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C O N D I T I O N A L P R O B A B I L I T I E S Kenny Easwaran

Conditional probability is one of the central concepts in probability theory.
Some notion of conditional probability is part of every interpretation of
probability. The basic mathematical fact about conditional probability is
that p(A | B) = p(A ∧ B)/p(B) where this is defined. However, while
it has been typical to take this as a definition or analysis of conditional
probability, some (perhaps most prominently Hájek, 2003) have argued
that conditional probability should instead be taken as the primitive notion,
so that this formula is at best coextensive, and at worst sometimes gets it
wrong.

Section 1.1 considers the concept of conditional probability in each of
the major families of interpretation of probability. Section 1.2 considers a
conceptual argument for the claim that conditional probability is prior to
unconditional probability, while Section 1.3 considers a family of mathe-
matical arguments for this claim, leading to consideration specifically of
the question of how to understand probability conditional on events of
probability 0. Section 1.4 discusses several mathematical principles that
have been alleged to be important for understanding how probability 0
behaves, and raises a dilemma for probability conditional on events of
probability 0. Section 2 and Section 3 take the two horns of this dilemma
and describe the two main competing families of mathematical accounts
of conditional probability for events of probability 0. Section 4 summarizes
the results, and their significance for the two arguments that conditional
probability is prior to unconditional probability.

1 background

1.1 What is Conditional Probability?

Before considering the arguments suggesting that conditional probability
is a primitive notion (either equal to unconditional probability in fun-
damentality, or perhaps even more basic), we should consider just what
conditional probability is.

Some have argued, following some cryptic remarks of Frank Ramsey,
that conditional probability can be understood as the probability of a
conditional. However, without a clear interpretation of what a conditional
means, this provides little help for clarifying the concept of conditional
probability. There are deep difficulties with this identification, since to-
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gether with certain plausible logical principles for conditionals, it entails
various triviality results about unconditional probability. (Edgington, 1995,
summarizes much of this literature and argues that there is some inter-
pretation of the conditional that allows for this identification, and Bacon,
2015, shows how much logic for conditionals can be preserved.) At any
rate, the defenders of this principle hope to use conditional probability
to clarify the meaning of conditionals, rather than vice versa. Since the
meaning of a conditional has so much obscurity, this identification is of no
help in trying to analyze the meaning of conditional probability.

Perhaps a more useful (and also Ramsey-inspired) way to think of
conditional probability is to look at some of the roles it plays in order
to see what features it needs to have. But since there are many different
phenomena that have all been said to be interpretations of probability,
and conditional probability plays different roles in each, I will break this
consideration down into several parts. In this discussion, I will not consider
each separate interpretation of probability, but I will instead consider them
in three broad families. (For more on specific interpretations, see Hájek,
2007.)

The first family (which I will use as my primary reference point in much
later discussion) is the set of broadly “Bayesian” interpretations that treat
probability as some sort of informational state. The second family is the
set of broadly “physical” interpretations that treat probability as a feature
of some part of the world itself, rather than an information state. The third
family is the set of “mathematical” applications of probability, some of
which I don’t think rise to the level of an interpretation, but are worth
mentioning separately.

1.1.1 Bayesian Interpretations

Among the interpretations I am calling “Bayesian” are both various ob-
jective and subjective notions. I mean this class to include “logical proba-
bilities” (Keynes, 1921; Carnap, 1950; Maher, 2006) and “evidential prob-
abilities” (Williamson, 2002), as well as the more familiar objective and
subjective Bayesian interpretations of probability as some sort of rational
degree of belief (Easwaran, 2011a, 2011b). These interpretations of proba-
bility are used in a broad variety of applications in psychology, economics,
decision theory, philosophy of science, and epistemology.

However, in all of these applications, it seems that there are three
main roles that conditional probability is said to play. First, conditional
probability is said to play some sort of fairly direct role in constraining the
way that probabilities change over time. Second, conditional probability
is used in the analysis of various measures of confirmation (which often
claim to describe the potential value of various pieces of information,
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whether or not anyone ever gains that information). And third, conditional
probability is important in certain accounts of decision theory. If there
are roles for conditional probability other than these, then some of my
later evaluation of the different mathematical accounts of conditional
probability may need to be modified.

The role of conditional probability in updating is perhaps the most
familiar one. The traditional notion of Bayesian updating is said to occur
when there is some new evidence E that the agent gains with certainty. In
this case, the probability function after the update pnew and the probability
function before the update pold are said to satisfy, for every A, pnew(A) =

pold(A | E). Following Jeffrey (1965), many have thought that this sort
of update scenario is implausible, because there is never any particular
evidence that is gained with certainty. Instead, there is said to be an
evidential partition E, which is a set of propositions {Ei : i ∈ I}, such that
it is antecedently certain that there is exactly one i such that Ei is true. No
member of this partition becomes certain, but their probabilities change
in a way that drives the change of all other propositions. This notion of
“driving the change” is summarized by a constraint known as rigidity: for
any A, pnew(A | Ei) = pold(A | Ei). The specification of these conditional
probabilities is said to be enough, in conjunction with the new probabilities
for each Ei, to specify the new probability function uniquely, by means
of the Law of Total Probability. When the partition is finite, this takes the
form p(A) = ∑ p(Ei)p(A | Ei), though in the infinite case we need to be
a bit more careful. As I will discuss in Section 1.4.3, the natural way to
generalize this will be notated as p(A) =

∫
p(A | EI)dp, though further

complexities arise.
At least since the work of Hosiasson-Lindenbaum (1940), conditional

probability has also been very important in analyzing the notion of confir-
mation. Much of this literature has focused on finding numerical measures
of the degree to which particular evidence would support particular hy-
potheses. Where H is some hypothesis, and E is some potential evidence,
some well-known measures are said to take the value p(H | E)− p(H),
or p(H | E)/p(H), or p(E | H)/p(E | ¬H). (These and other measures are
discussed by Fitelson, 1999.) The probabilities that show up in these formu-
lations are of four types. There are two unconditional probabilities, p(E)
and p(H), which are called “priors” for the evidence and the hypothesis
respectively. (Priors for their negations sometimes appear as well, but
since p(¬E) = 1− p(E) and p(¬H) = 1− p(H) these are not relevantly
different.) There are also two types of conditional probability that arise.
p(H | E) is called the “posterior” of the hypothesis, because (according to
the update rule mentioned above), it gives the probability the hypothesis
would have after hypothetically learning the evidence. And p(E | H) and
p(E | ¬H) are called “likelihoods” of the hypothesis and its negation. Some
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philosophers have focused on measures involving only likelihoods, be-
cause they are said to be more objective than priors and posteriors (Royall,
1997). But at any rate, these are the conditional probabilities whose values
are relevant to confirmation.

In decision theory, the most traditional analysis of the value of an action
doesn’t depend on conditional probability at all (Savage, 1954). There are
said to be a set A of actions available to the agent and a set S of possible
states of the world independent of the agent, and together these are said
to determine outcomes of the act. The agent has a value V(A ∧ S) for
each outcome. When everything is finite, the value of an act A ∈ A is
given by V(A) = ∑S∈S p(S)V(A ∧ S). (Again, when S is infinite, things
are more complicated, as will be discussed in Section 1.4.2.) However,
Jeffrey (1965) and others have worried about cases in which one can’t
identify states of the world independent of the agent. In this case, Jeffrey
suggests that we should have V(A) = ∑S∈S p(S | A)V(A ∧ S), replacing
the unconditional probability of a state with its probability conditional on
each action. Joyce (1999) and other “causal decision theorists” have argued
that this “evidential decision theory” is wrong for certain cases, and replace
the conditional probability p(S | A) with something like p(A � S), the
probability of the subjunctive conditional. Regardless of how this is to be
interpreted, the relevant conditional probabilities for decision theory are
what I will call “action probabilities,” and they must be defined for states
of the world conditional on the possible acts of an agent.

Thus, on the Bayesian interpretations of probability, the conditional
probabilities that arise in any relevant application appear to be of three
forms—posteriors, likelihoods, and action probabilities. Posteriors must be
defined for every hypothesis conditional on every piece of possible evidence
(for confirmation theory), or for every proposition conditional on every
piece of possible evidence (for updating). Likelihoods must be defined
for every piece of possible evidence conditional on every hypothesis. And
action probabilities must be defined for every state of the world conditional
on every possible action. (On Jeffrey’s interpretation, action probabilities
may just be a special case of posteriors, since the role of an act for him
is in some sense as a special piece of evidence, but for Joyce and others
the role is somewhat different, though it may not even be a conditional
probability in the traditional sense.) In each case, the set of things that may
be conditioned on form a “partition”—they are a set of propositions such
that it is certain in advance that exactly one of them is true. This fact will
be significant for later discussion.
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1.1.2 Physical Interpretations

Another family of interpretations of probability take probability to be
something separate from any sort of information state. One historically
influential such interpretation is Popper’s account of chance as a sort
of “propensity” of the world to evolve in a certain way (Popper, 1959b).
Many statisticians have wanted some sort of objective physical notion of
probability like this, but without the metaphysical baggage. This has given
rise to frequentist statistical practice, described for instance by Mayo and
Cox (2006), on which the relevant probabilities are the proportion of cases
in which particular outcomes “would arise in a hypothetical long-run of
repeated sampling” (p. 79).

These interpretations are possibly more heterogeneous than the Bayesian
ones I discussed above, but we can still identify particular families of uses
to which conditional probabilities are put. First, conditional probabilities
are sometimes said to govern the way in which chances change over time.
Second, conditional probabilities are sometimes used to analyze notions
of causation or independence. Third, there are various uses conditional
probabilities are put to in frequentist statistical practice. And fourth, there
may be a relevant notion of expected value computed from physical
probabilities.

For changing chances, David Lewis claims that “a later chance distri-
bution comes from an earlier one by conditionalizing on the complete
history of the interval in between” (1980, p. 280). That is, if pold is the
probability function giving the chances at some earlier time and pnew gives
the chances at a later time, and H is the history of all events that occur
between these two times, then for any A, pnew(A) = pold(A | H). This
requires a notion of probability conditional on any H ∈ H, where H is the
set of all histories that could transpire between one time and another.

Some analyses of causation have said that A is a cause of B iff p(B | A) >

p(B), where p is some physical notion of probability. There are many
obvious problems with this account, turning on cases where there are
common causes (the probability of a parent having blond hair given that
a child has blond hair is higher than the unconditional probability of a
parent having blond hair, even though the child’s hair color is not a cause
of the parent’s), other events intervening (the probability of getting in a car
crash given that you’ve had a drink may be lower than the unconditional
probability of getting in a car crash, if drinking makes you less likely to
drive, even though drinking does tend to cause car crashes), and similar
sorts of problems. Sophisticated versions of this theory have now turned
to the sort of “causal modeling” developed by Pearl (2000) and Spirtes,
Glymour, and Scheines (2000). On this picture, events A and B are taken
to be particular values of variables A and B, which may have two values
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(A occurs or does not occur) or more (if A is seen as one of a class
of ways for something to happen). These variables are represented by
nodes in a graph with arrows connecting some nodes to others. Physical
probabilities are given by a probability distribution for the values of one
variable conditional on each specification of the values of the variables with
arrows pointing directly to it. There are then two notions of conditional
probability, depending on whether we “intervene” on one variable or
merely “condition” on it (Meek & Glymour, 1994). This difference can be
seen by considering the probability of someone having a sun tan given
that their vitamin D levels are high—conditioning involves looking at
people with currently high levels of vitamin D and measuring their tan,
while intervening involves artificially giving people high levels of vitamin
D and measuring their tan. Variable A is then said to be a cause of B iff
intervening on A in different ways gives different conditional distributions
for B, and is said to be independent if the conditional probabilities are
the same. (Vitamin D likely turns out not to be a cause of sun tan, but to
have correlation due to common cause.) Again, the relevant probabilities
always involve conditioning on the elements of a partition. For far more
on this, see Hitchcock (2010).

In frequentist statistical practice, there are a variety of conditional prob-
abilities that arise. One of the most well-known such conditional proba-
bilities is the p-value of a piece of evidence. This is the frequency with
which evidence at least as extreme as the observed value would occur in
hypothetical repetitions of the same experimental protocol, assuming that
the “null hypothesis” is correct. We might notate this as p(E+ | H0), where
E+ is the event of evidence at least as extreme being observed, and H0 is
the null hypothesis (though see Section 1.2 for discussion of whether this
should really be thought of as a conditional probability). The p-value is
often used as a criterion for statistical rejection, and it is common to reject
the null hypothesis (in favor of some alternative) if the p-value falls below
some pre-arranged threshold. The “power” of a statistical test is said to be
the frequency with which the same experimental protocol would result in
rejection of the null hypothesis, assuming that the alternative is in fact true.
We might think of this as p(R | H′), where H′ is the alternative to the null
hypothesis, and R is the event of an experimental result that our protocol
recommends rejection on. In statistical tests for which we want to estimate
the value of some unknown parameter, our experimental protocol often
ends not with rejection, but with specification of a “confidence interval.”
For instance, a 95% confidence interval is the set of parameter values
for which the p-value would be at least .05 if that value were treated as
the null—we can think of the confidence interval as the set of values that
wouldn’t be rejected at a given p-level. These probabilities are not the same
as the likelihoods discussed above for Bayesian probabilities (because these
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are not probabilities of the actually observed evidence, but rather of the
event “an observation at least as extreme would occur”), but they are still
probabilities conditional on each hypothesis.

Finally, although many contemporary decision theorists follow Savage
(1954) in using some sort of Bayesian probability as the basis of compu-
tation of expected value, von Neumann and Morgenstern (1947) use a
physical probability as their basis for a theory of rational decisions. Sim-
ilar issues involving objective correlations between “states of the world”
and an agent’s actions might motivate some use of conditional probabil-
ity in calculations of expected value, and these will be like the “action
probabilities” I mentioned above.

Again, in all cases, the set of things that can be conditioned on forms a
partition.

1.1.3 Mathematical Interpretations

There are some other interpretations of probability that don’t quite fit in
with those mentioned above. The most interesting such interpretation is
that of probability as actual relative frequency. For instance, the World
Health Organization reports that 68% of deaths worldwide in 2012 were
due to non-communicable diseases, such as cancer, diabetes, and cardio-
vascular diseases. We can interpret this as a sort of probability, and say that
the probability that a person who died in 2012 died of a non-communicable
disease is .68. On this interpretation, for any descriptions A, B, we can
say that p(B | A) is the fraction of things fitting description A that also fit
description B. Any description whatsoever can be used in either position,
provided that there is a meaningful way to count instances of each.

This bears much similarity to the “classical interpretation” of probability
attributed by Hájek (2007) to early probability theorists. The idea again
is that in many traditional games of chance, physical probabilities or
Bayesian probabilities may be usefully approximated by counting all the
different possible outcomes of the game and seeing how many of them
are of the sort of interest.

Tools like this have also been applied in pure mathematics, in what is
called the “probabilistic method.” This method was introduced by Erdős
(1947) to derive bounds for Ramsey numbers. (These numbers were first
investigated by Ramsey, 1930, in an attempt to work on the decision
problem for logic, but have since been generalized to the size of any sort
of structure that is needed to guarantee the existence of subsets with given
complexity.) Erdős considers the complete graph on n vertices where edges
are arbitrarily colored in two colors. He then defines a probability function
on subsets of this graph, and shows that if n is large enough, then the
probability of selecting k vertices at random such that all edges between
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them are the same color is non-zero. In particular, this means that for any
coloring of the graph on n vertices, there must be k vertices whose edges
are all the same color. The importance of Erdős’ result is that the bound he
arrived at for n is substantially smaller than that arrived at by Ramsey, and
is in most cases still the best known. This method has since been deployed
in many other problems in combinatorics.

The classic applications of this method don’t make any use of conditional
probability. More advanced applications might, but in general, the inter-
pretation of the probability function is not really of any interest. Instead,
the probabilities (and perhaps any conditional probabilities) are just tools
for mathematical computation. Any mathematical account of “conditional
probability” could be useful, whether or not it has any application to other
interpretations of probability. Thus, this interpretation of probability gives
no particular constraint to our theorizing about conditional probability,
and if anything, encourages us to explore as many different mathematical
accounts as possible, in case one is of use in some mathematical problem
or other.

1.2 Backgrounds vs. Conditions

There are two main families of argument that all probabilities must really
be conditional. One family of argument (considered in this section) is
conceptual, and claims that for many different interpretations, some sort of
background is essential to even determine probabilities. The second family
of argument (considered in Section 1.3) is mathematical, and uses problems
involving division by zero to argue that conditional probability must be
prior to unconditional probability. Although the mathematical arguments
are sometimes clearer and seem more convincing, I will consider the
conceptual arguments first, since the mathematical arguments lead more
naturally to the issues that arise in the rest of this article. This section is
independent of the rest of the article, and can be skipped by readers more
interested in the mathematical issues.

This section considers the claim that a background is essential to the
possibility of probability. I will consider versions of this argument for each
interpretation of probability, and argue that for most interpretations of
probability, this “background” is different enough in kind from the sort of
thing that one can conditionalize on, that it should be treated separately
from conditional probability. I claim that only for probabilities thought of
as actual frequencies is it correct to say that every probability requires a
background, and that this background makes every probability essentially
a conditional probability. For some of the other interpretations, we will
at least find that many numbers traditionally thought of as unconditional
probabilities may be better thought of as conditional probabilities, but for
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all of these other interpretations there is conceptual room to argue that
some probabilities really are unconditional.

For this argument, again it will be useful to consider different interpre-
tations of probability in some detail. However, I will skip a few of the
most purely mathematical interpretations for which there are no important
conceptual requirements, and will consider the other interpretations in
somewhat different connections than I did before.

1.2.1 Degree of Belief

For subjective degree of belief, some have argued that all probabilities are
really conditional on a background. I will argue that the role of the back-
ground is different from the role of the conditioning event in conditional
probability. De Finetti (1974) says “every evaluation of probability is condi-
tional; not only on the mentality or psychology of the individual involved,
at the time in question, but also, and especially, on the state of information
in which he finds himself at that moment” (p. 134). That is, rather than
representing a subject S’s degree of belief at t in a proposition A as p(A),
many authors suggest that it should be represented as p(A | KS,t), where
KS,t is the conjunction of all the propositions that S knows at t.

