7 research outputs found

    Gradient based iterative solutions for general linear matrix equations

    Get PDF
    AbstractIn this paper, we present a gradient based iterative algorithm for solving general linear matrix equations by extending the Jacobi iteration and by applying the hierarchical identification principle. Convergence analysis indicates that the iterative solutions always converge fast to the exact solutions for any initial values and small condition numbers of the associated matrices. Two numerical examples are provided to show that the proposed algorithm is effective

    The general solutions of singular and non-singular matrix fractional time-varying descriptor systems with constant coefficient matrices in Caputo sense

    Get PDF
    AbstractIn this paper, we generalize the time-varying descriptor systems to the case of fractional order in matrix forms. Moreover, we present the general exact solutions of the linear singular and non-singular matrix fractional time-varying descriptor systems with constant coefficient matrices in Caputo sense by using a new attractive method. Finally, two illustrated examples are also given to show our new approach

    When the Tracy-Singh product of matrices represents a certain operation on linear operators

    Full text link
    Given two linear transformations, with representing matrices AA and BB with respect to some bases, it is not clear, in general, whether the Tracy-Singh product of the matrices AA and BB corresponds to a particular operation on the linear transformations. Nevertheless, it is not hard to show that in the particular case that each matrix is a square matrix of order of the form n2n^2, n>1n>1, and is partitioned into n2n^2 square blocks of order nn, then their Tracy-Singh product, A⊠BA \boxtimes B, is similar to A⊗BA \otimes B, and the change of basis matrix is a permutation matrix. In this note, we prove that in the special case of linear operators induced from set-theoretic solutions of the Yang-Baxter equation, the Tracy-Singh product of their representing matrices is the representing matrix of the linear operator obtained from the direct product of the set-theoretic solutions.Comment: arXiv admin note: substantial text overlap with arXiv:2303.0296

    āļŠāļĄāļšāļąāļ•āļīāđ€āļŠāļīāļ‡āļžāļĩāļŠāļ„āļ“āļīāļ•āļ‚āļ­āļ‡āļœāļĨāļ„āļđāļ“āđ‚āļ„āļĢāđ€āļ™āļ„āđ€āļ„āļ­āļĢāđŒāđāļšāļšāļšāļĨāđ‡āļ­āļāđāļĨāļ°āļ•āļąāļ§āļ”āļģāđ€āļ™āļīāļ™āļāļēāļĢāđ€āļ§āļāđ€āļ•āļ­āļĢāđŒāđāļšāļšāļšāļĨāđ‡āļ­āļāļŠāļģāļŦāļĢāļąāļšāđ€āļĄāļ—āļĢāļīāļāļ‹āđŒāđ€āļŦāļ™āļ·āļ­āļāļķāđˆāļ‡āļĢāļīāļ‡āļŠāļĨāļąāļšāļ—āļĩāđˆ

