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On multipartite invariant states I.

Unitary symmetry
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We propose a natural generalization of bipartite Werner and isotropic states to multipartite sys-
tems consisting of an arbitrary even number of d-dimensional subsystems (qudits). These general-
ized states are invariant under the action of local unitary operations. We study basic properties of
multipartite invariant states: separability criteria and multi-PPT conditions.

PACS numbers: 03.65.Ud, 03.67.-a

I. INTRODUCTION

Symmetry plays a prominent role in modern
physics. In many cases it enables one to simplify the
analysis of the corresponding problems and very often
it leads to much deeper understanding and the most
elegant mathematical formulation of the correspond-
ing physical theory. In Quantum Information Theory
[1] the idea of symmetry was first applied by Werner
[2] to construct an important family of bipartite d⊗ d
quantum states which are invariant under the follow-
ing local unitary operations

ρ −→ U ⊗U ρ (U ⊗U)† , (1)

for any U ∈ U(d), where U(d) denotes the group of
unitary d × d matrices. Another family of symmetric
states (so called isotropic states [3]) is governed by the
following invariance rule

ρ −→ U ⊗U ρ (U ⊗U)† , (2)

where U is the complex conjugate of U in some basis.
In the present paper we propose a natural gen-

eralization of these two families of symmetric states
to 2K partite quantum systems. A generalization is
straightforward: instead of 2 d-dimensional systems
(qudits), say Alice–Bob pair HAB = HA⊗HB with
HA = HB = Cd, we introduce 2K qudits with the to-
tal space H = H1 ⊗ . . . ⊗H2K = (Cd)⊗ 2K . We may
still interpret the total system as a bipartite one with
HA = H1 ⊗ . . . ⊗HK and HB = HK+1 ⊗ . . . ⊗H2K .
Equivalently, we may introduce K Alices and K Bobs
with HAi

= Hi and HBi
= HK+i, respectively. Then

HA and HB stand for the composite K Alices’ and
Bobs’ spaces. Now, we call a 2K partite quantum
state a Werner state state iff it is invariant under (1)
in each Alice-Bob pair Ai⊗Bi. Similarly, the defining
property of the generalized 2K partite isotropic state
is that it is invariant under (2) in each Alice-Bob pair
Ai⊗Bi. Note, that for K > 1 one has much more
possibilities: the most general invariant state is invari-
ant under (1) in some pairs, say A1 ⊗B1, . . . , AL⊗BL
and it is invariant under (2) in the remaining pairs:

AL+1 ⊗BL+1, . . . , AK ⊗BK . There are exactly 2K

different families of invariant 2K–partite states and
for K = 1 they reduce to the family of Werner and
isotropic states.

We analyze basic properties of these symmetric fam-
ilies. They are not independent but related by a set
of 2K generalized partial transpositions. Interestingly,
each family gives rise to 2K − 1–dimensional simplex.
We formulate the corresponding multi-separability
conditions and derive the generalized PPT criterions.

A generalization of Werner states for four and three
partite system was considered in [4] and [5]. Here we
solve the problem for even number of parties in full
generality.

The symmetric states of bipartite systems proved
to be very useful in Quantum Information Theory. In
particular The Peres-Horodecki PPT criterion [6, 7]
turns out to be the sufficient condition for separability
for symmetric states. Moreover, they play crucial role
in entanglement distillation [8–10]. It is hoped that
multipartite invariant state would play similar role in
multipartite composite systems. Recently, there is a
considerable effort to explore multipartite entangle-
ment [11–16] and symmetric states may serve as a
very useful laboratory.

The paper is organized as follows: in Section II we
recall basic properties of symmetric states for bipar-
tite systems. For pedagogical reason we first show in
Section III how to generalize symmetric states for 4-
partite systems and then in Section IV we construct
a general symmetric states for an arbitrary even 2K
number of parties.

In a forthcoming paper we present new classes of
multipartite invariant states by relaxing invariance to
certain subgroups of U(d).