However, if it is possible (or reasonable, or rational) for different subjects
with the same knowledge to have different degrees of belief, then including
the knowledge as a proposition in an expression of conditional probability
doesn’t address the fundamental issue. There would not be one single
probability function such that conditionalizing it on the knowledge that
each subject has at each time yields the degrees of belief that agent does
or should have. While the “information” may be a proposition of the same
sort as the bearers of probability, the “mentality or psychology of the
individual” is not.

Thus, unless we assume that the knowledge an agent has uniquely
determines the probabilities that are rationally permitted for her (a thesis
known as Uniqueness, contrasted with its negation, Permissivism; see Kopec
and Titelbaum, 2016), it seems more accurate to represent a subject S’s
degrees of belief at a time t as pS,t(A). There is a separate Bayesian proba-
bility function for each subject at each time. This probability function will
reflect an agent’s knowledge, which may mean that it gives probability 1 to
any proposition that is known. If this is the right way to treat knowledge,
then pS,t(A) = pS,t(A | KS,t). But the conditional probability is no more
fundamental here.

However, some philosophers, such as Horowitz and Dogramaci (2016),
argue that the knowledge or evidence that one has does uniquely deter-
mine the rational degrees of belief to have. On this picture, the degrees
of belief that are rational for a subject at a time really do turn out to be a
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matter of conditional probability, prational(A | KS,t). What the Subjectivist
Bayesians think of as a subject-and-time-relative unconditional probability
is actually aimed at following an objective conditional probability function.
However, even on this interpretation, there is an important theoretical
consideration of what the rational degrees of belief would be for an agent
with no knowledge whatsoever. The defender of the claim that condi-
tional probabilities are fundamental would represent this as prational(A | T),
where T is some tautology, but it seems just as reasonable to represent
this as prational(A), so that there are some unconditional probabilities after
all. The question then becomes: do the unconditional rational probabilities
suffice to determine all the conditional rational probabilities? But this is
largely a mathematical question, and not a conceptual one, and this is
the fundamental question behind Section 1.3 and Section 1.4, with full
theories described in Section 2 and Section 3.

I should also note that there is a view like this one available for a
more permissive or subjectivist viewpoint. This viewpoint is associated
with the work of Isaac Levi (1980). There is no one objectively rational
evidential probability function. Instead, there are just many different “con-
firmational commitments” that one might have. When this confirmational
commitment is conditionalized on the knowledge a subject has, we can
find the degrees of belief that the subject is committed to. Thus, what I
referred to above as pS,t(A) would instead be referred to as pC(A | KS,t),
where C is the particular confirmational commitment the agent has. A
major advantage this view has, if correct, is that it allows us to extend
Bayesian updating to cases in which one revises one’s beliefs by giving
up something that was taken as evidence, by removing this proposition
from one’s knowledge. However, this view also requires such hypothetical
revisions to yield well-defined commitments for giving up any of one’s
beliefs. And again, there may still be unconditional probabilities on this
view (namely, the commitments one has prior to any evidence), though
there is still a mathematical question of whether they suffice to determine
the conditional probabilities that we usually focus on.

1.2.2 Chance and Frequentism

Some have argued that for the chance or frequency interpretation of prob-
ability, the role of experimental setup or preconditions for repeatability
mean that all chance is conditional. I will again argue that the role of the
background here is distinct from the role of the conditioning event in con-
ditional probability, so that these interpretations also have no conceptual
reason for making conditional probability prior to unconditional.

On one picture, chances are relative to a world and a time (Lewis, 1980).
Thus, the chance of A at a time t in world w is fundamentally given by
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pw,t(A). Chances may update by conditionalization, so that if t′ is later
than t, then pw,t′(A) = pw,t(A | Ht,t′), where Ht,t′ is the description of the
complete history of the world from t to t′. If there is some earliest time
0, then one may even be able to say that pw,t(A) = pw,0(A | H0,t), so that
the chances at all later times are fundamentally given by the conditional
chances at the beginning of time. But this still leaves unconditional chances
at the earliest time. And if there is no earliest time, then it seems that
we must allow unconditional chances at every time to count as equally
fundamental, because there is no privileged earlier reference point from
which they are all conditionalized. And on any of these pictures, the
world must enter in as a separate background parameter distinct from the
things conditionalized on. The history up to t alone does not suffice to
determine the chances at t. (Just consider the following two worlds where
nothing happens other than a series of coin flips. In one world the flips
are independent and have chance .6 of coming up tails, while in the other
they are independent and have chance .5 of coming up tails. It is possible
for the first six flips to come up the same way in the two worlds while
still maintaining different chances for the seventh flip. This can happen on
any view on which chances are determined either by the Humean pattern
including the future, or by non-Humean laws.)

On another picture of chance, the chances are determined not by the
laws and the world, but by an experimental setup. The chance of a coin
coming up heads may be 0.5 when the setup of the coin flipping situation
is properly specified. But without a specification that the coin is flipped,
that the flip is fair, that the coin is balanced, etc., it just may not be the case
that it makes sense to say what the chance is that the coin will come up
heads. On some ways of taking this, experimental outcomes are the result
of chance processes, but experimental setups are the result of free choice of
the experimenter. Conditional probability is a relationship between two
events that are both in the domain of the probability function, while the
experimental setup is a precondition for the existence of these probabilities
at all. As Humphreys points out (Humphreys, 1985, 2004), Bayes’ Theorem
and other mathematical results allow us to invert conditional probabil-
ities by means of some mathematical calculations. If there were such a
thing as p(outcome | setup), then there would have to be something that is
p(setup | outcome). But the setup is not the sort of thing that has a chance,
as it is the result of a free choice, and the outcome is not the sort of thing
that characterizes a chance process, so this conditional probability is either
senseless or irrelevant. If we want to notate the role of the setup in deter-
mining the chance of the outcome, we should write it as psetup(outcome),
not p(outcome | setup).

This viewpoint on chance is similar to the one that frequentist statisti-
cians have of probability. The only probabilities that make sense on this
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view are the results of repeatable experiments. Scientific hypotheses help
specify these probabilities, but do not themselves have probabilities, since
they are not the results of repeatable experiments. This sort of thing is
often notated by philosophers as psetup(E | H), where E is some evidence
consisting of experimental outcomes, and H is a scientific hypothesis. The
function represents something like the fraction of times that this outcome
would occur if one were, hypothetically, to repeat this experimental setup
many times, assuming the hypothesis is true. If this is the right way to
represent the situation, then every statement of probability must have
some scientific hypothesis or other that determines it, so every probability
must be conditional.

However, I claim that on the frequentist interpretation, H should not
be thought of as being conditioned on, but must instead be part of the
background, just like a world, confirmational commitment, or experimen-
tal setup. The clearest reason for this is that on the frequentist account,
H is from an importantly different ontological category than E, while
conditional probability involves pairs of entities of the same ontological
category. H is either true or false, and not the outcome of a repeatable
experiment. A hypothesis, for the frequentist, is not the sort of thing that
has a probability, so it is not the sort of thing that can be conditioned on. In
statistical practice, the difference is often indicated by using a semicolon to
set off the hypothesis that is the precondition for the probabilities, rather
than the vertical line, which is used for conditional probabilities. Thus, we
should write “P(E; H)” rather than “P(E | H)”.

Furthermore, there is a notion of conditional probability that the fre-
quentist can talk about, that is quite different. On the hypothesis that an
urn has 3 white and 7 black balls, the conditional probability of the second
draw (without replacement) being black given that the first is white is
7/9, while the unconditional probability of the second draw being black
is 7/10. In this case we can calculate the conditional probability as the
unconditional probability of a white draw followed by a black one, divided
by the unconditional probability of the first draw being white, all given
the background of the urn hypothesis, which has no probability of its
own for the frequentist. The Bayesian can say that all of these probabilities
are conditional on the hypothesis, because the Bayesian thinks that the
hypothesis is the sort of thing that has a probability. But the frequentist
shouldn’t say this. So the frequentist has no special need for primitive
conditional probabilities.

1.2.3 Actual Frequencies

Some have argued that on the actual frequency interpretation of probability,
all probabilities are fundamentally conditional. For this interpretation, I
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agree. When probability is interpreted as frequency of some property
within an actual reference class, every probability really is conditional.

The interpretation of probability as actual finite frequency says that
p(B | A) is the fraction of entities with property A that also have property
B. There is a particular number that is the frequency of heart attacks
among 40-to-50-year-old American males in a given year, which we can
calculate by counting how many 40-to-50-year-old American males there
were that year, and counting how many of them had heart attacks that
year. There is another frequency of heart attacks among all Americans,
and another among all humans, calculated similarly. But if there is such a
thing as the frequency of heart attacks independent of any reference class
(even the entire universe), it is just a number, not a probability.

In this case, it looks like the reference class is the same sort of entity
as the event whose probability is being measured. We can talk about
the frequency of 40-to-50-year-old males among American heart attack
victims, by counting how many heart attack victims there were that year,
and finding what fraction of them were 40-to-50-year-old American males.
Furthermore, if we ask for the conditional frequency of heart attacks among
40-to-50-year-old American males given that they smoke, this appears to
be the same as the “unconditional” frequency of heart attacks among 40-
to-50-year-old American males who are smokers. Conditionalizing really
just is conjunction with the reference class. Thus, the reference class really
is the same sort of thing as a conditioning event. Thus, on the actual
finite frequency interpretation, we really do have a good case for every
probability being conditional.

1.2.4 Logical and Evidential Probabilities

For logical and evidential probabilities (as well as perhaps some objective
versions of the degree of belief interpretation of probability), some have
argued that all probabilities are fundamentally conditional. For these
interpretations, I don’t specifically reject this argument. However, there is
a special case of “empty background” that might be considered to be an
unconditional probability that is equally fundamental to the conditional
probabilities, so the upshot of the argument here is more equivocal.

Logical probability is often said to be a relation of partial entailment
between two propositions. That is, “p(B | A) = 1” is said to mean the same
thing (or something very similar to) “A ` B.” Saying that p(B | A) = 2/3
is saying that A “2/3 entails” B. Since entailment is a binary relation,
this logical probability is said to be an essentially conditional relation.
This is the point of view described, for instance, by Keynes (1921). (A
similar viewpoint, though not identical, is expressed with regards to the
“evidential probabilities” of Williamson, 2002.)
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Both roles here are played by arbitrary propositions, so there are no on-
tological distinctions between the two sides of the conditional probability.
There is no category mistake in reversing a logical entailment (though of
course the degree of entailment can differ). Furthermore, just like with
actual finite frequencies, there doesn’t appear to be any other notion of
conditional probability that is interestingly distinct from this one. The
probability of A given B, with C as background, doesn’t obviously have
any interpretation that would be clearly different from the probability of
A with B ∧ C as background. Thus, just as with actual frequencies, one
might be able to argue on conceptual grounds that all logical probabilities
are inherently conditional.

However, unlike with frequencies, the opponent of this view has a re-
sponse. Deductive logic can be expressed as the study of logical entailment
relations, but it can also be expressed as the study of theorems. One can
think of theorems either as sentences entailed by a tautology, or as sen-
tences entailed by no premises whatsoever. Similarly, it may be possible to
consider the set of logical probabilities conditional on a tautology either
as the degree of partial entailment the tautology gives to each sentence, or
as the degree of partial theoremhood each sentence has.

If we can interpret p(B | A) as the degree to which A partially entails
B, we may also be able to interpret p(A) as the degree of partial theorem-
hood of A. On this account, it may be further possible to recover all the
partial entailments from these facts about partial theoremhood through
techniques of calculating conditional probabilities, just as it is possible to
recover all the deductive entailments from the facts about theoremhood
through the deduction theorem. Thus, the opponent of conditional proba-
bility as the fundamental notion may have a response to this argument,
though it will depend on the extent to which conditional probabilities
really can be recovered from the unconditional ones, just as in the case of
Objective Bayesianism, or Levi’s confirmational commitments.

1.2.5 Summary

In summary, degree of belief, physical chance, experimental chance, and
hypothetical frequency all have some fundamental ontological distinction
between the bearers of probability and the backgrounds that are required
for probabilities to even exist. Thus, the necessity of these backgrounds
does not motivate the claim that conditional probability is primitive or
fundamental. For actual frequencies, logical probability, and evidential
probability, the backgrounds are of the same type as the bearers of proba-
bility, so this argument does seem to motivate the claim that conditional
probability is fundamental. But for logical and evidential probability, there
is a possibility of empty background, which can be re-interpreted as a
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fundamental notion of unconditional probability. Further mathematical
investigation is needed to see whether these unconditional probabilities
suffice to determine the conditional probabilities. Only for actual frequen-
cies is it clear that all probabilities really are conditional, because of the
necessity of a background for probability.

◦ All probabilities are non-trivially conditional:

� Actual frequency

◦ All are conditional, some conditions are empty:

� Logical

� Evidential

� Unique Degree of Belief

◦ Background relevant, not all are conditional:

� Chance

� Hypothetical Frequency

� Permissive Degree of Belief

1.3 Problems for the Ratio

The previous section considers conceptual arguments that all probabilities
are fundamentally conditional. I have argued that this argument works
for the interpretation of probability as actual frequency, and is equivocal
for logical and evidential probability and related objective epistemic in-
terpretations, but that it does not work for the other interpretations of
probability. In this section, I consider arguments for the claim that all prob-
ability is fundamentally conditional based on the mathematical features of
conditional probability. This set of arguments is the center of Alan Hájek’s
(2003). Although this argument is perhaps easier to feel the grip of, and is
largely independent of the particular interpretation of probability, I put it
second, because consideration of it leads naturally to the technical issues
considered in the later sections of this article.

The immediate target of Hájek’s argument is the common claim that con-
ditional probability is just defined as p(A | B) = p(A ∧ B)/p(B). As Hájek
points out, it appears to be a consequence of this definition that there is no
such thing as the conditional probability p(A | B) unless p(B) has a precise
non-zero numerical value. He then gives a litany of cases in which it seems
clear that p(A | B) exists, even though p(B) is either zero, imprecise, vague,
or non-existent. Thus, we must reject the ratio analysis as a definition
of conditional probability. Whether this requires conditional probability
to be a (or the) fundamental concept of probability theory is a deep and
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difficult question that depends on what alternatives to the ratio analysis
exist. The rest of the article after this section is a long consideration of
these alternatives. Section 1.4 defines the particular mathematical features
of probability and conditional probability that come up in addressing this
problem. Section 2 and Section 3 consider the two advanced mathematical
characterizations of conditional probability that avoid the problems of the
ratio definition, one of which makes conditional probability primary and
the other of which allows it to (almost) be calculated from unconditional
probability. Evaluation of the merits of these two mathematical accounts is
thus essential for deciding whether or not to accept Hájek’s argument that
conditional probability is prior to unconditional probability.

I will give examples of Hájek’s cases shortly. I think that most are not
decisive, but there is one family of them that is quite convincing for every
interpretation of probability mentioned above, apart from actual frequen-
cies. Thus it is interesting that the two primary arguments for conditional
probability being fundamental have this complementary distribution—the
one interpretation for which Hájek’s argument against the ratio analysis
clearly fails is the one interpretation for which all probabilities clearly
require a background of the same type as the bearers of probability, so
that it can clearly be understood as conditional probability.

1.3.1 Impossible or Ruled Out Conditions

I will begin by considering a type of case Hájek considers that is easy to
reject. I think it is important to consider how this type of case differs from
the others, which are more plausibly relevant. Let H be the proposition
that a particular coin flip comes up heads, and T be the proposition that
this same flip comes up tails. Hájek claims that p(T | T) = 1 under any
circumstance. In particular, he claims (p. 287) that this should be true even
if p is the function encoding physical chances at a time when the flip has
already happened and the coin already came up heads, so that p(T) = 0.
He also suggests that it should be true if p is the function encoding degrees
of belief of a rational agent who has already learned that the coin came up
heads, so that p(T) = 0.

These cases can be rejected because there doesn’t appear to be a clear
meaning for these conditional probabilities. Although I don’t think that
conditional probabilities are the probabilities of conditionals, there is a
useful analogy to be drawn with conditionals. Conditional probability is
intended to capture something more like an indicative conditional, rather
than a subjunctive conditional or a material conditional, and indicative
conditionals generally aren’t considered in cases where the antecedent
has already been fully ruled out. It seems correct to say, “if Oswald didn’t
kill Kennedy then someone else did,” but this is because we allow that
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our knowledge of the circumstances of the assassination is fallible. If we
imagine fully ruling out any possibility that Oswald didn’t commit the
assassination, then the conditional becomes harder to interpret. We can
apply subjunctive or material conditionals even to cases of necessary false-
hoods, but it’s hard to interpret them as indicative conditionals. Maybe we
can make sense of a sentence like, “if 7 hadn’t been a prime number, then
8 would have been,” but a sentence like “if 7 isn’t a prime number, then 8
is” seems only interpretable as a material conditional. Just as indicative
conditionals seem not to be acceptable when the antecedent has been fully
ruled out, none of the purposes for which conditional probabilities have
been proposed makes any use of probabilities conditional on antecedents
that have already been ruled out. There is no question of updating on or
confirming a hypothesis that has been completely eliminated.

There are processes of belief revision, on which one removes a belief that
one already has before updating on new information, but this is a different
process that uses conditional probability from the revised state rather than
the current state.1 Similarly, the probability of outcomes conditional on
acts that weren’t done is irrelevant to decision theory.2 Similarly, there is
no question of how the chances of events will evolve when something that
didn’t occur does occur (though there may be a question of how chances
will evolve when something of similar type to that event does occur),
and there is no question of the degree of causal relevance of something
that didn’t occur (though there may be a question of the degree of causal
relevance of its non-occurrence, which of course is something that did
occur).

