20 research outputs found

    A Hesitant Fuzzy Linguistic Multicriteria Decision-Making Method with Interactive Criteria and Its Application to Renewable Energy Projects Selection

    Get PDF
    A variety of multicriteria decision-making (MCDM) methods for renewable energy projects evaluation have been proposed, of which the premise of using these methods is to assume that the criteria are independent of each other. However, it may be difficult or costly to build independent criteria set in some cases because renewable energy planning is to pursue a balance of economic, social, and environmental goals, which makes the existence of interaction among criteria be of great possibility. In this paper, we consider a highly ambiguous decision situation, where the experts are allowed to give the evaluations in the form of hesitant fuzzy linguistic terms set (HFLTS). We build a hesitant fuzzy linguistic decision-making model handling the interaction among criteria from the perspective of distance measure and apply it to renewable energy projects selection. The proposed method can consider more fuzzy factors and deal with the interaction among criteria more approximately. It can reduce the decision pressure and improve the decision-making efficiency because the decision makers are allowed to express their preference in form of HFLTS and a decision criteria set of which the criteria are independent of each other is not necessary

    Stochastic multiple attribute decision making with Pythagorean hesitant fuzzy set based on regret theory

    Get PDF
    The objective of this paper is to present an extended approach to address the stochastic multi-attribute decision-making problem. The novelty of this study is to consider the regret behavior of decision makers under a Pythagorean hesitant fuzzy environment. First, the group satisfaction degree of decision-making matrices is used to consider the different preferences of decision-makers. Second, the nonlinear programming model under different statues is provided to compute the weights of attributes. Then, based on the regret theory, a regret value matrix and a rejoice value matrix are constructed. Furthermore, the feasibility and superiority of the developed approach is proven by an illustrative example of selecting an air fighter. Eventually, a comparative analysis with other methods shows the advantages of the proposed methods

    Single-valued neutrosophic TODIM method based on cumulative prospect theory for multi-attribute group decision making and its application to medical emergency management evaluation

    Get PDF
    In recent years, emergent public health events happen from time to time, which puts forward new requirements for the establishment of a perfect medical emergency system. It is a new direction to evaluate the effectiveness of medical emergency systems from the perspective of multi-attribute group decision making (MAGDM) issues. In such article, we tend to resolve the MAGDM issues under single-valued neutrosophic sets (SVNSs) with TODIM method based on cumulative prospect theory (CPT). And the single-valued neutrosophic TODIM method based on CPT (CPT-SVNTODIM) for MAGDM issues are developed. This new method not only inherits advantages of classical TODIM method, but also has further improvement in some aspects. For example, we set up the entropy to calculate attribute weights for ensuring the more objective decision-making process. Furthermore, it is also an extension of MAGDM method to utilize single-valued neutrosophic numbers (SVNNs) to depict decision makers’ ideas. In addition, we introduce the application of CPT-SVN-TODIM method in the assessment of medical emergency management. And finally, the reliability of CPT-SVN-TODIM method is confirmed by comparing with some other methods

    Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets

    Get PDF
    Neutrosophy (1995) is a new branch of philosophy that studies triads of the form (, , ), where is an entity {i.e. element, concept, idea, theory, logical proposition, etc.}, is the opposite of , while is the neutral (or indeterminate) between them, i.e., neither nor .Based on neutrosophy, the neutrosophic triplets were founded, which have a similar form (x, neut(x), anti(x)), that satisfy several axioms, for each element x in a given set.This collective book presents original research papers by many neutrosophic researchers from around the world, that report on the state-of-the-art and recent advancements of neutrosophic triplets, neutrosophic duplets, neutrosophic multisets and their algebraic structures – that have been defined recently in 2016 but have gained interest from world researchers. Connections between classical algebraic structures and neutrosophic triplet / duplet / multiset structures are also studied. And numerous neutrosophic applications in various fields, such as: multi-criteria decision making, image segmentation, medical diagnosis, fault diagnosis, clustering data, neutrosophic probability, human resource management, strategic planning, forecasting model, multi-granulation, supplier selection problems, typhoon disaster evaluation, skin lesson detection, mining algorithm for big data analysis, etc

    Uncertain Multi-Criteria Optimization Problems

    Get PDF
    Most real-world search and optimization problems naturally involve multiple criteria as objectives. Generally, symmetry, asymmetry, and anti-symmetry are basic characteristics of binary relationships used when modeling optimization problems. Moreover, the notion of symmetry has appeared in many articles about uncertainty theories that are employed in multi-criteria problems. Different solutions may produce trade-offs (conflicting scenarios) among different objectives. A better solution with respect to one objective may compromise other objectives. There are various factors that need to be considered to address the problems in multidisciplinary research, which is critical for the overall sustainability of human development and activity. In this regard, in recent decades, decision-making theory has been the subject of intense research activities due to its wide applications in different areas. The decision-making theory approach has become an important means to provide real-time solutions to uncertainty problems. Theories such as probability theory, fuzzy set theory, type-2 fuzzy set theory, rough set, and uncertainty theory, available in the existing literature, deal with such uncertainties. Nevertheless, the uncertain multi-criteria characteristics in such problems have not yet been explored in depth, and there is much left to be achieved in this direction. Hence, different mathematical models of real-life multi-criteria optimization problems can be developed in various uncertain frameworks with special emphasis on optimization problems

    Fuzzy Techniques for Decision Making 2018

    Get PDF
    Zadeh's fuzzy set theory incorporates the impreciseness of data and evaluations, by imputting the degrees by which each object belongs to a set. Its success fostered theories that codify the subjectivity, uncertainty, imprecision, or roughness of the evaluations. Their rationale is to produce new flexible methodologies in order to model a variety of concrete decision problems more realistically. This Special Issue garners contributions addressing novel tools, techniques and methodologies for decision making (inclusive of both individual and group, single- or multi-criteria decision making) in the context of these theories. It contains 38 research articles that contribute to a variety of setups that combine fuzziness, hesitancy, roughness, covering sets, and linguistic approaches. Their ranges vary from fundamental or technical to applied approaches
    corecore