II. 2–PARTITE INVARIANT STATES

A. Werner state

Werner states [2] play significant role in quantum in-
formation theory. Their characteristic property is that
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they commute with all unitaries of the form U ⊗U ,
that is, they are invariant under (1):

W = U ⊗UW (U ⊗U)† . (3)

The space of U ⊗U–invariant states is spanned by
identity I ⊗ 2 and the flip (permutation) operator
F(ψ⊗ϕ) = ϕ⊗ψ defined by

F =

d∑

i,j=1

|ij〉〈ji| . (4)

Hence, any U ⊗U–invariant operator may be written
as αI + βF. Let us introduce two projectors

Q0 =
1

2
(I ⊗ 2 + F) , Q1 =

1

2
(I ⊗ 2 − F) , (5)

i.e. Q0 (Q1) is the projector onto the symmetric
(anti-symmetric) subspace of Cd⊗Cd. Clearly, Qα

are U ⊗U–invariant, QαQβ = δαβQ
β , and Q0 +Q1 =

I ⊗ 2.
Now, the bipartite Werner state may written as fol-

lows

Wq = q0 Q̃
0 + q1 Q̃

1 , (6)

where Q̃α = Qα/TrQα and the corresponding fideli-
ties q = (q0, q1) are given by

qα = Tr(WqQ
α) , (7)

and satisfy qα ≥ 0 together with q0 + q1 = 1. Werner
showed that Wq is separable iff q1 ≤ 1/2.

It is evident that an arbitrary bipartite state ρ may
be projected onto the U ⊗U–invariant subspace of bi-
partite Werner state by the following twirl operation:

Dρ =

∫
U ⊗U ρU †⊗U † dU , (8)

where dU is an invariant normalized Haar measure on
U(d), that is, Dρ = Wq with fidelities qα = Tr(ρQα).

Consider now a partial transposition (1l⊗ τ)ρ (we
denote by 1l an identity operation acting on Md = set
of d × d matrices) of a state ρ. Taking into account
that

(1l⊗ τ)F = dP+
d , (9)

where P+
d is a 1-dimensional projector correspond-

ing to a canonical maximally entangled state ψ+
d =

d−1/2
∑
i |ii〉, that is

P+
d =

1

d

d∑

i,j=1

|ii〉〈jj| , (10)

and noting that

TrQα =
1

2
d(d+ (−1)α) , (11)

one easily finds

(1l⊗ τ)Q̃α =

1∑

β=0

Xαβ P̃
β , (12)

where we introduced

P 1 = P+
d , P 0 = I ⊗ 2 − P 1 , (13)

together with P̃α = Pα/TrPα, and the 2 × 2 matrix
X reads

X =
1

d

(
d− 1 1
d+ 1 −1

)
. (14)

Note, that

1∑

β=0

Xαβ = 1 , (15)

but X11 < 0 which prevents X to be a stochastic
matrix. The partial transposition of Wq is therefore
given by

(1l⊗ τ)Wq =

1∑

α=0

p′α P̃
α , (16)

with q′α =
∑

β qβXβα. Hence, Wq is PPT iff q′α ≥

0 which reproduces well known result q1 ≤ 1/2, i.e.
Werner states Wq is separable iff it is PPT.

B. Isotropic state

Consider now another class of bipartite states – so
called isotropic states [3] – which are invariant under
(2), i.e.

I = U ⊗U I (U ⊗U)† . (17)

Note that

U ⊗U ρ (U ⊗U)†

= (1l⊗ τ)
[
(U ⊗U)(1l⊗ τ)ρ(U ⊗U)†

]
. (18)

Let us observe that the space of U ⊗U–invariant
states is spanned by P 0 and P 1 defined in (13). More-
over, PαP β = δαβP

β and P 0 +P 1 = I ⊗ 2. Therefore,
an isotropic state may be written as follows:

Ip =

1∑

α=0

pαP̃
α , (19)

where the corresponding fidelities

pα = Tr(IpP
α) , (20)
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satisfy pα ≥ 0 and p0 + p1 = 1. An isotropic state is
separable iff p1 ≤ 1/d.

