
Facets and Algorithms for Capacitated
Lot Sizing

by

Janny M.Y. Leung, Thomas L. Magnanti and
Rita Vachani

OR 171-87 December 1987



FACETS AND ALGORITHMS FOR CAPACITATED
LOT SIZING*

Janny M.Y. Leung
School of Organization and Management

Yale University

Thomas L. Magnanti
Sloan School of Management

MIT

Rita Vachani
GTE Laboratories

December 1987

* Supported by Grant #ECS-8316224 from the Systems Theory and Operations
Research Program of the National Science Foundation.



Abstract

The dynamic economic lot sizing model, which lies at the core of numerous production planning

applications, is one of the most highly studied models in all of operations research. And yet,

capacitated multi-item versions of this problem remain computationally elusive. We study the

polyhedral structure of an integer programming formulation of a single-item capacitated version of

this problem, and use these results to develop solution methods for multi-item applications. In

particular, we introduce a set of valid inequalities for the problem and show that they define facets of

the underlying integer programming polyhedron. Computational results on several single and

multiple product examples show that these inequalities can be used quite effectively to develop an

efficient cutting plane/branch and bound procedure. Moreover, our results show that in many

instances adding certain of these inequalities a priori to the problem formulation, and avoiding the

generation of cutting planes, can be equally effective.



1. Introduction and Motivation

Allocating shared resources and determining lot sizes and schedules for multiple products is a

central issue in operations management. Because of its practical importance, this problem has been

the focus of extensive study and continues to receive considerable attention. Despite the rich variety

of problem settings encountered in practice, a few prototypical models -- and particularly the

capacitated lot size problem -- have become central in the production planning literature. The lot size

model describes production operations for multiple products that incur a fixed cost (and/or time)

whenever a facility is set up to manufacture any particular product. The capacitated version of the

problem has numerous applications. For example, Gorenstein (1970) has used a variant of this model

to support long range production decisions in a tire company, and Lasdon and Terjung (1971) have

reported the use of a capacitated lot size model by a large manufacturing company. This paper studies

the polyhedral structure of an integer programming formulation of the single item lot size problem

and uses these results to develop efficient solution methods for multi-item applications.

Two observations motivate this research. First, even though multiple product lot size problems

have been the subject of extensive study, they can be solved optimally (or near optimally with

performance guarantees) only for special cases. For example, although current methods can obtain

good solutions to the capacitated lot size problem when the number of items is large compared to the

number of time periods, no evidence in the literature suggests that these methods perform well for

applications with a small or medium number of products. Second, as indicated in Section 2,

increasing empirical evidence indicates that both pure and mixed integer programming problems can

be solved to optimality in reasonable computation times by methods that use results about the

underlying polyhedral structure of these problems.

One of the advantages of studying the polyhedral structure of the lot sizing model is that even if

it occurs as a subproblem, its analysis may improve modeling and algorithm design for the larger

problem that contains it. Several researchers have reported very effective computational results

when using the analysis of substructures to improve problem formulations. For example, Crowder,
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Johnson and Padberg (1983) showed that even information from single constraints of a zero-one

program (minimal cover cuts) can be effective in solving large scale models.

We organize the paper as follows. After briefly discussing previous contributions to the literature

on both the lot size problem and the polyhedral structure of combinatorial problems, in Section 3, we

describe the lot size problem and present a mixed integer programming formulation of it. In Section

4, we identify a class of valid inequalities for this model and derive the necessary and sufficient

conditions for these inequalities to be facets. In Section 5, we show how to solve the separation

problem efficiently for this class of inequalities and in Section 6, we present our computational

results.

2. Previous Contributions

Lot Size Problem

The papers of Manne (1958) and Wagner and Whitin (1958) are two of the seminal contributions

in the area of lot sizing. Wagner and Whitin studied the uncapacitated problem and showed how to

solve it efficiently via dynamic programming. Manne formulated the multiple item capacitated

version of the problem as a mixed integer linear program and proposed solving a linear programming

approximation of it. Subsequently, considerable research effort has refined and generalized the

models and the solution approaches suggested by each of these two works. The book by Hax and

Candea (1984) reviews a number of the mathematical programming models in the area.

Zangwill (1966), who extended the results of Wagner and Whitin to allow backordering of

demand, also introduced a network representation of the problem (1969). Zabel (1964) and Eppen,

Gould and Pashigian (1969) improved the planning horizon results of Wagner and Whitin. Zangwill

(1969) and Kalymon (1970) extended the results to include multiple facilities. Veinott (1969) used the

properties of extreme points of Leontief systems to characterize the structure of solutions to single

product concave cost problems and also proposed a method for an arborescent multiechelon structure.

All these papers studied the uncapacitated version of the corresponding problems.
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Adding capacity restrictions makes the problem much more difficult. In their extensive study of

the complexity of the single item capacitated lot size problem, Bitran and Yanasse (1982) showed that

most versions of the problem (i.e., with different assumptions regarding the variability of demand,

costs and capacities) are NP-complete. Further, though the single item problem with constant

capacities can be solved efficiently (Florian and Klein, 1971), the multiple item problem with

constant capacities is NP-complete (Bitran and Yanasse, 1982) .

Research on procedures to solve the single item capacitated problem has focused on methods to

solve special cases (see, for example, Florian and Klein, 1971, Jagannathan and Rao, 1973, Love,

1973), or on approximation methods (see, for example, Bitran and Matsuo, 1986a). Baker et al. (1978)

and Lambrecht and Vander Eecken (1978) provide exponential algorithms to solve the variable

capacity version of the problem exactly.

The multiple item capacitated lot size problem can be formulated as a mixed integer linear

program and several researchers have examined methods to solve this integer program. Manne

(1958) formulated the problem to allow additional capacity to be bought at a cost and suggested

solving a linear programming approximation of the problem. Dzielinski, Baker and Manne (1963),

Dzielinski and Gomory (1965) and Lasdon and Terjung (1971) subsequently refined his approach.

Kleindorfer and Newson (1975) showed that solving this linear programming relaxation is equivalent

to solving the dual of the original problem. Kortanek, Sodaro and Soyster (1968), Gorenstein (1970)

and Bahl (1983) also proposed similar approaches. Graves (1982) suggested using Lagrangean

relaxation to solve a hierarchical production planning problem that includes the lot size model as a

substructure. Researchers have also examined exact solution methods to solve the integer program.

Murty (1968) and Gray (1971) proposed extreme point ranking procedures and Jones and Soland

(1962) and Steinberg (1970) developed branch and bound procedures. As already mentioned, Manne's

approximate formulation works well when the number of items is large compared to the number of

time periods (see Manne, 1958 and Bitran and Matsuo, 1986b). In other situations, the gap between

the linear programming approximation and the original integer program could be substantial and no

evidence suggests that the existing methods would be able to obtain good solutions to the problem.
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In applied contexts, practitioners continue to use heuristics even for problems that can be solved

efficiently using optimization algorithms. Several researchers have proposed heuristics methods

(Balinski 1961, Cooper and Drebes 1967, Denzler 1969, Newson 1975, Walker 1976, Lambrecht and

Vanderveken 1979, Dixon and Siver 1981 and Dogramaci, Panayiotopoulos and Adam 1981). Maes

and Van Wassenhove (1986a, 1986b) present computational results comparing the performance of

some of these methods. Even simpler heuristics for the uncapacitated lot size problem are used in

practice (see Orlicky, 1974). Axsater (1982, 1985), Bitran, Magnanti and Yanasse (1984) and Vachani

(1984) have analyzed the worst case performance for these heuristics.

