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1 Introduction

How stringent are standards of rational probability judgment? One prominent dividing line
on this issue concerns additivity. Everyone agrees that numerically precise probabilities are
required to be finitely additive. But many argue that they should meet the more restric-
tive standard of countable additivity as well. How are we to adjudicate the issue? Several
approaches have been pursued. Our aim here is to present a result that connects some of
these approaches, and, in doing so, to better understand the force of a recent argument for
countable additivity due to Easwaran (2013). We have two main points. First, Easwaran’s
argument in favor of countable additivity should have little persuasive force on those permis-
sive probabilists who have already made their peace with violations of conglomerability. As
our result shows, Easwaran’s main premise—the comparative principle—is strictly stronger
than conglomerability. Second, with the connections between the comparative principle and
other probabilistic concepts clearly in view, we point out that opponents of countable addi-
tivity can still make a case that countable additivity is an arbitrary stopping point between
finite and full additivity. In the next section, we present our arguments in more detail, and
in the final section we present the result on which our arguments are based.

2 Main Points

One important approach to justifying additivity requirements (along with other requirements)
appeals to the concept of coherence, that is, the idea that one should always avoid accepting
a set of bets that entails a sure loss. According to de Finetti, coherence is only a requirement
for finite sets of bets. He claims that the extension of coherence to countable collections of
bets is question begging (de Finetti, 1972, p. 91)—a controversial claim that has received
some elaboration and defense (Howson, 2008). But, at least on the face of it, Dutch book
arguments seem to support countable additivity as well. An issue with appealing to extensions
of the coherence concept to justify the requirement of countable additivity is that the line

∗Thanks to Kenny Easwaran, Katie Steele, Borut Trpin, and three anonymous referees for helpful com-
ments. Rush thanks the Center for Advanced Studies at LMU Munich for supporting this research.
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of argument seems to generalize further in an analogous fashion to the justification of full
additivity. We, like most others, take for granted that this is an unwelcome result. Among
other things, full additivity rules out certain useful and natural distributions like the Lebesgue
measure. So something is amiss with the coherence argument for countable additivity.

Another line of argument in favor of countable additivity focuses on the concept of con-
glomerability. Let (Ω,A, P ) be a finitely additive probability space, and define P (A|E) by
the usual ratio formula when P (E) > 0. Let Π be a partition of Ω. We say that P is
conglomerable in a positive partition1 Π if

∀A ∈ A inf
E∈Π

P (A|E) ≤ P (A) ≤ sup
E∈Π

P (A|E).2 (1)

The probability P is conglomerable in all countable partitions if and only if P is count-
ably additive. There are a few different motivations for conglomerability. First, failures of
conglomerability allow for what has been called reasoning to a foregone conclusion (Kadane
et al., 1996). Think of the cells of Π as the possible outcomes of an experiment. If P is
not conglomerable in Π, then an agent with probabilities given by P could be sure that, no
matter what the result of the experiment, the probability of some event A will be at least k
after observing which cell E ∈ Π is true, even though P (A) < k now. But such knowledge,
some urge, should compel the agent to assign P (A) ≥ k before observing the outcome of the
experiment. There is also a coherence argument for conglomerability making use of called-off
bets. A bet on A conditional on E is called off (and the price of purchase refunded) if E is
false, and proceeds as usual otherwise. If A witnesses that P is not conglomerable in Π, an
agent is sure to lose if she makes a bet on A at price P (A) and a set of called-off bets on A
conditional on E ∈ Π at prices P (A|E) (Seidenfeld and Schervish, 1983, p. 410).