In analogy to (8) one may define projector into the
space of U ⊗U–invariant states

Eρ =

∫
U ⊗U ρ (U ⊗U)† dU , (21)

such that for any state ρ one has Eρ = Ip with pα =
Tr(ρPα). It follows from from (18) that

E = (1l⊗ τ) ◦ D ◦ (1l⊗ τ) . (22)

Finally, it is easy to show that the partial transpo-

sition (1l⊗ τ)P̃α is given by

(1l⊗ τ)P̃α =

1∑

β=0

Yαβ Q̃
β , (23)

where the 2 × 2 matrix Y reads

Y =
1

2

(
1 1

1 + d 1 − d

)
. (24)

Comparing (12) and (23) it is evident that Y = X−1.
Now, a state Ip is PPT iff p′α =

∑
β pβYβα ≥ 0, that

is iff p1 ≤ 1/d. Hence, like a Werner state, an isotropic
state is separable iff it is PPT.

III. 2×2–PARTITE INVARIANT STATES

A. Werner state

Consider now the following action of the unitary
group U(d) × U(d) on 4-partite state ρ

ρ −→ U⊗U ρU† ⊗U† , (25)

where U = (U1, U2), with Ui ∈ U(d) and

U⊗U = U1 ⊗U2 ⊗U1 ⊗U2 .

The 4-dimensional space of U⊗U–invariant states is
spanned by

I ⊗ 4 , I ⊗ 2
1|3 ⊗F2|4 , F1|3 ⊗ I ⊗ 2

2|4 , F1|3 ⊗F2|4 ,

where Li|j denotes a bipartite operator acting on

Hi⊗Hj . Hence, for example I ⊗ 2
1|3 ⊗F2|4 denotes the

following operator in H1 ⊗ . . . ⊗H4:

I ⊗ 2
1|3 ⊗F2|4 =

d∑

i,j=1

I ⊗ |i〉〈j| ⊗ I ⊗ |j〉〈i| .

Using Alice-Bob terminology the 4-partite operator
I ⊗ 2
1|3 ⊗F2|4 represents identity operator on the first

pair A1 ⊗B1 and the operator F acting on the second
pair A2 ⊗B2.

However, the more convenient way to parameterize
U⊗U–invariant subspace is to introduce the follow-
ing 4-partite orthogonal projectors:

Q0 = Q0
1|3 ⊗Q0

2|4 ,

Q1 = Q0
1|3 ⊗Q1

2|4 ,

Q2 = Q1
1|3 ⊗Q0

2|4 , (26)

Q3 = Q1
1|3 ⊗Q1

2|4 ,

where Qα are bipartite projectors defined in (5). It
is evident that Qi are U ⊗U–invariant, QiQj =
δijQ

j , and
∑3

i=0 Qi = I ⊗ 4. Now, let us introduce
more compact notation: denote by α a binary 2-
dimensional vector, i.e. α = (α1, α2) with αi ∈ {0, 1}.
Clearly, any binary vector α defines an integer num-
ber which can be written in binary notation as α1α2.
Using this notation the family (26) may be rewritten
in a compact form as follows:

Qα = Qα1

1|3 ⊗Qα2

2|4 . (27)

A 4-partite Werner state is defined by

W(2)
q =

3∑

i=0

qiQ̃
i ≡

∑

α

qαQ̃α , (28)

where Q̃α = Qα/TrQα, and the corresponding fideli-
ties

qα = Tr(W(2)
q Qα) ≥ 0 , (29)

satisfy
∑

α qα = 1. Note, that

Q̃α = Q̃α1

1|3 ⊗ Q̃α2

2|4 , (30)

and hence, using (11), one obtains

TrQα =

(
d

2

)2

(d+ (−1)α1)(d + (−1)α2)

=

(
d

2

)2

(d− 1)|α|(d+ 1)2−|α| , (31)

where |α| = α1 + α2 ∈ {0, 1, 2}.
This way the space of 4-partite-Werner states de-

fines 3–dimensional simplex. The vertices of this sim-

plex correspond to Q̃α.
It is evident that an arbitrary 4-partite state ρ may

be projected onto the U⊗U–invariant subspace of 4-
partite Werner state by the following twirl operation:

D(2)ρ =

∫
U⊗U ρU† ⊗U† dU , (32)
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where dU = dU1dU2 is an invariant normalized Haar

measure on U(d)2, that is, D(2)ρ = W
(2)
q with fidelities

qα = Tr(ρQα).
To find the corresponding separability criteria note

that W
(2)
q is separable iff there exists a separable state

ρ such that D(2)ρ = W
(2)
q . Let ρ be an extremal

separable state of the form

ρ = Pψ1 ⊗Pψ2 ⊗Pϕ1 ⊗Pϕ2 , (33)

where Pψ = |ψ〉〈ψ|, and ψi, ϕi are normalized vectors
in Cd. An arbitrary 4-separable state is a convex com-
bination of the extremal states of the form (33). One
easily finds for fidelities Tr(ρQα):

q0 = q(00) =
1

4
(1 + a1)(1 + a2) ,

q1 = q(01) =
1

4
(1 + a1)(1 − a2) ,

q2 = q(10) =
1

4
(1 − a1)(1 + a2) , (34)

q3 = q(11) =
1

4
(1 − a1)(1 − a2) ,

with

a1 = |〈ψ1|ϕ1〉|
2 , a2 = |〈ψ2|ϕ2〉|

2 . (35)

These formulae may be rewritten in a compact form
as follows:

qα =
1

4
(1 + (−1)α1a1)(1 + (−1)α2a2) . (36)

Now, since ai ≤ 1, the projection D(2) of the convex
hull of extremal separable states gives therefore

q00 ≤ 1 , q01, q10 ≤
1

2
, q11 ≤

1

4
, (37)

together with

q11 ≤ q01, q10 ≤ q00 . (38)

Note, that using binary notation equations (37) may
be compactly rewritten as follows

qα ≤
1

2|α|
. (39)

B. Isotropic state

Now, in analogy to the bipartite case we may define

a 4-partite isotropic state I
(2)
p which is invariant under

ρ′ = U⊗U ρ (U⊗U)† , (40)

with U⊗U = U1 ⊗U2 ⊗U1 ⊗U2. The recipe is very
simple: starting from (26) we may replace both Q’s by

P ’s defined in (13). One obtains the following family
of orthogonal projectors:

P0 = P 0
1|3 ⊗P 0

2|4 ,

P1 = P 0
1|3 ⊗P 1

2|4 ,

P2 = P 1
1|3 ⊗P 0

2|4 , (41)

P3 = P 1
1|3 ⊗P 1

2|4 .

It is evident that

U⊗UPi (U⊗U)† = Pi . (42)

Moreover, one has PiPj = δijP
j , and

∑3
i=0 Pi =

I ⊗ 4. Therefore, any U⊗U–invariant state may be
written as follows

I(2)
p =

3∑

i=0

piP̃
i ≡

∑

α

pαP̃α , (43)

where as usual Ã = A/TrA, and

Pα = Pα1

1|3 ⊗Pα2

2|4 . (44)

One easily finds

TrPα = (d2 − 1)2−|α| . (45)

The fidelities

pα = Tr(I(2)
p Pα) ≥ 0 , (46)

satisfy
∑

α pα = 1.

Denote by E(2) on orthogonal projector onto the
space of U⊗U–invariant states

E(2)ρ =

∫
U⊗U ρU† ⊗U

†
dU . (47)

It is evident that

E(2) = (1l⊗ 1l⊗ τ ⊗ τ) ◦ D(2) ◦ (1l⊗ 1l⊗ τ ⊗ τ) . (48)

Now, an isotropic state I
(2)
p is separable iff there exists

a separable state ρ such that E(2)ρ = I
(2)
p . Let us

consider an extremal separable state (1l⊗ 1l⊗ τ ⊗ τ)ρ
with ρ defined in (33), i.e. i.e.

(1l⊗ 1l⊗ τ ⊗ τ)ρ = Pψ1 ⊗Pψ2 ⊗PTϕ1
⊗PTϕ2

, (49)

and define the isotropic state
E(2)(Pψ1 ⊗Pψ2 ⊗PTϕ1

⊗PTϕ2
). One easily finds

for fidelities:

p0 = p(00) = (1 − b1)(1 − b2) ,

p1 = p(01) = b1(1 − b2) ,

p2 = p(10) = (1 − b1)b2 , (50)

p3 = p(11) = b1b2 ,
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or equivalently

pα = (1− [α1+(−1)α1b1])(1− [α2+(−1)α2b2]) , (51)

with

bi =
ai
d

=
|〈ψi|ϕi〉|

2

d
. (52)

