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a b s t r a c t

In this paper, we present a gradient based iterative algorithm for solving general linear
matrix equations by extending the Jacobi iteration and by applying the hierarchical
identification principle. Convergence analysis indicates that the iterative solutions always
converge fast to the exact solutions for any initial values and small condition numbers of
the associated matrices. Two numerical examples are provided to show that the proposed
algorithm is effective.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Matrix equations are often encountered in systems and control, such as Lyapunov matrix equations, Sylvester matrix
equations and so on. Traditional methods convert such matrix equations into their equivalent forms by using the Kronecker
product, however, which involve the inversion of the associated large matrix and result in increasing computation and
excessive computer memory. By extending the Jacobi iteration [1], the gradient based and least-squares based iterative
methods proposed in [2,3] can be used to solve the general matrix equation:

p∑
i=1

AiXBi = F ,

which includes the Sylvestermatrix equation as a special form. But themethod there is not suitable for solving general linear
matrix equations in (1) in the next section, which include the Lyapunov equations, Sylvester equations as the special cases,
e.g., [4].
Iterative approaches for solving matrix equations and recursive identification for parameter estimation have received

much attention, e.g., [5–10]. For example, Dehghan and Hajarian studied the iterative algorithm for the reflexive solutions
of the generalized coupled Sylvester matrix equations [11]; Mukaidani et al. gave a numerical algorithm for finding solution
of cross-coupled algebraic Riccati equations [12]; Zhou et al. studied the explicit solutions to generalized Sylvester matrix
equations [13,14]. Also, Kilicman et al. presented the vector least-squares solutions for coupled singular matrix equations
[5]; Ding andChenpresented a gradient based and a least-squares based iterative algorithms for generalized Sylvestermatrix
equations and general coupled matrix equations by introducing the star (?) product of matrices [15,16]. Finally, Al Zhour
et al. discussed some new connections betweenmatrix products for partitioned and non-partitionedmatrices, including the
star product [17] and the solutions of other matrix equations can be found in [18–20].
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This paper decomposes the system in (1) into several subsystems by applying the hierarchical identification principle [15,
21,22], regards the unknown matrix X as the system parameter matrix, and presents a gradient based iterative algorithm
for solving the matrix equations in (1).
The rest of the paper is organized as follows. Section 2 derives iterative algorithm for solving the generalmatrix equations

in (1) and studies convergence properties of the algorithm. Section 3 provides two examples to illustrate the effectiveness
of the proposed algorithm. Finally, we offer some concluding remarks in Section 4.

2. The exact and iterative solutions of general matrix equations

In this section, we apply the hierarchical identification to solve the following general linear matrix equations:
p∑
i=1

AiXBi +
q∑
i=1

C iXTDi = F , (1)

where Ai ∈ Rr×m, Bi ∈ Rn×s, C i ∈ Rr×n, Di ∈ Rm×s and F = [f 1, f 2, . . . , f s] ∈ Rr×s are given constant matrices, X ∈ Rm×n
is the unknown matrix to be solved.
Let us introduce some notations first. The symbol I or In stands for an identity matrix of appropriate sizes or size n× n.

For two matricesM and N ,M ⊗ N is their Kronecker product (called direct product); for anm× nmatrix
X = [x1, x2, . . . , xn] ∈ Rm×n, xi ∈ Rm,

col[X] is anmn-dimensional vector formed by the columns of X , i.e.,

col[X] =


x1
x2
...
xn

 ∈ Rmn.

According to the above definitions, the unique solution of the equation AX + XB = F can be expressed as
col[X] = (I ⊗ A+ BT ⊗ I)−1col[F ],

if I ⊗A+BT⊗ I is invertible. Referring to Al Zhour and Kilicman’s work [17], let Pmn ∈ Rmn×mn be a squaremn×mnmatrix
partitioned intom× n submatrices such that ijth submatrix has a 1 in its jith position and zeros elsewhere, i.e.,

Pmn =
m∑
i=1

n∑
j=1

E ij ⊗ ETij,

where E ij = eieTj called an elementary matrix of order m × n, and ei (ej) is a column vector with a unity in the ith (jth)
position and zeros elsewhere of orderm× 1 (n× 1). Using this definition, we have

Pmncol[XT] = col[X], PmnPnm = Imn, PTmn = P−1mn = Pnm.
Thus the solution of equation AX + XTB = F can be expressed as

col[X] = (W TW )−1W Tcol[F ],
whereW = I ⊗ A+ (BT ⊗ I)Pnm.
The following studies contain the exact and iterative solutions of the general matrix equation in (1).