Recently, researchers have investigated the polyhedral structure of the mixed integer

programming formulation of the problem. Barany, Van Roy and Wolsey (1984a, 1984b) characterized

the convex hull of the solutions for the uncapacitated lot size problem and reported good

computational results for the multiple item capacitated problem using facets of the single item

problem. Eppen and Martin (1985) have proposed a reformulation of the single item uncapacitated

problem as a shortest path problem that is equivalent to including a description of the convex hull of

the problem.

Polyhedral Structure of Integer Programming Problems

A considerable body of literature in the last fifteen years has studied the polyhedral structure of

combinatorial optimization problems. More recently, several computational studies have used this

theory for actual problem solving and have reported very impressive results in obtaining exact

solutions to large integer programs. In this section, we briefly review several major contributions in

the area, focusing on the computational work. For additional references and underlying concepts and

notation, we refer the reader to the bibliography compiled by Gr6tschel (1985) and to the survey

written by Hoffman and Padberg (1985).

The work of Crowder and Padberg (1980) and Padberg and Hong (1980) for the symmetric

traveling salesman problem are landmark studies on the use of results from polyhedral theory for

actual problem solving. These researchers were able to solve large traveling salesman problems to

optimality using a combination of cutting planes, fixing variables using reduced cost information,
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and branch and bound strategies. The cutting planes were derived from the facets of the traveling

salesman polytope described by Grotschel and Padberg (1979a, 1979b).

Crowder, Johnson and Padberg (1983) also reported equally impressive results for a number of

real world, large scale, zero one programming problems, again using a combination of preprocessing,

facet-defining cutting planes, and branch and bound. More recently, Grdtschel, Junger and Reinelt

(1984, 1985) have obtained very good results for the linear ordering problem, using facets of the

problem in a cutting plane procedure. They state that the range of matrices considered in their study

is representative of almost all input-output matrices that have been compiled to date in Europe.

Barany, Van Roy and Wolsey (1984b) and Eppen and Martin (1985) also report considerable success

in solving multiple item capacitated lot size problems using facets of the single item uncapacitated

problem. Johnson, Kostreva and Suhl (1985) successfully used a strong cutting plane algorithm for

solving a strategic planning problem.

The problems solved in all these studies are drawn from the class of NP-complete problems. A

recent study also suggests that these methods might be successful in solving problems for which

"good" algorithms are already available. Grotschel and Holland (1984) implemented a strong cutting

plane algorithm for the problem of finding a maximum matching in a graph. This problem can be

solved in polynomial time (Edmonds, 1965). The Gr6tschel and Holland algorithm uses a

characterization of the matching polytope developed by Edmonds (1965) and a procedure of Padberg

and Rao (1982) for choosing cuts to be added (i.e., solving the so called separation problem).

Surprisingly, Gr6tschel and Holland's algorithm solved large scale problems as well as or better (in

terms of running time) than Edmonds' polynomial time algorithm.

Though we have focused on problems for which computational studies have been reported,

researchers have also investigated the facial structure of several other classes of integer

programming problems, e.g., the set packing problem (Padberg, 1973, 1979, Nemhauser and Trotter,

1974, Chvdtal, 1975, Balas and Padberg, 1976, Trotter, 1976, Balas and Zemel, 1977), the

uncapacitated plant location problem (Guignard, 1980, Cornuejols and Thizy, 1982, Cho et al., 1983a,

1983b), the capacitated plant location problem (Leung and Magnanti, 1986), the machine scheduling
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problem (Balas, 1984), the network design problem (Balakrishnan, 1984, Balakrishnan and

Magnanti, 1985). All the results for these problems depend on the special structure of the problem

class.

Chvatal (1973), Nemhauser and Wolsey (1985) and Martin and Schrage (1986) describe

alternative approaches for generating valid inequalities and facets for integer programming and

mixed integer programming problems. Their methods rely on constraint aggregation and coefficient

reduction.

3. Problem Description

We focus on the structure of the single item, single resource, constant capacity lot size problem.

Since this problem can be solved in O(T 4) time via a dynamic programming algorithm (see Florian

and Klein, 1971), our goal in identifying its facets is not to develop a competitive cutting plane

procedure for this problem itself, but to obtain "strong" valid inequalities for larger problems that

contain it as a subproblem. In Section 7, we report on computational experience in using the

inequalities in this way.

Our objective in studying the single item lot size problem is also to develop useful insights in

modeling problems with similar structure. For example, the demand constraints in the lot size

problem (or other problems that require demand in every period to be met without backordering) are

usually formulated as

t t

E xi - E di Vt. (3.1)
i=l i=l

In this expression, xi is the production and di is the demand in period i. Let yi {0, 1} denote the state

of the machine in period i, with yi = 1 if the machine is setup to produce the product and yi = 0

otherwise. Constraints (3.1) can be replaced by
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t t

X 2 ) di + dt+ (1-Yt+) (3.2)
i=l i=l

This constraint is valid, since if Yt+ 1 = 0 then we require Et xi > Et+l di, which is more stringent

then (3.1), to meet demand in period t+ 1, whereas if Yt+1 = 1 then (3.2) and (3.1) are identical.

Therefore, (3.2) is stronger than (3.1). Indeed, the demand constraints are not facets of the

capacitated lot size problem (unless dt+l - 0), but constraints (3.2) are. (This result is true of the

uncapacitated lot size problem as well -- see Barany, Van Roy and Wolsey, 1984a.) Thus, if we use any

linear-programming-based method to solve a problem that includes constraints (3.1) and has

corresponding setup variables, then replacing (3.1) by (3.2) should result in a tighter formulation.

The single item capacitated lot size problem, CLSP, that we study in this paper can be formulated

as follows.

CLSP

T T

Minimize I PtXt syt (3.3)
t=l t=l

t t

subject to v_ x >- d Vt (3.4)

T T

x.i = I d. (3.5)
i=l i=l

Xt < min {dtTC}yt Vt (3.6)

x t 2 0, 0 Yt < 1, Vt (3.7)

Yt integer, Vt. (3.8)

In this formulation, T is the finite horizon over which production is to be planned, xt is the

production in period t, dt is the demand in period t (that must be met without backordering) and yt =

1 if there is a setup in period t (yt = 0 otherwise) dtT denotes the total demand in periods t though T,
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i.e., dtT = Tdt. Constraint (3.6) requires that Yt = 1 if xt > 0, and also ensures that the production in

any period does not exceed the capacity C or the demand remaining until the end of the horizon. We

can assume without loss of generality that dt - C for all t. (If dj > C for some j, then we obtain an

equivalent problem, with demands d't, by setting d't = dt for t :; j-1 or j, d'jl = dj-l + (C-dj) and d'j =

C. If d'pl, the resulting demand in period j-1 exceeds the capacity C, we can repeat this procedure.

Note that if d1 > C then the problem is infeasible). We can also assume that dT > 0 since otherwise

we could eliminate period T from the problem. We further assume that d1 + d < C, since if dl + d > C

(or dt > C(t-1) for some t > 1) then all feasible solutions to CLSP have y, =y = 1 (or y = 1 for i t),

and we could include these conditions as constraints of CLSP. Instead of considering these special

cases, we assume d1 +d 2 - C. The objective function coefficient Pt includes both the inventory

holding cost and the production cost per unit in period t (It, the ending inventory in period t, equals

Et xi - Et di and, hence, the holding cost htIt can be written as a function of the xi variables for 1 i <

t) and the coefficient st is the fixed cost of a setup in period t.

