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A STUDY ON PARAMRTER IDENTIFIABILITY

System identification is the process of modeling a system struc-
ture, establishing a mathematical repregsentation of that structure and .
determining the values of the unknown coefficients, or parameters,
from experimental input and output data records. In the broad sense,
parameter identifiability may be considered as the mathematical assur~
ance of the recoverability of the unknown parameters. Deterministic
parameter identifiability pertains to systems in which no corruptive
noise processes are present, while stochastic parameter identifiability
treats those systems in which noise processes are present, either
in the dynamics of the system itself, in the output observation
process, or in both.,

A set of definitions for deterministic parameter identifiability
is proposed based on the necessary injectivity of the mapping from the
system composite input/initial condition/parameter space into the system
output space, The equivalence of the proposed definitions and of
various definjitions previously developed is demonstrated. Determinis-
tic parameter identifiability properties are presented based on four
sysfem characteristics: direct parameter recoverability, properties
of the system transfer function, properties of ocutput distinguishabil-
ity, and uniqueness properties of a quadratic cost functional.

Stochastic parameter identifiability is defined in terms of the
existence of an estimation sequence for the unknown parameters which is

consistent in probability. Stochastic parameter identifiability
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properties are presented based on the following characteristics:
convergence properties of the maximum likelihood estimate, properties
of the joint probability density functions of the observations, and
properties of the information matrix.

Specific parameter identifiability properties for a number of
specific systems and classes of systems are presented as theorems and

examples.
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1. INTRODUCTION

The problem of system identification has recently become one of
the more intensively studied and active fields of engineering and ap-
plied mathematics research. The final objective of the system identi-
fication problem is the production of an “accurate" model, or mathe-
matical representation, to facilitate the study, understanding and,
ultimapely,.the implementation, modification or improvement of a given
system, The lack of such adequate system models is perhaps the great-
est limiting obstacle preventing the application of powerful techniques
of modern control, estimation, and filtering thecry to such diverse
areas as biological and human systems, ecological systems, socio-
economic systems, and many other complex and multifaceted fields of
endeavor not previously associated with exact, mathematical analysis.

The system identification problem is generally considered to con-
sist of th;?e phases. In the first, or modeling pha;e, the basic mathe-
matical structure of the system is determined. In determining this
structure, varying degrees of a priori knowledge of the system may
exist, As a minimum, the system observables (input and output variables)
must be identified. Data records of these observables must be avail-
able or must be obtainable through measurement experiments. If these
data records constitute the total a priori knowledge of the system,
the analyst is faced with the "total ignorance" or “black box" system
identification problem (2].

More common, hewever, is the ‘Ygrey box'" identification problem in

which considerable knowledge of the system variables and internal




structural properties is known. In this case, the form of the describ-
ing mathematical equations is known or may be readily deduced from the
available defining, physical theory. Only this more common “grey box"
identification problem will be considered in the following. The struc-
ture or form of the mathematical equations defining the system under
consideration will be considered to be known,

Having determined the form of the defining system equations, it is
then necessary to determine values for the unknown equation coefficients
by an analysis of the availabie input and output data records.’ The
determination of these system parameters is the second phase of the
system identification problem. Parameter estimation problems have
been extensively investigated in the past, yielding well known results
in such areas as least-squares analysis and curve fitting. Inherent
to the parameter estimation problem, however, is the preliminary ques-
tion of whether the system parameters can indeed be found under the
given conditions and with the data available. That is, for the system
as defined, are the system parameters mathematically identifiable? It
is to this question of system parameter identifiability that this paper
is addressed.

The final step in the system identification problem is that of
model verification. 1In this step, a final judgment is made of the
model's ability to describe adequately the given system in terms of the
objectives of the study. Such objectives might include the design of
a control strategy for the system, the accurate simulation of the sys-

tem, or the accurate prediction of the system response to varied inmputs.




Obviously, the question of parameter identifiability is critical
;o':hn generation of a parameter estimation algorithm, If the para-
meters are not mathematically identifiable, it is senseless, at bast,
to attempt the generation of such an algorithm. At worst, the imple-
mentation of an estimation algorithm may generate spurious parameter
values vhich may well lead to incorrect conclusions about the system
properties.

The question of parameter identifiability may also have a direct
bearing on the other two phases of the parameter identification problem.
An understanding of .the parameter identifiability properties of a given
class of systems may guide the investigator in selecting an appropriate
system model. Obviously, a model in which the system parameters are
not identifiable must be rejected. If the form of the system is well
defined by its physicai propérties, a knowledge of the parameter iden-
tifiability properties of that particular class of systems may lead to
the proper choice of input signals or to the design of a proper output
measurement scheme to insure system parameter identifiability. In like
manner, the evaluaticn of the adequacy of the system model in terms of
the ultimate investigation objectives must be conaidered in light of

the limitations imposed by the parameter identifiability requirements.
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2. BASIC CONCEPTS

In its broadest sense, parameter identifiability may be considered

as the mathematical assurance of the capability of determining unique

.values for the unknown parameters of a system from some set of input

and output data records, That such assurance can not always be readily

established is evident in the following simple examples,

Example 2,1, Consider the simple linear system described by the equa-

tions
X = ax + bu (1)
y = ex (2)

where the output y, the system state x, and the input u are each
scalar-valued. The system parameters a, b, and ¢ are to be determined
from some set of input and output data. If the initial state of the
system is assumed to be zero, the system input-output relation can be
immediately written in the familiar form

y(t) = be jot explalt=T)]u(T)dT. (3)
The system parameters b and c appear only as the product bc and :hus
can not be separated and determined uniquely firom the input-cutput

measurements alone. Any parameter pair (b,c) which satisfies the

relationship

bc = constant = k (%)

will produce identical input-output records., If an attempt is made to
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determine the v?lucslof b and c using a parameter estimation scheme of
the small yatiationn cfpe,_such hs the Newton or Gauss-Newton methods,
the non-unique values generated by such a sequencc, if indeed the para-
meter estimation sequence converges ai all, will usually be dependent
upon the values assumed for the pétameCers ;c’the first iteration. To
ostain a uniquely described system, it is,necessaryyio ;pecify.either

b or ¢ or to establish a defining relationship betwcen the two para-

meters. These properties are demonstrated in Figure 1.

Example 2.2. (3] Figure 2 shows a two-compartment model in which the
concentrations of compartments 1 and 2 are designated X, and Xy, TeS-
pectively, and the input and rate coefficients arc designated as u and

a5 az, a5, and a, respectively., Such a model may be used to represent

TRUE PARAMETER VALUE
(by,¢;)

e —————

1
by

- b
() INITIAL PARAMETER ESTIMATE
NUMBER 1

(@ INITIAL PARAMETER ESTIMATE
NUMBER 2

Figure 1. Parameter relationships for Example 2.1.

.
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Figure 2. A two-compartment model.

the simplified oxygen transport characteristics of a pulmonary/cardio-
vascular system in which the pulmonary subsystem is represented by
compartment 1 and the cardiovascular subsystem is represented by com-
partment 2, The oxygen levels or concentrations of the respsctive
subsystems are denoted by X, and Xy, and the oxygen transport coeffi-
cieants by al, a,, a5, and a,.

For a given oxygen input, u, the two-compartment model may be
analyzed by monitoring the concentrations of either onme or both of the
compartments, 1f only the concentration of compartment 1 is monitored

(l.e., X is the single output of the system), the equations describing

the system may be written as

X, = -(al A az)xl + 3%, +u ‘ , (5)
iz = ayx - (a3 +a,) % v . (6)
y =% . ' ¢)

It is desired to determine the rate coefficients, or system parai-

mEeIs 3,, 4y, 34 and a, from a set of input and output data, Assuming

< we ]

P



the system has szchieved steady state, the input data is directly related

to the output data by the system transfer function which can be found to
be
L o 13 + l“

G(s) = 3 + (8)
s + 1(114-12'&13-&.“)‘» (a1+ '2)('3""4) - 4,8,

It is obvious that G(s) will yield the same input-cutput relationship

for any parameter combination for which

13 + a = constant = < {9)
ll + ‘2 + a3 + a = constant = ¢, (10)

and
(11 + az) (a3 + “A) - a8, = constant = Cq ¢ (11)

As Egqs. (9), (10), and (1l1) constitute an underdetermined set of three
equations in four unknowns, the system parameters can not be uniquely
determined from aay given set of input and output data. Tv uniquely
describe the system, either the value of one of the system parimeters
must be specified or a defining relationship among the four system para-
meters must be specified.

It is desirable that the system property of parameter identifi-
ability be defined independently of the method used to estimate para-
meter values, Parameter identifiability is considered to be a property
of the systew itself. It is thererore necessary to explicitly define
what is meant by a system or, more exactly, the mathematical represen-

tation of & system and to enumerate the basic propertics of such a
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systom [12]. In consonance with commonly accepted practice, the mathe-
matical representation of the system is itself referred to as the
system in the sequel. A general system is represented schematically by

Figurc J «nd mathematically by Eq. (12).

y
| f |
4= (x:2) ‘é -y

Figure 1. A general system.

Y= £ & U W) +y (12)

The quantities u, y, x, and @ are the input, outpui, state, and
parameters of the system, and w and v are noise processes. The system
inputs and outputs and, indirectly, the noise processes are functions
of time, t, normally defined on [0,2) for the continuous case and on
{lek‘I*}, it being the non-negative integers, for the discrete case.

To encompass these two possibilities, the domain of the system inputs
and outputs is designated as T where T<R* and R" 15 the set of non-
negative real numbers The system parameters, 7, are specifically time-

independent; that is, they are constant.

The following scts and propertics perfair to the system described
by Eq. (12):

U is the space of allowable input functions. An element u(-) of U

is called a4 system input and, for any time teT, u(t) is called the
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value of the input u at time t. The input, u, is of dimension r; speci-
fically, g(t)eRr, where R® is the space of ordered r-tuples over the
field of real numbers.

¥y is the space of output functions, An element of y is desig-
nated ;s y(+) and is called a system output. For any given time teT,
y(t) is called the value qf the output y at time t. The dimension of
the output y is m, and y(t)eR".

X is the system state space for which an element xe€X is known as
a system state. X is n-dimensional and, in particular, X<R".  For any
cime teT, x(t)eX is called the system state at time t. 1In particular,
x(0) is the initial state of the system and is designated x(0) =

50‘

The initial state of the system may be stated more generaily as 5(t0)

for an arbitrary initial time t It should be noted that x.¢X and

0* =0
n

is therefore also n-dimensional, i.e., §0€R .
{1 is the space of allowable system parameters, and an element of
(i is designated as § and is called a system paramcter. At this point
it should be noted that in generating properties of the general system
or in manipulating system elements in generating parameter identifi-
ability properties of the general system, arbitrary norms, designated
by ||-|| , may be defined on the subject spaces as required. { is a com-
pact subset of RP, and hence, QSRP is p-dimensional. - Arbitrary norms
upon RP and R" may be considered to have been defined as required by
the compactness property. Limited parameter identifiability results
have been generated for more general parameter spaces, However,
restricting Q to be a subset of RP is not limiting for systems thét

model physically realizable processes, and parameter identifiability

in generalized parameter spaces will not be considered.

- e sn—
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w and v are generally additive, white, Gaussian noise processes
affecting the system plant or state and the system output, respectively,
The output noise process is specifically limited to being additive in
nature while the plant noise process may be other than strictly additive
in nature. Though not génerally the case, either process may exhibit
properties other than those of white, Gaussian noise. Each process
may be correlated or statistically independent, the latter being far
more common.

A fundamental property of any given system in which the noise

processes have been excluded is that, for any given initial time t_eT,

0
for any given initial state Xy for any given parameter fe(}, and for
any given input u(-)eéU defined on some interval [to,t], both the
resulting state x(t) and resulting output y(t) at some later time t

are uniquely determined.

A minimal system or minimal realization is defined to be such
that the dimension of the system state space X is less thamn or equal
to that for any other equivalent system. Equivalent systems are de-
fined to be those which generate identical outputs for any given input
uel.

A rich diversity of systems and options are encompassed by Eq. (12)
and Figure 3. The system itself may be linear or nonlinear with re-
spect to its state, discrete- or continuous-time, single-input single-
output (SISO) or multiple~input multiple-output (MIMO). The form in
which the parameters and state variables appear, the parameterization,

may be canonical or noncanonical. The importance of a particular given

parameterization is readily apparent by comparing the following Example

e e g e
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2.3 with Example 3.5 which involve two seemingly equivalent parameteri-

zations of a linear, single-input single-output, second-order system.

Example 2,3, Consider the linear, SISO, second-order system character-
ized by the transfer function

1

B = oo (13)

with the corresponding state space formulation

Xy = agx; + X, (14)
iz = ayx, + aju (15)
y =% . (16)

The parameter to be determined is 8 = [al, a,, a3]T which is contained

in the parameter space Q = R,

The system may be written in an equivalent state space form as

1o
(1]
1>
(@
~
1%
+
jor

Bu ¢%)
y=cx (18)

where the parameterized, constant, system matrices are

3 1 0 1]
A®) = » b = » &= . (19)
0 a, a 0
To show that the given parameterization is not unique, and hence
not identifiable in (] = R3, it is sufficient to show that there exists

an invertible matrix P which creates an equivalently parameterized sys-

tem through the similarity transiormation

-
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* % *
where the matrices A, b, and ¢ define the equivalent system,

Consider the matrix

Then

13

0 33 1
1 0 32
tA
0 0
= = 2
%1 4

(20)

(1)

(22)

(23}

(24)

(25)

(26)
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¢ =c¢cP " =(1 0] =(1 0] =c¢c. (27)
233 1

Note that the two parameterizations are identical exc;pc in the A
and A* matrices which indicate that the parameters a, and a, are not
uniquely identifiable., The parameterizations characterized by the two
. triples (al, a,, a3) and (al, dqs az) are indistinguishable, their only
difference being the basis coordination of their respective state

spaces.

In a system identification problem, the unknown quantities to be
determined may include the system parameters 8, the initial state x,,
the covariance matrices of the plant noise process and output noise
process, or any combination of these quantities. While it is often
desired to determine 50 from the system input-output data, a sizable
body of results has been produced for systems operating in steady state
in which the initial states are therefore unimportant and may be assumed
to have been zero, or for systems actually having a zero, or otherwise
known, initial state. Such results lead to the concept of zero-state
parameter identifiability,.