2.1. The exact solution

Lemma 1. Let

S :=
p∑
i=1

BTi ⊗ Ai +
q∑
i=1

(DTi ⊗ C i)Pnm,

then Eq. (1) has a unique solution if and only if rank{S, col[F ]} = rank[S] = mn (i.e., S has a full column rank). In this case, the
unique solution is given by

col[X] = (STS)−1STcol[F ], (2)

and the corresponding homogeneous matrix equation in (1) with F = 0 has a unique solution X = 0.
The results of Lemma 1 is obvious, and the proof of which is omitted here. �

2.2. The iterative solution

Eq. (2) can give the solution of (1) but it requires excessive computer memory because of computing the inversion of the
large matrix STS of size (mn) × (mn) as the dimension of X increases. This motivates us to study the iterative algorithm
to solve (1). The following uses the hierarchical identification principle, regards the unknown matrix X as the parameter
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matrix of the system in (1), decomposes (1) into p+ q subsystems, and then presents a gradient based iterative method to
obtain the iterative solution of the parameter matrix of each subsystem.
Define the following matrices:

Q j := F −
p∑

i=1,i6=j

AiXBi −
q∑
i=1

C iXTDi, j = 1, 2, . . . , p. (3)

Q p+l := F −
p∑
i=1

AiXBi −
q∑

i=1,i6=l

C iXTDi, l = 1, 2, . . . , q. (4)

Then from (1), we obtain p+ q fictitious subsystems

Subsystem j : AjXBj = Q j, j = 1, 2, . . . , p.
Subsystem p+ l : C lXTDl = Q p+l, l = 1, 2, . . . , q.

Let X i(k) be the estimate or iterative solution of X at iteration k, associatedwith ith subsystem. Applying the gradient search
method [2] or Corollary 3 in [16] to Subsystem i, i = 1, 2, . . . , p+ q, we can obtain the iterative algorithms:

X j(k) = X j(k− 1)+ µATj [Q j − AjX j(k− 1)Bj]BTj , j = 1, 2, . . . , p. (5)

Xp+l(k) = Xp+l(k− 1)+ µDl[Q Tp+l − DTl Xp+l(k− 1)C
T
l ]C l, l = 1, 2, . . . , q. (6)

The convergence factor µ > 0 will be given later. Substituting (3) and (4) into (5) and (6) gives

X j(k) = X j(k− 1)+ µATj

[
F −

p∑
i=1,i6=j

AiXBi −
q∑
i=1

C iXTDi − AjX j(k− 1)Bj

]
BTj , (7)

Xp+l(k) = Xp+l(k− 1)+ µDl

[
F −

p∑
i=1

AiXBi −
q∑

i=1,i6=l

C iXTDi − C lXTp+l(k− 1)Dl

]T
C l. (8)

Here, a difficulty arises in that the expressions on the right-hand sides of (7) and (8) contain the unknown matrix X ; so it
is impossible to realize the algorithm. The solution is based on the hierarchical identification principle [15,16,21,22]: the
unknown variable X in (7) and (8) is replaced by its estimate X j(k− 1) and Xp+l(k− 1) at time (k− 1). Hence, we have

X j(k) = X j(k− 1)+ µATj

[
F −

p∑
i=1

AiX j(k− 1)Bi −
q∑
i=1

C iXTj (k− 1)Di

]
BTj , (9)

Xp+l(k) = Xp+l(k− 1)+ µDl

[
F −

p∑
i=1

AiXp+l(k− 1)Bi −
q∑
i=1

C iXTp+l(k− 1)Di

]T
C l. (10)

In fact, we need only an iterative solution X(k) rather than p + q solutions X i(k): i = 1, 2, . . . , p + q. Taking the average
of the p+ q solutions as the iterative solution X(k) of X , we obtain a gradient based iterative (GI) algorithm for the general
matrix equation in (1):

X(k) =
1
p+ q

[
p∑
j=1

X j(k)+
q∑
l=1

Xp+l(k)

]
, (11)

X j(k) = X(k− 1)+ µATj

[
F −

p∑
i=1

AiX(k− 1)Bi −
q∑
i=1

C iXT(k− 1)Di

]
BTj , (12)

Xp+l(k) = X(k− 1)+ µDl

[
F −

p∑
i=1

AiX(k− 1)Bi −
q∑
i=1

C iXT(k− 1)Di

]T
C l. (13)

A conservative choice of the convergence factor µ is

0 < µ < 2

{
p∑
j=1

λmax[AjATj ]λmax[B
T
j Bj] +

q∑
l=1

λmax[C lCTl ]λmax[D
T
l Dl]

}−1
=: µ0. (14)

To initialize the algorithm, we take X(0) = 0 or some small real matrix, e.g., X(0) = 10−61m×n with 1m×n being anm×n
matrix whose elements are all 1.