In the next section, we investigate the polyhedral structure of the convex hull of the feasible

solutions to problem CLSP.

4. Facets of the Single Item Capacitated Lot Size Problem

Let FLS denote the set of feasible solutions to CLSP and let CLS denote the convex hull of FLS, i.e.,

CLS = conv {(x, y) I (x, y) satisfies constraints (3.4) - (3.8)}.

Let du, E- dt for all 1• u v T and let r = du, (mod C)t . Further, let w be the first period

between u and v that satisfies Fdu/C = dv/C].

The following inequality defines a class of facets of C LS:

tIf duv is a multiple of C, we use the notation d,,(mod C) = C rather than d,,(mod C) = 0.
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ul 1 + * Xt t+ ryt + X dtuyt> rduv/C1 (f)
t(Q tER tED

with P= {u, u+l, .. . v}, Q cP,

R UD =P\Q,R = t EP\Q, t < w, D= {ttE P\Q, t w+ 1},

t t

andI t = x i - d. is the ending inventoryin periodt, Vt.
i=l i=l

This inequality divides the set of periods {u, u+ 1, ... , v} into the subsets Q, R and D. The set Q

comprises those periods t for which variable xt, the Quantity produced in period t, is included in (f).

The sets R and D comprise periods t for which Yt is included in (f); R contains those periods that have

the Remainder r as the coefficient of yt, and the set D those periods that have Demand parameters as

the coefficients.

Note that these inequalities can be stated in terms of only the x and y variables to correspond to

the variables in the formulation CLSP. However, we have included the inventory variable I-1 in (f)

for ease of exposition and will continue to do so subsequently. Our arguments can easily be translated

for the inequalities stated exclusively in terms of the x and y variables only.

Also, notice that (f) can be restated as

I- ±- + + min{r, d}Yt > rFd u/C (4.1)

tEQ tErQ

Figure 4.1 illustrates that

r c dt, for all u < t < w, and

r > dt,, for allw+1 < t < v.

Using this fact, we see that (f) is a more explicit statement of (4.1).
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dut

C rduv/Cl

C(r d,,uvlC -1)

dw + 1,v

duw,, duv

-- t

w-1 w v

Figure 4.1: Relation between duv(modC) and dtv for u t < v

To illustrate inequality (f) consider a 9 period problem with capacity in each period equal to 6 and

demand specified as follows:

d l = 1, d = 3, d = 4, d4 = 5, d, = 1,d, = 2, d = 3, d = 1, d9 = 2.

Let u = 3, v = 8, i.e., P = {3, 4,..., 8}. For this set of periods, d3 = 16, d38/C1 = 3, r = 4 and w = 7.

Choosing Q = {5, 7} results in the following valid inequality for this particular problem.

I + y: + 4y 4 + x + 4y + x, + > 12 (4.2)

This inequality is in fact a facet for the given problem instance as shown later in Theorem 4.2.

Before proving that inequalities (f) define facets of C LS we examine the relationship between

these inequalities and other valid inequalties that have been proposed for the lot size model. The

facet inequalities of the uncapacitated lot size problem derived by Barany, Van Roy and Wolsey

(1984a) are

[ + ~' Xt + ' dtvYy 2 duv
tEQ tEPIQ

withP = {u, u+ 1,..., vand Q CP.
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If we set C = in (f). we obtain r = d, w = u, and hence, the resulting inequality is the same as ().

Therefore, the inequalities (f) generalize the facet inequalities (f) of the uncapacitated lot size

problem.

Recently, Pochet (1986) has independently (and simultaneously) derived a class of valid

inequalities for the CLSP that can be stated as follows:

l + E X + x, (Lt-)Yt b + E min{duv A-, dt}y t
t Q t ES tEL

tS
with

P = {u,u+l,...,v},SCP andu ( S,

QUL = P/S, QnL = 0, and

d t = min {C, dN = dt -d and S chosen so that 0 < A < d
tES

Pochet has derived sufficient conditions for a subset of inequalities in (*) obtained by setting L

= 0 to be facets of CLS

To illustrate Pochet's inequality, consider a 9 period problem with C = 6 and

d = 1, d = 3, d3 = 4, d 4 = 4, d = 1, d = ,d = 1, d = 5, d = 2.

This demand pattern differs slightly from that used to derive inequality (4.2).

Letu = 3,v = 8, i.e.,P = {3,4,...,8}. ChoosingS {= 3,4,8}givesd 8 = d4 = 6, d = 5andX =

1. The following inequality of the form (*), with L = 0, satisfies the sufficient conditions identified by

Pochet and is a facet
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12 + 5y3 +5y 4 +x 5 + 6 + x7 + 4 y 8 > 14. (4.3)

It is possible to show that the inequalities (*) derived by Pochet subsume the class of inequalities

(f) that we discuss in this paper. However, this conclusion does not apply to the the facets identified

by Pochet by setting L = 0 in (*) and class of facets given by (f). Neither set of facets is a subset of the

other as can be easily seen by considering the facets (4.2) and (4.3) for the two problem instances

discussed earlier.

First, note that the right side of inequality (*) with L = 0 is the sum of the coefficients of the yt

terms on the left side of the inequality. Since the facet given by (4.1) does not satisfy this condition, it

cannot be generated by any of the facets (*) with L = 0. Similarly, it is possible to show that the facet

(4.3) cannot be generated by any of the inequalities (f).

Theorem 4. 1. (f) is a valid inequality for CLSP.

Proof. Rewrite (f) as

IU_- + xt + dtv Yt > rdu/C- - E Yt) (4.4)
tEQ tED tER

Let (x*, y*) be any feasible solution for CLSP. If EtER Y*t, the number of periods in R in which this

solution incurs a setup, is greater than or equal to d,/Cl, then (4.4) is trivially satisfied. Next,

suppose that EtER Y*t is exactly one less than du/C]; then production in these periods can supply at

most du, - r units of the demand du,. If D = 0, then the starting inventory in period u plus the

production in the periods in the set Q must be at least r units and, hence, (4.4) is satisfied. If D e 0,

then let k = min{t D I Y*t = 1} and note that the inequality

*u-1+ x* > d u,k -(d -r)
tEQ, tk-1

is necessary to meet the demand in periods u to k-1 since the maximum amount that can be produced

in the periods in the set R is CEteR Y*t du - r. Thus
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+' + + x* + dt
tEQ tED tEQ, t<k- 1

2 d ,-(d -r)+ d = r
ok-l uv d kv

and (4.2) is again satisfied. These observations account for the coefficient r of yt in (f). If

rdU /C yt =p

tER

with p > 2 and integer, then similar observations show that (4.4) is still valid. (In this case, duv - r -

(p-1)C replaces duv - r in the previous argument.) I

Remark 4.1

(a) The parenthetical statement at the end of the proof shows that (f) is

satisfied as a strict inequality whenever r < C and tER Y*t Fduv/C - 2.