A similar issue arises for endorsing conglomerability for exactly all countable partitions
as for extending coherence to exactly all countable sets of bets. Why should rationality
require conglomerability for all countable partitions, but not all uncountable partitions? Some
see it as a compelling requirement in general (Rescorla, 2015, p. 739). Whether we can
have conglomerability for all uncountable partitions without mandating more than countable
additivity depends on the theory of conditional probability that we adopt. Essentially, there
is a trade off. With the theory of coherent conditional probabilities developed by de Finetti
(1975) and Dubins (1975), countably additive probabilities will be non-conglomerable in some
uncountable partition (Schervish et al., 2017). So, opponents of requiring countable additivity
conclude, something is wrong with the conglomerability argument for countable additivity
since the argument seems to generalize to support stronger forms of additivity which are
universally acknowledged to be undesirable; conglomerability is mandatory only in the finite
case. With the standard Kolmogorov theory of regular conditional probabilities, countably
additive probabilities will be conglomerable in general. However, there are a number of
anomalous features to cope with for Kolmogorov’s theory including the Borel Paradox and the
non-existence and impropriety of regular conditional probabilities (Seidenfeld, 2001; Schervish
et al., 2017).3

1A partition is positive (with respect to P ) if each cell of the partition has positive probability (according
to P ). Note that each cell of a partition can have positive probability only if the partition is countable.

2If Π is not positive, then some conditional probabilities will not be defined. We restrict our analysis to
positive partitions, but note that it could be extended by appealing to primitive conditional probabilities.

3About the Kolmogorov approach of conditioning on sub-sigma-algebras rather than events, Kadane,
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There is yet another, though similar, line of argument for countable additivity that begins
with the notion of disintegrability. In a classic paper, Dubins investigated the connections
between conglomerability and disintegrability, showing that the two are equivalent for ex-
pectations (linear previsions) defined on linear spaces (1975, Theorem 1). For the case of
a probability function P defined on an algebra of events A, P is disintegrable in a positive
partition Π if

∀A ∈ A P (A) =
∑
E∈Π

P (A|E)P (E) (2)

In other words, disintegrability implies the law of total probability. Since disintegrability is
easily seen to imply conglomerability, P is disintegrable in all countable partitions only if P
is countably additive. The motivations for conglomerability that we discussed above can also
be used to motivate disintegrability. If (2) fails for some event A, then, by the Dubins result
mentioned above, we have

inf
E∈Π

P (f |E) > P (f)

for some (bounded) random variable f , where P (f) and P (f | E) are, respectively, the
expectation and conditional expectation given E of f according to P . This is a failure of
conglomerability for a random variable instead of an event. But the considerations that
motivate conglomerability for events carry over to random variables. Consider reasoning to
a foregone conclusion again, for instance. If one thinks that agents are required to have
P (f) ≥ k whenever they are certain that their expectation for f will be at least k no matter
what the outcome of an experiment is, then, by the Dubins result, one must require P
to be disintegrable. The same goes for called-off bets. If P is not disintegrable, so that
conglomerability fails for some f , then an agent is sure to lose if she makes a bet on f at
price P (f) and a set of called-off bets on f conditional on E ∈ Π at prices P (f |E).

Although disintegrability implies conglomerability, the two are not generally equivalent for
probabilities on an algebra of events (Berti et al., 2017, Example 2). Along with Easwaran’s
comparative principle and conglomerability, disintegrability is a key concept in our formal
result.4 Since disintegrability in a partition implies conglomerability in that partition, if P is
not conglomerable in a partition, it is not disintegrable either. Just as with conglomerability,
then, opponents of requiring countable additivity must accept some failures of disintegrability
in countable partitions. Proponents of countable additivity, on the other hand, must accept
failures of disintegrability (suitably generalized) in some uncountable partitions unless P sat-
isfies full additivity—at least for coherent conditional probabilities (Dubins, 1975; Kadane
et al., 1999; Howson, 2014). So, as with conglomerability, they confront the purported arbi-
trariness of stopping at requiring disintegrability for exactly countable partitions.

Easwaran advances two arguments in favor of countable additivity that cannot be ex-
tended to support full additivity (2013). The one that we focus on here is based on what
Easwaran calls the comparative principle: if P is a probability function and Π is a measurable

Schervish, and Seidenfeld write, “This approach is unacceptable from the point of view of the statistician
who, when given the information that A = B has occurred, must determine the conditional distribution of
X2. A more reasonable approach is to consider the theory of conditional probability spaces as defined by
(Dubins, 1975), among others” (1999, pp. 224–225).