Consideration must also be given to the system input and its effect
upon parameter identifiability, The input may be absent, present but
unspecified, or present and designed to enhance the parameter identifi-

ability properties of the system under study. Two commonly specified

inputs are Gaussian white noise and che unit impulse, the latter being

>
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particularly attractive for lincar, SISO systems as the impulse response

defines the intcernal characteristics of such systems. While the char-
acteristics of inputs ar: usually specified to cnhance the convergence
properties of purameter cstimation schemes as opposed to the actual
paramecter identifiability properties of the system, the presence or
absence of somc input is often critical to system parameter identifi-

ability properties as seen in the following example.

Examplc 2.4. Consider the unity fcedback system of Figure 4.

+ r 3 .
u L » 7 y
by S "‘&254'33
L

Figure 4. A unity feedback system.

The closed loop transfer function is readily found to be

a, al
H(s) = 2 ) ¢ (28)
s+ a,s + (a1 + a3) s + a,s + a,

It will be explicitly demonstrated in Example 3.5 that the parameteri-
zation of a system characterized by the given transfer function is
identifiable and that the parameter values a, a,, and a, can be deter-
mined. Since a; =3, -a, the parameter values al, 32’ and a3 are
also identifiable,

However, if the input is set identically to zero, u = 0, the

following defining differential equation results
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Yy + ay + (a1 + 33)y = 0, (29)
Obviously, any parameter pair (al, a3) such that

a + a, = constant = k (30)

1

yields an equivalent equation, and (al, a3) is not uniquely identifi-

able in the absence of a system input.

While parameter identifiability is considered to be a system
property and is therefore independent of the actual parameter values
or the parameter estimation scheme used to recover these values, there
exist derivative definitions based on the assumption of the existence
of a scheme to generate a sequence of parameter estimates, which
converges to the true parameter value. As these algorithms are
usually of the small variations type, it is sufficient to consider
parameter identifiability in terms of the uniqueness of the input/
output relationship generated by the true set of parameters as com-
pared to all other parameters within some neighborhood of the true
parameters, If this uniqueness property holds for all parameter space,
the system is considered to possess global parameter identifiability.
However, if this uniqueness property holds only within some limited
neighborhood of the true parameter value, the system is said to possess
local parameter identifiability within the defined neighborhood. Con-
sequently, consideration must be given to determining this neighborhood,
or region of parameter identifiability, in which a given parameter

value is unique. Initiation of a parameter estimation sequence within
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the region of paramcter {dentifiability will ensure that the estimation

scquence will converge to the true parameter values.

Example 2.5. The system of Example 2.3 was found to be not identifia-

ble as the two parameterizations characterized by the ordered triples

(al, ay, 33) and (al, aq, az) were indistinguishable., 1I1f for a speci-

fic input-output data record the following parameter values hold
(all az’ 83) = (kl’ kz! k3)

(&)
and

(313 aza 33) = (kl’ k3, kz)) (32)

*
then the partial (two-dimensional) parameter space, I , of Figure 5
can be drawn,

2 s

S{(kykq)ipq]

Figure 5. Partial parameter space, ok,
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1f the partial parameter space is partitioned into QI and Q; as
shown, the system is locally ident{fiable in each of the two resulting
vegions. Determining the respective regions of parameter identifiability,
designated in Figure 5 as S[(kz, ka);pll and S[(ks, k,);p,] for a parti-

cular parameter estimation scheme, is a companion problem to the para-

meter identifiability problem (see (13]).

Consideration of the uniqueness properties of a given parameteri-
zation within a neighborhood of the trie parameter value leads to the
concept of parameter distinguishability, the property within the given
local neighborhood by which the true parameter values can be isolated
or distinquished from all other possible values in that neighborhood,
This distinguishability property may be based upon different character-
istics of the system under consideration, such as the ability of the
true parameter value to generate a unique transfer function, a unique
output, or a unique cost function for some parameter estimation scheme.
This distinguishability property can then be related directly to the
parameter identifiability property of the system.

Perhaps most significant in the development of parameter identifi-
ability properties of systems is the dichotomy of definitions and
methodology required by the consideration of deterministic or noise
free systems versus stochastic or noisy systems. For this reason,
each is considered as a major category with all other subcategories,
as discussed above, developed under each.

It is generally desirable to develop p2rameter identifiability
properties for an entire class of syscems rather than approach each

system separately. However, due to the large number of ciasses and
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options described by Figure 3 and Eq. (12), a compact, comprehansive
treatment of the parameter identifiability question has not been accom-
plished to date. Instead, parnicar identifiability definitions and
developments have treated scattered, specific classes of systems, each
seemingly with its own set of definitions and properties, It is the
intent of this paper to consolidate these efforts into a unified and
comprehaensive overview. Therefore, basic definitions and approaches

to the general spectrum of parameter identifiability problems are con-
sidered with the specific results for given classes of systems presented
as examples of the basic philcflophies. A chart is presented in Appendix
A which relates the characteristics of the covered system classes to

the applicable theorems.
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3. DETERMINISTIC PARAMETER IDENTIFIABILITY

3.1 Concepts and Definitions

Onc of the two basic categories of systems in the study of para-
meter identifiability is that in which the noise processes w and v of
Eq. (2) are absert. The general deterministic system is then defined

as shown in Figure 6 as

where the definitions of the variables, arguments, and corresponding

spaces remain the same as given in Section 2,

Y ——> (%5:8) P——>y

Figure 6. A general deterministic system.

For the given general deterministic system, the following general

definitions ure proposcd:

Definition 3.1. A system is said to be Deterministically ldentifiable

if, for somc uey, the mapping £(°,*, U):X x.i=y is fujective,

Definition J.2. A system is said to be Locally Deterministically ldsnti-

fiable at (50, 30) if there exists an open sphere S(x., 20;;) of
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radius p > O centered at (x4 QO) such that, for some u¢U, the
restriction of the mapping £(*,*, w:X xu=Y to S(x,, §:0)

is injective.

Refinjcion J.3. A system is said to be Zero State Deterministically
Jdentifiable if, for some u¢/, the mapping £(0,°, u):XXiu=y {s

injective.

efinit 4, A system is said to be Locally Zero State Determinis-

tically Jdentifiable at (0, 20) if there exists an open sphere

s(0, Qo;p) of radiiti o » 0 centerved at (0, go) such that, for

some ucif, the restriction of the mapping £(0,+, u):Xxii=y to

5(0, ﬁo;p) is injective.

It should be recalled that £, a function from X into Y, is said

to be injective if for every Xy Xy¢X, then 5(51) = £(x,) implies that

2
1= % Equivalently, in tems of an arbitrary norm ”'” defined on X

p.3
and ¥, £ is said to be injective if for every x,, X,¢X, then|{£(x,) -
2(52)" = 0 implies ‘h‘t|‘£1 - Ezll' 0 or x; = x,.

It will be shown in the following that Definitions 3.l through
3.4 may be considered as the basic, cncompassing definitions for deter-
ministic parsmeter identifiability and that othcr definitions previous-

ly proposed by other authors may bc derived from, and hence are cquiva-

lent to, these basic definitions.
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3,2 Detcrminigtic Puramcter Jdontifiability from
Dircct Paramcter Recoverability
The injectivity of £, as rcquirced by the basic definitions of
deterministic paramecter identifiability given in Section 3.1, directly
implics thc invertability of £ and hence the direct recoverability of
vilaes for g, and Xy Using such an approach Staley and Yue {20] have
devcloped the deterministic identifiability properties for a class of
lincar, constant-coefficicnt, stable, single-input single-output, dis-

crete-time syatems as described by the scalar difference equation

n r
" -‘2':1'1"1-1 +i>:1biuj"i’ I=bL 2 et (34)

wherce the paramctcrs 81 and bi arc unknown constants with |‘1l<. , 18180,
and ‘bil<' , 131Sr. Although this system has a very particular struc-
ture, it represcats a rather large class of realistic prodbloms. In
particular, it may also reprcsent the discretized version or linear,
constant-coefficient, stable, SISO, continuous-time systems.

The system of Eq. (34) may be stated in an equivalent input-state-

output reprcsentation as

z+ D =Az(j)+bu, z2(0) = z, (35)

x; = hz()) (36)

——r - s e S e S we-ss kTR TR e oo
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where

.2 0 1 ooooo
A= . : : : : » (0 X n);
.n-l 0 0 Oatcol
- p
o - P1
b1 1
b2 0
2= |° » (Ex 1); ha=p® . (nx 1),
b 0
er - -

Staley and Yue {20] have proposed thc following definition of
identifiability for the given system which is readily seen to be a

direct consequence of, and equivalent to, Definition 3.1,

T
Definition 3,5 [20]. The system parameter § = ['1’ cees B, bl’ sees bzl

and the {nitial state z,y are said to be ldentifiable in the Deter-

ministic Sense, IDS, if 3 and %, are uniquely determincd from the
observed input and output scquences {uj} and {xj}, 0s jsL-1,

for some finite integer L.

The unknown parameter vector 9 and the initial state z, may be
expressed in terms of the input and output sequences using Toeplite

matrices as

5y "BI+EL @)




where
% = [“03 Ugs coey “L-llT » L x1);
5" (x,, Xyr coe ﬁ‘_l]T » L¥1);
Lnxn
g =|----| . @xn;
O nyn
and

2 n r
Bo= (S, 8%, v 55058, oo Syl Lx @+,

§, is the LxL shift matrix defined such that §L(i,j) =0

i,j+1°
1f Z, is known, such as when the system has an initial zero state,

then Eq. (37) and Definition 3.5 together imply the following properties

for Identifiability in the Deterministic Sense (IDS):

Property 1. 8 is identifiable, IDS, if and only if the matrix égl‘ is
positive definite (or equivalently, % has rank n 4+ r) such that

T. \-LT . . ) -
8= (&&) 1&:_&‘ is uniquely determined, Note: 2z, = O.

Property 2. @ is identifiable, IDS, only if L 2 n + r.

Property 3. 6 is identifiable, IDS, for all L > L, if it is identifi-

0

able for L = LO'

By applying these three properties, the following theorems may be
derived describing the identifiability properties of the class of

systems described by Eqs. (34) or (33) and (36).
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Theorem 3.1 [20]

In the autonomous version of the system described by Eq. (34)
(1.e., bi = 0 or u s 0, all i), § = [al, coes an]T'is identifiable,
IDS, if and only if (A,go) is a completely controllable pair. Further,
8 is identifiable, IDS, if and only if it is identifiable in 2n steps;
i.e., L = 2n,

In light of the universal Definition 3.3 for zero state determin=-
istic parameter identifiability, it is proposed that the above theorem
be modified to assert that § is simply "Zero State Detemministically
Parameter Identifiable" as opposed to “identifiable, IDS".

It should be noted, in particular, that the initial state is
assumed known, that the parameter vector § is limited to values of a;,
1l £1isn, and that the input u, =0, all i or bi = (0, all i. It may
be recalled that the pair (5,50) is completely controllable if and only

if the controllability matrix has rank n,

rank(z,, A z,, 5250, cees AF-n-liol = n. (38)

Example 3.1 [20]. While it is easily shown that the initial state z,
=100, 0, ..., 1]T always yields an identifiable system, consider the

second-order system described by
e (c+d)x, , +cdx, , =0 ' 3
X ( )xJ,l -2 (39

with an initial state 3= (1 - d]T; For this case,

hanx: o 2
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and (A,2z,) is not a controllable pair. The vector z, is an eigeavector
of A corresponding to the eigenvalue c. The state transition is come
fined to a proper subspace of R® which is invariant under A, ad no
information about d, the other eigenvalue of A, is contained in the
output.

For a non-autonomous, zero-state system the following theorem ap-
plies. A similar modification of the terminology "identifiable, IDS"

is proposed to achieve conformity with Definition 3.3.

Theorem 3.2 |20|

If the system of Eq. (34) is stable and = 0, then the parameter

%

vector § = [al, cees @, bl vees br]T is identifiable, IDS, from the

input and output sequences {“j}’ ‘xj}, 0 jsL -1, if and only if
(0) L2n+r,

(i) bi are not all zero,
n Iy
(ii) the polynomials A(z) = 1 - jzi asz and

m *
B(z) = j;& bsz do not have a common factor, and

(iii) uj is not identically zero for 0 £ jS L -n =-r,

When 2z, is unknown, Theorem 3.2 can be generalized by the following

—O
modifications:

T

T 1)

LR - -Ef o ), a+1)x (2u+1)
=L

T T T

&~ 18, zl.

The generalized result becomes:
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Theorem 3,3 [20]

If the system of Eq. (34) is stable, then the parameter vector §
and the initial state z, are identifiable, IDS, from the input and out-
put sequences {uj}, {xj}, 0s jsSL -1, if and only if

0) Lz22n+r,

1) bi are not all zero,
(ii) A(z) and B(z), as defined in Theorem 3.2, do not have a
common factor, and

(iii) the (2n + r) x (2n + r) matrix

is positive definite where EL remains as defined previously and

_ 2 n+r
gi‘-['gla ’%!I‘, -QQ’§I‘ %]’ LX(n+t).

A change of terminology may also be made in Theorem 3.3 to conform
with Definition 3.1.

It may be noted that if bi = 0, all i, Theorem 3.1 applies. The
proof of Theorem 3.1 is presented in Appendix B. Theorems 3.2 and 3.3

are given without proof (see [20]).

3.3 Deterministic Parameter Identifiability
from the Transfer Function

The injectivity of £ required by the basic definitions of determin-

istic parameter identifiability may also be interpreted as requiring a
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unique relationship between the system input and output; that is, an
injective mapping from U into Y. Such a mapping is detemmined for two
large classes of deterministic, linear, comstant coefficient systems

by their transfer functions. These two classes of systems may be de~

fined for the continuous-time and discrete-time cases respectively by

x(t,8) = AL x (£,8) + B(® u (t) (40)

2(t,0) = €8 x (£,8) +D(®) u () (41)
. ,

x(k + 1,8) = A®) x (k,8) + B(®) u (k) (42)

2(k,9) = C® x k.9 + DO u (K (43)

where x(,8)¢R®, y(+,9)eR™, u(+)eu and‘g(o)ckt, geacr®, and A(9), B(S),
C(8), and D(8) are appropriately dimensioned constant matrices para-
meterized by 8. For their respective transfer functions, H(s,8) and
H(z,8), the systems must be operating in the steady state mode in order
to relate the system input u(.) to the system output y(-,8). Hence, no
information concerning the initial state X, is available from the input-
output data records. The systems may thus be considered to have a known

initial state which may be taken without loss of generality as = 0,

X5
The methodology employed and the results achieved are identical for
both systems, except that the Z Transform is employed for discrete-
time systems and the Laplace Transform is employed for continuous-time
systems. Therefore, only the continuous-time system of Eqs. (40) and

(41) will be considered in the following.
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The given system may now be investigated for properties of Zero N‘
State Deterministic Parameter Identifiability, as required by Definie
tion 3.3 and 3.4. For a given ueU, the system output may be written

in the frequency domain as

£(5,9 = {c@UsL - A®17" B® + D@} U(s.