(b) The proof also shows that (f) can be satisfied at equality only if

tER Y*t equals duv/Cl or Fduv/Cl-l .

(c) Hence (f) cannot be a face of CLS if O < IR( < Fduv/CI - 2.

We next indicate how inequality (f) strengthens the linear programming relaxation of CLSP for

the case D = 0. The inequality

U-1 + Zx t +CYy > d (4.5)
tEQ tER

is a linear combination of the constraints of CLSP and is satisfied by all solutions to the linear

programming relaxation of CLSP. Figure 4.2 illustrates that inequality (f) cuts off some of the

fractional solutions allowed by the LP-relaxation. Note that if r = C and D = 0, then (f) is identical

to (4.5) and hence is redundant.
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)ff by (f)

*, Et Vf

Fdu,/C 1 - duv/C Fd,,/C 

Figure 4.2 Interpretation of Inequality (f) for Lot Size Problem
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We now establish some properties of solutions that satisfy (f) at equality and that will be useful

in identifying conditions under which (f) is a facet of CLS. Let C*LS = {(x, y) CLS I (x, y) satisfies (f)

at equality}.

Lemma 4.1. For any solution (x, y) that satisfies (f) at equality, Iv < max{C-r, C-dt'v} where t'

max{t I t R U D}, i.e., t' is the last period between u and v for which Yt is included in the inequality.

Proof. First, suppose that Q = P, i.e., there are no yt terms in the inequality. Then, since Iu-1 +

Ev xt > duv, (f) cannot be a face of CLS unless r = duv or r = C. If r equals duv or C, then rFduv/Cl =

duv and all (x, y) E C*LS that satisfy Iu_- + Ev xt = duv and, hence, Iv = 0.

Next, suppose that Q t P and R t 0. Then, from Remark 4.1(b), for all (x, y) E C*LS

Y t E {rdV I - 1, FdJCl/C. (4.6)
tER

If tER Yt = duv/Cl, then u- 1 = tEQ Xt = tED Yt = 0 and the maximum amount that can be

produced in the periods between u and v is CFd,,,/Cl. Since d,, = C(Fd,,,/C1-1) + r I- < C - r in this

case. If EteR t = du/C-l and EtED Yt = 0, then [u- + tEQ xt = r and v = O0. If yt X 0 for some t 

D, then let i be the first period in D for which yi = 1. To satisfy demand up to period i-i requires that

Iu-1 + teQxt > du,i-l - C(rduv/C-1) = dv - div - C(du/Cl-l) = r - di,. In fact, since the solution is in

C*LS, u-1 + EZtQ xt = r - div and Yt = 0 for t > i and t E D. Thus, the maximum inventory that can

be available at the end of period v occurs when period i produces to capacity and in this case Iv = C -

div. This conclusion establishes that Iv - max { C - r, C - dt'v } for all (x, y) C*LS.

A similar argument establishes this result if Q X P but R = 0. I

The next result shows that (f) cannot be a face of CLS if the demands in the periods u, u + l, .. , v

grow too fast.
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Lemma 4.2. Inequality (f), with RI > Fdu/C1 - 1, is a face of CLS if and only if for all q, u q v,

the demand between periods u and q, duq r + C ( I {t: t R and t q } ).

Proof. Note that if R > rduv/Cl - l and w+ 1 q v, then duq r + C ( I t: t E R and t q}l )

r + C RI is trivially satisfied since duq c du, = r + C(Fduv/C - 1). Consider u q - w. All integer

solutions in C*LS satisfy (4.4). Thus, these solutions also satisfy

I -l + Xt + { d Etvt (r, O}.
tEQ tED

Consequently, the maximum quantity available to meet demand up to any period q, u - q - w, is r +

C ( { t:t E R and t s q }1 ). Thus, ifduq > r + C ( {t: t E R and t I q } ), then (f) cannot be a face of

CLs,whereas if duq < r + C ( {t: t R and t < q} I ) then it is straightforward to construct (x, y) E

C*LS and show that (f) is a face of CLS. I

Our objective now is to identify conditions under which inequality (f) is a facet of CLS. Several of

these conditions impose restrictions on the demand between periods u and v and are related to the

properties that we established in Lemmas 4.1 and 4.2. To simplify the exposition, we focus on the case

Q ; 0, R 0, D 0 and u - 3 and then point out later how the discussion needs to be modified for

the other cases. We first introduce some additional notation that we need for the subsequent

discussion. Let N = Fduv/C = Fdu/Cl. Further, as in Lemma 4.1, define t' as the last period

between u and v for which y is included in (f), i.e., t' = max{t I t R U D}.

Theorem 4.2. Given Q 0, R X 0, D ; 0 and u 3, (f) is a facet of CLS if and only if the

following conditions are satisfied.

(i) r<C,v<Tandifv Qthend > 0,

(ii) dv+l1 max{C-r, C-dt'v}

(iii) RI - Fduv/Cl, and

(iv) duq r + C ( t: t :t R and t < q} I- 1) for all q for which duq > 0, u qv. (Note that if

du > 0, this condition requires u R and du < r.)

- 16-



Proof. We should first point out that though, for ease of exposition, we continue to use the

inventory variable Iu-1 in stating inequality (f) and in our discussion the proof that (f) is a facet of

CLS is actually for the equivalent inequality stated in terms of the x and y variables only, i.e., in

terms of the variables used to define the original problem CLSP. The proof of the theorem is fairly

long and so we outline briefly the essential steps. If the conditions of the theorem are satisfied, then it

is straightforward to show that (f) is a face of CLS but not an improper face and we omit the details.

We first discuss why all of the conditions (i) - (iv) are necessary for (f) to be a facet of CLS and then

show that they are also sufficient.

Necessity

The proof that each of the conditions (i) - (iv) is necessary for (f) to be a facet of CLS uses the

observations that if J is another valid inequality for CLSP that is not a multiple of (f) then (f) cannot

be a facet of CLS if it is implied by J or if C*LS C C, where C= { (x, y) E CI,s (x, y) satisfies J at

equality}.

(i) If r = C, then for some j, u j s w, replacing Cyj by xj in (f) results in another valid inequality

that implies (f) since xj < Cyj. Moreover, by our blanket assumption that d +d 2 C, x X Cyj for

some (x, y) CLS, and therefore, (f) cannot be a facet of CLS. Similarly, if v = T. and l) 0, let j ED.