1.3.2 Vague, Imprecise, or Gappy Conditions

A second class of cases that Hájek considers involve vague or imprecise
probabilities (pp. 293–5). It is controversial whether imprecise probabilities
even exist (see Titelbaum, this volume, and Mahtani, this volume, for
further discussion). But if they do, then it’s clear that they cause problems.
Perhaps one is uncertain about the outcome of the next United States
presidential election in such a way that one has imprecise credences
about it. Or perhaps it depends on non-deterministic events in a way that
leaves it with an imprecise chance. Nevertheless, if D is the proposition

1 Levi’s notion of confirmational commitments allows for probability conditional on propo-
sitions that are currently known to be false. But in this case, the probability function is
not the current degree of belief function, but rather the confirmational commitment—the
current degree of belief function is itself conditional on current knowledge. Thus, the
probability conditional on something currently known to be false is a prior commitment
of an indicative sort—not Hájek’s probability conditional on a certain falsehood.

2 Brandenburger (2007) has argued that game theory sometimes needs to consider probabili-
ties conditional on actions that are ruled out by rationality considerations, but these are
not ruled out with certainty, the way that tails was in Hájek’s examples.
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that a Democrat will win the next US presidential election, and H is the
proposition that a completely unrelated coin flip will come up heads, it
seems clear that p(H | D) = 1/2.

However, this challenge may not be a fatal objection to the ratio analysis
either. One proposal about imprecise probabilities is that, rather than p(D)

being an imprecise value (or set or whatever), there are instead multiple
precise probability functions pi that are all part of the representation of
degree of belief, or chance, or whichever interpretation of probability we
are considering. On each such function, pi(H | D) can be well-defined
by the ratio formula, and if they all happen to take value 1/2, then the
conditional probability can be precise even though the unconditional
probability is not. (This response is described in slightly greater detail on
page 295 of Hájek’s paper.)

Hájek puts the most weight on cases where there is no unconditional
probability, but conditional probabilities are well-defined. He gives a long
series of such cases on pp. 295–312. These include cases of free actions
(which may be such that they can’t have credences or chances), mere gaps
in the credences or chances, and cases of non-measurable sets.

I think that mere gaps are either best thought of as maximally imprecise
probabilities and addressed supervaluationally as above, or as events that
are outside of the scope of the relevant probability function. An agent
who fails to have a degree of belief in some proposition is an agent who
hasn’t considered or grasped it, and thus fails to have any degree of belief
conditional on it as well (even though there are some facts about what
degree of belief she should have were she to have them—like p(A | A) = 1).
Similarly with non-measurable sets—if they are outside the bounds of
chance or credence, then there are no meaningful conditional probabilities
on them either.

There may be some class of events (perhaps the actions of a free agent
who is in the process of deliberation) that can’t have probabilities, but
which themselves serve as the conditions for probabilities of other events.
However, some of these may in fact be better thought of as the “back-
grounds” for probabilities that I considered in Section 1.2. This may be
the right way to think of the “action probabilities” of decision theory, for
instance, where every probability must depend on a specification of the
action of the agent. However, if there were a class of events that can’t have
probabilities, but which also aren’t essential to the specification of other
probabilities, even though they can affect them, then this would be a better
case.
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1.3.3 Probability 0 Conditions

At any rate, I think the strongest case is one that Hájek puts less weight on
(pp. 289–290). These are cases arising from consideration of infinite proba-
bility spaces, where some events have probability 0 without being ruled out.
Consider a point on the surface of a sphere. Label the sphere with lines of
latitude and longitude like those of the Earth. Let N be the proposition
that the point is in the northern hemisphere. Let Lθ be the proposition that
the point is on the line of longitude at angle θ from the boundary between
the eastern and western hemispheres. If the initial probability distribution
is uniform, then it is quite plausible that P(N | L0) = 1/2, even though
P(L0) = 0, so that P(N ∧ L0)/P(L0) is undefined. Furthermore, even if
the initial probability distribution isn’t uniform, it seems that P(N | Lθ)

should be defined whenever there is some possibility of Lθ being true.
However, there are uncountably many distinct values of θ, and at most
countably many of them can have positive probability (because at most
n of them can have probability greater than 1/n, for each of the count-
ably many integers n, and any positive number is greater than 1/n for
some integer n). Thus, there must be some way to make sense of these
conditional probabilities, despite the use of probability 0. This example
can be generated for probability interpreted as chances or as degrees of
belief or as evidential probability, or any interpretation, as long as there
are uncountably many distinct possibilities that aren’t ruled out.

There are two methods that have been proposed to block this set of
cases. One is to introduce additional non-zero values for the probability
function to take that are nevertheless lower than 1/n for any positive
integer n. I have argued elsewhere that this method is unlikely to be
correct for chances or degrees of belief (Easwaran, 2014). (This proposal is
discussed in more detail by Wenmackers, this volume.) Furthermore, this
option bears some relationship to one of the proposals described later, in
Section 3.1, so I suggest that this is in some sense not really an alternative
to the methods considered here—it is effectively equivalent to letting the
probability take the value 0.

The other method for blocking this sort of case is to argue that the rele-
vant notion of probability can’t have uncountably many disjoint possible
events. In the case of Bayesian probabilities, this is motivated by some
consideration of the finitude of the human mind, while in the case of
chances it is motivated by some understanding of quantum mechanics
as requiring the universe to be discrete in time, space, and every other
meaningful parameter.

However, this sort of interpretation of quantum mechanics is implausible.
Although certain parameters like charge and spin are quantized, time and
space just enter into “uncertainty” relations. This means that they are
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bound to other parameters in a way that interactions depending very
precisely on one parameter must allow for exceedingly large variation on
the other. However, this does not put any specific lower bound on the
precision of any interaction, and doesn’t directly motivate the idea that
space and time are discrete.

Furthermore, although any particular human mind is finite, there is
reason to allow consideration of every hypothesis of the form V > p/q,
where V is some physical parameter, and p and q are integers. Certainly,
science seems to proceed as if each of these hypotheses is meaningful,
even if we can never be absolutely sure which are true or false. But these
countably many hypotheses together generate a family of uncountably
many hypotheses of the form x = r where r is a real number. (The claim
that all of the relevant algebras are countably generated, or generated
by random variables in this way will be important in Section 2.3.2.) The
example with points on a sphere is exactly like this, but so are many others
that are more directly relevant in science. To reject these cases is to say that
every probability function has some finite limit on the size of examples
that are relevant.

This response in terms of finitism is quite effective in the interpretation
of probability as actual frequency, if the classes of events one is discussing
are always finite. (When the classes may be infinite, it’s hard to say how
to even define the notion of frequency involved.) But this response is
no help to the statistical frequentist, who may be interested in scientific
hypotheses of the relevant sort. Philosophers often make reference to
examples involving a dart thrown at a board, with infinitely many points
that its center might hit, or a fair coin being flipped infinitely many times,
for which each sequence of heads and tails is a possible outcome. But
examples involving infinity are central to much scientific practice as well.

For instance, a statistical frequentist may be interested in some hypoth-
esis about how energetic particles are ejected from an atomic nucleus
under a particular sort of process. She may further be interested in the
question of how the energy distribution of these particles is correlated to
the direction in which they are ejected. If we let Ex be the statement that
the energy of the particle is x, and Dθ be the statement that the particle is
ejected in a direction at angle θ to the motion of the atomic nucleus, then
she could be interested in all probabilities of the form p(Ex |Dθ). But if she
hypothetically imagines the process being repeated infinitely many times,
the probability of many of the Dθ is likely to be zero, given that there are
uncountably many directions in which the particle could be ejected. If
we limit consideration to some actual set of experiments, then there are
likely to be only finitely many such ejections, and so the non-realized Dθ

can be ignored. But the statistical frequentist is interested in hypothetically
repeated experiments, so all of these possibilities must be considered.
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To summarize, there may be a way to resist all of these cases. But it
would involve some extensive use of special backgrounds for certain types
of probability, a particular way of dealing with any kind of imprecision in
probability functions, and a rejection of infinity. Most of the mathematical
work on alternatives to the ratio analysis only address the issue of infinite
probability spaces and probability 0. I think that the other problems can
be avoided as in ways that I have suggested along the way. But there
is certainly room for further philosophical and mathematical analysis of
those suggestions, and perhaps for new alternatives, which may or may
not prioritize conditional probability over unconditional probability. But
the rest of this article will examine the mathematical theories that have
been developed for dealing with the problems that arise around infinite
probability spaces and the resulting events of probability 0.

1.4 Additivity, Disintegrability, and Conglomerability

Once we consider these infinite families of hypotheses, it seems that we
must have some way of making sense of p(A | B) even when p(B) = 0.
There are many different mathematical theories that allow this to work
out, and these will be the subject of the further sections of this article.
The reason there are so many different theories is due to a fundamental
dilemma around infinity, which will take some time to explain.

Every such theory begins with the idea that the “definition” p(A | B) =
p(A ∧ B)/p(B) should be replaced with an axiom p(A | B)p(B) =

p(A ∧ B). We can then consider whether further information allows
us to define p(A | B) from the unconditional values, or at least in some
sense ground it in them, or whether we must take p(A | B) as a fundamen-
tal function separate from the unconditional probability function p(A).
However, even allowing for this function, there are difficulties when the
set of possibilities is infinite.

In this section I will discuss some of the mathematical properties in-
volved, and show that the idea that conditional probability can be un-
derstood as a function p(A | B) conflicts with the natural generalization
of Additivity in cases of infinity. We must either give up on Additivity
(and related principles generalizing the Law of Total Probability), or else
accept that conditional probability is given by a function p(A | B, E) for a
further parameter E . The mathematical theory of conditional probabilities
for infinite sets is an interplay between the two horns of this dilemma.

In this section I will formally treat the bearers of probability as sets of
possibilities, and will largely bracket concerns about the interpretation of
probability until the end.
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1.4.1 Additivity

When dealing with infinity, a fundamental question for probability theory
is whether and how to generalize the notion of Additivity. One of the
standard axioms of probability is that if A1 and A2 are disjoint events (that
is, there is no possibility on which they both occur) then p(A1 ∪ A2) =

p(A1) + P(A2). Kolmogorov and others have considered a generalization
of this axiom to countable cases.

Definition 1 The Ai for i ∈ I form a partition of A iff each Ai entails A, and
whenever A is true, exactly one of the Ai is true.

(If no particular A is mentioned, then I am considering a partition of the
set of all possibilities.) Thinking of the Ai as sets, that means that they are
disjoint, and their union is A. I will refer to this partition with boldface AI,
and with the index set I as subscript, while italic Ai, with a member i of I
as subscript, will refer to the member of AI that is indexed by element i.

One way to state Countable Additivity is as the requirement that for any
countable partition AI of A, we have p(A) = ∑i∈I p(Ai). Kolmogorov ac-
tually framed his axiom in a slightly different form as a sort of continuity—
whenever the Bi for i ∈N are a family of sets whose intersection is empty,
we have limn→∞ p(

⋂n
i=0 Bi) = 0.

However, I think that it is more perspicuous to phrase this generalization
in a third way, in order to more clearly demonstrate the further generaliza-
tions to uncountable sets. The following is a theorem of standard finitely
additive probability, whenever AI is a partition of A.

Theorem 1 If x ≥ p(A), then for any finite I0 ⊆ I, x ≥ ∑i∈I0
p(Ai).

We can then define additivity as the converse.

Definition 2 (AI-Additivity) If for every finite I0 ⊆ I, x ≥ ∑i∈I0
p(Ai), then

x ≥ p(A).

The following definition is equivalent.

Definition 3 (AI-Additivity) If x < p(A) then there is some finite I0 ⊆ I
such that x < ∑i∈I0

p(Ai).

Countable Additivity is equivalent to AI-Additivity for all countable
sets of indices I.3 This is because, for a set of non-negative real numbers,

3 We can also naturally talk about κ-Additivity as AI-Additivity for all I with cardinality less
than κ. This is standard notation though it is slightly confusing that Countable Additivity,
also known as “σ-Additivity,” is ℵ1-Additivity, while ℵ0-Additivity is actually Finite
Additivity. But this notation is relevant to distinguish between Additivity for all cardinals
strictly below ℵω , and Additivity for all cardinals up to and including ℵω , which is called
ℵω+1-Additivity.
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the sum of that set is the smallest real number that is at least as great as
every finite sum of those numbers.4

Countable Additivity is not entailed by the standard probability axioms,
and in fact rules out certain intuitively appealing probability distributions.
The classic proposed counterexample to Countable Additivity is often
known as the “de Finetti lottery” (de Finetti, 1974; for more detailed
discussion see Bartha, 2004, and Howson, 2008). Imagine that some natural
number is chosen in such a way that no number is more likely than any
other. This intuitively seems possible, and yet it is ruled out by Countable
Additivity. Since every number is equally likely to be chosen, each number
must have probability less than 1/n, because otherwise some n of them
would exhaust all the probability. The only way for this to be the case is
for each number to have probability 0. But this is a violation of Countable
Additivity, because the sum of these 0s is strictly less than 1, which is the
probability of the countable disjunction of these possibilities.

Considering Definition 3, we can derive a more general set of apparent
problems. Let each Ai stand for the event of the number i being picked,
and let I be the set N of all natural numbers, so that AI is a partition
of the necessary claim that some number or other is picked. In this case,
Definition 3 of AI-Additivity states that for every x < 1, there must be
some finite I0 such that x < ∑i∈I0

p(Ai). That is, for every x < 1, there
is some finite set such that the probability that the number chosen is
from that set is at least x. AI-Additivity doesn’t just rule out uniform
distributions on the natural numbers—it requires that every distribution
concentrate most of the probability on some finite set or other.

If AI-Additivity holds for all partitions AI, then the probability function
is said to be Fully Additive. In this case, for any partition AI of a set

4 Readers may be familiar with the definition of the sum of a sequence of (non-negative or
negative) numbers ai for i ∈N as

∑
i∈N

ai = lim
n→∞

n

∑
i=1

ai.

This definition doesn’t work for index sets other than N, and makes essential use of the
order of the indices. When some terms are negative, this order can be important—the
same set of numbers can have a different sum when added in a different order, if both
the negative and positive terms separately sum to infinite values. But when all terms
are non-negative, the least upper bound of the sums of finite subsets is the same as the
sum of the terms in any order (because every finite initial sequence is a finite subset, and
every finite subset is contained within some finite initial sequence, and since there are no
negative terms, the sum of any larger subset is at least as great as the sum of any subset
contained within it).
For uncountable infinite sets of non-negative numbers, it is hard to extend the sequential
definition, because we don’t have good methods for dealing with uncountably long
sequences. However, the least upper bound of the set of all sums of finite subsets is still
well-defined.
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A, Definition 3 entails that for every n, there is a finite set of Ai whose
probability adds up to more than p(A)− 1/n. Let I′ ⊂ I be the union
of the countably many finite sets of indices of these sets, which is thus
countable. By Theorem 1, if we let A′ =

⋃
i∈I′ Ai, then p(A′) ≥ p(A)− 1/n

for each n (since it contains a finite subset adding to this probability). Since
A′ ⊂ A, we have p(A′) = p(A). Thus, the remainder of A that is not in
A′, A \ A′, must have probability 0. If A was the set of all possibilities,
and each Ai is a singleton set containing a single possibility, then A′

is countable. Not only does each element outside of this countable set
individually contribute probability 0, but even collectively they all contribute
0.5 Thus, if Full Additivity holds, there is a sense in which we can ignore
all but countably many possible outcomes, and these countably many
outcomes have individual probabilities that add up to 1. A probability
function in which the set of all possibilities is countable is said to be discrete.
While there are many interesting applications of discrete probability, there
are also plenty of applications for which no countable set of possibilities
should account for all the probability, such as any scientific question for
which every real number within some interval is a possible answer. Thus,
most probability theorists do not accept Full Additivity.

We can think of different views of probability as along a sort of scale
(Figure 1). At the most restrictive end there is the strongly finitistic view
that there are only finitely many possibilities that probability is distributed
over. Next we get the discrete view, that there are only countably many
possibilities that probability is distributed over—this is classical probability
theory with Full Additivity for all cardinalities. Next we get the traditional
mathematical view on which the set of possibilities can be uncountable,
but the probability function is required to satisfy Countable Additivity.
Finally, at the most liberal end of the scale, we have the minority view
in mathematics but a popular view in philosophy, where the probability
space can be uncountable and the probability function is only required
to satisfy Finite Additivity. (Some of the popularity of this view among
philosophers may stem from confusion with probability over finite spaces,
at the opposite end of the scale.) Finite and discrete probability have no
problem with Additivity, and in fact allow conditional probability to be
uniformly defined by the ratio. However, the consideration of scientific
examples where we want to measure the unknown value of some parame-
ter push us towards uncountable spaces. So it is useful to investigate the

5 Another way to see this is to consider the probabilities of each individual possibility. For
each n, at most n of the individual possibilities can have probability greater than 1/n.
Thus, at most countably many have non-zero probability. But if Full Additivity holds, then
the sum of all the probabilities of the individual possibilities must be 1. So these countably
many non-zero probabilities must add up to 1. Thus, the set of all possibilities other than
the countably many with non-zero probability must be a set with probability 0.
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ways in which probability functions with failures of Additivity can still be
well-behaved. I believe that Countable Additivity is the most useful point
on this scale, but it is worth considering the mathematical features of all
four points.

Finitely Additive probability

Countably Additive probability

Discrete probability/Fully Additive probability

Finite probability

Figure 1: A scale of views

1.4.2 Disintegrability and Conglomerability

Although generalizations of Additivity are quite controversial, there are
related principles that have been argued to generalize to infinite cases.
These principles are defined by using integration in place of addition when
infinity arises, to avoid some of the difficulties of adding up zeros. By the
end of this section, I will mention some results that show that instances
of these principles must fail when instances of Additivity fail. However,
in Section 1.4.3, I will show that we can avoid these failures by defining
conditional probability relative to a partition.

The starting point for discussion of these principles is the Law of Total
Probability.

Theorem 2 (Finite Law of Total Probability) If A1 and A2 are incompatible,
and A is the disjunction A1 ∪ A2, then

p(B ∩ A) = p(B | A1)p(A1) + p(B | A2)p(A2).

Given two instances of the conjunction law, p(B ∩ Ai) = p(B | Ai)p(Ai),
this is equivalent to an instance of Additivity: p(B ∩ A) = p(B ∩ A1) +

p(B ∩ A2). We can state a generalization of this, where AI is a partition of
some set A.

