2,774 research outputs found

    "Partial" Fidelities

    Get PDF
    For pairs, omega, rho, of density operators on a finite dimensional Hilbert space of dimension d I call k-fidelity the d - k smallest eigenvalues of | omega^1/2 rho^1/2 |. k-fidelities are jointly concave in omega, rho. This follows by representing them as infima over linear functions. For k = 0 known properties of fidelity and transition probability are reproduced. Partial fidelities characterize equivalence classes which are partially ordered in a natural way.Comment: LATEX2e, 14 page

    Realistic continuous-variable quantum teleportation with non-Gaussian resources

    Full text link
    We present a comprehensive investigation of nonideal continuous-variable quantum teleportation implemented with entangled non-Gaussian resources. We discuss in a unified framework the main decoherence mechanisms, including imperfect Bell measurements and propagation of optical fields in lossy fibers, applying the formalism of the characteristic function. By exploiting appropriate displacement strategies, we compute analytically the success probability of teleportation for input coherent states, and two classes of non-Gaussian entangled resources: Two-mode squeezed Bell-like states (that include as particular cases photon-added and photon-subtracted de-Gaussified states), and two-mode squeezed cat-like states. We discuss the optimization procedure on the free parameters of the non-Gaussian resources at fixed values of the squeezing and of the experimental quantities determining the inefficiencies of the non-ideal protocol. It is found that non-Gaussian resources enhance significantly the efficiency of teleportation and are more robust against decoherence than the corresponding Gaussian ones. Partial information on the alphabet of input states allows further significant improvement in the performance of the non-ideal teleportation protocol.Comment: 14 pages, 6 figure

    Matrices of fidelities for ensembles of quantum states and the Holevo quantity

    Full text link
    The entropy of the Gram matrix of a joint purification of an ensemble of K mixed states yields an upper bound for the Holevo information Chi of the ensemble. In this work we combine geometrical and probabilistic aspects of the ensemble in order to obtain useful bounds for Chi. This is done by constructing various correlation matrices involving fidelities between every pair of states from the ensemble. For K=3 quantum states we design a matrix of root fidelities that is positive and the entropy of which is conjectured to upper bound Chi. Slightly weaker bounds are established for arbitrary ensembles. Finally, we investigate correlation matrices involving multi-state fidelities in relation to the Holevo quantity.Comment: 24 pages, 3 figure

    On multipartite invariant states I. Unitary symmetry

    Get PDF
    We propose a natural generalization of bipartite Werner and isotropic states to multipartite systems consisting of an arbitrary even number of d-dimensional subsystems (qudits). These generalized states are invariant under the action of local unitary operations. We study basic properties of multipartite invariant states: separability criteria and multi-PPT conditions.Comment: 9 pages; slight correction

    Continuity and Stability of Partial Entropic Sums

    Full text link
    Extensions of Fannes' inequality with partial sums of the Tsallis entropy are obtained for both the classical and quantum cases. The definition of kth partial sum under the prescribed order of terms is given. Basic properties of introduced entropic measures and some applications are discussed. The derived estimates provide a complete characterization of the continuity and stability properties in the refined scale. The results are also reformulated in terms of Uhlmann's partial fidelities.Comment: 9 pages, no figures. Some explanatory and technical improvements are made. The bibliography is extended. Detected errors and typos are correcte
    • …
    corecore