1,237 research outputs found

    SymbioCity: Smart Cities for Smarter Networks

    Get PDF
    The "Smart City" (SC) concept revolves around the idea of embodying cutting-edge ICT solutions in the very fabric of future cities, in order to offer new and better services to citizens while lowering the city management costs, both in monetary, social, and environmental terms. In this framework, communication technologies are perceived as subservient to the SC services, providing the means to collect and process the data needed to make the services function. In this paper, we propose a new vision in which technology and SC services are designed to take advantage of each other in a symbiotic manner. According to this new paradigm, which we call "SymbioCity", SC services can indeed be exploited to improve the performance of the same communication systems that provide them with data. Suggestive examples of this symbiotic ecosystem are discussed in the paper. The dissertation is then substantiated in a proof-of-concept case study, where we show how the traffic monitoring service provided by the London Smart City initiative can be used to predict the density of users in a certain zone and optimize the cellular service in that area.Comment: 14 pages, submitted for publication to ETT Transactions on Emerging Telecommunications Technologie

    Quantum Communication Uplink to a 3U CubeSat: Feasibility & Design

    Full text link
    Satellites are the efficient way to achieve global scale quantum communication (Q.Com) because unavoidable losses restrict fiber based Q.Com to a few hundred kilometers. We demonstrate the feasibility of establishing a Q.Com uplink with a tiny 3U CubeSat (measuring just 10X10X32 cm^3 ) using commercial off-the-shelf components, the majority of which have space heritage. We demonstrate how to leverage the latest advancements in nano-satellite body-pointing to show that our 4kg CubeSat can provide performance comparable to much larger 600kg satellite missions. A comprehensive link budget and simulation was performed to calculate the secure key rates. We discuss design choices and trade-offs to maximize the key rate while minimizing the cost and development needed. Our detailed design and feasibility study can be readily used as a template for global scale Q.Com.Comment: 24 pages, 9 figures, 2 tables. Fixed tables and figure

    Survey and Systematization of Secure Device Pairing

    Full text link
    Secure Device Pairing (SDP) schemes have been developed to facilitate secure communications among smart devices, both personal mobile devices and Internet of Things (IoT) devices. Comparison and assessment of SDP schemes is troublesome, because each scheme makes different assumptions about out-of-band channels and adversary models, and are driven by their particular use-cases. A conceptual model that facilitates meaningful comparison among SDP schemes is missing. We provide such a model. In this article, we survey and analyze a wide range of SDP schemes that are described in the literature, including a number that have been adopted as standards. A system model and consistent terminology for SDP schemes are built on the foundation of this survey, which are then used to classify existing SDP schemes into a taxonomy that, for the first time, enables their meaningful comparison and analysis.The existing SDP schemes are analyzed using this model, revealing common systemic security weaknesses among the surveyed SDP schemes that should become priority areas for future SDP research, such as improving the integration of privacy requirements into the design of SDP schemes. Our results allow SDP scheme designers to create schemes that are more easily comparable with one another, and to assist the prevention of persisting the weaknesses common to the current generation of SDP schemes.Comment: 34 pages, 5 figures, 3 tables, accepted at IEEE Communications Surveys & Tutorials 2017 (Volume: PP, Issue: 99

    Defining and Surveying Wireless Link Virtualization and Wireless Network Virtualization

    Get PDF
    Virtualization is a topic of great interest in the area of mobile and wireless communication systems. However, the term virtualization is used in an inexact manner which makes it difficult to compare and contrast work that has been carried out to date. The purpose of this paper is twofold. In the first place, this paper develops a formal theory for defining virtualization. In the second instance, this theory is used as a way of surveying a body of work in the field of wireless link virtualization, a subspace of wireless network virtualization. The formal theory provides a means for distinguishing work that should be classed as resource allocation as distinct from virtualization. It also facilitates a further classification of the representation level at which the virtualization occurs, which makes comparison of work more meaningful. This paper provides a comprehensive survey and highlights gaps in the research that make for fruitful future work

    Analysis of packet scheduling for UMTS EUL - design decisions and performance evaluation

