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Abstract 

Generally, combinatorial optimization problems are easy to formulate, but hard to 
solve. The most successfull approaches, cutting plane algorithms and column generation, 
rely on the (mixed) integer linear programming formulation of a problem. The theory of 
polyhedra, i.e., polyhedral combinatorics, is the foundation of these techniques. 

This manuscript intends to give an overview of polyhedral theory and its implica
tions for cutting plane algorithms. We describe the major theoretical developments, like 
Gomory's general cutting plane algorithm, and the complexity of separation, Practical 
issues are illustrated on a diversity of well-known problems, like the traveling salesman 
problem and facility location, and on some generic problems like the knapsack problem, 
and vertex packing problem. The cutting plane approach extended with preprocessing 
techniques, and it is embedded in a branch-and-cut framework. Typical computational 
results are provided. 



Combinatorial optimization deals with maximizing or minimizing a function subject to a set of 
constraints and subject to the restriction that some, or all, variables should be integers. Several 
problems that occur in management and planning situations can be formulated as combinato
rial optimIzations problems, such as the lot sizing problem, where we need to decide on which 
time periods to produce, and how much to produce in these periods to satisfy customers de
mand at minimal total production, storage and setup costs. Another well-known combinatorial 
optimization problem is the traveling salesman problem where we want to determine in which 
order a "salesman" shall visit a number of "cities" such that all cities are visited exactly once 
and such that the length of the tour is minimal. This problem is one of the most studied com
binatorial optimization problems, not because of its importance in the planning of salesmen 
tours, but because onts numerous other applications, both in its own right and as substructures 
of more complex models, and because it is notoriously difficult to solve. The combination of 
being easy to state, relatively easy to formulate as a mathematical programming problem, but 
computationally intractable is something a majority of combinatorial optimization problems 
have in common. 

The computational intractability of most core combinatorial optimization problems has been 
theoretically indicated, i.e. it is possible to show that most of these problems belong to the class 
of NP~hard problems, see Karp (1972), and Garey and Johnson (1979). No algorithm with a 
worst-case running time bouded by a polynomial in the size of the input is known for any NP
hard problem, and it is strongly believed that no such algorithm exists. Therefore, to solve these 
problems we have to use an enumerative algorithm, such as dynamic programming or branch 
and bound, with a worst~case running time that is exponetial in the size of the input. The 
computational hardness of most combinatorial optimization problems has inspired researchers 
to develop good formulations, and algorithms that are expected to reduce the size of the enu
meration tree. To use information about the structure of the convex hull of feasible solutions, 
which is the basis for polyhedral techniques, has been one ofthe most successful approaches so 
far. The pioneering work in this direction was done by Dantzig, Fulkerson and Johnson (1954), 
who invented a method to solve the traveling salesman problem. They demonstrated the power 
of their technique on a 49-city instance, which was huge at that time. 

The idea behind the Dantzig-Fulkerson-Johnson method is the following. Assume we want to 
solve the problem 

min{cx subject to XES}, (1) 

where S is the set of feasible solutions, which in our case is the set of traveling salesman tours. 
Let S P n 7ln , where P == {x E 1R n : Ax S b} and Ax S b is a system of linear inequalities. 
Since S is difficult to characterize, we could solve the problem 

min{cx subject to x E P} (2) 

instead. Problem (2) is easy to solve, but since it is a relaxation of (1) it may us a solution 
x* that is nota tour. More precisely, the following two things can happen if we solve (2): either 
the optimal soution x* is a tour which means that x* is also optimal for (1), or x* is not a tour 
in which case it is not feasible for (1). If the solution x* is not feasible for (1) it lies outside 
the convex hull of S which means we can cut off x* by identifying a hyperplane separating x* 
from the convex hull of S, i.e. a hyperplane that is satisfied by all tours, but violated by x*. An 
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inequality that is satisfied by all feasible solutions is called a valid inequality. When Dantzig, 
Fulkerson and Johnson solved the relaxation (2) of their 49-city instance they indeed obtained 
a solution x* that was not a tour. By looking at the solution they identified a valid inequality 
that was violated by x*, and added this inequality to the formulation. They solved the resulting 
linear programming problem and obtained again a solution that was not a tour. After repeating 
this process a few times a tour was obtained, and since only valid inequalities were added to 
the relaxation, they could conclude that the solution was optimal. 

Even though many theoretical questions regarding the traveling salesman problem remained 
unsolved, the work of Dantzig, Fulkerson and Johnson was still a breakthrough as it provided a 
methodology that was actually not limited to solving traveling salesman problems, but could be 
applied to any combinatorial optimization problem. This new area of research on how to describe 
the convex hull of feasible solutions by linear inequalities was called polyhedral combinatorics. 
During the last decades polyhedral techniques have been used with considerable success to 
solve many previously unsolved instances of hard combinatorial optimization problems, and it 
is still the only method available for solving large instances of the traveling salesman problem. 
The purpose of this paper is to describe theoretical and computational aspects of polyhedral 
techniques and to partially survey the results that have been obtained by applying this approach. 

A natural question that arises when studying the work by Dantzig, Fulkerson and Johnson is 
whether it is possible to develop a general scheme for identifying valid inequalities. This question 
was answered by Gomory (1958), (1960), (1963) who developed a cutting plane algorithm 
for general integer linear programming, and showed that the integer programming problem 
min {ex subject to XES} can be solved by solving a finite sequence oflinear programs. Chvital 
(1973) proved that all inequalities neccessary to describe the convex hull of integer solutions 

• - can be obtained by taking linear combinations of the original and previously generated linear 
inequalities and then applying a certain rounding scheme, provided that the integer solutions 
are bounded. Schrijver (1980) proved the more general result that it is possible to generate 
the convex hull of integer solutions by applying a finite set of operations on the polyhedron 
describing the integer solutions, if this polyhedron is rational, but not neccessarily bounded. 
The results by Gomory, Chvital, and Schrijver are discussed in Section 1. Here we will also 
address the following two questions: When can we expect to have a concise description of the 
convex hull of feasible solutions? How difficult is it to identify a violated inequality? These 
questions are strongly related to the computational complexity of the considered problem, i.e. 
the hardness of a problem type will catch up with us at some point, but we shall also see that 
certain aspects of the answers make it possible to hope that a bad situation can be turned into 
a rather promising one. 

When studying special problem classes, such as the traveling saleman problem, we want to 
develop specific families of valid inequalities that contain inequalities that can be proven to be 
neccessary in the description ofthe convex hull offeasible solutions. Based on the various classes 
of valid inequalities we then need to develop separation algorithms, i.e. algorithms for identifying 
violated inequalities given the current solution x*. In Section 2 we begin by describing families 
of valid inequalities for some basic combinatorial optimization problems, and the corresponding 
separation problems. These inequalities are important as they are often useful when solving 
more complex problems as well, either directly, or as a starting point for developing new, more 
general families ofinequalities. Moreover, they represent different arguments that can be used 
when developing valid inequalities. We shall also give a partial survey of polyhedral results for 
combinatorial optimization problems. 
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Next to the theoretical work of developing good classes of valid inequalities and algorithms for 
identifying violated inequalities, there is a whole range of implementation issues that have to 
be considered in order to make polyhedral methods work well. One such issue is preprocessing. 
Important elements of preprocessing are to reduce the size of the initial formulation by deleting 
unneccessary variables and constraints, and to reduce the size of the constraint coefficients to 
make the instance numerically more attractive. In the course of strengthening the relaxation by 
adding valid inequalities we may also want to delete some of the previously added inequalities 
to avoid that the formulation grows too much. We may also want to work with a partial set 
of variables to speed up computations. Dantzig, Fulkerson and Johnson were able to find the 
optimal solution by adding valid inequalities only. In general we do end up in the situation 
where the current solution x* is not feasible and where we are unable to identify an inequalitiy 
violated by x*. We then have to start a branch and bound phase. For the branch and bound 
algorithm we must decide precisely how to create new subproblems, or nodes, in the search 
tree, as well as a suitable search strategy. It is also possible to add inequalities in every node of 
the tree, in which case we need to keep track of where in the tree the various inequalities are 
valid. All these issues are discussed in Section 3. To illustrate the computational possibilities 
of polyhedral techniques we present computational results for some selected problem types in 
Section 4. 

Even though polyhedral combinatorics has been the foremost tool for computing large in
stances of a vast collection of combinatorial optimization problems it is not the only technique 
present, and depending on the problem type it may be preferrable to choose a different method. 
We conclude our article by briefly mentioning alternative approaches to solving integer and 
combinatorial optimization problems. 
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1 Theoretical background 

The integer linear programming problem (ILP) is defined as 

min{cx : xES} (3) 

where S P n '[Ln and P {x E IR n : Ax ::; b}. We call P the linear formulation of ILP. 
A polyhedron P is rational if it can be determined by a rational system Ax ::; b of linear 
inequalities. The convex hull of the set S of feasible solutions, denoted conv( S), is the smallest 
convex set containing S. A facet defining valid inequality is a valid inequality that is neccessary 
to describe conv( S), i.e. it is the "strongest possible" valid inequality. In Fig re 1 we give an 

example of sets S, P and con:v~( St~'~ __ ------------71---
P 

conv(S) 

• • 

Figure 1: P, S, and conv(S). 

If we know the linear description of conv(S) we can solve the linear programming problem 
min {ex: x E conv( S)} which is computationally easy. In this section we shall primarily address 
the issue of how difficult it is to obtain conv( S). First we show that for rational polyhedra, and 
for not neccessarily rational bounded polyhedra, we can generate conv(S) algorithmically in a 
finite number of steps. In general however, there is no upper bound on the number of steps in 
terms of the dimension of S. We also demonstrate that it is very unlikely that conv( S) of any 
NP-hard problem can be described by concise families oflinear inequalities. Finally, we relate 
the complexity of the problem of finding a hyperplane separating a vector x* from conv( S) or 
showing that x* E S to the complexity of the optimization problem given S. In general these 
two problems are equally hard, but if we restrict the search of a separating hyperplane to a 
specific dass, this problem might be polynomially solvable even if the underlying optimization 
problem is NP-hard. 