= H(s,9) U (s,8) (44) !

It is seen that g(s,g) must be (locally) injective (equivalently,
Qnique) as a function of 8. Equivalently, from the definition of in-
jectivity, for every gl, gzeo, then g(s,gl) = g(s,gz) implies that

Ql = §b. That H(s,8) must be (locally) injective is evident from the
uniqueness of the Laplace Tramsform/Inverse Laplace Transform pair and

from the fact that |

2 Hu(s,®)) = £10, 8, 5(0)] (45)

where=£-l is the Inverse Laplace Transform operator and §(t) is the
vector impulse function which generates the impulse response matrix.
It should be noted that the vector impulse function §(t) implies that
an impulsive input is applied to each of the m input ports in sequence
and that the resulting outputs each form a column of the impulse res-

sponse matrix. Thus, these two particular classes of systems may be

considered to require an impulsive input for the determination of para-
meter identifiability properties and are so designated in the chart of

system characteristics in Appendix A.
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As implied in the sentence following Eq. (44), the simplcst level
of analysis may involve the direct inspection of‘g(shg) to determine
its uniqueness as a function of 8. Such an analysis was conducted in
Examples 2.2 and 2.3.

Glover and Willems [3], using the general concepts above, have
produced for the two classes of systems under consideration a set of
definitions and results, However, it will be readily seen that their
definitions and results are a direct consequence of, and thus equiva-
lent to, the basic definitions given in Section 3.1, Although the
actual definitions and results of Glover and Willems [39] are repro-
duced below for comparison, the obvious changes to produce conformity

with the definitions of Section 3.1 are recommended.

Definition 3,68 [9]. The linear, dynamic system characterized by Eqs.

(40) and (41) is said to be locally identifiable from the transfer

function at the point Qoeg if there exists a p > 0 such that
A 118 - &ll<res 118, - 8ll< 05 8y, 8,60 (46)
and

@ @) s - A€ 3@ +DE)) =

G(E) (Is - AENITN BEY + 2@ - @D

together imply 8, = 8,, for all seC and s # {X[A(QQ)], X[é(ﬁl)l} where
A(-) denotes the eigenvalues of the respective matrix, C ig the field
of complex numbers, and ||-{| is an arbitrary norm. In consonance with

the concept above, Definition 3.6a equivaiently states that, in a
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p-neighborhood of the true parameter 20’ there are no two systems with
distinct parameters which have the same transfszr functionm,

As the system matrices (A, B, C, D)(8) are nomvally continuously
differentiable with respect to §, the transfer function is meromorphic at
8

=0
lent definition.

and Eq., (47) may be expanded in a power series to yield an equiva=-

Definition 3.6b [9]. The linear, dynamical system characterized by
Eqs. (40) and (41) is said to be locally identifiable from the

transfer function at the point 20 if there is an open sphere
S(O,_Qo;p)CO with radius ¢ > O and centered at (0, § ) such that

(1) 388(0,_9_0;9) (48)

(2) 2® =2Ey A (49)

(3) COA@B® = CEPA EPBEY, 1=1, 2, ... (50)
together imply 8 = _0_0

Definition 3.7. The Markov parameters for the system described by
Eqs. (40) and (41) are defined in terms of the constant system

matrices A(8), B(8), and C(8) ar
2, = A ®B®, L=0,1,2, .. (51)

The Markov parameter matrix for the given system is defined as




-

2 @® 1
(@@’
¢® = |lc@a@e®l’ : (52)
| con™ el

It should be noted that Definition 3.6b is equivalent to the
requirement that the mapping from rhe parameter Space {}, or some subset
thereof, into the Markov parameters alsc be injective. As a direct con-
sequence of the constant rank theorem [17], it can be shown that for
an open sphere S(O,Qo;p), centered at (0,_6_0) with radius p > 0, con-
tained in  and thus also an open subset of RY, then the mapping from
S(O:QO;D)CQ into the Markov parameters is locally injective if the
rank of the Jacobian of the Markov parameter matrix equals p, the di-

mensionality of the unknown parameters,

36(8) |
rank(‘-aT-) = p, A (53)

As a direct consequence the following theorem is stated without proof

Theorem 3,4 |9]

The linear system characterized by Eqs. (40) and (41) is locally

identiffable from the transfer function at §,eQ if the Jacobian of the

Markov parameter matrix G(8) has constant rank p in an open sphere

S(O,_G_o;p) of radius p > 0 centered at (O,QO); i.e., rank [3G(8)/38] = p.

Employment of this theorem yields a relatively simple test for
local parameter identifiability for the given classes of linear sys-

tems. It is constructive to consider two such examples.
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Example 3,2. Consider the single-input single-output, continuous,

constant, second-order syatem characterizing the two compartment model

of Figure 2 and Example 2.2
X, = -(al + «az)x1 + 83Xy + U

Xy = 8%, - (a3 + “4)"2

y.xlo

It is required to determine if the four unknown rate constants a

(54)

(533)

(56)

1? 2,

a,, and a4 are zero-state, deterministically identifiable. The four

constant, system matrices defined in Eqs. (40) and (~1) for the given

systems are

-(al + az) a3
AQ® -
a, -(a3 + 34)
M1
c@® = and D(8) = (0]
.0

37)

where the unknown parameter vector § is defined as § = [al, ay, a5, aall.

The Markov parameter matrix for the seconde-order system (n = 2) {is

found to be

[2® IR ERCY
c®p® 5,®
8O = [c®A®L® |=]4,®
@82 @p®| lg,®

HONY GG IAG)

(continued)

(58)
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0
1

-(al + ‘2)

2 + 2a.a, + 2 + 4

a a,a, + 3, + a2,

1 Ky 2 2 3
-(a1 + 3a112 + 3'1‘2 +a,

+ ‘2‘3‘4)

"Pllz
2%3

2
+ 2:1a213 + 2&2A3

(38)

In order to check the local injectivity of the mapping of the

parameter space into the Markov parameters and apply the results of

Theorem 3.4, the Jacobian of the Markov parameter matrix is calcu-

lated as

pagllaal lelaaz agl/aas agllaaa-
3G, /38, 3G,/da, 3G,/da, 23G,/da,
a_gé_@_ . | 36;/38, 2ag,/3a, 3g,i3a, 2g,/3s,
aga/aal an/baz ag“/aa3 aga/ba4
_agslaa1 0G,/0a, 3G,/oa, aﬁsla‘q

P [

0 |

= |-l |

2a, + 2a, |

-(Bai + 6a, + Bag + 2a,8,) |

(continued)

(59}
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| o |
| o l
|-1 |
| 22, + 2a, + a, |
]-(3.% + 6aja, + 3a§ + 208, + bajay + a3 + agay) |
| 0 | o

| o Y

| o | o (59)
| o | ¢

| (28,3, + 2a§ + 28,2, + 3214)| -aza%

Clearly the matrix Egégl is of rank 3, at most, while it must‘be
of rank 4 for the mapping of the parameter space, Qc:RA, into the Markov
parameters to be locally injective., By the application of Theorem 3.4,
the system parameters are not identifiable. This prediction of non=-
identifiability of the system rate coefficients was confirmed by a

direct analysis of the system tranafer funccion in Example 2.2,

Example 3.3. . Modify the system of Figure 2 and Examples 2.2 and J.2
such that 34 = 0, yielding the following linear, constant, second-order

system

X = m(ap +ax; +agxy v u (60)

Xy = 3%~ A%, . (61)

y =%. : (62)




kY

The system matrices become

£(8) =

P
-(al + az) 13
) 4
(1
’
L0

» !(9_) -

(8 = [0]

e ——— - SRR s

(63)

where the unknown parameter vector 8§ to be identified now becomes § «

(a5 2y, aslr.

£® -

0
1

-(‘
Vi

Y

a; + 2a.a

(a +3a +3a

1 132 % 4%

The Markov parameter :..trix is calculated &s

(64)

The Jacobian of the Markov parameter matrix can then be found to be

-1l

(Za + 212)

3
-(3&1 + 6ala2

2
+ 3a + 212 3)

I
l
I
|
I

(continued) (65)

2 k] 2 2
1% + % + 231‘2“3 + 24203 + aza3>




e —— — —

a8

| © |
|9 |
| |
‘ (2: +2a2+13) O

l

(3. + 6;1‘2 + 312 + 2a133 + lu n + a )

(63)

(Za a, + Za + 2‘2'3)

which is clearly of rank 3 for all :, # 0. Thus, the mapping of the
parameter space, QCR3, into the Markov parameters is injective for all
2 ¢ 0, and, by Theorem 3.4, the modified system is locally ideatifiable
for all _9_1‘.&3 such that a, ¢ 0.

The prediction of the identifiability of the system parameters can
be confirmed by direct analysis of the system transfer function which
is found to be

s 4+ 03
H(s) = 2 * (66)

s + s(al + 42 + 13) + a113

Ic is readily evident that, for a given triple of constamts (cl’ s 03),

an identical input/output relationship will result for iny combination
of parameters in which

a, = ¢, (67)



39

a1+az+a3-c2 (68)
a2, = ey - (69)

Since there are three equations in three unknowns, there exists a

unique solucion for § = [al, a,, a3lT; in particular,

3 - c3/c1 > ¢ £0 (70)
ay = =¢, + ¢, = c3/c1 T 0 (71)
ay =¢, {72)

where the specific values of the triple (cl, Cys c3) correspond to the
specific input/output data record to be evaluated. Thus, as predicted
by the application of Theorem 3.4, the parameters of the modified sys-
tem are indeed identifiable.

In Example 2.3, the parametér identifiability properties of a
linear gsystem of the type characterized by Eqs. (40) and (4l) were
investigated by demonstrating the existence of a similarity trans-
formation which would transform a parameterized system into an equiva-
lent system with different parameter values but with the same para-
meterization. Glover and Willems [9] formalized the concept as follows.

For the vector of true parameters QO and the space of invertible
(nonsingular) n X n matrices Pe¢GL(n), the solution (P,8) for the

following asimilarity transformation equations must be investigated:

1o
>
@
|

"
">
[

é\/

(continued) (73)

v
oo
@
N
"
w
&
N

1t e ——r —————— S —— T T



c@r™ = gy
D(® =D&y (73)

It follows that the given system is (locally) identifiable from the
transfer function at 20 if there exist an open sphere S(O,_e_o;p) cQ

centered at (O,QO) with radius p > 0 such that (I n,go) is the unique
solution of Eq. (73) in GL(n) X S(O,go;p). Sufficient conditions for

such a unique solution to exist are given in the following theorem,

Theorem 3.5
Let the linear system characterized by Eqs. (40) and (41) be a

minimal realization and define

- ert ——

A
e@,8 = g@)g'l

I1f there exists an open sphere S(O,go,p) centered at (O,Qo) with
. 2 _
radius p > 0 such that VQ’Q)QQ,Q) has constant rank n” + p at P = Loxn
for all QeS(O,Q_O;p), then the system is locally identifiable from the
transfer function at 6..

—0
; The matrix v(g’-e)g(g,g) evaluated at the point (I .3 is given

by




which is a (n2 + nom+ rm + m) X (u2 + p) matrix and where@represents

41

P,Q)=\=2=
Q..) (Lnxn*g)

l

(L 2]

I(g)

’

®

’

®
‘'®

I
l

[[=U I [ I [ 1]

glanD-é '@ - é-<-e-)6);[-nxn |
RO O I

-Qiﬂ)(:)lan |
0 2
| “mrxn |
(74)

the Kronecker product [19] and z represents the standard Kronecker

product matrix ordering.

An application of Theorem 3.5 is given in the following example.

Example 3.4. Comsider the linear, SISO, second-order system

where

x = A@x +b(Qu
T
y=gx
o 1
A® = » B(® =
-a3 -az

(75)

(76)

- v S = n
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Then

v ¢ 2,9 =
2.9
ann’g)
- - - -
0 -a, 0 0 (o 0 1 0] o000
1 -2, 0 0flo o 0 1] 100
0 0 0 -a3 -a3 0 -a, 0 000
-o 0 1 -2 _o -a; 0 -4, 010
0 a 0 0 000
0 0 0 a 001
.1 0 0 o 000
0 -1 0 0 000
0 0 0 0 000
ad J
[~ -
0 =3, -1 0 0 0 0

3 2 3
0 aq 1 0 0 1 0
= |0 a, 0 0 0 0 0 an
0 0 0 a 0 0 1

which is of rank 22 4+ 3 =7 for all QGR3. By Theorem 3.5, the system

is identifiable from the transfer function (globally, since the rank of
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3
v E(2,9) is 7 for all feR7).
@39.)—(—’- Qn »8)
xn’=
It is constructive to consider a direct method of calculating a

PeGL(n) satisfying Eq. (73).

Example 3.5. Consider the system of Example 3.4 and find a Pe¢GL(n)
satisfying the conditions of Eq. (73). Assume that such a matrix P

exists, creating the equivalently parameterized system

Fea'@x +b@u (78)
y s (79)
where
0o 1 . . fo 1
A"@® - . B® = < - (80)
0.1 0.2 0.3 0
and
P11 Pp2
P = : 81)
P21 P22
From Eq. (73)
eRt=c"-c=c" (82)
or
Py P2
(1 o ={1 0 - [?11 plz] (83)

Pp1 P22

e e e ——— aa i A ™
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which implies p,, = 1 and Ppp = 0. (84)
Again from Eq. (73)

-1 * *
PAR =A “RA=AP

or

Pa1 P2 | "% "%2] | %P2 "%Pa1P22

P21 P22
= = (85)
1 %2) [Pa1 P22 | [%1 7 %P2y %2P22

which implies p,, = 0 and p,, = 1. Therefore,
21 22

M o

2 = ) (86)

the identity matrix, thus establishing the uniqueness of the parameteri-

zation of the system and confirming the results of Example 3.4.
1t should be noted that the state space formulation of Eqs. (795)
and (76) yield the transfer function

34

s +325+83

which appears essentially equivalent to that of Example 2.3. However,

H(s) = (87)

the system of Example 2.3 was found to be not identifiable, demonstrat-
ing the importance of a given parameterization to the parameter identi-

fiability properties of a particular system.
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3.4, Deterministic Parameter Identifiabilit RN
from Output Distinguishability

In Section 3.3, the injectivity of f éxpredled in the basic defi-
nitions of deterministic parameter identifiability was interpreted as
requiring an injective map from the system input function space U into
the system output function space y as delineated by a system transfer
function in terms of the parameters §. A very similar method is to
analyze directly the system output properties in terms of their injec-
tivity properties with respect to the parameters § as opposed to ana-
lyzing the system transfer function which generates the system output
for several classes of systems. By analyzing the output directly
rather than limiting the analysis to the output-generating transfer
function, a large set of system classes may be considered.

