
Can We Apply Accelerator-Cores to Control-Intensive Programs?

Sean Rul Hans Vandierendonck Koen De Bosschere

Department of Electronics and Information Systems (ELIS,
Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium

E-mail: {srul, hvdieren, kdbosche}@elis.ugent.be

Abstract

There is a trend towards using accelerators to increase
performance and energy efficiency of general-purpose pro-
cessors. So far, most accelerators have been build with
HPC-applications in mind. A question that arises is how
well can other applications benefit from these accelerators?

In this paper, we discuss the acceleration of three bench-
marks using the SPUs of a Cell-BE. We analyze the po-
tential speedup given the inherent parallelism in the appli-
cations. While the potential speedup is significant in all
benchmarks, the obtained speedup lags behind due to a mis-
match between micro-architectural properties of the accel-
erators and the benchmark properties.

1 Introduction

With all the available transistors and the immense power
dissipation of monolithic processor cores, much focus is
placed on accelerators as a way to increase computational
strength and efficiency of processors. These accelerators
can be integrated on-die, as in STI’s Cell processor [5] and
the POD accelerator [9], or they may be realized in accel-
erator boards as in GPUs [4], ClearSpeed’s CS301 [3] and
Nallatech’s Slipstream FPGA-based accelerator [1].

Accelerators are already a success story in application
fields such as 3D-graphics, physics and encryption. As
the number of accelerators and their processing power in-
creases, other application fields can also be interested to
take advantage of these resources. However, the question is
whether applications from outside high performance com-
puting can also benefit from the current accelerators?

2 Approach

2.1 Identification of sub-algorithms

A first problem to tackle is which parts of a program are
suitable for offloading to accelerators. If the programmer

has intimate knowledge of the program, finding the suitable
partitions to offload is probably possible with some insight
and intuition. In general, however, people are not famil-
iar with all the intricate details of a program, so a more
systematic approach is required. In recent work [6] a first
step for finding suitable program partitions (so-called sub-
algorithms) to offload to accelerators was introduced. The
criteria are based on control and data flow characteristics.

Once the interesting regions to offload to an accelerator
are identified, the work is not yet done. One has to trans-
form and optimize the offloaded code to suit the targeted
accelerator. In this paper we look at the performance im-
provement of different optimizations when using the SPUs
of a Cell BE processor as accelerators for the main PPU-
processor core.

2.2 Three accelerator contestants

We consider three different benchmarks for finding suit-
able sub-algorithms to offload on an accelerator. The first
benchmark is Clustal W [7], a bio-informatics program
used for the simultaneous alignment of many nucleotide or
amino acid sequences. The program has three main stages
of which the first, pairwise alignment, is an interesting sub-
algorithm to offload. It is characterized by consuming a lot
of data and is dominated by regular array-operations. More-
over, 99% of the execution time is spent in loop nests. These
features makes it very suitable for streaming data and hav-
ing a very predictable control flow.

The second program is bzip2 from SPECINT2000, a pro-
gram for compression and decompression. The compres-
sion takes about 86% of the execution time and spends
about two thirds of its time on sorting. The interesting
sub-algorithm in this case is simpleSort, which performs
a shell’s sort. It takes about 20% of the execution time.
The shell’s sort is called by the main sorting routing (sortIt)
and by a quickSort algorithm (qSort3). Note that sorting
algorithms have an unpredictable data behavior and unbi-
ased branches. Furthermore, only small parts of the code
are vectorizable due to the intensive control flow.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55775233?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1
.0

0

1
.0

0

1
.0

0

4
.0

0

4
.0

0

1
.0

0

0
.8

9

1
.2

0

3
.3

2

6
.6

4

0

1

2

3

4

5

6

7

B
a
s
e

P
P

U

B
a
s
e

S
P

U

S
P

U

c
o
n
tr

o
l

S
P

U

S
IM

D

S
P

U

S
IM

D

P
ip

e

S
p
e
e
d
u
p

extrapolated PPU

measured speedup

Figure 1. Speedup results for pairwise align-
ment of Clustal W
The third program, mcf, is also from SPECINT2000 and

solves a large-scale minimum-cost flow problem. Three
quarters of the time is spent in primal net simplex. The
interesting sub-algorithm here is primal bea mpp, respon-
sible for 41.3% of the execution time and consists of sev-
eral nested loops and the function sort basket. The network
is represented as a graph, resulting in pointer-chasing and
exposed memory latencies. Combined with control flow,
there is no opportunity for vectorization. However, the loop
structure allows to overlap some DMAs [2].