    Get PDF
    āļšāļ—āļ„āļąāļ”āļĒāđˆāļ­ āđ€āļĢāļēāļ‚āļĒāļēāļĒāđāļ™āļ§āļ„āļīāļ”āļ‚āļ­āļ‡āļœāļĨāļ„āļđāļ“āđ‚āļ„āļĢāđ€āļ™āļ„āđ€āļ„āļ­āļĢāđŒāđ„āļ›āļŠāļđāđˆāļœāļĨāļ„āļđāļ“āđ‚āļ„āļĢāđ€āļ™āļ„āđ€āļ„āļ­āļĢāđŒāđāļšāļšāļšāļĨāđ‡āļ­āļāļŠāļģāļŦāļĢāļąāļšāđ€āļĄāļ—āļĢāļīāļāļ‹āđŒāđ€āļŦāļ™āļ·āļ­āļāļķāđˆāļ‡āļĢāļīāļ‡āļŠāļĨāļąāļšāļ—āļĩāđˆÂ  āđ€āļĢāļēāđ„āļ”āđ‰āļ§āđˆāļēāļœāļĨāļ„āļđāļ“āļ”āļąāļ‡āļāļĨāđˆāļēāļ§āđ€āļ‚āđ‰āļēāļāļąāļ™āđ„āļ”āđ‰āļāļąāļšāļāļēāļĢāļšāļ§āļāđ€āļĄāļ—āļĢāļīāļāļ‹āđŒ āļāļēāļĢāļ„āļđāļ“āđ€āļĄāļ—āļĢāļīāļāļ‹āđŒāļ”āđ‰āļ§āļĒāļŠāđ€āļāļĨāļēāļĢāđŒ āļāļēāļĢāļ„āļđāļ“āđ€āļĄāļ—āļĢāļīāļāļ‹āđŒāđāļšāļšāļ›āļĢāļāļ•āļī āļāļēāļĢāļŠāļĨāļąāļšāđ€āļ›āļĨāļĩāđˆāļĒāļ™ āđāļĨāļ°āļĢāļ­āļĒāđ€āļĄāļ—āļĢāļīāļāļ‹āđŒÂ  āļŠāļĄāļšāļąāļ•āļīāđ€āļŠāļīāļ‡āļžāļĩāļŠāļ„āļ“āļīāļ•āļŦāļĨāļēāļĒāļ­āļĒāđˆāļēāļ‡āļ‚āļ­āļ‡āđ€āļĄāļ—āļĢāļīāļāļ‹āđŒ āđ€āļŠāđˆāļ™ āļ„āļ§āļēāļĄāļŠāļĄāļĄāļēāļ•āļĢ āļāļēāļĢāļŦāļēāļœāļāļœāļąāļ™āđ„āļ”āđ‰ āļ āļēāļ§āļ°āļ„āļĨāđ‰āļēāļĒ āļŠāļĄāļ āļēāļ„ āļāļēāļĢāļ—āļģāđ€āļ›āđ‡āļ™āđ€āļĄāļ—āļĢāļīāļāļ‹āđŒāļ—āđāļĒāļ‡āļĄāļļāļĄāđ„āļ”āđ‰ āļ–āļđāļāļĢāļąāļāļĐāļēāđ„āļ§āđ‰āļ āļēāļĒāđƒāļ•āđ‰āļœāļĨāļ„āļđāļ“āđ‚āļ„āļĢāđ€āļ™āļ„āđ€āļ„āļ­āļĢāđŒāđāļšāļšāļšāļĨāđ‡āļ­āļ āļ™āļ­āļāļˆāļēāļāļ™āļĩāđ‰āđ€āļĢāļēāļžāļīāļˆāļēāļĢāļ“āļēāļ„āļ§āļēāļĄāļŠāļąāļĄāļžāļąāļ™āļ˜āđŒāļĢāļ°āļŦāļ§āđˆāļēāļ‡āļœāļĨāļ„āļđāļ“āļ”āļąāļ‡āļāļĨāđˆāļēāļ§āļāļąāļšāļ•āļąāļ§āļ”āļģāđ€āļ™āļīāļ™āļāļēāļĢāđ€āļ§āļāđ€āļ•āļ­āļĢāđŒāđāļšāļšāļšāļĨāđ‡āļ­āļ āļ„āļ§āļēāļĄāļŠāļąāļĄāļžāļąāļ™āļ˜āđŒāļ”āļąāļ‡āļāļĨāđˆāļēāļ§āļŠāļēāļĄāļēāļĢāļ–āļ™āļģāđ„āļ›āļĨāļ”āļĢāļđāļ›āļŠāļĄāļāļēāļĢāđ€āļĄāļ—āļĢāļīāļāļ‹āđŒāđ€āļŠāļīāļ‡āđ€āļŠāđ‰āļ™āđƒāļŦāđ‰āļ­āļĒāļđāđˆāđƒāļ™āļĢāļđāļ›āļŠāļĄāļāļēāļĢāđ€āļ§āļāđ€āļ•āļ­āļĢāđŒ-āđ€āļĄāļ—āļĢāļīāļāļ‹āđŒāļ­āļĒāđˆāļēāļ‡āļ‡āđˆāļēāļĒ  - - -  Algebraic Properties of the Block Kronecker Product and a Block Vector-Operator for Matrices over a Commutative Semiring  ABSTRACT We extend the notion of Kronecker product to the block Kronecker product for matrices over a commutative semiring. It turns out that this matrix product is compatible with the matrix addition, the scalar multiplication, the usual multiplication, the transposition, and the traces. Certain algebraic properties of matrices, such as symmetry, invertibility, similarity, congruence, diagonalizability, are preserved under the block Kronecker product. In addition, we investigate a relation between this matrix product and a block vector-operator. Such relation can be applied to reduce certain linear matrix equations to simple vector-matrix equations

    The Tracy-Singh product of solutions of the Yang-Baxter equation

    Full text link
    Let VV and Vâ€ēV' be vector spaces over the same field with dim⁥(V)=n\operatorname{dim}(V )=n and dim⁥(Vâ€ē)=m\operatorname{dim}(V')=m. Let c:V⊗V→V⊗Vc:V \otimes V \rightarrow V \otimes V and d:Vâ€ē⊗Vâ€ē→Vâ€ē⊗Vâ€ēd:V'\otimes V' \rightarrow V' \otimes V' be solutions of the Yang-Baxter equation. We show that the Tracy-Singh (or block Kronecker) product of the matrices cc and dd with a particular partition into blocks of cc and dd is the representing matrix of a solution of the Yang-Baxter equation, cd~:W⊗W→W⊗W\tilde{ c_d}:\mathcal{ W} \otimes \mathcal{ W} \rightarrow \mathcal{ W} \otimes \mathcal{ W} , with dim⁥(W)=nm\operatorname{dim}(\mathcal{ W} )=nm. Iteratively, it is possible to construct from cc and dd an infinite family of solutions of the Yang-Baxter equation.Comment: arXiv admin note: text overlap with arXiv:2212.1380
    corecore