55 research outputs found

    The maxim of probabilism, with special regard to Reichenbach

    Get PDF
    It is shown that by realizing the isomorphism features of the frequency and geometric interpretations of probability, Reichenbach comes very close to the idea of identifying mathematical probability theory with measure theory in his 1949 work on foundations of probability. Some general features of Reichenbach’s axiomatization of probability theory are pointed out as likely obstacles that prevented him making this conceptual move. The role of isomorphisms of Kolmogorovian probability measure spaces is specified in what we call the “Maxim of Probabilism”, which states that a necessary condition for a concept to be probabilistic is its invariance with respect to measure-theoretic isomorphisms. The functioning of the Maxim of Probabilism is illustrated by the example of conditioning via conditional expectations

    Conditioning using conditional expectations:the Borel-Kolmogorov Paradox

    Get PDF
    The Borel-Kolmogorov Paradox is typically taken to highlight a tension between our intuition that certain conditional probabilities with respect to probability zero conditioning events are well defined and the mathematical definition of conditional probability by Bayes’ formula, which loses its meaning when the conditioning event has probability zero. We argue in this paper that the theory of conditional expectations is the proper mathematical device to conditionalize and that this theory allows conditionalization with respect to probability zero events. The conditional probabilities on probability zero events in the Borel-Kolmogorov Paradox also can be calculated using conditional expectations. The alleged clash arising from the fact that one obtains different values for the conditional probabilities on probability zero events depending on what conditional expectation one uses to calculate them is resolved by showing that the different conditional probabilities obtained using different conditional expectations cannot be interpreted as calculating in different parametrizations of the conditional probabilities of the same event with respect to the same conditioning conditions. We conclude that there is no clash between the correct intuition about what the conditional probabilities with respect to probability zero events are and the technically proper concept of conditionalization via conditional expectations the Borel-Kolmogorov Paradox is just a pseudo-paradox

    The Borel-Kolmogorov paradox is your paradox too: A puzzle for conditional physical probability

    Get PDF
    The Borel-Kolmogorov paradox is often presented as an obscure problem that certain mathematical accounts of conditional probability must face. In this paper, we point out that the paradox arises in the physical sciences, for physical probability or chance. By carefully formulating the paradox in this setting, we show that it is a puzzle for everyone, regardless of one's preferred probability formalism. We propose a treatment which is inspired by the approach that scientists took when confronted with these cases

    A Dutch Book Theorem and Converse Dutch Book Theorem for Kolmogorov Conditionalization

    Get PDF
    This paper discusses how to update one’s credences based on evidence that has initial probability 0. I advance a diachronic norm, Kolmogorov Conditionalization, that governs credal reallocation in many such learning scenarios. The norm is based upon Kolmogorov’s theory of conditional probability. I prove a Dutch book theorem and converse Dutch book theorem for Kolmogorov Conditionalization. The two theorems establish Kolmogorov Conditionalization as the unique credal reallocation rule that avoids a sure loss in the relevant learning scenarios

    A Dutch Book Theorem and Converse Dutch Book Theorem for Kolmogorov Conditionalization

    Get PDF
    This paper discusses how to update one’s credences based on evidence that has initial probability 0. I advance a diachronic norm, Kolmogorov Conditionalization, that governs credal reallocation in many such learning scenarios. The norm is based upon Kolmogorov’s theory of conditional probability. I prove a Dutch book theorem and converse Dutch book theorem for Kolmogorov Conditionalization. The two theorems establish Kolmogorov Conditionalization as the unique credal reallocation rule that avoids a sure loss in the relevant learning scenarios

    General properties of Bayesian learning as statistical inference determined by conditional expectations

    Get PDF
    We investigate the general properties of general Bayesian learning, where “general Bayesian learning” means inferring a state from another that is regarded as evidence, and where the inference is conditionalizing the evidence using the conditional expectation determined by a reference probability measure representing the background subjective degrees of belief of a Bayesian Agent performing the inference. States are linear functionals that encode probability measures by assigning expectation values to random variables via integrating them with respect to the probability measure. If a state can be learned from another this way, then it is said to be Bayes accessible from the evidence. It is shown that the Bayes accessibility relation is reflexive, antisymmetric and non-transitive. If every state is Bayes accessible from some other defined on the same set of random variables, then the set of states is called weakly Bayes connected. It is shown that the set of states is not weakly Bayes connected if the probability space is standard. The set of states is called weakly Bayes connectable if, given any state, the probability space can be extended in such a way that the given state becomes Bayes accessible from some other state in the extended space. It is shown that probability spaces are weakly Bayes connectable. Since conditioning using the theory of conditional expectations includes both Bayes’ rule and Jeffrey conditionalization as special cases, the results presented generalize substantially some results obtained earlier for Jeffrey conditionalization

    Conglomerability, disintegrability and the comparative principle

    Get PDF
    Our aim here is to present a result that connects some approaches to justifying countable additivity. This result allows us to better understand the force of a recent argument for countable additivity due to Easwaran. We have two main points. First, Easwaran’s argument in favour of countable additivity should have little persuasive force on those permissive probabilists who have already made their peace with violations of conglomerability. As our result shows, Easwaran’s main premiss – the comparative principle – is strictly stronger than conglomerability. Second, with the connections between the comparative principle and other probabilistic concepts clearly in view, we point out that opponents of countable additivity can still make a case that countable additivity is an arbitrary stopping point between finite and full additivity

    Uniform probability in cosmology

    Full text link
    Problems with uniform probabilities on an infinite support show up in contemporary cosmology. This paper focuses on the context of inflation theory, where it complicates the assignment of a probability measure over pocket universes. The measure problem in cosmology, whereby it seems impossible to pick out a uniquely well-motivated measure, is associated with a paradox that occurs in standard probability theory and crucially involves uniformity on an infinite sample space. This problem has been discussed by physicists, albeit without reference to earlier work on this topic. The aim of this article is both to introduce philosophers of probability to these recent discussions in cosmology and to familiarize physicists and philosophers working on cosmology with relevant foundational work by Kolmogorov, de Finetti, Jaynes, and other probabilists. As such, the main goal is not to solve the measure problem, but to clarify the exact origin of some of the current obstacles. The analysis of the assumptions going into the paradox indicates that there exist multiple ways of dealing consistently with uniform probabilities on infinite sample spaces. Taking a pluralist stance towards the mathematical methods used in cosmology shows there is some room for progress with assigning probabilities in cosmological theories.Comment: 16 pages; accepted for publication in Studies in History and Philosophy of Scienc

    Conditional Probabilities

    Get PDF
    • …
    corecore