2.3 Extrapolated speedup from PPU

In the analysis (Section 3) we compare the measured
speedup on the accelerators with the extrapolated PPU
speedup. For the extrapolated speedup we take the frac-
tion of vectorized code into account and the length of these
vectors. Furthermore, we also use the number of parallel
threads and fraction of parallel code. For the extrapolated
speedup we assume no communication overhead and use
the same memory latency as for one PPU.

3 Analysis

The benchmarks are compiled with gcc 4.1.2 and run on
a PlayStation 3. The presented results are relative speedups
compared to the performance on a single PPU-thread.

Clustal W When running the original version of pair-
wise alignment on a SPU we get a slow down of 10%
(Base SPU in Figure 1). Removing control flow by using
compare-and-select construction [8] gives a speed improve-
ment of 20% (SPU control). The SPU is very sensitive
to control flow because, as opposed to the PPU, it lacks a
dynamic branch predictor. On the base processor this would
not result in a measurable speedup.

Vectorization (SPU SIMD) could ideally lead to a
speedup of a factor 4, but due to extra overhead we only
get a factor of 2.75 compared to SPU control.

Table 1. Pipeline utilization, in percentage of
execution time.

Benchmark Clustal W Bzip2 Mcf
Kernel Pairwise SmpleSrt prim bea mpp
Usage SPUx SPUx SPU0 SPUx
Single cyc 40.8 26.2 27.9 30.7
Dual cyc 50.7 4.2 2.1 1.6
Nop cyc 0.3 1.4 0.3 1.6
Br miss 0.5 11.8 10.7 14.9
Dep SPR 0.0 0.0 48.4 3.4
Dep other 6.8 10.7 8.4 29.0
Chan stall 0.9 37.6 2.0 18.1

Some of the memory accesses are unaligned, which
severely deteriorates the performance on an SPU. By un-
rolling the loop (SPU SIMD Pipe) these unaligned ac-
cesses can be avoided, effectively reducing the instruction
count of the loop. The same optimization has no expected
effect on the PPU, as the PPU handles alignment in hard-
ware. Overall, the SPU is able to execute Clustal W very
efficiently, even better than what optimistic extrapolation
suggests. This is also reflected in the pipeline utilization
(Table 1): only a small fraction of cycles is spent on depen-
dencies and channel stalls.

Bzip2 In Figure 2 we see that offloading simpleSort to one
SPU is about two times slower than running the whole pro-
gram on the PPU (SimpleSort SIMD). Different parts
of the code can be vectorized to some extent, allowing to
reduce the number of compares. Based on the reduction of
compares, extrapolation would result in a speedup of 1.98
when vectorizing the code. In practice, however, we get a
slow down of more than 2. Note that this result already in-
corporates an aligned data lay-out, minimized control flow
and static branch hints. The overhead is caused by commu-
nicating messages and the delay of DMAs.

Luckily there is parallelism between the calls from
qSort3 to simpleSort, allowing to use several SPUs. This is
shown in the bar SimpleSort SIMD Par of Figure 2.
Using 6 SPUs speedups simpleSort with 56%. This results
in a 14% speedup of the compression and a global speedup
of 9%. The extrapolated speedup however, shows that the
bzip2 program does have significant opportunity for accel-
eration, but control flow and communication delay means
its not exploited. A larger fraction of branch misses and
channel stalls in Table 1 confirms this. Note that apply-
ing static branch hints is not useful in this case, as these
branches are unbiased.

The lower speedups for Compress and Total are just
a consequence of Amdahl’s law: since the sequential frac-
tion is larger, the speedup is lower. The difference be-
tween extrapolated and measured speedup indicates we only
achieve 50% of the potential speedup.