    Get PDF
    The UMTS Enhanced Uplink (EUL) provides higher capacity, increased data rates and smaller latency on the communication link from users towards the network. In this paper we present a performance comparison of three distinct EUL scheduling schemes (one-by-one, partial parallel and full parallel) taking into account both the packet level characteristics and the flow level dynamics due to the (random) user behaviour.\ud Using a very efficient hybrid analytical and simulation approach we analyse the three schemes with respect to performance measures such as mean file transfer time and fairness. In UMTS, a significant part of the system capacity will be used to support non-elastic voice traffic. Hence, part of our investigation is dedicated to the effects that the volume of voice traffic has on the performance of the elastic traffic supported by the EUL. Finally, we evaluate the impact that implementation specifics of a full parallel scheduler has on these measures.\ud \ud Our main conclusion is that our partial parallel scheduler, which is a hybrid between the one-by-one and full parallel, outperforms the other two schedulers in terms of mean flow transfer time, and is less sensitive to volume and nature of voice traffic. However, under certain circumstances, the partial parallel scheduler exhibits a somewhat lower fairness than the alternatives

    Traffic Profiles and Performance Modelling of Heterogeneous Networks

    Get PDF
    This thesis considers the analysis and study of short and long-term traffic patterns of heterogeneous networks. A large number of traffic profiles from different locations and network environments have been determined. The result of the analysis of these patterns has led to a new parameter, namely the 'application signature'. It was found that these signatures manifest themselves in various granularities over time, and are usually unique to an application, permanent virtual circuit (PVC), user or service. The differentiation of the application signatures into different categories creates a foundation for short and long-term management of networks. The thesis therefore looks from the micro and macro perspective on traffic management, covering both aspects. The long-term traffic patterns have been used to develop a novel methodology for network planning and design. As the size and complexity of interconnected systems grow steadily, usually covering different time zones, geographical and political areas, a new methodology has been developed as part of this thesis. A part of the methodology is a new overbooking mechanism, which stands in contrast to existing overbooking methods created by companies like Bell Labs. The new overbooking provides companies with cheaper network design and higher average throughput. In addition, new requirements like risk factors have been incorporated into the methodology, which lay historically outside the design process. A large network service provider has implemented the overbooking mechanism into their network planning process, enabling practical evaluation. The other aspect of the thesis looks at short-term traffic patterns, to analyse how congestion can be controlled. Reoccurring short-term traffic patterns, the application signatures, have been used for this research to develop the "packet train model" further. Through this research a new congestion control mechanism was created to investigate how the application signatures and the "extended packet train model" could be used. To validate the results, a software simulation has been written that executes the proprietary congestion mechanism and the new mechanism for comparison. Application signatures for the TCP/IP protocols have been applied in the simulation and the results are displayed and discussed in the thesis. The findings show the effects that frame relay congestion control mechanisms have on TCP/IP, where the re-sending of segments, buffer allocation, delay and throughput are compared. The results prove that application signatures can be used effectively to enhance existing congestion control mechanisms.AT&T (UK) Ltd, Englan

    Fairness-oriented overlay VPN topology construction

    Get PDF
    An important issue in dynamically constructed Virtual Private Networks (VPN) is how the overlay topology is created and maintained. Classical VPN topologies, such as hub-and-spoke or full-mesh, fail to remain convenient and viable when the number of nodes grows to as little as a few tens. Convenient topology formation mechanisms should be distributed, should permit incremental and dynamic operations, and should limit the number of nodes a new entry connects with. In this work, we show that approaches devised to create “short” networks, while yielding a significant total network throughput, may be severely affected by unfairness issues, i.e., different pair of nodes may experience a widely different throughput performance. Hence, we introduce a fairness-oriented topology formation algorithm for VPN. The proposed algorithm is incremental, meaning that the addition of a new node to the overlay topology does not imply rewiring of already established overlay links. Simulation results show that our proposed approach achieves high fairness levels, as quantified in terms of well known Jain's fairness index, meanwhile retaining satisfactory throughput performance

    Evaluation of virtual routing appliances as routers virtual environment

    Get PDF
    A virtual routing appliance is a system for the rapid, automated management and employment of virtual networks. Virtual routing appliances utilize virtual machines to enable virtual infrastructure, and they have been used commonly in order to implement experimental networks and devoted subnets over a virtual network. Existing research in this area such as cluster-based virtual routers, and Xen routers require the use of physical resources to establish connectivity and to guarantee efficient resource utilization. The virtual routing appliance uses dynamic routing protocols such as RIP, and OSPF to forward traffic between different subnets and manage IP packets at the IP layer. The virtual routing appliance permits rapidly deployable virtual infrastructure, which is helpful for installing isolated infrastructure for restricted purposes, and which is also vital to the deployment of both network and application services. This research is a self-sufficient initiative to evaluate the feasibility of setting up virtual routing appliances in a virtual environment. A virtual routing appliance can convey about substantial cost benefits to organizations, especially educational institutions with limited use of physical resources
    corecore