Definition 4 The B ∩AI-Law of Total Probability states that

p(B ∩ A) = ∑
i∈I

p(B | Ai)p(Ai).
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Given that p(B ∩ Ai) = p(B | Ai)p(Ai), it is straightforward to see that the
B ∩AI Law of Total Probability is equivalent to B ∩AI-Additivity. Giving
up Full Additivity means giving up certain instances of the Law of Total
Probability. But there are ways of modifying the Law of Total Probability
that don’t directly take this additive form.

The Law of Total Probability can be related to considerations of expected
value for random variables. Informally, a random variable is some quantity
with a potentially unknown real number value, where for each real number
x, there are well-defined probabilities p(V > x) and p(V = x). Notably,
the set of events V = x form a partition.

Definition 5 When there are only finitely many possible values for V, the ex-
pected value of V is given by

exp(V) = ∑
x

x · p(V = x),

where the sum ranges over all finitely many possible values for V.

This definition would yield strange results if it were applied to a variable
V for which Additivity fails on the partition into V = x.

Any violation of Additivity must involve some partition AI such that
∑i∈I p(Ai) = 1 − ε. If I has cardinality at most that of the set of real
numbers, then we can generate a random variable whose expected value
under an extension of the above definition would be paradoxical. For each
i ∈ I, let εi be a distinct positive value less than ε/(1− ε). Let V be a
random variable that takes on the value 1 + εi iff Ai is true. Then a naive
extension of Definition 5 would tell us that exp(V) = ∑i∈I(1 + εi)p(Ai).
But by choice of εi, we see that (1 + εi) < (1 + ε/(1− ε)) = 1/(1− ε).
Thus, exp(V) < ∑i∈I(1/(1− ε))p(Ai) = (1/(1− ε))(1− ε) = 1. That is,
even though V is a random variable whose value is always strictly greater
than 1, this definition of expectation would yield an expected value that is
strictly less than 1.

To avoid this problem, it has been standard to define expected value
slightly differently in infinite cases. Instead of directly considering the
probability of V = x for each possible value that V can take on, mathemati-
cians just directly rule out discontinuities like the one mentioned above. If
V is a random variable that only has finitely many possible values, then
we follow the old definition and let exp(V) = ∑x x · p(V = x). If V has
infinitely many possible values, but has a lower bound (that is, there is
some l such that it is certain that V > l), then we can avoid this problem.
If V ′ is a random variable that always takes a value strictly less than V,
we will say V ′ < V. We will just directly stipulate that if V > V ′ then
exp(V) > exp(V ′). This will rule out the problem of the previous para-
graph, because we could let V ′ be the random variable that always takes
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the value 1, and see that exp(V) > exp(V ′) = 1. By considering variables
V ′ that only take on finitely many distinct values, we get a set of lower
bounds for what E(V) could be. We say that the expectation of V is the
least number above all these lower bounds (the “supremum” of this set of
lower bounds).

Definition 6 Let V be a random variable with a lower bound. Then

exp(V) = sup
V′<V

exp(V ′),

where V ′ ranges over variables that only take on finitely many distinct values.

Similarly, for random variables that have an upper bound, we can define
the expectation to be the greatest number below all the upper bounds (the
“infimum” of this set). We then deal with unbounded random variables by
breaking them into a component with a lower bound and an upper bound.
Let V+ be the random variable that agrees with V when V is positive and
is 0 otherwise, and V− be the random variable that agrees with V when V
is negative and is 0 otherwise. Then define exp(V) as follows.

Definition 7

exp(V) =
∫

V dp = sup
V′<V+

∑
x

x · p(V ′ = x) + inf
V′>V−

∑
x

x · p(V ′ = x),

where V ′ ranges over random variables that only take finitely many distinct
values.

This is the definition of the Lebesgue integral of V with respect to proba-
bility function p, and is the final generalized definition of expected value.
It agrees with Definition 5 and Definition 6 in the cases where they apply.

With this new definition, we can try to save the Law of Total Probability
in a slightly different form. Let AI be a partition. We can consider p(B |AI)

as a random variable whose value is given by p(B | Ai) for whichever
proposition Ai is the unique one from AI that is true. If AI is finite, then
the Law of Total Probability takes the form p(B) = exp(p(B |AI)). This
motivates the following definition.

Definition 8 B is Disintegrable over the partition AI iff

p(B) =
∫

p(B |AI)dp.

Disintegrability is thus another generalization of the Law of Total Proba-
bility, formulated with integrals rather than (potentially infinite) sums.

Let AI be any partition, I′ be any subset of I and A′ = ∪i∈I′Ai. Define
Conglomerability as follows.
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Definition 9 p(B |AI) is Conglomerable over A′ iff

inf
i∈I′

p(B | Ai) ≤ p(B | A′) ≤ sup
i∈I′

p(B | Ai).

It is useful to compare Conglomerability to van Fraassen’s principle of
“reflection” (van Fraassen, 1984; Briggs, 2009).

It is not hard to see that Disintegrability of B over AI entails Con-
glomerability over each A′ with positive probability (because constant
functions taking on the infimum or supremum of p(B | Ai) are among the
set of random variables whose expectation is considered in calculating
exp(p(B |AI))). Conversely, Conglomerability of p(B |AI) over all A′ with
positive probability entails Disintegrability of B over AI. (Since the inte-
gral is defined by comparison to finite sums, this only requires the Finite
Law of Total Probability, rather than the generalizations that fail when
Additivity fails over infinite partitions.)

We might hope that these new generalizations of the Law of Total
Probability in terms of integration rather than summation don’t require
Countable Additivity. However, this hope turns out to be misplaced. A
general theorem is proven by Hill and Lane (1985), verifying that for
countable probability spaces, Conglomerability and Countable Additivity
are equivalent. That is, any failure of Countable Additivity entails a failure
of Conglomerability, and thus Disintegrability, which is the generalization
of the Law of Total Probability. (Slightly more general versions of this
result were proven earlier by Schervish, Seidenfeld, and Kadane, 1984.)

Instances of this result were noted by de Finetti (1974, pp. 177–8), who
also conjectured the general result but hadn’t proven it. To see the basic
idea, consider something like the de Finetti lottery, where each natural
number has equal probability of being chosen. Let E be the event that
an even number is chosen. Intuitively, p(E) = 1/2. However, if we con-
sider the partition into the sets Ai = {2i + 1, 4i, 4i + 2}, then intuitively
p(E | Ai) = 2/3, so that the unconditional probability of E, which is 1/2, is
strictly outside the range spanned by its probabilities conditional on each
member of the partition, which are all 2/3. The construction by Hill and
Lane notes that even without the assumptions of uniformity underlying
the specific probability judgments 1/2 and 2/3, if E and its complement
are both sets of positive probability, then we can often create each Ai
by taking enough elements of E with one element of its complement to
make p(E | Ai) > p(A) + ε. If we can’t do this for every element of the
complement, we can usually do it by taking enough elements of the com-
plement with one element of E to make p(E | Ai) < p(A)− ε. The tricky
part of the Hill and Lane construction is showing how to create a special
partition in the case where neither of these techniques works. These results
have been generalized to show that there are failures of Conglomerability
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for probability distributions that satisfy Countable Additivity but fail to
satisfy Additivity at some cardinality beyond the countable (Seidenfeld,
Schervish, & Kadane, 2013, 2014). Thus, Disintegrability and Conglomer-
ability don’t let us get quite as much distance from Additivity as we might
hope.

1.4.3 The Fundamental Dilemma

However, there is a way to separate Disintegrability and Conglomerability
from Additivity.

First, we should note that Additivity only makes reference to uncon-
ditional probabilities, while Disintegrability and Conglomerability make
reference to conditional probabilities. Furthermore, Disintegrability and
Conglomerability make reference to conditional probabilities p(B | Ai) only
in the context of a random variable p(B |AI). In generating a contradiction
to Conglomerability from a failure of Additivity, Hill and Lane needed
to construct a new partition by joining together elements of AI. (This is
also the case for Seidenfeld et al.) Thus, if a given set A is an element of
two distinct partitions AI and A′I′ , we can avoid the problems if we change
the value of p(B | A) when we move from considering AI to considering
A′I′ . That is, we should consider conditional probability as a three-place
function, p(B | Ai, AI), so that changing just the partition can change the
value of the conditional probability, even if we are considering the same
events B and Ai. Some theorists find this repugnant to their sense that
conditional probability p(B | Ai) must have a single value, but it enables
us to avoid the paradoxes.

This move was in fact already made by Kolmogorov (1950). Although
he hadn’t noticed the connections between Additivity principles and Con-
glomerability, he had already noticed some problems that Conglomerabil-
ity apparently led to, and avoided them by turning conditional probability
into a three-place function of two events and a partition.6 (In fact, this
problem was already mentioned as early as Bertrand, 1889, though due
to Borel’s work on this problem, and the existence of another paradox
known as “Bertrand’s Paradox,” this has come to be known as the “Borel
Paradox.”)

Imagine a point uniformly chosen from the surface of a sphere, labeled
with latitude and longitude like the surface of the Earth. Consider the set
P of “polar” points—those with latitude greater than 60 degrees north or
greater than 60 degrees south. Consider the set E of “equatorial” points—
those with latitude between 30 degrees south and 30 degrees north. Let
Lθ be the great circle of longitude θ. By symmetry, it seems that p(P | Lθ)

6 Strictly speaking, Kolmogorov worked with a “sub-σ-algebra” rather than a partition, but
we will discuss the relation of these concepts in Section 2.
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should be independent of θ, and so should p(E | Lθ). Conglomerability
over the partition7 Lθ requires that p(P) = p(P | Lθ) and p(E) = p(E | Lθ).
But p(P) = 2−

√
3

2 ≈ 1/8 while p(E) = 1/2. Note that P and E each cover
1/3 of the length of Lθ . Thus, conditionalizing a uniform distribution over
the sphere in a way that is Conglomerable over the longitudes gives a
conditional distribution that is concentrated near the equator and away
from the poles.8

To force a problem for the two-place conditional probability function, we
can fix a given line of longitude and shift which partition it is considered
as a member of. Re-describe the sphere so that the poles are still on this
line, but where the old equator was. This switches which points on the line
are polar and which are equatorial. Conglomerability requires the very
same great circle to give rise to different conditional probabilities when
considered as a line of longitude for one set of coordinates, rather than
as a line of longitude for a different set of coordinates. If we let C be this
circle, and Lθ be the partition into lines of longitude for the given poles,
while Lφ is the partition into lines of longitude for poles where C intersects

the equator of the original partition, then we get p(P |C, Lθ) =
2−
√

3
2 while

p(P | C, Lφ) = 1/2. Conditioning on the same event gives different results
when that event is considered as drawn from one partition rather than
another.

Thus, Conglomerability already motivates the idea that conditional prob-
ability depends not just on the conditioning event, but also on the partition
from which that event is drawn. Since the arguments from Conglomerabil-

7 Strictly speaking, Lθ do not form a partition, because every line of longitude includes
the poles. However, the example can be slightly modified without making any significant
changes to anything by just removing the poles from the sphere, or arbitrarily adding
the poles to one particular line of longitude and not any of the others. A slightly cleaner
version of the same sort of case exists if X and Y are two independent normally distributed
variables with mean 0 and standard deviation of 1. Exercise 33.2 of Billingsley (1995)
notes that conditioning on X−Y = 0 relative to the partition X− Y gives different results
from conditioning on X/Y = 1 relative to the partition X/Y. Example 6.1 on pp. 224–5 of
Kadane, Schervish, and Seidenfeld (1986) considers the case where Y = 0 has been ruled
out and notes that conditioning on X = 0 relative to the partition X gives different results
from conditioning on X/Y = 0 relative to the partition X/Y.

8 Some have worried that the appeal to symmetry in the argument that p(P | Lθ) should be
independent of θ is enough like the appeal to symmetry in the intuition that the conditional
probability should be uniform that both are suspect. However, if we take the partition into
account as part of the description of the problem, then there is a relevant difference. The
unconditional probability is symmetric under any rotation of the sphere. However, the
partition into lines of longitude is only symmetric under rotations of the sphere about
the poles—rotating about any other point sends some lines of longitude to great circles
that are not lines of longitude. In particular, rotation along any particular line of longitude
changes the partition, so there is no need for probability conditional on this partition to
preserve uniformity under this rotation. See p. 303 of Chang and Pollard (1997) for more
discussion of this symmetry breaking.
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ity to Additivity rely on generation of new partitions, we might hope that
allowing conditional probability to vary as the partition changes can avoid
the worst consequences. And in fact it often can. As shown by Billingsley
(1995, Theorem 33.3), if p is a probability function satisfying Countable
Additivity over the events involving two random variables, then there is a
way to specify the values for p(B | A, A) while satisfying Conglomerability,
where A is the partition of possible values of one variable, and B ranges
over any proposition involving the two variables. In particular, this means
that it is possible to give up on all forms of Additivity beyond Countable
Additivity while holding on to Conglomerability.9

Thus, we have a choice between allowing conditional probability to
be a three-place function p(B | A, A) depending on a partition as well as
a pair of events, and having unrestricted Conglomerability while only
keeping Countable Additivity; or requiring conditional probability to be
a two-place function p(B | A) just of two events and keeping only as
much Conglomerability as we do Additivity. The former option is called
Regular Conditional Probability, while the latter is called Coherent Conditional
Probability. (‘Coherent’ in this sense just means that the same pair of events
has the same conditional probability regardless of what algebra it was
drawn from, and is not related to the use of the word ‘coherent’ to mean
“satisfying the probability axioms.” I don’t know where the term ‘regular’
comes from here, but it is not related to the concept requiring non-zero
probabilities.) Mathematical theories of these two types will be the subjects,
respectively, of Section 2 and Section 3.

Fuller consideration of the costs and benefits of these proposals will
come in Section 2 and Section 3. But I will first mention several arguments
for Conglomerability, which defenders of Coherent Conditional Probability
must reject.

Recall that Conglomerability (Definition 9) says that for any partition
A, infA∈A p(B | A) ≤ p(B) ≤ supA∈A p(B | A). By considering either B
or its negation as needed, a violation means that there is some value x
such that p(B) < x, but for every A ∈ A, p(B | A) > x. If we consider
the role of conditional probability in updating degrees of belief or in
measuring confirmation, then this means that if one is about to perform an
experiment whose possible outcomes are A, then one can know in advance
that one will get evidence confirming proposition B. This possibility seems
intuitively costly for statistical or scientific reasoning, though there have
been some attempts to mitigate it (Kadane, Schervish, & Seidenfeld, 1996).

For update via Jeffrey Conditionalization, Conglomerability is even more
natural. Recall that update via Jeffrey Conditionalization proceeds by tak-

9 There are some other challenges to Conglomerability raised by Arntzenius, Elga, and
Hawthorne (2004), but these also depend on changing partitions while keeping conditional
probability fixed.



162 kenny easwaran

ing some partition E of possible evidence and updating one’s old degrees
of belief p(E) to new degrees of belief p′(E) for all E ∈ E. This then prop-
agates through the rest of one’s beliefs by means of “rigidity,” the require-
ment that for any proposition A, we have p′(A | E) = p(A | E). In the finite
case, the Law of Total Probability tells us that p′(A) = ∑E∈E p′(A | E)p′(E),
and since these values are specified, so are the probabilities for all other
propositions. In the infinite case, we need some version of the Law of Total
Probability for this to generalize. The natural thought is that we should
have p′(A) =

∫
p′(A | E)dp′. But this just is the formulation of Disin-

tegrability for p′, which is equivalent to Conglomerability. Thus, giving
up Conglomerability would require finding a new version of the Law of
Total Probability that doesn’t have these features, to use in defining Jeffrey
Conditionalization.

Considering the role of conditional probability in decision theory, Con-
glomerability is also supported by a Dutch book argument. The basic idea
is given by Billingsley (1995, p. 431). Basically, any sort of reasoning to a
foregone conclusion (as violations of Conglomerability allow) will make
for guaranteed changes in one’s betting prices that can be exploited by
someone who knows one’s updating rule. Rescorla (2018) has given a more
complete Dutch book argument, including converse theorems proving that
Conglomerability suffices for immunity to this sort of Dutch book.

There is also an accuracy-based argument for Conglomerability. Some
authors have suggested that the right way to think of degree of belief is
as aiming at the truth. Once we have a reasonable notion of “accuracy”
that measures closeness to the truth, we can then derive norms for degree
of belief from principles of maximizing accuracy (Joyce, 1998; Greaves &
Wallace, 2006; Pettigrew, 2016). As it turns out, an update plan for learning
which member of a partition is true maximizes expected accuracy iff it
satisfies Conglomerability with respect to that partition (Easwaran, 2013a).

None of these arguments is fully definitive. It is possible to reject the
importance of Dutch books and accuracy conditions for degree of belief. It
is conceivable that an alternative formulation of the Law of Total Probabil-
ity allows for a generalization of Jeffrey Conditionalization (or that Jeffrey
Conditionalization is not the right update rule). And perhaps reasoning to
a foregone conclusion is not so bad for updating. And all of these problems
are perhaps less bad for physical or chance interpretations of probability
than for Bayesian interpretations of one sort or another. Thus, if it is very
important that conditional probability really be a two-place function rather
than depending on a partition as well, then there is motivation to pursue
Coherent Conditional Probability.

Thus the question becomes just how bad the costs are of Regular Con-
ditional Probabilities, with their extra parameter. Some have said that
an event alone must be sufficient to determine a posterior probability
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distribution, and that the fact of the partition from which the event was
drawn can’t be relevant. “This approach [Regular Conditional Probability]
is unacceptable from the point of view of the statistician who, when given
the information that A = B has occurred, must determine the conditional
distribution of X2” (Kadane et al., 1986). This is most plausible for uses
of conditional probability in update by conditionalization, where one just
learns a new piece of information, and apparently doesn’t learn anything
about the partition from which this information was drawn.