1.1 Solving Integer Programming Problems by Linear Programming 

What was needed to transform the procedure of Dantzig, Fulkerson and Johnson (1954) into 
an algorithm was a systematic procedure for generating valid inequalities that are violated by 
the current solution. Assume that we want to solve the variant ofILP where the integer vectors 
in S are bounded and where all entries of the constraint matrix A and the right-hand side 
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vector b are integers. Gomory (1958), (1960) and (1963) developed a cutting plane algorithm 
based on the simplex method, for solving integer linear problems on this form. This was the 
first algorithm developed for integer linear programming that could be proved to terminate in 
a finite number of iterations. The basic idea of Gomory's algorithm is similar to the approach 
of Dantzig, Fulkerson and Johnson, i.e. instead of solving ILP directly we solve the linear 
programming (LP) relaxation min {ex: x E P} by the simplex method. If the optimal solution 
to LP is integral, then we are done, and otherwise we need to identify a valid inequality cutting 
off x*. Gomory developed a technique for automatically identifying a violated valid inequality 
and proved that after adding a finite number of inequalities, called Gomory cutting planes, the 
optimal solution is obtained. We shall illustrate Gomory's technique by an example. Assume 
we have solved the linear relaxation of an instance of ILP, as described above, by the simplex 
method, and that one of the rows of the tableau reads 

36 
IT 

where Xl is a basic variable and variables X3 and X4 are non-basic, i.e. at the current solution 
Xl 36/11 and X3 X4 = O. Vife now split each coefficient in an integer and a fractional part 
by rounding down all coefficients. The integer terms are put in the lefthand side of the equation 
and the fractional terms are put in the righthand side. Since all coefficients are rounded down, 
the fractional part of the variable coefficients in the righthand side becomes nonpositive, 

In any feasible solution to ILP, the lefthand side should be integral. Moreover, all variables are 
nonnegative. Since the variables in the righthand side appear with nonpositive coefficients we 
can conclude that 

10 2 <0 d' 11 X3 - 11 X4 _ ,an lllteger. (4) 

We have argued that the inequality (4) is valid, i.e. it is not violated by any feasible integer 
solution. It is easy however to see that it does cut off the current fractional solution as X3 = 
X4 = O. Let Lx J denote the integer part of x. 

Outline of Gomory's cutting plane algorithm. 

1. Solve the linear relaxation of ILP with the simplex method. The current number of 
variables is k. If the optimal solution x* is integral, stop. 

2. Choose a source row io in the optimal tableau with a fractional basic variable. Row io 
reads aio,lXl + aio,2X2 + ... + aio,kXk bio' Let aij = aij - laijJ, and bi = bi - Lbd· 

3. Add the equation -aio.lxl - aio.2x2 - ... - aio,kxk + Xk+1 -bio' where Xk+1 is a slack 
variable, to the current linear formulation, and reoptimize using the dual simplex method. 
If the optimal solution x* is integral, stop, otherwise k f-- k + 1, go to 2. 

In the outline above we have not specified how to choose the source row. To be able to prove 
that the algorithm terminates in a finite number of steps we have to make sure that certain 
technical conditions are satisfied. The technical details are omitted here but can be found in 
Gomory (1963) who gives two proofs of finiteness, and in Schrijver (1986), page 357. 
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Theorem 1 Gomory (1963). There exists an implementation of Gomory's cutting plane al
gorithm such that after a finite number of iterations either an optimal integer solution zs 
found, or it is pr'oved that S 0. 

A recent discussion on Gomory cutting planes can be found in Balas et al. (1994) who incorpo
rate the cutting plane algorithm in a branch-and-bound procedure and report on computational 
experience. 

Chvatal (1973) studied the more general version of ILP, where the integer vectors of S are 
bounded and where the entries of A and b are real numbers. He showed that if one takes linear 
combinations of the linear inequalities defining P and then applies rounding, and repeats the 
procedure a finite number of times, conv( S) is obtained. After each iteration of the procedure 
we get a new linear formulation containing more inequalities. We again illustrate the procedure 
by an example. Let G (V, E) be an undirected graph where 11 is the set of vertices and E is 
the set of edges. Let 8( v) {e E E : e is incident to v}. A matching M in a graph is a subset 
of edges such that each vertex is incident to at most one edge in M. The maximum cardinality 
matching problem can be formulated as the following integer linear programming problem. 

max LeEExe 

s.t. LeE8(v) Xe ::; 1 for all v E V (5) 

o ::; Xe ::; 1 for all e E E (6) 

Xe integer for all e E E (7) 

Let U be any subset consisting of k vertices, where k ~ 3 and odd, and let E(U) be the 
set if edges with both endvertices in U. By adding inequalities (5) for all v E U we obtain 
2 LeEE(U) Xe ::; lUI, or equivalently 

lUI L Xe::; 2' 
eEE(U) 

(8) 

Since each Xe is an integer, the left hand side of(8) has to be integral. As lUI is odd, therighthand 
side of (8) is fractional, and hence we can round down the right hand side of (8) giving the vaHd 
inequality 

llU2 1J L xe::; 

eEE(U) 

(9) 

which we call an odd-set constraint. It is easy to show that the odd-set constraints are neccessary 
to describe the convex hull of matchings in G. We also note that there are exponentially many 
odd-set constraints as there are exponentially many ways of forming subsets U. \Ve shall now 
give a more formal description of Chvatal's procedure. 
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An inequality ajxj ::; b is said to belong to the elementary closure of a set P of linear 
inequalities, denoted e1 ( P), if there are inequalities aijX j ::; bi i = 1, ... , m in P and 
nonnegative real numbers AI, A2, ... , Am such that 

and 

m 

L: Ajajj = aj with aj integer, j 1, ... , n, 
i=1 

m 

LL: Ajbd ::; b. 
i=l 

For integer values of k > 1, ek(p) is defined recursively as ek(p) e(PU ek- 1(p)). The closure 
of P is defined as c(P) = Uk:l ek(p). 

Theorem 2 Chvatal (1973). If S is a bounded polyhedron, then conv(S) can be obtained 
after a finite number of closure operations. 

An interesting question is if k can be bounded from above by a function of the dimension of 
S. Chvatal called the minimum number of closure operations k required to obtain conv( S), 
given a linear formulation P, the rank of P. If we return to the matching problem (5)-(7), it 
was proved by Edmonds (1965) that the convex hull of the matching polytope is determined 
by inequalities (5), (6) and (9). As the odd-set constraints (9) can be obtained by applying one 
closure operation on the linear formulation, the rank of the set of inequalities (5) and (6) is 
one. In general however, there is no upper bound on k in terms of the dimension of S as the 
following two-dimensional problem illustrates. 

maxx2 

o ::; Xl < 1 

X2 > 0 

-tXl + X2 < 1 

tXl + X2 < t + 1 

xI, X2 integer. 

Only if S = 0 there exists an upper bound on k that is a function of the dimension of P. This 
was proved by Cook et al. (1987). 

There is a clear relation between Chvatal's closure operations and Gomory's cutting planes 
in the sense that every Gomory cutting plane can be obtain by a series of closure operations 
and every inequality belonging to the elementary closure can be obtained as a Gomory cutting 
plane. It would be possible to prove Theorem 2 by using Gomory's algorithm, but then one 
would first need to get rid of the inequalities Xj ~ 0, j, .. . , n and the assumption that the 
entries of A and b have to be integer. For further details, see Chvatal (1973). 

Schrijver (1980) studied the version ofILP where S is not neccessarily bounded, and where P 
is defined by a rational system of linear inequalities. The operations carried out on P to obtain 
the convex hull of feasible solutions is quite different from the linear combination and rounding 
schemes developed by Gomory and Chvatal. The key component of Schrijver's procedure is the 
formulation of a totally dual integral (TDI) system of inequalities. A rational system Ax ::; b 
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of linear inequalities is TDI if for all integer vectors c such that max{ cx : Ax $ b} is finite, the 
dual min{yb : yA = c, y:?: O} has an integer optimal solution. Note that if Ax $ b is TDI, and 
if b is integral, then P = {x : Ax $ b} is an integral polyhedron, i.e. all extreme points of Pare 
integral. TDI systems were introduced by Edmonds and Giles (1977). 

Each iteration of Schrijver's procedure consists of the following two steps. 

1. Given a rational polyhedron P, find a TDI system Ax $ b defining P, with A integral. 

2. Round down the righthand side b. 

It has been proved by Giles and Pulleyblank (1979) and Schrijver (1981) that there exists a 
TDI system as in 1. for every rational polyhedron P, and that the TDI system is unique if P 
is full-dimensional. Finding such a TDI sytem can be done in finite time. After one iteration of 
the above procedure we get a polyhedron p(l) strictly contained in P unless P is integral. Given 
the polyhedron p(l) we repeat the steps 1. and 2. This continues until conv( S) is obtained. 

Theorem 3 Schrijver (1980). For each rational polyhedron P, there exists a number k, such 
that after k iterations of Schrijver's procedure conv( S) is obtained. 

The results presented above are of significant theoretical importance as they give algorithmic 
ways of generating the convex hull of feasible solutions. All three approaches are finite, but 
from a practical point of view finite in most cases does not imply that computations can be 
done within reasonable time. One apparent question is whether for some problem classes it is 
possible to write down the linear description of the convex hull in terms of concise families of 
linear inequalities. If that is possible we could apply linear programming directly. This is the 
topic of the following subsection. 

1.2 Concise Linear Descriptions 

We mentioned in the previous subsection that the convex hull of matchings in a general undi
rected graph G is given by the defining inequalities (5), (6) and the exponential class of in equal
ities (9). Assume now that G is bipartite, Le. that we can partition the set V of vertices into two 
sets VI, V2 such that all edges have one endpoint in VI and the other endpoint in "T2 • For bipartite 
graphs the convex hull ofmatchings is described by the defining inequalities (5) and (6) alone 
which is a polynomial system of linear inequalities. This means that for bipartite graphs the 
integrality condition (7) is redundant. In contrast, there is no concise linear description known 
for the traveling salesman problem, even if we allow for exponential families of inequalities. The 
reason why the bipartite matching problem is so easy is that the constraint matrix is totally 
unimodular (TU). A matrix A is TU if each sub determinant of A is equal to 0,1 or-1. 