4Among other things, the theorem below contributes to the literature a novel counterexample to the
equivalence of disintegrability and conglomerability for probabilities over algebras of events.
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partition, then, for every other probability function Q,

¬∀E ∈ Π P (E) < Q(E). (3)

In words, no probability P can be dominated on a partition by another probability Q, in the
sense that Q assigns every member of the partition greater probability than P . As Easwaran
observes, “the only finitely additive, non-negative, normalized functions that are ruled out
as probabilities by the Comparative Principle are the ones that violate countable additivity.
This principle does nothing to rule out violations of full additivity [. . . ] Countable additivity
is not an arbitrary stopping point” (2013, p. 60). In other words, since the comparative
principle motivates countable but not full additivity, this is an argument for exactly countable
additivity. Easwaran states the comparative principle as an analysis of what probability
is. For the subjective interpretation of probability, another way to put the point is that
the comparative principle enjoins agents to avoid having credences that are dominated by
another probability function in a partition in the sense of (3). Furthermore, since no (real-
valued) probability assigns positive measure to each cell in an uncountable partition, every
probability function avoids being dominated in such partitions. From this, it follows that
the comparative principle is equivalent to requiring that probabilities be undominated in
countable partitions.

While the comparative principle has been referenced a number of times in the literature
(e.g., Elga, 2016; Arageorgis et al., 2017; Elliot, 2020; Hoek, MS), to the best of our knowl-
edge, its relationships to standard probabilistic concepts other than countable additivity have
received no attention outside of Easwaran’s original discussion, in which the comparative prin-
ciple is called “similar” and “dual” to but “distinct” from the concept of conglomerability
(2013, p. 60, fn. 5). The result that we present in the next section relates the compara-
tive principle to the classical probabilistic concepts of conglomerability and disintegrability
in a precise way. We will show that the comparative principle is a strict strengthening of
conglomerability and equivalent to disintegrability.

We want to make two points about the argument for countable additivity from the com-
parative principle. First, the theorem below facilitates the evaluation of the comparative prin-
ciple as a norm on probabilistic judgments. Because the comparative principle is equivalent to
disintegrability and implies conglomerability, reasons for and against mandating disintegra-
bility and conglomerability are seen to have direct bearing on the status of the comparative
principle. Since the comparative principle is strictly stronger than conglomerability for a sin-
gle partition, and all proponents of relaxing countable additivity have reconciled themselves
to failures of conglomerability, for such probabilists, the dialectical force of the argument for
countable additivity on the basis of the comparative principle is marginal.5 And, similarly,
since disintegrability implies but is not implied by conglomerability, and our result establishes
that disintegrability is equivalent to the comparative principle, it should not be surprising if
opponents of mandating countable additivity accept violations of the comparative principle
with equanimity.

Second, when conceived of as a norm of personal probability, the comparative principle
forbids being dominated in any (countable) partition. With this universal quantification,

5While the proof below proceeds differently, one can show that conglomerability in a partition follows from
the comparative principle by taking Q(·) = P (·|A) for any event A and using Bayes’ theorem.
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the comparative principle norm is equivalent to the norm requiring probabilities to be con-
glomerable in all countable partitions since both requirements are equivalent to countable
additivity. In our opinion, evaluating the attractiveness of the comparative principle norm is
not straightforward. Because of this, it is helpful to consider equivalent principles. Since the
norm is equivalent to the conglomerability norm, considerations for and against conglomer-
ability are manifestly relevant. Of particular interest are concerns about the arbitrary nature
of requiring conglomerability for exactly countable partitions. While the comparative princi-
ple is supposed to present a case that countable additivity is not an arbitrary stopping point,
that case is not so clear in light of the facts that avoiding dominance in all partitions is equiva-
lent to avoiding dominance in all countable partitions and also equivalent to conglomerability
in all countable partitions. Reflecting on the logical relationships the comparative principle
bears to other probabilistic concepts helps us to better understand the set of relevant con-
siderations.6 For example, since the problem of justifying stopping at conglomerability (and
hence disintegrability) for countable partitions is especially salient, the trade offs involved in
the theory of conditional probability are seen to be relevant considerations for the tenability
of the comparative principle.