The injectivity of £ requires, by definition, for any given ueu
and 8,, 8,64, that x(.,gl) = y(+,8,) implies gl = §,. This may be inter-
preted as requiring that two outputs of the given system, corresponding

i
to two different parameters Ql and 92' gl # 62 but with a common input !
|

‘uel, must be different or distinguishable from each other for all 21

and 22 in (1, the parameter space for which the system is deterministi-
cally parameter identifiable.

Grewal et al. [10], (11] and (12] have developed a set of defini-
tions and results based on the distinguishability properties of the
system output. However, as before and as indicated above, it will
readily be seen that their definitions and results can be considered
as a direct consequence of, and therefore equivalent to, the basic

definitions of deterministic parameter identifiability in Section 3.l.
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As in previous sections, Grew?l's definitions and results are recon-
structed in the following for the purpose of comparison and, as previ-
ously, the obvious changes are recommended to establish conformity

with the definitions of Section 3.1l.

Grewal expanded the general deterministic system of Eq. (33) as

follows:
x(t,8) = glx(t,8), u(®), 6,815 x(t) = x; (88)
x(tag) = E[E(t:ﬁ). 2(t)s t,,?_] (89)

where 5(1:,&):&“; x(t:,.e_)ekm; u(t)eu; QeQCRP; t:eR+; g:Rn X U X8 x R+ -
R h: R®xuxAxR"=R™. The function g is Lipschitz in x, continuous
in u, and piecewise continuocus in t; h is continuous in x and u and
piecewise continuous in t. An equivalent formulation may be made for
discrete-time systems,

For parameter identifiability based on the distinguishability of
the system output, the problem remains that of ascertaining whether or
not the parameter values can be uniquely determined from a knowledge
of the system input and output. In terms of a specific initial state,

Xq» and a specific input, u(-)el, the output of the general system may

be denoted as

2(e.8) = Blxgs u(),¢,8]. (90)

A single experiment may be defined in terms of a specified initial
condition and input pair, [1‘0’ 2(-)], and the resulting output -&[50’

3(-),t,§]. The collection of all such allowable pairs is denoted by
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= {[50, g(.)] :goca“, u(+)eu (91)

where U is the space of piecewise continuous functioms.

Having established the required background, the following defini-

tions may be stated.

Definition 3.8 [10]. The pair of parameter values (Ql, Qz),‘glcﬂ, 8,0,
is said to be indistinguishable if g[go, u(+), c,gd = 5[50, u(e),
:,_e_z] for all [50, 2(-)] ¢¢ and 0 S t S T, Otherwise, the pair
(8, 8,) is said to be distinguishable.

Defining S(;Q,Q;p) as an open neighborhood centered at on.g) with

a radius p > 0, the definition of (local) parameter identifiability

may be stated.

Definition 3,9 [10]. A parameter set {} is identifiable at 20 if the
pair (8,, 8) is distinguishable for all f¢Ql, 8 +# 20. Further, a
parameter set { is said to be locally identifiable if there exists
a p > 0 such that the pair (QO, 8) is distinguishable for all
Bes(x,,8:0)s 8 # §,.

It should be noted that the definition of identifiability is inde-
pendent of whatever method might be used to extract the unknown para-
meter values from the input/output observation data, Further, although
the class ¢ of experiments is infinite, a finite number of experiments
can be designed to distinguish between two systems, e.g., a zero initial
state, impulse, or step response.

The concept of parameter identifiability based on output distin-

guishability can be readily applied to linear, constant, dynamic systems

e e At  pbnt s 8 v+ S ¢ b e e e B
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such as those represented by the, parameterized differential equations:

X5, = A@x(5,9 +BOut),  x(ty) =0 (92)
x(t,8) = c(®)x(t,8) + D(B)u(t) (93)

where 5(:,2)&“, g(t)ckr, z(t,ﬁ_)ckm, A= R™", B:Ql= RT, Q:Q-Rmxn’
and D:(}= R™*. The specifications for x and y cited for Eqs. (88) and
+89) continue to hold. ‘It should be noted that the total number of
unknown parameters, the dimensionality of the parameter space (}, equals
the total number of elements in the matrices A, B, C and D; i.e.,
n(n+rt+m) +mr = p, It should also be particularly noted that the
system is restricted tc zero initial state analysis; i.e., 5(::0) = 0,
The solution to the system equations may be readily obtained by
state transition matrix techniques. Output distinguishability of the

given linear system may then be expressed in terms of this solution as

given in the following theorem.

Theorer, 3.6 | 10|

For the linear system described by Eqs. (92) and (93), the pair of

parameter values (_Ql, 9_2), _9_lc0, QZGQ, is indistinguishable if and onmly
if '

© A@)(E-T)
) | e
0

CH B(8))u()4T + D(8,)u(E)

£ A@,) (t-T)
= 2@, J\ e B(§,)u(m)dT + D(§,)u(t)

0
for all u(t)el and for 0 s t S T,

OQutput distinguishability of the given linear system may also be
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expressed in terms of the system Markov parameters as presented in the

following corollary.

Corollary 3.6 [10]
For the linear system described by Eqs. (92) and (93), the pair

of parameter vectors @1, Qz), _6_11:0. 9_200. 1s indistinguishable {f and
only if

¢

L
SEPAN (BB @) YA (8 B(8), te0, 1,2 ...
D(8) *® D8,

For the given linear system, it is evident that indistinguish-
ability implies that the Markov parameters of the system will be
identical at different values of the system parameters, 9.

Parameter identifiability criteria for the given linear system

may now be obtained by relating Theorem 3.6 and Corollary 3.6 to Defi-
nition 3.10.

Theorem 3.7 (10}

For the linear system described by Eqs. (92) and (93), a parameter

set () is identifiable at go if and only if -

el

D(§y) = D8 , and
SBPA (8B = COA (DB® , 1e0, 1,2, ...

together imply 20 = 9.
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It should be noted that this identical result was presented as
Definition 3,6b in Section 3.3, while the result here is obtained as
a Theorem, It likewise follows that Theorem 1.7 requires that the
mapping from the parameter space (] into the Markov parameters bs injec-
tive, which gives rise to the following theorem which {s equivalent to

Theorem 3.4 of Section 3.3.

Theorem 3.8 [10]

For the linear system described by Eqs. (92) and (93), the para-

meter set {] is identifiable ‘at 20

Markov parameter matrix G(8) has constant rank p in an open sphere

if and only if the Jacobian of the

S(;O,Q;p) of radius p > 0 centered at (5_0,2); i.e., rank[3G(8)/38] = p.

Examples 3.2 and 3.3 pertain equally well to Theorem 3.8 as well
as to Theorem 3.4 and will not be repeated.

Distinguishability and identifiability results parsllel to those
of Theorems 3.6, 3.7, and 3.8 and Corollary 3.6 may also be obtained
in the frequency domain for the linear system described by Eqs. (92)
and (93). These results are stated in terms of the system transfer
function (see Ref. [10]).

A commonly employed technique for the analysis of nonlinear sys-
tems is the linearization of the system about an equilibrium or operat-
ing point. As the identifiability ofla parameter set i} has been de~
fined at and in terms of a nominal parameter value go, the use of line
earization techniques with this particular concept of parameter identi-
fiability seems particularly appropriate. Sufficient conditions have

been derived under which the local identifiability of the parameters of
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a4 linearized system will imply local identifiability of ‘the original
nonlinear systeom.
Consider the general system described by Eqs. (88) and (89) with

the assumptions and restrictions as given. Let

2(e,8) = x (¢,8) + &x(t,0) (94)

x(t,8) = y (8,8 + &y(t.9) (95)
and

8=8,+%8 (%)

where :_(_c(t,g), y_e(t,g), and ﬁ_o are equilibrium or operating point
values of the system state, system output, and system parsmeters, re-
spectively, and Ox(t,8), 8y(ct,8), and 88 are perturbations on 3‘(:;,3),

% (t,8), and _6_0, respectively. Equations (88) and (89) may now be

rTewritten as
(8.9 = B[x(5.8) + 00, w(D), ¢, 8y + 8], x(t) = xg (9N)

2(6,8) = hfx(e,8g + 8 u(e), €, &) + 8] . (98)
With % = &[5& u(t), c,go], Eqs. (97) and (98) become

' O3B | 6x(t,8,.08) , 25 |%8
62(‘: "6'0’ Gﬁ) az =0 ‘) #J

8(),¢,8, 36 |x ,u(c),¢,8,

+£, 55,080, Ox(,,5,,00) =0 (99




Sy(e, 8 7Y 88) = ' 6’“"—0062) 66 +.
- l‘og(c)ct;ﬁo aﬁ %’g(t)’t’go

where £, (8x,08,t) and £,(8x,80,t) represent higher order terms,

The linearized system equations then can be written as

65.0(:'.9.0:6@ _‘ -0(‘:..0.69) J %, %“0'20’62) =0
5ou(0),6.8) 38 | xg,u(t),c,8y (10D
3 | 8x(c,8,,68) 3n | o8
olo(ta_oob_) a =0 =0 -+ . (102)
Xg0u(t),¢, L | zpau(e),2,8,
For brevity, denote
d
B(t»ﬂo) . Sé
| xu, 1628, (103)
3h
Q(tteo) = -:
Xo2u(t),t,8, (104)
dh
D(C.Qo) - 51
Xoou(t),e,8, . (103)

Then the solution to the linearized system equations may be written

directly as

01, (2:85:80) = c(t,8,) J 2(ETag)B(T, 85047 + D(e,8,)
o (106)
vwhere g(t.‘r,ﬁ_o) is the system state transition matrix. It should be

noted that 06 represents a vector of parameters,

e e B
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t
Denoting C(t,8,)) f £, 2(€,T,80)B(T,8,)dT + D(t,8,) as N(t,8)),

an m X p time~-varying matrix, Eq. (106) can be rewritten au

Oy(t:8,,08) = N(c,8,)8€. (107)

It can be seen from Eq. (107) that the parameters 80 are identifiable,
that is; are uniquely recoverable from Eq. (107), only if the mapping
of the parameter space §feQ into the system outputs axo(c,go,og) is
injective for a given input and initial condition. Such will be the
case if and only if t.he columns of g(t,go) are linearly independent.
It can be shown [4, p. 75] that the columns of g(c,go) are linearly

independent if and only if the Grammian is nonsingular; i.e.,

$E N (T,8N(T,3d4T > 0 . (108)
% |
The above results may be summarized in the following theorem.

Theorem 3.9 |10|

Consider a nonlinear system with a state differential

equation

X(£,8) = glx(t.D),u(0),6,8],  x(ty) =x, (109)
and a linear output equation

¥(t,8) = hi{x(t,9) ,u(t),t,8] (110)

where the functions g and h possess continuous partial derivatives

with respect to the components of x and 8. The linmearized state dif-

ferential equation about qe,go) is:
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01, (,8,,88) = A(t,8)8%,(¢,8,,80) +B(t,8,)88, bx (t,) =0
(111)
and the output equation is

6, (£:80,08) = C(£,80)6x(£,80,08) + D(£,8,)68 (112)

where the matrices é(tzgo) and g(t,go) are the Jacobians of g, and
g(c,go) and g(t,go) are the Jacobians of h with respect to x and 6,
respectively, each evaluated at [ge,g(t),:,go]. Let

t
N(t,8) = C(t.8,) It @(t,T,8)B(T,8,)dT + D(t,8) (113)
0

where g(t,T,Qo) is the tramsition matrix of the linearized system
of Eqs. (111) and (112).
Then, for the given input u(t)el, if
€T
J X ('r,go)g('r,go)dfr >0 (114)

%

the parameters §el of the nonlinear system can be locally identified.

Another sufficient condition has been derived for the parameter
identifiability of a nonlinear system for any input “sufficiently
close" to a specified input, Assume that the parameters, feQ, are
fixed and consider only the effects of é&all perturbations in x and/or
u on the system motion. Then, a sufficient condition for the identifi-
abiiity of the parameters of a given nonlinear system is given in the

following theorem.

Theorem 3.10 [10

Consider a nonlinear system with a state differential equation
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i_(:ag) = 3[5(':,9) su(t) ::19.] ’ ,’S(to) = 50 (113)
and a linear output equation
y(t :.g) - h[ﬁ(tsg) su(t) .t:ﬁl (116) -

where the functions g and h possess continuous partial derivatives
with respect to the components of x and u at x, and Yy, respectively.

The linearized state differential equation about (ge,go) is

8x,(t,9) = A(E,8)8x,(8,9) + B(£,Ddu(r),  &xy(ty) =0
(117)

and the output equation is
Oy, (t,8) = c(t,8)8x,(t,8) + D(t,8)bu(t) (118)

where the matrices A(t,8) and g(t,ﬁ)' are the Jacobians of g, and
C(t,8) and D(t,8) are the Jacobians of h with respect to x and u,
respectively, each evaluated at Qe,go,t,g).

Then, if the parameter set {} of the linearized system of Eqs.
(117) and (118) is identifiable at 6, the parameter set {} of the

nonlinear system of Eqs. (115) and (116) is also identifiable at §.