Now, since bi ≤ 1/d, the projection E(2) of the convex
hull of extremal separable states gives therefore

p00 ≤ 1 , p01, p10 ≤
1

d
, p11 ≤

1

d2
, (53)

or more compactly in binary notation

pα ≤
1

d|α|
, (54)

and

p11 ≤ p01, p10 ≤ p00 . (55)

C. σ–invariant states

Let us observe that in HA⊗HB we may define not
only the partial transposition 1l⊗ 1l⊗ τ ⊗ τ considered
in the previous Section but also the following ones:

τ1 = (1l⊗ 1l⊗ 1l⊗ τ) , (56)

τ2 = (1l⊗ 1l⊗ τ ⊗ 1l) . (57)

All partial transpositions in Alice-Bob system may be
conveniently denoted by

τσ = 1l⊗ 1l⊗ τσ1 ⊗ τσ2 , (58)

where

τα =

{
1l , α = 0
τ , α = 1

. (59)

Clearly, for σ = (0, 0) one has trivial operation
τ(00) = 1l⊗ 4, whereas τ(01) = τ1, τ(10) = τ2 and τ(11)
reproduces double partial transposition 1l⊗ 1l⊗ τ ⊗ τ .

We call a 4-partite state ρ a σ–invariant iff τσρ is
U⊗U–invariant i.e.

(U⊗U)(τσρ)(U⊗U)† = τσρ . (60)

To characterize σ–invariant states let us define the
following families of projectors:

Π0
(1) = Q0

1|3 ⊗P 0
2|4 ,

Π1
(1) = Q0

1|3 ⊗P 1
2|4 ,

Π2
(1) = Q1

1|3 ⊗P 0
2|4 , (61)

Π3
(1) = Q1

1|3 ⊗P 1
2|4 ,

and

Π0
(2) = P 0

1|3 ⊗Q0
2|4 ,

Π1
(2) = P 0

1|3 ⊗Q1
2|4 ,

Π2
(2) = P 1

1|3 ⊗Q0
2|4 , (62)

Π3
(2) = P 1

1|3 ⊗Q1
2|4 .

Let us observe that 4 families: Qα, Pα, Πα
(1) and Πα

(2)

may be compactly written as

Πα
(σ) = Πα1

(σ1)1|3 ⊗Πα2

(σ2)2|4 , (63)

where

Πα
(σ) =

{
Qα , σ = 0
Pα , σ = 1

, (64)

that is,

Πα
(00) = Qα , Πα

(01) = Πα
(1) ,

Πα
(10) = Πα

(2) , Πα
(11) = Pα .

One easily shows that

1. Πα
(σ) are σ–invariant,

2. Πα
(σ) · Π

β

(σ) = δαβ Π
β

(σ),

3.
∑

α Πα
(σ) = 1l⊗ 4 .

It is therefore clear that any σ–invariant state may
be written as follows:

I
(σ)
f =

∑

α

f (σ)
α Π̃α

(σ) , (65)

where the corresponding fidelities

f (σ)
α = Tr(I

(σ)
f Πα

(σ)) , (66)

satisfy
∑

α f
(σ)
α = 1. Clearly, one has f

(00)
α = qα and

f
(11)
α = pα.
Now, to check for separability conditions note that

I
(σ)
f is separable iff there exists a separable state ρ

such that D
(2)
σ ρ is separable, where

D(2)
σ = τσ ◦ D(2) ◦ τσ , (67)

denotes the projector onto the subspace of σ–

invariant states. It is evident that D
(2)
(00) = D(2) and

D
(2)
(11) = E(2). In analogy to (34) and (50) one eas-

ily finds for fidelities corresponding to D
(2)
(01)(ρ) with ρ

being en extremal separable state (33):

f
(01)
(00) =

1

2
(1 + a1)(1 − b2) ,

f
(01)
(01) =

1

2
(1 + a1)b2 ,

f
(01)
(10) =

1

2
(1 − a1)(1 − b2) , (68)

f
(01)
(11) =

1

2
(1 − a1)b2 ,
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and similarly for D
(2)
(10)(ρ)

f
(10)
(00) =

1

2
(1 − b1)(1 + a2) ,

f
(10)
(01) =

1

2
(1 − b1)(1 − a2) ,

f
(10)
(10) =

1

2
b1(1 + a2) , (69)

f
(10)
(11) =

1

2
b1(1 + a2) .