Theorem 4 If A is a TU matrix the polyhedron P = {x : Ax $ b} is integral for all integer 
vectors b for which P is not empty. 

Seymour (1980) provided a complete characterization of TU matrices yielding a polynomial 
algorithm for testing whether a matrix is TU. For a thorough discussion on TU matrices we 
refer to Schrijver (1986), and Nemhauser and Wolsey (1988). 
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An observation that is interesting to make in this context is that the bipartite matching problem 
is polynomially solvable as its linear description is polynomial in the dimension of the problem. 
For the matching problem in general undirected graphs there is a polynomial combinatorial 
algorithm due to Edmonds (1965), but the traveling salesman problem is known to be NP
hard. The following theorem confirms that there is a natural link between the computational 
complexity of a class of problems and the possibility of providing concise linear descriptions of 
the convex hull offeasible solutions. Before stating the result we need to introduce the following 
problems: 

The lower-bound feasibility problem. An instance is given by integers m, n an m X n matrix A, 
vectors band c and a scalar o. The question is: 3 x E 7ln : Ax s: b, cx > 6? 

The facet validity problem. An instance is given by the same input as for the lower-bound 
feasibility problem. The question is: Does cx s: 8 define a facet of conv( {x E 7J,n : Ax s: b})? 

Note that if the lower-bound feasibility problem for a family of polyhedra is NP-complete then 
optimizing over the same family of polyhedra is NP-hard. 

Lemma 5 If any NP-complete problem belongs to co-NP, then NP=co-NP. 

Theorem 6 Karp and Papadimitriou (1980). If lower-bound feasibility is NP-complete, and 
facet validity belongs to NP then NP=co-NP. 

The way to prove Theorem 6 is to show that iffacet validity belongs to NP, then lower-bound fea
sibility belongs to co-NP. Since lower-bound feasibility is NP-complete we can through Lemma 
5 conclude that NP=co-NP. It is extremely unlikely that NP=co-NP, as this implies that all 
NP-complete problems have a compact certificate for the no-answer. Hence, if we believe that 
NPfco-NP, and ifmin{cx : XES} is NP-hard then there are classes offacets of conv(S) for 
which there is no short proof that they are facets. 

1.3 Equivalence Between Optimization and Separation 

We have seen that if a problem is NP-hard we cannot expect to have a concise linear description 
of the convex hull of feasible solution. Moreover, for the matching problem, which is polynomi
ally solvable and which has a concise linear description of the convex hull of feasible solution, 
this description is exponential in the dimension of the problem. These observations do not 
necessarily have to be bad news since what we primarily need is a good description of the area 
around the optimal solution. The question then is whether it is possible to identify a violated in
equality whenever needed, i.e. if we can find a hyperplane separating a given fractional solution 
from the convex hull, or prove that no such hyperplane exists. 

The separation problem for a family F P of polyhedra. Given a polyhedron P E F P, and a 
solution x*, find an inequality cx s: 8, valid for P, satisfying cx* > 8, or prove that x* E P. 

The optimization problem for a family F P of polyhedra. Given is a polyhedron P E F P. 
Assume that P f 0 and that P is bounded. Given a vector c E IRn , find a solution xO such that 
cxo S cx for all x E P. 
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Theorem 7 Grotschel, Lovasz and Schrijver (1981). There exists a polynomial time algorithm 
for the separation problem for a family F P of polyhedra, if and only if there exi8ts a polynomial 
time algorithm for the optimization problem for F P. 

The theorem says that separation in general is equally hard as optimization but, as we shall 
see in the next section, when applying the polyhedral approach we develop specific families of 
valid inequalities for a given problem type, such as the odd-set constraints (9) developed for 
the matching problem. 

The separation problem based on a family F I of valid inequalities. Given a solution x*, find 
an inequality cx :::; 6 belonging to Fl, satisfying cx* > 6, or prove that no such inequality in 
Fl exists. 

The separation problem based on a family of valid inequalities may be polynomially solvable 
even if the underlying optimization problem is NP-hard. Moreover, even if a family of inequali
ties is NP-hard to separate we may still be able to separate it effectively using a heuristic. Good 
separation heuristics together with a good implementation of a preprocessing routine and a 
branch and bound scheme, form the basis for the success of the polyhedral approach. 

2 Polyhedral Results for Selected Combinatorial Structures 

The results presented in the previous section did provide very important theoretical answers, 
but no efficient computational tools. In the early seventies there was a reniewed interest in 
developing general purpose integer programming solvers. Instead of Gomory's cutting plane 
method, which tended to be very time consuming, one developed facet defining inequalities and 
separation algorithms for various problem types and embedded the separation algorithms in a 
branch and bound framework. Since the added inequalities could be proved to be neccessary to 
describe the convex hull offeasible solutions one could expect that they would be more effective 
than the Gomory cutting planes. Moreover, by developing facet defining inequalities and asso
ciated separation algorithms for some basic combinatorial structures that occur frequently in 
more general combinatorial optimization problems, and by implementing these algorithms in 
commercial software, it would possibly be very useful when solving a wide range of combinato
rial problems. In the late seventies and in the eighties remarkable computational progress was 
made. Here we shall describe some classes offacet defining valid inequalities developed for some 
basic, important combinatorial optimization problems. The main purpose with the survey is 
to give an impression of how inequalities and separation algorithms are developed, and how 
they can be used, not only for the problem for which they are developed, but also for more 
general structures. After each problem class we shall give references to related work. Since the 
space provided here is not enough for a complete survey, we recommend the following literature 
to the interested reader. The books by Schrijver (1986), and Nemhauser and Wolsey (1988) 
provide a broad theoretical foundation as well as many examples. The article by Junger et al. 
(1994) contains a comprehensive survey of computational results obtained by using polyhedral 
techniques. The last developments on solving large traveling salesman problems is found in the 
article by Applegate et al. (1994). It should also be noted that Balas et al. (1994) has made 
a recent computational study of Gomory's cutting plane algorithm and report encouraging 
results. 

10 



2.1 Preliminaries 

In this subsection we introduce probably well-known algebraic subjects like linear and affine 
spaces, Moreover, the most important aspects of polyhedra, like faces and facets are defined. 

The set of linear combinations of a set of vectors Xl . •• xI< C IRn is the linear space LS :::::; 
{l=r~l O!kxkl O! E IRI<}. If Xl ... xI< form a minimal system, i.e., none of the vectors is a 
linear combination of the others, then the vectors xl ... xI< are called linearly independent. 
Equivalently, the vectors xl ... xl{ are linearly independent if O! = 0 is the unique solution of 
the system O!kxk = O. The dimension of a linear space LS) denoted by dime LS) is defined 
as the minimum number of linearly independent points in the space. 

The set of ajJine combinations of the J( + 1 points xo, x I ... xl{ C IR n is called an ajJine space 
AS == u=f=o O!kxkl O! E IRI<+\ I:;£~o O!k = I}. Thus, an affine space can be viewed as a linear 
space translated over a vector xo: AS {xO + (3k(Xk - xO)1 (3 E IRK}. Hyperplanes in 
IRn are affine spaces. If the set of points xO ••• is a minimal system, i.e., none of the points 
is an affine combination of the others, then the points xO ... xK are called ajJinely independent. 
Equivalently, the points xO ... x K are affinely independent if O! = 0 is the unique solution of the 
system I:;{~o O!k xk = 0; I:;f=o O!k = O. The dimension of an affine space, denoted by dime AS) 
is the number of affinely independent points MINUS 1. Thus, if the points xO ... xI< are affinely 
independent, the affine space defined by these points has dimension J(. 

A polyhedron P is the set of points satisfying a system of linear constraints, i.e., P = {x E 
IRnlAx ~ b} The dimension of P, denoted by dim(P), is the dimension of the smallest affine 
space containing P. 

An inequality 7rX ~ 7ro is called valid with respect to P if each point in P satisfies the inequality. 
A valid inequality defines a face F ~ P, where is the subset of P that satisfies the valid 
inequality at equality, i.e., F = {x E PI7rx 7ro}. Note that F is a polyhedron itself. It is 
said to be proper if it is not empty and if it is properly contained in P, i.e., f/J i F i P. 
The dimension of a proper face F, dim(F), is strictly smaller than the dimension of P. If 
dim(F) = dim(P) 1, i.e., if F is maximal, then F is called a facet. The importance offacet
defining inequalities stems from the fact that these are the unique inequalities, among those 
that are not satisfied at equality for all points in P, for which a representative is necessary in 
the description of P, see Nemhauser and Wolsey (1988). 

2.2 The Vertex Packing Problem 

In the vertex packing problem we want to find a maximum cardinality subset V' of vertices 
in an undirected graph G = (V, E), such that no two vertices in V' are adjacent. The vertex 
packing problem is sometimes referred to as the independent set problem or as the stable set 
problem. Let Xv 1 if v E V' and let Xv 0 otherwise. The integer programming formulation 
of the vertex packing problem is given below. 

s.t. 

max LXv 
vEV 

11 

(10) 

for all {v, w} E E (11) 



Xv E {O,l} for all v E V (12) 

Let Xv pG be the set of feasible solutions to the vertex packing problem in the graph G and 
let a( G) be the maximum cardinality of a vertex packing in G. An edge is called critical if its 
removal from G produces a graph G' with a( G') > a( G). Chvatal (1975) derived the following 
general sufficient condition for an inequality to define a facet of conv(XvPG). 

Theorem 8 Chvatal(1975). Let E* be the set of critical edges ofG. If the graph G* = (V, E*) 
is connected, then the inequality l:jEV Xj ~ a( G) defines a facet of conv(X vPG). 

A clique in a graph G is a complete subgraph of G. Since no two vertices in V' are allowed to 
be adjacent we could take any clique C in G and require that at most one vertex belonging to 
C should belong to the vertex packing V' giving the valid inequality 

(13) 

Theorem 9 Padberg (1973). Let C be a clique in the graph G. The inequality (13) defines 
a facet of conv(X vPG) if and only if C is maximal. 