2



1
.0

0 1
.9

8

1
1
.8

8

1
.2

2

1
.1

9

1
.0

0

0
.4

5 1
.5

6

1
.1

4

1
.0

9

0

2

4

6

8

10

12

14

B
a
s
e

P
P

U

S
im

p
le

S
o
rt

S
IM

D

S
im

p
le

S
o
rt

S
IM

D
P

a
r

c
o
m

p
re

s
s

T
o
ta

l

S
p
e
e
d
u
p

extrapolated PPU

measured speedup

Figure 2. Speedup results for bzip2

1
.0

0

3
.5

3

1
.2

2

1
.0

0

4
.5

1

1
.4

7

0

1

2

3

4

5

6

B
a
s
e

P
P

U

p
ri
m

a
l_

b
e
a

_
m

p
p

T
o
ta

l

S
p
e
e
d
u
p

extrapolated PPU

measured speedup

Figure 3. Speedup results for mcf

The reason for not offloading the complete sortIt proce-
dure (which takes about 60% of the time) is that it is very
control intensive and results in degraded performance due
to the lack of dynamic branch prediction.

Mcf The execution of primal_bea_mpp can be paral-
lelized over 6 cores. In Figure 3 we see that the measured
speedup is lower than the extrapolated speedup (deduced
from the available amount of parallel work). The measured
speedup is about 3.5 times, after applying similar optimiza-
tions as for Clustal W (data alignment, avoiding control
flow, . . .). In this case the code is less suitable for execu-
tion on a SPU, since no useful vectorization is available.

The speedup is comparable to the extrapolated speedup
because the loop structure allows to overlap quite some
DMAs, but the total measured speedup is still only halve
of the extrapolated. So again lack of vectorization potential
and unbiased branches prevents the program from exploit-
ing the full potential of the accelerator cores. In Table 1
we make a difference between one SPU that is used for dis-
tributing the work and the other ones (SPUx) performing the
actual work. This first one spends about halve of its time on
polling the SPU channels (Dep SPR). The other ones have
mainly load/store dependency (Dep other) stalls.

4 Conclusion

The current accelerators, in particular the SPUs, are op-
timized towards application fields of number crunching.
These fields are characterized by predictable control flow
and data behavior suitable for streaming and vectorization.

However, by creating some more general accelerators
many different programs could greatly benefit. Our case
studies show that enabling control flow prediction or reduc-
ing DMA latency, would result in significant performance
improvement for programs that have less regular control-
flow and data behavior.

Acknowledgments

The authors acknowledge Georgia Institute of Technol-
ogy, its Sony-Toshiba-IBM Center of Competence, and the
National Science Foundation, for the use of Cell Broadband
Engine resources that have contributed to this research.
Sean Rul is supported by a grant from the Institute for the
Promotion of Innovation through Science and Technology
in Flanders (IWT-Vlaanderen). Hans Vandierendonck is a
post-doctoral research fellow with the Fund for Scientific
Research-Flanders (FWO). This research is also funded by
Ghent University and HiPEAC.

References

[1] A. Cantle and R. Bruce. An Introduction to the Nallatech Slipstream
FSB-FPGA Accelerator Module for Intel Platforms. White paper,
http://www.nallatech.com, Sept. 2007.

[2] M. Gschwind. Chip multiprocessing and the cell broadband engine.
In Computing Frontiers, pages 1–8, 2006.

[3] T. R. Halfhill. Floating point buoys ClearSpeed. Microprocessor Re-
port, page 7, Nov. 2003.

[4] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA
Tesla: A Unified Graphics and Computing Architecture. IEEE Micro,
28(2):39–55, 2008.

[5] D. Pham, S. Asano, M. Bolliger, M. N. Day, H. P. Hofstee, and et al.
The design and implementation of a first-generation CELL processor.
In IEEE International Solid-State Circuits Conference, pages 184–
592, 2005.

[6] S. Rul, H. Vandierendonck, and K. D. Bosschere. Towards automatic
program partitioning. In Computing Frontiers, pages 89–98, 2009.

[7] J. D. Thompson, D. G. Higgins, and T. J. Gibson. CLUSTAL
W: Improving the sensitivity of progressive multiple sequence align-
ment through sequence weighting, position-specific gap penalties and
weight matrix choice. Nucleic Acids Res, 22(22):4673–4680, 1994.

[8] H. Vandierendonck, S. Rul, M. Questier, and K. De Bosschere. Expe-
riences with parallelizing a bio-informatics program on the Cell BE.
In 3rd HiPEAC Conference, pages 161–175, 2008.

[9] D. H. Woo, H.-H. S. Lee, J. B. Fryman, A. D. Knies, and M. Eng.
POD: A 3D-Integrated Broad-Purpose Acceleration Layer. IEEE Mi-
cro, 28(4):28–40, 2008.

3