Replacing djTy j by x results in a stronger inequality that is not equivalent to (f) and, hence, (f) cannot

be a facet. If v E Q and dv = 0 then (f) is equivalent to

lui X Xt + x x + E . rFdu_ d/C (4.7)

tEQ, trv tER tED

since dtv = dt,v-l for all t < v - 1. However, since xv > 0, (4.7) is implied by

'U- , + v r + N rv + d rFd IC].u-1 + t'V-1 t 
tEQ, tuv tER tED

Further, since xv 0 for some feasible solution to LS, (f) cannot be a facet of CLS.
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(ii) Lemma 4.1 shows that Iv, < max { C - r, C - dt'V } for all (x, y) C*LS. Hence, if d, + 1 > max { C - r,

C - dt'v }, then Yv + 1 = 1 in all integer solutions in C*LS and (f) cannot be a facet of CLS.

(iii) From Remark 4.1, RI > N-1 for (f) to be a face of CLS. IflRI = N-1, then (4.4) requires Yt = 1 for

all t E R and, therefore, (f) cannot be a facet of CLS.

(iv) Lemma 4.2 shows that duq < r + C I t: t R and t < q fl is necessary for (f) to be a face of CLS.

Ifduq > r + C ( I ( t: t R and t < q} - 1), then for all integer solutions in C*LS we must have Yt = 1

for all t E R and t < q to meet demand up to q. This observation implies that (f) cannot be a facet of

CLS. If du > 0, then this condition implies that u R. If du = 0, and u Q, then this inequality is

identical to another one with P = u + 1, ..., v} since

I- + x x + + E dtvYt 2 rFd U/C
tEQ, to u tER tED

I + E t+ E ry+Yt+ dtvYt > rFd +1 /C.
tEQ, t u tER tED

Hence, we need not consider the case u Q.

Having established the necessity of conditions (i) - (iv), we now show that if the problem satisfies

these conditions, then (f) is a facet of CLS. As mentioned earlier, it is easy to see that (f) is a face of

CLS, but is not an improper face. Thus, we need to show only that dim C*Ls = dim CLS - I to establish

that (f) is a facet of CLS. We prove dim C*LS = dim CLS - 1 by showing that any arbitrary valid

inequality that is satisfied at equality by all (x, y) C*LS is a linear combination of (f), Txi = Tdi

and y = 1.

Sufficiency

Let ax + 3y = 8, with a RT, P E RT and ( R, represent an arbitrary equation that is satisfied

by all (x, y) C*LS. We will construct a sequence of points (xl, yl), (x2, y2 ), ... in C*LS and use the fact

that axl + 3yl = ax 2 + y2 = ... to show that

-18-



(a) t = 0, t £ R U Dandt 1,

(b) at= al, t - u- 1 or t Q,

(c) at= a+l, t R U D or t v + 1,

(d) Pt = r(al -av+l), t R,

(e) Pt = dtv(al -av+ 1), t D,

(f) 8 = aV+ l Tdi + 1i + (al- av+ ){rrFduv/C + dl,u-}.

These conclusions establish the desired result that ax + 3y = 6 is a linear combination of Tx =

ETdi, Y = 1, and

Iu~_l +xt + ry + E dtY t= rN (4.8)
tEQ tsR tsD

We first indicate how we will prove (a) - (f). If it is possible to construct two solutions in C*LS, one

with Yt = 0, the other with Yt = 1, and all other variables the same for both solutions, then Pt must be

0. We can ensure that the solutions are feasible by defining both solutions with xt = 0. To prove that

at = ai for t ,ei, we need to be able to define two solutions in C*LS, one with xt = a + 1, xi = b, the

other with xt = a, xi = b + 1, for some nonnegative a and b, and all other variables the same in both

solutions, i.e., we can shift a unit of production from period i to period t. Similarly, given at = cti, to

show that t --= i for t ti. we construct a pair of solutions in C*I , one with Vt = 1, xt a= a, i = X 

0, the other with yi - , xi = a, yt = xt 0, for some nonnegative a, and all other variables the same

in both solutions.

We first show that t = 0 for all t R U D, t e 1. Recall that to do so we need to construct a

solution in C*LS with xt =yt 0. We consider the three cases 2 < t < u - 1, t E Q and t > v+ 1

separately. Since dl + d2 < C by assumption, it is easy to construct a solution with xt = t = 0 for 2 <

t < u-1. For future reference, we call this solution (xl, yl).

We construct a solution with xj = yj = 0 for a given j E Q as follows. Let the production in each of

the first u-l periods and in periods v + I to T be equal to demand in that period. Let the production in

periods t Q and t D and the corresponding setup variables be equal to 0. Finally, let the setup

variables for the first N periods in the set R be equal to 1 and the other be equal to 0; production in the
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first N-1 of these periods is at capacity and production in the Nth period is equal to r. Condition (iv) of

the theorem ensures that this plan meets demand in all periods between u and v. We refer to this

solution as (x2, y2 ).

For the third case, we ensure that xj = yj = 0 for a given j v + 1 by carrying sufficient

inventory to meet demand in period j. Since dv+ 1 - C - dt', it is possible to produce dt'v+ dv+ 1 in

period t' to meet demand in periods t' to v + 1. Thus, the capacity of period v + 1 can be used to produce

for periodj. To ensure that this solution is in C*LS, let the starting inventory Iu-1 in period u equal r -

dtv, the production in periods t Q and t ( D\{t'} equal 0, and the production in each of the first N-1

periods in the set R be equal to capacity C. (Note that since u 2 3, it is possible to construct solutions

with Iu-1 = r (or less). However, if u = 2, this choice is not possible unless d1 < C - r and thus, we need

to consider the case u = 2 (and u = 1) separately.) We refer to this third solution as (x3, y3 ).

We have shown that [t = 0 for all t C R U D, t ;e 1. We now show that at = al for all 2 t c u - I

or t ( Q. To do so, we need to construct a pair of solutions with the same setup variables equal to in

both the solutions, xl = a, xt = b+ 1 in one and x = a + 1, xt = b in the other. We first construct a

solution in C*LS with xl = d l and positive production in periodj for some given 2 j c u - 1 or j Q.

This construction is always possible. Now, we can obtain another solution by shifting a unit of

production from period j to period 1 and keeping all other variables the same. Therefore, at = a for

all 2 < t c u - 1 or t Q.

Similar arguments show that at = a + 1 for all t > v + 2. We now want to show that at = a + 1 for

all t R U D. Consider i D. Construct a solution (x, y) that is similar to (x3 , y3 ) with i playing the

role of t'. In particular, let Iu1 = r - div, xi = div + 1, xv + 1 = dv+ - 1 and choose the other variables

to obtain a feasible point. (If dv + 1 = 0, the construction can be suitably modified.) Since this solution

can be changed by shifting the one unit of production from period i to period v + 1 and keeping all

other variables the same, at = av + 1 for all t E D.

We now make some observations that will establish at = av+ 1 for all t ( R. Let R = {t1, t ... , tN}.

First, note that for any j R and j > tN, period j can play the role of period tN in the point (xl, yl), i.e.,
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we could have YtN = XtN = 0 and yj = 1, xj = r instead. Since r - C - 1, it is possible to modify these

solutions by shifting one unit of production from period v + 1 (or later) to period j, and hence at =

av+l for all t R and t - tN. Similarly, for any j R and j < tN-1, it is possible to modify (xl, yl) by

shifting one unit of production from periodj to period tN and hence, aj = atN. Therefore, at = av + 1 for

all t E R.