Proof. The dimension ofthe vertex packing polytope is IVI. Hence, to prove that (13) defines 
a facet of conv(X vPG) we need to find IVI affinely independent points that are tight for (13). 
Let C be a maximal clique. The following vertex packings induce IVI tight a.ffinely independent 
characteristic vectors. Ii'or v E C we take the vertex packing that contains only v. For v ~ C we 
first choose a node w E C that is not connected by an edge with v. Because of the maximality 
of C such a node exists. We take the vertex packing that contains both nodes v and w. The 
corresponding characteristic vectors all satisfy the clique constraint at equality. Thus, the 
constraint is facet-defining. 

If C is not maximal, i.e., there is a clique C' such that C c C', then the clique constraint defined 
by C' dominates the constraint defined by C. 

o 

Another class of valid inequalities for the vertex packing problem is the family of odd-hole 
inequalities. An odd hole H in a graph G is a chordless cycle consisting of an odd number of 
vertices, i.e. there are no edges of G connecting any nonconsecutive vertices in H. Since the 
number of vertices in H is odd, at most lIHI/2J (IHI 1)/2 vertices in H can belong to any 
vertex packing. Hence the following odd-hole inequality is valid, 

2: 
IHI-1 

XV < . - 2 
vEH 

(14) 

Padberg showed that (14) defines a facet of conv(XvPG n {Xj 0 for all j rf- H}), In gen
eral (14) is not facet-defining, i.e., it represents a face of conv( X V PG) of dimension less than 
dime (Xv pG ) 1. The qnestion is whether it is possible to increase the dimension of (14) such 
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Figure 2: A clique and an odd-hole. 

that (14) becomes a facet for conv(X vPG). One way of increasing the dimension of a face 
is through sequential lifting (Padberg (1973) and Wolsey (1976)), which is illustrated in the 
following example. 

The inequality Xl +X2 +X3 +X4 +X5 ::; 2 defines a facet of conv(XvPG n{ X6 O}). The question 
is whether there exists a constant 0' ~ 0 such that Xl +X2 +X3 +X4 +X5 +O'X6 ::; 2 defines a facet 
of conv(X vPG). If X6 = 0,0' can take any value, hence assume that X6 1. If X6 1 we must 
have Xj 0, j 1, ... ,5 since X6 is adjacent to all other vertices. The maximal value of 0', such 
that the inequality remains valid, is 0' = 2. In this example we had only one variable set to a 
fixed value, but in general we include one variable at the time, with a nonnegative coefficient, in 
the inequality. Theorems 10 and 11 imply that if the inequality is facet defining in the reduced 
space, and if we "lift" in all variables sequentially with maximal coefficients, then the resulting 
inequality defines a facet in the full space. Sequential lifting is sequence dependent, i.e. different 
lifting sequences give rise to different inequalities. Zemel (1978) proposed an alternative lifting 
procedure, called simultaneous lifting. As the name indicates, the coefficients of all variables 
that are to be lifted are considered simultaneously, yielding inequalities that cannot be obtained, 
in general, by sequential lifting. For more details on lifting procedures, see also Nemhauser and 
Wolsey (1988). 

The separation problem for clique inequalities consists of finding a maximum weight clique in a 
graph. This problem is NP-hard, and therefore we usually turn to heuristics for finding violated 
clique inequalities. The separation problem for odd-holes can be solved in polynomial time by 
a shortest path algorithm on a slightly adapted graph (Hoffman and Padberg (1993)). 

3 

Figure 3: A wheel. 

The following theorems describe the consequences of the sequential lifting procedure. They are 
due to Wolsey (1976). 
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Theorem 10 Let 8 ~ {O,l}n. 8uppose Ej=z1fjxj ~ 1fo is valid for 8 n {x E {O, l}nlxl = O} 

Then O:Xl + Ej=21fjXj ~ 1fo is valid if 0: ~ 1fo - maxSn{XIXl=1}{Ej=21fjXj} 

The dimension of the face represented by the inequality increases by one if a is chosen max
imal. 

Proof. The validity of the inequality is immediate. Thus, it remains to show that the number 
of affinely independent vectors satisfying the constraint at equality increases by one for a at 
its maximum value. Since a is chosen maximal there is a solution with Xl = 1 satisfying the 
constraint at equality. This solution forms together with a set of affinely independent solutions 
with Xl 0 an affinely independent system. Therefore, the dimension of the face represented 
by the inequality increases by one. • 

Theorem 11 Let 8 ~ {o,l}n. Let Ej=:;21fjXj ~ 1fo is valid for 8 n {x E {O, l}nlxl = I} 

Then i31xl + Ej=21fjXj ~ 1fo + i31 is valid if i31 2:: maxSn{XIXl=O} Ej=2 1fjXj 1fo 

The dimension of the face represented by the inequality increases by one if i31 is chosen 
minimal. 

Proof. The second theorem follows from the first by multiplying the constraint by 1, and 
then using the complement x~ 1 Xl of the variable Xl. • 

2.3 The Traveling Salesman Problem 

In the traveling salesman problem (TSP) one is asked to determine a cycle that contains each 
vertex exactly once, i.e., a Hamiltonian cycle, of shortest distance in an undirected complete 
graph G = (V, E) with n = IVI cities. The distances are denoted by de, for all e E E. The 
problem is formulated using the variables Xe (e E E), where Xe = 1 if e is chosen in the cycle, 
and Xe = 0 otherwise. Usually, the vertices of the graph are called cities and the Hamiltonian 
cycle is called a tour. 

(15) 

s.t. L Xe 2 for all v E V (16) 
e:vEe 

L Xe ~ 181-1 for all 8 : 0 =J 8 =J V (17) 
eCS 

Xe E {O, I} for all e E E (18) 

The formulation restricted to the constraints (16) and (18) allows for solutions consisting of dis
joint circuits (subtours), so-called 2-matchings. The constraints (17) prevent these solutions, 
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and are therefore called the subtour elimination constraints (SEC). They were introduced 
by Dantzig et al. (1954). By removing the SEC's from the formulation above, we obtain the 
2-matching rela.'Cation. Edmonds (1965) studied the facets of the 2-matching problem, and ob
tained a complete linear description of this problem by adding new constraints, the 2-matching 
inequalities (named after the problem), which are also valid for the TSP. We introduce the 
2-matching constraints with the following example. 

~----------------------~4 

2)-----.....( 

3 )0-------------( 6 

Figure 4: A fractional solution violating a 2-matching constraint 

The thick lines correspond to variables that have value 1 and the thin lines to variables with 
value 0.5. Clearly, this solution satisfies the degree constraints (and the SEC's). To cut off this 
solution from the convex hull of 2-matchings we introduce the following constraint. 

Consider the set of vertices H = {I, 2, 3}. Let E( H) be the set of edges with both endvertices in 
H, and let E' {{I, 4}, {2, 5}, {3, 6} },i.e, each edge of E' has exactly one end vertex in H. From 
the set of edges E( H) U E' we can at most take fOUT of them in a 2-matching. Otherwise, at most 
one edge can be deleted from the set E( H) U E', and thus at least one of the vertices in H will 
have degree 3, which is not allowed in a tour. The cumulative value of the variables of these edges 
is 4.5. Defining x( F) LeEF xe , we can conclude that the inequality x( E( H)) + x( E') ::; 4 is 
violated. 

In general, a 2-matching constraint has the form 

x(E(H)) + x(E') ::; IHI + lllE'lJ 
where H C V and E(H) the set of edges with both endvertices in H. The edges in E' have one 
end vertex in H, i.e., for each e E E': len HI = 1. Only 2-matching constraints with an odd 
number of edges in E', can be facet-defining, since the remaining inequalities are implied by the 
degree constraints. Comb-inequalities were introduced by Chvatal (1975) as a generalization of 
the 2-matching constraints. In these inequalities the edges in E' are replaced by an odd number 
s of disjoint sets TI, . .. , Ts , the teeth, each having at least one vertex in common with the 
handle H. We give an example of a violated comb inequality below. 

s s 

x(E(H) + L x(E(Tj) ::; IHI + LCITjl 1) (19) 
j=l j=l 
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The following instance shows a fractional solution that satisfies the 2-matching constraints and 
the subtour elimination constraints, but not the comb inequality defined by H = {I, 5, 6, 7}, 
andT1 = {1,2},T2 = {3,4,5,6},T3 = {7,8}, 

Figure 5: Fractional solution violating a comb inequality. 

The comb-inequalities were generalized by Grotschel and Padberg (1979). Grotschel and Pul
ley blank (1986) introduced clique tree inequalities as a further generalization of combs. Clique 
trees contain more handles, which are connected through the teeth. The search for other classes 
of valid inequalities is still vivid. Many exotic classes have been described to date. A good 
overview of the current state-of-the-art is provided by Applegate et al. (1994). Goemans (1993) 
considers the quality of the various inequalities with respect to their induced relaxations. 

The separation algorithm for SEC's solves a minimum cut problem, which is polynomial using 
max-flow algorithms. Separation of the 2-matching constraints is also polynomial (Padberg and 
Grotschel (1985)), However, violated 2-matching constraints are usually identified heuristically, 
since this is faster in practice. No exact polynomial time algorithm is known to date, for solving 
the separation problem of the comb inequalities. However, there are fast heuristic methods that 
perform quite well. For clique-tree inequalities, in general, there are even no good heuristics to 
separate them. 

Dantzig et al. (1954) and (1958) used cutting planes to solve the TSP. Their initial LP consisted 
of the constraints (16) and the relaxed (18). The SEC's were added when violated, by hand. 
They solved the famous 49-city problem consisting of most capital cities of the states of the 
USA, by use of seven SEC's and two other constraints, see Applegate et al. (1994). We provide 
detailed computational results in sections 3 and 4. 