Example 3.5 [10]. Consider a single input/single output, nonlinear,

second order system
;‘1(:) = -azxz(t) (1.9

fcz(c) = -alxi(c) - azxz(:) + uz(c) (120)

y(e) = x, (). (121)
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Note the parameterization feQ = [(al, az)eRZ:a1 £0, a, 7 0]. For a

constant input u, ¥ 0, the equilibrium states of the system are found

to be
2 1/3
Xel (“o/ alnom)
= . ) (122)
X2 . 0
Nominal values of the parameters a and a, are denoted by 311 0m and

490 om® Let éxl, Oxz, and 8u be perturbations on X1 ¥e2s and upys

respectively. The linearized equations are then found to be

ox(t,8) 0 -ay|f & (5,9 0
. =1 . + (t) (123)
&x, (t,8) gy ey || B8 | 2ug
Ox, (£,8)
8y(t,8) = [1 0] . (124)
ze(t:ﬁ)

For this linearized set of equations the Markov parameter matrix is

calculated as

f'o I
0
GO = -Zuoa2 (125)
2
Zanz
2 2 3
.-12a1a2xe1-2u0a2d

and its Jacobian as
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0 0
GO
T = |0 -2u0 (126)
0 4‘2“0
2.2 2 2
L-lzazxel -Zaalazxel - 6u0azd

The rank of the Jacobian is clearly equal to 2 for all QQR?, and, by

Theorem 3.8, the parameterization of the linearized system is identie
fiable for all Oekz. By Theorem 3.10, the parameterization of the

original nonlinear system also is identifiable at any § = (al, az)ckz.

3,5, Least Square Deterministic Parameter Identifiability

The definitions of parameter identifiability stated above have
been independent of the method used to recover the unknown parameter
values, Bellman and Astrdm [3] and MArtensson [15] have proposed an
algorithm-oriented definition called locally least square identifi-
ability in which experimental data are combined with a priori or as-
sumed knowledge of the system structures.

In many estimation methods of the small variational type, the
values of the unknown parameters are chosen to minimize a quadratic

cost functional of the form

T

3® = § Nzm® - goller, 150 (127)
t
0

or

X
O Iolzwd - yoolf, k=01, ., az

where xm(-) is the measured system output for some given input u and
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||." denotes the Euclidean norm imposed upon Rm. Local least square

identifiability is then defined as follows,

Definition 3,10 [3]. The system parameters § are said to be locally
least square identifiable if and only if J(§) has an isolated local

ninimum at § = 90 and J(QO) = 0, If the minimum is global, the

'parameters are said to be globally least square identifiable.

It should be noted that, contrary to later authors, Bellman and
Astrdém (3] did not require J(QO) = 0. While this may be a valid omis-
sion for the extension of the concept of least square identifiability
to the stochastic case, for deterministic systems the requirement that

J(QO) = 0 must hold necessarily as
Z(',QO) 3y (). (129)

In terms of Eq. (33), Egs. (127) and (128) become

T
I ® = ..l‘t IIECT:2q,8,0) - grglfar,  1>0 (130)
0

and
K . 2
3® =0 ll£kox,8.0) -y,  k=0,1, ..., (131

where the specific time dependencies have been added to the expressions.
As equivalent results may be obtained from either formulation above,
consider only Eq. (130). Since the integrand of Eq. (130) is non-

negative, the requirement that J(8,) = 0 implies that
_o

| £(T2xy,8050) - 2(T,8)|[ = 0 (132)

|
f
!
.5
g ,
i
}
Ly
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when

I 8- &ll = 0 (133)

which is an equivalent statement of the definition of injectivity of
£ with respect to §. Clearly, then, the definition of least square
identifiability is derivative upon, and equivalent to, the definitions
of deteminj.stic parameter identifiability given in Section 3.1.

A sufficient condition to insure least square determministic para=-
metexr identifiability is found in a restatement of the implicit funce

tion theorem.

Theorem 3.11 |3|

A sufficient condition for the parameter go to be locally least
square identifiable is that there exists an open sphere S(Qo,p)c.’.ncllp
with radius p > 0 centered at _9_0 such that JT(QO) = 0 and that the
(p X p) matrix of second-order partial derivatives with respect to the

parameters, J'.I':(Q), is positive definite for all §¢5(8,.p).

Grewal and Glover [12] have established the equivalency of least
square identifiability and of identifiability based on output distine
guishability. Such equivalency will not be demonstrated here since
mutual equivalency of all deterministic identifiability definitions

has been established through the definitions of Section 3.1l.

3.6. Comments on Deterministic Parameter Identifiability

It should be noted that although a number of seemingly different

definitions for deterministic parameter identifiability have been
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presented by different authors, it has been shown that they may be
derived from, and hence are equivalent to, the definitions presented

in Section 3.1 which require the injectivity of the function 5(50;20,2)
of Eq. (33) as the criteria for deterministic parameter identifiability.
It is thus recommended that the four definitions of Section 3.1 be con-
sidered as the general definitions for determin: cic parameter identi-
fiability and that the resulting theorems and system properties derived
in Section 3 be directly related to and derived from them.

It may be further noted that although certain system-specific
properties and theorems have been generated, such as Theorem 3,2, there
exist only three general methods of establishing deterministic para-
meter identifiability. These three methods essentially require the
certification

(1) that the parameters are uniquely recoverable from the system

mathematics (e.g., recoverable by Cramer's Rule, uniquely
recoverable by observation of the transfer function, etc.);

(2) that the Jacobian of the Markov parameter matrix is of con=-

stant rank equal to the dimensionality of the pareameter space
in some open neighborhood of the true parameter value; or

(3) that the second partial derivative of a quadratic cost func-

tional with respect to the parameters is positive definite
in some open neighborhood of the true parametet'value.

The first two methods are particularly suited for analysis of
linear systems while the thir& may be employed with either linear or

non-linear systems,

S
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4. STOCHASTIC PARAMETER IDENTIFIABILITY

4,1. Concepts and Definitions

The second of the two basic categories in the study of paramete:
identifiability has been developed for the class of stochastic systems
in which one or both of the noise process, w and v, of Figure 3 and
Eq. (12) are present. The general system as it was given in Section 2
is to be considered in the following.

In Section 2, parameter identifiability was considered in the
broadest sense as the mathematical assurance of the capability of
determining unique values for the unknown parameters of a system from
some set of input and output data records. In Section 3, this defini-
tion was restated for the doterministic (or noiseless) category of
systems in terms of the injectivity of the mapping, for some accept-
able input, of the system composite parameter and initial state space
into the system output space. The injectivity of this mapping insured,
among other properties, the existence of the functional inverse and
hence the recoverability of the parameter values. Stochastic para-
meter identifiability may be considered as the stochastic analog to
deterministic parameter identifiability. That is, stochastic para-
meter identifiability is the mathematical assurance of recovering
from noisy observation data the System parameter and/or initial state
values of interest in soms probabilistic sense. This may be further
interpreted as assuring the existence of a sequence of estimates of
the unknown quantities which converges in some probabilistic sense

to the true values of the quantities.
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In the presence of noise, the output data of the given system be-

comes a sequence of random variables

Lo Xy ceor 43 k=1, 2, oo orlyl (134)

Based on this observation sequence, in conjunction with an actual or
assumed knowledge of the structural properties of the system, the para-
meter identification problem becomes that of generating a sequence of
estimates of the unknown system parameters which will converge in a
stochastic sense to the true parameter value. Such an est.mation
sequence is a measurable function of the observation or output data

and is denoted by

gk(llt sesy x'k); k=1, 2, ... or [Qk]k_l . (135)

-

The true parameter value is denoted by 90. The vectors 90 and Qk
belong to {1, the space of allowable parameters, which may be considered
to be a subset of RP, the space of ordered p-tuples. Although results

have been obtained for more general spaces, the restriction of {) to rP

is not generally limiting for realizable, physical systems.

[ ]
£ kel
verge to z in probability (converge stochastically to z) if for

Definition 4.1. A sequence of random variables | is said to con-

every ¢ > 0

lim Pr‘]gk -zl 2 e] =0 i

k=

where Pr is a probability measure defined on RP.
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Rafipition 4.,2. An estimation sequence [-Qk]:-l ot gocﬂ which converges

stochastically to Qo is said to be consistent in probability; i.e.,

[gk];-l is a consistent estimate for go. This property may be

denoted by gk 8 _6_0.

Stochastic parameter identifiability of the initial state X, and
system parameter QO can now be defined in terms of the consistency of

the sequences of their estimates.

Definition 4.3. The initial state, Xq and the system parameters, §,
are said to be stochastically identifiable if there exist sequences
of estimates [ik]:.-l and [ ik]:-l which are consistent in proba-

bility; i.e., & Bx) and _e_k R,

It may be noted that, as with the definition of deterministic
parameter identifiability, the definition of stochastic parameter
identifiability is independent of the method chosen to generate the
estimation sequences. However, the standard method normally chosen
for generating these sequences has been the maximum likelihood esti-
mate method. For simplicity, consider the case when only go is urknown.

Let [xk];-l be a sequence of random variables with given joint
probability density functions pk(xl, Ygs vees i HH,k=1,2, ...,
which are of known functional form but which depend upon the unknown
parameter vector 9¢{}, the allowable parameter space. Thus, there exists
a family of joint probability density functions denoted by [pk(xl, cees
Y, 9:8, k =1, 2, ...]. For each value of 8¢Q, there corresponds

one member of the family, specifically [p, (¥ +evs i k=1, 2,...],



vwhich is a sequence of juint probability density functions indexed by

k=1, 2, ..., and parameterized by §. The member of the f/mily corre-

=0
_Qo):k =1, 2, ...)]. The sequence of maximum likelihood estimates, then,

sponding to the true parameter vector £ is denoted by [pk(ll’ ceor Yii

is obtained dy selecting :e-k such that

pk(xl, cres Yy Q_k) -gz pk(xl, coes Y R k=1, 2, ...
- (136)
The estimates may be expressed more explicitly in terms of the maximum

likelihood equation

3 log pk(xl, cees Yis -))
28

= 0 3 k - 1' 2. cose (137)

Under certain restrictions on the joint probability densities of
the observations, Wald [24, 25) has shown that the maximum likelihood
equation has at least one root which is a consistent estimate of the
parameter § to be estimated. That is, if a given system satisfies the
restrictions such that a consistent sequence of estimates for an un-
known parameter exists, the method of maximum likelihood estimation
will surely produce that sequence.

Let [1k]:_1 be a sequence of independent, identically distributed
random variables with joint probability density function p(xl, coes Yyi
8), k=1, 2, ..., parameterized by the unknown parameter QcQCRp. vhere
fi is the allowable parameter spasce. The probability density function
is denoted by p(y;8) and the corresponding cumulative distribution
function is denoted by F(y;8); i.e., F(3;8) = Pr(y, s y]. An arbi-

trary nom on RP is denoted by || “ . The following notation is used.
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p(:8,0) = sup P(;8), 8¢t and p> 0 (138)
he-eli<e
¥(,r) = sup  p(y;d), r>0 (139)
lel>r«
* P8P . P> 1
P (X:i8.0) = (140)
1 , otherwise ‘
. Y@ . Yo > 1
] er) - (101)
, Otherwise

Wald's restrictions may now be expressed s&s the following eight

assumptions,

Assumption 1. F(y;8) is either discrete or is absolutely continuous
for all g‘ﬂ.

Assumption 2. For sufficiently small ¢ and for sufficiently largs r,

L 2
*
J_losp i) aF (:fy) <=
and
® *
S log ¥ (y;r) dF (y;8) <= for all feQ.
-5

Assumption 3. 1If klﬂgk = 9, then kl-i‘.l: p(x;gk) = p(y;8) for all y ex-
cept perhaps on a set «hose probability measure is zero according to

the probability distribution corresponding to Qo.

Asgumption 4. 1f 8, 4 20, then F(x;gl) - r(l;go) for at least one
value of y.
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Assumption 5. If klﬁ |E_k|| «®, then klix: p(x;_e_k) = 0 for every y except

perhaps on a fixed set whose probability measure is zero according to

the true proameter 9-0‘

[ ]
Assumptiop 6. lo 8P ;L) <=
J | 108 p@ify)|F @iy
Assumption 7. (i is a closed subset of RP.

Assumption 8. p(y;8,0) is a measurable function of y for feQd and p>0,

Succeeding work in stochastic parameter identifiability has been
primarily accomplished in applying or re-interpreting in more useful,
system-oriented terms Wald's restrictions on the joint probability
densities of the system observations. A very simplified application
of the maximum likelihood estimation method is given in the next

example.

Example 4.1, Consider a single observation y of a parameter & corrup-

ted by additive, zero-mean, Gaussian noise with variance cg:

y =a+n. (142)

The probability density function of the noise is

1 n
p(n) = exp . (143)
(Zn)l;zcn 207 '

Siuce y = n - a, the probability density function of y conditioned
upon Q 1is
1 2

73 exp '_U.%J'.'L. (14b)
o4 20
n n

p(y;a) =
(2m)
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zﬂ

log p(yia) = Conscantl . Ll.:iﬁl_ (145)
20
o
The maximum likelihood equation is
2 log p(via) = Constant. - - a) =0 (146)
da 2 02
a ol

and the best (maximum likelihood) estimate & for the parameter a is the

observed value y; i.e.,

as=y. (147)

4.2, Stochastic Parameter Identifiability from the

Properties of the Maximum Likelihood Estimate

Stochastic parameter identifiability results may be derived di-
rectly from the convergence properties of the maximum likelihood esti-
mate, Though methods and results developed at later times are easier
to apply to a given system, Aoki and Yue [l], using this direct analy-
sis approach, established results for a class of linear, stable, con-
stant-coefficient, discrete~time dynamic systems with both plant and
observation noise present. Because of the importance of these results
and as an aid to understanding the properties of the maximum likelihood
estimate, the major parts of their results are reproduced in the following.

A class of systems nearly identical to that of Section 3.2, except
with the addition of noise sources, was investigated. As with the pre-
vious formulation, this class of systems represents a large class of

realistic problems. Tha system class is characterized by the equations



z2(i+1)=Az2())+} uys 2(0) = 2z, (148)
x, = n'z(3) (149)

e b e € s T g e

--81 1 O 0 as s 0 b f
;a, 0 10 ... 0 f
A=} . A (n X n); :
'an‘l 0 0 0 s a0 1 E
-a 000 ... 0 ’
L g
r -1 r o4
bl 1
b, 0 ’
b=] . » (ax1); h=y . ) (nx 1);
0
L 0 - -

and the parameters a, and bi are unknown constants with |ai| <« and
|| <@, 184120,
Qutput observations, yj, are made with additive noise
=X, + T, 150
yy = x5+ Ty (150)

The output noise process {'nj} is restricted to be independent and iden- ' i

. ; . 2
tically distributed as zero-mean, normal with variance g,

As in Section 3,2, the system may be alternately represented by

n n i
IRt LI Rt ST (151) |
3 ' ‘ !
yy= g G M) 0 3=0,1,2 ., 10 (152) /

i
i
!
{
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or with Toeplitz matrices as

AL*L - !'LEL + .E.L.z.o (153)

Y sx +1; (154)
or

x =B8+Ez ' (155)

Y =5+ (156)
where

X = [X., X.5 esee, X ]T (Lx 1) ;

_L o: 1’ 3 L'l 3 3

T
XL = [YO’ yl’ o0y yL_l] 3 (L X 1) ;
. T

QL = [uo: ul’ cee, uL'll ) (Lx 1) ;

1, =M, 1 17 Lx1);

L 0r 'lpr e gt o ;

8 = [a,, @), ooy a_, by, b b T (2n x 1);

- 1, 2’ o0y n! 1) 2: L ] n 3 3

- i
Ap =Ly + 5 88, @x1L)y
o i
Bp= &1 %8, ExD
I
X
E = nxn , (Lxn) ;
L-u,n
2 n n .