The results so far establish that ax + by = is of the form

u-I T

al( l Xt + Xt ) + a+ 1 ( xt + xt) + PlYl + Pyt 6
t=l tEQ tERUD t=v+l tERUD

u-1 T

(al - a+)( x xt) + x) + a +
1 xt + 1+ DtYt = °. (4.9)

t=l tEQ t=l tERUD

We now show that 3t = r(a - a+ 1) for all t R. As mentioned earlier, for any j E R and j > tN,

period j can play the role of period tN in the solution (xl, yl). Define (x4, y4) to be the same as (xl, yl)

except that ytN = xtN = 0 and yj = 1, xj = r instead for somej > t N. Construct (x5, y5 ) (C*LS with

P5 =r 5y = 5 5 4 5 4=r, x.=y.=O and x= t t y Y for t u, t j.

Comparing (x4 , y4 ) with (x5, y5) gives Pt = r(a - av + ) for all t R and t - tN. To show that Pt = t N

for all t E R and t < tN, note that if Iul = r in any feasible plan for the first u- 1 periods, then setting

production equal to capacity in any N - 1 of the first N periods in the set R and production equal to 0 in

all the other periods between u and v will give a solution in C*LS. Thus, 3t = ptN for all t R and t <

tN, and hence, Pt = r(al - a+ 1) for all t R.

Using similar arguments we can show that Pt dtv(a - a+i) for all t D. Thus, (4.9) is

equivalent to

-21 -



u-1 T

(al - aV+l){ + xt + xt + rY + dy a+ 1 Xt + = 5.
t=l tEQ tER tED t= 1

Since all (x, y) E C*LS satisfy Y = 1, ST Xt = ET dt, and (4.8),

T

= av+1 d+i + (a 1 -av+ 1 ){rFd /vC + d 1 }.
i=l

Therefore, ax + fy = 8 is a linear combination ofyl = 1, ZT Xt = ET dt, and (4.8). 1

We can now discuss why we need additional conditions if u < 3 or if one of the sets Q, R or D is

empty. Recall that the proof of Theorem 4.2 needs to be modified if u = 1 or u = 2 because some of the

solutions (x, y) EC*LS that we constructed to prove the theorem required IU_1 = r. This choice is

possible if u > 3 (since dl + d2 < C), but may not be feasible for u = 2 and obviously needs to be

modified when u = 1 since we assume 10 = 0. If Q = P then (f) cannot be a face unless r = C or r =

d,. Moreover, as mentioned in the proof of Lemma 4.2, Iv = 0 for all (x, y) E CLS in this case and,

hence, (f) cannot be a facet unless dv + 1 = 0 if Q = P. Similarly, we need additional conditions for the

other cases. For example, the general inequality (f) with u > 3 is a facet of CLS if and only if the

following conditions are satisfied.

(i) if Q = P, thenv < T, dv+ = Oandr = Corduv,

(ii) ifr =C, then t E Q for all u <t < w,

(iii) ifv = T, then t E Q for all w + 1 < t < T; if, in addition, w = T, then T E Q,

(iv) if v ( Q, then dv > 0,

(v) dv+l < max{C- r, C-dt'v},

(vi) if Fdu/Cl > 2 and r < C-I, then IRI > Fduv/Cl, and

(vii)ifR e 0, then duq < r + C (I { t t R and t < q} I - 1 ) for all q for which duq > 0,

u < q < v. (Note that if du > 0, this condition requires u E R and du < r.)

Note that most of these conditions are required for special cases of the inequality, for example, if Q =

P or R = 0. However, since we do not develop much further insight into the structure of CLSP from

these special cases, we do not provide the details for the cases u = 1 and u = 2.
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Trivial Facets

We state the following results regarding the trivial facets of CLSP without including their proof,

since they can be proved using arguments similar to those used to establish Theorem 4.2.

Proposition 4.1. The demand constraint Et xi - dlt is a facet of CLS for all t, 1 < t < T-l, for

which dt+ - 0.

As discussed earlier, the demand constraint is implied by Et xi + yt+ dt+l 1 dl,t+ , which is a

special case of the facet inequalities (f). The two constraints are identical only if dt+ 1 = 0. Hence, the

demand constraint cannot be a facet ifdt + 1 > 0.

Proposition 4.2. The forcing constraint xt < min {C, dtT} yt is a facet of CLS for all t.

Proposition 4.3.

2 0 is a facet ifd1 3

The constraint xt 0 is a facet of CLS for all t, 3 t T, for which dt<C(t-2); x2

C.

We comment briefly on why the conditions are necessary. First, note that the constraint xl - 0 is

not a face of CLS since, by assumption, d1 > 0 . Suppose d1t > C(t-2) for some t > 3. Then, all

solutions that satisfy xt 2 0 at equality, i.e., have xt = 0, must have y yl = ..Y = yt-i = 1 to satisfy

demand up to period t. Thus, xt > 0 cannot be a facet in this case. Since we already require yl = 1,

this observation does not hold for t = 2. However, if x2 = 0 and d13 > C, then in addition to y = 1 we

require Y3 = 1 and hence, x2 0 cannot be a facet in this case.

Proposition 4.4. The constraint yt 0 is a facet of CLS for all t, 3 < t T, for which d1t C(t-2).

Proposition 4.5. The constraint yt < 1 is a facet for all t, 2 < t < T.
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5. Separation Problem

In this section, we show how to solve the separation problem for inequalities (f), the class of non-

trivial facets for CLSP derived earlier. The separation problem can be described as follows. If we use

inequalities (f) as part of a cutting plane procedure to solve CLSP (or any problem that contains

CLSP as a subproblem), then given a feasible fractional point (x*, y*) for the linear programming

relaxation of CLSP (or the larger problem), we need to identify an inequality (f) that cuts it off or

determine that no such inequality exists. The following algorithm solves this problem

Let (x*, y*) denote a given fractional solution for the problem. For each u and v, with u- 1, 2, ..., T

and u < v T, find

(1) r = d (mod C),

(2) w = the first period between u and w that satisfies du/C = d/C1,

(3) R* C {u, u + 1, ..., w}, defined by t E R* if ry*t < x*t,

(4) D* C {w + 1, ..., v}, defined by t E D* if dtvY*t - x*t,

(5) Q* = P \{R* U D*}, where P = {u, u+1,..., v}.

(6) Check if

I* + \ * + \ ry + dI y* < rFd IC]. (§+ t - Y v y t t1v
tEQ* tER* tED*

If (§) is satisfied, then a violated inequality has been found. If (§) does not hold for any u and v then

the solution (x*, y*) does not violate any of the inequalities (f). By our choice of Q*, R* and D*, this

procedure will find a violated inequality (f) if there is one. It is straightforward to check that the

running time of this algorithm is O(T3).
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6. Computational Results

In our computational studies, we use our characterization of the polyhedral structure of the single

item lot size problem to develop and test a strong cutting plane algorithm for the multiple item

problem. In this section, we describe the algorithm and present some computational results.