2.4 The Knapsack Problem 

Let N = {I, ... , n}. The knapsack problem is formulated as 

max '" c·x' ~ J J 
JEN 
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s.t. '" ax' < b L.t J J -
JEN 

Xj E {O,I} 

(21) 

for all j E N (22) 

Assume that the vectors c, a and the right hand side b are rational, and let Xk denote the set 
of feasible solutions to the knapsack problem. We call a set G a cover or a dependent set with 
respect to N if aj > b. A cover is minimal if LjES aj S; b for all S c G. If we choose all 
elements from the cover G, it is clear that the righthand side of (21) is exceeded. Hence, the 
following knapsack cover inequality (Balas (1975), Hammer et al. (1975) and \I\Tolsey (1975)) is 
valid, 

L Xj S; IGI l. (23) 
JEG 

A generalization of (23) is given by the family of (1, k)-configumtion inequalities. Let e ~ N, 
and tEN \ e be such that LjEC aj ::; b and such that Q U {t} is a minimal cover for all Q ~ e 
with IQI = k. Let T(1') ~ e vary over all subsets of cardinality l' of e, where l' is an integer 
satisfying k S; l' S; lei. The (1, k)-configuration inequality 

(1' k + l)xt + L Xj S; r (24) 
jET(r) 

is valid for conv(Xf(), and if k lei the cover inequalities (23) are obtained. The (1, k)
configuration inequalities are primarily designed to deal with elements j of the knapsack having 
a large coefficient aj. 

In general (23) is not facet defining, but as with the odd-hole inequalities (14) they can be 
lifted to become facets. One special case of a lifted cover inequality, where all lifting coefficients 
are equal to zero or one, is obtained by considering the extension E(G) of a minimal cover G, 
where E(G) {k E N \ G : ak :2:: aj, for all j E G}. The inequality LjEE(G) Xj ::; IGI 1 is 
valid for conv(Xld and under certain conditions it also defines a facet of conv(Xl{). The most 
general form of the knapsack cover inequality is obtained by partitioning the set N in the sets 
(N', N \ N'). Let Xj 0 for all j E N \ N', and let G' be a minimal cover with respect to N'. 
Moreover, let Xj = 1 for all j E N' \ G/. By using lifting results we can conclude that conv(Xf() 
has a facet of the following form 

L OjXj + L {3jXj + L Xj S; IG'I 1 + L {3j. (25) 
jEN\N' jEN'\G' JEG' jEN'\G' 

Balas (1975) characterized the lifting coefficients OJ in the case where N' \ C' = 0. 

The separation problem for the cover inequalities can be viewed as a knapsack problem again 
as we will show. Let the point X* E Jan be given. Is there a cover-inequality that is violated by 
X*? Thus: 

Is there a C ~ N such that LjEG xj > IGI - 1 and LjEG aj > b. 
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We introduce binary variables Zj (j E N) that determine whether the elements are chosen 
(Zj = 1) in the cover or not (Zj = 0). In order to obtain a violated cover inequality Z should 
satisfy the following constraints. 

txjZj> (t Zj) - 1 
J=1 J=1 

and 
n 

"'a·z>b+1 ~ JJ-
j=1 

besides the integrality of the z-variables. Reformulating the first constraint we get 

n 

2:(1 - xj)Zj < 1 
j=1 

and 
n 

2:ajZj :2:: b + l. 
j=1 

Thus, to find the most violated cover, one has to solve the following minimization problem. 

mm 
n 

'r/ = 2:(1 - xj)Zj 
j=1 

n 

'" az' > b + 1 ~ .13-
j=1 

ZjE{O,l} 

(26) 

(27) 

for all j E N (28) 

If'r/ < 1 then a cover, violated by x*, is found. By complementing the z-variables, i.e., by 
replacing Zj by 1 - zj for all j EN, the problem translates into a knapsack problem again. 
However, this problem is much smaller and therefore easier to solve for two reasons. First, the 
items j with xj = 1 have coefficient 0 in the objective function, so that we can put Zj = 1. 
Second, the items j with xj = 0 have coefficient 1 in the objective, and therefore, these items 
can not be part of a violated cover inequality. Thus, the only interesting items have fractional 
corresponding variables. The number of such items is usually very small. Crowder et al. (1983) 
developed a heuristic for the separation problem (based on solving the above optimization 
problem), and for choosing the sets N' and C'. Once a minimal cover C' is generated it is also 
used in a heuristic for finding a violated (1, k )-configuration inequality. They implemented the 
algorithms and solved large 0-1 integer programming problems by automatically generating 
knapsack cover inequalities. Recent work on the knapsack polytope is done by Weismantel 
(1994). 

2.5 The Single-Node Flow Problem 

Consider a single node in a directed graph, and let N be the set of arcs entering the node. The 
outflow from the node is equal to b. Let x j be a continuous variable denoting the flow on arc j, 
and let mj be the capacity of arc j. If arc j is open, then Yj = 1, otherwise Yj O. The following 
fixed charge single-node flow structure is a relaxation of many combinatorial flow models, 

Xj = b (29) 
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for all j E N (30) 

Yj E {a,l}. for allj E N (31 ) 

Let Xpc denote the set of feasible solutions to (29)-(31). A subset J ~ N is called a flow 
cover if L.jEj mj b + A whit A > a. If we have a cover J and if we close one arc k E J then 
max{xj : j E J \ k} min{b,L.jEJ\k mj} min{b,b - (mk - A)} = b (mk - A)+ yielding 
the valid inequality 

""x·<b L...t J-
jEJ 

L(mj - A)+(1- Yj)· 
JEJ 

(32) 

Theorem 12 Padberg, Van Roy and Wolsey (1985). The flow cover inequality (32) defines 
a facet of conv(Xpc) if and only if maXjE] mj > A. 

Let Zj = 1 if j E J and let Zj = a otherwise, and let (xj, yj) denote a fractional solution. For a 
given value of A, the separation problem based on the family of flow cover inequalities (32) is 
formulated as follows. 

(33) 

Zj E {a,l}. for all j E N (34) 

Once we have a set J satisfying the condition of Theorem 12 we can extend the flow co',er 
inequality by including flow from the arcs belonging to the set L ~ (N \ J). 

J 

L 

N\(JUL)~ 

b 

Figure 6: single node flow 

Let inl = max{ maxjEJ{ mj}, ml} for alll E L. The following extended flow cover inequality is 
valid for conv(Xpc), 

L Xj::; b 
jEJuL 

L(mj - A)+(l- Yj) + L(nlj - )')Yj 
JEJ jEL 
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Padberg et al. (1985) gave sufficient conditions for the extended flow cover inequality to define 
a facet of conv(XFc). Aardal et al. (1993) showed that the separation problem based on the 
family of extended flow cover inequalities can be solved in polynomial time if mj = m for all 
j EN. 

Van Roy and Wolsey (1986) also studied the single-node flow model with both inflow and 
outflow fixed charge arcs as well as general uncapacitated fixed charge structures, for which 
they developed various families of facet defining valid inequalities. Separation heuristics for 
these inequalities are also discussed by Van Roy and Wolsey (1987). 

2.6 An Application: The Facility Location Problem 

Here we shall discuss how some of the inequalities presented above can be used, and extended, 
to solve facility location problems. The facility location problem is a well-known combinatorial 
optimization problem, and is defined as follows. Let it[ = {I, ... , m} be the set offacilities, and 
let N {I, ... , n} be the set of clients. Facility j has capacity m j, and client k has demand dk. 

The total demand of the clients in the set S ~' N is denoted by d( S). The fixed cost of opening 
facility j is equal to h and the cost of transporting one unit of goods from facility j to client k 
is equal to eik. 

Let Yi 1 if facility j is open and let Yj 0 otherwise. The flow from facility j to client k is 
denoted by Vjk. We want to determine which facility should be opened and how the flow should 
be distributed between the open facilities and the clients such that the sum of the fixed costs of 
opening the facilities, and the transportation costs is minimized, and such that all clients are 
served, and all capacity restrictions are satisfied. The mathematical formulation is given below. 

s.t. for all kEN (36) 

for all j E M (37) 

for all j E M, kEN (38) 

Yi E {O, I} for all j E M (39) 

2.6.1 The Uncapacitated Case 

In the uncapacitated facility location (UFL) problem we have mi deN) for all j E M. It is 
convenient to scale the flow by substituting the variables Vjk by the variables Xjk Vjk/dk. 

The set of feasible solutions to UFL, XUFL, is given by the following sets of constraints. 

for all kEN (40) 

o ::; Xjk ::; Yj for all j E M, kEN ( 41) 
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Yj E {O,l} for all j E M ( 42) 

It is possible to explicitly require that x jk E {O, I} since there is at least one optimal solution of 
UFL having this property. Moreover, we can change the equality sign in constraint set (40) to 
a less-than-or-equal-to sign if we make an appropriate change in the objective function. Due to 
this modification we are ensured that the inequalities (40) will always be satisfied with equality 
(for more details see Cho et al. (1983)). Finally, by complementing the Yj-variables, i.e. by 
introducing yj = 1 -:- Yj, we obtain the following vertex packing formulation of UFL. 

for all kEN (43) 

for all j E M, kEN (44) 

yj,Xjk E {O,l} for all j E M, kEN (45) 

Let XUFLVP be the set of feasible solutions to (43)-(45). Given a vertex packing formulation 
of UFL, we can construct an associated undirected graph, called the intersection graph by 
introducing a vertex for every variable and an edge for every pair of nonorthogonal columns. 
To determine conv(XuFLVP) is equivalent to determining the convex hull of vertex packings 
in the associated intersection graph. Hence, we can use all results described in Section 2.2 to 
derive valid inequalities for UFL. Here, all cliques in the intersection graph are described by 
inequalities (43) and (44), and all odd holes are cycles where every third vertex is a yj-vertex. 
Both Cornuejols and Thizy (1982) and Cho et al. (1983) used the result by Chvatal given in 
Theorem 8 to find more general inequalities than the odd-hole inequalities. All these inequalities 
have a regular cyclic structure and all coefficients are equal to one for all variables except one 
example of a simultaneously lifted odd-hole inequality given by Cornuejols and Thizy. Aardal 
and Van Hoesel (1995) discuss further use of simultaneous lifting to get new facets having 
different coefficients. 