The projection D
(2)
σ of the convex hull of extremal

separable states gives therefore

f (σ)
α ≤

1

2|α|

(
2

d

)|σα|

, (70)

where σα = (σ1α1, σ2α2), and

f (σ)
α ≤ f

(σ)
β , for |α| > |β| , (71)

which generalize (38)–(39) and (54)–(55).

D. σ–PPT states

We call a 4-partite state ρ in HA⊗HB =
HA1 ⊗HA2 ⊗HB1 ⊗HB2 a σ–PPT iff

τσρ ≥ 0 . (72)

Now, if O is ν–invariant operator in HA⊗HB, then
τµO is (µ ⊕ ν)–invariant, where ⊕ denotes addition
mod 2. Writing O as

O =
∑

α

oαΠ̃α
(ν) , (73)

one has

τµO =
∑

α

oατµΠ̃α
(ν) . (74)

One easily computes the µ–partial transposition of

Π̃α
(ν):

τµΠ̃α
(ν) =

∑

β

Z
αβ

(µ|ν) Π̃
β

(µ⊕ν) , (75)

where the 4 × 4 matrix Z(µ|ν) is defined as follows:

Z(µ|ν) = Z(µ1|ν1) ⊗Z(µ2|ν2) , (76)

with

Z(µ|ν) =






I , µ = 0 , ν = 0, 1
X , µ = 1 , ν = 0
Y , µ = 1 , ν = 1

, (77)

and I denotes 2 × 2 unit matrix. Matrices X and Y

are defined in (14) and (24), respectively. The cor-
responding matrix elements are defined in an obvious
way

(A⊗B)αβ = Aα1β1 Bα2β2 .

The structure of Z(µ|ν) is encoded into the following
table:

µ\ ν (00) (01) (10) (11)

(00) I⊗ I I⊗ I I⊗ I I⊗ I

(01) I⊗X I⊗Y I⊗X I⊗Y

(10) X⊗ I X⊗ I Y⊗ I Y⊗ I

(11) X⊗X X⊗Y Y⊗X Y⊗Y

Now, if ν–invariant operatorO is semi-positive, i.e.
oα ≥ 0, then O is µ–PPT iff

∑

β

oβ Z
βα

(µ|ν) ≥ 0 , (78)

for all binary 2-vectors α.
In particular one may look for the σ–PPT condi-

tions for the 4-partite Werner state. One easily finds
that

1. Wq is (01)–PPT iff

q00 ≥ q01 , q10 ≥ q11 , (79)

2. Wq is (10)–PPT iff

q00 ≥ q10 , q01 ≥ q11 , (80)

3. Wq is (11)–PPT iff

(d− 1)(q00 − q01) + (d+ 1)(q10 − q11) ≥ 0 ,

(d− 1)(q00 − q10) + (d+ 1)(q01 − q11) ≥ 0 , (81)

(q00 + q11) − (q01 + q10) ≥ 0 .

Note that PPT conditions (79)–(81) imply

q11 ≤ q01, q10 ≤ q00 , (82)

which reproduces (38), together with

q01 + q10 ≤ q00 + q11 , (83)

which is equivalent to

q01 + q10 ≤
1

2
. (84)

Now, (82) and (84) imply

2q11 ≤ q01 + q10 ≤
1

2
, (85)
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and hence

q11 ≤
1

4
, (86)

which, together with

q01, q10 ≤
1

2
, (87)

reproduces (39). This shows that 4-partite Werner
state is 4-separable iff it is σ–PPT for all binary vec-
tors σ. Interestingly, one may prove (see Appendix)
that 4-partite Werner state is 12|34 (or A⊗B) bi-
separable iff it is (11)–PPT.

One may perform similar analysis for other invari-
ant states. Again, a µ-invariant state is 4-separable
iff it is ν–PPT for all binary vectors ν. It is A⊗B
bi-separable iff it is (11)–PPT.

