2,367 research outputs found

    Observability and Structural Identifiability of Nonlinear Biological Systems

    Full text link
    Observability is a modelling property that describes the possibility of inferring the internal state of a system from observations of its output. A related property, structural identifiability, refers to the theoretical possibility of determining the parameter values from the output. In fact, structural identifiability becomes a particular case of observability if the parameters are considered as constant state variables. It is possible to simultaneously analyse the observability and structural identifiability of a model using the conceptual tools of differential geometry. Many complex biological processes can be described by systems of nonlinear ordinary differential equations, and can therefore be analysed with this approach. The purpose of this review article is threefold: (I) to serve as a tutorial on observability and structural identifiability of nonlinear systems, using the differential geometry approach for their analysis; (II) to review recent advances in the field; and (III) to identify open problems and suggest new avenues for research in this area.Comment: Accepted for publication in the special issue "Computational Methods for Identification and Modelling of Complex Biological Systems" of Complexit

    Dynamical compensation and structural identifiability: analysis, implications, and reconciliation

    Get PDF
    The concept of dynamical compensation has been recently introduced to describe the ability of a biological system to keep its output dynamics unchanged in the face of varying parameters. Here we show that, according to its original definition, dynamical compensation is equivalent to lack of structural identifiability. This is relevant if model parameters need to be estimated, which is often the case in biological modelling. This realization prompts us to warn that care should we taken when using an unidentifiable model to extract biological insight: the estimated values of structurally unidentifiable parameters are meaningless, and model predictions about unmeasured state variables can be wrong. Taking this into account, we explore alternative definitions of dynamical compensation that do not necessarily imply structural unidentifiability. Accordingly, we show different ways in which a model can be made identifiable while exhibiting dynamical compensation. Our analyses enable the use of the new concept of dynamical compensation in the context of parameter identification, and reconcile it with the desirable property of structural identifiability

    Consistency of maximum likelihood estimation for some dynamical systems

    Get PDF
    We consider the asymptotic consistency of maximum likelihood parameter estimation for dynamical systems observed with noise. Under suitable conditions on the dynamical systems and the observations, we show that maximum likelihood parameter estimation is consistent. Our proof involves ideas from both information theory and dynamical systems. Furthermore, we show how some well-studied properties of dynamical systems imply the general statistical properties related to maximum likelihood estimation. Finally, we exhibit classical families of dynamical systems for which maximum likelihood estimation is consistent. Examples include shifts of finite type with Gibbs measures and Axiom A attractors with SRB measures.Comment: Published in at http://dx.doi.org/10.1214/14-AOS1259 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Identification of cellular automata: theoretical remarks

    Get PDF
    Land use evolution during forty years in a large set of European cities is analysed by means of a cellular automaton. In one hand (the operational level), the use of this modelling tool allows: a: to study the transition rules in land use and the proximity effects on these rules; b: to compare the different case -studies, otherwise very difficult to be confronted; c: to define scenarios of evolution, on the bases of the past trends. On the other hand (methodological level), availability of a large data-base (significant time series for a set of comparable cases) allows: a: to manage, in a scientific way, the problem of calibration and validation of a cellular automaton (a crucial problem - we have to blame - usually neglected in territorial applications); b: to verify, empirically, potentialities and limits of cellular automata, compared to other models for the analysis of spatial dynamics.

    A study of parameter identification

    Get PDF
    A set of definitions for deterministic parameter identification ability were proposed. Deterministic parameter identificability properties are presented based on four system characteristics: direct parameter recoverability, properties of the system transfer function, properties of output distinguishability, and uniqueness properties of a quadratic cost functional. Stochastic parameter identifiability was defined in terms of the existence of an estimation sequence for the unknown parameters which is consistent in probability. Stochastic parameter identifiability properties are presented based on the following characteristics: convergence properties of the maximum likelihood estimate, properties of the joint probability density functions of the observations, and properties of the information matrix

    A mathematical model for breath gas analysis of volatile organic compounds with special emphasis on acetone

    Full text link
    Recommended standardized procedures for determining exhaled lower respiratory nitric oxide and nasal nitric oxide have been developed by task forces of the European Respiratory Society and the American Thoracic Society. These recommendations have paved the way for the measurement of nitric oxide to become a diagnostic tool for specific clinical applications. It would be desirable to develop similar guidelines for the sampling of other trace gases in exhaled breath, especially volatile organic compounds (VOCs) which reflect ongoing metabolism. The concentrations of water-soluble, blood-borne substances in exhaled breath are influenced by: (i) breathing patterns affecting gas exchange in the conducting airways; (ii) the concentrations in the tracheo-bronchial lining fluid; (iii) the alveolar and systemic concentrations of the compound. The classical Farhi equation takes only the alveolar concentrations into account. Real-time measurements of acetone in end-tidal breath under an ergometer challenge show characteristics which cannot be explained within the Farhi setting. Here we develop a compartment model that reliably captures these profiles and is capable of relating breath to the systemic concentrations of acetone. By comparison with experimental data it is inferred that the major part of variability in breath acetone concentrations (e.g., in response to moderate exercise or altered breathing patterns) can be attributed to airway gas exchange, with minimal changes of the underlying blood and tissue concentrations. Moreover, it is deduced that measured end-tidal breath concentrations of acetone determined during resting conditions and free breathing will be rather poor indicators for endogenous levels. Particularly, the current formulation includes the classical Farhi and the Scheid series inhomogeneity model as special limiting cases.Comment: 38 page
    • …
    corecore