We do not anticipate that these points will dissuade those who find the comparative
principle eminently compelling. However, even for such readers, the formal result below may
still be of interest. But for those who, like Arageorgis et al. (2017, p. 12) and us, are more
ambivalent about the merits of the comparative principle, we think the principle’s connections
to conglomerability should be illuminating.

3 Result

Theorem. Let (Ω,A, P ) be a probability space, and let Π be a positive measurable partition
of Ω. (I) P obeys the comparative principle in Π (that is, (3) holds) if and only if P is
disintegrable in Π (that is, (2) holds), and these imply that P is conglomerable in Π (that is,
(1) holds). (II) The converse is not true: P may be both conglomerable and fail to obey the
comparative principle.

Proof. For (I), start by assuming that P does not obey the comparative principle and that
Q witnesses this, i.e. (3) is false. Then,

P (Ω) = Q(Ω) ≥
∑
E∈Π

Q(Ω | E)Q(E) =
∑
E∈Π

Q(E) >
∑
E∈Π

P (E) =
∑
E∈Π

P (Ω | E)P (E),

where the first inequality comes from the fact that finitely additive probabilities are countably
superadditive. So P is not disintegrable in Π. Conversely, assume that P is not disintegrable
in Π. Then, for some A ∈ A,

P (A) >
∑
E∈Π

P (A | E)P (E) =
∑
E∈Π

P (A ∩ E). (4)

By (4) and countable superadditivity,∑
E∈Π

P (E) =
∑
E∈Π

(
P (A∩E)+P (Ac∩E)

)
=
∑
E∈Π

P (A∩E)+
∑
E∈Π

P (Ac∩E) < P (A)+P (Ac) = 1.

6There are many more considerations than we discuss here (see, e.g., Savage, 1954; Dubins and Savage,
1965; de Finetti, 1972; Kelly, 1996; Seidenfeld, 2001; Nielsen and Stewart, 2019).
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Enumerate the elements of Π by writing Π = {En : n ∈ N}, and let c =
∑

n P (En), so that
c < 1. For all n, let qn = P (En) + 2−n(1 − c). Note that qn > P (En) and

∑
n qn = 1. For

each n, let ωn ∈ En, and define Q(A) =
∑

n qnδωn(A) for all A ∈ A. Then Q dominates P
on Π because Q(En) = qn for all n. So P does not obey the comparative principle. It’s also
worth noting that the dominating measure Q is countably additive. To see that let A1, A2, ...
be a pairwise disjoint sequence in A. Since each δωn is countably additive, we have

∑
n

qnδωn

(⋃
m

Am

)
=
∑
n

∑
m

qnδωn(Am) =
∑
m

∑
n

qnδωn(Am),

where the interchanging of the series is justified by the fact that qnδωn(Am) ≥ 0 for all m
and n.7

Finally, it’s well known and not difficult to see that disintegrability implies conglomer-
ability, so (I) is proved.

For (II), we modify a classic example due to Dubins. The idea is that there are two
lotteries a and b over the natural numbers, exactly one of which will be activated. If a
is activated, then n is chosen with probability 2−n. If b is activated, then n is chosen with
probability 2n−1−1

2n(2n−1+1)
. The probability that a is activated is the same as the probability that b

is activated. We note that b is a merely finitely additive lottery because
∑∞

n=1
2n−1−1

2n(2n−1+1)
< 1,

by comparison with
∑∞

n=1 2−n = 1.

Example. Formally, let Ω = {a, b} × N. Let En = {a, b} × {n} and Π = {En : n ∈ N}. Let
A = {a} × N and B = {b} × N. Let P be a (merely) finitely additive probability defined on
every subset of Ω satisfying

P{(a, n)} =
1

2n+1
, P{(b, n)} =

2n−1 − 1

2n+1(2n−1 + 1)
, P (A) = P (B).