Theorem 1. If Equation in (1) has a unique solution X , then the iterative solution X(k) given by the algorithm in (11)–(14)
converges to X , i.e., limk→∞ X(k) = X ; or, the error X(k)− X converges to zero for any initial value X(0).
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Referring to the methods in [2,3,15,16], we prove this theorem.

Proof. Define the estimation error matrices:

X̃ i(k) := X i(k)− X,

X̃(k) := X(k)− X =
1
p+ q

[
p∑
j=1

X̃ j(k)+
q∑
l=1

X̃p+l(k)

]
, (15)

and

ξi(k) := AiX̃(k− 1)Bi, ηi(k) := DTi X̃(k− 1)C
T
i . (16)

Using (1), (12)–(13) and (16), it is easy to get

X̃ j(k) = X j(k)− X

= X(k− 1)− X + µATj

[
F −

p∑
i=1

AiX(k− 1)Bi −
q∑
i=1

C iXT(k− 1)Di

]
BTj

= X̃(k− 1)− µATj

[
p∑
i=1

Ai(X(k− 1)− X)Bi +
q∑
i=1

C i(XT(k− 1)− XT)Di

]
BTj

= X̃(k− 1)− µATj

[
p∑
i=1

AiX̃(k− 1)Bi +
q∑
i=1

C iX̃
T
(k− 1)Di

]
BTj

= X̃(k− 1)− µATj

[
p∑
i=1

ξi(k)+
q∑
i=1

ηTi (k)

]
BTj . (17)

Similarly,

X̃p+l(k) = X̃(k− 1)− µDl

[
p∑
i=1

ξi(k)+
q∑
i=1

ηTi (k)

]T
C l. (18)

Taking the norm of both sides of the above equations and using the formula: tr[AB] = tr[BA] and tr[AT] = tr[A] give

‖X̃ j(k)‖2 = tr[X̃
T
j (k)X̃ j(k)]

=

∥∥∥∥∥X̃(k− 1)− µATj
[
p∑
i=1

ξi(k)+
q∑
i=1

ηTi (k)

]
BTj

∥∥∥∥∥
2

= ‖X̃(k− 1)‖2 − µtr

{
X̃
T
(k− 1)ATj

[
p∑
i=1

ξi(k)+
q∑
i=1

ηTi (k)

]
BTj

}

−µtr

{
Bj

[
p∑
i=1

ξTi (k)+
q∑
i=1

ηi(k)

]
AjX̃(k− 1)

}
+ µ2

∥∥∥∥∥ATj
[
p∑
i=1

ξi(k)+
q∑
i=1

ηTi (k)

]
BTj

∥∥∥∥∥
2

≤ ‖X̃(k− 1)‖2 − 2µtr

{[
p∑
i=1

ξi(k)+
q∑
i=1

ηTi (k)

]
ξTj (k)

}

+µ2λmax[AjATj ]λmax[B
T
j Bj]

∥∥∥∥∥ p∑
i=1

ξi(k)+
q∑
i=1

ηTi (k)

∥∥∥∥∥
2

. (19)

Similarly,

‖X̃p+l(k)‖2 ≤ ‖X̃(k− 1)‖2 − 2µtr

{[ p∑
i=1

ξi(k)+
q∑
i=1

ηTi (k)
]
ηl(k)

}

+µ2λmax[C lCTl ]λmax[D
T
l Dl]

∥∥∥∥∥ p∑
i=1

ξi(k)+
q∑
i=1

ηTi (k)

∥∥∥∥∥
2

. (20)
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Hence, using (19) and (20) and from (15), we have

‖X̃(k)‖2 =
1

(p+ q)2

∥∥∥∥∥ p∑
j=1

X̃ j(k)+
q∑
l=1

X̃p+l(k)

∥∥∥∥∥
2

≤
1
p+ q

(
p∑
j=1

‖X̃ j(k)‖2 +
q∑
l=1

‖X̃p+l(k)‖2
)

≤
1
p+ q

{
p‖X̃(k− 1)‖2 − 2µtr

{[
p∑
i=1

ξi(k)+
q∑
i=1

ηTi (k)