2.6.2 The Capacitated Case 

By aggregating the flow from each depot as well as the demand we can easily see that a version 
of the knapsack as well as the single node flow structure form relaxations of the capacitated 
facility location (CFL) problem. Let Vj EkEN Vjk. By using the aggregate flow variable Vj 

we can obtain the aggregate capacity and demand constraints 

for all j E M (46) 

for all j E N ( 47) 

If we combine constraints (46) and (47) with constraint (39) we obtain the single-node flow 
polytope and the so-called surrogate knapsack polytope XSJ( = {y E {O, I} : EjEM mjYj ::::: 
deN)}. Complementing the Yj-variables, i.e. letting yj = 1- Yj for all j E M gives the knapsack 
polytope {y E {a, I} : EjEM mjyj :s; EjEM mj deN)}. Hence we can use both the knapsack 
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cover inequalities as well as the flow cover inequalities when solving CFL. Both classes of 
inequalities can also be derived for subsets K ~ N of clients. Especially the cover inequalities 
have proved very useful computationally, as is discussed further in Section 3. One way of 
generalizing the flow cover inequalities is by considering a subset of clients as well as subsets 
of arcs yielding the family of effective capacity inequalities (Aardal et al. (1993)). Let Kj ~ K 
for all j E M and let iiij min {mj, d( Kj)}. Let J define a cover with respect to K, i.e. 
L,jEJ iiij = d(In + A with A > O. The effective capacity (EC) inequality 

L L Vjk :S d(K) - L(iiij - A)+(1- Yj) (48) 
jEJ kEJ{j jEJ 

is valid for conv(XcFL). The facet defining EC inequalities were completely characterized 
by Aardal et al. (1993). To further generalize the EC inequalities consider the function f(J) 
which is the maximum feasible flow from the depots in J to the clients in K on the arcs 
{(j, k) : j E J, k E Kj}. By using maximum flow arguments we can show that (f(J)
f( J \ {j}) 2: (iiij - A)+. Hence the submodular inequality 

L L Vjk :S f(J) L(f(J) - f(J \ {j})(1- Yj) ( 49) 
JEJ 

is at least as strong as the EC inequality (48). Submodular inequalities were first considered by 
Wolsey (1989) and further developed for CFL by Aardal et al. (1993). Since there is no closed
form expression of f( J) in general, it is hard to characterize the submodular facets. Aardal 
et al. completely characterized two subclasses for which (f(J) - f( J \ {j}) 2: (iiij - A)+ for 
at least one j E J, namely the single-depot and the multi-depot inequalities. The separation 
problem based on the EC inequalities and the submodular inequalities are discussed by Aardal 
(1994). 

2.7 A List of Polyhedral Results for Combinatorial Problems 

Here we provide a list of polyhedral results that are known for combinatorial optimization 
problems. If a recent survey of results for a specific problem class is known, we refer to the 
survey and not to the individual articles. Surveys are marked with an asterisk. Due to the vast 
literature, we do not claim that the survey is complete. 

Airline crew scheduling: Hoffman and Padberg (1993). Boolean quadratic polytope: 
Padberg (1989), Lee and Leung (1993). Clique problems: Pulleyblank and Shepherd (1993), 
Balas et al. (1994). Clustering: Grotschel and Wakabayashi (1989). Coloring: Lee and Leung 
(1990), Nemhauser and Park (1991). Covering, packing and partition: Balas and Pad
berg (1972), Padberg (1973), Nemhauser and Trotter (1974), Trotter (1975), Wolsey (1976b), 
Balas and Zemel (1977), Pad berg (1977,1980), Balas and Ho (1980), Balas and Ng (1989a,b), 
Cornuejols and Sassano (1989), Laurent (1989), Nobill and Sassano (1989), Grotschel and Wak
abayashi (1990), Chopra and Rao (1993). Cut polytopes: Barahona and Mahjoub (1986), 
Barahona et al. (1988), Conforti et al. (1990/91a,b), De Sousa and Laurent (1991), Deza et al. 
(1992), Deza and Laurent (1992a,b). General integer and mixed 0-1 structures: Peled 
(1977), Zemel (1978), Padberg et al. (1985), Van Roy and Wolsey (1985,1986,1987), Goemans 
(1989), Nemhauser and Wolsey (1990). Knapsack problems: Balas (1975), Hammer et al. 
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(1975), Wolsey (1975), Balas and Zemel (1978), Padberg (1980), Nemhauser and Vance (1994), 
Weismantel (1994). The linear ordering problem: Grotschel et al. (1984.1985), Reinelt 
(1985) and Mitchell and Borchers (1992,1993). Location: Cornuejols et al. (1977), Cornuejols 
and Thizy (1982), Cho et al (1983a,b), Leung and Magnanti (1989), Aardal et al. (1993,1994), 
Aardal (1994), Aardal and Van Hoesel (1995). Lot sizing: Pochet and Wolsey (1994)*. Match
ing: Edmonds (1965), Grotschel and Holland (1985) Network and VLSI design: Pochet and 
Wolsey (1992), Grotschel et al. (1992b,1993,1995). Postman problems: Grotschel and vVin 
(1992). Scheduling: Queyranne and Schulz (1994)* Subgraph polytopes: Balas and Pul
leyblank (1983), Barahona et al. (1985), Barahona and Mahjoub (1989,1992), Chopra (1992), 
Junger and Mutzel (1993). Tenary problems: Chopra (1989a). Traveling salesman prob
lems: Dantzig et al. (1954, 1959), Grotschel and Padberg (1979), Grotschel (1980), Padberg 
and Hong (1980), Cornuejols and Pulleyblank (1982), Grotschel and Pulleyblank (1986), Pad
berg and Rinaldi (1987,1990,1991), Fischetti (1991a), Grotschel and Holland (1991), Naddef 
and Rinaldi (1991,1992), Naddef (1992), Naddef and Rinaldi (1992), Clochard and Naddef 
(1993), Goemans (1993), Applegate et al. (1994), Balas et al. (1995). Trees, forests and ar
borecences: Gamble and Pulleyblank (1989), Chopra (1989b), Fischetti (1991b), Balas and 
Fischetti (1992), Chopra et al. (1992), Goemans (1992), Grotschel et aL (1992a), Hall and 
Magnanti (1992), Chopra and Rao (1994a,b). Vehicle routing: Araque (1989,1990), Araque, 
Hall and Magnanti (1990), Cornuejols and Harche (1993). 

3 Computational aspects 

The classes of cutting planes developed in the previous section, and their separation algorithms 
are used in the following cutting plane algorithm. 

Outline of the cutting plane algorithm 

1. Initialize the linear programming relaxation of the ILP problem. 

2. Solve the current linear programming relaxation of the ILP problem. Let x* be the optimal 
solution. If x* is integral stop, otherwise perform step 3. 

3. A separation algorithm is run to identify inequalities violated by x*. If one or more inequal
ities have been found, the process is repeated, starting with step 2. If no violated inequality 
is found we stop. 

If the algorithm ends by finding an integral solution x*, then the problem is provably solved to 
optimality. Otherwise, if it ends by not finding any violated cuts, the final solution presents us 
with a lower bound z* (in case of a minimization problem), on the optimal value of the integer 
program. Contrary to Gomory's cutting plane algorithm we can not guarantee to find an optimal 
integer solution always. This follows from the fact that the classes of valid inequalities used for 
separation do not constitute a complete description of the convex hull of feasible solutions, and 
moreover we may have to use heuristics to find violated inequalities in the separation algorithm. 
Nevertheless, it pays to search for strong valid inequalities. 

To illustrate the effects on the lower bound of adding constraints sequentially, we consider a 
TSP instance of 120 cities from Grotschel (1980). This problem has been solved to optimality 
by use of cutting planes only. This was reached after 13 iterative solves of LP relaxations. In 
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Initial LP "eLI>f----j * . . LP * . I? Yes Solv, x optImum m 1-----1 x mtegra. 

No 

Add cuts to LP 1<1----1 Any cuts found? 1<1----1 Separate x* 

No 

Figure 7: Basic cutting plane algorithm. 

each iteration a number of violated constraints was added. The values of the respective linear 
programming relaxations are given in the following table. z* denotes the value of the optimal 
solution of the linear program, and # cuts gives the number of valid inequalities found during 
separation. 

Iteration z* # cuts 
1 6,662.5 13 
2 6,883.5 15 
3 6,912.5 7 
4 6,918.8 9 
5 6,928.0 6 
6 6,935.3 9 
7 6,937.2 8 
8 6,939.5 5 
9 6,940.4 4 
10 6,940.8 12 
11 6,941.2 5 
12 6,941.5 3 
13 6,942.0 

During the iterations 36 subtour elimination constraints, 25 2-matching constraints, and 35 
comb constraints were added. As can be concluded from the table, it is good practice to generate 
many violated (or at least promising) valid inequalities, and add them to the linear program 
in one iteration. Empirically, one observes that the computation times of solving the linear 
programs increase modestly, but the lower bound tends to optimality much quicker, compared 
to adding the constraints one at a time. 

3.1 Extensions to the cutting plane algorithm 

There are several ways to extend the basic cutting plane algorithm. We will describe the major 
techniques in the order in which they are processed in the cutting plane algorithm. 
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3.1.1 Preprocessing the linear program 

Preprocessing integer linear programs involves removing redundant constraints, and tightening 
the right-hand side and the variable coefficients of the inequalities. This leads primarily to 
better lower bounds for the linear programming relaxations, but it may also lead to significant 
reductions in the size of the formulation, both with respect to the number of constraints and 
number of variables. There are many preprocessing techniques described in the literature. 
For each technique, or a combination of techniques, the problem is to find the right balance 
between effectiveness and computational time. We intend to present the methods that tighten a 
linear program quickly. Thus, we restrict ourselves to computationally simple tools. Savels bergh 
(1994) lists a few methods to do simple preprocessing using the lower and upper bounds of the 
variables. These methods have been described in Crowder et al. (1983), and Hofmann and 
Padberg (1991) for binary programs. 