Hy = [Spxp Spxps oon Spxpe Spue oo Syl X 20)5

and §L is the L x L shift matrix defined such that §L (i,j) = 61,j+1'

\ e e md——— e =
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For the deterministic portion of the system[Eqs. (148) and (149)
or Eqs. (151), (153) or (155)] results may be stated which are identi-
cal to Property 1, Property 2, Property 3, Theorem 3.1, Theorem 3.2,
and Theorem 3.3 of Section 3.2 with the "r" of Section 3.2 replaced by
",

In the following development, i.t is assumed that the true parameter

g 2n

& lies in the interior of a given compact subset@s of R° and that all
systems with QE(HE are stable. The assumption of compactness is not
truly limiting as paraweter values, from a priori knowledge of the sys-
tem, usually fall within a limitable range thus permitting the parameter
set to be contained in a compact region, System stability is assumed

to permit the investigation of asymptotic properties of the system.

Under the conditions given, a characterization of the maximum like-

lihood estimates follows. From Egs. (153) and (154),

=10, +4 Al (B u + EL—O) (157)

Noting that ﬂL = XL - EL’ the probability density function of the out-

put y, as parameterized by 8 and 2, is

1
p(y_L;Q,go) = Constant {exp [- —EHXL (gLuL + EL_O)H ]
20
(158
Let eL’ '-OL denote the maximum llkelxhood estimates of § and 2z Zq from
the observed data, Yy and y_L; that is,
log p (338,24 = 6uulx log p(y; ;8,24 . (159)
- n
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For any Qﬁﬂ%, max_ log p(xL;Q,go) 18 achieved by
. _z_OCR

I, T- 1,-1 T,T-1 -
Z,® = (E B & E ) Ty (XL.-A-LLQ‘LE'L)' (160)
Thus, éL is obtained by
min J (B) JL(QL) (161)

2@, -

where the likelihood function JL(Q) is

-1 ~ 2
L@ =y -4 [ELEL * §1.501‘(9')] I

= lbgyy - By - Bz O r\-1 (162)
na; )
and
Zq * zOL@L)‘ (163)

It has been shown that the consistency of the maximum likeiihood
estimates holds if the almost sure (a.s.) convergence of the likelihood
function is established. This property leads to the following Proposi-

tions.

Proposition 1.
For all Qqﬂ%, JL(Q)/L -~ J(8) with probability one, where

1 2 1 T
IO =lm SEJ (@) =o'+ ln = |ox -Bu|f), T
L L 5L L o A P (;A.L_;A_L
and E denotes the expectation cperator.

Note that J(QO) = 02 = min J(8) which satisfies Eq. (153), namely,

the true parameter vector, if QO’ is unique in the representation of Eq.
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(153). 1In the following, the subscript "0" denotes the particular ele-

ment at the true parameter value QO; i.e., é'L 0

etc. As seen in the next proposition, only those § which give

- &L(go)’ !L-O bt E‘L(e Ty

rise to J(f) = J(_e_o) = 02 are of interest.

Proposition 2.
With probability ome, §, converges to _Q_L€Q)ﬂ®s, where

@ = (8:3(®) = J(gy].

2roposition 3.
J(® = J(§,) if and only if

1 - 2 _
lin 7 (&8 o - & Byl = 0.

L~

Proposition 2a.

(An immediate consequence of Proposition 2.) Given that QO is
unique, the maximum likelihood estimate QL converges to go with proba-

bility one if and only if ®0U®S is a singleton.
A necessary and sufficient condition to insure that the condition

of Proposition 2a is always satisfied is contained in the following

theorem.
Theorem 4.1 [1]

Given the linear dynamic system in any of its equivalent repre-
sentations above, such that b # 0 and (A,b) is completely controllable,

the maximum likelihood estimate 'é-L converges to §0 with probability

one if and only if

>0

1. T
Illija L gI..,anl..,Zn
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where

2 2n
Yy on = |Sp8pr Sp8p ceer Sy |-

The necessary and sufficient condition of Theorem 4.l can also be

stated in various forms for the purpose of different applications.

Corollary 4.1 [1]

Given the linear dynamic system in any of its equivalent represen-

tations above, such that b # 0 and (A,b) is completely controllable, the

-

maximum likelihood estimate 8, converges to §

8 & with probability one if

and only if

T

>
i, > 0

lim
L=

-

or, equivalently,

1
lim = MI >0
p L

where

M =—3 HT(A AT)'LR

g =L\ =L=L =L

Theorem 4.1 can be viewed as the stochastic version of Theorem 3.2,‘
and Corollary 4.1 can be viewed as the stochastic version of Property 1
of Section 3.2 modified such that 2y #0; i.e., 8= gsz) .lgi (§L - §t£0)
if and only if H is positive definite.
" At this point, a link may be established ﬁecween the deterministic
parameter identifiability properties of the system and the stochastic

parameter identifiability properties of the system in terms of yj, the
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noise-corrupted output, and M., the Fisher information matrix.

L

Theorem 3,2a [20]
If the system described by Eqs. (148), (149) and (150) is stable

and 25" 0, then § = [al, cees 8, b oo, bn]T is identifiable, I1.D.S.

1’
(equivalently, zero-state deterministically parameter identifiable per

Section 3.1), if and only if the Fisher information matrix, ML’ is

pqsitive definite for some finite L, where
Moo= Py 8z [Vg log p(y;;8.z()]

T
[Vg log p(y i8.zy)] dy, »

and
S (as 35 3s_ as \ !
8 da, da ' 3b, 2b_/

for any scalar s.
be sh h:M-HTAAT)'lu
By direct calculation, it may be shown that M, = H, (4,4, Y.

T\ .
It may also be shown (Appendix B, [1]) that (ngL) is bounded such that
T
Pl = A4y = Poly

where

0<p1<pz<o.

Thus, !iLtﬂ_L is positive definite if and only if ML is positive definite
and, by Property 1 of Section 3.2, the system is identifiable, I.D.S.,

if and only if ML > Q0 for some finite L.




e R ET———R — a7

75

Note the marked similarity between Corollary 4.l and Theorem 3,22
with the distinct diffgrence that ML must be positive definite for some
finite L in the deterministic case while the limit of %’ML must remain
positive definite in the stochastic case.

The initial state does not effect the convergence properties of
the parameter estimates ét‘ However, the initial state estimate, as a

function of éL and Iy is given uniquely by Eqs. (160) and (163); i.e.,

T :T-1 1 T *T-1
L) L 4

=) (ELAL A-x. E 2L (lL'ﬁL & -) (164)

Theorem 4.2 1]

If the conditions of Theorem 4.1 are satisfied, then E QOL‘* 24

as L - =, where E denotes the expectation operator.
The system under consideration may be extended to include an

additive plant noise process which may be represented by the following

Gauss-Markov model

z2(j+ 1) =Az(j)+b u; +4d §J. (165)

x; = h'2() + by aj + & (166)

where {éj} is a Gaussian white noise process identically, normally
distributed with zero-mean and variance kz; d = [dl’ dz, cees dn]T

A, h, and b are defined as before. The unknown system parameters are

. 2 . 2, T
a, bi’ di for 1 $ i <nq, bo and A\"; i.e., §=[a, b, d, bo, A°1%. 'the

output is observed with additive noise

., =X, + 1. 67
yJ X TlJ (167)
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as before with { ”ﬂ independent and identically distributed, without r\
loss of generality, as zero-mean, normal with unit variance. The noise
processes {QJ} and {nj} are independent.
Equivalent representations of the expanded system may be made as
with the initial system but will not be presented at this time (see Ref. -

(11). The following results were obtained.

Theorem 4,3 [1]

Given the system described by Eqs. (163), (166), and (167) with ?
d ¥ 0 and (A, d) completely controllable, éL [whete g = (g.h,i,bo,kz)rj

converges with probability one to 90 if and only if

T

1l ~ ~
- >
V= 11,1.'."@ L8,n%,n” 0

where

n
iL,n = [EL’ gLEL’ seey 'S-LgL]°

Theorem 4,3a [1]

Given the system described by Eqs. (165), (166) and (167) such that

-~

[A,(b,d)] is completely controllable, QL converges with probability one

if
1 ~T ~
= >
if?, L g'L,Zn gL,Zn 0
where

2n .
Y, " [31.’ S8y e 3 9-1.] : ;

Selected proofs are presented in Appendix B.
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2 rain a ike ihoo; Estimate Properties

Using the convergence properties of the maximum likelihood esti-
mate, Tse and Anton [22) developed stochastic parameter identifiability
criteria expressed in terms of conditional probability dcnlitie; for
the sequence of system observation statistics. Their definition of
stochastic parameter identifiability remained the existence of con-
sistent estimates as in Definitions 4.2 and 4.3.

As before, [xk]:_l denotes a adqucnce of observation statistics
with a joint probability density function pk(ll' coes Xy 9, ke l, 2,
+e., parameterized by the unknown parameter Q_SQCRP . - Although the '
development by Tse and Anton was set in a more general separable metric

space, in consonance with previous remarks, () is taken as a compact

subset of RP, The true parameter, go, is assumed to lie in the interior,

of Q. An arbitrary norm on RP is denoted by ||:||. Denoting the obser-

vation sequence

lk - [xln xzn veey x‘k]’ [168]

the sequence of true joint probability density functions may be denoted

as

Py eoo 4 &) = (Y5 By k=1, 2, .. (169)

Since the context clearly indicates which density is indicated, the *"k"
subscript is routinely deleted, yielding p(Y, ; Qo). By Bayes rule, a

conditional probability density function may be defined as

P (Y| §)= P(Y 8) /e (Y. 8), k=1,2, ...
(170)

e e i P
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Any new information obtained from the kth sampling will be contained
in the conditional probability density of Eq. (170). PFor ¢ and p > 0

define a regional conditional probability density

P(aopleys 8) = s p(xlY ) (171
e -8'll=se :

The following assumptions are made.

Assumption 1. The probability density function p(Y,; §) is measurable
in Yk with respect to p(Yk; QO)dYk and is continuous in §¢{d for Yk
almost everywhere; i.e., for 'any € > 0 and ¢}, there exists a §(¢) > 0
such that for all §' eQ with || - 8'|| < & we have Ip(Yk; )

- p(Y,; 8| < ¢ for Y, almost everywhere.

Assumption 2.
S o losp s plY, s & p(Y; 8)dY, <= (172)
R

for each §¢Q, for some p > 0 and for as.l k = 1, 2, ...; and

F o log p(y Y, i 8)) p(Y,; BeY, <= (173)
R

for all k= l, 2, seey o

Assumption 3.

v;:{ él log p(y,.p|Y, _ys g)‘ . 0 (174)

for all 8¢ and some fo >0 vwhere 08 p s fo and where 0(k2) is defined

such that

2 :
1n 26D Lo,
k=a
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Assumption 4. Defining the set 8, (§) = [Yk;p('l ) I O],
8,® =8@E") (175)
for §, §'¢Q and for all k= 1, 2, ..., .

Conceptually, the second and third assumptions restrict the growth
rate of accumulated information about the unknown parameter relative to
the accumulated uncertainty. The fourth assumption implies that, for
two different parameters, the corresponding density functions must have
all the impulses located at the same points in the observation space.

Since the only information abcut §O is contained in the observation
stacistics [zk]:-l with their corresponding joint density function
p(Y,; ©, k=1, 2, ..., Lf there exist two parameter vectors 9'1' gzcﬂ,

8 # g9, such that
p(Y i §) = p(Y,; &) (176)
or

Py Y1 &) = P(%e) Vi1 8) allk=1,2, .., (I

the Ewo parameters are indistinguishable in {Q.

Definttion 4,4 [22]. Two parameters §,, §,¢Q, 3, ¢ 8, are said to be

unresolvable if the equality

Py Y 5 8 = Py ¥ 5 &) (178)
holds with probability one for all except a finite number of

integers k > 0; i.e., if Eq. (178) holds with raspact to the
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measure p(Yk; gl)dYk as well as p(Yk; gz)dYk.

Defintction 4,5(22]. The set (i is said to be fdentifiable if wo two

elements of {} aTe unresolvable,

Pefinition 4,6 [22]. For the observation sequence, Yk, the constrajined
ke liho egtimate O 9-0 is defined as ék' which

satisfies

p(Y ; 8.) = max p(Y,; §). (179)
o B0 - e e,

Essentially, this i{s the maximum likelihood estimate of _Qo but
takes into account the g priori knowledge that ﬁo is constrained to be
a member of ); i.e., QOGQ. Since (i is compact and p(Yk; 8) i5 con-
tinuous'almosc surely by Assumption 1, at least one solution to Eq. (179)
exists almost surely., Thus, the CML generated estimate sequence [:Qk]:_l
is a consistent astimats for go if go is unique, a consequence of the
properties of the maximum likelihood estimate. However, if there exist
two parameter vectors 3_1, chﬂ. ﬁl ¥ §, such that

‘ti;m.P(Yk; 8 - &?.P(Yk" &) (180)

then, obviously, [ﬁk];_l will fsil to converge.

Definition 4.7 [22]. Two parameters, ﬁl‘ ﬁzca, gl ] -9-2' are said to
be CML unresolvable if

Um pqylY, ;i 8) = ;E.m., P Y i &) (181)

ko

with probabilicy one.
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Definition 4.8 [22]. The set {} is said to be CML identifiable if no

two elements in {] are CML unresolvable.

Theorem 4.4 [22].