][
p∑
j=1

ξTj (k)

]}

+µ2

(
p∑
j=1

λmax[AjATj ]λmax[B
T
j Bj]

)∥∥∥∥∥ p∑
i=1

ξi(k)+
q∑
i=1

ηTi (k)

∥∥∥∥∥
2

+ q‖X̃(k− 1)‖2 − 2µtr

{[
p∑
i=1

ξi(k)+
q∑
i=1

ηTi (k)

]
q∑
l=1

ηl(k)

}

+µ2

(
q∑
l=1

λmax[C lCTl ]λmax[D
T
l Dl]

)∥∥∥∥∥ p∑
i=1

ξi(k)+
q∑
i=1

ηTi (k)

∥∥∥∥∥
2}

= ‖X̃(k− 1)‖2 −
1
p+ q

{
2µ− µ2

(
p∑
j=1

λmax[AjATj ]λmax[B
T
j Bj]

+

q∑
l=1

λmax[C lCTl ]λmax[D
T
l Dl]

)}∥∥∥∥∥ p∑
i=1

ξi(k)+
q∑
i=1

ηTi (k)

∥∥∥∥∥
2

≤ ‖X̃(0)‖2 −
µ

p+ q

{
2− µ

(
p∑
j=1

λmax[AjATj ]λmax[B
T
j Bj]

+

q∑
l=1

λmax[C lCTl ]λmax[D
T
l Dl]

)}(
k∑
j=1

∥∥∥∥∥ p∑
i=1

ξi(j)+
q∑
i=1

ηTi (j)

∥∥∥∥∥
2)
.

If the convergence factor µ is chosen to satisfy

0 < µ < 2

{
p∑
j=1

λmax[AjATj ]λmax[B
T
j Bj] +

q∑
l=1

λmax[C lCTl ]λmax[D
T
l Dl]

}−1
,

then we have

k∑
j=1

∥∥∥∥∥ p∑
i=1

ξi(j)+
q∑
i=1

ηTi (j)

∥∥∥∥∥
2

<∞.

For the necessary condition of the series convergence, when k→∞, we have∥∥∥∥∥ p∑
i=1

ξi(k)+
q∑
i=1

ηTi (k)

∥∥∥∥∥
2

→ 0,

or ∥∥∥∥∥ p∑
i=1

AiX̃(k− 1)Bi +
q∑
i=1

C iX̃
T
(k− 1)Di

∥∥∥∥∥
2

→ 0.

According to Lemma 1, we can get X̃(k− 1)→ 0 as k→∞. This proves Theorem 1. �

Next, we show that the convergence rate of the gradient based iterative algorithm in (11)–(14) depends on the condition
number of the associatedmatrixΦ below, like the iterative algorithm of the equation Ax = b [1,2]. From (15)–(18), we have

X̃(k) = X̃(k− 1)−
µ

p+ q

p∑
j=1

p∑
i=1

ATj AiX̃(k− 1)BiB
T
j −

µ

p+ q

q∑
l=1

q∑
i=1

DlDTi X̃(k− 1)C
T
i C l
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−
µ

p+ q

p∑
j=1

q∑
i=1

ATj C iX̃
T
(k− 1)DiBTj −

µ

p+ q

q∑
l=1

p∑
i=1

DlBTi X̃
T
(k− 1)ATi C l,

which can be equivalently expressed as

col[X̃(k)] =
(
Imn −

µ

p+ q
Φ

)
col[X̃(k− 1)], (21)

where

Φ :=

p∑
j=1

p∑
i=1

BjBTi ⊗ ATj Ai +
q∑
l=1

q∑
i=1

CTl C i ⊗ DlDTi +
p∑
j=1

q∑
i=1

(BjDTi ⊗ ATj C i)Pnm +
q∑
l=1

p∑
i=1

(CTl Ai ⊗ DlBTi )Pnm. (22)

From (21), we can see that the closer the eigenvalues of µ

p+qΦ are to 1, the closer the eigenvalues of Imn −
µ

p+qΦ tend

to be zero, and hence, the faster the error col[X̃(k)] or X̃(k) converges to zero. In other words, the gradient based iterative
algorithm in (11)–(14) has a fast convergence rate for small condition numbers of Φ.
Similarly, by means of the hierarchical identification principle and referring to [3,15], we can obtain the least-squares

based iterative (LSI) algorithm of (1):