However, I claim that by considering the situation in a bit more detail,
there will always be a partition that is relevant in any application of
conditional probability. Billingsley (1995, end of section 33) brings this
out with a juxtaposition of three exercises. The first two exercises involve
consideration of the Borel paradox with a point on the surface of a sphere,
and a version involving two independent normally distributed random
variables. The third exercise juxtaposes the effect in these exercises of the
same information presented in two different ways (a great circle presented
as one from the family of longitudes, or as the equator from a family
of latitudes; the fact of two random variables being equal as a piece of
information about their difference, or as a piece of information about their
ratio) with a classic probability puzzle.

Three prisoners are in a cell and two will be executed in the morning.
Prisoner 3 asks the guard to tell him which of 1 or 2 will be executed
(since at least one of them will) and on hearing the answer reasons that
his chance of survival has gone up from 1/3 (as one of three prisoners,
two of whom will be executed) to 1/2 (as one of two prisoners, one of
whom will be executed). But of course, as anyone who has considered the
similar “Monty Hall” problem can recognize, this reasoning ignores the
fact that “Prisoner 1 is executed” and “Prisoner 2 is executed” do not form
a partition, since it is possible for both to be true. The relevant learning
situation is one in which the partition is “The guard says prisoner 1 will
be executed” and “The guard says prisoner 2 will be executed.” If these
two answers are equally likely conditional on prisoner 3 surviving, then
in fact the probability of survival is unchanged by this update.

This sort of example shows that even in elementary cases, we need to
be careful about only updating on evidence by conditionalization in cases
where it is clear that the evidence is drawn from a partition. To properly
take this into account, we must be able to figure out what partition the
evidence was drawn from. For Jeffrey Conditionalization, the partition is
in fact part of the specification of the update situation, so this is clearer.
Thus, I claim that for the first two uses of Bayesian probability (update by
conditionalization or Jeffrey Conditionalization) the partition relativity of
Regular Conditional Probabilities is no problem. There are some authors
who argue that update situations don’t always involve evidence that comes
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from a partition (Schoenfield, 2016; Gallow, 2016). But I think that at least
for scientific cases where evidence comes as the result of the performance
of an experiment, the partition is implicit in the experimental setup. This is
especially so in cases where the evidence was something that antecedently
had probability 0, which are the only cases in which the issue of how to
conditionalize arises.

For the uses of conditional probability in the measurement of confir-
mation, we have to look both at posterior probabilities and likelihoods.
That is, we should be looking at probabilities of hypotheses conditional
on evidence (as for updating) and for probabilities of evidence condi-
tional on hypotheses. In this case, because of the Problem of Old Evidence
(presented by Glymour, 1980, and classified and investigated at length
by Eells, 1985), we must be considering conditional probabilities given
before the experiment is actually performed. In order to properly compare
and contrast the effect of different possible pieces of evidence, or different
experiments, on different hypotheses, we must have a sense of the possible
experiments, the possible pieces of evidence they could result in, and
the possible hypotheses under consideration. This is particularly clear in
cases where we are interested in confirmation, disconfirmation, and inde-
pendence of hypotheses about random variables rather than just single
propositions. A scientist who is interested in measuring the value of some
physical, social, or biological parameter is going to have a whole family
of propositions about its value that each may be confirmed, disconfirmed,
or independent of the evidence received, and this family will define a
partition for the relevant likelihoods.

For decision-theoretic cases, the relevant conditional probabilities are
probabilities of outcomes conditional on actions. Here again it seems
plausible that the set of actions available to an agent forms a partition. If
this is right, then the relativization to a partition just brings out a feature
that is already important to the situation. Thus, just like with the other
Bayesian applications of conditional probability, I claim that there is no
problem to the three-place formulation of conditional probability required
by Regular Conditional Probabilities.

Even once we see that conditional probability depends on the partition
from which the conditioning event was drawn, we might worry about
how the description of events and partitions can affect the actual value.
Rescorla (2015) argues that we should think of the same event drawn
from a different partition as having something like a different “sense,” so
that these are just Frege puzzles of a sort. I’m not convinced that this is
the right way to understand things, because the difference in conditional
probability persists even when everyone involved recognizes that the same
conditioning event is a member of multiple partitions. But I think that
some reasoning of this sort can dissolve some worries.
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Some have also worried that by redescribing the probability space, we
might be able to make one partition look like another, so that we can
get conflicting requirements for the same conditional probability. But
Gyenis, Hofer-Szabó, and Rédei (2016) show that this is impossible—any
reparameterization of a set of events and a partition gives rise to some other
description on which the mathematical requirements of Conglomerability
and Disintegrability give the same results.

In addition to the obvious challenge in terms of relativization, there
is also a question of whether Regular Conditional Probabilities require
Countable Additivity. Classic results (such as the Radon–Nikodym Theo-
rem, or Theorem 33.3 of Billingsley, 1995) show that when the propositions
involved are just about random variables, relativization of conditional
probability to a partition as well as a conditioning event is sufficient to
allow Conglomerability to hold even when Additivity fails at uncountable
cardinalities. However, every existence theorem I know of assumes Count-
able Additivity. I have not investigated the proofs of Countable Additivity
from Countable Conglomerability in enough detail to be sure that they
hold up when conditional probabilities are allowed to vary as the parti-
tion changes. Thus, if considerations like the de Finetti lottery motivate
rejection of Countable Additivity, then there may be further problems
for Regular Conditional Probabilities. But as I have argued elsewhere,
there are independent reasons to accept Countable Additivity that don’t
generalize to higher cardinalities (Easwaran, 2013b).

As the reader can probably see, I favor Regular Conditional Probabilities
over Coherent Conditional Probabilities. But in the remainder of the paper,
I will put forward mathematical theories of both types so that the reader
can judge for herself what the appropriate uses of each might be.

2 regular conditional probabilities

2.1 Formal Theory

Regular Conditional Probabilities are a central motivation for the Kol-
mogorov (1950) axiomatization of probability. There is some set Ω of
“possibilities,” and the bearers of probability are subsets of this set. (Dif-
ferent interpretations of probability will interpret these possibilities and
sets of them differently.) Not every subset of the space of possibilities is a
bearer of probability, but there is some collection F of them that are. F is
assumed to be a “σ-algebra” or “σ-field,” which means that the empty set
is an element of F , the complement of any element of F is an element of
F , and if Ai for i ∈N are any countable collection of elements of F , then⋃

i∈N Ai is also an element of F . (This restriction to closure only under
countable unions and complements is quite natural for the propositions
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implicitly grasped by a finite mind, though one might want to restrict
further to computably-definable sets or the like.)

Finally, there is a function p assigning real numbers to all and only the
elements of F subject to the following rules. For any A ∈ F , p(A) ≥ 0;
p(Ω) = 1; and if Ai for i ∈ N are any countable collection of disjoint
elements of F , then p(

⋃
i∈N Ai) = ∑i∈N p(Ai). That is, the probability

function satisfies Countable Additivity. We refer to the triple (Ω,F , p) as
a probability space.

For any non-empty set Ω, there are of course multiple different σ-
algebras of subsets of that space. Trivially, the set {∅, Ω} is always the
minimal σ-algebra on Ω, while the full power set consisting of all subsets
of Ω is always the maximal σ-algebra on Ω. But usually, F is some algebra
other than these two. We say that a set A is “A-measurable” iff A is an
element of A. If A and B are any two σ-algebras on Ω, and every element
of A is B-measurable, then we say that A is a “sub-σ-algebra” of B.

We often consider functions assigning a real number to every element of
Ω. If V is such a function, then we say that V is a random variable, or that
it is F -measurable, iff for all rational values x, the set {ω ∈ Ω : V(ω) < x}
is F -measurable. The set {ω ∈ Ω : V(ω) ∈ S} is often just written as
V(ω) ∈ S or even V ∈ S, so for V to be F -measurable just is for p(V < x)
to exist for all rational values x, just as in Section 1.4.2. Furthermore, since
the rational values are a countable and dense subset of the real numbers,
the fact that F is closed under countable unions and complements means
that p(V = x), p(V ≥ x) and any other probability simply expressible in
terms of values of V exist as well.

As in Section 1.4.2, we can define the integral
∫

A V dp for bounded
random variables V. This definition proceeds in two parts. If V only
takes finitely many values on points in A, we say that

∫
A V dp =

∑ x · p(A ∩ (V = x)), where the sum ranges over the finitely many values
that V takes on. Otherwise, we define

∫
A V dp = supV′<V

∫
A V ′ dp, where

the supremum ranges over all random variables V ′ that take on only
finitely many values in A, and such that whenever ω ∈ A, V ′(ω) < V(ω).

With these definitions, I can finally give the official definition of a
Regular Conditional Probability.

Definition 10 A Regular Conditional Probability is a three-place real-valued
function p(B | A)(ω) satisfying the following three conditions:

1. Fixing a σ-algebra A ⊆ F and ω ∈ Ω defines a function of B satisfying
the probability axioms (that is, it is non-negative for all B ∈ F , it takes the
value 1 when B = Ω, and it is Countably Additive).

2. Fixing a σ-algebra A ⊆ F and a measurable set B defines an A-measurable
function of ω.
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3. For any fixed σ-algebra A ⊆ F and an F -measurable set B, and for
A ∈ A, ∫

A
p(B | A)(ω)dp = p(B ∩ A).

In Section 2.2 I will discuss how this notion relates to the three-place
function p(B | A, A) of conditional probability mentioned earlier. The basic
idea of each condition is as follows. Condition 1 will ensure that condi-
tioning on a single event relative to a single partition yields a probability
function. Condition 2 will ensure that we really are conditioning on an
event A from the partition A. Condition 3 will ensure that p(B | A, A)

satisfies Disintegrability (and thus Conglomerability). But for now I will
just discuss a few formal features this mathematical function has.

As a first example, consider a probability space defined by a joint
probability density for two random variables. That is, we can consider
X and Y as two random variables, and let Ω = R2, where the element
ω = (ωX, ωY) of Ω represents the possibility of X = ωX and Y = ωY.
F is the σ-algebra generated by the set of sets X < x and Y < y. (This
algebra is known as the collection of “Borel sets,” which is a subset of the
Lebesgue-measurable sets, but sufficient for our purposes.) To say that the
probability is defined by a joint probability density means that there is a
measurable function d(x, y) such that

p((x1 < X < x2) ∩ (y1 < Y < y2)) =
∫ x2

x1

∫ y2

y1

d(x, y)dy dx,

where the integrals here are ordinary real-valued integrals. (This defini-
tion of probability over the rectangular boxes suffices to determine the
probability of every measurable set.)10

If X is the σ-algebra generated by the set of sets X < x, then we can
define a Regular Conditional Probability p(B | X )(ω) as follows. Let

p((x1 < X < x2) ∩ (y1 < Y < y2) | X )(ω) =

∫ y2
y1

d(ωX, y)dy∫ ∞
−∞ d(ωX, y)dy

,

if x1 < ωX < x2 and 0 otherwise. (I use ωX to represent the fixed value
X takes at ω, while I use y as the bound variable of the integral.) Again,
because the rectangles (x1 < X < x2) ∩ (y1 < Y < y2) generate the whole
σ-algebra, this suffices to define the conditional probability p(B | X )(ω)

for all measurable sets B. Note that the values y1 and y2 enter on the right
as limits of an integral, while the values x1 and x2 just determine when

10 Note that since we have assumed there is an unconditional probability function p, then we
have assumed that

∫ ∞
−∞

∫ ∞
−∞ d(x, y)dy dx = 1. In Section 3.2.5, when discussing Rényi’s

theory of conditional probability, I will allow this integral to be infinite instead, to capture
the statistical theory of “improper priors.”
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the probability is 0. This is because the point (ωX, ωY) with respect to
the σ-algebra X represents the set of all points with X = ωX and any
value of Y, and the rectangle either intersects this line at all points from
y1 to y2 or none of them. Intuitively, the numerator of the right side says
how much density is concentrated at y1 < Y < y2 and X = ωX, while
the denominator normalizes this to account for how much density is at
X = ωX generally. It is tedious, but possible to check that this definition
satisfies the three conditions to be a Regular Conditional Probability.11

The Borel paradox can be thought of as a special case of this example. If
X represents the longitude (from −π to π) and Y represents the latitude
(from −π/2 to π/2), then the uniform unconditional probability is given
by the density function d(x, y) = cos y

4π when −π < x < π and −π/2 <

y < π/2, and 0 otherwise. Using the above formula, we calculate that

p(y1 < Y < y2) | X )(ω) =

∫ y2
y1

cos y
4π dy

1/2π
=

sin y2 − sin y1

2
.

By parallel reasoning, we calculate that

p(x1 < X < x2) | Y)(ω) =

∫ x2
x1

cos ωY
4π dx

cos ωY/2
=

x2 − x1

2π
.

That is, conditional on lines of longitude, probability is concentrated near
the equator, while conditional on lines of latitude, probability is uniform.

If we want to use this sort of technique to figure out other Regular
Conditional Probabilities for other sub-σ-algebras, we can often do this,
if the new algebra is related to the old one by a change of coordinates.
This will work if the probability space is defined by two random variables
X and Y, and there are two other random variables f1 and f2, such that
the values of f1 and f2 are uniquely determined by the values of X and
Y, and vice versa. For instance, we might have f1 = X − Y and f2 = Y,
or f1 = X/Y and f2 = Y (if Y = 0 is impossible), or f1 and f2 as latitude
and longitude in a different set of coordinates than X and Y. In such a
case, we can consider f1 and f2 as functions of the values of X and Y, and
represent points in Ω not as (ωX, ωY), but as ( f1(ωX, ωY), f2(ωX, ωY)).

Assuming the functions f1 and f2 are measurable, we get a new density
function given by

d(ωX, ωY) ·
[

∂ f1(x, ωY)

∂x
∂ f2(ωX, y)

∂y
− ∂ f2(x, ωY)

∂x
∂ f1(ωX, y)

∂y

]
.

11 To check the third condition, it’s useful to note that the A ∈ X are generated by the sets
x1 < X < x2, and the probability of these sets is given by integrals like the denominator
of the right-hand-side, so that this denominator cancels in the integration, leaving just the
integral of the numerator over X, which is how we defined the unconditional probability
in the first place.
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This quantity on the right is the Jacobian associated with the relevant
change of variables. When f1(ωX, ωY) = ωX and f2(ωX, ωY) = ωY, so that
the “new” variables are the same as the old, the Jacobian is equal to 1, so
the density is unchanged, as expected. But the fact that this Jacobian is
not generally equal to 1 indicates that corresponding points in the two
representations of the probability space will have different densities with
respect to the two different sets of variables. Thus, even if one value of one
variable occurs exactly when a corresponding value of a different variable
occurs (such as X = 0 occurring iff X/Y = 0, or latitude is 0 in one set of
coordinates iff longitude is 0 in another set of coordinates), the densities
may have been transformed in some non-uniform way, so the Regular
Conditional Probability may take different values.

A slightly different introduction to this sort of method is discussed by
Chang and Pollard (1997). They argue that in most cases where Regular
Conditional Probabilities are of interest, they can be calculated by a method
like this one. Although their discussion is still quite technical, it may be
more usable and friendly than some others.

2.2 Philosophical Application

As before, I define a “partition” to be a collection A of subsets of Ω such
that every member of Ω is in exactly one member of A. In Section 1.4.3,
I argued that in order to maintain Conglomerability, while respecting
the roles of conditional probability as posterior for conditionalization,
or Jeffrey update, or as likelihood, or as action probability for decision
theory, we need a notion of conditional probability that defines p(B | A, A)

whenever A is a partition. However, the formal theory given above defined
a random variable p(B,A)(ω), where A is a sub-σ-algebra rather than a
partition, and where ω is an element of Ω rather than a subset of it. In
this section, I show that the formal definition of a Regular Conditional
Probability is sufficient to give us what we need.

Partitions can be related to σ-algebras in two importantly different ways.
One is that we can say that a σ-algebra B is generated by a partition if
it is the smallest σ-algebra with respect to which every element of A is
measurable. In this case, B consists of the set of all unions of countably
many elements of A, and their complements.12 However, in many cases,
the more useful σ-algebra to consider is a slightly different one. I will say
that a σ-algebra B is compatible with a partition A iff every element of A is

12 We also talk about σ-algebras generated by collections of subsets other than a partition,
and in those cases there can often be much more complex elements of the generated σ-
algebra, such as countable unions of complements of countable unions of complements of
countable unions of elements. But in the case of a partition, these more complex elements
already exist just at the level of countable unions or their complements.



170 kenny easwaran

an element of B, and no proper subset of an element of A is an element
of B, except for the empty set.13 Then, if B is any σ-algebra and A is any
partition, I will say that the restriction of B to A is the largest sub-σ-algebra
of B that is compatible with A. This consists of all elements of B whose
intersection with any element of A is either empty or the full element of
A—it is the set of all B-measurable sets that don’t crosscut any element of
A.

Given these definitions, for A, B ∈ F and A ⊆ F a partition containing
A, I will define p(B |A, A) as p(B |A)(ω), where ω is any element of A and
A is the restriction14 of F to A. If A is empty, then p(B | A, A) is undefined.
This corresponds to the fact that conditional probability is intended to
be an indicative conditional for updating rather than revision of beliefs,
as discussed in Section 1.3. Otherwise, since p(B | A)(ω), considered as
a function of ω, is required to be A-measurable, it must be constant on
the atoms of A. But because A is the restriction of F to A, the atoms
are the elements of A. Since A is an element of A, this means that it
doesn’t matter which ω ∈ A is chosen. Thus, as long as p(B | A)(ω) is
a well-defined function, so is p(B | A, A), whenever A is non-empty. The
stipulations in the definition of a Regular Conditional Probability then
mean that p(B | A, A) satisfies the probability axioms (including Countable
Additivity) when A and A are fixed, and that Conglomerability is satisfied
over A. Thus, if conditional probability should be defined relative to
any partition, and Conglomerability must be satisfied, then conditional
probability must be related to a Regular Conditional Probability in this
way.