The multiple item problem (MLSP) can be formulated as follows:

I T I T

Minimize E PitXit + s itYit
i=l t=l i=lt=l

subject to
t

j Ij=l

t

dj.

J= 1

T T

x. = Ed..
j=l j=!

xit < min{di.tT C}Yit 

I

'it - C,
i=l

XIt>- 0 0 < Yit < 1,

Yit integer,

V i,t

(6.1)

(6.2)

Vi (6.3)

V it (6.4)

Vt (6.5)

V i,t (6.6)

V i,t. (6.7)

In this formulation, xit refers to the production of item i in period t and Yit is equal to 1 if the

facility is setup to produce item i in period t and 0 otherwise. As in CLSP, the single product model, Pit

is the production and inventory carrying cost for production of item i in period t and sit is the cost of

setting up the facility for item i in period t. The demand for item i in period t is given by dit and di,tT =

ET dij. Constraints (6.2), (6.3) and (6.4) are analogous to constraints (3.4), (3.5) and (3.6) of the single
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item problem. Constraint (6.5) requires that the total production of all items in period t cannot exceed

the capacity C.

The algorithm that we test for solving MLSP uses a combination of cutting planes and branch and

bound as embodied in a system with the following features. The algorithm starts by solving a linear

programming relaxation of the given problem. If the linear programming solution is fractional, then

the system solves the separation problem for the family of facets described earlier to identify if this

solution violates a valid inequality. If the algorithm finds such an inequality, it adds it to the current

linear programming relaxation of the problem and then solves the updated linear program. The

system repeats this procedure until either the solution it generates is integral or violates none of the

facet inequalities. On termination, if the linear programming solution is not integral, then the

system uses branch and bound to obtain an optimal integral solution to the original problem.

Our computational experiments have two major objectives:

(i) to empirically estimate the reduction in the integrality gap, i.e., the gap between the optimal

values of the original problem and its linear programming relaxation, after the addition of facet

inequalities, and

(ii) to determine if any specific subclass of the facet inequalities is more effective in reducing this gap

so that we can develop insights into modeling these poblems and also consider linear programming

based solution methods that include these inequalities a priori.

Our goal is not to develop the most efficient cutting plane procedure that exploits our description

of the problem's polyhedral structure; therefore, for each fractional solution encountered in the

algorithm, we solve the separation problem, rather than use a faster heuristic, to identify a violated

inequality. Moreover, instead of testing when it is best to add violated inequalities and when to

invoke branch and bound, we use branch and bound only when no more valid inequalities can be

added to tighten the linear program. A number of such implementation issues used to resolved as a

prerequisite for developing a computationally efficient algorithm.
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In the next two sections, we describe the data used to test the algorithm and present our

computational results. The computations were all performed on a PRIME 850 computer using the

LINDO mixed integer programming package for solving the linear programs as well as for the branch

and bound computations. The matrix generators and the cut generation routines were coded in

FORTRAN as part of the USER subroutine available with LINDO.

Data Sets

Several researchers have reported computational experience for the capacitated lot size problem.

However, most of the results are for problems with a large number of products as compared to the

number of time periods. For these problems, the integrality gap tends to be small. We wanted to test

the cutting plane procedure on problems that are expected to have a large integrality gap since it is

for these problems that our procedure is most likely to offer advantages over other methods.

Unfortunately, there are very few data sets in the literature for capacitated problems with the

number of products comparable to the number of time periods. Thizy and Van Wassenhove (1982)

present a set of 8 period, 8 product problems that they were unable to solve using Lagrangean

relaxation. These problems have since been solved by Barany, Van Roy and Wolsey (1984b) and

Eppen and Martin (1985). Barany, Van Roy and Wolsey use facets of the single item uncapacitated lot

size problem to solve these problems and Eppen and Martin use a reformulation approach that is

equivalent to including a description of the convex hull of the single item uncapacitated lot size

problem in the multiple item formulation. Thus, both these methods are based on a characterization

of the polyhedral structure of the single item uncapacitated model.

To test our algorithm, we use variations of the Thizy and Van Wassenhove data, variations of a

single item problem discussed by Peterson and Silver (1979) and some randomly generated problems.

The four problems described by Thizy and Van Wassenhove are identical except for the available

capacity. In all four problems, the total demand over the horizon for most of the 8 products is less than

the capacity of a period. (The total demand over the horizon for the 8 products varies between 100 and

800 with the average being 365 and the capacity per period varies between 350 and 600. Note that for

any 8 period 8 product problem, the average total demand for a product cannot exceed the average
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capacity per period since otherwise the total demand for all the products will exceed the total

available capacity and the problem will be infeasible.) Therefore, the cuts that our algorithm would

generate for these problems would be the same as those for the uncapacitated problem and we would

not expect the performance of our method to be significantly different from that of Barany, Van Roy

and Wolsey. To generate capacitated problems, we modified the Thizy and Van Wassenhove data sets

to obtain 1, 2 and 4 product problems as follows. The demand for the 1 product problems was obtained

by adding the demand of all 8 products in the corresponding time periods and the setup cost was set

equal to 500. Four different 1 product problems were generated for this demand and setup cost by

letting the capacity per period equal 400, 600, 1000 and 3000 respectively. Note that the 1 product

problem with capacity per period equal to 3000 is an uncapacitated problem since the total demand

over the horizon is 2920. Similarly, we generated 2 product problems by aggregating the demands of

products 1-4 and 5-8 of the Thizy and Van Wassenhove data to obtain the demand for the two

products. The setup costs for the products was 500 and 400, respectively, and two different problems

were obtained by letting the capacity per period be 400 and 600, respectively. We also generated two 4

product problems in a similar manner by aggregating demands of products land 2, 3 and 4, 5 and 6,

and 7 and 8. The setup costs were equal to 500, 400, 300 and 200, respectively and the capacity per

period was 400 and 600. We also used variations of a single item, 12 period, uncapacitated problem

described by Peterson and Silver. For this data set, we let capacity equal 150, 180 and 220 in each

period to obtain 3 different problems. The Peterson and Silver problems are the same as those used by

Barany, Van Roy and Wolsey to test their algorithm.

