11 research outputs found

    On the p-media polytope of special class of graphs

    Get PDF
    Dans cet article nous étudions les inégalités de cycles impairs. Nous donnons un nouvel algorithme de séparation de ces inégalités, et nous montrons que lorsque nous ajoutons ces inégalités aux inégalités de la relaxation linéaire nous obtenons le polytope du p-médian dans la classe des graphes sans Y. Pour cela nous caractérisons d'abord les points extrêmesfractionnaires du système défini par la relaxation linéaire dans les graphes sans Y.

    The p-median polytope of restricted Y-graphs

    Get PDF
    We further study the effect of odd cycle inequalities in the description of the polytopes associated with the p-median and uncapacitated facility location problems. We show that the obvious integer linear programming formulation together with the odd cycle inequalities completely describe these polytopes for the class of restricted Y-graphs. This extends our results for the class of Y-free graphs. We also obtain a characterization of both polytopes for a bidirected path

    On the p-media polytope of special class of graphs

    No full text
    In this paper we consider a well known class of valid inequalities for the p-median and the uncapacitated facility location polytopes, the odd cycle inequalities. It is known that their separation problem is polynomially solvable. We give a new polynomial separation algorithm based on a reduction from the original graph. Then, we define a nontrivial class of graphs, where the odd cycle inequalities together with the linear relaxations of both the p-median and uncapacitated facility location problems, suffice to describe the associated polytope. To do this, we first give a complete description of the fractional extreme points of the linear relaxation for the p-median polytope in that class of graphs.Dans cet article nous étudions les inégalités de cycles impairs. Nous donnons un nouvel algorithme de séparation de ces inégalités, et nous montrons que lorsque nous ajoutons ces inégalités aux inégalités de la relaxation linéaire nous obtenons le polytope du p-médian dans la classe des graphes sans Y. Pour cela nous caractérisons d'abord les points extrêmesfractionnaires du système défini par la relaxation linéaire dans les graphes sans Y

    Facets and Algorithms for Capacitated Lot Sizing

    Get PDF
    The dynamic economic lot sizing model, which lies at the core of numerous production planning applications, is one of the most highly studied models in all of operations research. And yet, capacitated multi-item versions of this problem remain computationally elusive. We study the polyhedral structure of an integer programming formulation of a single-item capacitated version of this problem, and use these results to develop solution methods for multi-item applications. In particular, we introduce a set of valid inequalities for the problem and show that they define facets of the underlying integer programming polyhedron. Computational results on several single and multiple product examples show that these inequalities can be used quite effectively to develop an efficient cutting plane/branch and bound procedure. Moreover, our results show that in many instances adding certain of these inequalities a priori to the problem formulation, and avoiding the generation of cutting planes, can be equally effective

    Polyhedral techniques in combinatorial optimization II: computations

    Get PDF
    Combinatorial optimization problems appear in many disciplines ranging from management and logistics to mathematics, physics, and chemistry. These problems are usually relatively easy to formulate mathematically, but most of them are computationally hard due to the restriction that a subset of the variables have to take integral values. During the last two decades there has been a remarkable progress in techniques based on the polyhedral description of combinatorial problems. leading to a large increase in the size of several problem types that can be solved. The basic idea behind polyhedral techniques is to derive a good linear formulation of the set of solutions by identifying linear inequalities that can be proved to be necessary in the description of the convex hull of feasible solutions. Ideally we can then solve the problem as a linear programming problem, which can be done efficiently. The purpose of this manuscript is to give an overview of the developments in polyhedral theory, starting with the pioneering work by Dantzig, Fulkerson and Johnson on the traveling salesman problem, and by Gomory on integer programming. We also present some modern applications, and computational experience

    Polyhedral techniques in combinatorial optimization II: computations

    Get PDF

    Polyhedral techniques in combinatorial optimization II: applications and computations

    Get PDF
    The polyhedral approach is one of the most powerful techniques available for solving hard combinatorial optimization problems. The main idea behind the technique is to consider the linear relaxation of the integer combinatorial optimization problem, and try to iteratively strengthen the linear formulation by adding violated strong valid inequalities, i.e., inequalities that are violated by the current fractional solution but satisfied by all feasible solutions, and that define high-dimensional faces, preferably facets, of the convex hull of feasible solutions. If we have the complete description of the convex hull of feasible solutions at hand all extreme points of this formulation are integral, which means that we can solve the problem as a linear programming problem. Linear programming problems are known to be computationally easy. In Part 1 of this article we discuss theoretical aspects of polyhedral techniques. Here we will mainly concentrate on the computational aspects. In particular we discuss how polyhedral results are used in cutting plane algorithms. We also consider a few theoretical issues not treated in Part 1, such as techniques for proving that a certain inequality is facet defining, and that a certain linear formulation gives a complete description of the convex hull of feasible solutions. We conclude the article by briefly mentioning some alternative techniques for solving combinatorial optimization problems

    Polyhedral techniques in combinatorial optimization

    Get PDF

    Polyhedral techniques in combinatorial optimization

    Get PDF
    Combinatorial optimization problems appear in many disciplines ranging from management and logistics to mathematics, physics, and chemistry. These problems are usually relatively easy to formulate mathematically, but most of them are computationally hard due to the restriction that a subset of the variables have to take integral values. During the last two decades there has been a remarkable progress in techniques based on the polyhedral description of combinatorial problems. leading to a large increase in the size of several problem types that can be solved. The basic idea behind polyhedral techniques is to derive a good linear formulation of the set of solutions by identifying linear inequalities that can be proved to be necessary in the description of the convex hull of feasible solutions. Ideally we can then solve the problem as a linear programming problem, which can be done efficiently. The purpose of this manuscript is to give an overview of the developments in polyhedral theory, starting with the pioneering work by Dantzig, Fulkerson and Johnson on the traveling salesman problem, and by Gomory on integer programming. We also present some modern applications, and computational experience
    corecore