2.3 Existence and Uniqueness of Regular Conditional Probabilities

The question motivated by the arguments of Section 1.3 is whether uncon-
ditional probabilities suffice to determine a notion of conditional proba-
bility, or whether conditional probability should be taken as fundamen-
tal. The mathematical definition of a Regular Conditional Probability as
p(B | A)(ω) is as a function that satisfies some axioms connecting it to the
unconditional probability space (Ω,F , p). In some cases, we have been
able to demonstrate that Regular Conditional Probabilities exist. If they
don’t exist in probability spaces that are philosophically important, then

13 In more standard terminology, A consists of the “atoms” of B, where an atom of a σ-
algebra is any non-empty element of the σ-algebra such that no non-empty proper subsets
are also members of the σ-algebra. Not every σ-algebra has atoms, but if there are any
atoms, they are disjoint. The atoms form a partition iff every element of the space is a
member of some atom, in which case the σ-algebra is said to be “atomic.”

14 Section 2.3.2 will show what goes wrong if we try to use the sub-σ-algebra generated by A
instead of the restriction to it.
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Conglomerability must be given up. And if Regular Conditional Probabili-
ties are not unique, then we must either accept that conditional probability
is at least as fundamental as unconditional probability, or give some fur-
ther conditions that suffice to uniquely determine the Regular Conditional
Probability uniquely. In this section I will consider some mathematical
problems of particular Regular Conditional Probabilities and argue that
they don’t arise in philosophical application, so they will always exist and
have the desired features. Furthermore, I will show that unconditional
probability is almost sufficient to define all conditional probabilities in the
relevant probability spaces, and give some ideas of what else might suffice
to define conditional probability uniquely from unconditional probability.

2.3.1 In Bad Sub-σ-algebras There Is No Regular Conditional Probability

It is mathematically well-known that there are probability spaces (Ω,F , p)
and sub-σ-algebrasA for which there is no Regular Conditional Probability.
A classic example is the case where Ω is the set [0, 1] of real numbers
between 0 and 1, A is the set of all Borel subsets of this set, F is generated
by A plus one set that is not Lebesgue-measurable, and p is Lebesgue
measure on A and assigns probability 1/2 to the additional set generating
A. (This example is discussed in Billingsley, 1995, Exercise 33.11.)

However, Theorem 33.3 of Billingsley (1995) states that when F is the
σ-algebra generated by the values of a random variable, this problem
can never arise. There will always be a Regular Conditional Probability
for every sub-σ-algebra. This result generalizes to cases where F is the
σ-algebra generated by the values of finitely many random variables, as
appears to be the case for most scientific applications of probability.

Furthermore, due to the finitistic limits of the human mind, I claim that
this in fact includes all epistemically relevant cases. As I suggested near
the end of Section 1.3, I think the right interpretation of human finitude
doesn’t mean that the probability space is finite. Rather, it means that the
probability space is generated by the countably many sentences of some
finitary language. I claim that the sentences in this language fit within
the σ-algebra over this space generated by a particular artificial random
variable.

To see this, define the random variable T by enumerating the sentences
of the language as φi and letting

T(ω) = ∑
φi is true

1
2i .

Any possibility ω will make infinitely many sentences true and infinitely
many sentences false, and no two such possibilities can result in the same
real value, so this random variable distinguishes all possible worlds. We
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need to check further that the set of values that are logically consistent is
itself measurable. But by the Compactness Theorem of first-order logic,
any logically inconsistent set contains one of the countably many logically
inconsistent finite sets, and each of these sets is an intersection of finitely
many closed sets of values. Thus, the set of consistent values is the comple-
ment of a countable union of closed sets, and is thus measurable. Thus, I
claim that any epistemically reasonable probability space uses a σ-algebra
generated by a random variable, conditionalized on a measurable set.
Thus, Theorem 33.3 of Billingsley (1995) entails that Regular Conditional
Probabilities exist.

Even without this sort of argument, the existence theorem can be gen-
eralized. These generalizations are investigated by Hoffmann-Jørgensen
(1971), Faden (1985), Pachl (1978).

2.3.2 In Bad Sub-algebras, the Regular Conditional Probability Behaves Badly

Another problem that sometimes arises is highlighted by Blackwell and
Dubins (1975) and Seidenfeld, Schervish, and Kadane (2001). They seem to
show that in certain partitions A, there is an event A with p(A | A, A) = 0,
which would seem to be quite bad. However, I claim that this problem
only arises in cases where A is used in a mathematically improper way.

The mathematical result they show is that p(B | A)(ω) = 0 even though
ω ∈ B. As an example, let Ω be the set [0, 1] of real numbers between
0 and 1, let F be the collection of all Borel subsets of this set, and let p
be the standard Lebesgue measure on F . Let A be the collection of all
countable subsets of [0, 1] and their complements. It is straightforward
to check that p(B | A)(ω) = p(B) is a Regular Conditional Probability.15

However, if B = {ω} (or any other countable set containing ω) then
p(B | A)(ω) = p(B) = 0. Given my translation of p(B | A, A), this would
seem to mean that p({ω} | {ω}, A) = 0, where A is the partition into
singletons.

However, this is the point at which the distinction between the σ-algebra
generated by A and the restriction of F to A is important. The σ-algebra A
above is the algebra generated by the partition into singletons, but it is not
the restriction of F to the partition into singletons. The restriction of F to
the partition into singletons just is F (as it is for any F—recall that the
restriction of F includes all elements of F that do not crosscut any element
of the partition, and no set crosscuts a singleton). Although p(B | A)(ω) =

p(B) is a Regular Conditional Probability, it is straightforward to show that
the parallel does not work for p(B | F )(ω). In fact, any Regular Conditional

15 The first two conditions are trivial. The third condition requires that
∫

A p(B | A)(ω)dp =
p(A ∩ B) for all A ∈ A. However, since p(B | A)(ω) = p(B) for all ω, the left side of the
integral just is p(A)p(B). But if A is countable, then p(A) = 0, as does p(A ∩ B), while if
A’s complement is countable, then p(A) = 1 and p(A ∩ B) = p(B).
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Probability for this conditioning algebra must have a set C with p(C) = 1
such that whenever ω ∈ C, p(B | F )(ω) = 1 if ω ∈ B and 0 otherwise, as
expected. And Theorem 2 of Blackwell and Dubins (1975) and Theorem 1

of Seidenfeld et al. (2001) show that this is quite general. Whenever A is
countably generated, for any Regular Conditional Probability p(B | A)(ω),
there is a set C with p(C) = 1 such that whenever ω ∈ C and B ∈ A,
p(B | A)(ω) = 1.16 Thus, in my translation, p(B | A, A) = 1 if A ⊆ B, as
expected, whenever the restriction of F to A is countably generated. This
will automatically be the case if A is the partition of possible values of a
random variable. But I claim that it should hold generally for any partition
that is graspable by a finite human mind.

2.3.3 The Regular Conditional Probability is Almost Unique

Now that we have established that Regular Conditional Probabilities
exist and are well-behaved, it remains to see when they are uniquely
determined by the unconditional probability space (Ω,F , p). It turns out
that the answer is never in any interesting case. However, the different
Regular Conditional Probabilities that exist are almost identical in a natural
sense. Furthermore, for some sets of niceness conditions, exactly one of
them will be nice, and this can be designated as the correct one.

If p(B | A)(ω) is one Regular Conditional Probability, and S ∈ A is any
set with p(S) = 0, then we can let p′(B | A)(ω) = p(B | A)(ω) whenever
ω 6∈ S and replace the function with any other probability function we
like within S, and the result is also a Regular Conditional Probability.
This is because the only constraint on the values of a Regular Conditional
Probability are through its integrals, and changing a function on a set of
probability 0 does not change any of its integrals. Translating to p(B | A, A),
this means that we can change the values of the conditional probability
function on any collection of A ∈ A whose total probability is 0 and still
satisfy Conglomerability.

Conversely, if p(B | A)(ω) and p′(B | A)(ω) are two Regular Conditional
Probabilities for a given unconditional probability, then we can show that
for any B and A, the set of ω for which they differ must have probability
0. If it had positive probability, then there would be some ε such that
the set C of ω on which they differ by at least ε would have positive
probability, and would be a member of A. But this would contradict the
condition that

∫
C p(B | A)(ω)dp = p(B ∩ C) =

∫
C p′(B | A)(ω)dp. Thus,

16 Of course, this assumes that a Regular Conditional Probability exists, which requires that
F be a nice algebra, such as the algebra generated by a random variable. See Blackwell
(1956) for more on these conditions. In fact, for these sorts of spaces, Yu (1990) proves
that existence of the relevant function can be proven in the system “ACA0” of reverse
mathematics, so that strong set-theoretic hypotheses like the Axiom of Choice are not
required.
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although the Regular Conditional Probability is not exactly unique, it is in
a sense “almost” unique. These different Regular Conditional Probabilities
are often called “versions” of the Regular Conditional Probability for the
given unconditional probability.

This almost uniqueness is not quite enough to satisfy the idea that con-
ditional probability is defined by the unconditional probability function.
However, in some cases there is a prospect that by specifying a further
condition, we can pick out a unique version of the Regular Conditional
Probability. For instance, consider the case of the Borel paradox. As I
showed in Section 2.1, one version of the Regular Conditional Probability
for this example can be generated by integrals of a probability density
that also generates the unconditional probability. In this case, there is a
continuous density function that generates the unconditional probability
(namely, the density function that was given there, with d(x, y) = cos y).
Furthermore, it is easy to see that no other continuous density generates
the same unconditional probability function. (If two continuous density
functions differ at some point, then they must differ on some neighbor-
hood of that point, which would have non-zero probability.) Thus, if an
unconditional probability function is generated by some continuous den-
sity on the values of some random variables, then we can require that
the version of the Regular Conditional Probability used be the one that is
generated by this integral calculation from the unique continuous density
that generates the unconditional probability.17

17 Oddly, if we just consider the partitions into longitudes through various choices of poles,
we may be able to take advantage of this non-uniqueness to find a Coherent Conditional
Probability that satisfies Disintegrability. If we assume the Axiom of Choice and the
Continuum Hypothesis (or Martin’s Axiom—both assumptions entail that the union of
any collection of fewer than continuum-many sets with probability 0 is also a set of
probability 0), then we can do the following. Choose some well-ordering of the points on
the sphere such that each has fewer than continuum-many predecessors. For any great
circle A, find the point x ∈ A that comes earliest in this ordering. Let p(B | A) take the
value given by integration with respect to the continuous density where x is chosen as the
north pole of the coordinate system.
Now if we consider any particular partition into longitudes with x as a pole, we can see
that each line of longitude will give rise to a conditional probability that agrees with the
one required for Disintegrability in this partition iff there is no point on the line earlier
than x in the chosen ordering. However, because of the way the ordering was set up, there
are fewer than continuum-many points earlier than x in the ordering, so the union of all
the lines of longitude that contain such a point has probability 0. Thus, enough of the
conditional probabilities agree with integration with respect to the relevant continuous
density that Disintegrability is satisfied in this partition.
Of course, this particular method only satisfies Disintegrability over partitions into lines of
longitude, and not into lines of latitude, or other partitions. Furthermore, the particular
Coherent Conditional Probability produced over these conditioning events is highly
asymmetrical and requires the Axiom of Choice for its construction. But it is useful to
observe that this sort of construction is at least sometimes possible.
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However, while I think it is not that implausible to think that all realistic
epistemic spaces are generated by some density on the values of some
random variables, I don’t see any good reason to believe that there must
always be a continuous density function that generates the unconditional
probability. Perhaps there is some similar requirement that could be used
to find the “right” Regular Conditional Probability to go along with
any unconditional probability function. But I have no idea what that
requirement might be. So for now, we have some reason to believe that
the existence of uncountable (though countably generated) probability
spaces, together with Conglomerability, force us to use Regular Conditional
Probabilities, which suggests that conditional probability is in some sense
at least as fundamental as unconditional probability. However, if one is
only given the unconditional probability function, then for any countably-
generated partition A one can find some Regular Conditional Probability
p(B | A, A) for all propositions B on the elements of A, and one can be
sure that almost all of the values given by this function will line up with the
“correct” conditional probability function. The question is just whether this
“almost all” can be turned into “all,” or whether conditional probability
needs to be specified along with unconditional probability in defining a
probability space.

3 coherent conditional probabilities

Recall that Coherent Conditional Probability is conditional probability
defined as a function just of two events, with no dependence on a par-
tition or sub-σ-algebra or anything else. If Additivity fails at some level
(possibly beyond the countable), then Conglomerability and Disintegrabil-
ity will also fail. There are several different formal theories of Coherent
Conditional Probability that have been proposed by philosophers, mathe-
maticians, and statisticians. In this section I will describe three of the most
prominent ones.

3.1 Popper

The first, which is both oldest and probably most familiar to philosophers,
was developed by Karl Popper in his (1955). Popper considered this
formulation of conditional probability important enough that he included
a revised and simplified version in new appendices *iv and *v to the
second edition of The Logic of Scientific Discovery (1959a). Popper’s axiom
system is particularly well-suited to an interpretation of probability as a
logical (or even semantic) relation. But I claim that it is not sufficient for
general epistemological applications, particularly for scientific purposes.
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In this section I will describe Popper’s later version of the system, and the
features it has.

Popper postulates a finite or countable set of sentence letters A, B, C, . . . ,
and two uninterpreted connectives—a binary connective ‘∧’ and a unary
connective ‘¬’. (I have replaced his notation with a more modern one.) He
then postulates a two-place conditional probability function mapping pairs
of formulas in the language generated by these letters and connectives to
real numbers. He then postulates six conditions on the function expressible
with these uninterpreted connectives. (I will discuss these conditions
later.) Finally, he defines unconditional probability in terms of conditional
probability.

One of the important things Popper does along the way is to develop
a probabilistic notion of equivalence. He says that two formulas φ and
ψ of the language are probabilistically equivalent iff replacing φ with
ψ anywhere in any statement of probability will yield the same value.
He then proves that if two formulas are classically logically equivalent,
then they are probabilistically equivalent. He doesn’t explicitly assume
commutativity and associativity for ∧, or the double negation rule, or
anything of that sort, but is able to derive probabilistic equivalents of them
from his probability axioms.

Popper’s axioms entail that some elements ψ are such that for all φ,
p(φ | ψ) = 1. (Among other things, this means that p(¬ψ | ψ) = 1!) Fol-
lowing van Fraassen (1976), we call such elements abnormal and all others
normal. Popper’s axioms entail that if χ is normal, then 0 ≤ p(φ | χ) ≤ 1,
and that p(φ |χ)+ p(ψ |χ) = p(¬(¬φ∧¬ψ) |χ)+ p(φ∧ψ |χ), so that con-
ditional on any normal event, we have a standard probability function. Fur-
thermore, they entail that if ψ is abnormal, then for any χ, p(¬ψ | χ) = 1.
Finally, they entail that whenever φ is a classical logical contradiction, φ is
abnormal.

Importantly, this means that Popper’s notion of conditional probability
(like all the others I am aware of) is of no help in using conditionalization
to represent belief revision rather than just update. Consider an update rule
that says pt′(φ |ψ) = pt(φ |ψ∧χ), where χ is the conjunction of everything
that one has learned between t and t′. Now imagine a person who, between
time 0 and time 1 learns A, and between time 1 and time 2 learns ¬A.
If update can include revision of past learning (which implicitly means
that learning is fallible), then this should result in something reasonable.
However, what we see is that for any φ and ψ, p2(φ |ψ) = p1(φ |ψ∧¬A) =

p0(φ | (ψ ∧ ¬A) ∧ A). But since (ψ ∧ ¬A) ∧ A is a contradiction, it is
abnormal. Thus, p0(φ | (ψ∧¬A)∧ A) = 1. So by updating on the negation
of something that one previously learned, one’s degrees of belief have
become unusable, because all probabilities are equal to 1. This is why
I focused in Section 1.3 on the role of infinity in generating events of
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probability 0, rather than Hájek’s examples of conditionalizing on the
negation of something that has already been learned.

However, one important thing to note for Popper’s system is that
p(ψ) = 0 does not entail that ψ is abnormal. However, if p(ψ) = 0 but ψ is
normal, then unconditional probabilities alone do not suffice to determine
the probabilities conditional on ψ. Thus, conditional probability really is
primitive in this system. For instance, consider models of Popper’s axioms
with sentence letters A and B, with p(A) = 1/2 and p(B) = 0. Every
formula of the language is classically equivalent to a contradiction, or
to a disjunction of some of A ∧ B, A ∧ ¬B,¬A ∧ B,¬A ∧ ¬B. The stipu-
lated values determine all the unconditional probabilities, and thus all the
probabilities conditional on formulas of positive unconditional probability.
However, it is consistent with these values that A∧ B and ¬A∧ B be either
normal or abnormal. If both are abnormal, then so is B, and probabilities
conditional on any of the three of them are all equal to 1. If one is abnormal
and the other is normal, then probabilities of any formula conditional on
the normal one are 1 or 0 depending on whether the formula is entailed
by it or not. If both are normal, then any value for p(A | B) is possible,
but this value then suffices to determine the rest of the probabilities in the
model.

And in fact, Kemeny (1955) proves that something like this holds fairly
generally for finite languages. If we only have n sentence letters, then
there are 2n “state descriptions” in the language (conjunctions of each
sentence letter or its negation), and every formula is either a contradiction
or equivalent to a disjunction of some of these. The Popper axioms are
then equivalent to the following stipulation. There are k functions mi for
i < k, and each of these functions assign a non-negative real number to
each state description. For each mi, the sum of the values it assigns to
the state descriptions is 1. For each state description X, there is at most
one mi such that mi(X) > 0. A proposition is abnormal iff it is either a
contradiction, or it is a disjunction of state descriptions that are assigned
value 0 by every mi. If ψ is normal, then let i be the lowest number such
that there is a state description X with mi(X) > 0 and X entails ψ. Then

p(φ | ψ) =
∑X entails φ∧ψ mi(X)

∑X entails ψ mi(X)
.

In this system, unconditional probabilities are just equal to the sums of the
values of m1, but they put no constraints on the values of the succeeding
functions, which are needed to define the full conditional probability
function.