Proposition 1. In the Example, P does not obey the comparative principle.

Proof of Proposition 1. Observe that P (En) = P{(a, n)} + P{(b, n)} = 1
2n+2 <

1
2n , so P is

dominated on Π by any probability Q on Ω such that Q(En) = 2−n.

Proposition 2. In the Example, P is conglomerable in Π.

Proof of Proposition 2. To show that P is conglomerable in Π, it suffices to show that
infn P (X | En) ≤ P (X) holds for all X ⊆ Ω, for then

1− P (X) = P (Xc) ≥ inf
n
P (Xc | En) = 1− sup

n
P (X | En)

holds for all X ⊆ Ω, leading to conglomerability. Let X ⊆ Ω be given.
The result is immediate if X = Ω or if X ∩ En = ∅ for some n, so from now on assume

that X 6= Ω and X ∩ En 6= ∅ for all n.
Observe that

P{(a, n)}
P (En)

=
1

2
+

1

2n
↓ 1

2
(5)

7By definition, δωn(A) = 1 if ωn ∈ A and 0 otherwise. Note that this construction of Q provides an
elementary answer to a question about extending dominating measures raised by Easwaran (2013, fn. 7).
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and
P{(b, n)}
P (En)

=
1

2
− 1

2n
↑ 1

2
. (6)

We now consider several cases.
Case 1: A ⊆ X. Because we are assuming that X 6= Ω, we must have X ∩En = {(a, n)}

for some n, and we never have X ∩En = {(b, n)} for any n. We now move to two sub-cases.
Case 1a: X ∩ En 6= En for infinitely many n. It follows that X ∩ En = {(a, n)} for

infinitely many n. From (5) we get infn P (X | En) = 1/2 = P (A) ≤ P (X).
Case 1b: X ∩ En = En for all but finitely many n. Let N be the largest n such that

X ∩ En 6= En. Then, X ∩ EN = {(a,N)}, so P (X | EN ) = 1
2 + 1

2N
by (5). It follows, also

by (5), that infn P (X | En) = 1
2 + 1

2N
. By the fact that X ⊇ Ω \ ∪Nn=1{(b, n)} and Lemma 1

below we have

P (X) ≥ 1−
N∑

n=1

P{(b, n)} ≥ 1

2
+

1

2N
= inf

n
P (X | En).

Case 2: (a, n) /∈ X for some n. The assumption that X ∩ En 6= ∅ for all n implies that
X ∩ En = {(b, n)} for some n. Let N be the least such n, so that, by (6), infn P (X | En) =
1/2 − 1/2N . Then, because (a, n) ∈ X ∩ En for all n ≤ N − 1, and using the facts that∑∞

n=N
1

2n+1 = 1
2N

and
∑∞

n=1
1

2n+1 = 1
2 , we have

P (X) ≥
N−1∑
n=1

P (X ∩ En) ≥
N−1∑
n=1

P{(a, n)} =
N−1∑
n=1

1

2n+1

=
∞∑
n=1

1

2n+1
−
∞∑

n=N

1

2n+1
=

1

2
− 1

2N
= inf

n
P (X | En).

This establishes that P is conglomerable in Π.

To complete the proof of the Theorem, it remains to state and prove the lemma used
above.

Lemma 1. For all N ∈ N,

1−
N∑

n=1

2n−1 − 1

2n+1(2n−1 + 1)
≥ 1

2
+

1

2N
.

Proof of Lemma 1. The result is immediate for N = 1, so assume N ≥ 2. Then,

N∑
n=1

2n−1 − 1

2n+1(2n−1 + 1)
<

N∑
n=1

1

2n+1
− 1

4
<

1

4
≤ 1

2
− 1

2N
, (7)

where the first inequality follows from the inequality 2n−1−1
2n+1(2n−1+1)

< 1
2n+1 , which holds for all

n, and, when n = 1, is 0 < 1
4 . Multiplying by −1 and adding 1 to both sides of (7) yields the

result.
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