A sufficient condition for {] to be CML identifiable is that, for
all gl, Qzeﬂ, Ql # QZ’ there exists an infinite set LCI+, I" the set

of positive integers, such that the inequality

Py Yy 8) # Py lY 5 &)
holds with nonzero probability with respect to gl and §2 uniformly in
kelL,

It should be noted that Theorem 4.4 provides sufficient conditions
to insure CML identifiability. If the conditions of the Theorem are
not met, it does not necessarily imply that the CML estimation method
will fail, rather, it implies there exists no gﬁarantee of consistency
of the estimate. In point of fact, certain studies-have indicated
that the CML estimate is '"fairly" consistent even though some of the

required assumpfrions are violated.

Example 4.2 [23]. Ccasider the linear, time-invariant system given by

i TAhE Y (182)
L, =C % +y . (183)

where ijeRn, xjeRm and {Ej} and {xj) are zero-mean Gaussian noise

processes with covariances
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and

ALec 8=1[x., 4, C, R, Q, Q]T and assume that A is stable, (A,C) is an
observable pair and (A,B) is a controllable pair, where B is the steady-
state Kalman fil_t;er gain given by Eq. (188) (see below).

Two parameters Ql, gzeRp, gl # gz are defined to be CML unresolv-

able if the equality

Py Y qr &) = Py lY 108 (184)

holds with probability 1 with respect to Ql and 22 as k- ®, Since the

system is linear and the noises are Gaussian, p(xk{Y 8) is Gaussian

k-1’

- T
with mean zk|k-1 and covariance C P C + Q as k—= (steady state). P

and S:'klk-l are given by the usual steady-state Kalman filter equations-

Tijke1 = € ;-‘-1<|k-1 (185)

Bkl = Aoz B U (186)

Ve * e~ € Xy ' (187)

B=@rc+p e+ (188)
T T T

P=APA +R-B(CRC +QB (189)
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It can then be shown thac §,, gzekp, 8§, # §, are CML unresolvable

if and only if there exists a nonsingular matrix T such that

-1

A =T8T (190)
co=c. Tl (192
=1 =2 = )
c.p. ¢l =C, P, Cl+ 193)
R4+ 555+9,. (

If Eq. (193) is satisfied, it is clear that Eq. (184) holds with
probability 1 as k—=«, and thus, gl and §, are QML unresolvable. Then

in the steady state,

1 k-1 = L2,k k-1 (194)

with probability 1, for all k

T

T
c 21 9.1 + 91 = 92 22 9.2 + 92' (195)

1
Equations (185) through (188) and (191) imply that

AbB =g, AlB, 1=0,1,2, .. (196)

g R

1

But £q. (196) implies that the two steady-state Kalman filters [Egs.
(185) through (188)] have the same impuise response. Since (éi, gi)
is an observable pair and (éi, gi) is a controllable pair, Eq. (193)

results.

Additionally, Glover and Willems [9] provide an example of a

deterministic system driven by a white, Gaussian noise input.

. e = 4
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4,4. Stochastic Parameter Identifiability from the Information Matrix

Under essentially equivalent assumptions on the joint probability
density function of the system observation sequence as found in Section
4.3, Tse [21] has developed conditions for local stochastic parameter
identifiability in terms of the information matrix. The system setting

and terminology are also parallel to that of Section 4.3

Definition 4.9 [21]. A parameter QOEQCZRP is said to be locally iden-
tifiable if

(1) There exists an.open set S0 such that §0 is an interior point

of SO; and
(2) There exists a consistent, local estimation sequence,
[- -]
{ Qk (Yk; SO) }k=1 in S0 where s0 is the closure of SO‘

The set So is said to be the region of parameter iden-
tifiability.
Considering the concept of resolvability of Definition 4.4, the
Definition 4.9 is equivalent to stating that QO is locally identifi-
able if there exists a neighborhood about QO’ denoted by SO’ such that

go is resolvable from its neighboring elements sto.

Theorem 4.5 [21].

1f for all k = 1, 2, ... there exists kz > 0 such that

e,k &) = Eg J 28,

o log p(Y-kIYk-l;-e'O).][a 18 p(x‘-(‘Yk-l;-e-O)]'rl
) 38,

=pxp
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where E§0 represents the expectation operator with respect to the prob-

ability density function p(Yk; QO), then QO is locally identifiable.

The function Jk’k(go) is a conditional information matrix.
Vaguely, Tneorem 4.5 implies that if there exists "positive information"
about the uvnknown parameter in each new observation, then that para-
meter may be recovered asymptotically provided that the region of un-
certainty for the unknown parameter is small,

Unfortunately, the condition of Theorem 4.5 is rather difficult
to verify as it involves checking the positive definiteness properties
of a councably.infinite number of matrices. Further, {t must be demon-
strated that these matrices are uniformly bounded below by XZL, Xz > 0.
Thus, it is desirable to establish a weaker sufficient condition by

considering an additive, and eventually total, information matrix

3 108 5. (® |5 108 5, (® ]|
Ipa® = Eg { T Sal— , (197)

where

! .
pm,n(ﬁ) =Py Loye cee XY s &) (198) |

Noting that

2% log p_ _(® {[a log ? “<.e.>][a log ¢, n(@]T }
E ;i = E R 3
8

o
9 ! 8 38 38
(199)
and
3% 1og p_ _(® n 2% log b, (®)
Eg 2 =By L 7

a8 2 lim ag
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n 3" log P, 1(-9-)
= 2 E e
fem 2 2g°
n
=53 4 ® (200)
we have
z 201
Inn® = 35 9 1 ® (201)
and
k
I8 = iF1 7p,1(8) (202)

1f the condition on Jk k(g()) of Theorem 4.5 is satisfied then
k]

2 2

11 I3 \">0 203
) Loxp? * (203)

k-nﬂ

Ll Lo

o *
Jl,k(go) s J (go) 2 A

*

wrere J (QO) is also known as the average Fisher's information matrix .

While Eq. (203) does not necessarily imply that the cordition on I k(‘QO)
3

of Theorem 4.5 holds, this weaker condition is sufficient for local

identifiability.

Theorem 4.6 [211

Let h be any unit vector in R°. 1f there exists )\2 > 0 such that

: T 2
lim  £hJ;  (Eh2zA@ >0,

k=

=i

then _6_0 is resolvable from § = go + ¢h; 0< ¢ = A(h) /?:'(t_x) for some

constant ?(w < ®, Note that both A and Py may be dependent upon h.

Definition 4.10 [21]. A subspace Qcr®? is said to be locally identi-

fiable if all elements 8¢Q are locally identifiable.
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Theorem 4.7 |21{
A sufficient condition for a subset QCRP to be identifiable is

that

* 2 , 2
J (8 22 (Q)pr ; A (8) > 0 for all 8eQ.

P

While the results presented above appear to be particularly appli-
cable to the analysis of a given system rather than to a class of
systems, Tse [21] has applied the results to a linear, discrete-time,

autonomous system presented in the following example.

Example 4.3 [21]. Consider the system

B * A % (204)
B TG B Ty (205)

. ]
where ék’ gk are known matrices and [!k]k-l is a sequence of zero-mean,

independent, Gaussian random vectors with covariance GEL. The only

unknown parameter is the initial state, § = goeRp. It can be shown
that all required assumptions are satisfied [21] if the system is
stable; i.e., [ ll<c) <=, k=1,2, ..., and 1f |kl < c, <= .

The conditional information matrix is given by

1 T T
k@ " 77 9 oSS0 (206)
Gk )
where
ka,j = ﬁ‘ ¢ 'A'k‘l, seay AJ. (207)

Therefore, the total information matrix is given by

[ . T e
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J (8) = 1 E 0'2 T cT for all 9¢RrP (208)
1,02 = 7 k&1 % %,0 & ¥,0 =0

Suppose that the system is uniformly observable,

k+n-1 T T
B By &Ry fL B0 Jel,2, ..., (209)

a Iy
and [ck]k-l is bounded. Define
*

A
04 = mAX (cjn, g

jol, ° (j+1)n ) (210)

‘Then, from Egs. (208) through (210),

j

£ * P
Jl,jn(-e-) 27 i§1 %n,0 &n,0 for all OeR". (211)
Therefore, from Theorem 4.7, a sufficient condition for X, to be iden-
tifiable is
1 3 x-271 2 2
Hm T35 9 85,0 R4n,0 ML M 20 (212)

J
Note that, since the system is linear, the least square estimate
has error equal to Jl,n(g) exactly, Therefore, a less restrictive
sufficient condition will require
] *-
;f‘j‘m i§1 o)’ an,o Bin,0 " > (213)
In an attempt to more directly relate the above results to systems
notation, cousider three systems in which the parameters § are linear,
nonlinear, and dynamic-nonlinear functions of the observations y in
the presence of independent, Gaussian noise v with covariance matrix

Q. The three representations are, respectively:

U ———




y=H8+y (Linear) (214)
y=Hz (8 + v (Nonlinear) (215)

l(ti) =iz (r'i’-e-) + y-("'i) (Dynamic-Nonlinear) (216)

The torm of the information matrix may then be determined for each
case. Consider first the linear case of Eq. (214) which implies that

Y - H d is distributed as v. 'Then:

log p(y|8) = Conscant + 3{y - K 8107}y - 1 & (217)
Lloa gl . iy -w oy (218)
3 log p(y|8Nr2 log p(y|®)
o[ —— | —= Jie]
-e {6 - m ey - 0 g
= 17Q h. (219)

For the nonlinear case:

log p(y|8) = Constant + %‘{1 - Hz(9! Q [.‘L i 2(®] (220
o log p(y|9) -1 2 2®

3 log p(xl_@,)][a log p(y|®)
E ag a-e- |§

NERGORE T - [?z®

=\ 55— B e il 55| (222)

For the dynamice-nonlinear case:
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, K
log p(llg) = Constant + % iEl ‘ [x(ci) -H 5(;1,§)]T

o txcep) - Bz 2.0 (223)
d log p(y]9) K r o 2 2(t,®
vt D SACTPRR 3 TCPRT) U S o
(224)

(T2 1og p(x|§)] d log p(xl@)] }
s T A

K {2 z(t,,8) [3 z(t ,8)
= "{’=":7 T -1 b Sy
- z[ 3% ] 19 8= 3g } (225)

i=]
It should be noted that these exact expressions appear in small

variational parameter estimation methods as the gradients of the quad-
ratic cost functionals. Likewise, a minor link may also be established
to deterministic parameter identifiability by noting that the cost
functional for least square identifiability may be taken in the sto-
chastic case to be the negative logarithm of the likelihood equation.
Then, the expected value of the second partial derivative of the cost

functional with respect to the parameters is the information matrix

discussed above.

4.5, Comments on Stochastic Parameter Identifiability

While the injectivity of the function f provides a unifying set of
concents and definitions for deterministic parameter identifiability,
no corresponding unifying concept or definicion has yet been deter-
mined for stochastic parameter identifiability. A loosely unifying

concept for stochastic parameter identifiability appears to be the
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existence of a consistent estimate for the unknown parameters. However,
the requirements for the existence of a consistent estimate is express-
ed mathematically in a number of different ways and tius no mathemati-
cally uniform concept now exists which is equivalent to the functional
injeccivit; requirement for deterministic parameter identifiabilicy.

As shown in the previous material, several tentative links between
the forms found ;n deterministic and stochastic parame:<r identifiabil-
ity have been established. However, no mathematically explicit, con-
sistent relationships have been established to relate the two concepts
together.

It should‘be noted, however, that deterministic parameter identi-
fiability is a prerequisite for stochastic parameter identifiability.
Indeed, if a system is not deterministically identifiable, then certain-
ly no consistent estimate for the unknown parameters can exist. On
the other hand, the assurance of deterministic parameter identifiabili-
ty is not sufficient to insure stochastic paramecter identifiability
since the stochastic properties of any given system may supercede the
deterministic properties.

It should be noted that the final two s%ochastic parameter identi-
fiability concepts presented in Section &4, specifically, those predi-
cated upon the properties of the conditional probability density func~-
tions of the system observations and those predicated upon the proper-
ties of the conditional and total information matricus, are oriented
towards the analysis of a given specific system rather than of a total
class of systems. The application of these concepts to some classes of

systems of interest seems to be an opportune fileld for scudy.
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APPENDIX A. PARAMETER IDENTIFIABILITY RRSULTS VERSUS SYSTEMS' CHARACTRRISTICS.
- -t
I e R e e s B e e e B
P T P . T L L 29 2 e 3 9 v
§ § 8 § ¢ 8 ¢ ¢ 80 &8 8 8 2 ¢ 8 18 8 88
E 8 8 5 8 8 8 8 & & & 5 % & & & 8 $ ]
¢ & ¥ @ ¢ 9 e ¢ 6 ¢ ¢ e nu e E E ] ]
Cnaracteristic E E E E E E E E E E E &€ 3 €& € & ¢
General, Not
System Specific X X x
Determiniscic X X X X X X X X X x x
Stochastic X X X x x
Linear X X X X X X X X X X x X x X
Noalincar X x x
Contirvous X X X X x x x
Giscrete X X x X X X X X X X
Siso X X x X x
MIN0 X X X X X X X X X X X X
X, Known X x x X X X X X X X X X X x
1_:° Unknown x x
Unspec.fied Input X X x X X X X xXx X X X X X
Zero ]nput x
Impulsive Input X x
Local X X X X X x Xx
Glcbal X X x X X X X x X

C -2



PRECEDING PAGE BLANK NOT FILMED

99

APPENDIX B. SELECTED PROOFS

The proofs selected for presentation in this Appendix are not
totally comprehensive but are presented as samples of the methods and
procedures involved. Generally, proofs which require the establish-
ment of preliminary lemmas or i:roofs have been omitted. Other proofs

which are similar in content and nature to those chosen have also been

omitced.

Theorem 3.1 [20

From the defining Eqs. (35) cthrough (37), direct computation

yields

[xn, NSRS xL-l] = [an, 8 .17 eees al]

p- 1
X Xy oo xL-n-l
X X Xy oo o X = [an, a..10 e al]
xn-l xn L] . L] xL-z J
- -
11'1‘
T
h™A .
- - u'n'l
X . [go,égc, ...,5_( )50]. (B.1l)
ETQ(n-l)

The first matrix on the right is non-singular by Eq. (36). Therefore,
[an, 3 12 e all is uniquely determined if and only if the second

matrix, the controllability matrix for the pair (é,_z_o), has rank n and
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the theorem follows immediately.

Theorem 3.2 [20]

Necessity.

T
(1) H isLx (n+ r). LE

= e al
(11) 1f bi = Q, then EL = Q, X éL ELEL -

> 0 implies L2 n + r,

0
where Eq. (37) is restated as

=By +Ez2

L=L L~o (B.2)

and

g =L+ L as . (8.3)

and

. 3
B, ij bS] . (B.4)

Consequently, any &L satisfies Eq. (B.2).