For infinite languages, things can be slightly more complicated. Consider
a language with sentence letters Ai for natural numbers i. Consider just
the models Mi where Mi satisfies sentence Ai and none of the others. It
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is not hard to check that every formula of the language is either true in
finitely many of these models and false in the rest, or false in finitely many
of these models and true in the rest. If ψ is true in infinitely many models,
then let p(φ | ψ) = 0 if φ is true in finitely many models and 1 otherwise.
If ψ is true in none of these models, then ψ is abnormal. Otherwise, if ψ

is true in finitely many models, then define p(φ | ψ) as the ratio of the
number of models in which φ ∧ ψ is true to the number of models in
which ψ is true. This definition satisfies Popper’s axioms, but cannot be
represented by a lexicographically ordered set of probability functions
as Kemeny shows in the finite case. (This example is one that Halpern,
2009 attributes to Stalnaker.) Halpern also discusses a slight variant of this
case where the probability function agrees with this one in all cases except
where ψ is true in finitely many models. In the variant, p(φ | ψ) = 1 if φ

is true in the highest numbered model in which ψ is true, and 0 otherwise.
This probability function also satisfies Popper’s axioms but cannot be
represented by a lexicographically ordered set of probability functions. But
again, these functions have the same unconditional probabilities and the
same abnormal propositions, but different conditional probabilities, so that
conditional probability must be specified separately from unconditional
probabilities.

Popper’s six conditions are the following (Popper, 1959a, Appendix iv*).

1. For all φ, ψ there are χ, θ with p(φ | ψ) 6= p(χ | θ).

2. If for all χ, p(φ | χ) = p(ψ | χ), then for all θ, p(θ | φ) = p(θ | ψ).

3. For all φ, ψ, p(φ | φ) = p(ψ | ψ).

4. p(φ ∧ ψ | χ) ≤ p(φ | χ).

5. p(φ ∧ ψ | χ) = p(φ | ψ ∧ χ)p(ψ | χ).

6. For all φ, ψ, either p(φ | ψ) + p(¬φ | ψ) = p(ψ | ψ), or for all χ,
p(ψ | ψ) = p(χ | ψ).

In Appendix v* of Popper (1959a), he derives a sequence of consequences
of these postulates. Importantly, he doesn’t assume any logical features
of ∧ and ¬ in these derivations—he only uses the explicit probabilistic
assumptions made above.

First, using condition 3, he defines k = p(φ | φ) for any formula φ. Using
4 and 5 he then proves that k2 ≤ k, so 0 ≤ k ≤ 1. After a few more
steps, he then proves that 0 ≤ p(φ | ψ) ≤ k for any φ, ψ. From this, he
is then able to derive that k = k2, so k = 0 or k = 1, but condition 1

rules out k = 0. Condition 4 then tells us that 1 = p(φ ∧ ψ | φ ∧ ψ) ≤
p(φ | φ ∧ ψ), so p(φ | φ ∧ ψ) = 1. With condition 5 this then proves that
p(φ ∧ φ | ψ) = p(φ | ψ). A bit more manipulation allows him to derive that
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p(φ ∧ ψ | χ) = p(ψ ∧ φ | χ), and that p(φ ∧ (ψ ∧ χ) | (φ ∧ ψ) ∧ χ) = 1, and
after several more steps, that p(φ ∧ (ψ ∧ χ) | θ) = p((φ ∧ ψ) ∧ χ | θ). Thus,
he has derived that ∧ is commutative and associative, up to probabilistic
equivalence.

He then turns his attention to negation and derives several important
results. First, he derives that p(¬(φ ∧ ¬φ) | ψ) = 1. Then he derives that
p(¬(¬φ ∧ ¬ψ) | χ) = p(φ | χ) + p(ψ | χ)− p(φ ∧ ψ | χ). If we introduce an
abbreviation ∨ such that φ ∨ ψ just stands for ¬(¬φ ∧ ¬ψ), this becomes
p(φ ∨ ψ | χ) = p(φ | χ) + p(ψ | χ) − p(φ ∧ ψ | χ), which is a version of
the standard law of Additivity. He then derives that p(φ ∧ (ψ ∧ χ) | θ) =
p((φ ∧ ψ) ∧ (φ ∧ χ) | θ), and p(φ ∧ (ψ ∨ χ) | θ) = p((φ ∧ ψ) ∨ (φ ∧ χ) | θ).
Using this, he derives that p(¬¬φ ∧ ψ | χ) = p(φ ∧ ψ | χ) and that if
p(φ | χ) = p(ψ | χ) then p(¬φ | χ) = p(¬ψ | χ). He then derives that
p(φ ∨ φ | ψ) = p(φ | ψ). And finally, he proves that if for all κ, p(φ | κ) =
p(ψ | κ), and p(χ | κ) = p(θ | κ), then for all κ, p(φ ∧ ψ | κ) = p(χ ∧ θ | κ).

With these conditions, he is then able to show that logically equivalent
formulas are probabilistically equivalent, and derive the facts I mentioned
above about abnormal formulas, and probabilities conditional on normal
formulas.

For Popper, one of the important features of this characterization is
that probability can play the role of giving the meanings of the logical
symbols. This is quite a natural desideratum for a logical interpretation
of probability, though it may not be as natural for other interpretations.
This program is developed further by Field (1977), who gives a method for
giving meanings to quantifiers (though this is substantially more clumsy
than Popper’s method for the connectives).

One thing to note about Popper’s formalism is that infinitary versions of
Additivity (and Conglomerability, and Disintegrability) can’t even be stated,
much less satisfied or violated. First, every formula is finite, so that even if
the language is expanded by adding a disjunction symbol, there are no
infinite disjunctions explicitly expressible in the language. Second, by the
Compactness Theorem of propositional logic, no formula in this language
is logically equivalent to an infinite disjunction of formulas expressible
in the language unless it is also logically equivalent to a disjunction of
finitely many of those disjuncts. One might wonder whether this holds
for probabilistic equivalence, but probabilistic equivalence is only defined
for formulas within the language, and infinite disjunctions aren’t in the
language, so the question doesn’t arise.

While some might find this to be an advantage of the sentential for-
mulation of probability, many have found it to be a limitation and have
given what they call versions of Popper’s system where the bearers of
probability are sets rather than formulas of a language, and the operations
are set intersection and complement rather than (uninterpreted) ∧ and ¬
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(Roeper & LeBlanc, 1999; Hájek & Fitelson, 2017). But since Popper’s goal
was at least partly to characterize the sentential operations in terms of
probability, rather than using facts about sets to prove some results about
probability, I think of these systems as significantly different.

Versions of these systems are given by van Fraassen (1976), Spohn (1986),
McGee (1994), and Halpern (2009), among others. Because the bearers of
probability are sets, these authors are able to prove more general character-
izations than Kemeny. In particular, Spohn shows that if we add Countable
Additivity to Popper’s axioms, then these probabilities can always be
represented as a lexicographically-ordered set of Countably Additive mea-
sures mi. However, because of the results mentioned in Section 1.4.2, there
must be failures of Conglomerability and Disintegrability in certain parti-
tions, even if Countable Additivity is assumed. These authors also show
several results relating these set-theoretic versions of Popper’s system to
probabilities involving infinitesimals (as discussed by Wenmackers, this
volume). However, while McGee claims that the two systems are equiva-
lent, Halpern shows that there are some subtleties to consider. But once
we start looking at Countably Additive set-based systems that are like
Popper’s it is useful to consider a slightly more general formalization that
includes all of the above as special cases.

3.2 Rényi

Alfréd Rényi gave the first English-language version of his system for
conditional probability in his (1955), though it also appears briefly in the
second chapter of the posthumous textbook (1970a) and is developed in
somewhat greater detail in the second chapter of his (1970b). I will gener-
ally follow his (1955) in my discussion, though the structural requirements
on B only appear in the later books. Some of the theory appears slightly
earlier in publications in German or Hungarian.

Although philosophers often lump Popper and Rényi together, Rényi’s
early theory is much more flexible than Popper’s. It does include a set-
based version of Popper’s system as a special case, but it also includes a
version of Kolmogorov’s Regular Conditional Probability as a special case
as well. However, Rényi’s major aim in developing his theory is to account
for a very different application from either of these (and in fact, his later
theory explicitly rules out non-trivial versions of Popper and Kolmogorov’s
systems in favor of these other applications). In statistical practice it is
sometimes relevant to work with an “improper prior”—something much
like a probability function, that can turn into a probability function by
conditioning on some event, but for which the unconditional “probabil-
ities” are infinite. This flexibility also allows Rényi’s theory to include
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actual relative frequencies, as a system where there is no unconditional
probability and all probabilities are conditional.

3.2.1 Overview

The background theory for Rényi’s conditional probabilities (just like for
Regular Conditional Probabilities) is the traditional Kolmogorov axiom-
atization of probability. There is some set Ω of “possibilities,” and the
bearers of probability are subsets of this set. (Different interpretations of
probability will interpret these possibilities and sets of them differently.)
Not every subset of the space of possibilities is a bearer of probability, but
there is some collection A of them that are. A is assumed to be a σ-algebra
or σ-field, which means (as before) that the empty set is an element of A,
the complement of any element of A is an element of A, and if Ai for
i ∈N are any countable collection of elements of A, then

⋃
i∈N Ai is also

an element of A.18

A is the set of bearers of probability. But unlike in Popper’s theory, not
every bearer of probability can be conditioned on. Instead, Rényi considers
a collection B ⊆ A subject to the following conditions. For any B1 and B2

that are both in B, B1 ∪ B2 ∈ B. There exists a countable sequence Bi for
i ∈N of elements of B such that

⋃
i∈N Bi = Ω. And ∅ 6∈ B. While A is a

σ-algebra, B is a “bunch,” that may lack complements and infinite unions,
as well as Ω, and definitely lacks the empty set.

He then defines a conditional probability function p(A | B) for A ∈ A
and B ∈ B to be any function satisfying the following conditions. For
all A ∈ A and B ∈ B, p(A | B) ≥ 0 and p(B | B) = 1. For any count-
able sequence of disjoint sets Ai ∈ A, p(

⋃
i∈N Ai | B) = ∑i∈N p(Ai | B)—

conditional on any fixed element B, probability is Countably Additive.
Finally, if B, C, B ∩ C ∈ B, then p(A ∩ B | C) = p(A | B ∩ C)p(B | C). (In
the later book he adds one more condition, which I will discuss later.)
Although there is no official notion of unconditional probability, if Ω ∈ B,
then we can use p(A |Ω) as a surrogate for p(A). (The fact that B may
lack Ω may make this formalism of particular interest for interpretations
of probability where some positive amount of information is needed to
generate any probabilities, like actual relative frequency, and perhaps
logical and evidential probability. See Section 1.2.)

18 In the previous section, ‘F ’ was used for the field of all bearers of probability and ‘A’ was
used for the sub-field that we are conditioning on. In this section I follow Rényi in using
‘A’ for the field of all bearers of probability, and ‘B’ for the subset that can be conditioned
on. I hope that the change in notation is not too confusing—readers should expect still
other choices of letters in other sources on this topic.
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3.2.2 Simplest Examples

Rényi gives several basic examples of conditional probability spaces satis-
fying these axioms. Many of these examples use the notion of a “measure,”
which is very much like a probability function. A measure is just a Count-
ably Additive function µ assigning non-negative extended real numbers to
elements of a σ-algebra A of subsets of some set Ω. To say that the values
are “extended real numbers” is just to say that in addition to all the non-
negative real numbers, +∞ is also a possible value of the function, with
Countable Additivity defined to include this value in the obvious ways (as
the sum of any non-convergent series of positive real numbers, or as the
sum of any set including +∞). The difference between a measure and a
probability function is that for a standard probability function, p(Ω) = 1,
while for a measure, µ(Ω) can be any non-negative extended real number.
A measure is said to be finite if µ(Ω) is a positive real number, and σ-finite
if there is a countable collection of sets Si for i ∈N with each µ(Si) finite
and Ω =

⋃
i∈N Si.

The most basic example of a Rényi conditional probability space is to
let µ be any finite measure, and let B be the collection of all elements
of A whose measure is positive. Then define p(A | B) = µ(A ∩ B)/µ(B),
and it is straightforward to see that all axioms apply. Of course, this
example is of no help to the problems discussed in Section 1.3, because
it leaves probabilities conditional on many elements of A undefined, and
in particular on any element whose measure is 0, which are exactly the
elements that have unconditional probability 0.

A slightly more general example is to let µ be any measure at all on
Ω, and let B be the collection of all elements of A whose measure is
positive and finite. Then define p(A | B) = µ(A ∩ B)/µ(B). Interestingly,
if µ(Ω) = +∞, then this means that there is no notion of unconditional
probability—all probability is conditional probability. However, in addition
to leaving out probabilities conditional on Ω, this sort of example also still
leaves out p(A | B) when µ(B) = 0. However, this sort of example is the
one that motivated Rényi’s development of the theory, and in his later
books he adds an axiom that entails that every conditional probability
space is of this type, with µ being σ-finite. I will come back to the features
of this class of examples later.

3.2.3 Popper and Kolmogorov

In the slightly more general system defined in his earlier paper, he also
gives several other interesting examples. Instead of a single measure
µ we can consider a countable set of measures µi for i ∈ N. Then we
let B be the collection of all members of A such that there is exactly
one α with µα(B) > 0, and no α such that µα(B) = +∞. If we define
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p(A | B) = µα(A ∩ B)/µα(B) for this unique α, then we have another
example of a Rényi conditional probability function. By Spohn’s result
mentioned in Section 3.1, this means that every Countably Additive Popper
function is an example of a Rényi conditional probability function (where
we leave probability conditional on abnormal sets undefined, rather than
saying it is uniformly equal to 1).

Rényi also considers cases in which Disintegrability or Conglomerability
might be satisfied. Starting on p. 307 of his (1955), he discusses both what
he calls “Cavalieri spaces” and then “regular probability spaces.” These
are spaces in which A is the σ-algebra generated by a random variable
V, and B contains all the sets of the form x < V < y as well as the
sets of the form V = x, and in which the probability function satisfies
Conglomerability with respect to the partition in terms of V = x. As he
notes, his basic definition of a conditional probability space allows for
Conglomerability over A to fail. However, he gives several examples in
which it holds, including an instance of the Borel paradox where B is the
set of longitudes and wedges built up from longitudes. This shows a case
where he allows for non-trivial probabilities conditional on some events of
probability 0. But it leaves conditional probability undefined for any event
that is not composed of longitudes.

As I discussed in Section 1.4.3, if we consider not just one conditional
probability function, but have many, each with its own B, such that every
non-empty set is in one of the B, then we can get an adequate notion of
conditional probability that responds to the problem of conditioning on
events of probability 0 (from Section 1.3) while satisfying Conglomerability.
However, p(A | B) will then depend on which probability function is being
used, which corresponds to the question of which bunch B of sets is
the base of conditioning. Regular Conditional Probability is a special
case of Rényi’s theory, where B ranges only over sub-σ-algebras and
Conglomerability is required to hold.

Thus, Rényi’s theory is mathematically more general than the theory
of Regular Conditional Probability. However, this generality leaves many
choices open to us. If the philosophical interest is in preserving a unique
notion of conditional probability that doesn’t depend on B at all, then
most of this generality is unwanted. Restricting to the case where B just is
the set of all non-empty sets is the subject of Section 3.3.

3.2.4 Infinite Measure

Despite the interest of these sorts of conditional probability spaces, Rényi’s
primary interest is in the second example from Section 3.2.2, where the
conditional probability is defined from a single measure µ that is σ-finite
but not finite. This is made clear by the discussion in the first two pages
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of his (1955) of the importance of unbounded measures in statistical
practice. In his (1970a) he adds an extra axiom to the definition of a
conditional probability space, requiring that for any B, C ∈ B with B ⊆ C,
p(B | C) > 0.19 And in his (1955), most of his discussion is confined to
spaces that satisfy it.

As Theorem 8 in his (1955), and as Theorem 2.2.1 of his (1970a), he
proves that for every conditional probability space satisfying this further
condition, there is a σ-finite measure µ such that p(A | B) = µ(A∩ B)/µ(B)
for all A ∈ A and B ∈ B, and that this measure is unique up to constant
multiple.

The proof is not terribly difficult. Recall that there is a countable se-
quence Bi ∈ B, for i ∈ N with

⋃
i∈N Bi = Ω. Without loss of generality,

we can assume that Bi ⊆ Bj for any i ≤ j. (If they don’t already satisfy
this condition, just replace Bj with the finite union

⋃
i≤j Bi.) Now we can

define µ(B1) = 1, and µ(Bn) = 1/p(B1 | Bn). Then, for any A ∈ A, we can
define µ(A) = limn→∞ µ(Bn)p(A | Bn). Verifying that this definition of µ

is well-defined and gives a measure is somewhat tedious, but not terribly
difficult. It is substantially easier to verify that any other measure giving
the same conditional probability function must be a constant multiple of
this one, and that this one is σ-finite.

By restricting consideration to this sort of probability space, Rényi
eliminates all of the non-trivial Popper functions. This is because under
this new characterization, whenever p(A | B) is defined, p(B | C) will be
positive whenever it is also defined, unless C ∩ B = ∅. However, Popper’s
notion of conditional probability was intended to capture cases where
p(B) = 0 and yet B is normal.

Some philosophers have grouped Popper and Rényi together as giving
similar notions of primitive conditional probability. However, Rényi re-
quires Countable Additivity where Popper can’t even state it, and Rényi’s
mature theory rules out all interesting Popper functions, as well as ruling
out any resolution to the problem of conditioning on events of probability
0. Although Rényi’s theory even more so than Popper’s makes conditional
probability the basic notion (because Ω can fail to be in B), it addresses
only the motivating problem from Section 1.2 (the conceptual requirement
that all probabilities are conditional) and not the one from Section 1.3
(conditioning on events of probability 0).

This mature theory works well for the actual relative frequency inter-
pretation of probability. In fact, one of the standard examples that Rényi
considers has exactly this form. Let Ω be some countable set, let A be
the collection of all subsets of this set, and let µ(A) be the number of

19 He appears to have this same restriction in mind in his (1970b), though he writes the
requirement in a way that is conditional on p(B | C) > 0 rather than requiring it. But that
book develops very little of the theory.
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elements of A. (Since Ω is countable, we see that µ is σ-finite, since Ω
is the union of countably many sets with finitely many elements each.)
If we let B be the set of all non-empty finite subsets of Ω, and define
p(A | B) = µ(A ∩ B)/µ(B), then this just is the definition of finite relative
frequency.

