SPE. Each such

thread has lts own 1ll8 x 12&blt reglster fllq
program counter, and MFC Command Queues,

and lt can communlcate wlth other executlon

unlts (or wÍth effecüve-address memory

through the MFC channel lnterftce). (b) A

thread scheduled and run on an SPE. A program

has one or more SPE threads. Each thread has

tts own SPU local store (lS), reglster flle,

program counter, and MFC command queues.

sPu

Synerdstlc Processor Untt. The part of an SPE

that executes Instructlons ftom lr local store

(!s).

thread

A sequence of lnstructlons erecuted wtthln the
global context (shared meÍfiory space and other

global resourcs) of a process that ha created

(spawned) the thread. Multlple threads

(lncludlng mulüple lnstances of the same

sequence of lnstructlons) can run

slmultaneously lf each thread has tts own

archltestural state (reglsters, progfam Gounter,

flags, and oürer program-vlslble state). Each

SPE can suppoÍt only a slngle thread at any one

tlme. Muhlple SPEs can slmultaneowly support

mulüple threads. Íre PPE supports two threads

at any one üme, wtthout the need for software

to create the threads. lt do6 thls by dupllcaüng

l0l

the archltectural state. A thread ls typlcally

created by the pthreads llbrary.

UIML

User lnterface Markup Language. ls an XML

language for detrnlng user lnterfaces on

computers.

Yestor

An lnstructlon operand contalnlng a set of data

elements packed lnto a onedlmensional array.

The elements can be flxed-polnt or floatlng-

polnt values. Most Vector/SIMD Muklmedla

Extenslon and SPU SIMD lnstructlons operate

on vector operands. Vectors are also called

SIMD operands or packed operands.

Vector/SIMD

The SIMD lnstructlon set of the PowerFC

Archltecturg supported on the PPE.

Vlsual Prcgram

A user-specÍfled lnterconnected set of Data

Explorer (DX) modules that perfurms a
sequence of operatlons on data and typlcally

produces an lmage as output.

Vlsual Program Edltor

Data Erplorer (DX! wlndow used to create and

edlt vlsual prograrns and macros.

Vlsual Prcgrammlng(VPl

The Vlsual Programmlng concept ls spllt ln two:
Msual Programmlng language UPL) and Vlsual

Programmlng Enüronment (VPE).

Vlsual Programmlng Envlronment

Msual Programmlng Envlronment (VPE) ls

software whlch allom the use of üsual

expresslons (such as graphlcs, drawlngs,

anlmatlon or lcons) ln the process of
programmlng.

Vlsual Programmlng Languege

Vlsual Programmlng Lantuage (VPL) ls any

programmlng language that allows the user to
speclfy a program ln a two-(or more)-

dlmensional way.

VPE

*e Wsual Prog ro m m ing Envlronme nt.

vPt

W, Vlsuo I Prog m m mlng Lo nguoge.

tu2