E. Reductions

It is clear that reducing 4-partite invariant state
with respect to the pair A1 ⊗B1 (A2 ⊗B2) one ob-
tains bipartite invariant state of A2 ⊗B2 (A1 ⊗B1).
One easily finds

Tr13 W
(2)
q = Wq′ , (88)

with

q′α =
∑

β

q(βα) . (89)

Similarly,

Tr24 W
(2)
q = Wq′′ , (90)

with

q′′α =
∑

β

q(αβ) . (91)

This observation may be easily generalized to an ar-

bitrary 4-partite invariant state I
(σ)
f :

Tr13 I
(σ)
f =

∑

α2

fα2 Πα2

(σ2) , (92)

where Πα
(σ) is defined in (64) and

fα2 =
∑

α1

f(α1,α2) . (93)

Finally, let us observe that a reduction with respect
to any other pair produces maximally mixed state of
the remaining pair, e.g.

Tr12 I
(σ)
f = I ⊗ 2

3|4 . (94)

IV. 2K–PARTITE INVARIANT STATES

A. General σ–invariant state

Consider now 2K–partite system and define the fol-
lowing action of K copies of U(d):

ρ′ = U⊗U ρU† ⊗U† , (95)

where U = (U1, . . . , UK) with Ui ∈ U(d) and

U⊗U = U1 ⊗ . . . UK ⊗U1 ⊗ . . . UK .

A state ρ is U⊗U–invariant iff

U⊗U ρ = ρU⊗U ,

for any U ∈ U(d)K . Denote by D(K) the correspond-
ing projector onto the space of U⊗U–invariant states

D(K)ρ =

∫
dUU⊗U ρU† ⊗U† , (96)

with dU = dU1 . . . dUK being an normalized invariant
Haar measure on U(d)K .

Now, let σ be a binary K-dimensional vector, i.e.
σ = (σ1, . . . , σK) with σj ∈ {0, 1}. For any σ one
may define σ–partial transposition on HA⊗HB as
follows:

τσ = 1l⊗K ⊗ τσ1 ⊗ . . . ⊗ τσK , (97)

where τα is defined in (59). We call a state ρ σ–
invariant iff τσρ is U⊗U–invariant. The correspond-

ing projector D
(K)
σ onto the space of σ–invariant

states reads

D(K)
σ = τσ ◦ D(K) ◦ τσ . (98)

To parameterize the space of σ–invariant states let
us introduce the following family of projectors:

Πα
(σ) = Πα1

(σ1)1|K+1 ⊗ . . . ⊗ΠαK

(σK)K|2K , (99)

where Παi

(σi)
are defined in (64). It generalizes 4-partite

family (63). Note that we have 2K families parame-
terized by σ each containing 2K elements.

One easily shows that

1. Πα
(σ) are σ–invariant,

2. Πα
(σ) · Π

β

(σ) = δαβ Π
β

(σ),

3.
∑

α Πα
(σ) = 1l⊗ 2K .

It is therefore clear that any σ–invariant state may
be written as follows:

I
(σ)
f =

∑

α

f (σ)
α Π̃α

(σ) , (100)
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where the corresponding fidelities

f (σ)
α = Tr(I

(σ)
f Πα

(σ)) , (101)

satisfy
∑

α f
(σ)
α = 1. Hence, the space of σ–invariant

states gives rise to a (2K − 1)–dimensional simplex.
In particular for σ = (0, . . . , 0) one obtains a 2K-

partite Werner state

W(K)
q =

∑

α

qαQ̃α , (102)

with

Q̃α = Q̃α1

1|K+1 ⊗ . . . ⊗ Q̃αK

K|2K . (103)

On the other hand for σ = (1, . . . , 1) one obtains
U⊗U–invariant 2K-partite isotropic state

I(K)
p =

∑

α

pαP̃α , (104)

with

P̃α = P̃α1

1|K+1 ⊗ . . . ⊗ P̃αK

K|2K . (105)

B. Separability

To find the corresponding separability conditions
for σ–invariant states let us consider a multi-
separable state

ρσ = τσρ , (106)

with ρ being a product state

ρ = Pψ1 ⊗ . . . ⊗PψK
⊗Pϕ1 ⊗ . . . ⊗PϕK

. (107)