3.2.5 Improper Priors

Another more characteristic example lets Ω be the set R2 of pairs of real
numbers. Let A be the collection of all Lebesgue measurable subsets of
this set, and let µ be standard Lebesgue measure. Then let B be the set of
all Lebesgue measurable subsets of this set with positive finite measure.
The resulting probability measure is uniform conditional on any finite
region, and undefined on infinite or null regions.

If we return to the generality of the early theory (so that we allow B to
contain elements whose probability is 0 conditional on large elements of B),
we can generalize to a slightly more interesting set B as follows. Let Rx2,y2

x1,y1

be the rectangle of points {(x, y) : x1 ≤ x ≤ x2, y1 ≤ y ≤ y2}. Let B be the
set of all such rectangles. When x1 < x2 and y1 < y2, we define p(A |Rx2,y2

x1,y1)

as before, as the ratio of the standard two-dimensional Lebesgue measure
of A∩ Rx2,y2

x1,y1 to the measure of Rx2,y2
x1,y1 , which is just (x2− x1)(y2− y1). How-

ever, when x1 = x2 or y1 = y2, the “rectangle” is actually a line segment.
In such a case we use the relevant one-dimensional Lebesgue measure to
define the conditional probability. (This is effectively an example where
we have a sequence of three measures—two-dimensional Lebesgue mea-
sure µx,y, one-dimensional Lebesgue measure µx with respect to x, and
one-dimensional Lebesgue measure µy with respect to y.) Again, our prob-
ability is uniform conditional on finite rectangles of positive size, but it
is also uniform conditional on finite line segments parallel to the x or y
axis. But again, there is no unconditional probability, because the space as
a whole has infinite measure.

The motivation for this sort of example comes when we generalize it still
further. Instead of using Lebesgue measure, we use a measure with a non-
uniform density. Then the formulas for calculating conditional probabilities
are exactly those given in Section 2.1 for Kolmogorov’s Regular Conditional
Probabilities, except that some of the integrals might be infinite, and we
only officially allow for probabilities conditional on sets where the integrals
are finite. In that section, since there was an unconditional probability
function, the integrals were always guaranteed to be finite, but here we
allow for them to be infinite. When they are infinite, it is standard to say
that the conditional probability function arises from an “improper prior,”
which is not itself a probability function.
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This is the foundation of much Bayesian statistical practice. For instance,
one might be interested in estimating the distribution of values of V in
some population. One might antecedently be sure that, over the relevant
population, V is distributed according to a normal distribution with some
unknown mean µ and variance σ2. In the absence of information one
wants an “uninformative prior,” which should be invariant under changes
of measuring scale of V. (For instance, we might convert feet to meters, or
Fahrenheit to Celsius.) It turns out that the only such prior is one where
the probability that x1 < µ < x2 and 0 < y1 < σ2 < y2 is proportional to
(x2 − x1) log y2

y1
. But without antecedent bounds on how large µ and σ2

might be, this gives rise to an improper prior. In particular, since∫ x2

x1

∫ y2

y1

1
y

dy dx = (x2 − x1) log
y2

y1
,

this means that we can do the calculations with a density given by
d(µ, σ2) = 1/σ2.

In this case, in addition to the population mean and variance, there are
further random variables given by the observed values of V on samples
from the population. We have assumed that each of these samples is
taken from the same normal distribution with mean µ and variance σ2.
If we represent the density of the normal distribution by Nµ,σ2(x), then
our overall density is given by d(x, µ, σ2) = Nµ,σ2(x)/σ2. Interestingly,
although this density yields an improper prior, it turns out that conditional
on any possible observed value of x, the integral over all values of µ and
σ2 is finite (because the normal distribution dies off fast enough in each
direction). It is a classic result of Bayesian statistics that the posterior
distribution of µ conditional on observed x values is given by Student’s t-
distribution. There are many other cases like this, where a density function
over some parameters gives rise to an improper prior, but the natural
likelihood function for some observable evidence yields a proper posterior
conditional on any possible observation.

Of course, all of this Bayesian analysis only works when it is possible
to calculate probabilities by integrating densities. This only works when
the conditional distributions satisfy Conglomerability (and thus Count-
able Additivity) wherever they are defined. Thus, this sort of statistical
application requires both Rényi’s idea that “unconditional probabilities”
can be unbounded, and Kolmogorov’s idea that conditional probabilities
might be relativized to a partition.

However, the notion of an improper prior is also in some ways closely
conceptually related to failures of Countable Additivity. This can be seen
by looking back at the first example we gave of an improper prior. This
was the conditional probability space given by finite counting over a
countable set. There is some sense in which this conditional probability
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space is aiming to represent a uniform unconditional probability over the
countable set, like the de Finetti lottery that (for some) motivates rejection
of Countable Additivity. By the technique of improper priors, Rényi is
able to represent this distribution in a way that captures much that is
important, though it does not give any notion of unconditional probability.
Because the total space is σ-finite, there is a countable sequence of sets
Bi ∈ B for i ∈N such that Ω =

⋃
i∈N Bi. We can define a merely Finitely

Additive probability function over Ω by defining p(A) = limi→∞ p(A | Bi),
though for many sets A this limit is undefined, and in general the limit
will depend on the specific choice of the sequence Bi.

3.3 De Finetti/Dubins—Full Coherent Conditional Probabilities

The final theory of Coherent Conditional Probabilities to be considered
here takes seriously the motivation in these cases to have well-defined
unconditional probabilities while giving up on Countable Additivity. This
theory arises from de Finetti (1974) and Dubins (1975, section 3). However,
it may be useful for many readers to also consult the expositions of this
theory by Seidenfeld (2001), Seidenfeld et al. (2013), or the book length
treatment by Coletti and Scozzafava (2002).

The basic background system is the same as that of Kolmogorov and
Rényi, but I repeat the definitions here so that readers don’t have to flip
back. There is a set Ω of possibilities, and we consider some collection A
of subsets of Ω. If A contains the empty set, as well as complements and
pairwise unions of its members, then A is said to be an algebra. If it also
contains unions of any countable set of its elements, then it is said to be a
σ-algebra. An algebra B is said to be a sub-algebra of A iff every member of
B is a member of A, and a sub-σ-algebra of A if B is a σ-algebra.

Unconditional probability for an algebra A is assumed to be given by
a function p(A) defined for A ∈ A subject to the three basic principles.
p(Ω) = 1, p(A) ≥ 0 for all A ∈ A, and p(A ∪ B) = p(A) + p(B) when
A and B are disjoint members of A. If B is a sub-algebra of A, then a
conditional probability for (A,B) is a two-place function p(A | B) defined
for A ∈ A and non-empty B ∈ B subject to the following constraints.
For any A ∈ A and non-empty B ∈ B, p(A | B) ≥ 0 and p(B | B) = 1.
For any A1, A2 ∈ A and non-empty B ∈ B, if A1 ∩ A2 ∩ B is empty,
then p(A1 | B) + p(A2 | B) = p(A1 ∪ A2 | B). For any B, C ∈ B with B ∩ C
non-empty, and any A ∈ A, p(A ∩ B | C) = p(A | B ∩ C)p(B | C).

These axioms are much like Popper’s axioms, but formulated in terms of
sets rather than sentences of a language. They are much more like Rényi’s
axioms, but without Countable Additivity (and without the requirement
that A be a σ-algebra), and with the additional requirement that p(A |Ω)

be defined (since Ω is a member of any algebra B).
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One further notion is of great interest here. If B = A, then the Coherent
Conditional Probability is said to be Full. The central results in the relevant
section of Dubins’ paper show that for any probability function on an
algebra A there is a Full Coherent Conditional Probability agreeing with
it, and that for any conditional probability function on (A,B) there is an
extension to a Full Coherent Conditional Probability. In fact, he shows that
the same is true for any partial function, each of whose finite fragments can
be extended to a Full Coherent Conditional Probability function on its finite
algebra. In particular, this applies to any Rényi conditional probability
function, and even allows us to extend to the case in which A is the full
power set of Ω. Thus, we are able to get what Popper was after—a notion
of conditional probability that is defined for every non-empty set.

However, the techniques for proving that these Full Coherent Condi-
tional Probabilities exist are non-constructive. Dubins uses Tychonov’s
theorem (which is equivalent to the Axiom of Choice), and cites similar
results by Krauss (1968) arrived at using non-principal ultrafilters (whose
existence is proven using the Axiom of Choice). Similar results extend-
ing linear (i.e., finitely additive) functions on subspaces to full spaces
often appeal to the Hahn-Banach Theorem, which is also independent
of Zermelo-Fraenkel set theory without the Axiom of Choice. Given a
Full Coherent Conditional Probability on the surface of a sphere, one can
generate the paradoxical Banach-Tarski sets (Pawlikowski, 1991). Thus,
we are not usually able to work with these Full Coherent Conditional
Probabilities in any explicit way, if we really want them to be defined on
all subsets of a reasonably-sized probability space. I have argued elsewhere
(Easwaran, 2014) that mathematical structures depending on the Axiom of
Choice in this way cannot be of epistemic or physical relevance, though
they are surely of mathematical interest.

Given the results of Section 1.4.3, Full Coherent Conditional Probabilities
fail to satisfy Conglomerability when some Additivity fails. For instance,
let Ω be the set of pairs (m, n) of natural numbers. Let Sm be the set
of all pairs whose first coordinate is m and let Tn be the set of all pairs
whose second coordinate is n. Let p be any probability function such
that p(Sm | Tn) = p(Tn | Sm) = 0 for all m and n. (We can think of this
probability function as describing two independent de Finetti lotteries.) Let
E be the event that m > n. Then we can see that for any m, p(E | Sm) = 0
(since, conditional on Sm, only finitely many values of n will satisfy E), but
for any n, p(E | Tn) = 1 (since, conditional on Tn, only finitely many values
of m will fail to satisfy E). Since the Sm and the Tn are both partitions,
any value of p(E) will fail to satisfy Conglomerability in at least one of
these partitions. This sort of failure of Conglomerability is inevitable if
one allows failures of Countable Additivity and requires that sets like E
nevertheless have both unconditional and conditional probabilities.
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However, these Finitely Additive Full Coherent Conditional Probabilities
have the advantage of existing even for algebras that are not countably
generated, avoiding the problems for Regular Conditional Probabilities
mentioned in Section 2.3.1. They also always satisfy p(A | A) = 1, even in
the bad algebras where Countably Additive conditional probabilities are
forced to allow for p(A | A) = 0, as mentioned in Section 2.3.2 (Seidenfeld
et al., 2001). In particular, in addition to the case where one adds a non-
measurable set to the collection of Borel sets, one might also consider the
algebra of “tail events,” defined as follows.

Let Ω be the set of all countable sequences (a0, a1, a2, . . . ) of 0s and 1s
(which can be taken to represent the set of all countable sequence of coin
flips). Let A be the σ-algebra generated by the sets of the form

Ai = {(a0, a1, a2, . . . ) : ai = 1}.

Say that an element A ∈ A is a “tail event” if, for any element of A,
changing any finitely many places in the sequence results in another
element of A. (The tail events are exactly those that depend only on the
long-run behavior of the sequence and not on any short-term behavior.)
Let B be the set of all tail events. It is clear that B is a sub-σ-algebra of A.

A classic result of Kolmogorov shows that if the unconditional proba-
bility is that on which each event Ai (“the i-th flip results in heads”) is
independent with probability 1/2, then every event in B has probabil-
ity 1 or 0. A further generalization by Hewitt and Savage shows that if
the unconditional probability is any “exchangeable” probability (in the
sense of de Finetti), then the events in B all have probability 1 or 0. As
a consequence of these results, and a theorem about algebras in which
all probabilities are 1 and 0, it turns out that any element B ∈ B whose
unconditional probability is 0 must also have p(B | B) = 0, if conditional
probability is Countably Additive. (See Blackwell and Dubins, 1975, or
Seidenfeld et al., 2001. This is possible because the algebra of tail events
is not countably generated.) But if conditional probability is allowed to
be merely Finitely Additive, then we can have p(B | B) = 1 for these
tail events. Dubins and Heath (1983) show how to construct such a Full
Coherent Conditional Probability. However, this construction assumes a
particular merely Finitely Additive probability distribution over all subsets
of the natural numbers, and thus indirectly appeals to the Hahn-Banach
Theorem, and thus the Axiom of Choice.

Since these functions are defined on the full power set, there is a sense
in which we no longer need to limit ourselves to an algebra A of “mea-
surable” sets. Even the unmeasurable sets are assigned some probability.
We aren’t able to pin down precisely what the probability is of any such
set, but since the non-measurable sets themselves are only proved to exist
by non-constructive means using the Axiom of Choice, this may not be
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such a problem. The Banach-Tarski Paradox shows that if Ω contains
3-dimensional (or higher) Euclidean space, then any such Finitely Ad-
ditive probability function must fail to be invariant under rotations and
translations. But again, the sets under which these invariances must fail
are only proven to exist by means of the Axiom of Choice.20

Thus, provided that one is not worried about working with non-
constructive methods, Full Coherent Conditional Probabilities can be of
interest when dealing with algebras that aren’t countably generated.

4 conclusion

There are two main families of arguments that conditional probability
should be taken as the basic notion of probability, or at least as equally fun-
damental to unconditional probability. One set of arguments (Section 1.2)
is based on conceptual grounds, but apart from the interpretation of prob-
ability as actual frequency, it doesn’t appear to be decisive. For logical,
evidential, and perhaps even subjective probabilities (if we follow Levi), we
may be able to argue that nearly all probabilities are conditional. But if we
can make sense of conditioning on a tautology, then again the argument
is not decisive. Instead, this argument points out that many probability
functions depend on some background condition that is of a different type
than the events that have probabilities.

The other set of arguments (Section 1.3) is based on mathematical
grounds. Depending on how we treat vague or indeterminate probabilities
(if there even are any), these problem cases may not motivate anything
beyond a supervaluational treatment. I believe that supposed cases of
conditioning on an event with undefined unconditional probability are
either cases of maximally vague probability, cases where the “event” is
actually part of the background for a probability function rather than a
condition, or are cases where the conditional probability also does not
exist.

Instead, it is cases of probability 0 (and particularly those where the
0 arises from an infinite partition) that motivate a reconsideration of the
mathematics of probability theory the most strongly. To deny that these
cases exist is to assume something much stronger than Finite Additivity
or Countable Additivity—it is either to assume Full Additivity for all
cardinalities (and thus discrete probability, distributed only over countably
many possibilities) or else the even stronger assumption that there are only

20 If we replace the Axiom of Choice by the Axiom of Determinacy, then we lose the Hahn-
Banach theorem and the other means by which these Finitely Additive functions were
proven to exist, but Lebesgue measure turns out to already be defined—and Countably
Additive!—over all subsets of Euclidean space. See Bingham (2010, Section 8).
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finitely many possibilities. This seems to go against the meaningfulness of
scientific vocabulary discussing numerical parameters in the world.

I have discussed four different mathematical theories for conditioning
on events of probability 0. Regular Conditional Probabilities may allow
us to say that unconditional probability is prior to conditional probability,
while Popper’s theory, Full Coherent Conditional Probabilities, and the
most general version of Rényi’s theory require conditional probability to
be prior.

Popper’s theory is the one most familiar to philosophers. This theory
has the advantage of deriving the relations of deductive propositional
logic as special consequences of the probability axioms, so it may be
particularly well-suited to the logical interpretation of probability. But
because the bearers of probability are sentences in a language rather than
sets of possibilities, it can’t even express the circumstances that give rise
to the problem of probability 0, much less say anything useful about them.
In any case, it is effectively an instance of the more general Dubins/de
Finetti Full Coherent Conditional Probability.

Rényi’s theory is the most general, having versions of the others as spe-
cial cases (though some require dropping Countable Additivity). Rényi’s
theory is particularly well-suited to the account of probability as actual
relative frequency, and may well be particularly suited to interpretations
of probability where not every proposition can be conditionalized upon,
particularly if the tautology is one of these propositions (so that there is no
such thing as unconditional probability). It also has advantages for certain
calculations in a Bayesian statistical framework that depend on the use of
“improper priors.”

The Dubins/de Finetti Full Coherent Conditional Probabilities, and
the Regular Conditional Probabilities descending from Kolmogorov, have
competing mathematical virtues. Regular Conditional Probabilities can
satisfy Conglomerability in each partition, as well as Countable Additivity,
which appears to be the most well-motivated level of Additivity. However,
Full Coherent Conditional Probabilities allow each conditional probability
to be defined in a unified and coherent way (rather than one depending on
a partition in addition to a conditioning event). I suggested in Section 1.1
that actual applications of conditional probability always come with some
clear sense of the partition that is relevant, so this is not a cost of the theory
of Regular Conditional Probabilities. Full Coherent Conditional Proba-
bilities avoid some problem cases that arise on badly behaved algebras.
However, I claim these algebras are too complicated for a finite human
mind to grasp, so I think they don’t arise in epistemic application in any
case. Regardless, Full Coherent Conditional Probabilities are themselves
so complex that they can’t be proved to exist without some version of the
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Axiom of Choice, while Regular Conditional Probabilities can be given
constructively when the unconditional probability is defined by a density.

The Regular Conditional Probabilities associated with an unconditional
probability are generally only unique up to measure 0. Perhaps there could
be some constraint like continuity, or computability, that might uniquely
define conditional probabilities for each partition given unconditional
probabilities on countably generated algebras. If this is right, then we
may be able to say that unconditional probability is basic after all, and
conditional probability defined in terms of it. But otherwise, there must
be some sense in which conditional probability is either primitive, or at
least equally fundamental to unconditional probability. Or else we can
follow Myrvold (2015) and allow that we can’t always get what we want
in a theory of conditional probability.

Rényi’s fully general theory must be used in a few situations where
conditional probability is required to be independent of unconditional
probability (namely, for actual relative frequency in infinite worlds, and
in applications requiring “improper priors”). For other applications, the
situation is summarized in Table 1 (page 193).
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