0Ofor 0sis<L-n-~-r, then by Eq. (35), x; =0,

[}

(iii); 1f uy

also, for 0 s i £ L ~-n - r, Thus, the first L - n -t + 1 rows of gL

become zero and rank gL <n+r, and g{ﬁL is not positive definite.

(iv) If A(z) and B(z) have a common diviszor, then

A =40, B =5D | (B.5)
where
- nl nl

e mimen v —
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and

n-n .

J
D =4I +j*.:1 4,87, .4, %0.

Substituting Eq. (B.5) into Eq. (B.2) and multiplying both sides by D',

since |_QL| # 0, we obtain

A x, =By
then ¥ = ['5‘1, Ty a3 0 0,5, 0,8 L0, L, o] T
| 1 1

would satisfy Eq. (B.2) and contradict the uniqueness assumption.

Sufficiency. Let E - ['51, :2, ceey ‘;n’ ‘Fl, %’2 eeey T;r]T be any

vector such that the corresponding matrices EL’ EL satisfy Eq. (B.2).
Then AL—L - ‘EL-L’ Ax = Q-LEL' Therefore,

ARy = AAX

=EAx KBy - (B.6)
‘let
~ ~ n+r .

S = 448y - A8y = 4Ty o8 - (8.7

let
2 DT

Y e =[Sy Spaps oo 80 ] (8.8)

and
T
g-[:cl, Cos eues cmrJ . (B.9)
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Combining Eqs. (B.6) through (B.9), we obtain

Up ners = Gg8g = O (8.10)
By (i) and (iii), gt ner has rank n + r. Hence ¢ = 0 and, by Eq. (B.7),
b ]
&LEL = &LQL'

This implies B(z)/A(z) = B(z)/A(z) »nd, by (ii) and (iv), a = 3 and

b= B. This compietes the proot.

Theorem 3.4 [9] is an immediate consequence of the definitions
given and is an application of the cmstant rank theorem for injective
maps [17].

Theorem 3.6 {10] results immediately from the application of the

variation of constants formula
£ AR (t-T)
1(t,8) = C(8) J e="= B(8)u(T)dT + D(8)u(t) (B.11)
0
and Definition 3.8 of distinguishability.
Corollary 3.6 [10
L 2
C(8)AT(8))B(E,) = C(B,)A"(8,)B(E,), £ =0, 1, 2, ...(B.12)
D(8,) * D(8y (B.13)

Sufficiency. Equations (B..2) and (B.13) imply that the two
systems corresponding to the pair of parameter values (gi,gz) both
have identical impulse responses and hence have identical transfer
functions. By Definition 3.8 the pair of parameter values is indis-

tinguishable.
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Necessity. By Definition 3.8, the indistinguishability of
(QI,QZ) implies for x, - 0, for any given u(t)eU and for all 0 £ t < T,

that
x(c.gl) = y(t,8,)

which, by the variation of consian:s formula, becomes

t

€@, j 2@V C"Mgg Hu(mar + pegduce)
0 )
c B
= c(g,) I A& (D 3o yu(myar + D(g,) u(t). (B.14)
0
Since Eq. (B.14) holds for all 0 $ ¢t S T, and in particular for't = 0,

then

Q(QI)Q(C) = 2(.9_2)2(0
for all u(t)eU and for all 0 £ t £ T, (learly,

D(g)) = D(§,} (B.15)
and

AP g yu(nyar

y € (A (=)
2’ B(8,)u(m)dr. (B.16)

Combining like terms and moving _c_;_(gl) and Q(Qz) under the integral,

since they are independent of 7, yields

t
0
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Since the functions in the equation above within the brackets and u(T)

are continuous, by the standard theorem of the calculus of variations

g@l)eﬁ(il)(t"r)g(g‘) - 9(—9-2)3&‘.@2)(;‘7)!(9-2) = 0.

By repeated differentiation with respect to t and evaluation at t = 7

C(8,)B(8,) = C(8,)B(8,)
C(8ARB(E,) & C(8,A(8,)B(E,)
@A} (@BE)) ® CEIA (BB, ¢ =0, 1, 2, ...

(B.17)

as required.

Theorem 3.7 [10] follows immediately from Corollary 3.6 and Defi-
nition 3.9 for (local) parameter identifiability.
Theorem 3.8 [10] is an immediate consequence of the given defini-

tions, Theorem 3.7 and the constant rank theorem for injective mappings

[17].

Theorem 3.9 [10]
It has been shown [6] that the solution to Eqs. (97) and (98) can

be written as
llox(+, 84,081 = oy (+:89,08) + 2(*,69)]]
2 |logg (80001l - lC-, 00| (B.18)

where y(*,068) are terms of 0(|l6(8)|) and aim, 0(6)/6 = 0.

o - ahantd
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Defining the Lz(:o,r) norms of Eq. (B.18) yields

[J’ uaw.ao.ogn’u] . [ [ :tow.go,oan’«] v
to Co

T , Ju2
- I (T, 60)11ar . (B.19)
t

0
Divide both sides of Eq. (B.19) by ||68]|. Assume thac ||68]| 11es between
0 < |l6g]l < 8. Then

T [ lloxcr.gg.08ll \%,, 12 I Rorg(r.8. 001 \> ]2
[Lo( () )‘"} 2 [Lo( xo“é.ﬂ )‘"}
T /el \2 T2
' [Lo( ol )“} ‘ @20

Tror

[ [!{ (r.gom(f,go)] ar >0,
t

0

Now assume

and

km“r [ET(T,QOQE(T,QO)]dT’ ~e¥>0

"%
where Xmin is the minimym eigenvalue.

The first term on the right-hand side of Eq. (B.20) can be written

as

T 6 88T 172
Lom N'(T,8,)N(T, 8y) m dTJ 2¢>0,

for all 8. {B.21)
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As 0~ 0, the second term on the right-hand side of Eq. (B.20)
tends to zero, and the total right-hand side is greater than zero for
all § 'aufﬁciently small, say 6 s 3. Therefore, the left-hand side of
Eq. (B.20) is

(B.22;

2 1/2
T [ lex(T. 84 08l
f TRl il I
t -

0

hence, ||6y_(',§0.6§)||2 > 0. Hence, for all § 4 §,, QCS(QO,E), y(t,8)
L x(c,go) for some cc[to,'r], which implies that the parameters, §eQ,

of tne nonlinear system are locally identifiable at Qo.

Wald demonstrated the consistency of the maximum likelihood esti-
mate by first establishing three lemmas which are presented below with-

out proof (see Ref., [24]).

Lemma B.1l. If § # &, then

E log p(y;8) < E log p(y;8,) (B.23)
Lemma B.2.
lim E log p(y;8,p) = E log p(y;8,) (B.24)
p=0
Lemma B,3.
lim E log ¥(y;r) = - » (B.25)
r =&

With the above lemmas and the law of large numbers, the following

theorems, leading to the consistency of the maximum likelihood estimate,

can be proven,
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Theoren B.4 |
Let WC( be a closed subset of 3. 1If 20 does not beleng to W,
then | ‘ o

8Up P(Y 1Yy voer ¥i®)

lin Qew
Pr Py
Ko p(YIDYZ) LA ] yk;%) -

of =1 _ (B.26)
Proof: By Lemma B.3, we can choose T, > Q such that

Z log y(y,ro) < E log p(¥y;9). | , (3.27)‘
Let W, be the subset of W such that

ORRT R
For each gewl, we can choose a ‘:,g > 0 such that

E log p()';_e_.pg) < E log p(y;Qo). (B.28)

The existence of Pg is guaranteed by the law of large numbers and

Lemma B.1. The set w1 is closed and bounded and, hence, is compact.
Thus, there exists a finite number of points il’ cevy gj in wl such
that the union of the spheres with center ﬁt and radius pgi. ies],

b
voes 3o 4y S (Q_i,pgt) covers W,.

It is seen that

0 % 8up P(Y,) Yos seer % 38)
few 1* 72 » Ty

J
=5 ("1‘91"’_6_) ceeP (yksgi.aii)

+ w(yl.ro) “zk”o)‘
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It i{s then required to show that

P(Y,:8,+08:) o0 P(Y 36, ,Pa.)
Pr{ 14m t g%—-gi» .; 21Pgt =0 ’ .1, (B.29)
koo POU38Q) eoo P(y8y)
i = 1, ss ey J;
and
V(Y o ) oo ¥(y,,T)
1’ o k' o - -
P‘.{;?. P08y s PO, 8y °} ! (8.30)

waich is equivalent to showing that

k= o m=1

k
Pr{ lim T [103 p(ym;gi,pgi) - log p(ym;go)] - .} -1,
i=1, ..., 3;(B.31)

and

/ k
Pri lim £ [103 w(ym;ro) - log p(ym;go)] s -m } a 1.(B.32)
k=o m=]

But Eqs. (B.31) and (B.32) follow immediately from Eqs. (B.27) and

(B.28) and from the (strong) law of large numbers.

Theorem B,.5

Let :Q_k(yl, seey yk) be a function of the observations such that

a

p({l. coey yk;ﬁk)

p(yl. ceas yk;éo)

2 c >0 for all k and for all y,, ..., yk{

(B.33)
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Proof: !.c:@d.enou the set of limit points of [ék]:-l Then it
suffices to show that for any ¢ > 0,
sup { Ilg - 8 ll: 8'®} s ¢ with probabilicy one. (B.34)

Suppose that there exists a iﬁ@bluch that ]Ei - 20“ > ¢, then
sup P(yll 40y Ykii) * P(Yly s04, yk;ék)!
g - &ll z ¢
for infinitely many k. But this implies

.up p(yl. s0 0y )'k'-i)

I8 - &l = ¢

P(Y s +eer ¥ iko) 2c>0 (B.35)

for infinitely many k by Eq. (B.33). By Theorem B.4, Eq. (B.3S) is an

event with probability zero; thus, Eq. (B.34) holds with probability

one.
Recall that the maximum likelihood estimate 'Qk is obtained by

P(Ylo o0y yk;ﬁk) - g‘x p(yli LI Y )’kiﬁ). k = 1. 2. ...(3.36)
Y]

1t éu exists, then

p(y ’ ey y ;i)
1 k
p(yl’ T, ’k‘ﬁsj 21, for yl, cess yk, kel, 2, ...

Clea.'y, by Theorem B.5, the maximum likelihood estimate is con-

sistent.

Proposition 1 (page 71). In Eq. (162), the vector EL;OL has oanly s
finite number, n, of nonzero ¢lements. As L-e, it contributes nothing

to J (P/L in the limit. Therefore, ZbL can be dropped from Eq. (162)

& e —— ——— ————
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without loss of generality,. Then

%JL(D . %"% +Ax - !;_2;,"2 hul (8.37)
(e )
- A -y T\-1
| (atr)
+in [-’51. - ﬁq.llu.!:.] + 1, IF (B.38)

The first term ic deterministic. In the seconc¢ term, both !L and

A; 31. Tepresent output sequences of some stable system with a bounded
input uqumcc.' Thus, X - AL]ll.gL is uniformly bounded. The limit in
the Proposition statement [un %! JL(Q)] exiscs, and
Lo®
- ' L-1

c!'- T - -1 - l %

Tl [’ix. 4 11.21.] Rt AT (B.39:
where &y £ a<e for all i. Since {T]i} are independent random variables
with

2 2

mi - 00 !'ni =0 <&

and
az
T4sa® zd<o,
i1 i1

the strong lav of large numbers applies., Hence, with probabilicy one,

1711 -0, (8.40)

(ol Lo

La
{
i

[l o
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and substituting Eqs. (B.39) through (B.41) into Eq. (B.38), we have,

with probability one,

1 -
T3® = 1.

Theorem 4.1 [1]

Sufficiency. Define the matrix C, and the associated vector ¢ by

-],

S =48 0 " AL 0By
2n {
= T ¢S,
jm] L
and
e m T
< [cl, Cos eoes °2n] .
Then,
0= lim ||A,B, o~ A oB)u P
SL=L,0 T SL,0eL/-L
L=

if and only if

lim nngL\lz-_c_T[um %UT u c] = 0.

Lee

implies that ¢ = 0, or, equivalently,
C(z) = A(z)Bo(z) - Ao(z)B(z) =0,

B(z)/A(2) = By(2)/A(2),

(B.42)

(B.43)

(B.44)

(B.45)
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where

n

A(z) = 1 + %1&:1 B(z) = T bzi
3 i j=1 ?

Hence, by controlability, b = b), a = a,, § = §,, and OBy is a
‘singleton. '

Necessity. It suffices to show that if the limit condition of
the Theorem statement, Eq. (B.45), is not satisfied, then there exists
8= (g5 + ba, b, + 6b) such that 8a # 0, 6b # 0, tne condition of

Proposition 3 is satisfied, and Q¢®oﬂ®s.
Note that the vector ¢ as defined in Eqs. (B.42) and (B.43) can

be re-expressed as

©Ia+ Ib+Epb, (8.46)
where
Too ™ "A9q,0 Epn» (Zm X 0)s
2’oo = §2n,0 §2n’ (Zn X m);
L
§2n' 5 " , (2n x n).
n,n
Let V = lim 1 UT U . If the matrix V is not positive definite,
Lo L =L,2n =L,2n

then there exists a nontrivial solution to the equation

da
0=v(IL,. I.) . (B.47)
6b.
: It is immediate from the definition of C, that C = 0 and thus
0= Tpolo * Laoko * Eondor (B.48)
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Therefore, letting a =a + & * 0a, b= b + 0o+ 0b for any scalar a,
we obtain by combining Eqs. (B.46) through (B.48) that gTV_c_ s 0 which
by BEq. (B.44) implies that the condition of Proposition 3 is satisfied
and 8¢@),. It only remains to show that S¢@\.

Supydse [xi(A)], 1<i % n; are the roots of A(z). Then, xi(Ao)
are exterior points of the unit disc D = {z: |z| S 1} on the complex
plane by stability. Since the roots of A(z) are continuous in a at 3,
in the sense r.ha; there exists a neighborhood ®a where ®a = {g:

b - 50“ <¢} sucih that A (A)eD for all qu;, c1:a:1y a c_go +a - 8a
is stable if a < ¢/||6a|l. Furthermore, 8, is an exterior point of ®s‘

Thus, & can be chosen to have

g-(%+a-6a,g°+a.-bg)c®s. (B.49)
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