Consider the following subset of the constraints from a (mixed) integer program, where N is 
the set indices corresponding to variables with nonzero coefficients in 50. N+ is the subset of 
N corresponding to variables with positive coefficients, and N- , the subset of N with negative 
coefficients, Le., the coefficients aj for all j E N are positive in the following inequality. 

'"'" a'x' - '"'" a'x' < b ~JJ ~JJ-
jEN+ jEN-

l<x<u' J - J - J 

(50) 

for all j E N (51) 

A lower bound on the left-hand side of (50) is LB = LjEN+ ajlj - LjEN- ajuj. If LB > b, then 
the problem is infeasible. An upper bound on the left-hand side of (50) is U B = LjEN+ ajuj 
LjEN- ajlj. If U B ~ b, then the constraint is redundant. Similarly, one can improve the 
coefficients of the variables by selecting one variable, removing it from the left-hand side of 
(50), and repeating the process. 

An elegant preprocessing technique is probing on the variables, i.e., fixing a variable temporarily. 
This may lead to, besides the forementioned goals, logical constraints among the variables, 
which can be used to tighten inequalities, and to obtain new, stronger inequalities. The initial 
paper on probing techniques is Guignard and Spielberg (1981). We illustrate the effects of 
probing on the following example. 

Example 

Consider the following set of constraints with two binary variables Xl and X2, and two nonneg
ative real variables YI and Y2. 

YI + 3 Y2 > 12 
2 YI + Y2 > 15 

YI < 10 Xl 

Y2 < 20 X2 

We probe on Xl by setting Xl = O. Then also YI = 0, and thus Y2 ~ 15, and X2 = 1. We can add 
to the right-hand side of the first inequality 33( 1 xd maintaining validity, Le., we get 
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33xI + YI + 3 Yz > 45. 

Note that in this example Xl 0 implies Xz 1. Thus, we have x~ + x~ :::; 1, where x~ 
(i 1,2) denotes the complementary variable of Xi. Implications derived from relations between 
binary variables can be used to derive inequalities among these variables. Especially for binary 
variables such constraints can be tightened using cliques as follows. Draw an auxiliary graph 
that contains nodes for the binary variables and their complements. Nodes are connected if their 
corresponding variables can not both have value 1. The following auxiliary graph is constructed 
from four binary variables. 

X~ }-------( 

Figure 8: Auxiliary Vertex Packing graph. 

We can conclnde that x~ = 0 and therefore Xz = 1. This gives X3 = 0 and X4 = O. Thns, x~ = 1, 
which again leads to x~ = O. In other words, we may be able to fix variables. In general, the 
cliques in the auxiliary graph induce inequalities tighter than those in the original formulation. 

The effectiveness of the preprocessing techniques has been tested by Savelsbergh (1994) on a set 
of 10 mixed integer programming problems from the literature. The following table shows the 
improvement in lower bound after preprocessing the formulation of these problems. Moreover, 
the number of nodes in the branch and bound tree is given for both the original and the 
preprocessed formulations. 

Observe that the linear programming bound increases substantially for all problems after pre
processing. The branch-and-bound tree also reduces much in most problems. Nevertheless, 
there are two problems for which the branch-and-bound tree of the preprocessed problem is 
larger than the tree of the original problem. This phenomenon is contra-intuitive, and it may 
just be a coincidence. 

Hofmann and Padberg (1991) and Dietrich and Escudero (1990) describe preprocessing tech
niques similar to the above with substructures other than variable lower and upper bounds. 

3.1.2 Postprocessing the linear program 

After the linear program is solved, a lower bound z* on the optimal value of the IP is available, 
together with the (usually) fractional optimal LP-solution x*. Suppose that we know a feasible 
solution of the IP with value zf. zf is an upper bound on the optimal value of the which can 
be guaranteed to be in the interval [z*,zf]. Heuristics that use the LP solution x* to create a 
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Problem . zLP zLP ZMIP # B&B nodes # B&B nodes 
without with without with 

egout 149.5 562.1 568.1 553 3 
fixnet3 40717.0 50414.2 51973.0 131 5 
fixnet4 4257.9 7703.4 8936.0 2561 1031 
fixnet6 1200.8 3192.5 3983.0 4795 4305 
khb05250 95919464.0 106750366.0 106940226.0 11483 13 
gen 112130.0 112271.0 112313.0 11 15 
att 125.9 149.1 160.2 6459 127 
sample2 247.0 290.4 375.0 336 51 
p0033 2520.8 2838.5 3089.0 15 7 
lseu 834.6 947.9 1120.0 297 464 

Table 1: Effects of preprocessing techniques 

feasible solution are known as primal heuristics. Rounding the fractional variables of the LP 
solution is the simplest way to achieve this. These upper bounds can also be used to fix variables 
by reduced cost fixing, or more involved, by parametric analysis on the variables. 

3.1.3 The separation process 

Besides the problem specific classes of valid inequalities, we can try to find violated classes of 
generic inequalities. Many problems contain knapsack like constraints, so that we may be able to 
find violated (extended) knapsack cover inequalities. Other generic classes of valid inequalities 
are clique inequalities, obtained from the auxiliary graph of the binary variables, and flow cover 
inequalities, obtained from variable upper bound constraints. The facility location problem 
provides a good insight in what these generic inequalities might offer. The table below shows 
the improvement that is obtained over the value of the initial linear program by use of knapsack 
covers only. 

duality #B&B # cover % gap #B&B 
problem gap (%) nodes time (s) inequalities closed nodes time (s) 

25081 5.9 23 8 4 100.0 1 3 
25082 10.3 125 34 10 74.3 7 7 
25083 7.5 79 25 6 85.5 5 8 
25084 2.2 9 6 1 100.0 1 4 
25085 5.2 19 7 5 86.6 3 7 
50331 1.5 399 686 13 86.0 31 125 
50332 1.2 691 1560 58 54.3 51 450 
50333 1.5 259 556 122 54.1 89 769 
50334 0.7 239 493 42 76.6 23 213 
50335 1.3 685 1232 25 78.3 49 248 
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3.2 Embedding the cutting-plane algorithm in a branch-and-bound frame
work 

In the early days solving hard problems was done by applying a cutting plane algorithm, followed 
by a straightforward branching process. At first in the mid-eighties Grotschel et al. (1984) used 
the cutting plane algorithm in every node ofthe branching tree for the linear ordering problem. 
Padberg and Rinaldi (1987) called this idea branch-and-cut, and applied it to the traveling 
salesman problem. 

Outline of the branch-and-cut algorithm 

1. Initialize a list L of subproblems, with the original problem. Then repeat the following steps, 
until L is empty. 

2. Select a subproblem S from L. 

3. Process S with the (extended) cutting plane algorithm. 

4. If S is not solved, then branch on (a variable in) S. Put the subproblems created in L. 

The branch and bound framework contains two new features. During the process a set of sub
problems (subinstances) is maintained, which are called the active subproblems. From these 
subproblems we choose one to work on. Well-known choice criteria are depth-first search, 
breadth-first search, and best-first search. Then the extended cutting plane algorithm can 
be performed on the subproblem. If this does not lead to the conclusion that the subproblem 
can be fathomed, either because the solution found is integral or because the optimal value 
(lower bound) is higher than a known upper bound (the best known feasible solution), then the 
subproblem is partitioned into new (active) subproblems by some branching rule. 

The variable branching rules select a variable, and create a branch for each value this variable 
can obtain. The most common ways to select (binary) variables are listed here. 

(1) Select the variable with value closest to 0.5; 

(2) Select the variable with value closest to 1; 

(3) Select the variable with highest objective coefficient; 

(4) Select a set L of promising variables and compute, for each variable the effects for all 
branches. Then select the variable for which the branch with the smallest lower bound 
is best. 

Padberg and Rinaldi (1991) suggest a combination of (1) and (3) for the traveling salesman 
problem. Rule (2) is surprisingly effective in combination with a depth-first search strategy. 
Rule (4) has similarities with the "steepest-edge" idea as implemented in the simplex method 
for linear programming. It has been introduced by Applegate et al. (1994). Other strategies 
have been proposed by Balas and Toth (1985). Junger et al. (1992) provide computational 
experience with some (combinations) of these rules. 
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Initialize L 

Yes 

Is L empty? 1--------+1 Select subproblem Process subproblem Subproblem solved? 

Yes 
No 

Add subproblems to L 1---------------1 Branch 

Figure 9: Branch-and-cut algorithm. 

Branching rules which select a constraint, usually a clique constraint, create a branch for each 
value the left-hand side of the constraint can obtain. Clochard and N addef (1993) suggest such 
a rule for the traveling salesman problem. 

Strategic issues and implementation. 

The particular elements of the extended cutting plane algorithm may not be very effective 
in each node (subproblem) of the branch-and-cut tree. For instance, preprocessing has much 
effect in the root node of the tree, since the original formulation of a problem usually contains 
a lot of redundancy. Similarly, in subproblems it may be hard to find effective cutting planes, 
and therefore usually the major effort on separation is put in the root node (original problem). 
Actual implementations of branch-and-cut algorithms contain selection mechanisms for the 
components with respect to the nodes where these components are performed. Effectiveness 
versus computational effort is the decisive criterion here. Balas et al. (1994) experimented 
successfully, with Gomory's cutting planes, selecting them in node~ at specified depths of the 
search tree. 

The use of upper bounds (feasible solutions) has been mentioned already for doing reduced cost 
fixing. In the branch-and-cut context a good feasible solution is even more vital for fathoming 
subproblems quickly. Therefore, the branch-and-cut procedure is usually preceded by a state
of-the-art heuristic. If the gap between the lower bound of a subproblem and the value of 
best known feasible solution is fairly large, this may be due to the latter (traveling salesman 
problem). As a result few nodes will be fathomed on the basis of their lower bounds. Branch 
pausing (Padberg and Rinaldi (1991» is a strategy in which subproblems with high lower 
bounds are temporarily ignored, if their lower bounds pass a certain threshold. This threshold 
is an estimate ofthe optimum value ofthe problem. A selection mechanism like best-first search 
automatically handles the subproblems with high lower bounds last. This mecha,nism, however, 
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complicates the implementation of the branch-and-cut algorithm in the sense that subsequently 
chosen subproblems have no relation to each other. 