X j(k) = X(k− 1)+ µ(ATj Aj)
−1ATj

[
F −

p∑
i=1

AiX(k− 1)Bi −
q∑
i=1

C iXT(k− 1)Di

]
BTj (BjB

T
j )
−1, j = 1, 2, . . . , p, (23)

Xp+l(k) = X(k− 1)+ µ(DlDTl )
−1Dl

[
F −

p∑
i=1

AiX(k− 1)Bi −
q∑
i=1

C iXT(k− 1)Di

]T
C l(CTl C l)

−1, l = 1, 2, . . . , q,(24)

X(k) =
1
p+ q

[
p∑
j=1

X j(k)+
q∑
l=1

Xp+l(k)

]
, 0 < µ < 2(p+ q). (25)

For Eq. (1), when p = q = 1 and A1 = A ∈ Rn×m, B1 = C1 = In, D1 = B ∈ Rm×n, we obtain a special case of the form:

AX + XTB = F , (26)

the gradient based iterative (GI) algorithm of (26) is as follows:

X(k) =
X1(k)+ X2(k)

2
, (27)

X1(k) = X(k− 1)+ µAT[F − AX(k− 1)− XT(k− 1)B], (28)

X2(k) = X(k− 1)+ µB[F − AX(k− 1)− XT(k− 1)B]T, (29)

0 < µ < µ0 :=
2

λmax[AAT] + λmax[BTB]
. (30)

Similarly, referring to [3,15], we can obtain the least-squares based iterative (LSI) algorithm of (26) as follows:

X1(k) = X(k− 1)+ µ(ATA)−1AT[F − AX(k− 1)− XT(k− 1)B], (31)

X2(k) = X(k− 1)+ µ(BBT)−1B[F − AX(k− 1)− XT(k− 1)B]T, (32)

X(k) =
X1(k)+ X2(k)

2
, 0 < µ < 4. (33)

3. Examples

This section gives two examples to illustrate the performances of the proposed algorithms.

Example 1. Suppose that AX + XTB = F , where

A =
[
1 1
2 −1

]
, B =

[
1 −1
1 1

]
, F =

[
8 8
5 2

]
.

From (2), we can obtain the solution of this matrix equation, which is

X =
[
x11 x12
x21 x22

]
=

[
1 2
3 4

]
.
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Fig. 1. The errors δ versus k of Example 1.

Fig. 2. The errors δ versus k of Example 2.

Take X(0) = 10−612×2. Applying the GI algorithm in (27)–(30) to compute X(k), the iterative errors δ := ‖X(k)− X‖/‖X‖
versus k are shown in Fig. 1.

FromFig. 1, it is clear that the errors δ become smaller and go to zero as k increases. The effect of changing the convergence
factor µ is illustrated in Fig. 1. We can see that for µ = 0.20, 0.27 and 0.38, the larger the convergence factor µ, the faster
the convergence rate. However, if we keep enlargingµ, the algorithmwill diverge. How to choose a best convergence factor
is still a project to be studied.

Example 2. Suppose that A1XB1 + A2XB2 + C1XTD1 + C2XTD2 = F , where

A1 =
[
1 0
2 −1

]
, A2 =

[
0 1
3 −1

]
, B1 =

[
2 −1
1 1

]
, B2 =

[
3 −1
2 1

]
,
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C1 =
[
1 2
−1 2

]
, C2 =

[
−1 3
−1 2

]
, D1 =

[
2 −1
1 2

]
, D2 =

[
1 1
−1 0

]
, F =

[
35 9
20 7

]
.

From (2), the solution is

X =
[
x11 x12
x21 x22

]
=

[
1 2
3 1

]
.

Taking X(0) = 10−612×2, we apply the algorithm in (11)–(14) to compute X(k). The errors δ := ‖X(k)−X‖/‖X‖ versus
k are shown in Fig. 2.
From Fig. 2, it is clear that the errors δ become smaller and converge to zero as k increases. The effect of changing the

convergence factorµ is illustrated in Fig. 2 withµ = 1/200, 1/121.2 and 1/50, and a largerµ leads to a faster convergence
rate.

4. Conclusions

The gradient based iterative algorithms for solving general matrix equations are studied by using the hierarchical
identification principle. We prove that the iterative solutions given by the proposed algorithms converge fast to their true
solutions for any initial values and small condition numbers. We test the proposed algorithm using MATLAB and the results
verify our theoretical findings. The algorithm is proposed for linear general matrix equations; extending the adopted idea
to study iterative solutions for nonlinear matrix equations requires further research.
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