One easily computes the corresponding fidelities

f (σ)
α = Tr(ρσΠα

(σ)) , (108)

and finds

f (σ)
α =

1

2K−|σ|

K∏

i=1

ui , (109)

where

ui =

{
1 + (−1)αi ai , σi = 0

1 − [αi + (−1)αi bi] , σi = 1
, (110)

with

ai = |〈ψi|ϕi〉|
2 , bi =

ai
d
. (111)

Hence, a σ–invariant state I
(σ)
f is multi-separable iff

f (σ)
α ≤

1

2|α|

(
2

d

)|σα|

, (112)

where σα = (σ1α1, . . . , σKαK), and

f (σ)
α ≤ f

(σ)
β , for |α| > |β| . (113)

In particular for 2K-partite Werner state, i.e. σ =
(0, . . . , 0) one has

qα ≤
1

2|α|
, (114)

whereas for 2K-partite isotropic state, i.e. σ =
(1, . . . , 1), one finds

pα ≤
1

d|α|
. (115)

Finally, one may prove that a general 2K–partite
µ-invariant state is 2K-separable iff it is ν–PPT for

all binary vectors ν and it is A⊗B bi-separable iff it
is (1 . . . 1)–PPT.

C. Reductions

It is evident that reducing the 2K partite σ–
invariant state with respect to Ai⊗Bi pair one ob-
tains 2(K − 1)–partite σ(i)–invariant state with

σ(i) = (σ1, . . . , σ̌i, . . . , σK) , (116)

where σ̌i denotes the omitting of σi. The reduced
state lives in

H1 ⊗ . . . Ȟi⊗ . . . ⊗Ȟi+K ⊗ . . . ⊗H2K . (117)

The corresponding fidelities are given by

f
(σ(i))

(α1...αK−1)
=

∑

β

f
(σ)
(α1...αi−1βαi...αK−1) . (118)

Note, that reduction with respect to a ‘mixed’ pair,
say Ai⊗Bj with i 6= j, is equivalent to two ‘natu-
ral’ reductions with respect to Ai⊗Bi and Aj ⊗Bj
and hence it gives rise to 2(K − 2)–partite invariant
state. This procedure establishes a natural hierarchy
of multipartite invariant states.

Appendix

The 4-partite Werner state W
(2)
q is 12|34 (or A⊗B)

separable iff there exists a bi-separable state ̺ such

that W
(2)
q = D(2)̺. Consider an extremal A|B separa-

ble state ̺ = PA⊗PB where PA and PB are bipartite
projectors living in HA = HB = H1 ⊗H2 ≡ (Cd)⊗ 2.
Simple calculations give rise to the corresponding fi-
delities qα = Tr(̺Qα):
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q00 =
1

4

{
1 + Tr2 (Tr1PA · Tr1PB) + Tr1 (Tr2PA · Tr2PB) + Tr12(PA · PB)

}
,

q01 =
1

4

{
1 − Tr2 (Tr1PA · Tr1PB) + Tr1 (Tr2PA · Tr2PB) − Tr12(PA · PB)

}
,

q10 =
1

4

{
1 + Tr2 (Tr1PA · Tr1PB) − Tr1 (Tr2PA · Tr2PB) − Tr12(PA · PB)

}
, (A.1)

q11 =
1

4

{
1 − Tr2 (Tr1PA · Tr1PB) − Tr1 (Tr2PA · Tr2PB) + Tr12(PA · PB)

}
,

where Tr1 denotes a partial trace in H1 ⊗H2. There-
fore, for a general A|B separable state (convex hull of
extremal product states) one obtains from (A.1):

q01, q10, q11 ≤ q00 , (A.2)

and

q01 + q10 ≤
1

2
. (A.3)

Note, that above conditions are equivalent to the con-
dition (81) for (11)–PPT. The third equation in (81)
implies (A.3) whereas the first (second) and third
gives q00 ≥ q01 (q00 ≥ q10). Note, that 4-separable
Werner state is necessarily bi-separable but the con-
verse is not true. Taking ̺ = PA⊗PB such that

Tr2 (Tr1PA · Tr1PB) = Tr1 (Tr2PA · Tr2PB) , (A.4)

and Tr12(PA · PB) 6= 0 one obtains a bi-separable
Werner state D(2)(̺) with

q01 = q10 < q11 , (A.5)

which contradicts 4-separability.
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