The task of maintaining the cutting planes is rather difficult in specific implementations of 
branch-and-cut. In early versions of branch-and-cut packages, one was only allowed to generate 
globally valid cuts, i.e., cuts valid for the original problem instance. These cuts were maintained 
in a pool, from which one could select promising ones for the subproblem at hand. The global cuts 
usually work well enough. However, to obtain the full power of the branch-and-cut algorithm, 
one should be able to generate constraints, which are locally valid only. Balas et al. (1994) report 
very good results using branch-and-cut with locally valid Gomory cuts. A detailed overview of 
the implementational ideas, in general, can be found in Junger et al. (1994). Data structures 
and other implementational details, specific for the traveling salesman problem can be found 
in Applegate et al. (1994). 

Applications of branch and cut algorithms are numerous. We will report on a few important 
ones in the section on computational results. Below we present the branch-and-cut tree of a .532.
city traveling salesman problem, an instance that was solved by Padberg and Rinaldi (1987). 
This tree gives an indication of the development of the lower bounds in the nodes of the tree. 
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OPTIMAL TOUR 
27,686.0 

Figure 10: Branch-and-cut tree for the 532-city TSP. 

30 



4 Computational Results for Selected Problems 

In this section we present computational results for the problems mentioned in previous sections, 
and a few others. They should give an idea of what problem types can be solved by branch-and
cut algorithms, and what the state-of-the-art is for these problems in terms of solvable sizes 
and computation times. 

4.1 General zero-one linear programs 

Crowder et al. (1983) present the first computational results for large-scale zero-one linear pro
grams. On a test set of 10 problems they show the effects of simple preprocessing techniques, and 
general cutting planes (knapsack covers and (1, k )-configurations. They use these techniques in 
the root node of a branch-and-bound tree. In the other nodes they use only reduced-cost fixing 
to eliminate variables. Their results on the test set are shown in the following table. 

Original Problem After preprocessing Cutting planes Branch & Bound 
Val's Rows ZLP Val's Rows ZLP Rows ZLP Nodes ZIP 

33 16 2520.6 33 16 2819.4 36 3065.3 113 3089.0 
40 24 61796.5 40 24 61829.1 29 61862.8 11 62027.0 

201 134 6875.0 195 134 7125.0 139 7125.0 1116 7615.0 
282 242 176867.5 282 222 176867.5 462 255033.1 1862 258411.0 
291 253 1705.1 290 206 1749.9 278 5022.7 87 5223.8 
548 177 315.3 527 157 3125.9 296 8643.5 36 8691.0 

1550 94 1706.5 1550 94 1706.5 94 1706.5 10 1708.0 
1939 109 2051.1 1939 109 2051.1 110 2051.1 334 2066.0 
2655 147 6532.1 2655 147 6532.1 149 6535.0 214 6548.0 
2756 756 2688.7 2734 739 2701.1 1065 3115.3 • 2392 3124.0 

4.2 The Traveling Salesman problem. 

The literature on computational results for the traveling salesman problem is huge. Some of the 
results have already been shown in previous sections. Several research groups have branch-and
cut codes available. To make the progress visual, we give a list of world-records with respect 
to the size of the problems solved. It should be noted however, that there are still some small 
instances unsolved, which indicates that large is not synonymous with difficult. The instances 
mentioned in the literature are all Euclidean symmetric Traveling Salesman problems. They 
arise from applications like road maps, routing of drilling machines (in chip-technology), and 
x-ray crystallography. The instances can be found in the library NETLIE (Reinelt (1991). 

The table below contains information on the number of cities n of the instance (the number of 
variables is ~n(n 1»), the value of the LP-solution in the root node after the cutting plane 
phase, the value of the optimal solution, and the number of branch-and-cut nodes. Furthermore, 
we give side information like the authors that reported the problem solved, the year, and the 
application. The data are from the original papers, so later techniques may have different 
performance. To illustrate this, for the 532-instance there are at least three different numbers 
of branch-and-cut nodes. 

31 



Cities LP value IP value #B&C Application Year Solved by: 
at root Nodes solved 

49 12345 12345 1 Roads USA 1954 Dantzig et al. 
120 6942 6942 1 Roads Gel' 1980 Grotschel 
318 ?? 41349 ?? Drilling 1980 Crowder & Padberg 
532 27628 27686 85 Roads USA 1987 Padberg & Rinaldi 
666 294080 294358 21 Worldmap 1991 Grotschel & Holland 

1002 258860 259045 13 Drilling 1990 Padberg & Rinaldi 
2392 378027 378032 3 Drilling 1990 Padberg & Rinaldi 
3038 137660 137694 287 Drilling 1992 Applegate et. al 
4461 182528 182566 2092 ?? 1994 Applegate et. al 

• 

7397 23253123 23260728 2247 ?? 1994 Applegate et. al 

To give an idea of the solution times, the 2392-city problem was solved in appro 6 hours OIl a 
CYBER. As can be seen from the table the lower bounds in the root node are very close to 
optimum. This explains part of the success of cutting plane algorithms for the symmetric TSP. 
The other part is due to many computational ideas during the years. For a very good reference 
on these ideas see Applegate et al. (1994). 

4.3 The Vertex Packing problem. 

Nemhauser and Sigismundi (1992) report on solving randomly generated instances ofthe max
imum cardinality vertex packing problem with sizes varying from 40 to 120 nodes. For these 
sizes they vary the density, i.e., the probability that an edge is in the gra,ph, from 0.1 to 0.9. 
The code of the authors was limited, in the sense that the cutting plane algorithm could only 
be run in the root node, and primitive branching rules were available. Below we give a table for 
the 0.2 density problems. 

The table gives information of the number of nodes of the graph (Size), the initial gap (in %), 
the number of clique inequalities and odd-hole constraints, the gap (in %) remaining after the 
cutting plane phase, the number of branch-a nd-bound nodes, and the total number ofiterations 
of the simplex method. 

# Initial # Clique # Odd-hole Gap after #B&B #LP 
Nodes Gap inequalities inequalities C.P. phase Nodes Iterations 

40 7 86 0 1 41 
60 13 203 36 1 16 1439 
80 21 369 33 4 97 13352 
90 15 222 13 2 58 3649 

100 29 181 19 2 108 6631 
110 35 781 5 8 394 84115 
120 40 903 5 11 251 35194 

Clique inequalities close most of the gap between the lower bound and the optimal solution. 
In low-density graphs (lifted) odd-holes are important. Medium density problems are the most 
difficult instances. In fact, the authors were not able to solve some 120 vertex problems within 
100000 LP iterations. 
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One can conclude that random vertex packing problems are difficult to solve with cutting plane 
algorithms. However, if we consider structured vertex packing problems, we may be able to 
solve larger instances. Two applications are considered below. These show that we actually can 
solve largt-scale vertex packing alike problems. 

4.4 Frequency Assignment 

In the frequency assignment problem we are given a set of links that have to be assigned 
frequencies. These frequencies can be chosen from a set depending on the link. Moreover, the 
assigned frequencies should satisfy certain distance constraints. The objective is to minimize 
the number of frequencies used. The modelling of the problem is done by introducing a binary 
variable for each feasible link-frequency pair. The size of the problem instances is measured 
in the number of links (each link actually comes in a pair of two connections). The number 
of binary variables is obtained approximately by multiplying the number of links with 40 (the 
average number of potential frequencies for the links). Aardal et al. (1995) report on solving 
the following problems. 

# Links Initial Final Best known Time (s) 
lower bound lower bound solution 

100 14 14 14 46 
200 14 14 14 1925 
340 20 22 22 6167 
458 14 14 16 400 

4.5 The set partitioning problem: airline crew scheduling 

Hoffman and Padberg (1993) report on solving huge, in terms of variables, set partitioning 
problems arising in Airline Crew Scheduling problems. The cutting plane phase uses inequalities 
similar to those for the vertex packing problem., i.e., clique and (lifted) odd-hole constraints 
and preprocessing techniques. The branch-and-cut phase contains a variable branching rule. 
We selected a few instances, the ones with the highest number of rows and the ones with the 
highest number of columns. 

Original Problem After preprocessing Cuts #B&B IP 
Columns Rows Columns Rows LP Root found Nodes value 

5198 531 3846 360 30494 0 1 30494 
7292 646 5862 488 26977 74 1 27040 
8308 801 6235 521 53736 345 5 53839 
8627 825 6694 537 49616 37 1 49649 

148633 139 138951 139 1181590 0 1 1181590 
288507 71 202603 71 132878 0 1 132878 

1053137 145 370642 90 9950 389 1 10022 

The following three problems show how much time it takes to get within certain percentages of 
optimality compared to the total time spent (in seconds). 
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Columns Rows time 2% time 1% time opt 
87482 36 225 298 2642 

8904 823 375 375 14441 
7195 426 868 7443 139337 

4.6 References for other results 

The above examples illustrate the state-of-the-art on computational results. This section is 
therefore far from complete. The references given in section 2, contain most of the computational 
results known by the authors. 

5 Alternative techniques 

In the last two decades there has been a remarkable development in polyhedral techniques 
leading to an increase in the size of many combinatorial problems that can be solved by a 
factor hundred. Most of the computational successes have occured for zero-one combinatorial 
problems where the polytope is defined once the dimension is given, such as the traveling 
salesman problem. For more complex combinatorial optimization problems, and for general 
integer programming problems less progress has been made. Here we shall give a brief overview 
of other available solution techniques. 

If the number of variables is large compared to the number of constraints column generation 
may in many cases be a good alternative. It can be viewewd as a dual approach to polyhedral 
techniques in the sense that one aims at generating the extreme points of conv( S) rather than its 
facets. Instead of solving a separation problem to generate a violated inequality we need to solve 
the problm of finding a column, i.e. a feasible solution, that can improve the objective function. 
Column generation was introduced by Gilmore and Gomory (1961) to solve the cutting stock 
problem. Recent applications are presented by Savelsbergh (1994) and Vanderbeck and Wolsey 
(1994). 
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