We also tested the algorithm on some randomly generated 1 and 2 product problems. For all these

problems, the capacity per period was equal to 100, the setup cost for each of the products was also

equal to 100 and the holding cost per unit per period for each of the products was equal to 1. We then

generated demand for each product in each period from a uniform distribution. The single product

problems all had a planning horizon of 15 periods. The parameters of the distribution were

determined to allow the ratio dlT/C to vary between 3.7 and 11.2 (i.e., the utilization of the facility's

capacity varied between approximately 25% and 75%). Similarly, the two product problems all had a

planning horizon of 12 periods and the ratio of average total demand/capacity per period was varied

between 1.75 and 5.6 (i.e., the capacity utilization varied between approximately 29% and 93%).
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Computational Results

For a number of the problems tested, we found that most of the inequalities that were added to

tighten the linear program were either of the type

t

y Fdlt / C1 (6.8)
i=

1

or of the type

xi + dt+ Yt+1-d1,t+1 (6.9)
i= 

Note that constraints (6.8) and (6.9) are both special cases of the facet inequality (f). If P =

{l,...,t}, Q= 0 and D= 0, then (f) reduces to (6.8), whereas if P = 1,..., t+1}, Q=0, R= 0 and D =

{t+1}, then (f) reduces to (6.9). Recall also that constraint (6.9) is a stronger formulation of the

demand constraint of the lot size model. Therefore, to determine how much these inequalities tighten

the linear program, we also solved the linear programming relaxation with both (6.8) and (6.9)

included for all the products and all the time periods. I tis case, we replaced the original demand

constraints by (6.9). Tables 6.1 and 6.2 summarize the results for all the test problems. In these

tables, v(LP) refers to the optimal value of the linear programming relaxation, v(LPI) to the optimal

value of the linear program with both (6.8) and (6.9) included, v(LP2) to the optimal value of the

linear program after addition of all the facet inequalities that are generated by the cutting plane

procedure, and v(IP) to the optimal value of the original problem. For comparison purposes, we also

implemented a strong cutting plane algorithm that uses facets of the uncapacitated lot size problem

(inequality t) derived by Barany, Van Roy and Wolsey. V(LP3) refers to the optimal value of the

linear program after addition of all facet inequalities of the uncapacitated problem that are generated

by the cutting plane procedure. Recall that constraints (6.9) are also facets of the uncapacitated

problem and we replaced the demand constraints by (6.9) when implementing the strong cutting

plane procedure to obtain v(LP3).
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The results in Table 6.1 show that the facet inequalities (f) are very effective in reducing the

integrality gap for the multiple item capacitated lot size problem. In fact, note that the addition of

only constraints (6.8) and (6.9) reduces the gap significantly. Moreover, when capacity is tight, an

implementation using facets of the capacitated problem produces a much smaller integrality gap

than does an implementation using facets of the uncapacitated problem. Indeed, for several of these

problems (for example, LS1.1, LS1.2, LS1.8, LS2.1) inequalities (6.8) and (6.9) reduce the gap as much

as all the facets of the uncapacitiated problem. On the other hand, for the four product problems the

facets of the capacitated problem do not tighten the linear programming relaxation any more than

the facets of the uncapacitated problem. This result probably reflects the fact that for both the 4

product problems, the ratio of average total demand to capacity per period is less than 2, i.e., the

capacity restrictions are not tight.

Table 6.2 summarizes other performance measures: the number of cuts added to the initial linear

program in the cutting plane procedures, and the number of branches generated in the branch and

bound tree to obtain an optimal integer solution. The results in Table 6.1 suggest that adding

constraints (6.8) and (6.9) a priori to the linear programming relaxation is very effective in reducing

the integrality gap. To test whether it may be worthwhile to invoke branch and bound directly after

solving the linear program with (6.8) and (6.9) included, we implemented this procedure as well;

Table 6.2 compares the CPU' times for the different methods. From this table, we see that for all the 1

and 2 product problems, it is faster to use branch and bound directly rather than first seeking the

cutting plane procedure. However, the reverse is true for the 4 product problems. This result suggests

that other classes of facet inequalities might be effective in tightening the linear programming

relaxation in general and that we should consider adding these inequalities a priori and then using

branch and bound directly instead of a cutting plane procedure. Tables 6.1 and 6.2 also show that for

a majority of the 1 and 2 product problems, using facets (f) of the capacitated model adds more cuts

then does an implementation using facets (t) of the uncapacitated model; however, adding

inequalities (f) reduces the integrality gap more than adding inequalities (). For the 4 product

problems, the facets of the capacitated problem reduce the integrality gap as much as the facets of the

uncapacitated problem; however, the cutting plane routine generates fewer of them. Thus,
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inequalities (f) seem to be more effective than the corresponding inequalities of the uncapacitated

model in solving multi-item capacitated problems.

Table 6.3 summarizes information about the average integrality gaps for the problems we solved.

Table 6.3

Average Integrality Gaps for the Capacitated Lot Size Problems

Average Average Average
reduction in reduction in reduction in

Average gap by gap by gap by
No. of v(IP)-v(LP) inequalities inequalities inequalities

products v(IP) (7.8) and (7.9) (f) (t)
% v(LP1)-v(LP) v(LP1)-v(LP) v(LP1)-v(LP)

v(IP)-v(LP) v(IP)-v(LP) v(IP)-v(LP)

1 8.2 89.7 98.6 90.9

2 11.6 80.1 94.7 92.2

4 21.2 72.9 94.8 94.8

The computational results suggest that replacing the usual formulation of the demand

constraints by (6.9) in lot size problems and in more complex problems that contain the lot size model

as a substructure and including constraints (6.8), which state that for every product i and a given

time period t, the facility must incur at least Fdi 1 t/C setups for product i by time period t, may yield

significantly stronger formulations whenever capacity is tight. This experience also suggests that we

might be able to avoid completely the more complex cutting plane approach and simply add

constraints (6.8) and (6.9) to the model a priori and use a conventional branch and bound procedure.

However, we need to explore in more detail whether any additional facet inequalities should also be

added a priori.

An important issue that needs to be resolved is how to construct good feasible solutions from the

fractional solutions obtained at the end of the cutting plane routine, since for these problems it takes

a large number of branches to find an optimal integer solution even though the integrality gap after
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the addition of the facet inequalities is fairly small (see, for example, problem LS4.1). Unfortunately,

the structure of the fractional solutions does not suggest a simple heuristic for this purpose. We could

just round up all the fractional y variables to 1; however, in general this approach does not yield a

good upper bound.

7. Conclusions

Our objective in this paper has been to study the polyhedral structure of the capacitated lot size

model, a prototypical model in the production planning literature, and to subsequently use the results

to develop efficient solution methods for problems that contain this model as a substructure. Our

research was motivated by the following observations. First, even though this problem has been the

focus of extensive study, available results from the literature are able to solve only special cases.

Second, like many integer programming problems, the lot sizing problem can be formulated in

several different ways and results about the structure and properties of alternative formulations

should provide useful insights about modeling. Finally, the success of cutting plane procedures using

facet inequalities in other problem domains indicates that these methods can be very effective in

solving large integer programming problems to optimality in reasonable computation times.

Our study focused on examining the structure of the single item, single resource, constant

capacity lot size model. We derived a class of non-trivial facets of the problem, which generalize the

facet inequalities for the uncapacitated lot size problem, and showed how to solve efficiently the

separation problem for this new class of inequalities. We then implemented and tested a strong

cutting plane procedure for the multiple item problem. Our computational results for this problem,

which show that these facet inequalities considerably reduce the integrality gap, have been very

encouraging. Our results further indicate that adding even special cases--simple inequalities (6.8)

concerning number of set-ups and an alternate (stronger) formulation (6.9) of the demand

constraints -- of the facet inequalities a priori to the linear programming relaxation considerably

reduces the integrality gap. This conclusion suggests that replacing the usual formulation of the

demand constraints by the stronger formulation (6.9) and including the set-up inequalities (6.8) in

the formulation of more complex problems that contain the lot size model as a substructure may yield

stronger formulations in other settings as well.
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